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Preface

My first experience with the programming of algorithms was during the first year of my master
Multi-Machine Engineering - which is not too long ago - during a course called Quantitative Methods
for Logistics. It was an obligatory subject for me, but I have considered it one of my favorite subjects
ever since. To finish the very same master by creating an algorithm completely from scratch is great.
What makes it a fantastic opportunity is that I was able to do work on a real-life problem, at the
company of ASK Romein, while at the same time gaining experience.
This master thesis also marks the end of my time as a student, and the start of my working career. I
am looking forward to the next step in my life, and am determined to finish my time at the TU Delft
with a great result.

This research assignment is part of the second year of the master Mechanical Engineering, for the
master track Multi-Machine Engineering, at Delft University of Technology.

I would like to thank everyone I worked with at ASK Romein Roosendaal and ASK Romein-Oostingh
Katwijk, and would in particular like to express my gratitude to Glenn de Vree, Kees Oudshoorn,
Leon van der Plas and Erron Estrado for their guidance during this assignment. Their comments were
of great value and I feel that their support helped me take this report to a higher level. I would also
like to mention my supervisor, dr. ir. Xiaoli Jiang, for her feedback.

Jasper G. P. Krombeen
Bergen op Zoom, August 2021
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Abstract

In this report, a model is presented that automates and optimizes the loading processes for the
transport of steel structures at the company of ASK Romein. This transport can be captured in two
main loading processes: the loading division, which consists of allocating items to different trailers,
and the loading sequence, which considers placing the items onto their respective trailer.
The possibility of automating the process of the loading division is investigated. This includes the
digital generation of the loading sequence process. Achieving a form of automation would both mean
a reduction in time required to create a loading division as well as allow for optimizing the number of
required trailers.
Using an extensive literature review as well as an in-depth investigation of the current situation at
the company, a model is developed, which consists of an ALNS heuristic responsible for the loading
division, and a new function, the layer heuristic, proposed in this report, that digitally generates the
loading sequence.
The proposed model is validated using various experiments on real-life data, including several sensi-
tivity analyses. For the used data set, the model is able to reduce the existing loading division by
at least 24%, and the computation time is superior to the current time required to create a loading
division. Because the loading sequence process is created digitally, the model is capable of checking
all the loading conditions, such as axle loads, even before the actual loading sequence has taken place.
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1 Introduction

The upcoming section serves as an introduction to this report. First, the subject of this research
is given, after which the research question is provided. Next, the report structure is presented by
defining the sub questions.
This master thesis is executed at the company ASK Romein. ASK Romein is a major player in the
Dutch and Belgian steel construction industry. They have the expertise to design and develop large
steel structures, like data centers, football stadiums, distribution centers and more.

1.1 Subject of research

For each project carried out at ASK Romein, there are many different types of steel assemblies, in all
kinds of shapes. This makes the cargo loading process a complex procedure: it is not as straightfor-
ward as loading a set of boxes.

When it comes to loading, there are two different processes distinguishable:

1. First, during the calculation phase of a project, all components and assemblies are assigned to
a transport lot. In the remainder of this report, this will be referred to as the loading division
process. The loading division conditions (discussed in subsection 2.3.2) are evaluated during the
loading division process.

2. The second process concerns the position and orientation of the assemblies when placed onto the
trailer. This process is currently executed during the production phase, when the loading occurs.
It is in this phase that the loading sequence conditions (subsection 2.3.3) can be evaluated. This
process will be referred to as the loading sequence process.

Both processes will be further explained in section 2.

This research project revolves around the two loading processes. The possibility of automating the
process of loading division is investigated, to decrease the number of trailers needed for transport and
decrease the time needed to create the loading sequence. Furthermore, the loading sequence process
is generated digitally and implemented in the loading division process. This means that all loading
conditions can be checked as early as the calculation and design phase.

1.2 Research question

The following research question is defined for this assignment:

How can the loading processes of trucks for steel structure transport be automated and opti-
mized?

1.3 Report structure

The aforementioned research question is accompanied by a set of sub questions, that are discussed
throughout this report.

In the next section, the existing loading processes at ASK Romein are analyzed. The two loading
processes are reviewed in more depth, and an overview of the required loading conditions is discussed.
The research problem definition is provided, and an answer is given to the first sub question:

1. What is the state-of-the-art of the loading processes at ASK Romein?

2
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The next sub question is discussed in section 3:

2. What are the existing solutions of 3D space maximization problems?

This section contains several 3D problems from the literature. In section 4, the proposed model is
presented. Sub questions 3 and 4 are answered in this section:

3. How can the loading division process be automated, accounting for the loading conditions?

4. How can the presented loading sequence problem be implemented in a 3D optimization model?

In section 6, the verification and validation are given, so that sub questions 5, 6 and 7 can be answered:

5. How can the loading division and loading sequence models be verified?

6. How can the loading division and loading sequence models be validated?

Finally, experiments are conducted on the proposed model, to provide an answer for sub question 7:

7. How do the parameters of the model influence the solution quality and computation time?

Finally, a conclusion is provided in section 7.

Figure 1 is a graphic representation of the structure of this report.

Figure 1: Report structure
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2 Current loading processes at ASK Romein

In this section, the existing loading processes at ASK Romein are evaluated. Figure 2 shows the main
topics of this section.
First, the different project phases at ASK Romein are briefly discussed. The two loading processes are
reviewed in more depth. Next, the problem definition is given, and the loading conditions required for
truck loading are discussed. Finally, with the problem definition and the loading conditions in mind,
the model characteristics are presented.

Figure 2: Report structure

2.1 Introduction to ASK Romein

ASK Romein is a major player in the Dutch and Belgian steel construction industry. As mentioned
before, they design and develop large steel structures, like data centers, football stadiums, distribution
centers and more. ASK Romein operates from multiple locations (see figure 3) in The Netherlands
and Belgium, but they execute projects in many other countries, such as Denmark and Italy.

Figure 3: Overview of ASK Romein facilities 1

1Image courtesy of ASK Romein.
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At ASK Romein, multiple departments are involved during a project. Each department has its own
role and responsibility. The different phases of a project will be discussed in the next paragraphs.
Currently, there are two different processes related to transport planning. They will be presented in
their respective phases.

2.1.1 Calculation and design

Usually, a client approaches ASK Romein with a rough design idea. At the calculation department,
an estimate for the costs is determined. At the engineering department, the detailed design is created.
This consists of drawing the separate components and calculating loads.
Next, the department of planning makes sure everything is ready for the construction phase. One of
the functions of this department is the loading division process to prepare the loading division.

Loading division

The loading division is an important factor in the design process at ASK Romein. Besides load-
ing the transport trucks according to this division, production also takes place in the order created
by the loading division. Therefore, a good loading division is required as early as possible, preferably
right after the design has been established.
Currently, the department of planning determines the loading division manually. The design of a
project is created in a building information model (BIM) environment called Tekla. A built-in func-
tion is used to assign different construction items to a transport lot, one item at a time, conform the
conditions mentioned in section 2.3.2. Most of the time, these conditions are the dominant constraint.
Figure 4 shows an image of the current loading division process. A project design is shown in Tekla.
The different colored items represent different components. Items are assigned to a transport lot. In
the example, the items in a certain transport lot are highlighted in yellow.

Figure 4: Current loading division process 1

As each lot is created manually, the loading division process is very time-consuming, especially for
large-scale projects. This is the first problem of this research.

1Image courtesy of ASK Romein.
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2.1.2 Production

During the production phase, the designed assemblies and other components are produced. An as-
sembly enters the factory as a standard steel profile, called position. As mentioned before, positions
enter the factory halls in the same composition as the lot they have been assigned to in the loading
division process. Next, the positions are cut to the right size, holes are drilled, and steel plates called
gusset plates are attached. A finished component is now called ’assembly’.
Subsequently, the conservation system can be applied to the component. Sometimes, conservation of
assemblies takes place in the same location as the production facility. In other cases, when conserva-
tion is outsourced, the assemblies have to be transported to another coating company.

When all assemblies belonging to the same lot have been produced, the loading onto the trailer
conform the loading sequence can be started.

Loading sequence

Currently, the loading sequence process is executed manually. The items are placed via the use
of large overhead cranes.

Besides the loading division criteria that were mentioned before, there are many more requirements
for the loading of a trailer: these are the conditions related to the loading sequence, to be discussed
in section 2.3.3. These requirements can only be checked when the loading sequence has taken place.
When this process is automated, using a model that determines the 3D orientation of all assemblies
on a trailer, all criteria can be checked using the digital representation. Additionally, this model can
be used for the optimization of 3D loading space.

Figure 5: Loading sequence: item placement on a trailer 1

1Image courtesy of ASK Romein.
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2.1.3 Construction

When the assemblies arrive on the construction site, they will be put together to form a steel structure,
like, for example, a data center. For the department of construction, it is important that the items
arriving on site are in the same building phase, to ensure a fast erection process and avoid having to
store large amount of components that cannot yet be used.

2.2 Problem definition

Figure 6 shows the current project phases, including a graphical representation of the loading division
and loading sequence processes, and when these processes occur.

Figure 6: Overview of current loading processes

◦ In the example shown in figure 6, the project contains 9 items. At the end of the calculation
and design phase, these items are allocated to a certain transport lot during the loading division
process.

◦ Next, the 9 items are cut, welded and modified in the production halls during the production
phase. When all items of a one transport lot are finished, the loading sequence is started.

◦ In this example, it occurs that the first trailer is not able to fit all the items allocated to its
transport lot: the available trailer space has been overestimated. This mistake is recognized at
the end of the production phase. A fast solution is required to prevent disrupting the production
and construction phases, which usually results in ordering an extra trailer.

◦ A last-minute extra trailer is quite costly and is not considered in the initial cost analysis.
However, what is worse is that the third trailer on this example appears to have space left: its
available space has been underestimated. Had the overestimation of the first trailer been known
beforehand, re-arranging the transport lots maybe would have resulted in only needing three
trailers instead of four.

7
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In this section, two main problems have been defined:

1. Manual execution of the loading division, which costs time.

2. Over- and underestimation of the available loading space during the loading division process,
which costs money.

Figure 7 shows a proposed solution to the given problems:

Figure 7: Overview of proposed loading processes

The solution consists of two components:

1. Automation of the current loading division process.

2. Inclusion of digital generation of the loading sequence in the loading division process.

These solutions form the basis of this research assignment.

Digitally generating the loading sequence process means that the loading sequence conditions can
be checked. All loading conditions will be discussed in the next subsection. These are the conditions
that are part of the current loading division process and loading sequence process at ASK Romein.

2.3 Loading conditions

In the previous paragraphs of this section, the term loading conditions has been mentioned multiple
times. There are two types of loading conditions. The fact that the second type, the loading sequence
conditions, cannot be checked during the loading division process, is the direct reason for one of the
defined problems, the over- and underestimation of loading space.
An example of such a condition, that cannot be checked during the loading division, is that all items
have to fit inside the trailer boundaries. Usually, the total weight of all items, which is a loading
division condition, gives a good indication for the loading constraints: when the weight is under a
certain value, all assemblies fit on a standard trailer. But there are exceptions. For example, for
lightweight complex-shaped assemblies, volume is the restricting constraint instead of weight.
The transport planners responsible for the loading division use their experience to identify these ex-
ceptional cases. However, since they do this manually, sometimes, the exception is not recognized:
this results in the aforementioned overestimation of the available loading space, and thus, ultimately,
in an increase in costs.

In this subsection, the involved stakeholders and all conditions concerning the loading processes will
be discussed. The first list of conditions are currently checked during the loading division process.
The second list of conditions need to be verified after the loading sequence process has taken place.

8
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2.3.1 Stakeholders

In this section, an overview of the involved stakeholders of this research is given, using the power-
interest matrix defined by Mendelow [7]. Figure 8 shows the stakeholders:

Figure 8: Stakeholders loading division and loading sequence 1

In the top right area of figure 8, the most important stakeholders are listed: the department of plan-
ning of ASK Romein. They have the highest interest, because of their responsibility for the current
loading division, and the highest level of influence on the shape of this research.
Moving to the top left, the high power - low interest stakeholders are the department of construction
and the coating companies. They are not really interested in a new loading division, but have a high
influence on the result. For example, the coating companies require only one conservation system per
transport lot, and the department of construction requires a loading division according to the erection
sequence, both of which introduce extra constraints for the model.
In the bottom right corner, the department of production, transport companies and truck loaders are
located. These stakeholders have little influence on the project, but a high interest: for the production
department and truck loaders, an improved loading division can have a positive effect on the work
flow, because less time is needed for the loading sequence. Transport companies may receive less
last-minute truck orders due to the proposed model.
Finally, the stakeholders with the least interest en power are shown in the bottom left. These are the
project client, which only benefit from a new loading division by paying less transport costs, and the
department of engineering at ASK Romein.

2.3.2 Loading division conditions

The conditions considered when creating the loading division are the maximum weight, conservation
system, erection sequence and trailer dimensions:

1Image adapted from Mendelow [7]
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◦ Maximum weight
The transport of goods is constrained by a maximum weight. This maximum weight depends
on multiple characteristics:

– Dimensions of the trailer: the trailers used at ASK Romein can be extended (figure 9),
to allow longer assemblies. An extended trailer naturally has a lower maximum weight
tolerance. Some trailers carry a crane (figure 10), which reduces the available loading
space.

Figure 9: Double extension trailer 1

Figure 10: Trailer-crane combination 1

1Image courtesy of ASK Romein
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– Characteristics of the trailer: the trailers employed by ASK Romein make use of a flatrack,
which eases the loading process, but adds extra weight.
Furthermore, sometimes auxiliary measures, such as wooden packing sticks, are required to
secure the assemblies on a trailer. These have a relatively small weight.

– Legislation: each country that is visited along the transport route has stated a maximum
allowed total weight of a trailer and truck combination. The legislation of the maximum
weight for standard trailers for three countries is shown in table 1:

Country: Maximum weight (tonnes):

The Netherlands 50

Belgium 44

Germany 40

Table 1: Maximum allowed total weight of truck combination
for several countries in Europe

◦ Conservation system
All steel parts for a project need a conservation finish before they can be erected. The finish
could be one of many types of coating or galvanizing. Because some coating types are applied in
different locations, and each type has different characteristics (number of layers, process time),
it is important to load components that have the same finish together. The conservation systems
used in this report are:

– No treatment (code —)

– Machine blasting (code M)

– Fire resistant coating (code BW), treated for 30, 60, 90 or 120 minutes

– Galvanizing (code T)

– Paint coating (code N), for 1 up to 5 layers.

So for example, if the conservation system is MN2, it means that an assembly receives machine
blasting as well as 2 layers of paint. If the conservation system is BW60, the assembly receives
60 minutes of fire resistant treatment.

