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Fully Distributed Nash Equilibrium Seeking Over
Time-Varying Communication Networks With

Linear Convergence Rate
Mattia Bianchi and Sergio Grammatico , Senior Member, IEEE

Abstract—We design a distributed algorithm for learning
Nash equilibria over time-varying communication networks
in a partial-decision information scenario, where each
agent can access its own cost function and local feasible
set, but can only observe the actions of some neigh-
bors. Our algorithm is based on projected pseudo-gradient
dynamics, augmented with consensual terms. Under strong
monotonicity and Lipschitz continuity of the game map-
ping, we provide a simple proof of linear convergence,
based on a contractivity property of the iterates. Compared
to similar solutions proposed in literature, we also allow
for time-varying communication and derive tighter bounds
on the step sizes that ensure convergence. In fact, in
our numerical simulations, our algorithm outperforms the
existing gradient-based methods, when the step sizes are
set to their theoretical upper bounds. Finally, to relax the
assumptions on the network structure, we propose a dif-
ferent pseudo-gradient algorithm, which is guaranteed to
converge on time-varying balanced directed graphs.

Index Terms—Game theory, optimization algorithms, net-
worked control systems.

I. INTRODUCTION

NASH equilibrium (NE) problems arise in several network
systems, where multiple selfish decision-makers, or

agents, aim at optimizing their individual, yet inter-dependent,
objective functions. Engineering applications include commu-
nication networks [1], demand-side management in the smart
grid [2], charging of electric vehicles [3] and demand response
in competitive markets [4]. From a game-theoretic perspective,
the challenge is to assign the agents behavioral rules that even-
tually ensure the attainment of a NE, a joint action from which
no agent has an incentive to unilaterally deviate.

Literature review: Typically, NE seeking algorithms are
designed under the assumption that each agent can access
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the decisions of all the competitors [5], [6], [7]. This full-
decision information hypothesis requires the presence of a
coordinator, that broadcast the data to the network, and it
is impractical for some applications [8], [9]. One example
is the Nash-Cournot competition model described in [10],
where the profit of each of a group of firms depends not
only on its own production, but also on the whole amount
of sales, a quantity not directly accessible by any of the
firms. Therefore, in recent years, there has been an increased
attention for fully distributed algorithms that allow to com-
pute NEs relying on local information only. In this letter,
we consider the so-called partial-decision information sce-
nario, where the agents engage in nonstrategic information
exchange with some neighbors on a network; based on the
data received, they can estimate and eventually reconstruct the
actions of all the competitors. This setup has only been intro-
duced very recently. In particular, most of the results available
resort to (projected) gradient and consensus dynamics, both
in continuous time [11], [12], and discrete time. For the dis-
crete time case, fixed-step algorithms were proposed in [13],
[14], [15] (the latter for generalized games), all exploiting
a certain restricted monotonicity property. Alternatively, the
authors of [16] developed a gradient-play scheme by lever-
aging contractivity properties of doubly stochastic matrices.
Nevertheless, in all these approaches theoretical guarantees
are provided only for step sizes that are typically very small,
affecting the speed of convergence. Furthermore, all the meth-
ods cited are designed for a time-invariant, undirected network.
To the best of our knowledge, switching communication
topologies have only been addressed with diminishing step
sizes. For instance, the early work [10] considered aggregative
games over time-varying jointly connected undirected graphs.
This result was extended by the authors of [17] to games
with coupling constraints. In [18], an asynchronous gossip
algorithm was presented to seek a NE over directed graphs.
The drawback is that vanishing steps typically result in slow
convergence.

Contribution: Motivated by the above, in this letter we
present the first fixed-step NE seeking algorithms for strongly
monotone games over time-varying communication networks.
Our novel contributions are summarized as follows:

• We propose a fully distributed projected gradient-play
method, that is guaranteed to converge with linear rate
when the network adjacency matrix is doubly stochastic.

2475-1456 c© 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
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With respect to [16], we consider a time-varying com-
munication network and we allow for constrained action
sets. Moreover, differently from the state of the art, we
provide an upper bound on the step size that does not
vanish as the number of agents increases (Section III);

• We show via numerical simulations that, even in the case
of fixed networks, our algorithm outperforms the existing
pseudo-gradient based dynamics, when the step sizes are
set to their theoretical upper bounds (Section V);

• We prove that linear convergence to a NE on time-varying
weight-balanced directed graphs can be achieved via a
forward-backward algorithm [19, Sec. 12.7.2], which has
been studied in [14], [15], but only for the special case
of fixed undirected networks (Section IV).

