
 
 

Delft University of Technology

Large-scale collaborative vehicle routing

Los, Johan; Schulte, Frederik; Gansterer, Margaretha; Hartl, Richard F.; Spaan, Matthijs T.J.; Negenborn,
Rudy R.
DOI
10.1007/s10479-021-04504-3
Publication date
2022
Document Version
Final published version
Published in
Annals of Operations Research

Citation (APA)
Los, J., Schulte, F., Gansterer, M., Hartl, R. F., Spaan, M. T. J., & Negenborn, R. R. (2022). Large-scale
collaborative vehicle routing. Annals of Operations Research. https://doi.org/10.1007/s10479-021-04504-3

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1007/s10479-021-04504-3
https://doi.org/10.1007/s10479-021-04504-3


Annals of Operations Research
https://doi.org/10.1007/s10479-021-04504-3

ORIG INAL RESEARCH

Large-scale collaborative vehicle routing

Johan Los1 · Frederik Schulte1 · Margaretha Gansterer2 · Richard F. Hartl3 ·
Matthijs T. J. Spaan4 · Rudy R. Negenborn1

Accepted: 15 December 2021
© The Author(s) 2022

Abstract
Carriers can remarkably reduce transportation costs and emissions when they collaborate, for
example through a platform. Such gains, however, have only been investigated for relatively
small problem instances with low numbers of carriers. We develop auction-based methods
for large-scale dynamic collaborative pickup and delivery problems, combining techniques
of multi-agent systems and combinatorial auctions. We evaluate our approach in terms of
both solution quality and possibilities of strategic behaviour using a real-world data set of
over 12,000 orders. Hence, this study is (to the best of our knowledge) the first to assess
the benefits of large-scale carrier cooperation and to propose an approach for it. First, we
use iterative single-order auctions to investigate possible collaboration gains for increas-
ing numbers of carriers. Our results show that travel costs can be reduced by up to 77%
when 1000 carriers collaborate, largely increasing the gains that were previously observed
in smaller-scale collaboration. We also ensure that individual rationality is guaranteed in
each auction. Next, we compare this approach of multiple local auctions with an established
central combinatorial auction mechanism and observe that the proposed approach performs
better on large-scale instances. Furthermore, to improve solution quality, we integrate the
two approaches by allowing small bundle auctions in the multi-agent system. We analyze the
circumstances under which bundling is beneficial in a large-scale decentralized system and
demonstrate that travel cost gains of up to 13% can be obtained for 1000 carriers. Finally, we
investigate whether the system is vulnerable to cheating: we show that misrepresentation of
true values by individual participants sometimes can benefit them at the cost of the collective.
Although such strategic behaviour is not straightforward, we also discuss different means to
prevent it.

Keywords Collaborative vehicle routing · Combinatorial auctions · Multi-agent system ·
Platform-based transportation

1 Introduction

Horizontal collaboration is an effective approach to increase transportation efficiency (Ver-
donck et al. 2013; Gansterer and Hartl 2018b; Pan et al. 2019) and has received increasing
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attention of governments, companies, and academia in the last years (Cruijssen 2020). While
traditional collaborative vehicle routing focuses on exchange of orders between limited num-
bers of carriers, recent technological developments allow large-scale collaboration in real
time. Different transportation platform companies already match orders with (partly) empty
truck trips in practice, but there is a lack of academic insight into possible large-scale col-
laboration gains, optimization approaches, and participation incentives. This study aims to
fill this gap.

Centralized collaboration approaches have been studied to assess the possible gains of
collaboration (Fernández et al. 2018; Molenbruch et al. 2017; Schulte et al. 2017), but these
generally make the assumption of complete control and full information availability—which
generally cannot be assumed in real-world applications due to the heterogeneity of carriers and
their autonomy and privacy concerns.Decentralized approacheswith a central auctioneer, and
combinatorial auctions in particular (Berger and Bierwirth 2010; Gansterer and Hartl 2018a),
overcome these problems, but available computational studies are limited to static problems
with small numbers of carriers and orders. For order allocation in larger dynamic problems,
multi-agent systems (MASs) have been used, where orders are iteratively offered in auctions,
and carriers place bids for them (Máhr et al. 2010; Mes et al. 2013; Los et al. 2020b). Such
market-based approaches are of increasing interest: quick adjustments based on real-time data
(new carriers, changing orders, schedule disturbances) are possible, without having direct
control over the cooperative (but nevertheless rational) heterogeneous participants. Although
there is no guarantee on optimality, its application value lies in scalability and flexibility.

In this article, we develop aMAS approach not only for allocation but also for reallocation
of orders: we propose an auction-based MAS for solving large-scale dynamic collaborative
pickup and delivery problems in which shippers can request transportation for their orders,
and carriers can both source profitable jobs and outsource less profitable tasks. This gives
us the new opportunity to examine various advantages and properties of large-scale carrier
collaboration:

– First, we investigate the possible gains of cooperation among a large number of carriers.
Although MASs generally have been used for allocation of orders to vehicles, they
are suitable for scenarios of mere reallocation as well. Hence, we are able to examine
cooperation gains on large instances with up to 1000 carriers, while such gains have only
been investigated for cooperation between a few carriers so far.

– Second, we compare the performance of the MAS (consisting of multiple small iterative
auctions) with the performance of (single-round, large) combinatorial auctions. Both
approaches adopt limited information and decentralized control but they differ in nature.
The established combinatorial auction theoretically gives the optimal solution if the
auctioneer proposes all possible bundles and if all carriers give exact bids based on their
individual optimal solutions. In practice, these conditions cannot be fulfilled, but good
solutions can be found if the auctioneer offers a subset of well-selected bundles and the
carriers use heuristics for generating bids (Gansterer and Hartl 2018a; Gansterer et al.
2020b). The MAS does not give any guarantee on optimality, but since the individual
auctions are relatively cheap to perform, several subsequent reauctions might be used,
which has a positive effect on solution quality (Los et al. 2020b). As an extension to our
earlier paper (Los et al. 2020a), we compare both methods on instances of different size
to see how they perform under different circumstances and show that the proposed MAS
performs better on large-scale instances.

– Third, this paper presents a methodological contribution: to improve solution quality,
we propose the integration of combinatorial aspects within the MAS. Although single-
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order auctions are computationally beneficial, MASs have a limited ability to deal with
interaction effects of orders. Offering bundles of orders can be necessary to avoid pre-
ventable rejections, as we illustrate with the following cases. Consider two orders that
are relatively close to each other, but too far from any of the available carriers to make
it profitable for them to accept an individual order. If the orders are offered sequentially,
none of them will be accepted. The revenue for the two orders together, however, can for
some carriers be higher than the combined transportation costs, and they might gladly
accept both orders when offered in a bundle. Similarly, consider two orders that have
already been assigned to different carriers that each do not have capacity for combining
both orders into one route, or two orders that have been assigned to the same carrier but
could be served more efficiently by another carrier. In both cases, offering the orders in a
bundle could cause a reallocation, while offering the individual orders in sequence might
not. Hence, we expect that offering bundles within a MAS can improve results, while
the extra effort for carriers to compute a bid on a bundle is limited if bundle sizes are
kept very small. Thus, in this article, we extend the initial work by Los et al. (2020a) of
incorporating bundles in an auction-based MAS for carrier cooperation.

– Finally, we investigate when it is beneficial for individual participants to misrepresent
their true values in the developed system. In addition to Gansterer and Hartl (2018a),
who show that a profitable untruthful bidding strategy is not easy to find within a combi-
natorial transportation auction, we theoretically show that it is not straightforward to bid
strategically within the MAS. Then, we perform a computational study to show under
which circumstances strategic bidding is profitable in practice in the proposed setting
and discuss how we can prevent it. Thus, adding to Los et al. (2020a), we identify for
the first time the possibilities of strategic behavior in local auction-based transportation
collaborations.

This paper is organized as follows. In Sect. 2, we discuss the literature on collaborative
approaches, and we distinguish the two trends within decentralized collaboration that we
integrate within this article. Next, in Sect. 3, we describe the dynamic collaborative pickup
and delivery problem that is used in our computational study. We introduce our local auction
approach and propose a bundling procedure in Sect. 4. Furthermore, we recapitulate the
central combinatorial auction approach thatweuse as a benchmarkmethod. Section 5presents
the results froma computational study based on the data of a transportation platform company.
Then, in Sect. 6, we derive the implications for companies and policy makers. Finally, Sect. 7
concludes the article and gives recommendations for future research.

2 Related work

Within the field of collaborative vehicle routing, two main research areas have been dis-
tinguished: centralized collaboration and decentralized collaboration (Gansterer and Hartl
2018b, 2020).