◦ Erection sequence
On site, the assembly of several components happens in the order of construction: the erection
sequence. It is beneficial that the loading order corresponds to this erection sequence. The
importance of following the erection sequence also depends on the available space during the
assembly process: if the available unloading space is little, the erection sequence should be
strictly followed, as re-ordering of components is not possible on site.

◦ Trailer dimensions
Naturally, a component to be loaded onto a trailer should never exceed the maximum allowed
loading dimensions of the trailer. If the assembly’s length exceeds the allowable dimension, the
trailer can be extended. For excessively large items, such as trusses, exceptional transport may
be necessary.

2.3.3 Loading sequence conditions

The loading sequence conditions are the maximum dimensions of the total cargo, weight distribution,
order of (un)loading, indivisible load and item securing:

◦ Maximum dimensions of total cargo
When placing multiple assemblies on a single trailer, one should pay attention to the overall
volume of the assemblies: sometimes, lightweight assemblies have complex shapes, meaning only
a few of them can be placed on a trailer, long before the maximum weight is reached.
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◦ Weight distribution
Besides the total weight of the cargo, the way the weight is distributed is also constrained. The
load distribution can be characterized using the fifth wheel and axle load. These loads on the
fifth wheel and rear trailer axles are related to the maximum weight as well as the location and
orientation of the items on a trailer (center of mass). The fifth wheel load is defined as the
loading on the pin of the trailer.

◦ Order of (un)loading
As mentioned before, the loading of items during the loading division process is usually executed
using an overhead crane: vertical loading. However, on a construction site, unloading can both
happen in vertical (crane) and horizontal (forklift) direction. This means that all items should
be placed with sufficient spacing both in horizontal and in vertical direction.

◦ Indivisible load
Another important factor to be considered for the loading of large trailers is the rule of indivisible
load. This means that for trailers longer than 13.60 m, the length of the longest item placed on
the trailer cannot be exceeded by a combination of shorter items.

◦ Item securing
Most components placed on a trailer are extremely heavy, which means that they cannot move
easily. However, in the case of emergency braking, it is still possible that sliding occurs if the
items are not secured correctly. To restrict item movement, securing of items requires that all
items are placed against the headboard, and that strap bands are used to tighten the items in
width direction.

2.4 Model characteristics

In table 2, the aforementioned conditions are converted to model characteristics. The table also shows
which characteristics are currently included in the loading division process, and which characteristics
are included in the proposed loading division. The characteristics listed in this table will be used in
the remainder of this report.

Characteristic: Description:
Included in
traditional
loading division:

Included in
proposed
loading division:

trailers

1. Maximum weight limit on overall truck weight X X
2. Axle and fifth wheel loads limit on axle loads X
3. Length multiple trailer sizes X X
4. Width, height fixed trailer dimensions X X

items

5. Flatrack and trailer gap smaller items can fall through trailer gap X
6. Item securing restrict item movement X
7. Item stability stacking items on larger other items X
8. Item orientations fixed orientation for some items X

processes

9. Conservation finish different finishes to different coaters X X
10. Erection sequence limited storage on construction site X X
11. Loading and unloading (un)loading can be horizontal or vertical X

Table 2: Model characteristics
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2.5 Discussion

The sub question defined for this section is the following:

1. What is the state-of-the-art of the loading processes at ASK Romein?

The purpose of this question is to give insight to the situation at ASK Romein, to provide a problem
definition, and to present a starting point for this research.
In this section,an introduction has been given, consisting of the different project phases at ASK
Romein, as well as the two different transport-related processes. Both processes, the loading division
and loading sequence, use many conditions. These loading conditions have been used to obtain a list
of model characteristics that can be used to define the model constraints later in this report.
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3 Available methods for loading division and loading sequence mod-
els

As figure 11 shows, in this section, a literature review is provided to gain insight in the existing
solutions to create a loading division and a loading sequence. In the field of optimization engineering,
studies related to these types of solutions are called cutting and packing problems, and in particular
the Multiple Bin Size Bin Packing Problem (MBSBPP). First, an introduction is given to the typology
of cutting and packing problems, to connect the literature definitions to the typology of this report.
Subsequently, available mathematical models are investigated, after which several solution methods
applicable to the problem of this study are presented and evaluated, so that the most promising
methods for this research are identified.

Figure 11: Report structure

3.1 Terms and definitions

Distributing and packing

Zhao et al. [10] use the term ’distributing’ of items when speaking about the loading division process
discussed in section 2. Packing is the collective name of arranging the items and is related to the
loading sequence process from section 2. To keep things clear, in the remainder of this report, the
terms loading division and loading sequence will be used.

Bins and containers

In the proposed typology by Wässcher et al. [9], the terms ’bin’ and ’container’ are used to de-
scribe the transport object where items can be packed into. For this research, the bins are defined as
the trailers.

Items

An item of a problem refers to the products that will be placed onto the trailers. For this research,
the items denote the assemblies, plates and other steel components. A mix of these terms will be used
in this report to improve readability, but all refer to the same object.
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Wässcher et al. [9] have described a large number of cutting and packing problems. They are grouped
by their desired objective, dimensionality, characteristics of the items to be loaded, and characteristics
of the loading objects (trailers). This information will be used to help define the scope of this literature
review.

There are two possible objectives when it comes to cutting and packing problems. The first, in-
put minimization, requires to fit all items in the lowest amount of space possible. For the second,
output maximization, the amount of space is fixed, and the goal is to load as many items as possible.
[9]
Naturally, the goal at ASK Romein is to transport all assemblies and components of a project, mean-
ing input minimization is the objective.

For input minimization problems, there are two possible options to be considered when it comes
to packing trailers: fixed trailer dimensions, or one or more variable dimensions.
The trailers used by ASK Romein have fixed width and height restrictions, but they can be elongated
when necessary. This length extension could be considered as a variable dimension.

Figure 12: Downside fixed trailer lengths compared to variable lengths 1

As figure 12 shows, using only a fixed number of trailer lengths will result in unused loading space.
For example, if one of the largest item measures 15 m, the resulting trailer length would be 20.60 m,
meaning 5.6 m of space would be unused. This space cannot be filled due to the fact that the load has
to be indivisible (explained in section 2.3.3). Even though the use of trailers of fully variable lengths
could be an interesting topic for the future, it is not applicable for the case of this research.
Fortunately, there is another variant available to define the problem. This involves the trailers to be
able to extend, but not arbitrarily. There are fixed positions to which the trailers can be extended.
In this perspective, the problem can be considered to contain a set of trailers with different lengths of
fixed dimensions, thereby converting it to a fixed dimension problem.
Looking at the characteristics of the items and trailers, according to Wässcher et al. [9], both can be
sub divided into three groups, as is shown in figure 13. Items and trailers can be identical, weakly
heterogeneous and strongly heterogeneous. Identical means all objects are exactly the same. Weakly
heterogeneous means there is a relatively low amount of different types of objects compared to the to-
tal amount of objects, while strongly heterogeneous means there are many different objects compared
to the total number of objects.

15



Jasper Krombeen 2021.MME.8540

(a) Identical items 1

(b) Weakly heterogeneous items 1

(c) Strongly heterogeneous items 1

Figure 13: Overview of item characteristics

For this study, the trailers can be marked as weakly heterogeneous: they can only vary in a few lengths,
and the number of trailers used is high. The items loaded on the trailer are strongly heterogeneous:
there are a lot of different components and assemblies. They can vary in length, width and height,
and can have steel plates attached to them in various places. Usually, only a few item copies exist
within a project.

An overview of the aforementioned characteristics that describe the problem of this research:

◦ Objective: input minimization

◦ Dimensionality of the trailers: fixed dimensions, multiple fixed lengths available

◦ Characteristics of the trailers: weakly heterogeneous

◦ Characteristics of the items: strongly heterogeneous

As can be seen in figure 14, the corresponding approach, with strongly heterogeneous items and weakly
heterogeneous trailers, is defined as the Multiple Bin Size Bin Packing Problem (MBSBPP). Literature
concerning this specific cutting and packing problem type will be considered in the remainder of this
section.

1Own work
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Figure 14: Schematic overview of cutting and packing problems 1

When multiple trailers are involved in a packing problem, according to Eley [4], three strategies are
distinguishable:

1. Sequential strategy: the trailers are filled one at a time. A new trailer is ’opened’ when the
other is full. A disadvantage of this approach is that the last trailers to be filled may have poor
volume utilization, because larger, irregularly shaped items may end up last.

2. Pre-assignment strategy: first, the loading division takes place: all items are distributed over all
the trailers. Next, a heuristic is applied for the loading sequence. If, ultimately, an item doesn’t
fit, it is placed into a different trailer in the next iteration.

3. Simultaneous strategy: loading division and loading sequence take place at the same time: the
items are assigned and packed one by one, over multiple trailers. This requires more computation
strength.

Referring to the state-of-the-art at ASK Romein (section 2), a manual version of the pre-assignment
strategy is the best way to describe the current process. This version considers only one iteration: one
for distributing the items over the trailers, and one for packing the items on the trailers.

A surprising result was achieved in Eley (2002) [5]: contrary to what may be expected, the sequential
strategy outperformed the simultaneous strategy.

In the remainder of this section, existing literature regarding the MBSBPP with the pre-assignment
strategy is discussed. First, information concerning the mathematical model is presented. Next, avail-
able solution methods are evaluated.

1Image obtained from Wässcher et al. (2007) [9].
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3.2 Mathematical model

In this subsection, existing mathematical models will be discussed. The symbols used to describe
the model parameters, decision variables and objective function may differ per author. For simplicity,
throughout this report, the same type of variable or parameter, are expressed with consistent symbols,
which may be in contrast to the symbols used by the authors themselves.

3.2.1 Parameters and decision variables

De Almeida and Figueiredo [1] and Jin et al. [6] solve a large-scale Three-dimensional Bin Packing
Problem (3DBPP), which is a more general form of the MBSBPP. Regarding the mathematical model,
De Almeida and Figueiredo and Jin et al. use the following notation for the model parameters:

li,wi,hi = item length, width, height

Li,Wi,Hi = trailer length, width, height

xi, yi, zi = coordinates of the origin of an item

It should be noted that the origin of an item is located in the left-bottom-back corner.

To denote the orientation of an item, the following binary variables are defined by Jin et al. [6]:

lxi =

{
1 if the length of item i is parallel to the x-axis
0 otherwise

lyi =

{
1 if the length of item i is parallel to the y-axis
0 otherwise

wxi =

{
1 if the width of item i is parallel to the x-axis
0 otherwise

wyi =

{
1 if the width of item i is parallel to the y-axis
0 otherwise

It follows from the above equations that the upside of items is locked: rotation about the length and
width direction is not allowed. One should note that because the upside is locked, the above four
orientation decision variables could be reduced to just two, lxi and lyi, as figure 15 shows:

(a) lx = 1, wy = 1 (b) ly = 1, wx = 1

Figure 15: Decision variables orientations

To determine the relative position of one item to another, the following binary variables are used by
all authors. Figure 16 shows a graphical representation of these decision variables.
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aij =

{
1 if item i is on the left side of item j
0 otherwise

bij =

{
1 if item i is on the right side of item j
0 otherwise

cij =

{
1 if item i is behind item j
0 otherwise

dij =

{
1 if item i is in front of item j
0 otherwise

eij =

{
1 if item i is below item j
0 otherwise

fij =

{
1 if item i is on top of item j
0 otherwise

Figure 16: Orientation of item j with respect to item i, and corresponding decision
variables

Additional binary variables are introduced to check if a trailer is in use and to allocate the items to
the trailers. Here, de Almeida and Figuerido specifically mention both Xit and Xjt, to help denote
when two items belong to the same trailer (Xit Xjt = 1).

Xit =

{
1 if item i is packed in trailer t
0 otherwise

Yt =

{
1 if trailer t is included in the solution
0 otherwise

3.2.2 Objective function

The MIP formulation of de Almeida and Figuerido [1] and Jin et al. [6] is shown in equation 1. The
objective is to simply minimize the number of trailers used.

Minimize

m∑
j=1

Yt (1)
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This objective function is extended by Ceschia and Schaerf [2]. They present an objective function
that consists of four components:

f = w1fC1 + w2fC2 + w3fC3 + w4fC4 (2)

In equation 2, fCi represents the cost function of component Ci, and wi is the corresponding weight:

C1 Cost of items that could not be loaded

C2 Cost of using a trailer

C3 Empty space that can be used for loading unforeseen items

C4 Sum of number of destinations of the items present in each trailer

Instead of simply counting the number of trailers used, costs of items that could not be loaded are
added, together with the option of reserving empty space for unforeseen items. Finally, C4 allows for
a multi-drop constraint, where items on the same trailer can have different destinations, but this is
out of the scope of this research.

3.2.3 Constraints

In this subsection, different constraint types are presented. According to Zhao et al. [10], there are
three basic constraints applicable to all loading models concerning rectangular-like items. These con-
straints are also applied to all papers presented in this literature review:

◦ Items may only be placed in the loading space with their edges parallel to the edges of the
loading space. For example, when loading a trailer, all items should be aligned with the edges
of the trailer. This makes that only 90◦ rotations are possible. This constraint is embedded in
the definition of orientation variables like lxi.

◦ Items may not intersect each other. These constraints are called overlap constraints.

◦ All items can only be placed while they are entirely within the boundaries of the loading space.
These constraints are discussed in the trailer bound constraints paragraph.

Besides these basic constraints, some other general constraints will be presented, after which addi-
tional constraints will be given that are applicable to specific cases.

Overlap constraints

An important type of constraints are overlap constraints: these prevent the overlap of items on the
same trailer. An example from Jin et al [6] is shown in equation 3, where M is a very large number:

xi + li · lxi + wi · (1− lxi) ≤ xj + (1− aij) ·M, for i < j (3)

Constraint 3 is applied if item i is on the left side of item k: in any other situation, the equation is
satisfied instantly because M is a large number. The condition is met if the x-coordinate of item i,
added up with the dimension of item i in x-direction (either the length l or the width w), is lower than
the x-coordinate of item k, as equation 4 shows for aij= 1:

xi + li · lxi + wi · (1− lxi) ≤ xj , for i < j (4)
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If, for example, the orientation of the particular item states that lxi= 0, equation 4 can be further
reduced to equation 5:

xi + wi ≤ xj , for i < j (5)

The overlap constraints from de Almeida and Figuerido [1] show similarities with Jin et al in their
basic principle, but are defined differently:

aij(xi + wi) + bij(xj + wj) ≤ aijxj + bijxi (6)

In equation 6, both the left and right side option are incorporated in the same equation, meaning only
three constraints are required instead of six. Furthermore, the use of a large number M is no longer
needed.
If for example item i is placed to the left of j (and aij= 1, bij= 0), the above equation is reduced to
equation 7, which is equal to equation 5:

xi + wi ≤ xj (7)

One should note that in the paper from de Almeida and Figuerido, only one orientation was consid-
ered, which explains the absence of decision variable lxi.