Basic notation: N is the set of natural numbers, including
0. R is the set of real numbers. 0n (1n) denotes the vector
of dimension n with all elements equal to 0 (1); In the iden-
tity matrix of dimension n; the subscripts might be omitted
when there is no ambiguity. For a matrix A ∈ R

m×n, A�
denotes its transpose; [A]i,j is the element on row i and col-
umn j, and the second subscript is omitted if n = 1; σmin(A) =
σ1(A) ≤ · · · ≤ σn(A) =: σmax(A) = ‖A‖ denote its singular
values. If A ∈ R

n×n, det(A) is its determinant; A � 0 stands
for symmetric positive definite matrix; if A is symmetric,
λmin(A) = λ1(A) ≤ · · · ≤ λn(A) =: λmax(A) denote its eigen-
values. ⊗ denotes the Kronecker product. diag(A1, . . . , AN)

denotes the block diagonal matrix with A1, . . . , AN on its diag-
onal. Given N vectors x1, . . . , xN , x := col(x1, . . . , xN) =
[x�

1 . . . x�
N ]� and x−i = col(x1, . . . , xi−1, xi+1, . . . , xN). ‖ · ‖

denotes the Euclidean vector norm. For a differentiable func-
tion g : R

n → R, ∇xg(x) denotes its gradient. A mapping
A : Rm → R

n is �-Lipschitz continuous if, for any x, y ∈ R
m,

‖A(x) − A(y)‖ ≤ �‖x − y‖. projS : R
n → S denotes the

Euclidean projection onto a closed convex set S. An operator
F : Rn → R

n is (μ-strongly) monotone if, for any x, y ∈ R
n,

(F(x) − F(y))�(x − y) ≥ 0 (≥ μ‖x − y‖2). The variational
inequality VI(F , S) is the problem of finding a vector x∗ ∈ S
such that F(x∗)�(x − x∗) ≥ 0, for all x ∈ S.

II. MATHEMATICAL SETUP

We consider a set of agents I := {1, . . . , N}, where each
agent i ∈ I shall choose its action (i.e., decision variable) xi
from its local decision set �i ⊆ R

ni . Let x = col((xi)i∈I) ∈
� denote the stacked vector of all the agents’ decisions,
� = �1 × · · · × �N ⊆ R

n the overall action space and
n := ∑N

i=1 ni. The goal of each agent i ∈ I is to minimize
its objective function Ji(xi, x−i), which depends on both the
local variable xi and the decision variables of the other agents
x−i = col((xj)j∈I\{i}). The game is then represented by the
inter-dependent optimization problems:

∀i ∈ I: argmin
yi∈�i

Ji(yi, x−i). (1)

The technical problem we consider in this letter is the
computation of a NE, as defined next.

Definition 1: A Nash equilibrium is a set of strategies x∗ =
col((x∗

i )i∈I) ∈ � such that, for all i ∈ I:

Ji
(
x∗

i , x∗−i

) ≤ inf{Ji
(
yi, x∗−i

)|yi ∈ �i}.

The following regularity assumptions are common for NE
problems, see, e.g., [15, Ass. 1], [14, Ass. 1].

Standing Assumption 1 (Regularity and Convexity): For
each i ∈ I, the set �i is non-empty, closed and convex;
Ji is continuous and the function Ji(·, x−i) is convex and
continuously differentiable for every x−i.

Under Standing Assumption 1, a joint action x∗ is a NE of
the game in (1) if and only if it solves the variational inequality
VI(F,�) [19, Prop. 1.4.2], or, equivalently, if and only if, for
any α > 0 [19, Prop. 1.5.8],

x∗ = proj�(x∗ − αF(x∗)), (2)

where F is the pseudo-gradient mapping of the game:

F(x) := col
(
(∇xiJi(xi, x−i))i∈I

)
. (3)

Next, we postulate a sufficient condition for the existence of
a unique NE, namely the strong monotonicity of the pseudo-
gradient [19, Th. 2.3.3]. This assumption is always used for
(G)NE seeking under partial-decision information with fixed
step sizes, e.g., in [14, Ass. 2], [15, Ass. 3]. It implies strong
convexity of the functions Ji(·, x−i) for every x−i, but not
necessarily (strong) convexity of Ji in the full argument.

Standing Assumption 2: The pseudo-gradient mapping
in (3) is μ-strongly monotone and �0-Lipschitz continuous,
for some μ, �0 > 0.