Centralized collaboration models usually assume a set of orders for each carrier and
compute what gains could theoretically be obtained if orders are exchanged. Approximation
algorithms are used to compare the solution where each carrier performs only its own orders
and the solution where (part of) the orders can be exchanged. It is assumed that all required
information is known, which might be difficult in practice. Centralized collaboration models
have been developed for different applications: Fernández et al. (2018) consider a problem
where customers request service from different companies and will be attended by only a
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Table 1 Overview of collaborative transportation approaches

Cat References R A T P L #Ord #Carr #Veh I B

CC Montoya-Torres et al. (2016) � 61 3 3

Molenbruch et al. (2017) � � � � 400 4 32

Schulte et al. (2017) � � � 10–75 4–50 4–50

Fernández et al. (2018) � � 18–30 2 ∞
DC Berger and Bierwirth (2010) � � < 100 3 3 �

Dai et al. (2014) � � � � 15–24 3 3–30 � �
Wang and Kopfer (2014) � � � � 104–266 2–5 19–61 � �
Li et al. (2015) � � � 9–15 3 6 �
Wang and Kopfer (2015) � � � ∼ 1767 NAv NAv � �
Lai et al. (2017) � � 30–245 3–24 ∞ �
Gansterer and Hartl (2018a) � � � 30–210 3 3 �
Lyu et al. (2019) � � � � 9–45 3 9 � �
Gansterer et al. (2020a) � � � 30–90 3–6 9–18 �

DL Figliozzi et al. (2004) � � � NAv 4 8

Figliozzi et al. (2005) � � � NAv NAv 4

Máhr et al. (2010) � � � 65 NAp 40 �
Dai and Chen (2011) � � � � 9 3 3–30 �
Mes et al. (2013) � � � NAv 10 10 �
Van Lon and Holvoet (2017) � � � 120–1200 NAp 10–100 �
Los et al. (2020b) � � � � 1000 150 150 �
This article � � � � � 50–2000 5–1000 5–1000 � �

CC centralized collaboration, DC decentralized collaboration with central auctions, DL decentralized collab-
oration with local auctions, R reallocation of orders, A allocation of unassigned orders, T time windows, P
pickups and deliveries, L less than truckload, #Ord number of orders, #Carr number of carriers, #Veh number
of vehicles, I iterative auctions, B bundling of orders

subset of these companies. Molenbruch et al. (2017) study cooperation of different dial-a-
ride providers. Montoya-Torres et al. (2016) compare a non-cooperative and a cooperative
scenario for a specific case of city logistics. The number of cooperating carriers in the
computational studies, however, ranges from 2–4 (see Table 1). To the best of our knowledge,
only Schulte et al. (2017) use larger instances of up to 50 carriers to investigate emission
reductions by carrier cooperation in port-related truck operations.

A common approach for large-scale vehicle routing problems is to decompose them into
smaller sub-problems that could be solved centrally. This might, however, be hard in our
context, since the dynamics of newly arriving orders presumably cause a need for the subprob-
lems’ clusters of orders to be completely revised during run time. Furthermore, decomposition
approaches might be difficult when multiple carriers are involved, since not all their sepa-
rate information is available. Individual carriers might, for instance, have private orders that
highly influence the decomposition quality. Thus, when we want to explore large-scale col-
laboration in a dynamic world with hundreds or thousands of carriers that do not provide full
information, we should consider decentralized collaboration approaches rather than central-
ized methods.
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Within the literature on decentralized collaboration, two approaches can be distinguished:
decentralized collaboration with central auctions and decentralized collaboration with local
auctions (see Table 1).

Decentralized collaboration with central auctions assumes that one central auctioneer
interacts with all carriers but does not have complete information. An advantage is that the
auctioneer can give some guarantees, e.g., it can ensure that all orders are assigned by solving
the winner determination problem. The complexity of such subproblems for the coordinator,
however, restricts the size of instances that can be solved. In combinatorial auctions (Berger
and Bierwirth 2010; Gansterer and Hartl 2018a; Gansterer et al. 2020a), each carrier submits
unprofitable orders to the auctioneer. To reduce complexity, the auctioneer proposes only a
limited subset of attractive bundles of these orders, and all carriers bid on them.The auctioneer
then computes the optimal assignment. Various iterative variants where bundles of orders are
considered and the auctioneer finally determines a solution based on the information of
different carriers have been studied by Dai et al. (2014), Lyu et al. (2019), and Wang and
Kopfer (2014, 2015) (see Table 1). Other variants where bids are made only for single orders
have been considered by Lai et al. (2017) and Li et al. (2015). Still, central auctions can
only be applied to cooperative problem instances of limited size and are restricted to static
problems. This hinders their applicability to the large-scale dynamic problem we focus on.

In decentralized collaboration with local auctions, no central auctioneer is considered. In
contrast, any actor can act as auctioneer at any time by starting an auction on (part of) the
order(s) that it is responsible for. Hence, local improvements can be made without guaran-
tees on the feasibility of other orders and on global solution quality. Consequently, quick
adjustments in dynamic large-scale problems are possible. Generally, this approach is used
for allocation of orders to carriers (or even to separate vehicles of one carrier), but Dai and
Chen (2011) apply it for reallocation as well (see Table 1). Máhr et al. (2010) and Van Lon
and Holvoet (2017) consider MASs with local auctions to examine whether such a decen-
tralized approach can outperform centralized approaches, without focusing on incentives for
different carriers. Actually, they assume that all vehicles belong to a single carrier, neglecting
the difficulties that arise if carriers behave competitively in their cooperations. Several carrier
strategies and learning mechanisms are considered by Figliozzi et al. (2004, 2005), but they
consider only full truckload problems. Mes et al. (2013) investigate the interaction of sev-
eral look-ahead policies for shippers and carriers, namely delaying commitments, breaking
commitments, and valuation of opportunities with respect to future orders. They, however,
consider full truckload problems as well and ignore the ownership of the vehicles. Los et al.
(2020b) examine the value of information sharing in a MAS, but consider allocation rather
than reallocation of orders.

The present article investigates the interface between decentralized collaborationwith cen-
tral auctions anddecentralized collaborationwith local auctions:we compare both approaches
and integrate them to benefit from their respective advantages when solving a complex
detailed problem.

3 Problem description

Weconsider a transportation platform that connects shippers and carriers, and improves routes
by allowing carriers to outsource orders. We focus on a collaborative dynamic Pickup and
Delivery Problem (PDP) where an order either is submitted to the platform by the shipper, or
has already been assigned to a specific carrier due to a long-term contract between shipper and
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(b) Cooperative solution.

Fig. 1 Non-cooperative and cooperative solution for an instance of a collaborative pickup and delivery problem
with 3 carriers and only initially assigned orders. In the non-cooperative case, each carrier serves its own orders.
In the cooperative case, travel costs can be decreased by taking over orders of other carriers

carrier. In the later case, the contracted carrier can be seen as the owner—the original shipper
is then irrelevant. The platform organizes auctions to contract carriers for the unassigned
orders. Furthermore, carriers cooperate in the sense that already contracted orders can be
sold to other carriers that can deliver them cheaper (see Fig. 1).

A problem instance formally consists of a set of shippers S, a set of carriers C , a set of
orders Os for each shipper s ∈ S, a set of initially assigned orders Oc for each carrier c ∈ C
(with OS = ⋃

s∈S Os the total set of unassigned orders, OC = ⋃
c∈C Oc the total set of

assigned orders, and O = OS ∪ OC the total set of orders), and a set of capacitated vehicles
Vc for each carrier c ∈ C (with V = ⋃

c∈C Vc the total set of vehicles).
Each order o ∈ O represents a load of a certain quantity that must be transported from a

pickup location po to a delivery location do. The pickup or delivery, taking a certain service
duration si , must start in a time window [ei , li ], for i ∈ {po, do}. The release time ro denotes
when the order becomes known to the system. For o ∈ OS , a reservation price fo is defined,
i.e., a maximum value that the shipper is willing to pay for transportation.

Each vehicle v ∈ V has an availability time window [ev , lv]; it becomes available at the
initial location αv at ev and needs to be at the end location ωv at lv . All properties of vehicles
v ∈ Vc are assumed to be knownby carrier c at its release time rc. Carriers are active from their
release time until all their vehicles have become unavailable. Hence, for each time t , we can
define the set of carriers that is known and active by Ct = {c ∈ C |rc ≤ t ∧ ∃v ∈ Vc t < lv}.

Travel time and travel costs from location i to location j , denoted by ti j and zi j , respec-
tively, are assumed to be identical for all vehicles throughout our computational study. In
real-world cases, however, each carrier could implement its own time and cost values accord-
ing to its fleet organization. The time horizon of a problem instance is denoted by τ .

A (temporary) solution at time t for a problem instance is given by a set of routes
Rt = {〈ρ1t 〉, . . . , 〈ρ|V |t 〉}, where each route (plan) 〈ρvt

i 〉mvt

i=1 is a sequence of m
vt locations

representing the (partially completed) path of vehicle v at time t , respecting time, capacity,
and precedence constraints. A formal description of all constraints can be found in Los et al.
(2020b).
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Individual shippers have the goal of outsourcing their orders at a price as low as possible,
but not exceeding their reservation prices. Carriers have the goal of maximizing profit, and do
this by accepting and outsourcing orders such that the differences between the payment (made
to them in case the order is accepted, or paid by them in case the order is outsourced) and the
marginal travel costs for the orders are maximized. The individual rationality concept should
be satisfied, that is, the total profits that carriers obtain through exchange of tasks should not
be lower than the total profits that they obtain if they do not cooperate. Together, the goals of
shippers and carriers contribute to the global goal of obtaining a final solution Rτ in which
as many as possible orders are served with minimal total travel costs.