Trailer bound constraints

The next constraints make sure that an item is packed within the bounds of the trailer. Jin et
al. [6] use equations 8 - 10:

xi + li · lxi + wi · wxi ≤ Lt + (1−Xit) ·M (8)

yi + wi · wyi + li · lyi ≤Wt + (1−Xit) ·M (9)

zi + hi ≤ Zt + (1−Xit) ·M (10)

Here, constraint 10 is a simplification of equations 8 and 9, due to the fact that rotation is only allowed
around the z-axis and thus the available orientations have no effect on the height direction. Because
de Almeida and Figuerido do not consider any rotation, constraints 8 - 10, have been reduced to
constraints 11 - 13:

Xit(xi + wi) ≤Wi (11)

Xit(yi + li) ≤ Li (12)

Xit(zi + hi) ≤ Hi (13)
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General constraints

The next group of constraints defines the general rules of a Mixed-Integer Programming model. For
example, Jin et al [6] define equation 14, which ensures that overlap constraints like constraint 3 are
only applied to items on the same trailer:

aij + bij + cij + dij + eij + fij ≥ Xit + Xjt − 1, for i < j (14)

If item i and j are on the same trailer, trailer t, the right hand side becomes 1 for that particular
trailer. Else, the right hand side becomes 0 or -1, and the constraint can be considered inactive.
For this constraint, de Almeida and Figuerido take a slightly different approach, as is shown in
equations 15 and 16:

aij + bij + cij + dij + eij + fij ≥ XitXjt (15)

aij + bij + cij + dij + eij + fij ≤ 3XitXjt (16)

The result of these constraints is that if two items are on the same trailer, then the left hand side of
both equations, should be ≥ 1 and ≤ 3. If both items are not on the same trailer, the left hand side
should equal 0. Equations 15 and 16 therefore are only active when both item i and j are on trailer t:
in this case, XitXjt = 1 for trailer t, and 0 otherwise.

Finally, equations 17 and 18 from Jin et al. guarantee that each item is placed on one trailer and one
trailer only (eq. 17), and that a trailer is flagged as ’in use’ (Yt = 1) when an item is placed onto it
(eq. 18):

T∑
t=1

Xit = 1 (17)

T∑
t=1

Xit ≤M ·Yt (18)

Additional constraints

In this paragraph, additional constraints are presented that are designed for cases with specific de-
mands.

◦ Weight capacity and weight distribution: weight on the axles is a critical measure for loading a
vehicle. The total weight can also be the binding constraint instead of volume. This asks for a
specific constraint that limits the loads.

◦ Load support: to maintain item stability, three different options are available [10]:

1. Full support: the entire base of an item fits on the top of the item beneath

2. Percentage of overhang: a certain percentage of overhang is allowed on each side, for
example 80%.

3. Centre of gravity is supported: Overhang is allowed, as long as the centre of gravity is
supported.

According to Zhao et al. [10], even though load support is an important aspect in real-life
applications, it is rarely considered in the literature.
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◦ Multi-drop: if a trailer has to be unloaded in a number of different locations, a so-called multi-
drop constraint can be introduced. This however is not the case for this research.

◦ Separation of boxes: the separation of boxes denotes a situation where items of two different
types must be placed on separate trailers. This is the case for different conservation systems
and different building phases for example.

◦ Complete shipment: when all items from a certain type have to be transported on the same
trailer, the complete shipment constraint applies. Nevertheless, this is not required for this
research.

A total weight capacity constraint has a very straightforward form: the sum of item weights mi placed
on the trailer has to be less or equal than the maximum allowable weight mlegislation:

I∑
i

mi ≤ mlegislation (19)

The weight distribution constraints may be a bit more tricky, as they require the combined center of
mass in the length direction of a trailer. Using simple physics, the moment around one of the axles
can be taken to obtain the load on the other axle, after which the load on the first axle is taken from
the difference of the item weight and the second axle.
Unfortunately, to the knowledge of the author of this report, there are no mathematical model con-
straints available in the current literature. A separation of boxes constraint can be of the form
presented in equation 20:

Yit ∗Yjt ∗ typei = Yit ∗Yjt ∗ typej (20)

Here, if and only if item i and j are placed on the same trailer, Yit Yjt = 1 and the equation reduces
to equation 21:

typei = typej (21)

And this induces that both items should be of the same type when placed on the same trailer.

3.3 Solution methods: placement and improvement heuristics

Zhao et al. [10] define the placement heuristic as construction of a solution on trailer level. In this
report, the placement heuristic is responsible for the loading sequence process.
The solution generated by the placement heuristic can be improved by a so-called improvement heuris-
tic: a way to find better solutions, usually within the neighborhood of the existing solution. The
improvement heuristic can be considered as the algorithm version of the loading division process.

3.3.1 Loading division methods

In this subsection, the available improvement heuristics, responsible for the loading division, are eval-
uated. There are three methods: tabu search (TS), guided local search (GLS), and adaptive large
neighborhood search (ALNS).
The tabu search is one of the most commonly known heuristics, and also a popular choice for many
cutting and packing problems. It is implemented in the 3D packing problems by Jin et al. [6] and
Crainic et al. [3]. The main aspect of the tabu search is that it keeps a tabu list of previous moves to
guide the search.
Guided local search also makes use of memory, but instead of keeping a list, the objective function
is readjusted. A typical objective function for GLS contains penalty terms. When investigating a
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promising region of a local space, if a local minimum is reached, the penalty terms are (slightly) ad-
justed so that the cost function changes and the local minimum can be escaped.
The ALNS heuristic is the least known method of the three. This method uses destroy and repair
operators to destroy an existing solution and then repair it by swapping items. It is beneficial because
multiple destroy and repair operators can be added, and therefore the ALNS heuristic can apply mul-
tiple strategies to build a new solution, making it flexible to different cases.

The table in figure 17 shows the obtained scores for all three methods. First, the methods are scored
according to their computation time. The computation time is an important factor in model design.
Since multiple iterations will be required, a large computation time can easily turn into excessive
waiting times. This is not acceptable, and therefore this criterion receives the highest possible weight
(3).
Looking at the three methods, both TS and GLS need a large amount of memory to ’remember’ pre-
vious solutions, meaning they probably take longer to process and thus receive a low score. ALNS on
the other hand only has to remember the current best solution, and can adapt itself during execution
to reach an optimal solution sooner. The ALNS heuristic is not known in the field of cutting and
packing problems, but for vehicle routing problems it is known to outperform the computation times
of other heuristics such as TS and GLS. For example, Zulj et al. report that for their vehicle routing
problem, ALNS is approximately 2.5 - 3 times as fast as TS [11], which is significant and thus makes
it safe to assume that ALNS will also be faster for cutting and packing problems. As a result, TS and
GLS will receive a low score (1), and ALNS the highest score (3).

Figure 17: Available loading division methods. Scores range from 1 (bad) to 3
(good), weights range from 1 (less important) to 3 (very important).

A complex model requires a lot of programming effort and needs a large documentation, which may
become hard to understand as time progresses. This of course should be considered, but on the other
hand, it has no negative effect on the outcome of the model, which is why a low weight (1) is given to
this criterion.
Both TS and GLS use a single heuristic to obtain a solution, which reduces the complexity of the
model. Tabu search is a simple branch-and-bound heuristic, guided local search has additional func-
tions, meaning the scores are a 3 and 2, for TS and GLS, respectively.
The ALNS heuristic is made up of multiple sub heuristics that work together. This requires more lines
of code and makes the ALNS heuristic the most complex of the three, so that it receives the minimum
score (1).
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The flexibility of a method is directly related to the ALNS heuristic. As mentioned before, this heuris-
tic consists of multiple sub heuristics. These heuristics can compete against each other, so that the
model can calibrate itself as the execution is ongoing. A flexible model is able to reach good solutions
earlier and help the model overcome local minima. This a useful trait, and therefore this criterion
receives weight 2. Naturally, since ALNS is the definition of this criterion, it gets the highest score
(3), while the other methods, which only use a single heuristic, get the lowest score (1).

Finally, the reliability of a method is defined as a combination of its robustness and whether a method
is common in the field of cutting and packing problems. If the latter is true, the chance of success may
be more guaranteed. This criterion receives the maximum weight, because it is important to have a
robust solution.
TS and GLS are both methods which are commonly used in benchmark literature regarding cutting
and packing problems, and specifically MBSBPP. Therefore, they get a maximum score (3). ALNS is,
as mentioned before, not yet known as a solution to any cutting and packing problem, and therefore
the outcome and reliability of this method can only be estimated, meaning it receives a low score (1).

Adding up the weighted scores of all criteria, the method which receives the highest score is the adap-
tive large neighborhood search (ALNS) heuristic, with 19 points. Nevertheless, the other methods
follow closely, which means that an analysis of the results is required. Looking at the ALNS method,
its strong points are, as has been discussed, its computation time and flexibility. On the other hand,
this heuristic receives low scores for complexity and reliability, which are the strong points of both
other methods.
Complexity here is by far the least important criterion, which is also why it received the lowest weight.
Therefore, the fact that ALNS does not score well on this aspect is not very important. Looking at
the reliability, the main reason that the ALNS heuristic does not score well is the fact that it has not
a known method in the field of cutting and packing problems. However, it is not a new heuristic, as
it has proven itself in other fields such as vehicle routing.
As a result, it can be concluded that even though the ALNS method has its weak points, its top score
can be justified, and this method is the best option for a loading division heuristic.

3.3.2 Loading sequence methods

The available placement heuristics or loading sequence methods are discussed in this section. They are
the orientation Mixed Integer Programming (orientation MIP), 3D raster Mixed Integer Programming
(3D raster MIP), the sub volume heuristic and the irregular shape heuristic.

The orientation MIP is a regular mathematical formulation that can be solved by a software program.
This method requires a solid mathematical formulation consisting of parameters, decision variables,
an objective function and constraints. The software program solves the problem.
The mathematical formulation is also the basis of the 3D raster MIP, but here the solver uses a 3D
raster or pixel representation of the trailer to place the items. For example, if the chosen precision is
1 mm, a pixel is generated on each mm, that can have either a value 1 (occupied) or 0 (vacant). If an
item is placed on a trailer, its exact shape is generated and for each pixel it occupies, it is checked if
no other item is already there.
The sub volume heuristic has a completely different approach: when an item is placed on the trailer,
three new sub volumes are created on the item side, front and top. New items can be placed in these
spaces. Previous sub volumes may be merged to create larger spaces.
Finally, the irregular shape heuristic is designed especially for items with complex geometries. The
method first generates the entire shape of an item by bounding it. Next, the optimal placement is
calculated. Due to the complex formulas for the item bounding this method has only been used for
two-dimensional problems.
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The table in figure 18 shows the different scores for the four methods. Similar to the improvement
heuristics, the methods are scored according to their computation time. and again this criterion re-
ceives the highest possible weight (3).
Both MIP methods have to consider all possible positions (in mm) for all items to be placed on a
trailer, even for non-feasible solutions. Furthermore, the orientation MIP needs to check all constraints
for these positions, whereas the 3D raster MIP has to check every point in the raster for every new
position. Especially for the latter, an excessive computation time can be expected, as for a trailer of
standard dimensions, with a precision in mm, there are 136 billion coordinates. It is easy to conclude
that the scale of this research simply is too large for a MIP approach, and the same is concluded for
many other practical examples in the literature [6], [10]. Because the 3D raster MIP is significantly
worse than the orientation MIP, the resulting scores are 1 and 2, respectively.
The computation time of the irregular shape heuristic is probably comparable to the orientation MIP.
This can be explained due to the fact that the exact bounding of each item has to be generated. For
instances with a large amount of items this requires a lot of computation strength, meaning the score
for computation time is 2.
Finally, the sub volume heuristic takes a vastly different approach: a solution is built one item at
a time, placing new items in the spaces (sub volumes) created by the previous items. This method
only allows for feasible solutions, meaning the possible solution space is drastically decreased, as is
the computation time. Therefore, a maximum score for the computation time is given (3).

Figure 18: Available loading sequence methods. Scores range from 1 (bad) to 3
(good), weights range from 1 (less important) to 3 (very important).

The next criterion again is complexity: the required programming effort, with weight 1. Here, both
MIP methods receive the highest scores. This is not a coincidence: overall, less complex methods
require more computation strength, and more complex methods have a lower computation time. This
is because for the MIP methods the actual solving is executed by the software: only input in the form
of parameters, decision variables, an objective function and constraints is needed. For more complex
models, the solving is implemented in the method itself.
Using this information, a high score is given to both MIP approaches (3). Both the sub volume
heuristic and irregular shape heuristic require the implementation of solving steps, and thus are more
complex. The irregular shape heuristic can be considered even more complex due to the item bounding
function, which is hard to achieve. This results in a medium score for the sub volume heuristic (2),
and a low score for the irregular shape heuristic (1).
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The placement heuristic needed for the loading sequence has to account for specific characteristics.
These characteristics are key to obtain a feasible solution:

◦ 3D: many methods found in the literature consider only one-dimensional or two-dimensional
packing problems. This research requires three dimensions.

◦ Item support: a constraint that is often overlooked in benchmark literature is the item support
constraint. This constraint is essential for truck transport and should be incorporated in the
placement heuristic.

◦ Inter-flange placement: this characteristic is unique for this problem. As many components
for ASK Romein are H-shaped profiles with plates welded to them, it is a common practice to
place items next to each other with plates from one item between the flanges of another item.
However, this is not easy to implement in a model, and some methods are incapable of capturing
this feature.

The feasibility criterion is the number of key characteristics each method is able to incorporate: the
higher the score, the more characteristics a method is able to incorporate.

The final criterion is financial: the orientation MIP requires a licensed software program, which costs
money. This has no effect on the outcome of the model, but it should still be considered, which is
why the criterion receives a weight of 1. Since the orientation MIP is the only method known to this
author that requires licensed software, it is the only method that receives a minimum score (1).

Looking at the resulting scores, one could conclude that the 3D raster MIP method is the best option,
as it has obtained the highest score. When looking more in-depth, it also appears that this method is
the only heuristic that is able to account for all feasibility characteristics, and thus the only method
that is capable to correctly represent the problem of this research: all other methods lack at least one
characteristic.
Nevertheless, as was mentioned before, the 3D raster MIP method has one major flaw: its computation
time is unacceptable.
It seems that there are two options:

1. Choose the 3D raster MIP method, which is a feasible method with an unacceptable computation
time

2. Choose any of the other methods, which has an acceptable computation time, but is unable to
capture all characteristics of the problem

Since neither of the options results in a desired solution, it should be concluded that there is a litera-
ture gap, and therefore, a new method is presented in the next section, section 4.