In our setup, each agent i can only access its own cost
function Ji and feasible set �i. Moreover, agent i does not
have full knowledge of x−i, and only relies on the information
exchanged locally with neighbors over a time-varying directed
communication network Gk(I, Ek). The ordered pair (i, j)
belongs to the set of edges, Ek, if and only if agent i can receive
information from agent j at time k. Let Wk ∈ R

N×N denote
the weighted adjacency matrix of Gk, and wk

i,j := [Wk]i,j, with
wk

i,j > 0 if (i, j) ∈ Ek, wk
i,j = 0 otherwise; Dk = diag((dk

i )i∈I)

and Lk = Dk − Wk the in-degree and Laplacian matrices of
Gk, with dk

i = ∑N
j=1 wk

i,j; N k
i = {j|(i, j) ∈ Ek} the set of

in-neighbors of agent i.
Standing Assumption 3: For each k ∈ N, the graph Gk is

strongly connected.
Assumption 1: For all k ∈ N, the following hold:

(i) Self-loops: wk
i,i > 0 for all i ∈ I;

(ii) Double stochasticity: Wk1N = 1N , 1�
N Wk = 1�

N .
Remark 1: Assumption 1(i) is intended just to ease the

notation. Instead, Assumption 1(ii) is stronger. It is typically
used for networked problems on undirected symmetric graphs,
e.g., in [10, Ass. 6], [17, Ass. 3], [16, Ass. 3], justified by
the fact that it can be satisfied by assigning the following
Metropolis weights to the communication:

w̃k
i,j =

⎧
⎨

⎩

wk
i,j/(max{dk

i , dk
j } + 1) if j ∈ Ni\{i};

0 if j /∈ Ni;
1 − ∑

j∈Ni\{i} w̃k
i,j if i = j.

In practice, to satisfy Assumption 1(ii) in case of symmetric
communication, even under time-varying topology, it suffices
for the agents to exchange their in-degree with their neigh-
bors at every time step. Therefore, Standing Assumption 3 and
Assumption 1 are easily fulfilled for undirected graphs con-
nected at each step. For directed graphs, given any strongly
connected topology, weights can be assigned such that the

Authorized licensed use limited to: TU Delft Library. Downloaded on July 23,2020 at 12:43:14 UTC from IEEE Xplore.  Restrictions apply. 



BIANCHI AND GRAMMATICO: FULLY DISTRIBUTED NASH EQUILIBRIUM SEEKING OVER TIME-VARYING COMMUNICATION NETWORKS 501

resulting adjacency matrix (with self-loops) is doubly stochas-
tic, via an iterative distributed process [20]. However, this can
be impractical if the network is time-varying.

Under Assumption 1, it holds that σN−1(Wk) < 1, for all k,
where σN−1(Wk) denotes the second largest singular value of
Wk. Moreover, for any y ∈ R

N ,

‖Wk(y − 1Nȳ)‖ ≤ σN−1(Wk)‖y − 1Nȳ‖, (4)

where ȳ = 1
N 1�

N y is the average of y. We will further assume
that σN−1(Wk) is bounded away from 1; this automatically
holds if the networks Gk are chosen among a finite family.

Assumption 2: There exists σ̄ ∈ (0, 1) such that
σN−1(Wk) ≤ σ̄ , for all k ∈ N.

III. DISTRIBUTED NASH EQUILIBRIUM SEEKING

In this section, we present a pseudo-gradient algorithm to
seek a NE of the game (1) in a fully distributed way. To cope
with partial-decision information, each agent keeps an estimate
of all other agents’ actions. Let xi = col((xi,j)j∈I) ∈ R

Nn,
where xi,i := xi and xi,j is agent i’s estimate of agent j’s action,
for all j �= i; also, xj,−i = col((xj,l)l∈I\{i}). The agents aim at
asymptotically reconstructing the true value of the opponents’
actions, based on the data received from their neighbors. The
procedure is summarized in Algorithm 1. Each agent updates
its estimates according to consensus dynamics, then its action
via a gradient step. We remark that each agent computes the
partial gradient of its cost in its local estimates xi, not on the
actual joint action x.