4 Auction approaches

We propose a multi-agent approach where orders are iteratively offered in reverse auctions
(see Fig. 2). All available carriers (acting as sellers of service) can bid for them, and the carrier
with lowest bid wins the auction: it receives the price of its bid, and becomes responsible for

Order Vehicle

1. Request

1. Request

1. Request

1. Request

1. Request

2. Solve TSP
3. Bid

3. Bid

3. Bid

3. Bid

3. Bid

4. Compare bids

5. Contract

(a) Standard MAS approach for large-scale dynamic single-carrier VRPs.

Bundle Carrier

1. Request

1. Request

1. Request

1. Request

1. Request

2. Solve VRP
3. Bid

3. Bid

3. Bid

3. Bid

3. Bid

4. Compare bids

5. Contract

(b) Extended MAS approach with bundling of orders for large-scale dynamic collaborative VRPs.

Fig. 2 The standard MAS approach (a) has been extended in two ways (b): it is used for assignment and
exchange of orders between carriers rather than for assignment to vehicles of a single carrier, and bundles are
auctioned instead of single orders only
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filling the order. In contrast to previous approaches (Máhr et al. 2010; Mes et al. 2013; Los
et al. 2020b), we do not restrict an auctioneer to be a shipper or carrier offering a separate
order: we introduce bundle auctioneers as well, denoted by AB , offering a group of orders
B ⊆ O (see Fig. 2b). The orders within a bundle are not necessarily owned by the same
shipper or carrier, since bundle auctioneers can be generated by the platform.

4.1 Local auction procedure

When order o ∈ O becomes available at ro, auctioneer A{o} (acting on behalf of shipper s if
o ∈ Os or acting on behalf of carrier c if o ∈ Oc, but operated by the platform) is initialized
and becomes active. Furthermore, the platform immediately generates, if possible, bundle
auctioneers AB with o ∈ B and |B| > 1 (based on similarity of o and previously released
orders that are known to the platform, as will be defined in Sect. 4.2) and activates them
shortly after A{o} has been activated.

When active, auctioneer AB repeatedly organizes auctions. Given a maximum number of
auctions a per auctioneer and its activation time rAB , the time between subsequent auctions
is set to (mino∈B lpo − rAB )/a. The auction at time t then is as follows (see Figs. 2 and 3):

1. Requesting transportation AB sends a request for transporting bundle B to all known
and active carriers c ∈ Ct .

2. Computing marginal costs Each carrier c ∈ C computes its individual marginal costs
MCt

c(B) for bundle B at time t , i.e., the extra travel costs for inserting all orders in B,
according to their constraints, into its routes, given the situation at time t . If one or more
of the orders in B have already been planned in the routes of the carrier, the marginal
costs are computed as if these orders were not yet planned. If transporting B is infeasible
for c, MCt

c(B) is set to ∞.
3. Bidding The carriers submit a bid with value MCt

c(B) to AB , i.e., they indicate that they
can transport the orders if they receive at least that price.

4. Comparing AB compares the received bids; let b0 be the lowest bid provided by carrier
c0. Furthermore, AB examines the current costs for the bundle by asking all involved
carriers and shippers to report their marginal costs and reservation prices. Formally, the
current costs CCt (B) for bundle B at time t are given by the sum of the marginal costs
for assigned orders and the reservation prices for unassigned orders:

CCt (B) =
∑

c∈C
MCt

c(B ∩ Ot
c) +

∑

o∈B∩Ot
S

fo, (1)

where Ot
c = {o ∈ O | ∃v ∈ Vc ∃i ∈ {1, . . . ,mvt } ρvt

i = po} is the total set of orders
that carrier c has in its route plans at time t and Ot

S = {o ∈ O | ¬∃v ∈ V ∃i ∈
{1, · · · ,mvt } ρvt

i = po} is the set of unassigned orders at time t .
5. Updating contracts If b0 < CCt (B), the bid is accepted. The platform informs all

involved shippers and carriers, who update their contracts and routing plans. Further-
more, the platform receives in total CCt (B) from the outsourcing shippers and carriers
and pays b0 to the winning carrier c0. The gain of CCt (B)−b0 is divided over the partic-
ipants as incentive to cooperate, following some profit distribution function. Within this
article, the gain is shared among the winning carrier, the (group of) currently contracted
agent(s), and the platform, as defined by the following two parameters:

– WinnerGain Share (WGS)This parameter defineswhat fraction of the gain CCt (B)−
b0 is paid by the platform to the carrier winning the auction.
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– Contracted Gain Share (CGS) This parameter defines the total fraction of the gain
CCt (B)− b0 that is paid by the platform to the currently contracted carrier(s) and/or
shipper(s) for the orders within B. Each of them gets an equal amount.

If WGS and CGS do not add up to 1, the remaining gains are kept by the platform. If
b0 ≥ CCt (B), no (re)allocations and no payments take place.

Fig. 3 Flowchart of the iterative auction procedure within the Multi-Agent System
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When transportation of one of the orders in B starts or the latest pickup time of one of the
orders has passed without a contract for that order, AB stops starting auctions and becomes
inactive.

The approach guarantees that no carrier is worse off per auction, since outsourcing carriers
do not pay more than their current costs for the order(s), and the winning carrier gets at least
its marginal costs for the order(s). They might, however, be worse off on the long term if they
get dynamically revealed yet assigned tasks that produce bad interactions with the tasks they
acquired before, or that would have had good interaction effects with the tasks that they just
outsourced. Nevertheless, individual rationality is guaranteed if all assigned tasks are known
by the carriers beforehand, since then they can already factor in the interaction effects.

4.2 Bundling

Selling bundles of orders within a MAS is relevant if for (some of the) individual orders, the
best bid is higher than the current costs, while the best bid for the bundle is below the current
costs for the bundle. This is likely to happen if orders are close to each other (both in space
and time) since they might be combined within the same vehicle route with lower marginal
costs.

Relatedness of orders has been defined by Ropke and Pisinger (2006) for PDPs in the
context of Large Neighborhood Search (LNS). Since the goal there is to select orders from
routes that can be reinserted at each other’s places, both pickup locations and delivery loca-
tions need to be similar and actual visiting times are compared. For our application, it is
already sufficient if one of the locations of one order is similar to one of the locations of the
other order and the time windows are not too different. Gansterer and Hartl (2018a) have
investigated bundle criteria based on isolation, density and tour length. Isolation, however, is
not useful in our context (since we do not require partitions of the complete set of requests)
and time windows are not considered in their approach. Hence, we propose a new relatedness
measure and bundling procedure that can be applied in the MAS.

We define a relatedness measure R(o, ô) for two orders o and ô as follows:

R(o, ô) = min(sim(po, dô), sim(do, pô), 0.5(sim(po, pô) + sim(do, dô))), (2)

where the similarity of two pickup or delivery locations i and j is defined based on both
travel time and time windows:

sim(i, j) = γ ti j + W (i, j). (3)

Here, W represents the minimal waiting time (due to time window restrictions) at one of the
locations if a vehicle serves both locations immediately after each other. Formally,

W (i, j) = max(0, min(WD(i, j),WD( j, i))), (4)

where

WD(i, j) =
{

∞ if ei + si + ti j > l j ;
max(ei + si + ti j , e j ) − min(li + si + ti j , l j ) otherwise.

(5)

In Eq. (3), γ is a parameter (generally γ > 1) representing the cost of travel time relative
to waiting time. In this article, we use γ = 2. In Eq. (2), the minimum over three terms is
taken. If the pickup of one of the orders is similar to the delivery of the other order, the orders
might form a good match, irrespective of the other pickup and delivery locations and times.
If, however, both pickup locations are similar, it does matter whether the delivery locations
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are similar. If they are at opposite directions, combining the orders might appear less useful
than if they are similar as well. Hence, the third term in Eq. (2) involves similarity of both
pickup and delivery locations.

The platform dynamically generates bundles based on the relatedness measure R. Given
a new order o at release time t and the pool of not yet being transported orders Ot , x bundles
of size 2 and y bundles of size 3 are generated as follows:

– Bundles of size 2 The platform generates bundles {o, ô} for ô ∈ Ot and keeps the x
bundles with minimal R(o, ô).

– Bundles of size 3 The platform generates bundles {o, ô, ǒ} for ô, ǒ ∈ Ot and keeps the y
bundles for which R(o, ô, ǒ) is minimal, where

R(o, ô, ǒ) = min(R(o, ô) + R(ô, ǒ), R(o, ǒ) + R(ǒ, ô), R(o, ô) + R(o, ǒ)). (6)

Here, we have defined relatedness for three orders in such a way that not all three orders
have to be highly related to each other to form an attractive bundle. Instead, each order
in the bundle needs to be highly related to at least one other order in the bundle.

Throughout the experiments in this paper, we use x = 3 and y = 1 to limit the computational
resources needed.