When comparing tables 17 and 18, different criteria are used. For table 17, the criteria feasibility
and financial are missing. The absence of financial can easily be explained: none of the listed methods
requires the use of licensed software. Feasibility is left out, simply because it is related to whether
a method is able to account for all characteristics of the problem, and this is the case for each of
the methods. This would result in identical scores for all methods, meaning adding this criterion is
useless.
Subsequently, in the table in figure 18, the criteria flexibility and reliability are omitted. Flexibility
is related to whether a method can use different strategies during execution. This can or cannot be a
built-in feature for all loading sequence methods, but is unrelated to the method type, which is why
this criterion is not included.
As the result has already shown, none of the methods presented in table 18 have a known application
related to the problem of this research. Therefore, the reliability cannot be evaluated for any of the
methods, which is why this criterion is left out.
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3.4 Discussion

In this section, the scope of the literature review has been evaluated by looking at the benchmark
typology regarding cutting and packing problems. The problem of this research has been defined to
have an input minimization objective, fixed dimensions, weakly heterogeneous trailers and strongly
heterogeneous items, making it a Multiple Bin Size Bin Packing Problem (MBSBPP). The packing
strategy applicable to this research is the pre-assignment strategy, where first all items are distributed
over the trailers (loading division), and next the items are placed on the trailers (loading sequence).
Next, several examples of mathematical model features have been given. These examples can be used
to define the mathematical model of this research in section 4.
The sub question of section 3:

2. What are the existing solutions of 3D space maximization problems?

In the latter part of this section, the available solution methods have been discussed and evaluated:
regarding the loading division methods, the ALNS heuristic appears to be the most promising method,
due to its flexibility and fast computation time. When it comes to the loading sequence methods, none
of the available methods appears to truly fit the problem of this research, meaning a new heuristic is
required to fit the literature gap.
This new heuristic will be presented in the next section, together with the mathematical model and a
description of the ALNS heuristic.
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4 Proposed approach

With the results from section 3 in mind, in this section, the proposed methods are presented. As figure
19 shows, this section starts with defining the research scope. Next, a mathematical formulation of
the model is provided, after which the proposed model is discussed.

Figure 19: Report structure

4.1 Research scope

In this subsection, the assumptions and simplifications related to the characteristics from section 2
are given, to identify the research scope. Table 3 shows the constraints and their corresponding as-
sumptions:

1. Maximum weight: for now, the legislation regarding the maximum allowed total weight will
be checked for three countries: The Netherlands, Belgium and Germany. If a transport route
contains one or more of these countries, the strictest legislation is taken. Legislation for other
countries can easily be added later.

2. Axle and fifth wheel weight: similar to the maximum weight, the country in a route with the
strictest legislation is used to define the constraint for the axle and fifth wheel loads.

3. Trailer length: in total, there are four possible trailer lengths to be considered. There is an
exception: some trailers carry a crane, which removes 1.10 m of the available loading space (in
brackets):

◦ Standard: 13.60 m (12.50 m)

◦ Single extension: 20.60 m (19.50 m)

◦ Double extension: 27.60 m (26.50 m)

◦ Triple extension: 34.60 m

4. Trailer width and height: the trailer width and height are assumed to be fixed. The standard
dimensions according to European legislation are 2.50 m and 4.00 m, respectively. These are the
dimensions for which no additional permit is required, and are taken as the standard dimensions
for this model.
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Characteristic: Description:

trailers

1. Maximum weight legislation NL, B, DE

2. Axle and fifth wheel loads legislation NL, B, DE

3. Length 4 (+3) options

4. Width and height fixed width and height (legislation)

items

5. Flatrack and trailer gap assume fixed flatrack position

6. Item movement securing of items against headboard and by height

7. Item stability items on larger other items

8. Item orientation 2 orientations

processes

9. Conservation finish 1 conservation system per trailer

10. Erection sequence 1 building phase per trailer

11. Loading and unloading both vertical and horizontal
(un)loading allowed

Table 3: Model constraints

5. Flatrack loading: all items are assumed to be loaded onto a standard flatrack used by ASK
Romein. On a standard trailer size, the flatrack is placed against the headboard. In case the
trailer has one or more extensions, the position of the flatrack moves forward to cover for the
gap created in the middle of the trailer.

6. Item movement: to prevent the movement of items during transportation, all items have to be
secured. To achieve this, all items are placed against the trailer headboard or in contact with
other items placed against the headboard. Furthermore, items of similar height are placed in
the same layer, so that upper layers exert pressure on them and hold them into place.

7. Item stability: for different layers on top of each other, in length direction, only full support is
allowed. This means that a layer of items should be placed on another layer without overhang.

8. Item orientation: only two orientations are considered. Most items would not fit within standard
trailer dimensions in other orientations, and fixed orientations also reduce the solution space.

9. Conservation finish: since the location where the assemblies are shipped to is directly dependent
on the conservation system, all finishes are considered. The problem is simplified by allowing
only one coating type per trailer, allowing the use of the separation of boxes constraint from
section 3.

10. Erection sequence: the allocation of items depends on their building phase: only items from the
same building phase can be placed onto the same trailer.

11. Loading and unloading: to prevent that loaded assemblies cannot be unloaded on site, for
example because they are placed too close to one another to attach an unloading cable, the
different items are separated by separation wood. These wooden plates are assumed to have a
fixed thickness of 50 mm, and this distance is added to the overlap constraints. For horizontal
unloading (via forklifts), wooden beams of 100 mm thickness are assumed to be placed between
item layers.
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4.2 Mathematical formulation

In this subsection, the mathematical model for this research is presented, starting with the indices.
Next, the decision variables, parameters, objective function and constraints are given. The decision
variables of a mathematical model change throughout the iterations. An example is the value for the
x-position of an item, that depends on where the item is placed in a certain iteration. The parameters
on the other hand are values that are fixed throughout the model, such as the length of an item, that
does not change in between iterations.

4.2.1 Indices

i items 0, ..., I

j items 0, ..., J

k sub items 0, ...,Ki

t trailers 0, ...,T

with

I number of items

J number of items

Ki number of sub items of item i

T number of available trailers

4.2.2 Decision variables

The first decision variables are similar to Jin et al. [6] and determine the (relative) orientations and
coordinates of the items and sub items. Note that the main item has index k = 0. Furthermore, lx1i
and lx2i are an extension of lxi for non-symmetrical items (figure 20).

xik x-coordinate of origin of sub item k of item i

yik y-coordinate of origin of sub item k of item i

zik z-coordinate of origin of sub item k of item i

lx1i =


1 if the longest dimension of item i is in the trailer length direction

and the item origin is towards the headboard
0 otherwise

lx2i =


1 if the longest dimension of item i is in the trailer length direction

and the item origin is away from the headboard
0 otherwise

aij =

{
1 if item i is on the left side of item j
0 otherwise

bij =

{
1 if item i is on the right side of item j
0 otherwise

cij =

{
1 if item i is behind item j
0 otherwise

dij =

{
1 if item i is in front of item j
0 otherwise
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eij =

{
1 if item i is below item j
0 otherwise

fij =

{
1 if item i is on top of item j
0 otherwise

(a) lx1 = 1 (b) lx2 = 1

Figure 20: Decision variables orientations

Next are two binary decision variables that state if an item is packed and if a certain trailer is used:

Xit =

{
1 if item i is packed in trailer t
0 otherwise

Yt =

{
1 if trailer t is included in the solution
0 otherwise

4.2.3 Parameters

lik length of sub item k of item i 0 ≤ i ≤ I, 0 ≤ k ≤ K

wik width of sub item k of item i

hik height of sub item k of item i

xkik relative distance between the x-coordinates of the origins

of main item i and its sub item k

ykik relative distance between the y-coordinates of the origins

of main item i and its sub item k

zkik relative distance between the z-coordinates of the origins

of main item i and its sub item k

cmxi x-position center of mass of item i (including sub items)

mi mass of item i (including sub items)

Lt trailer length

Wt trailer width

Ht trailer height

w ver vertical stoppage wood thickness

w hor horizontal stoppage wood thickness
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Bxt distance between trailer front and bogies of trailer t

Fxt distance between trailer front and fifth wheel of trailer t

Mt empty mass of trailer t

Mflatrack flatrack mass

mblegislation allowable rear bogie axle load

mflegislation allowable fifth wheel load

mlegislation allowable item load

csrvi conservation system of item i

bphsi building phase of item i

M large number

4.2.4 Constraints

Naturally, following the above parameters and the decision variables for the different orientations,
equations 22a - c, used to obtain the origin coordinates of the sub items, hold for all k. These overlap
constraints are related to the model characteristics regarding the item orientation (8) and loading and
unloading (11) from table 3.

aij ∗
(
yik + lx1i ∗ wik + w ver

)
− bij ∗

(
yik + lx2i ∗ wik

)
≤ aij ∗

(
yjl − lx2j ∗ wjl

)
(22a)

−bij ∗
(
yjl + lx1j ∗ wjl + w ver

)

dij ∗
(
xik + lx1i ∗ lik + w ver

)
− cij ∗

(
xik − lx2i ∗ lik

)
≤ dij ∗

(
xjl − lx2j ∗ ljl

)
(22b)

−cij ∗
(
xjl + lx1j ∗ ljl + w ver

)

eij ∗
(
zik + hik + w hor

)
− fij ∗ zik ≤ eij ∗ zjl − fij ∗

(
zjl + hjl + w hor

)
(22c)

Figure 22a shows an example for the y-direction overlap constraint.

Figure 21: Example constraint 22a 1

1Own work.
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With orientations lx2i = 1 and lx2j = 1 and binary variables a2ij = 1 and bij = 0, equation 22a is
reduced to:

yik + w ver ≤ yjl − wjl (23)

Which simply means that the y-coordinate of item i plus one piece of stoppage wood (to allow for
loading and unloading) should be smaller than the y-coordinate of item j minus the width of item j,
as figure 22 shows:

Figure 22: Graphical representation equation 23 1

Equations 24a - c connect the sub items (k > 0) to the main items (k = 0). A graphical representation
of these constraints is shown in figure 23.

yik = yi0 +
(
lx1i − lx2i

)
∗ ykik (24a)

xik = xi0 +
(
lx1i − lx2i

)
∗ xkik (24b)

zik = xi0 + zkik (24c)

Figure 23: Graphical representation equation 24a 1

1Own work.
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Equation pairs 25a - b, 26a - b, and 27a - b make sure that all items are placed completely within
trailer bounds:

0 ≤ xik − lx2i ∗ lik (25a)

xik + lx1i ∗ lik ≤ Lt (25b)

0 ≤ yik − lx2i ∗ wik (26a)

yik + lx1i ∗ wik ≤Wt (26b)

0 ≤ zik (27a)

zik + hik ≤ Ht (27b)

The constraints 28a - c check the legislation regarding the maximum allowable load and the maximum
axle loads and fifth wheel loads, related to model characteristics 1 (maximum weight) and 2 (axle
loads) from table 3:

I∑
i

mi ≤ mlegislation (28a)

∑
mass ∗ (combined center of mass)− (x fifth wheel) ∗ 1

(x bogies) - (x fifth wheel)

≤ mblegislation

I∑
i

mi ∗
∑I

i mi ∗ xi0 + lx1i − lx2i
)
∗ cmxi

)∑I
i mi

∗ 1

Bxt − Fxt
≤ mblegislation (28b)

∑
mass− bogie load ≤ mflegislation

I∑
i

mi −
I∑
i

mi ∗
∑I

i mi ∗ xi0 + lx1i − lx2i
)
∗ cmxi

)∑I
i mi

∗ 1

Bxt − Fxt
≤ mflegislation (28c)

Equation 29 adds a trailer to the solution when an item is packed to the trailer:

I∑
i

Xit ≤ M ∗Yj (29)

1Own work.
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Equations 30 and 31 state that each trailer only has one conservation system and one building phase,
according to characteristics 9 and 10 presented in table 3:

Yit ∗Yjt ∗ csrvi = Yit ∗Yjt ∗ csrvj (30)

Yit ∗Yjt ∗ bphsi = Yit ∗Yjt ∗ bphsj (31)

Finally, equations 32a - d ensure the duality of the binary variables and that the overlap constraints
are defined properly:

aik + bik + cik + dik + eik + fik ≥ 1 (32a)

aik + bik + cik + dik + eik + fik ≤ 3 (32b)

xik, yik, zik, integer (32c)

lx1i, lx2i, aij ,bij , cij ,dij , eij , fij ,Xit,Yt, binary (32d)

4.2.5 Objective function

Equation 33 is the main objective function to minimize the number of trailers:

min Z =

T∑
t

Yt (33)

4.2.6 Limitation of mathematical formulation

The presented mathematical model is unable to account for both the item stability and the item
movement constraints (characteristics 6 and 7 from table 3). Furthermore, the presented constraint
regarding the axle loads (equations 28b - c), cannot be captured by regular MIP solver software such
as Gurobi, due to the presence of decision variables in a denominator.
This again stresses the need for a different approach in the form of a heuristic, which will be presented
in the following sub section.

4.3 Proposed model

In this paragraph, the proposed model is presented. First, an overview of the model structure is given.
Next, the different functions are discussed.
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4.3.1 Algorithm structure

Figure 24 shows a schematic of the main functions of the model. The output is shown at the bottom
of the figure: a solution for the loading division. There are several steps required to get there.

Figure 24: Algorithm overview

Of course, the first step of the model is to create an initial solution. This solution does not necessarily
have to be a good loading division, or even a feasible solution, but serves as a starting point. Next, the
loading sequence corresponding to the initial loading division is generated. At this step, some issues
may occur regarding the loading space. For some trailers, the loading space may be overestimated,
for others, the space may be underestimated.
Using the results of the first iterations for the loading division and loading sequence, a new iteration
for the loading division is started. The loading division is improved by moving items between trailers
and removing or adding trailers. Subsequently, the corresponding loading sequence is generated to
see if the new loading division indeed is an improvement. These two steps (within the dotted lines in
figure 24) are the main steps of the model and are executed for multiple iterations, after which the
model is terminated.

Naturally, the working principle of the model is only a global approach. In appendix A.2, the full
structure of the model is thoroughly reviewed, including flow charts containing the in- and output for
each function.

In the remainder of this section, the two functions responsible for the loading division and load-
ing sequence as well as the objective function are briefly discussed.
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4.3.2 ALNS function (loading division)

Following the results of section 3.3, the ALNS heuristic is chosen as the loading division method.

Working principle

The working principle of the ALNS method is as follows:

1. First, the items are sorted by their conservation system. Next, within a conservation system,
the items are sorted by their building phase. A separate ALNS heuristic is executed for each
unique conservation-phase combination.

2. An initial solution for the loading division is created by adding items to a trailer until the
maximum allowable load is reached. Then, a new trailer is created.

3. At the end of the initial iteration, the loading sequence is executed. The loading sequence
function places the items on the trailer assigned during the initial solution.

4. For the next iteration, the results from the loading sequence are evaluated. If for a certain trailer
some items could not be loaded, these items are automatically removed from the current solution
using a removal heuristic.