To write the algorithm in compact form, let x =
col((xi)i∈I); as in [15, eqs. 13-14], let, for all i ∈ I,

Ri := [
0ni×n<i Ini 0ni×n>i

] ∈ R
ni×n, (5)

where n<i := ∑i−1
j=1 nj, n>i := ∑N

j=i+1 nj; let also R :=
diag((Ri)i∈I) ∈ R

n×Nn. In simple terms, Ri selects the i-
th ni dimensional component from an n-dimensional vector.
Thus, Rixi = xi,i = xi, and x = Rx. We define the extended
pseudo-gradient mapping F as

F(x) := col
(
(∇xiJi

(
xi, xi,−i

)
)i∈I

)
. (6)

Therefore, Algorithm 1 reads in compact form as:

xk+1 = proj�(Wkxk − αR�F(Wkxk)), (7)

where � := {x ∈ R
Nn|Rx ∈ �} and Wk := Wk ⊗ In.

Lemma 1 [21, Lemma 3]: The mapping F in (6) is
�-Lipschitz continuous, for some μ ≤ � ≤ �0.

Theorem 1: Let Assumptions 1-2 hold and let

Mα =
⎡

⎣
1 − 2αμ

N + α2�2
0

N

(
α(�+�0)+α2�0�√

N

)
σ̄

(
α(�+�0)+α2�0�√

N

)
σ̄

(
1 + 2α� + α2�2

)
σ̄ 2

⎤

⎦. (8)

If the step size α > 0 is chosen such that

ρα := λmax(Mα) = ‖Mα‖ < 1, (9)

then, for any initial condition, the sequence (xk)k∈N generated
by Algorithm 1 converges to x∗ = 1N ⊗ x∗, where x∗ is the
NE of the game in (1), with linear rate: for all k ∈ N,

‖xk − x∗‖ ≤ (√
ρα

) k‖x0 − x∗‖.

Algorithm 1 Fully Distributed NE Seeking

Initialization: for all i ∈ I, set x0
i ∈ �i, x0

i,−i ∈ R
n−ni .

Iterate until convergence: for all i ∈ I,
Distributed averaging: x̂k

i = ∑N
j=1 wk

i,jx
k
j

Local variables update: xk+1
i = proj�i

(x̂k
i,i − α∇xiJi(x̂

k
i ))

xk+1
i,−i = x̂k

i,−i.

Lemma 2: The condition in (9) holds if α > 0 and

α < σ̄
3�0

(10a)

α <
2μ

�2
0

(10b)

0 < 2μ(1 − σ̄ 2) − α(σ̄ 2(2�0� + �2 + 4μ� + 2�2
0) − �2

0)

− α2(�0�
2 + μ�2 + 2�2

0�)2σ̄ 2 − α32�2
0�

2σ̄ 2. (10c)

Proof: The condition in (10a) implies that Mα � 0 (by
diagonal dominance and positivity of the diagonal elements, as
can be checked by recalling that � ≤ �0, μ ≤ �0, N ≥ 2, σ̄ <

1). The inequalities in (10b)-(10c) are the Sylvester’s criterion
for the matrix I2−Mα: they impose that [I2−Mα]1,1 > 0 (10b)
and det(I2 − Mα) > 0 (10c), hence I2 − Mα � 0. Altogether,
this implies ‖Mα‖ < 1.

Remark 2: The conditions in (10) always hold for α small
enough, since, in the monomial inequality (10c), the con-
stant term is 2μ(1 − σ̄ 2) > 0. While explicit solutions are
known for cubic equations, we prefer the compact representa-
tion in (10c). The bounds in (10) are not tight, and in practice
better bounds on the step size α are obtained by simply check-
ing the Euclidean norm of the 2×2 matrix Mα in (8). Instead,
the key observation is that the conditions in (10) do not depend
on the number of agents: given the parameters σ̄ , μ, �0 and
�, a constant α that ensures convergence can be chosen inde-
pendently of N. On the contrary, the rate

√
ρα does depend

on N and, in fact, it approaches 1 as N grows unbounded
(analogously to the results in [13], [14], [16]).

Remark 3: Compared to [16, Algorithm 7] (or [14,
Algorithm 1]), in Algorithm 1 the agents first exchange
information with their neighbors, and then evaluate their gra-
dient term, resulting in better bounds on the step size α.
Moreover, differently from [16, Th. 1], Theorem 1 provides a
contractivity property for the iterates in (7) that holds at each
step. This has beneficial consequences in terms of robustness,
see Remark 6.