4.3 Marginal costs and route improvements

For a system dealing with dynamic reassignments, fast approximations of marginal costs are
necessary. Throughout our experiments, all carriers use an elementary insertion heuristic that
keeps the current sequence of orders, and inserts the new order(s) into this route at the best
possible position. For bundles, the orders that can be inserted at least costs are inserted first.
Hence, for a carrier c ∈ C approximating its marginal costs for a bundle B, there are |B|main
iterations in which the insertion costs for all resulting orders (at most |B|) at all routes (|Vc| in
total) are checked. Let l denote the current maximum vehicle route length for carrier c. Then
insertion of both the pickup and the delivery needs to be checked for each position in the route
(which can be up to l+2|B|−2 positions when the last order of the bundle must be inserted).
Furthermore, even though we can maintain earliest and latest times along the route, a chain
of time consistency updates might be necessary along the complete route in the worst case
as well (Campbell and Savelsbergh 2004). Hence, the insertion heuristic has a complexity
of O(|B|2 |Vc| (l + |B|)3). For single orders, this reduces to O(|Vc| l3). In practice, a
lot of options might be quickly pruned due to time, precedence and capacity constraints.
Nevertheless, to keep computation times manageable, we limit ourselves to bundles of size
2 and 3.

To improve the quality of routes constituted by the insertion heuristic, we let carriers apply
an LNS improvement phase (Pisinger and Ropke 2019) after each insertion or deletion in
one of their routes. Throughout our computational study, we use the following settings. Two
destroy operators, worst removal and related removal, and four repair operators, k-regret
for k ∈ {1, 2, 3, 4}, are used, as defined by Ropke and Pisinger (2006). Within each LNS
iteration, a random neighbourhood size below a given maximum is selected, and a random
destroy and repair operator are applied. A simple hill-climbing acceptance criterion is used,
i.e., no worse solutions are accepted.

To save computation time, we do not apply the LNS improvement phase for computation
of the marginal costs, but only after a bid has been accepted or an order has been outsourced.
The advantage is that bids can be submitted fast. Furthermore, carriers can improve their
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own routes, independent of other participants, only when it is assured that a bid is accepted
or an order is outsourced. Hence, they do not need to make the computational effort for each
bid, with the risk of delaying the auction too much. In real-world applications, however,
carriers might apply different optimization techniques, depending on the available time and
resources.

4.4 Reference approach: central combinatorial auction

To benchmark the quality of the solutions found by the MAS, we will compare it with the
combinatorial auction as proposed by Gansterer et al. (2020a, b). In this approach, a central
auctioneer creates various sets of attractive bundles on which the carriers can bid. In contrast
to the MAS, only one auction round is applied after which the auctioneer reassigns tasks to
carriers. The central combinatorial auction generally consists of 5 steps (Berger andBierwirth
2010):

1. Request selection Carriers can select part of their orders to submit for the auction, while
they might keep other orders private.

2. Bundling The auctioneer creates attractive bundles of the submitted orders and opens the
auction.

3. Bidding Carriers submit their bids, based on their marginal profits, for all bundles that
they want to obtain.

4. Winner determinationThe auctioneer solves the winner determination problem, such that
the total profits are maximized and each carrier obtains at most one bundle.

5. Profit sharing The obtained profits are shared among the participants.

In the first step, it is necessary to limit the number of submitted orders for reasons of
complexity if the instance size increases. We follow the approach of Gansterer et al. (2020a),
where orders that either have a low marginal profit for the carrier itself, or are expected to
be attractive to other carriers are selected. To estimate potential attractiveness, all carriers
provide aggregate information about the locations of their orders: a grid is superimposed upon
the transport area, and each carrier provides the number of pickup and delivery locations that
it has within each cell. Then, the total count by all other carriers for the two grid cells in
which the pickup and delivery of an order o are located, indicates the attractiveness of this
order to other carriers. A carrier computes for each order o a score, consisting of the rank of
the attractiveness of o minus the rank of the marginal profits for o, and submits the orders
with highest scores to the auctioneer.

Since proposing all possible bundles of submitted orders results in a too large computa-
tional load, the auctioneer applies a genetic algorithm to propose a smaller set of attractive
bundles. Several partitions of the total request pool are generated. The appropriateness of a
bundle is based on the distance to other bundles, the density of orders within the bundle, the
minimum length of a tour visiting all the orders within the bundle, and the valuations of all
carriers for the separate orders within the bundle. For details on this bundling process, we
refer to Gansterer and Hartl (2018a) and Gansterer et al. (2020a).

Next, the carriers place bids consisting of their marginal costs for all offered bundles. As
in Gansterer et al. (2020b), a Variable Neighborhood Search metaheuristic is applied to build
the routes for the carriers.

The fourth step consists of solving the winner determination problem as described by
Gansterer and Hartl (2018a). The auctioneer uses an exact approach to maximize the total
profits, while each carrier is assigned at most one bundle to make sure that the solution is
still feasible.
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Finally, the profits of the exchange of orders can be divided over the participants in several
ways (Guajardo and Rönnqvist 2016).Within the current article, however, we do not consider
allocation of the profits to individuals, since we only focus on the total possible gains.

5 Computational study

For our computational study, we use a real-world data set of over 12,000 orders from a
Dutch transportation platform company. This company matches any submitted orders to the
available load capacity of empty or partly empty trips of subscribed carriers. The data set
contains locations and time windows for both pickup and delivery of each order, as well as
order release times and load quantities.

To investigate possible cooperation gains (Sect. 5.1) and the impact of bundling (Sect. 5.3),
we define 6 instances of 2000 orders each, and impose different assignments of orders to
various numbers of carriers. To be able to compare central and local combinatorial auctions
(Sect. 5.2), we define smaller instances consisting of 50–200 orders. Additionally, we use
the data set provided by Gansterer and Hartl (2016) as a benchmark. In the study on strategic
bidding (Sect. 5.4), we consider unassigned orders to remove any bias from unprofitable
initial contracts.

5.1 Cooperation gains

For determining possible cooperation gains in large-scale problems, we generated 6 instances
with the following properties. Each instance consists of 2000 orders with pickup and delivery
locations (in and close to theNetherlands) and load quantities approximately as in the original
data set. Original time windows have been kept, except for shifts of whole days, such that
all orders fall within a time span of 10 days. Release times have been set to the start of the
time span to avoid problems with initial assignments. Per instance, 1000 identical vehicles of
capacity 13.6 (loading meters) are available during the complete time span, distributed over
50 randomly chosen depots (such that each depot accommodates 20 vehicles). All vehicles are
assumed to have a constant speed of 72 km/h, and Euclidean distances between all locations
are used. The open problem variant is used, i.e., vehicles do not have to return to their depots
after the last service. The reservation price for an order equals 1.5 times the travel costs
between the pickup and delivery location.

Per instance, 5 carrier configurations (10, 50, 100, 500, or 1000 carriers) and 2 assignment
configurations (close assignment or random assignment) are considered. With 10 carriers,
each carrier owns 100 vehicles, i.e., precisely 5 depots. With 50 carriers, each carrier has
exactly 1 depot with 20 vehicles. With 100, 500, and 1000 carriers, each carrier owns 10
vehicles, 2 vehicles, or 1 vehicle, respectively, i.e., each depot contains the vehicles of 2, 10,
or 20 carriers. Each order is assigned to a depot—the depot closest to its pickup location for
the close assignment configuration and a randomly selected depot for random assignment—
and then randomly to a carrier having vehicles in that depot. Hence, the theoretical optimum
is dependent on the carrier and assignment configurations if cooperation is not considered,
but not if cooperation is considered.

To obtain the cooperative solutions, we apply the MAS with and without bundling three
times on all instance configurations. In the runswithout bundling, amaximumof 30 reauctions
per order is allowed. In the runs with bundling, single orders are reauctioned a maximum
of 10 times. In addition, we select the three most promising bundles of size 2 for the order

123



Annals of Operations Research

Fig. 4 Decrease in travel costs for
the cooperative scenarios (with
and without bundling) compared
to the non-cooperative scenario
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and the most promising bundle of size 3 for the order (see Sect. 4.2), and auction them a
maximum of 5 times each. These parameters are selected in such a way that the total number
of reauctions for each order is equal with and without bundling. Note, however, that some
orders might be offered more than 30 times if they appear in bundles of other orders as well.
In both cases, each carrier applies a small LNS improvement phase (100 iterations, at most 5
orders per iteration) only after an auction causes an insertion or deletion in one of its routes.

To obtain the solutions of the non-cooperative scenario, we use the following procedure
for each carrier. Initially, the insertion heuristic is used to include all the tasks of the carrier
into the routes of its vehicles, and afterwards an LNS improvement phase of 2500 iterations
with a maximum of 100 orders per iteration is applied to improve this solution. Since we have
to compute this non-cooperative solution only once for each carrier, we could use a much
larger LNS improvement phase than the small LNS improvement phases that are iteratively
performed after each auction in the cooperative scenario.

We show the average decrease in total travel costs for the cooperative scenarios compared
to the non-cooperative scenario in Fig. 4. As expected, cooperation gains increase with the
number of participating carriers, but remarkably can be as large as 77% for 1000 carriers
with random assignment. Although the non-cooperative solutions with close assignment are
expected to be much better than their random assignment equivalents, cooperation can also
drastically reduce the travel costs for the larger instances with close assignment: we observe
savings of 68% for 1000 carriers. Note that the cooperative scenarios with bundling result
in higher gains than the cooperative scenarios without bundling. We will explore this in
depth in Sect. 5.3. Furthermore, note that all of the 2000 orders have been accepted in all
cases, except for the non-cooperative scenarios with 1000 or 500 carriers (for 1000 carriers,
2 orders on average have been rejected with random assignment and 10 orders on average
with close assignment; for 500 carriers, only 2 orders on average have been rejected with
close assignment). Hence, cooperation may even improve the service level.