5. The first objective is to obtain a feasible solution. That is, a solution that allocates and packs all
items on a trailer. To do this, repair heuristics are used to place removed items on new trailers.

6. If, after a certain iteration, a feasible solution has been obtained, the next step is to improve
this solution. To do this, removal heuristics again break the existing solution by removing items
from trailers. Next, the repair heuristics focus on re-allocating the items.

7. A simulated annealing criterion is used to determine whether a new solution is accepted. If
the new solution is a better solution, it is always accepted. If it is a worse solution, it may be
accepted depending on the iteration number and the difference in objective value between the
best and current solution.

4.3.3 Algorithm objective function

Of course, the ALNS heuristic requires an objective to decide whether a new solution is accepted or
rejected. The objective function used in the model is an extended version of the objective function in
equation 33 presented in the mathematical model: it is a composite of two objectives, each with their
own weight, to help distinguish improvements between similar-looking solutions:

min Z = W1(nr. of trailers) + W2(fill%*) (34)

In equation 34, W1 and W2 are weights and fill%* is defined as the filling percentage of the most empty
trailer in the solution. Naturally, the number of trailers is the primary objective. This is always an
integer (there are no half trailers), and every solution with less trailers than the current solution should
always be defined as a better solution. The filling percentage is a secondary objective to help identify
better solutions. An example of the utility of fill%* is shown in figure 25. The number of trailers is
expected to rarely fluctuate throughout the iterations. When only considering the primary objective,
this would mean that for a large amount of iterations, the new objective may stay exactly the same,
which makes it impossible for the model whether a solution is actually improved. That is where the
secondary objective fill%* comes in. It is assumed that when the most empty trailer has become more
empty in a new solution, as the second part of figure 25 shows, the new solution is better than before:
the lower the filling percentage, the closer the trailer is to being empty, and the higher the probability
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that the trailer will be empty in a future iteration. An empty trailer means a lower primary objective.

Figure 25: Description of the secondary objective

The next step is to find the correct weights, so that the condition is met that every solution with
less trailers than the current solution should always be accepted. To do this, it is best to allow zero
interference between the objectives.
Therefore, the weights are W1 = 1 and W2 = 0.01: since the filling percentage is always a value
between 0 and 100, with this setup the secondary objective can never exceed a value of 1 (100% times
1), and overrule the primary objective.

4.3.4 Layer heuristic (loading sequence)

For the second function, as discussed in section 3.3, none of the presented existing methods is able to
capture all required characteristics of the problem and at the same time have a reasonable computa-
tion time. Therefore, a new method is introduced: the layer heuristic.
The layer heuristic is designed to create a loading sequence according to the loading division presented
by the ALNS function. Therefore, it receives the items allocated to a certain trailer as input, and
returns the loading sequence for that trailer. The heuristic has the following working principle:

1. All items assigned to the trailer are sorted by their height.

2. The first layer is created at the bottom of the trailer. In a layer, all items have the same height,
to sustain loading stability. The longest item present in this layer forms the length bound of the
layer. Initially, the width bound of the layer is the trailer width. There are two options:

(a) The width and length bounds of the trailer are reached before all items of the same height
are used: in this case, there is only one bottom layer.

(b) All items of the same height fit within the layer before the trailer bounds have been reached:
in this case, a new bottom layer is created positioned left of the current bottom layer. This
process is repeated until the trailer bounds are reached.

3. When the bottom of the trailer is full, new layers are created on top of the bottom layers. For
the first new layers, the bounds are the length and width of the first bottom layer, until no more
new layers can be added on the first bottom layer. For the next new layers, the second bottom
layer forms the basis, and so on.
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4. The layer building continues until either of the next two conditions has been met:

(a) There are no items left: the process is terminated and the loading sequence is a success:
all items have been placed.

(b) One of the constraints is violated: the maximum allowed weight, or the maximum allowed
bogie or fifth wheel loads are exceeded, or the layers are stacked beyond the maximum
trailer height. In this case the loading sequence is not feasible, as not all items could be
placed.

5. When the layer heuristic is terminated, and there are no items left, the trailer has obtained a
feasible solution. The resulting weight, axle loads and maximum height are stored to serve as
input for the loading division heuristics.

As figure 26 shows, comparing the layer heuristic to the methods introduced in section 3.3, the
total score of the layer heuristic (21) is far superior to the other methods.

Figure 26: Proposed layer heuristic methods compared to available methods in
literature. Scores range from 1 (bad) to 3 (good), weights range from 1 (less
important) to 3 (very important).

The layer heuristic can be seen as related to the sub volume heuristic presented by Jin et al [6].
Therefore, it is expected that computation times are comparable to the sub volume heuristic, thus
rewarding the layer heuristic the maximum score.
Because the new heuristic involves many practical constraints related to this research, it is complex to
turn into code, resulting in a low score for complexity. Naturally, a full score is awarded for feasibility,
as the method is developed specifically for this purpose, and another full score for financial, as the
model is built by the author of this report and therefore is free.

The ALNS function and the layer heuristic continuously interact with each other, alternately cre-
ating a new loading division and its respective loading sequence. Finally, after the model has run for
a certain number of iterations, the resulting best objective is collected.
When the ALNS heuristics for all conservation-phase combinations are finished, the total best objec-
tive can be calculated.
This best solution is then complemented by a pallet item function, and the solution is improved once
more by a merging function.
The pallet item function assigns all the items that are small enough to fit on a pallet to the loading
division. No new loading sequence is created, which is explained in appendix A.2. Next, the merging
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function merges trailers with unique conservation-phase combinations, as long as the trailers have an
equal conservation system and similar building phase. A similar building phase means that the main
phase is equal (201 and 224 belong to main phase 2, for example). Only unique conservation-phase
combinations are evaluated during the merging process.

After the merging function is finished, the model presents its results and is terminated.

4.4 Discussion

In this section, the proposed approach has been given. First, the research scope has been defined,
after which the mathematical model of this research has been formulated. It showed that this math-
ematical model is unable to account for all model characteristics, thereby again confirming the need
of a heuristic model. In the final part of this section, the proposed model has been presented, in line
with the defined sub questions for this section:

3. How can the loading division process be automated, accounting for the loading conditions?

4. How can the presented loading sequence problem be implemented in a 3D optimization model?

The provided model consists of an ALNS heuristic, that is responsible for the loading division, and
the new proposed layer heuristic, that generates a loading sequence. In this section, a description of
both heuristics has been given, so that sub questions 3 and 4 can be considered answered.
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5 Verification and validation

In this section, the model verification and validation are presented. Sargent [8] defines model verifica-
tion as ‘ensuring that the computer program of the computerized model and its implementation are
correct’. This translates to: does the model work as intended?
On the other hand, the model validation can be defined as the ‘substantiation that a model within
its domain of applicability possesses a satisfactory range of accuracy consistent with the intended
application of the model’ (Sargent [8]). In other words: is the proposed model the correct model for
the presented problem?
An answer to both questions will be given in the next paragraphs.

Figure 27: Report structure

5.1 Case scenario

The data set used in this section is a project recently executed at ASK Romein. The project regards
a data center consisting of over 3000 steel components. In the traditional loading division created for
this project, a total of 121 transport lots or trailers were created.

For the verification, several hypotheses are tested to see if the model works according to its de-
sign. Tests are performed on the layer heuristic, the ALNS algorithm and the functions responsible
for data collection. The tests require samples of the full data set, consisting of multiple conservation
systems and building phases.
The validation is executed using the preliminary results for the full model and several transport lots
from the traditional loading division. The preliminary results are used to validate the full model,
whereas the traditional transport lots are used to determine the performance of the layer heuristic.

5.2 Verification

The model consists of multiple layers with several important functions that each require a verification.
In this section, all executed verification tests are listed for the ALNS model, the layer heuristic and
the data collection functions.
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Starting with the verification of the ALNS heuristic in table 4, most tests are related to the per-
formance of the removal and repair heuristics of the model. Furthermore, attention is given to the
calculation of the objective function, as this is a vital component of the model. As table 4 shows, all
verification tests are passed.

Test description Hypothesis Result

ALNS heuristics All heuristics are considered by the algorithm TRUE

Pre-analysis: Pre-analysis is executed before each iteration TRUE

Objective function The objective is calculated from the current solution TRUE

Removal heuristic (I): For unfeasible solutions, the removal heuristic TRUE
only removes the unplaced items

Removal heuristic (II): For feasible solutions, the removal heuristic TRUE
removes a fixed number of items

Repair heuristics: Items are added until the maximum load is reached TRUE

Height repair heuristic: Highest score awarded to trailers TRUE
with most common height

Table 4: Verification table ALNS heuristic

In table 5, the layer heuristic is verified. The feasibility of the provided solution is an important part
of the heuristic, and therefore it is thoroughly tested. The feasibility depends on the violation of the
loading conditions. Again, all tests are passed.

Test description Hypothesis Result

Feasible solutions A solution is only feasible when all items are placed TRUE

Item characteristics All items on the trailer have an equal TRUE
conservation system and phase

Layer width A layer is closed when the trailer width is exceeded TRUE

Layer length A layer length never exceeds the length TRUE
of the longest item or the trailer length

Trailer height: When a layer exceeds the trailer height, TRUE
it is not accepted

Axle loads No item is placed when one of the axle loads TRUE
is exceeded

Table 5: Verification table layer heuristic

Table 6 shows the verification results of the functions responsible for the data collection. This concerns
the data that is presented as output of the model, and as such should be guaranteed to be correct.
Similar to the other verification tests, the data collection functions have passed all tests.

Test description Hypothesis Result

Best objective per Objective equals sum of all phases within TRUE
conservation system: conservation system

Total objective Objective equals sum of all objectives TRUE

Computation time: Initial + iteration time equals total time TRUE

Trailer merging: Objective before merging equals final TRUE
objective minus merged trailers

First best solution First reported solution corresponds to objective plot TRUE

Table 6: Verification table data collection
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The fact that all verification tests presented in this section are passed strongly suggests that the model
works as designed, and the model can be considered verified.

5.3 Validation

In the following paragraphs, the validation of the layer heuristic and the complete proposed model
is executed. It is investigated whether the layer heuristic and model fit the presented problem. Of
course, it should be mentioned that a 100% proof of validation does not exist: all models are, in one
way or another, a simplified representation of reality.

5.3.1 Layer heuristic

It is not easy to validate the working principle of the layer heuristic. For example, the optimal solution
is not known.
Therefore, a different approach is used: since the loading division for the case scenario data set has
already been created, and therefore the original transport lots are already known, the layer heuristic
is tested against these transport lots. For each transport lot, all items are generated in the layer
heuristic, to test if the layer heuristic is capable to successfully produce a loading sequence. Two
examples of these tests are shown in figures 28 and 29.

In the figures, the left plot is a schematic view from the rear of the trailer, the top right is a (right)
side view and the bottom right is a top view. The grey bar represents the trailer bed. The items in
figure 28 are all H-shaped profiles, with two of them assemblies with steel plates welded to them (the
yellow and red rectangles). The items in figure 29 are more complex-shaped, all containing multiple
plates. The center right figure shows the location of the total load and resulting axle loads.
Both presented loading sequences are feasible, meaning all items from the transport lots could be
placed concerning all loading conditions presented in this report. In fact, this is not just the case for
these specific examples, but for all other traditional transport lots that have been tested. Ultimately,
the conclusion that can be drawn from this is that the loading sequence seems capable of correctly
simulating the actual loading sequence.
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Figure 28: Loading sequence transport lot 331
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Figure 29: Loading sequence transport lot 357
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5.3.2 Proposed model

To provide a validation for the proposed model, as mentioned before, the model is tested using the
data set described in the case scenario of section 5.1. The output values for the loading division as
well as the resulting loading sequence are evaluated.

Table 7 shows the model output compared to the traditional result for the loading division. The
traditional loading division from the case scenario consists of 121 trailers, and the proposed model
produces a loading division of only 92 trailers. This means that the loading division can be reduced
by at least 29 trailers or 24%, which is an enormous reduction.

current approach: proposed approach:

guaranteed solution: 121 trailers 92 trailers (-24%)

best solution: 121 trailers 90 trailers (-26%)

time needed approx. multiple hours <10 min

loading conditions loading division loading division and loading sequence

Table 7: Results for 25 tests with 4 ALNS iterations, a deterministic initial solution and 10 removed
items per iteration

Unfortunately, it was not possible to test the model against a different data set. As mentioned before,
the case scenario data concerns a relatively small project at ASK Romein. Therefore, to test the
model scalability, all components in the original case have been multiplied by 5 to see if the model
still works and if the results are satisfactory. Of course, since the model with the original data is able
to create a loading division of 92 trailers, the same data multiplied by five should result in a loading
division of at most 5x92 trailers.
Table 8 shows the results. In the second column the original results are shown, the third column shows
the results from the second column multiplied by 5, and the fourth column shows the model results
using the 5 times the components of the original data set.

results 1x: expected 5x: results 5x:

guaranteed solution: 92 trailers <460 trailers 344 trailers (-25%)

best solution: 90 trailers <450 trailers 340 trailers (-24%)

time needed 5 min 25 min 45 min (+80%)

Table 8: Comparing the model performance with the original data set and 5 times the original data
set

As can be seen in table 8, the results are a lot better than expected. This can be explained as follows:
in the original results, there were some trailers with only a few items placed on them. This was not
caused by a malfunction of the model, but simply because of the fact that there were very little items
with that particular conservation system or building phase. If for example, in the entire data set,
there are only 6 (small) items with a particular conservation system, the trailer they are assigned to
will be almost empty. If then all items are multiplied by 5, there are 30 of these items, and they can
probably all be placed on one trailer. As a result, the expected number of 5 trailers for these items
can be reduced by 4, and this explains the significant reduction in trailers.
Something else that should be mentioned is the fact that the computation time is much higher than
5 times the original computation time. This can be explained by the fact that a 5 times larger data
set requires more than 5 times system memory to execute the model.

Next, examples of the layer heuristic from transport lots created in the new model (figure 31 and 32),
will be compared an actual example of a loading sequence (figure 30).
Comparing figure 30 and 31, strong similarities can be seen. Items are divided into different layers.
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Within these layers, items are placed tight against each other. H-shaped profiles are mostly packed in
standing direction.
The loading sequence of figure 30 has a pyramid-shaped loading to have a good load distribution in
the width direction of the trailer. In the top layer of the loading sequence of the proposed model, the
items are placed more to the right. This is a result of the way the layer heuristic is designed. However,
this is not a critical problem, since the items can easily be re-arranged towards the middle of the trailer.