A. Technical Discussion

In Algorithm 1, the partial gradients ∇xiJi are evaluated on
the local estimates xi,−i, not on the actual strategies x−i. Only
if the estimates of all the agents coincide with the actual value,
i.e., x = 1N ⊗x, we have that F(x) = F(x). As a consequence,
the mapping R�F is not necessarily monotone, not even under
strong monotonicity of the game mapping. Indeed, the loss
of monotonicity is the main technical difficulty arising from
the partial-decision information setup. Some works [12], [13],
[14], [15], [21] deal with this issue by leveraging a restricted
strong monotonicity property, which can be ensured, by oppor-
tunely choosing the parameter γ , for the augmented mapping
Fa(x) := γR�F(x) + Lx, where L = L ⊗ In and L is the
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Laplacian of a fixed undirected connected network. Since the
unique solution of the VI(Fa,�) is x∗ = 1N ⊗ x∗, with x∗
the unique NE of the game in (1) [14, Prop. 1], one can
design NE seeking algorithms via standard solution methods
for variational inequalities (or the corresponding monotone
inclusions, [15]). For instance, in [14], a forward-backward
algorithm [19, 12.4.2] is proposed to solve VI(Fa,�), resulting
in the algorithm

xk+1 = proj�
(

xk − τ(Fa(x))
)
. (11)

We also recover this iteration when considering [15,
Algorithm 1] in the absence of coupling constraints. However,
exploiting the monotonicity of Fa results in conservative upper
bounds on the parameters τ and γ , and hence in slow conver-
gence (see Sections IV-V). More recently, the authors of [16]
studied the convergence of (11) based on contractivity of the
iterates, in the case of a fixed undirected network with doubly
stochastic adjacency matrix W, unconstrained action sets (i.e.,
� = R

n), and by fixing τ = 1, which results in the algorithm:

xk+1 = (W ⊗ IN)x − αR�F(xk). (12)

Nonetheless, the upper bound on α provided in [16, Th. 1]
is decreasing to zero when the number of agents N grows
unbounded (in contrast with that in Theorem 1, see Lemma 2).

IV. BALANCED DIRECTED GRAPHS

In this section, we relax Assumption 1 to the following.
Assumption 3: For all k ∈ N, the communication graph Gk

is weight balanced: (1�
N Wk)

� = Wk1N .
For weight-balanced digraphs, in-degree and out-degree of

each node coincide. Therefore, the matrix L̃k := (Lk+L�
k )/2 =

Dk−(Wk+W�
k )/2 is itself the symmetric Laplacian of an undi-

rected graph. Besides, such a graph is connected by Standing
Assumption 3; hence L̃k has a simple eigenvalue in 0, and the
others are positive, i.e., λ2(L̃k) > 0.

Assumption 4: There exist σ̃ , λ̄ > 0 such that σmax(Lk) ≤ σ̃

and λ2(L̃k) ≥ λ̄, for all k ∈ N.
Remark 4: Assumptions 2 and 4 always hold if the

networks switch among a finite family. Yet, σ̄ , σ̃ and λ̄ are
global parameters, that could be difficult to compute in a
distributed way; upper/lower bounds might be available for
special classes of networks, e.g., unweighted graphs.

To seek a NE over switching balanced digraphs, we propose
the iteration in Algorithm 2. In compact form, it reads as

xk+1 = proj�
(

xk − τ(γR�F(xk) + Lkxk)
)

(13)

where Lk = Lk ⊗ In. Clearly, (13) is the same scheme of (11),
just adapted to take the switching topology into account. In
fact, the proof of convergence of Algorithm 2 is based on a
restricted strong monotonicity property of the operator

Fk
a (x) := γR�F(x) + Lkx, (14)

that still holds for balanced directed graphs, as we show next.
Theorem 2: Let Assumptions 3-4 hold, and let

M := γ

[ μ
N − �0+�

2
√

N

− �0+�

2
√

N
λ̄
γ

− θ

]

,

μ̄ := λmin(M),

γmax := 4μλ̄

(�0+�)2+4μθ
,

�̄ := � + σ̃

τmax := 2μ̄/�̄2,

(15)

Algorithm 2 Fully Distributed NE Seeking

Initialization: for all i ∈ I, set x0
i ∈ �i, x0

i,−i ∈ R
n−ni .

Iterate until convergence: for all i ∈ I,

x̂k
i = ∑N

j=1 wk
i,j(x

k
i − xk

j )

xk+1
i = proj�i

(
xk

i − τ(γ∇xiJi(xk
i ) + x̂k

i,i)
)

xk+1
i,−i = x̂k

i,−i.

ργ,τ := 1 − 2τ μ̄ + τ 2�̄2.