In Fig. 5, we give an indication of profits for the platform and for the carrier collective
as a fraction of the sum of all reservation prices (i.e., the total price the shippers have paid).
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Fig. 5 Profits for the platform and the collective of carriers on instance 1 as a percentage of the system’s
revenue for different values of Winner Gain Share (WGS) and Contracted Gain Share (CGS). NC denotes the
non-cooperative scenario
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Analogously to the gains in travel costs, the profits for both carriers and the platform increase if
cooperation is applied, and slightly more with bundling than without bundling. Furthermore,
the profit increases are larger whenmore carriers participate. Note that the exact values highly
dependon theWGSandCGSparameters for larger numbers of carriers, aswell as on the prices
that shippers pay for transportation. Under the current settings, shippers have paid 1.5 times
the travel costs from pickup to delivery locations of the orders. With random assignment
among 1000 carriers, this does not compensate the high travel costs if cooperation is not
allowed. With low gain shares for the carriers and shippers (WGS = CGS = 0.1; Fig. 5a),
carriers evenmake no profit after exchange of tasks (although the platform does).With higher
WGS and CGS values, carriers do make profit when collaborating (Fig. 5b, c).

5.2 Comparing central and local combinatorial auctions

Now we have seen that large cooperation gains could be obtained if we apply the MAS on
large-scale instances, we naturally come to the question what the quality of theMAS itself is.
Since there are no optimality guarantees, both the results for the non-cooperative and for the
cooperative scenarios might differ from the optimal solutions, leaving some space for worse
or even better possible cooperation gains. To get more grip on the quality of the MAS, we
compare it with established methods, both on our own instances, and on a benchmark data
set.

5.2.1 Company-based instances (50–200 orders)

First, we compare the MAS with the central combinatorial auction as proposed by Gansterer
et al. (2020a, b) (see Sect. 4.4) on instances of size varying from 50 to 200 orders. Larger
problem sizes turn out to take too much time for the central combinatorial auction, unless the
number of bundles would be reduced drastically. We consider 5 or 10 carriers per instance,
each having their own depot. The number of vehicles equals 10% of the number of orders,
and time windows are omitted, but all orders need to be done within 24h. Other settings are
equal to the settings of Sect. 5.1.

In Table 2, we show the increases in total profit by cooperation, both for the central
combinatorial auction (CCA) and for the MAS with local combinatorial auctions, compared
to a non-cooperative LNS solution. As expected, the CCA performs better on the smallest
instances. The MAS, however, performs increasingly better when instance size increases.
For the largest instances, the number of submitted orders and the total number of bundles
generated wihtin the CCA needed already to be lowered to be able to solve the winner
determination problem to optimality.

There is a notable difference between instances with random assignment and instances
with close assignment. While the CCA finds comparable improvements for both assignments
on the instances of size 100 and 200, the improvements for the MAS are much better on
the instances with random assignment. An analysis of the profit values discloses that the
cooperative solutions for random and close assignment instances are similar for the MAS,
but different for the CCA. Hence, the CCA is much more dependent on the initial assignment
than the MAS. Of course, this effect is dependent on the parameters used for the CCA, and
in particular on the number of submitted orders per carrier. For the instance with 50 orders,
where 5 carriers submit each at most 10 orders, the auctioneer has an almost complete view
on the total set of orders, resulting in a larger improvement with random assignment.
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Table 2 Solution improvement due to cooperation (in terms of profit increase, relative to a non-cooperative
LNS solution) for both the central combinatorial auction and the MAS with local combinatorial auctions on
instances with 50–200 orders and 5–10 carriers Each row comprises the average over 10 instances

Instance properties Central combinatorial auction Local combinatorial auctions

Orders Carriers Assignment #SO #B Improvement (%) Improvement (%)

50 5 Random 10 500 28.64 22.33

50 5 Close 10 500 12.62 7.53

100 5 Random 10 500 5.19 9.15

100 5 Close 10 500 5.47 2.98

200 5 Random 10 500 1.67 3.14

200 5 Close 10 500 1.76 −1.24

200 10 Random 5 100 2.65 12.80

200 10 Close 5 100 3.52 3.64

The largest improvement in each row is given in boldface
#SOmaximum number of submitted orders per carrier, #B total number of bundles generated by the auctioneer

In one case (200 orders, 5 carriers, close assignment), theMASobtains a negative improve-
ment. Although this appears counterintuitive, it is explainable since we did not use the
non-cooperative LNS solution referred to in the table as starting point for the MAS; instead,
we used the same fast LNS approximations as are used by carriers after an auction causes any
change for them. These generally arrive at about 7% lower profits than the non-cooperative
LNS solutions referred to in Table 2. Although the MAS compensates this in all other cases,
it did not even obtain the non-cooperative solution under these specific settings. Hence, it
largely depends on the parameters whether the MAS is competitive with the CCA, but in
general, theMAS seems to be a reasonable alternative when the CCA suffers from scalability
issues.

5.2.2 Benchmark data set (30–45 orders)

Next, we apply our method on the static data set proposed by Gansterer and Hartl (2016). We
benchmark against the best known solutions (BKSs) that have been found for those instances
by any method, as described by Gansterer et al. (2020a, b). All instances consist of 3 carriers
with depots located at 200 distance units from the others. Each carrier initially has 10 (set
Ox_10) or 15 (set Ox_15) orders for which the pickup and delivery locations are in a radius
of 150 (set O1_xx), 200 (set O2_xx) or 300 (set O3_xx) distance units around its depot.
Thus, the area of overlap is smallest for sets O1_10 and O1_15 and largest for sets O3_10
and O3_15.

We ran the MAS under standard settings (see Sect. 5.1) on those instances (except for the
fact that no maximum number of orders is specified for an LNS iteration). Furthermore, we
calculated the solutions where the number of allowed auctions was increased by a factor 10.
For all settings, we conducted 25 runs of the algorithm. The average computation times (on
an Intel Core i7-8665U CPU at 1.90GHz; 8 cores) are given in Table 3.

For each instance, the best result out of 25 runs was used to compute the improvement I
with respect to the BKS, given by

I = (PMAS − PBKS)/PBKS × 100%, (7)
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Table 3 Average computation times for the MAS in seconds

Instance set MNA = 30 MNA = 300

Bundling No bundling Bundling No bundling

O1_10 1.20 0.51 8.26 3.89

O1_15 2.70 1.55 19.94 10.37

O2_10 1.30 0.90 8.67 4.50

O2_15 3.15 2.12 20.96 10.54

O3_10 1.76 1.34 9.40 4.73

O3_15 5.43 3.83 24.07 12.30

MNA maximum number of auctions per order

Table 4 Average maximum improvements in profit using the MAS with respect to the BKSs. The average
results per instance set are calculated using the maximum profit value out of 25 runs of the MAS per instance

Instance set MNA = 30 MNA = 300

Bundling No bundling Bundling No bundling

O1_10 −0.31 −0.37 −0.42 −0.43

O1_15 −0.20 −0.30 −0.28 −0.27

O2_10 2.42 1.32 3.18 1.61

O2_15 0.63 0.41 0.75 0.44

O3_10 6.25 3.35 6.69 2.23

O3_15 2.49 1.68 2.73 1.34

MNA maximum number of auctions per order

Table 5 Average improvements in profit using the MAS with respect to the BKSs. The average results per
instance set are calculated using the average profit value out of 25 runs of the MAS per instance

Instance set MNA = 30 MNA = 300

Bundling No bundling Bundling No bundling

O1_10 −3.17 −3.27 −3.01 −3.12

O1_15 −2.51 −2.60 −2.49 −2.55

O2_10 −1.04 −1.92 −0.80 −1.92

O2_15 −2.03 −2.36 −2.05 −2.26

O3_10 −0.36 −1.82 −0.18 −1.82

O3_15 −1.21 −1.85 −1.20 −1.78

MNA maximum number of auctions per order

where PMAS and PBKS denote the profit obtained by the MAS and the profit of the BKS,
respectively. The average improvement per instance set is given in Table 4. For instance sets
O2_10, O2_15, O3_10, and O3_15, our best solutions outperform the BKSs, with up to 6%
on average for set O3_10. It should be noted, however, that the number of order exchanges
might have been limited in the approaches to find the BKSs, while this was not the case
with our MAS. For instance sets O1_10 and O1_15, our best solutions are slightly lower
than the BKSs. We observe that allowing bundling generally results in better solutions, while
allowingmore auctions has a much lower impact. The detailed results provided in Tables 8, 9,
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Fig. 6 Decrease in travel costs for
the bundling scenario compared
to the non-bundling scenario
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and 10 in “Appendix” show that our MAS finds improvements of up to 15% on individual
instances. Although we have used the best results out of 25 runs of the algorithm here, the
average profits among the 25 runs are not much lower than the profits of the BKSs, as can be
observed from Table 5. Thus, theMAS is competitive with the other approaches used to solve
the benchmark data set, especially for the instances with large areas of customer overlap.

5.3 Bundling benefits

We expected that applying small bundling within the MAS could improve solutions, which
is further supported by the results from Fig. 4. In the following, we consider both problems
in which all tasks are initially assigned, as before, and problems in which part of the orders
is initially unassigned, i.e., shippers connect to the platform to find a carrier.