The loading sequence presented in figure 32 contains a few large steel columns (the larger colored
squares). Furthermore, some of the steel plates that are sticking out from an item’s profile are placed
within the flanges of another item, similar to what can be seen in figure 30.
Looking at the weight distribution in the width direction again, the placement of the heavy columns
on the right hand side of the trailer may be a concern, but again it is not a critical issue as it can be
resolved by re-arranging some of the items.
Overall, it can be concluded that although the loading sequences generated by the layer heuristic are
not perfect, they are sufficiently capable of representing the real loading sequence, and thus can be
used to check the loading conditions related to the loading sequence.

Figure 30: Loading sequence ASK Romein Roosendaal
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Figure 31: Loading sequence example conservation T–, phase 452
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Figure 32: Loading sequence example conservation BW60, phase 202
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5.4 Discussion

The sub questions assigned to this section are as follows:

5. How can the loading division and loading sequence models be verified?

6. How can the loading division and loading sequence models be validated?

The verification mentioned in question 5 and the validation mentioned in question 6 have been pre-
sented in subsections 5.2 and 5.3, respectively.
The verification tests of sub section 5.2 have all been passed by the proposed model and layer heuristic,
which is a clear indication that they work as intended.
As mentioned before, the validation of the layer heuristic is a bit more difficult, but can be done by
comparing its output to transport lots created in the traditional loading division. All transport lots
tested resulted in feasible solutions for the loading sequence by the layer heuristic.
For the full model, the results for the loading division are a significant improvement compared to the
traditional loading division. Furthermore, the model is also capable of handling much larger data sets,
albeit at the cost of larger computation times, thereby confirming the scalability of the model.
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6 Experimental results

In this section, the experimental results will be presented. First, several experiments will be con-
ducted in the form of sensitivity analyses. Next, the best parameter values will be used to determine
the overall solution, which will be compared to the existing solution at ASK Romein.
To secure the validity of the results, each test is conducted 25 times, thereby reducing the effects of
random chance. The experiments have been conducted on a notebook laptop with 16 GB RAM and
an i7 quadcore processor. The model is implemented in Python version 3.7.6 and executed in the
Anaconda Spyder environment, version 4.1.3.
As mentioned in section 4.3.3, the objective function is a composite of two objectives: the primary
objective is the number of trailers, which is the key performance indicator for this research. The
secondary objective is the filling percentage of the least-filled trailers, which only plays a role in the
process of finding better solutions. Therefore, it should be mentioned that for the final result, the
final filling percentage is not considered: only the number of trailers used for the loading division
is important. Nevertheless, the results for the secondary objectives will sometimes be shown in the
upcoming section to give a complete overview of the results.

Figure 33: Report structure

6.1 Experiment overview

Regarding the case scenario of the experiments, the same data set is used as presented in section 5.1:
a data center consisting of over 3000 components and a total of 121 transport lots.

Three types of tests will be conducted using this data set. First of all, the effect of the number
of iterations for each ALNS model on the computation time and solution quality is tested. The pa-
rameter to be altered for this experiment is ’iterationsALNS’.
The goal of this test is to find a minimum number of iterations for which the solution is always feasi-
ble, and to find a good trade-off between the solution quality and the computation time. Of course, a
minimum solution value is desired, but if the number of iterations causes excessive computation times
with little improvement, a trade-off can be useful.
In this test, the full data set is used, to ensure that none of the subsets (phase-conservation combina-
tions) results in an unfeasible solution.
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Second, the effect of randomizing the initial solution is tested. The original initial solution heuristic
does not contain any randomness factor. This means, that for each new experiment, the same initial
solution is generated.
As preliminary results showed (presented in section 6.3), using the original, deterministic initial so-
lution heuristic, most of the time leads to exactly the same results, even though the improvement
heuristics do contain a randomness factor. This observation induces the possibility that the model
may get stuck in a local optimum.
Therefore, in the second experiment, a slightly altered initial solution heuristic, containing a random-
ness factor, is tested against the original initial solution heuristic. The full data set is used, to ensure
the validity of the results.

The third test focuses on another parameter, the number of items to be removed during each ALNS
iteration: ’itemsremoved’. This experiment is designed to find the best value for this parameter.
To reduce testing computation times, instead of the full data set, samples of the data set are used.
Each sample consists of exactly one phase-conservation combination. The samples are chosen carefully,
so that they strongly represent the full data set. They are among the largest combinations, meaning
they require at least six trailers each.

Table 9 shows the characteristics of the full data set, CompleetVracht, and the aforementioned samples:

normal items (weight) pallet items (weight) total items (weight)

CompleetVracht 3028 (1084t) 3845 (33t) 6873 (1118t)

Phase 202-BW60 208 (81t) 20 (2t) 228 (82t)

Phase 305-T– 194 (79t) 62 (1t) 256 (81t)

Phase 451-T– 370(93t) 393(3t) 763(96t)

Table 9: Data characteristics

After all experiments have been conducted, finally the results are presented for the model with the
optimal parameters, obtained from the tests.

To gain insight in the meaning of the results, several statistical methods are implemented in the
presentation. They are listed below.

Mean

The mean or average of a set of data points is defined as the sum of all data points divided by
the number of data points:

mean µ =

∑n
i xi

n
(35)

With xi a single data point and n is the number of data points.

Mode

While the mean gives a good impression of the given result, it can be heavily influenced by out-
liers. For example, for data set [2, 2, 2, 2, 8], the mean equals 4, but this number is significantly
different from all the numbers present in the data set. Therefore, it is a good idea to also include the
mode. The mode is defined as the most common number in the data set.
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Population standard deviation

Two standard deviations: one for a full ’population’, that is, of a full data set, and one for data
samples. In this case, the standard deviation is taken from all available data points, meaning the
former is used:

std σ =

√∑n
i (xi − µ)2

n
(36)

Student t-test

For some cases, one could argue that the results of two separate tests are different enough to be
considered significantly different. This can be useful to state that using a certain value for a parame-
ter is a significant improvement.
The most popular way to prove that there is a significant difference between two tests, is the so-called
student t-test. This test provides a value texp. Using a critical t-value tcrit, there are two possible
outcomes to this test:

1. texp < tcrit: there is not enough evidence to reject the null hypothesis, H0: there is no evidence
that A and B are significantly different.

2. texp > tcrit: reject H0: A and B are significantly different within the confidence interval.

When comparing data set A with data set B, the formula to obtain texp is given in equation 37:

texp =
|µA − µB|

σAB

√
1
nA

+ 1
nB

(37)

Where σAB is the pooled standard deviation:

σAB =

√
(nA − 1)σ2A + (nB − 1)σ2B

nA + nB
(38)

The value for tcrit depends on the degrees of freedom, N, and the desired confidence interval. For
this report, a confidence interval of 95% is taken, meaning there is a 95% chance that the resulting
outcome of this test is valid. The degrees of freedom are defined as:

N = na + nb − 2 (39)

Since each data set contains exactly 25 data points, N = 48. The resulting value for tcrit equals 1.677
and will be used throughout this report.

6.2 Experiment 1: sensitivity analysis ALNS iterations

The goal of this experiment is to find the optimal number of iterations for the ALNS heuristic. To
do this, two versions of the model are tested: one with a deterministic initial solution heuristic, and
one with a randomized initial solution heuristic. In short, the reason for this is the possibility of local
optima occurring for the former heuristic. This will be explained more thoroughly in subsection 6.3.
Both approaches are executed for 4, 5, 6, 7, 10 and 50 iterations. Tables 10 and 11 show the mean,
mode, standard deviation and best result for the primary objective and computation time for the
deterministic and randomized approach, respectively. In figure 34, the mean primary objective is
plotted against the computation time for various values of the parameter iterationsALNS. To keep
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things readable, in this figure, the iterations that contain one or more unfeasible solutions are plotted
with objective value 1000, and a broken axis is used. Finally, figure 35 is a bar graph of the compu-
tation times for all tested numbers of ALNS iterations.
As mentioned before, each test is carried out 25 times, so every mean in a figure or table represents
the mean of 25 tests.

itemsremoved = 10 primary objective [trailers]: secondary objective [fill%*]: time: first best iteration:

best mode mean std.p mean std.p mean std.p mode std.p

iterationsALNS: [trailers] [trailers] [trailers] [trailers] [fill%*] [fill%*] [s] [s] [-] [-]

3 1000 1000 1000 0.000 0.00% 0.00% 98.03 4.100 3 0.000

4 91 92 91.8 0.400 8.80% 0.14% 119.32 6.291 4 0.000

5 90 92 91.56 0.637 8.80% 0.14% 142.75 8.553 4 0.000

6 90 92 91.64 0.557 8.81% 0.16% 168.51 12.445 4 0.463

7 90 92 91.76 0.512 8.78% 0.12% 194.77 16.229 4 0.392

10 91 92 91.8 0.400 8.77% 0.10% 271.41 13.158 4 0.814

50 90 92 91.52 0.574 8.77% 0.12% 1191.24 37.802 4 12.706

Table 10: Experiment 1: results deterministic approach

itemsremoved = 10 primary objective [trailers]: secondary objective [fill%*]: time: first best iteration:

best mode mean std.p mean std.p mean std.p mode std.p

iterationsALNS: [trailers] [trailers] [trailers] [trailers] [fill%*] [fill%*] [s] [s] [-] [-]

3 1000 1000 1000 0.000 0.00% 0.00% 98.28 4.848 3 0.000

4 92 1000 637.92 443.458 3.37% 4.15% 122.25 8.527 4 0.000

5 91 95 167 245.646 7.98% 2.52% 145.12 9.084 5 0.466

6 90 95 95.36 2.095 8.57% 0.71% 175.00 10.305 4 0.722

7 91 94 95.24 1.986 8.38% 0.63% 194.32 12.679 5 0.693

10 92 94 95.88 1.986 8.36% 0.62% 282.35 10.896 5 1.386

50 90 94 94.84 2.810 8.92% 0.96% 1258.64 70.629 50 15.235

Table 11: Experiment 1: results randomized approach

Figure 34: Experiment 1: primary objective versus computation times for various
ALNS iterations
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Figure 35: Experiment 1: computation times for various ALNS iterations

When analyzing the results, a few ideas occur. First of all when looking at the means in tables 10
and 11 and figure 34, it appears that the minimum number of iterations to always obtain a feasible
solution equals 4 for the deterministic and 6 for the randomized approach. For both the deterministic
and randomized approaches, using just three iterations always results in an unfeasible solution. For
the randomized approach, using four or five iterations may sometimes lead to a feasible solution, but
not always.
Furthermore, the test results show strong differences in computation times, as figure 35 shows. For
a larger number of iterations, the computation time significantly increases. There also seems to be a
minor difference in computation time between the deterministic and randomized approach, but this
will be investigated in the next experiment.
In stark contrast to the computation time, looking at figure 34 again, the primary objective appears
to show no improvement at all for an increasing number of iterations. This induces the statement
that the best number of ALNS iterations equals the minimum number of iterations that produces a
feasible result.
The best reported objective is 90 trailers. Looking at the minimum number of ALNS iterations for
the deterministic approach, the tests with 4 iterations did not reach a solution for 90 trailers, whereas
the tests with 5 iterations did. However, looking at the means and standard deviations, both results
appear to be similar, meaning the tests with 4 iterations might have missed a 90 trailer solution by
chance. To prove this, a student t-test is executed between the results for 4 and 5 ALNS iterations.
The result in table 12 shows that there is no proof that both data sets are significantly different, so
that it can be assumed that the model using 4 iterations reaches similar objectives as the model using
5 iterations, with better computation times, meaning the former is the best option.

t exp: t th: result:

1.594 1.677 not enough evidence to reject null hypothesis: no evidence that 4 and 5 are significantly different

Table 12: Student t-test for 4 and 5 ALNS iterations for the deterministic approach

For the model with the randomized initial solution, the first number of iterations that guarantees a
feasible solution is equal to 6, so this is the proposed value.
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6.3 Experiment 2: randomizing the initial solution

This experiment tests the difference between the model with a deterministic initial solution and an
initial solution with a randomness factor. For the former, the generated initial solution is always
exactly the same. For the latter, the order of items that are arranged to the trailers is varied, so that
a different initial solution is obtained for each test.
As mentioned before, the reason for this test is the fact that preliminary tests on samples of the data
set showed little variation in results for the model with a deterministic initial solution. Apparently,
the initial solution has a large effect on the eventual outcome. Therefore, to prevent the model to be
stuck in a local optimum, the initial solution is randomized.

In this experiment, the deterministic approach and the randomized approach are tested for 6 and
50 ALNS iterations. The value of 6 is taken because it is the lowest number of iterations for which
both approaches always achieve a feasible solution, and 50 ALNS iterations are taken to investigate
the results for a large number of iterations. Again, the full data set is used to ensure the validity of
the results.

Figures 36 and 37 show all primary objectives for the tests with 6 and 50 ALNS iterations, respec-
tively. It should be noted that the data presented here is equal to the data of 6 and 50 iterations from
experiment 1. However, in experiment 2 all 25 results is plotted, whereas in experiment 1 only the
mean value of the 25 tests was shown. For completeness, the results for the mean, mode and standard
deviation are again given in tables 13 and 14.

Figure 36: Experiment 2: primary objective function vs computation time for 6
ALNS iterations
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itemsremoved = 10 primary objective [trailers]: secondary objective [fill%*]: time: first best iteration:

best mode mean std.p mean std.p mean std.p mode std.p

iterationsALNS: [trailers] [trailers] [trailers] [trailers] [fill%*] [fill%*] [s] [s] [-] [-]

6 90 92 91.64 0.557 8.81% 0.16% 168.51 12.445 4 0.463

50 90 92 91.52 0.574 8.77% 0.12% 1191.24 37.802 4 12.706

Table 13: Experiment 2: results deterministic approach

itemsremoved = 10 primary objective [trailers]: secondary objective [fill%*]: time: first best iteration:

best mode mean std.p mean std.p mean std.p mode std.p

iterationsALNS: [trailers] [trailers] [trailers] [trailers] [fill%*] [fill%*] [s] [s] [-] [-]

6 90 95 95.36 2.095 8.57% 0.71% 175.00 10.305 4 0.722

50 90 94 94.84 2.810 8.92% 0.96% 1258.64 70.629 50 15.235

Table 14: Experiment 2: results randomized approach

Figure 37: Experiment 2: primary objective function vs computation time for 50
ALNS iterations

The reason for giving the results of all 25 tests is to visualize the spread of the data points. Looking
at figures 36 and 37, the deterministic approach on average has a better performance than the ran-
domizing approach, with a smaller spread, which is confirmed by the differences in standard deviation
for the deterministic and randomized primary objective in tables 13 and 14: 0.557 versus 2.095 for 6
iterations, and 0.574 vs. 2.810 for 50 iterations.
What is interesting is that each test type presented in this experiment reaches the best solution of
90 trailers exactly once out of 25 times. Even though the deterministic approach is significantly bet-
ter, both approaches are able to reach the optimal solution of this report, for different numbers of
iterations. This strengthens the idea that the model is strongly dependent on the initial solution. It
appears that the initial solution of the model already is a relatively good solution, but is very hard to
improve upon.
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Figures 38 and 39 show an example of the development of the objective function for a single test with
10 ALNS iterations. It can be seen that although the secondary objective function is slightly improved
upon throughout the number of iterations (even reaching a new best objective at the penultimate it-
eration), the best value for the primary objective, 1271, is reached early in the process.