If γ ∈ (0, γmax), then M � 0 and, for any τ ∈ (0, τmax),
for any initial condition, the sequence (xk)k∈N generated by
Algorithm 2 converges to x∗ = 1N ⊗x∗, where x∗ is the unique
NE of the game in (1), with linear rate: for all k ∈ N,

‖xk − x∗‖ ≤ (√
ργ,τ

) k‖x0 − x∗‖.
Remark 5: Differently from the bound αmax in (8), τmax

in (15) vanishes as N grows (fixed the other parameters), as
μ̄ decreases to 0 (by continuity of the eigenvalues).

Remark 6: Based on Theorems 1, 2, it can be proven that the
discrete-time systems (7), (13) are input-to-state-stable (ISS)
with respect to additive disturbances, with ISS-Lyapunov func-
tion ‖x − x∗‖2. By Lipschitz continuity of the updates, this
implies ISS for noise both on the communication and in the
evaluation of the partial gradients.

V. NUMERICAL EXAMPLE: A NASH-COURNOT GAME

We consider the Nash-Cournot game in [15, Sec. 6]. N firms
produce a commodity that is sold to m markets. Each firm
i ∈ I = {1, . . . , N} can only participate in ni ≤ m of the mar-
kets; its action xi ∈ R

ni is the vector of quantities of product to
be sent to these ni markets, bounded by the local constraints
0ni ≤ xi ≤ Xi. Let Ai ∈ R

m×ni be the matrix that specifies
which markets firm i participates in. Specifically, [Ai]k,j = 1
if [xi]j is the amount of product sent to the k-th market by agent
i, [Ai]k,j = 0 otherwise, for all k = 1, . . . , m, j = 1, . . . , ni.
Let A := [A1 . . . AN]; then Ax = ∑N

i=1 Aixi ∈ R
m are the

quantities of total product delivered to each market. Firm i
aims at maximizing its profit, i.e., minimizing the cost function
Ji(xi, x−i) = ci(xi)−p(Ax)�Aixi. Here, ci(xi) = x�

i Qixi +q�
i xi

is firm i’s production cost, with Qi ∈ R
ni×ni , Qi � 0, qi ∈ R

ni .
Instead, p:Rm → R

m associates to each market a price that
depends on the amount of product delivered to that market.
Specifically, the price for the market k, for k = 1, . . . , m, is
[p(Ax)]k = P̄k -χk[Ax]k, where P̄k, χk > 0. We set N = 20,
m = 7. The market structure is as in [15, Fig. 1], that
defines which firms are allowed to participate in which mar-
kets. Therefore, x ∈ R

n, with n = 32. We select randomly
with uniform distribution rk in [1, 2], Qi diagonal with diag-
onal elements in [14, 16], qi in [1, 2], P̄k in [10, 20], χk in
[1, 3], Xi in [5, 10], for all i ∈ I, k = 1, . . . , m. The result-
ing setup satisfies Standing Assumptions 1-2 [15, Sec. 6]. The
firms cannot access the production of all the competitors, but
can communicate with some neighbors on a network.

We first consider the case of a fixed, undirected graph,
under Assumption 1. Algorithm 2 in this case reduces
to [14, Algorithm 1]. We compare Algorithms 1-2 with the
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Fig. 1. Distance from the NE for different pseudo-gradient NE seeking
methods, with step sizes that guarantee convergence.

Fig. 2. Distance from the NE for Algorithm 1, with step size α = 2∗10−3

(upper bound in Theorem 1), and the method in [16, Algorithm 1], with
step size α = 4 ∗ 10−6 (upper bound in [16, Th. 1]). Algorithm 1
converges much faster, thanks to the larger step size. The scheme
in [16, Algorithm 1] still converges if we set α = 2 ∗ 10−3 (dashed line,
not supported theoretically).

Fig. 3. Comparison of Algorithms 1 and 2, on a time-varying graph, for
20, 50 or 100 agents, with the step sizes set to their theoretical upper
bounds.