First, we consider the same instances as in Sect. 5.1, but now we take the scenario without
bundling as base case. In Fig. 6, we show how much of the travel costs can be avoided by
offering bundles. We observe that gains again increase with increasing numbers of carriers,
up to 7% for 1000 carriers with close assignment and even to 13% for 1000 carriers with
random assignment.

Second, we consider amore dynamic problem set in which part of the orders is not initially
assigned to carriers. Again, we create 6 instances of 2000 orders each, of which only 1000
are initially assigned to carriers. We use 3 carrier configurations, namely 125, 250, or 500
carriers per instance. Each carrier has a single depot, in which it has 1–3 vehicles available.
Each of the initially assigned orders is associated with a random carrier from the 10% closest
carriers with respect to the pickup location. One third of the carriers have limited availability
time windows, the other two third are available during the complete time span. Original order
release times have been kept, except for initially assigned orders. For these, the release times
equal the corresponding carrier’s release time.

We run the MAS on these instances with different numbers of carriers and various reser-
vation price factors, both with and without bundling. The results are summarized in Table 6.
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Table 6 Results for bundling on the partly assigned instance set where reservation prices are equal to the
distance between pickup and delivery multiplied by a price factor

Carriers Price factor

1.25 1.5 2

125 Average decrease in travel costs (%) 0.98 0.26 0.78

Rejected orders with bundling (avg, [min–max]) 9.22 [4–18] 3.44 [1–7] 0.56 [0–3]

Rejected orders without bundling (avg, [min–max]) 10.89 [3–17] 3.83 [1–7] 1.00 [0–3]

250 Average decrease in travel costs (%) 0.79 0.49 0.05

Rejected orders with bundling (avg, [min–max]) 6.22 [2–11] 1.50 [0–4] 0.39 [0–2]

Rejected orders without bundling (avg, [min–max]) 7.06 [3–18] 1.61 [0–4] 0.67 [0–3]

500 Average decrease in travel costs (%) 0.24 0.88 0.70

Rejected orders with bundling (avg, [min–max]) 4.67 [0–8] 1.22 [0–4] 0.61 [0–2]

Rejected orders without bundling (avg, [min–max]) 4.61 [2–7] 1.67 [0–4] 0.44 [0–2]

The decrease in travel costs using bundling is generally between 0 and 1%, and there is a
small positive influence from bundling on the service level. There is, however, no consistent
pattern for increasing numbers of carriers or increasing price factors.

While bundling clearly outperforms no bundling on the instances with assigned orders, it
does not on the instances where part of the orders is unassigned. To explain the difference,
we again consider an instance of Sect. 5.1, but remove all initial assignments. We run the
MAS both with and without bundling, and define a non-cooperative scenario as well. The
latter one uses in this case only 1 auction per order to get an initial assignment, followed by
an LNS improvement phase by the winning carrier. In Table 7, we compare the results of
these experiments to the results of the instance with initial assignment. The travel costs of
the non-cooperative solution for the instance without initial assignment are generally much
lower than the travel costs of the non-cooperative solution for the instances with random or
close assignment. Furthermore, the number of vehicles used in the solutions for the instance
without initial assignment is much lower—it is actually quite close to the final number of
vehicles used in the cooperative scenarios. Hence, the average route length is larger (see
Fig. 7).

This might explain the relative small difference between bundling and no bundling for the
instances without initial assignment: first, the possible improvements are already lower than
for instances with close or random assignment, and second, bundles of orders might be less
easily accepted in longer routes, since these generally are more constrained. Note, however,
that bundling still has a slight advantage on instances without initial assignment, not only in
travel costs, but also in service level.

5.4 Strategic behaviour

To get insights into the possible cooperation gains for large collaborative vehicle routing
problems and the impact of bundling within a MAS, we have assumed that (estimates of the)
real marginal costs are always reported. In practice, however, carriers and shippers might
bid strategically to improve their individual profits. This is, however, not straightforward,
as shown by Gansterer and Hartl (2018a) for central combinatorial auctions. We analyze
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Table 7 Average results (over 3 runs) on instance 1 in terms of travel costs, service level, and used vehicles for
the three scenarios. (For instances without initial assignment, the non-cooperative scenario consists of only 1
auction per order, followed by an improvement phase by the winning carrier.)
ETC (%) extra travel costs compared to a reference LNS solution where all vehicles belong to the same carrier,
#RO number of rejected orders (out of 2000), #V number of vehicles used in the solution, NC non-cooperative
scenario, NB cooperative scenario without bundling, B cooperative scenario with bundling

Carriers Assignment ETC (%) #RO #V

NC NB B NC NB B NC NB B

10 Random 84.3 17.4 11.9 0.0 0.0 0.0 228 179 165

Close 24.3 8.4 6.6 0.0 0.0 0.0 284 229 224

No 23.0 6.2 5.8 33.0 6.7 3.3 132 125 126

100 Random 244.5 34.7 23.1 0.0 0.0 0.0 443 247 201

Close 72.8 14.6 8.9 0.0 0.0 0.0 524 292 260

No 26.9 6.3 6.2 27.7 5.7 4.7 138 125 125

1000 Random 438.9 44.5 26.6 5.0 0.0 0.0 862 341 246

Close 247.8 23.1 15.2 16.3 0.0 0.0 591 235 202

No 34.3 9.2 7.7 26.0 7.0 4.3 131 120 118

the possible benefits of strategic behaviour within the proposed MAS, and show with a
computational example that strategic bidding might be complicated.

For carriers placing a bid to acquire a bundle B, we can reason as follows, where MCt
c(B)

denotes the carrier’s marginal costs, b0 denotes the carrier’s bid, and g denotes the profit that
a winning carrier makes, i.e., g is a fraction of CCt (B) − b0, dependent on the used profit
distribution function.

– They will not bid a value b0 < MCt
c(B) if g is expected to be relatively small, since the

compensation b0 + g will not cover the extra costs MCt
c(B).

– They might place a bid b0 < MCt
c(B) if g is expected to be relatively high. If b0 + g >

MCt
c(B), lowering the bid is a good strategy to outbid another carrier with a bid between

b0 and MCt
c(B).

– They might speculate on getting a high gain from reselling the bundle later on, or foresee
good interaction effects with orders that will appear later on, and hence place a bid
b0 < MCt

c(B).
– They might bid a value b0 > MCt

c(B) to get a higher compensation, but this comes at
the risk of not winning the auction anymore.

For carriers or shippers mentioning the marginal costs or reservation prices for outsourcing
orders, we make the following observations.

– They do not report a value above their true value, since they need to pay this value.
– They might report a lower value, but this comes with the risk that the lowest bid b0 is

not lower than CCt (B), hindering the trade. Indeed, they might report lower values and
slightly increase them in next auction rounds, but due to the dynamic environment, there
is no guarantee on success.

To prevent any bias from unprofitable initial contracts, we use problem instances without
initial assignment. Again, we have 2000 orders per instance, and assume 250 carriers with
1–3 vehicles each, of which one third have restricted availability time windows. Further
instance characteristics are as described before.
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Fig. 7 Routes for the
non-cooperative scenario on
instance 1 with 10 carriers, both
for close assignment and no
assignment. Examples of routes
for the three main quartiles of
length (in terms of number of
stops) are highlighted in green,
purple, and orange

Q1: 4 stops; Q2: 10 stops; Q3: 20 stops.(a) Close assignment: 284 routes.

(b) No assignment: 131 routes. Q1: 10 stops; Q2: 22 stops; Q3: 42 stops.
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Fig. 8 Average carrier profits if part of the carriers bid a fraction of their real (estimated) insertion costs

First,we analyzewhether carriers can benefit fromplacing false bids.We run theMASwith
different percentages of carriers (10%, 20%, or 30%) placing bids with a value of 0.8, 0.85,
0.9, 0.95, or 1.05 times their true marginal cost estimation. We test three configurations for
winner gain share and contracted gain share (WGS = 0.1, CGS = 0; WGS = CGS = 0.1;
and WGS = 0, CGS = 0.1). In the last configuration, winning carriers do not take any of
the profit generated by a succesfull auction (they even lose some profit if their bid is lower
than their real costs), but they might obtain a gain if they resell the order later on.

In Fig. 8, we give the average profit per carrier, both for the fairly bidding carriers and for
the strategically bidding carriers. We observe that strategic bidding pays off for a bid fraction
of 0.9 or 0.95 if WGS = 0.1, but not for other bid fractions. The fairly bidding carriers are
worse off if the strategic carriers bid lower than their true prices, even if the strategic carriers
themselves also do not gain any extra profit. With WGS = 0 and CGS = 0.1, there is no
incentive to bid another value than the true value. Note that the highest profits can be obtained
if only low numbers of carriers bid strategically. Similarly, the losses that strategic carriers
can obtain will be largest with low numbers of strategic carriers, i.e., if most other carriers
just report their true costs. These losses can be already very large with slightly lower bid
fractions. Hence, finding a beneficial bid fraction value could be a critical process. Note that
with higher values for WGS, lower bid fraction values are expected to be beneficial. If the
system assigns large shares of the gains to the winning carriers, cheating might appear too
easy.