Figure 38: Progress of the objective functions for a single test with 10 ALNS
iterations

Figure 39: Progress of the feasible objective functions for a single test with 10
ALNS iterations

The fact that the initial solution is hard to improve upon may be caused by the number of items that
is removed in each iteration. Therefore, the following experiment investigates the effects of varying
the number of removed items.

6.4 Experiment 3: sensitivity analysis removed items

In the previous experiment, it is stated that the improvement of the initial solution may be hampered
by the number of removed items in each ALNS iteration. This can be explained by the following
example: let us say that the number of items to be removed in one iteration is 100. Out of these
items, 99 are successfully placed in other trailers, but one item cannot be placed. This means the
entire solution is marked as unfeasible, even if the placement of the other 99 items is an improvement.
This definitely makes the improvement process more difficult, which is why the next experiment re-
volves around the number of removed items, described by the parameter ’itemsremoved’.

1It should be noted that the objective shown in figure 39 does not include the merging results, which explains why
the objective is much higher than the values presented in this section.
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In this experiment, the solution quality and computation times are measured for itemsremoved = 1, 5,
10 and 20, and 6 and 50 ALNS iterations. As mentioned in the introduction of this section, to reduce
the testing computation times, data set samples representing the full data set are used. This works,
because the model deals with each phase-conservation combination separately.
In figures 40 - 42, the normal distributions for the different data sets are shown. The means, modes
and standard deviations are given in tables 15 - 17.

(a) 6 ALNS iterations

(b) 50 ALNS iterations

Figure 40: Experiment 3: Normal distributions for data set sample phase 202 -
conservation BW60 for various numbers of items removed
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(a) 6 ALNS iterations

(b) 50 ALNS iterations

Figure 41: Experiment 3: Normal distributions for data set sample phase 305 -
conservation T– for various numbers of items removed
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(a) 6 ALNS iterations

(b) 50 ALNS iterations

Figure 42: Experiment 3: Normal distributions for data set sample phase 451 -
conservation T– for various numbers of items removed
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iterations ALNS = 6 primary objective [trailers]: secondary objective [fill%*]: time: first best iteration:

best mode mean std.p mean std.p mean std.p mode std.p

itemsremoved: [trailers] [trailers] [trailers] [trailers] [fill%*] [fill%*] [s] [s] [-] [-]

1 6 7 6.64 0.625 11.65% 10.64% 3.02 0.861 3 0.627

5 6 6 6.36 0.557 13.04% 10.98% 3.02 0.799 3 0.546

10 5 6 6.36 0.557 12.20% 11.87% 3.26 0.712 3 0.449

20 5 6 6.36 0.557 16.29% 13.47% 3.04 0.603 3 0.557

iterations ALNS = 50 primary objective [trailers]: secondary objective [fill%*]: time: first best iteration:

best mode mean std.p mean std.p mean std.p mode std.p

itemsremoved: [trailers] [trailers] [trailers] [trailers] [fill%*] [fill%*] [s] [s] [-] [-]

1 5 6 6.40 0.566 10.10% 11.82% 20.32 3.356 3 7.899

5 6 6 6.40 0.490 10.89% 9.40% 20.68 3.949 3 9.513

10 5 6 6.32 0.546 12.28% 11.66% 19.04 2.458 3 5.579

20 5 6 6.24 0.650 15.58% 15.37% 20.04 3.429 3 9.463

Table 15: Experiment 3: results sample phase 202 - conservation BW60

iterations ALNS = 6 primary objective [trailers]: secondary objective [fill%*]: time: first best iteration:

best mode mean std.p mean std.p mean std.p mode std.p

itemsremoved: [trailers] [trailers] [trailers] [trailers] [fill%*] [fill%*] [s] [s] [-] [-]

1 5 6 5.96 0.599 7.23% 5.50% 1.62 0.372 3 0.480

5 5 6 6.20 0.566 6.30% 5.28% 1.65 0.415 3 0.449

10 5 6 6.12 0.431 5.37% 4.24% 1.72 0.447 3 0.496

20 5 6 6.12 0.515 6.05% 5.29% 1.71 0.369 3 0.490

iterations ALNS = 50 primary objective [trailers]: secondary objective [fill%*]: time: first best iteration:

best mode mean std.p mean std.p mean std.p mode std.p

itemsremoved: [trailers] [trailers] [trailers] [trailers] [fill%*] [fill%*] [s] [s] [-] [-]

1 5 6 6.28 0.601 4.07% 2.73% 12.24 1.547 3 3.418

5 5 6 6.04 0.528 7.20% 5.44% 10.67 1.569 2 0.496

10 5 6 6.04 0.528 5.32% 4.17% 10.34 1.314 3 0.466

20 5 6 6.00 0.283 5.24% 3.52% 11.18 1.109 3 0.480

Table 16: Experiment 3: results sample phase 305 - conservation T–

iterations ALNS = 6 primary objective [trailers]: secondary objective [fill%*]: time: first best iteration:

best mode mean std.p mean std.p mean std.p mode std.p

itemsremoved: [trailers] [trailers] [trailers] [trailers] [fill%*] [fill%*] [s] [s] [-] [-]

1 7 9 9.08 0.744 1.12% 1.12% 4.03 0.823 5 0.601

5 8 9 8.88 0.816 1.21% 1.20% 4.18 0.848 5 0.614

10 8 9 8.92 0.627 1.06% 0.93% 3.99 1.137 5 0.480

20 7 9 8.76 0.862 1.23% 1.18% 4.18 1.327 5 0.748

iterations ALNS = 50 primary objective [trailers]: secondary objective [fill%*]: time: first best iteration:

best mode mean std.p mean std.p mean std.p mode std.p

itemsremoved: [trailers] [trailers] [trailers] [trailers] [fill%*] [fill%*] [s] [s] [-] [-]

1 7 8 8.60 0.894 1.57% 1.54% 37.60 5.351 4 0.755

5 8 9 9.04 0.528 1.26% 1.32% 37.01 5.785 5 0.531

10 8 8 8.88 0.909 1.14% 0.87% 35.95 4.754 4 7.915

20 8 9 8.88 0.431 1.00% 0.66% 34.97 6.702 5 0.512

Table 17: Experiment 3: results sample phase 451 - conservation T–

When analyzing the mean and standard deviation values in tables 15 - 17, there seems to be little
to no difference between the obtained solution data for the objective and computation time, which
would mean the number of items removed in each iteration has no significant effect on the solution
quality, nor the computation time. The graphs in figures 40 - 42 give the same idea. To investigate
whether the obtained results are indeed not significantly different, the student t-test is used again.
The different values for removed items for each data set sample and number of ALNS iterations are
compared to each other in tables 18 - 23.
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test: t exp: t th: result:

1 vs. 5 1.6724 1.677 not enough evidence to reject null hypothesis: no evidence that 1 and 5 are significantly different

1 vs. 10 1.6724 1.677 not enough evidence to reject null hypothesis: no evidence that 1 and 10 are significantly different

1 vs. 20 1.6724 1.677 not enough evidence to reject null hypothesis: no evidence that 1 and 20 are significantly different

5 vs. 10 0 1.677 not enough evidence to reject null hypothesis: no evidence that 5 and 10 are significantly different

5 vs. 20 0 1.677 not enough evidence to reject null hypothesis: no evidence that 5 and 20 are significantly different

10 vs. 20 0 1.677 not enough evidence to reject null hypothesis: no evidence that 10 and 20 are significantly different

Table 18: Student t-tests for sample phase 202 - conservation BW60 for itemsremoved = 1, 5, 10 and
20 and 6 ALNS iterations

test: t exp: t th: result:

1 vs. 5 0 1.677 not enough evidence to reject null hypothesis: no evidence that 1 and 5 are significantly different

1 vs. 10 0.5090 1.677 not enough evidence to reject null hypothesis: no evidence that 1 and 10 are significantly different

1 vs. 20 0.9285 1.677 not enough evidence to reject null hypothesis: no evidence that 1 and 20 are significantly different

5 vs. 10 0.5455 1.677 not enough evidence to reject null hypothesis: no evidence that 5 and 10 are significantly different

5 vs. 20 0.9829 1.677 not enough evidence to reject null hypothesis: no evidence that 5 and 20 are significantly different

10 vs. 20 0.4714 1.677 not enough evidence to reject null hypothesis: no evidence that 10 and 20 are significantly different

Table 19: Student t-tests for sample phase 202 - conservation BW60 for itemsremoved = 1, 5, 10 and
20 and 50 ALNS iterations

test: t exp: t th: result:

1 vs. 5 1.4569 1.677 not enough evidence to reject null hypothesis: no evidence that 1 and 5 are significantly different

1 vs. 10 1.0847 1.677 not enough evidence to reject null hypothesis: no evidence that 1 and 10 are significantly different

1 vs. 20 1.0127 1.677 not enough evidence to reject null hypothesis: no evidence that 1 and 20 are significantly different

5 vs. 10 0.5625 1.677 not enough evidence to reject null hypothesis: no evidence that 5 and 10 are significantly different

5 vs. 20 0.5227 1.677 not enough evidence to reject null hypothesis: no evidence that 5 and 20 are significantly different

10 vs. 20 0 1.677 not enough evidence to reject null hypothesis: no evidence that 10 and 20 are significantly different

Table 20: Student t-tests for sample phase 305 - conservation T– for itemsremoved = 1, 5, 10 and 20
and 6 ALNS iterations

test: t exp: t th: result:

1 vs. 5 1.500 1.677 not enough evidence to reject null hypothesis: no evidence that 1 and 5 are significantly different

1 vs. 10 1.500 1.677 not enough evidence to reject null hypothesis: no evidence that 1 and 10 are significantly different

1 vs. 20 2.1068 1.677 reject the null hypothesis: 1 and 20 are significantly different

5 vs. 10 0 1.677 not enough evidence to reject null hypothesis: no evidence that 5 and 10 are significantly different

5 vs. 20 0.3341 1.677 not enough evidence to reject null hypothesis: no evidence that 5 and 20 are significantly different

10 vs. 20 0.3341 1.677 not enough evidence to reject null hypothesis: no evidence that 10 and 20 are significantly different

Table 21: Student t-tests for sample phase 305 - conservation T– for itemsremoved = 1, 5, 10 and 20
and 50 ALNS iterations

test: t exp: t th: result:

1 vs. 5 0.9057 1.677 not enough evidence to reject null hypothesis: no evidence that 1 and 5 are significantly different

1 vs. 10 0.8220 1.677 not enough evidence to reject null hypothesis: no evidence that 1 and 10 are significantly different

1 vs. 20 1.4055 1.677 not enough evidence to reject null hypothesis: no evidence that 1 and 20 are significantly different

5 vs. 10 0.1943 1.677 not enough evidence to reject null hypothesis: no evidence that 5 and 10 are significantly different

5 vs. 20 0.5056 1.677 not enough evidence to reject null hypothesis: no evidence that 5 and 20 are significantly different

10 vs. 20 0.7506 1.677 not enough evidence to reject null hypothesis: no evidence that 10 and 20 are significantly different

Table 22: Student t-tests for sample phase 451 - conservation T– for itemsremoved = 1, 5, 10 and 20
and 6 ALNS iterations
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test: t exp: t th: result:

1 vs. 5 2.1185 1.677 reject the null hypothesis: 1 and 5 are significantly different

1 vs. 10 1.0980 1.677 not enough evidence to reject null hypothesis: no evidence that 1 and 10 are significantly different

1 vs. 20 1.4102 1.677 not enough evidence to reject null hypothesis: no evidence that 1 and 20 are significantly different

5 vs. 10 0.7614 1.677 not enough evidence to reject null hypothesis: no evidence that 5 and 10 are significantly different

5 vs. 20 1.1744 1.677 not enough evidence to reject null hypothesis: no evidence that 5 and 20 are significantly different

10 vs. 20 0 1.677 not enough evidence to reject null hypothesis: no evidence that 10 and 20 are significantly different

Table 23: Student t-tests for sample phase 451 - conservation T– for itemsremoved = 1, 5, 10 and 20
and 50 ALNS iterations

Looking at the results for the student t-test, it occurs that for only two cases the null hypothesis could
be rejected, meaning at a 95% confidence interval the obtained results are stated to be significantly
different. However, the data may be biased, since the primary objective is an integer and the objective
means include decimal numbers. This makes it easier to gain differences between tests, and may have
lead to the two false negatives in the student t-test. Because the null hypothesis is rarely rejected,
despite the bias, it can be concluded from these results that overall, there is no significant difference
in the quality of the solution when varying the number of items removed during each iteration.
This conclusion strengthens the idea that the initial solution created by the ALNS algorithm is hard
to improve by said algorithm. This could either mean that the initial solution already has a very good
quality, or the ALNS heuristic itself is not perfect. The latter could possibly be solved by trying out ad-
ditional ALNS removal and repair heuristics to allow for more strategies, but this is for future research.

6.5 Current solution versus proposed solution

In this paragraph, the best result from the proposed model of this thesis is compared to the actual
loading division created at the company of ASK Romein.