Fig. 4. Distance from the NE for Algorithm 2, on a time-varying digraph.
Since the networks are sparse, Theorem 2 ensures convergence only
for small step sizes (γ = 5 ∗ 10−4, τ = 3 ∗ 10−4), and conver-
gence is slow (solid line). However, the bounds are conservative: the
iteration still converges with τ 1000 times larger than the theoretical
value (dashed line).

inexact ADMM in [13] and the accelerated gradient method
in [14], for the step sizes that ensure convergence. Specifically,
we set α as in Theorem 1 for Algorithm 1. The convergence
of all the other Algorithms is based on the monotonicity of
Fa in (14); hence we set γ as in Theorem 2. Instead of using
the conservative bounds in (15) for the parameters, μ̄ and �̄,
we obtain a better result by computing the values numerically.
Fa is (non-restricted) strongly monotone for our parameters,
hence also the convergence result for [14, Algorithm 2] holds.
Figure 1 shows that Algorithm 1 outperforms all the other

methods (we also note that the accelerated gradient in [14,
Algorithm 2] requires two projections and two communica-
tions per iterations). As a numerical example, we also compare
Algorithm 1 with the scheme in (12) by removing the local
constraints, in Figure 2.

For the case of doubly stochastic time-varying networks, we
randomly generate 5 connected graphs and for each iteration
we pick one with uniform distribution. In Figure 3, we com-
pare the performance of Algorithms 1-2, for step sizes set to
their upper bounds as in Theorems 1-2. Since the theoreti-
cal convergence rate in Theorems 1-2 worsens as the number
of agents grows, to show how the performance is affected in
practice, we repeat the experiment for different values of N
and random market structures (Figure 3).

Finally, in Figure 4, we test Algorithm 2 with communi-
cation topology chosen at each step with uniform distribu-
tion between two unweighted balanced directed graphs: the
directed ring, where each agent i can send information to the
agent i+1 (with the convention N+1 ≡ 1), and a graph where
agent i is also allowed to transmit to agent i + 2, for all i ∈ I.

VI. CONCLUSION

Nash equilibrium problems on time-varying graphs can be
solved with linear rate via fixed-step pseudo-gradient algo-
rithms, if the network is connected at every iteration and the
game mapping is Lipschitz continuous and strongly monotone.
Our algorithm proved much faster than the existing gradient-
based methods, when the step sizes satisfy their theoretical
upper bounds. The extension to games with coupling con-
straints is left as future research. It would be also valuable
to relax our uniform connectedness assumption, i.e., allowing
for jointly strongly connected directed graphs.

APPENDIX

A. Proof of Theorem 1

We define the estimate consensus subspace E := {y ∈
R

Nn|y = 1N ⊗ y, y ∈ R
n} and its orthogonal comple-

ment E⊥ = {y ∈ R
Nn|(1N ⊗ In)

�y = 0n}. Thus, any
vector x ∈ R

Nn can be written as x = x‖ + x⊥, where
x‖ = projE(x) = 1

N (1N1�
N ⊗ In)x, x⊥ = projE⊥(x), and

x�
‖ x⊥ = 0. Also, we use the shorthand notation Fx and Fx

in place of F(x) and F(x). We recast the iteration in (7) as

xk+1 = proj�(x̂k − αR�Fx̂k
), x̂k = Wkxk. (16)

Let x∗ be the unique NE of the game in (1), and x∗ = 1N ⊗x∗.
We recall that x∗ = proj�(x∗ − αFx∗) by (2), and then x∗ =
proj�(x∗ − αR�Fx∗). Moreover, Wkx∗ = (Wk ⊗ In)(1N ⊗
x∗) = 1N ⊗ x∗ = x∗; hence x∗ is a fixed point for (16). Let
xk = x ∈ R

Nn and x̂ = Wkx = x̂‖ + x̂⊥ = 1N ⊗ x̂‖ + x̂⊥ ∈ R
Nn.

Thus, it holds that

‖xk+1 − x∗‖2

= ‖proj�(x̂ − αR�Fx̂) − proj�(x∗ − αR�Fx∗)‖2

≤ ‖(x̂ − αR�Fx̂) − (x∗ − αR�Fx∗)‖2

= ‖x̂‖ + x̂⊥ − x∗ + αR�(−Fx̂ + Fx∗ + Fx̂‖ − Fx̂‖)‖2

= ‖x̂‖ − x∗‖2 + ‖x̂⊥‖2

+ α2‖R�(Fx̂ − Fx̂‖ + Fx̂‖ − Fx∗)‖2

− 2α(x̂‖ − x∗)�R�(Fx̂ − Fx̂‖)
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− 2α(x̂‖ − x∗)�R�(Fx̂‖ − Fx∗)
− 2αx̂�

⊥R�(Fx̂ − Fx̂‖)

− 2αx̂�
⊥R�(Fx̂‖ − Fx∗) (17)