Next, we analyze how much shippers and carriers can benefit from communicating false
(lower) reservation prices or current costs. In Fig. 9, we show average obtained profits per
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Fig. 9 Average shipper profits (a–c) and carrier profits (d–f) if part of the shippers and carriers mention lower
reservation prices than their true ones
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Fig. 10 Average number of
rejected orders if part of the
shippers and carriers mention
lower reservation prices than
their true ones
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shipper and per carrier when 10–30% of the participants use reservation prices of 75–95%
of their true values. Strategic shippers can obtain considerably high profits if they lower their
communicated reservation prices. This can be explained by the large difference between
reservation price and insertion costs for a carrier that already had planned a route in which
the order fits quite well. The shipper then might easily outsource its order at a low price.
Likewise, carriers can obtain extra profits by outsourcing orders for a lower price than their
actual costs, but the differences are smaller. The drawback of using lower reservation prices,
however, is that less orders will be served, as can be observed from Fig. 10.

6 Policy implications

We developed a local auction system for large-scale dynamic collaborative pickup and deliv-
ery problems, and ran various experiments to investigate the advantages and disadvantages
of this system. Here, we discuss the implications and limitations of the computational study.

– Cooperation gains Other studies generally underestimate the possible gains of coop-
eration due to a very small number of cooperating carriers. We found significant
improvements of about 77% for 1000 collaborating carriers, but have to note that the
exact savings are highly dependent on several parameters. First, the initial assignment is
of importance. While the difference in improvement between the two assignments that
we examined is not very large for 1000 carriers, it is more significant for lower numbers
of carriers. For 50 carriers, for example, the savings with random assignment are even
about three times as high as with close assignment. Second, since we compared instances
with exactly the same order set, our experiments with large numbers of carriers suffer
from a low number of orders per carrier. Individual routesmight hence be very inefficient.
Third, our approximation of the non-cooperative solutions can be too conservative. We
already have seen that it performs about 7% worse than a more extensive LNS on the
small instances. For larger numbers of carriers with small individual routes, however,

123



Annals of Operations Research

the fast LNS approach might give a good approximation. Thus, in real-world scenarios,
the benefits of cooperation can highly depend on the number of orders and on the accep-
tance criteria for orders that the different carriers have, as well as on their individual
routing approaches. For sure, we expect a much more heterogeneous population than in
our experiments.
We showed that the profits of both the platform and the carrier collective increase with
cooperation if certain percentages of the gains per transaction are given to the carriers.
This may act as an incentive to participate. If the profit increases for the carriers are too
low, however, they might not consider it worth the effort to cooperate. The platform is
rather powerful in its decision what amount will be given to the carriers. Even if a cer-
tain share is promised, the carriers cannot verify it. Furthermore, certain individuals can
significantly contribute to a better solution without receiving a significant compensation,
due to the disconnected local auctions. Incentives to participate and fair profit allocations
need more study, although this might be rather difficult in large-scale dynamic settings.

– Central auctions versus local auctions A comparison between a central combinatorial
auction and an approachwith local combinatorial auctions showed that the local approach
is competitive with the central one for larger instance sizes. We need to emphasize,
however, that both methods depend on various parameters settings. A notable finding is
that the local approach is less dependent on initial assignment. What is preferable and
feasible in a real-world scenario might highly depend on the specific problem properties,
computational resources, and time available.

– Bundling Although allowing bundling within a system with unconnected local auctions
can improve results by up to 13%, it is again dependent on the problem properties whether
it will be useful or not. The benefits seem to be much larger when all orders have been
initially assigned to carriers than in open systems where shippers still are looking for a
contract. In general, however, it is advisable to use bundling, since the extra computational
efforts are limited. Also, individuals may simply approximate a bid value or refuse to
bid on too complex bundles if that is not feasible timewise, e.g., in a highly dynamic
environment where bids need to be submitted in less than a second.

– Strategic behaviour We have shown that it is not straightforward to bid strategically. On
the other hand, it is also not completely impossible. Carriers generally make some extra
profit by lowering their bid values a little bit, butwe only focused on average profits for the
group of strategic carriers. Individuals might obtain losses even in this case. Furthermore,
we assumed uninformed carriers, while they might make use of stochastic information
about the longer term in practice.
Moreover,weonly considered a singlewayof distributing the gains of each auction among
the participants, namely by giving them a certain share. Althoughmore sophisticated gain
sharing methods do exist (Guajardo and Rönnqvist 2016), they are intractable in large-
scale settings, and are not directly applicable in decentralized approaches (Gansterer et al.
2020b). An alternative to the current approach—although it ignores the fairness property
to even greater extent—could be to give a fixed financial contribution to cooperating
participants, removing the direct incentives for reporting lower bids. The indirect ones
might still exist, but at the same time, higher bids could be more beneficial as well.
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7 Conclusions and future research

Although carrier cooperation is commonly seen as a promising approach to reduce trans-
portation costs and emissions, existing studies only show which gains can be obtained on
relatively small instances. The current paper investigated the potential of large-scale trans-
portation collaboration. Based on real-world problems, we have shown that travel cost gains
of 77% can be obtained with 1000 cooperating carriers. The societal advantages in terms of
emissions and traffic density are directly related. Hence, both policy makers and platform
operators should provide incentives for carriers to cooperate on a larger scale.

We compared a platform-based multi-agent auction approach to a central combinatorial
auction mechanism and observed that the local auction approach is competitive with the
central auction if instance size increases—and even outperforms it for the largest instances.
Also, the local approach is less impeded by the structure of the initial assignment. For a
small-scale benchmark instance set, the local auction approach on average approximates the
best known solutions, and often finds better solutions with profit improvements of up to 15%.
To combine the advantages of both methods, we integrated the two approaches by allowing
bundle auctions within the multi-agent system. Although the extra computational effort is
limited, bundling improves the results with up to 13%.

To verify whether the proposed approach will be feasible in practice, we analyzed when
strategically bidding is beneficial for individual participants. Asking lower prices than the
real costs for serving an order turned out to be advantageous for carriers under certain
circumstances. It is, however, highly dependent on gain shares (and hence not evident) by
what amount bids can be lowered without becoming disadvantageous. On the other side,
shippers or carriers outsourcing orders have an incentive to report lower reservation prices
than their true ones. The drawback, however, is that a larger number of orders will not be
(re)assigned. This can both hinder the improvement of the total system and harm individual
shippers if their orders will not be accepted.

Future research should focus on incentive compatible mechanisms to make large-scale
collaboration possible. In particular, we plan to investigate whether second-price auctions
(as they are locally incentive compatible) will help in preventing strategic behaviour on the
longer term, compared to the current first-price system. An interesting question in this context
is whether the extra payments could be covered by bundling gains. Another relevant topic
for investigation is learning from previous bids. Whereas we assumed that carriers base their
bids only on their marginal costs, information of previous bids of other participants can be
incorporated to improve the bidding strategy (Figliozzi et al. 2005; Mes et al. 2013; Van
Heeswijk 2020). Finally, we plan to investigate a scenario with mixed levels of autonomy,
where shippers and carriers either can be in charge of (re)auctioning orders themselves, or
outsource this process to the platform. In this respect, the risk of being left with unassigned
orders could deliberately be carried by the shipper itself, or could be transferred to the
platform, that may adapt its cost structure accordingly. Trust and individual autonomy may
be key conditions to fully exploit the benefits of cooperation in practice.
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Appendix: Comparison on benchmark instances

Tables 8, 9, and10 show the results of theMASapplied to instance setsO1_10,O1_15,O2_10,
O2_15, O3_10, and O3_15, and compare them with the BKSs as described by Gansterer et
al. (2020a, b). The profit in the MAS column is the best value among 100 runs in total (4
groups of 25 runs, with or without bundling, and with a maximum of 30 or 300 auctions per
order). (Note that the results cannot be compared to the results reported by Lyu et al. (2019,
Tables A14–A16), since other constraints or instance properties might have been used there.
We thoroughly investigated where the differences in results might have come from, but the
details of their solutions could not be found.)