≤ ‖x̂‖ − x∗‖2 + ‖x̂⊥‖2 + α2(�2‖x̂⊥‖2 + �2
0

N ‖x̂‖ − x∗‖2

+ 2�0�√
N

‖x̂‖ − x∗‖‖x̂⊥‖) + 2α�√
N

‖x̂‖ − x∗‖‖x̂⊥‖
− 2αμ

N ‖x̂‖−x∗‖2+2α�‖x̂⊥‖2+ 2α�0√
N

‖x̂⊥‖‖x̂‖−x∗‖,

where the first inequality follows by nonexpansiveness of the
projection ([22, Prop. 4.16]), and to bound the addends in (17)
we used, in the order:

• 3rd term: ‖R‖ = 1, Lipschitz continuity of F, and ‖Fx̂‖−
Fx∗‖ = ‖Fx̂‖ − Fx∗‖ ≤ �0‖x̂‖ − x∗‖ = �0√

N
‖x̂‖ − x∗‖;

• 4th term: ‖R(1⊗(x̂‖ −x∗))‖ = ‖x̂‖ −x∗‖ = 1√
N

‖x̂‖ −x∗‖;

• 5th term: (x̂‖ − x∗)�R�(Fx̂‖ − Fx∗) = (x̂‖ − x∗)�(Fx̂‖ −
Fx∗) ≥ μ‖x̂‖ − x∗‖2 = 1

N ‖x̂‖ − x∗‖2;
• 6th term: Lipschitz continuity of F;
• 7th term: ‖Fx̂‖ − Fx∗‖ ≤ �0√

N
‖x̂‖ − x∗‖ as above.

Besides, for every x = x‖ + x⊥ ∈ R
Nn and for all k ∈ N, it

holds that x̂ = Wkx = x‖+Wkx⊥, where Wkx⊥ ∈ E⊥, by doubly
stochasticity of Wk, and ‖x̂⊥‖ = ‖Wkx⊥‖ ≤ σ̄‖x⊥‖ by (4) and
properties of the Kronecker product. Therefore we can finally
write, for all k ∈ N, for all xk ∈ R

Nn,

‖xk+1 − x∗‖2 ≤
[‖xk

‖ − x∗‖
‖xk

⊥‖
]�

Mα

[‖xk
‖ − x∗‖
‖xk

⊥‖
]

≤ λmax(Mα)(‖xk
‖ − x∗‖2 + ‖xk

⊥‖2)

= λmax(Mα)‖xk − x∗‖2.

B. Proof of Theorem 2

Let x∗ be the unique NE of the game in (1), and x∗ = 1N ⊗
x∗. We recall that the null space null(Lk) = E = {y ∈ R

Nn|y =
1N ⊗y, y ∈ R

n} by Standing Assumption 3. Therefore, Lkx∗ =
0N and x∗ is a fixed point of the iteration in (13) by (2). With
Fk

a as in (14), for all k ∈ N, for any x ∈ R
Nn, it holds that

(x − x∗)�(Fk
a x − Fk

a x∗) = (x − x∗)�γR�(Fx − Fx∗) + (x −
x∗)�Lk(x−x∗) = (x−x∗)�γR�(Fx−Fx∗)+(x−x∗)�L̃k(x−
x∗), where L̃k = (Lk + L�

k )/2 = (Lk + L�
k ) ⊗ In/2 = L̃k ⊗ In,

and L̃k is the Laplacian of a connected graph (see Section IV)
and λ2(L̃k) > λ̄ by Assumption 4. Therefore we can apply [15,
Lemma 3] to conclude that (x − x∗)�(Fk

a x − Fk
a x∗) ≥ μ̄‖x −

x∗‖2, with μ̄ > 0 as in (15). Also, Fk
a is Lipschitz continuous

with constant �̄ = �+ σ̃ , σ̃ as in Assumption 4. Therefore we
have

‖xk+1 − x∗‖2

= ‖proj�(xk − τFk
a (xk)) − proj�(x∗ − τFk

a x∗)‖2

≤ ‖(xk − τFk
a xk) − (x∗ − τFk

a x∗)‖2

= ‖xk − x∗‖2 − 2τ(xk − x∗)�(Fk
a xk − Fk

a x∗)
+ τ 2‖Fk

a xk − Fk
a x∗‖2

≤ (1 − 2τ μ̄ + τ 2(� + σ̃ )2)‖xk − x∗‖2 = ργ,τ‖xk − x∗‖2,

where in the first inequality we used [22, Prop. 4.16], and
ργ,τ ∈ (0, 1) if τ is chosen as in Theorem 2.
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