123

http://creativecommons.org/licenses/by/4.0/


Annals of Operations Research

Table 8 Best results for the MAS on benchmark set O1

Set Instance BKS MAS Improvement (%)

O1_10 run=0+dist=200+ rad=150+n=10 4827.75 4827.75 0.00

run=1+dist=200+ rad=150+n=10 3036.25 3033.79 −0.08

run=2+dist=200+ rad=150+n=10 3744.46 3744.46 0.00

run=3+dist=200+ rad=150+n=10 3468.53 3464.23 −0.12

run=4+dist=200+ rad=150+n=10 4286.33 4286.32 0.00

run=5+dist=200+ rad=150+n=10 3686.73 3686.73 0.00

run=6+dist=200+ rad=150+n=10 4599.17 4583.83 −0.33

run=7+dist=200+ rad=150+n=10 4286.41 4286.41 0.00

run=8+dist=200+ rad=150+n=10 3450.11 3489.57 1.14

run=9+dist=200+ rad=150+n=10 4070.29 3969.57 −2.47

run=10+dist=200+ rad=150+n=10 3625.60 3630.59 0.14

run=11+dist=200+ rad=150+n=10 3828.01 3828.01 0.00

run=12+dist=200+ rad=150+n=10 3337.18 3337.18 0.00

run=13+dist=200+ rad=150+n=10 3048.79 3048.79 0.00

run=14+dist=200+ rad=150+n=10 3512.80 3512.80 0.00

run=15+dist=200+ rad=150+n=10 4020.28 4016.96 −0.08

run=16+dist=200+ rad=150+n=10 3564.18 3564.18 0.00

run=17+dist=200+ rad=150+n=10 4172.44 4115.91 −1.35

run=18+dist=200+ rad=150+n=10 3945.07 4016.95 1.82

run=19+dist=200+ rad=150+n=10 2885.98 2855.45 −1.06

Average −0.12

O1_15 run=0+dist=200+ rad=150+n=15 6053.44 6038.02 −0.25

run=1+dist=200+ rad=150+n=15 6805.56 6805.56 0.00

run=2+dist=200+ rad=150+n=15 6885.41 6960.50 1.09

run=3+dist=200+ rad=150+n=15 7778.42 7770.54 −0.10

run=4+dist=200+ rad=150+n=15 6079.67 6110.73 0.51

run=5+dist=200+ rad=150+n=15 7594.15 7557.20 −0.49

run=6+dist=200+ rad=150+n=15 6251.17 6323.67 1.16

run=7+dist=200+ rad=150+n=15 7425.76 7408.46 −0.23

run=8+dist=200+ rad=150+n=15 6527.29 6491.17 −0.55

run=9+dist=200+ rad=150+n=15 6135.65 6271.66 2.22

run=10+dist=200+ rad=150+n=15 6775.30 6843.83 1.01

run=11+dist=200+ rad=150+n=15 7040.55 7028.88 −0.17

run=12+dist=200+ rad=150+n=15 6389.52 6360.01 −0.46

run=13+dist=200+ rad=150+n=15 6037.21 6021.42 −0.26

run=14+dist=200+ rad=150+n=15 6095.78 6055.23 −0.67

run=15+dist=200+ rad=150+n=15 6899.75 6886.70 −0.19

run=16+dist=200+ rad=150+n=15 6525.64 6525.64 0.00

run=17+dist=200+ rad=150+n=15 6217.41 6201.34 −0.26

run=18+dist=200+ rad=150+n=15 6911.93 6911.32 −0.01

run=19+dist=200+ rad=150+n=15 5592.14 5586.17 −0.11

Average 0.11

123



Annals of Operations Research

Table 9 Best results for the MAS on benchmark set O2

Set Instance BKS MAS Improvement (%)

O2_10 run=0+dist=200+ rad=200+n=10 5681.90 6029.02 6.11

run=1+dist=200+ rad=200+n=10 4105.88 4105.88 0.00

run=2+dist=200+ rad=200+n=10 3323.96 3605.80 8.48

run=3+dist=200+ rad=200+n=10 5840.33 5896.11 0.96

run=4+dist=200+ rad=200+n=10 3923.62 4284.09 9.19

run=5+dist=200+ rad=200+n=10 5172.38 5590.90 8.09

run=6+dist=200+ rad=200+n=10 4306.61 4336.51 0.69

run=7+dist=200+ rad=200+n=10 5113.16 5310.22 3.85

run=8+dist=200+ rad=200+n=10 4415.43 4585.39 3.85

run=9+dist=200+ rad=200+n=10 5474.34 5518.35 0.80

run=10+dist=200+ rad=200+n=10 5314.20 5351.46 0.70

run=11+dist=200+ rad=200+n=10 5351.21 5470.72 2.23

run=12+dist=200+ rad=200+n=10 5778.25 5869.91 1.59

run=13+dist=200+ rad=200+n=10 4885.80 5131.42 5.03

run=14+dist=200+ rad=200+n=10 5217.46 5402.51 3.55

run=15+dist=200+ rad=200+n=10 5518.18 5618.84 1.82

run=16+dist=200+ rad=200+n=10 5431.95 5582.08 2.76

run=17+dist=200+ rad=200+n=10 4566.98 4547.06 −0.44

run=18+dist=200+ rad=200+n=10 5372.42 5624.97 4.70

run=19+dist=200+ rad=200+n=10 4710.49 4881.78 3.64

Average 3.38

O2_15 run=0+dist=200+ rad=200+n=15 8405.39 8459.64 0.65

run=1+dist=200+ rad=200+n=15 8931.09 9090.49 1.78

run=2+dist=200+ rad=200+n=15 9037.81 9054.71 0.19

run=3+dist=200+ rad=200+n=15 9722.75 9994.23 2.79

run=4+dist=200+ rad=200+n=15 8970.14 8948.72 −0.24

run=5+dist=200+ rad=200+n=15 8168.25 8243.93 0.93

run=6+dist=200+ rad=200+n=15 7493.37 7429.49 −0.85

run=7+dist=200+ rad=200+n=15 7512.26 7608.29 1.28

run=8+dist=200+ rad=200+n=15 6264.43 6369.51 1.68

run=9+dist=200+ rad=200+n=15 7937.83 7949.73 0.15

run=10+dist=200+ rad=200+n=15 7852.35 8028.10 2.24

run=11+dist=200+ rad=200+n=15 8836.52 8954.58 1.34

run=12+dist=200+ rad=200+n=15 9493.88 9590.01 1.01

run=13+dist=200+ rad=200+n=15 8967.75 8985.83 0.20

run=14+dist=200+ rad=200+n=15 7622.74 7745.15 1.61

run=15+dist=200+ rad=200+n=15 9468.63 9769.13 3.17

run=16+dist=200+ rad=200+n=15 8265.40 8475.67 2.54

run=17+dist=200+ rad=200+n=15 8299.04 8607.71 3.72

run=18+dist=200+ rad=200+n=15 9543.06 9613.84 0.74

run=19+dist=200+ rad=200+n=15 8837.45 8916.38 0.89

Average 1.29
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Table 10 Best results for the MAS on benchmark set O3

Set Instance BKS MAS Improvement (%)

O3_10 run=0+dist=200+ rad=300+n=10 9032.72 10085.99 11.66

run=1+dist=200+ rad=300+n=10 8336.44 8915.17 6.94

run=2+dist=200+ rad=300+n=10 10150.10 10821.15 6.61

run=3+dist=200+ rad=300+n=10 9075.06 9643.72 6.27

run=4+dist=200+ rad=300+n=10 8650.27 9248.99 6.92

run=5+dist=200+ rad=300+n=10 8359.13 8935.33 6.89

run=6+dist=200+ rad=300+n=10 8555.03 9167.59 7.16

run=7+dist=200+ rad=300+n=10 8580.78 9283.23 8.19

run=8+dist=200+ rad=300+n=10 7960.82 8624.07 8.33

run=9+dist=200+ rad=300+n=10 7328.59 7845.96 7.06

run=10+dist=200+ rad=300+n=10 7491.47 8238.26 9.97

run=11+dist=200+ rad=300+n=10 7242.82 7599.63 4.93

run=12+dist=200+ rad=300+n=10 7223.90 8033.24 11.20

run=13+dist=200+ rad=300+n=10 8095.11 9320.57 15.14

run=14+dist=200+ rad=300+n=10 7750.75 8860.07 14.31

run=15+dist=200+ rad=300+n=10 8304.09 8653.14 4.20

run=16+dist=200+ rad=300+n=10 7780.18 8256.28 6.12

run=17+dist=200+ rad=300+n=10 7022.65 7553.64 7.56

run=18+dist=200+ rad=300+n=10 8462.22 8640.40 2.11

run=19+dist=200+ rad=300+n=10 7733.83 7815.14 1.05

Average 7.63

O3_15 run=0+dist=200+ rad=300+n=15 14156.90 14141.17 −0.11

run=1+dist=200+ rad=300+n=15 13443.10 14067.83 4.65

run=2+dist=200+ rad=300+n=15 12429.70 12839.42 3.30

run=3+dist=200+ rad=300+n=15 12345.00 12755.36 3.32

run=4+dist=200+ rad=300+n=15 14617.30 14635.17 0.12

run=5+dist=200+ rad=300+n=15 13880.40 14520.15 4.61

run=6+dist=200+ rad=300+n=15 15396.60 15709.87 2.03

run=7+dist=200+ rad=300+n=15 12246.60 12813.90 4.63

run=8+dist=200+ rad=300+n=15 15753.90 16234.34 3.05

run=9+dist=200+ rad=300+n=15 12041.30 12411.35 3.07

run=10+dist=200+ rad=300+n=15 13388.90 13960.70 4.27

run=11+dist=200+ rad=300+n=15 11300.50 11507.86 1.83

run=12+dist=200+ rad=300+n=15 14750.60 15332.83 3.95

run=13+dist=200+ rad=300+n=15 15133.00 15822.57 4.56

run=14+dist=200+ rad=300+n=15 15972.70 16632.43 4.13

run=15+dist=200+ rad=300+n=15 16064.00 16617.58 3.45

run=16+dist=200+ rad=300+n=15 11956.80 12309.97 2.95

run=17+dist=200+ rad=300+n=15 14508.20 14923.94 2.87

run=18+dist=200+ rad=300+n=15 12937.30 13505.86 4.39

run=19+dist=200+ rad=300+n=15 13384.50 14179.11 5.94

Average 3.35
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