The best number of trailers for the full data set presented in this report equals 90 trailers, obtained
by various versions of the model, shown in tables 10 and 11. However, this solution cannot always be
reached by the model.
Table 24 shows the results for 25 tests of the best version of the model, which is the model that creates
a deterministic initial solution and runs for 4 ALNS iterations, with 10 removed items per iteration.
As can be seen in this table, the maximum value for the primary objective is 92 trailers, which means
that for any loading division created by this model, the solution will not consist more than 92 trailers.
The average execution time for a single test is less than two minutes, of course excluding the time
needed to import the items and the execution of the pallet item and merging function.
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test nr: best objective: primary objective: secondary objective: execution time:

[-] [trailers] [fill%*] [s]

0 91.0872 91 0.0872 120.76

1 91.091 91 0.091 128.96

2 92.0875 92 0.0875 115.96

3 92.0872 92 0.0872 113.43

4 92.0872 92 0.0872 119.49

5 92.0873 92 0.0873 116.18

6 92.0875 92 0.0875 108.89

7 91.0909 91 0.0909 118.32

8 92.0875 92 0.0875 117.77

9 92.0875 92 0.0875 120.72

10 92.0872 92 0.0872 134.57

11 91.0915 91 0.0915 121.32

12 91.0909 91 0.0909 110.6

13 92.0875 92 0.0875 108.21

14 92.0875 92 0.0875 125.65

15 92.0875 92 0.0875 120.49

16 92.0872 92 0.0872 116.23

17 92.0875 92 0.0875 115.05

18 92.0875 92 0.0875 116.41

19 92.0872 92 0.0872 117.47

20 92.0875 92 0.0875 124.44

21 92.0875 92 0.0875 124.75

22 92.0875 92 0.0875 117.36

23 92.0875 92 0.0875 131.44

24 92.0875 92 0.0875 118.45

average: 91.80 0.087992 119.32

Table 24: Results for 25 tests with 4 ALNS iterations, a deterministic initial solution and 10 removed
items per iteration

Now it is time to start comparing this value of 92 trailers to the actual loading division created at
ASK Romein (table 25). The data set used for the experiments consists of 121 trailers. This means
that the loading division can be reduced by at least 29 trailers or 24%, which is an enormous reduction.

current approach: proposed approach:

guaranteed solution: 121 trailers 92 trailers (-24%)

best solution: 121 trailers 90 trailers (-26%)

time needed approx. multiple hours <10 min

loading conditions loading division loading division and loading sequence

Table 25: Results for 25 tests with 4 ALNS iterations, a deterministic initial solution and 10 removed
items per iteration

Currently, it is not exactly known how much time on creating the loading division is spent by everyone
responsible. However, it costs at least several hours, as each item has to be assigned to a transport
lot manually. Comparing this to the computation time of the proposed model, it is in the range of
minutes, which is significantly faster. And even if the number of iterations of the model would be ex-
tended to a very large amount of iterations (even more than 50): the model does not require constant
supervision. It only has to be initiated once and does all the work.
Furthermore, it should be noted that the proposed model is able to account for all loading conditions,
both for the loading division process (such as maximum weight) as for the loading sequence process
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(such as axle loads), whereas the current loading division is created with little attention to the loading
sequence conditions. As mentioned earlier in this report in the problem definition, this can be the
cause for costly last-minute alterations to the loading division, which is avoided with the new approach.

6.6 Discussion

The sub questions assigned to this section are as follows:

7. How do the parameters of the model influence the solution quality and computation time?

Sub question 7 is related to the sensitivity analysis: In the first experiment, it appeared that the
number of ALNS iterations has little to no effect on the primary objective, and a large effect on the
computation time: naturally, the more iterations, the higher the computation time. As a result, the
proposed number of ALNS iterations is 4 for the deterministic approach, as this is the minimum num-
ber of iterations to guarantee a feasible solution. Even though the best reported solution of 90 trailers
is reported for 5 iterations and not for 4 iterations, the student t-test showed that the results of 4 and
5 iterations cannot be proven to be significantly different in the 95% confidence interval. Therefore,
there is a large possibility that the tests with 4 iterations did not reach the best solution by chance.
Due to the superior computation time for 4 iterations compared to 5 iterations, the former is the best
option. For the randomized approach, the minimum number of iterations that always results in a
feasible solution equals 6.
As the second experiment has shown, the model that creates a deterministic initial solution is superior
to the model with a randomized initial solution. Both approaches can reach the best reported solu-
tion of 90 trailers, but the objectives of the deterministic approach have a lower mean and standard
deviation, making it a much more robust model.
The third experiment confirms that the model relies strongly on the initial solution, as no significant
differences could be detected between tests with a different number of items removed in each iteration.
The results of the third experiment are validated using the student t-test.

When comparing the results of the proposed approach to the current approach at ASK Romein,
the following conclusions can be drawn:

1. The current loading division of the data set used for the validation could be reduced from 121
to 92 trailers or less, which is a reduction of at least 24%.

2. The computation time for the model to run is, even in the worst cases (with the highest number of
iterations), far superior to the current time spent on creating the loading division. Furthermore,
the proposed model can run without human supervision, which means no working hours are
wasted during the execution.

3. The proposed model accounts for all loading conditions presented in section 2. For the current
approach at ASK Romein, only the loading conditions related to the loading division can be
checked. The proposed model, by digitally generating the loading sequence, is also able to check
the loading sequence conditions. This can avoid unwanted surprises when the actual loading
sequence takes place, such as for example an exceeded axle load.

The experimental phase concludes the research of this report. The next section will provide a conclu-
sion as well as a list of recommendations.
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7 Conclusion

In this report, a model is presented that automates and optimizes the loading processes for steel
transport. The research revolves around two loading processes: the loading division, e.g. allocating
items to different trailers, and the loading sequence, e.g. placing items onto the trailer.
The possibility of automating the process of loading division is investigated. Furthermore, the load-
ing sequence process is generated digitally and implemented in the loading division process. This
means that besides the loading division conditions, also the conditions for the loading sequence can
be checked as early as the calculation and design phase.

Next, all sub questions presented in section 1 will be discussed.

1. What is the state-of-the-art of the loading processes at ASK Romein?

In section 2, insight has been given to the situation at ASK Romein, and the main problem is defined.
Both transport-related processes, the loading division and loading sequence, use many conditions.
Because of the many conditions and the fact that the loading sequence is not exactly known when
creating the loading division, loading space is over- or underestimated.

The next sub question has been discussed in section 3:

2. What are the existing solutions of 3D space maximization problems?

The problem of this research can be defined to have an input minimization objective, fixed dimen-
sions, weakly heterogeneous trailers and strongly heterogeneous items, making it a Multiple Bin Size
Bin Packing Problem (MBSBPP). The accompanying packing strategy is the pre-assignment strategy,
where first all items are distributed over the trailers (loading division), and next the items are placed
on the trailers (loading sequence).
Several examples of solution methods from the literature have been discussed and evaluated in section
3: the ALNS heuristic appears to be the most promising loading division method, due to its flexibility
and fast computation time. Regarding the loading sequence methods, none of the available methods
truly fits the problem of this research: a gap exists in the literature, meaning a new heuristic is required.

In section 4, the proposed model was presented. Sub questions 3 and 4 have been answered in
this section:

3. How can the loading division process be automated, accounting for the loading conditions?

4. How can the presented loading sequence problem be implemented in a 3D optimization model?

The provided model consists of an ALNS heuristic, that is responsible for the loading division, and
the new layer heuristic, introduced in this report, that generates a loading sequence.
The ALNS heuristic uses several repair and removal heuristics to destroy and create new solutions,
so that new options can be explored. The loading conditions are converted to model constraints and
implemented in the model functions.
The layer heuristic is a revolutionary design in the sense that it provides a loading sequence solution
for a real-world case without giving up competitive computation times. Based on the actual way the
loading sequence is executed, by building layers of items on the trailer, the layer heuristic is a robust
and fast solution method.

In section 5, the verification and validation have been given, so that sub questions 5 and 6 can
be answered:

5. How can the loading division and loading sequence models be verified?

6. How can the loading division and loading sequence models be validated?
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The verification tests of section 5 have all been passed by the proposed model and layer heuristic,
which is a clear indication that they work as intended.
As mentioned before, analyzing the validation performance of the layer heuristic is more difficult, but
can be executed by comparing its output to transport lots created in the traditional loading division.
All tested transport lots resulted in feasible solutions for the loading sequence by the layer heuristic.
For the full model, the results for the loading division are a significant improvement compared to the
traditional loading division. Furthermore, the model is also capable of handling much larger data sets,
albeit at the cost of larger computation times, thereby confirming the scalability of the model.

Finally, experiments were conducted on the proposed model, to provide an answer for sub question 7:

7. How do the parameters of the model influence the solution quality and computation time?

In section 6, various experiments have been conducted, with interesting results. The number of ALNS
iterations has very little influence on the primary objective, and is proportionally related to the com-
putation time. The former induces that the model has difficulty in improving the firstly created initial
solution, possibly because the initial solution itself already has a good quality. The proposed number
of ALNS iterations is the lowest number that guarantees a feasible solution.
The model that creates a deterministic initial solution has a better performance than the model with
a randomized initial solution. Both are capable of achieving the best reported solution of 90 trailers,
but the objectives of the deterministic approach have a lower mean and standard deviation, making
it a much more robust model.
Finally, when comparing test results for several values of the number of items removed in each itera-
tion, no significant differences are reported. This confirms that the model is very reliant on the first
created initial solution, and that this initial solution is already of a very high quality.

Regarding the main research question of this thesis:

How can the loading processes of trucks for steel structure transport be automated and opti-
mized?

The automation is reached by the proposed model using an ALNS function, which is capable of opti-
mizing the loading division and the layer heuristic, which generates the loading sequence. The layer
heuristic fills a gap in the literature for more practical loading optimization problems. It provides a
great answer to the complex problem of loading steel components and has a more than respectable
computation time to work with.
To fully understand the performance of the proposed model, its results are compared to the current
approach at the company of ASK Romein. This leads to three conclusions:

1. The model is capable of reducing the existing loading division by at least 29 trailers on a total
of 121, which translates to a reduction of at least 24%.

2. The computation time for the model is in any case lower than the current time spent on creating
the loading division. Besides, the proposed model can run without human supervision, which
means no working hours are wasted during the execution.

3. The proposed model includes the loading conditions for the loading sequence process, instead
of just the loading division conditions that can currently be checked when making the loading
division, by digitally generating the loading sequence. Because of this, it can be secured that
the loading sequence can be executed.
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7.1 Recommendations

Throughout the assignment, several limitations of the current version of the model were discovered
most of them could be fixed during the master thesis, but some of them can be investigated at a later
point in time. These recommendations for future research are listed below:

◦ As the validation of section 6 shows, the ALNS algorithm has difficulties with improving the
initial solution. This can be explained by the fact that the problem presented in this report
contains many different constraints, which sometimes overlap. One idea to cover this is to keep
track of feasibility flags for each trailer. For example, if for 5 continuous iterations the rear
axle load always is the binding constraint, the algorithm could maybe act upon this by trying a
different strategy for a new iteration.

◦ The previous recommendation is related to the next: it is mentioned that different strategies may
be useful to create more possibilities. This can be achieved by designing more ALNS removal
and repair heuristics, specified to assign a certain item to a certain trailer, according to which
strategy is used. Some ideas for new heuristics:

– A destroy heuristic that removes small items from trailers where the fifth wheel load con-
straint is violated (reducing the mass concentration at the front of the trailer) or removes
large items from trailers where the rear axle load is exceeded (reducing mass concentration
at the rear of the trailer).

– A removal heuristic that counts the number of different item heights per trailer and removes
items from trailers that have a large number of different heights. The item height defines
the trailer layer, and more items of the same height easy the loading sequence process.

– A repair heuristic that places items of similar weight on the same trailer, or a repair heuristic
that places items of a similar length or width. A repair heuristic that concentrates on item
height is already present in the current model.

◦ The current layer heuristic function, responsible for the loading sequence process, is already able
to quite realistically simulate the actual loading sequence. However, it is still far from perfect.
For example, for specific cases the rear end of the trailer may be underused. This could be
solved by defining another set of layers placed in front of the existing layers, thereby considering
contact between items in adjacent layers.

◦ It appears from the second experiment from section 6 that adding a randomizing factor increases
the deviation in results. Although this was not beneficial for the ALNS heuristic, it may just be
useful for the layer heuristic. If for example multiple iterations would be implemented each time
the layer heuristic is initiated, and a small randomizing factor would continuously make small
alterations, the chances for a feasible solution could increase due to an increasing solution space.

Besides these improvements on the model, for future research it would also be beneficial to conduct
experiments on the model using different data sets, to test the robustness of the model.
Finally, to be able for the company of ASK Romein to use the model of this report, a software tool
has to be created.
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A Appendix

A.1 Research paper

The research paper for this report can be found on the next pages.

74



An optimization model for 3D loading space for
the transport of large steel structures
Jasper Krombeen 1

1. Delft University of Technology

Abstract

In this paper, a model is presented that automates and optimizes the loading processes for the
transport of steel structures at the company of ASK Romein. This can be captured in two main
loading processes: the loading division, which consists of allocating items to different trailers, and
the loading sequence, which concerns the placement of items onto their respective trailer.
The possibility of automating the process of the loading division is investigated. This includes the
digital generation of the loading sequence process. Achieving a form of automation would both
mean a reduction in time required to create a loading division as well as allow for optimizing the
number of required trailers.
Using an extensive literature review as well as an in-depth investigation of the current situation at
the company, a model is developed, which consists of an ALNS heuristic responsible for the loading
division, and a new function, the layer heuristic, proposed in this report, which digitally generates
the loading sequence.
The proposed model is validated using real-life data. For the used data set, the model is able to
reduce the existing loading division by at least 24%, and the computation time is far superior to
the current time required to create a loading division. Because the loading sequence process is
digitally generated, the model is capable of checking all loading conditions, such as axle loads, even
before the actual loading sequence has taken place.

Keywords: 3D space optimization; Multiple Bin Size Bin Packing Problem; Adaptive Large Neigh-
borhood Search

Introduction

The construction of large steel structures, such
as football stadiums, distribution centers, and the
increasingly popular data centers, requires many
different types of steel assemblies, in all kinds
of shapes. This makes the transport to site a
complex procedure: loading a truck with steel as-
semblies is not as straightforward as loading a set
of (rectangular-shaped) boxes.
When it comes to loading, there are two different
processes distinguishable. First, the loading divi-
sion process, executed during the calculation

phase of a project, when all components and as-
semblies are assigned to a transport lot. Next is
the loading sequence process, concerning the ex-
act placement of the assemblies and components
when placed onto a trailer. The loading sequence
takes place after the production of the assemblies.

In the remainder of this section, a brief descrip-
tion of the problem will be given, after which the
literature findings are described.
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Characteristic: Description:
Included in
traditional
loading division:

Included in
proposed
loading division:

trailers

1. Maximum weight limit on overall truck weight X X
2. Axle and fifth wheel loads limit on axle loads X
3. Length multiple trailer sizes X X
4. Width, height fixed trailer dimensions X X

items

5. Flatrack and trailer gap smaller items can fall through trailer gap X
6. Item securing restrict item movement X
7. Item stability stacking items on larger other items X
8. Item orientations fixed orientation for some items X

processes

9. Conservation finish different finishes to different coaters X X
10. Erection sequence limited storage on construction site X X
11. Loading and unloading (un)loading can be horizontal or vertical X

Table 1: Model characteristics

Currently, the loading division is a non-automated
process. The design of a project is created in a
building information model (BIM) environment.
The different construction items present in the
BIM model are manually assigned to a transport
lot, which is a time-costly process. The assign-
ment takes place conform certain loading condi-
tions related to the loading division, such as for
example the maximum weight.
Additionally, there are loading conditions related
to the loading sequence, such as the maximum
allowed front axle load. These requirements can
only be checked when the loading sequence has
taken place, and the orientation of the items on
the trailer is known. Because the loading sequence
is currently not known when creating the loading
division, it has to be estimated or guessed. This
however may sometimes lead to the over- or un-
derestimation of the available loading space on
certain trailers.

In this paper a solution in the form of a model
will be presented that automates the loading divi-
sion process, reducing the time needed, and digi-
tally generates the loading sequence, guaranteeing
successful loading and removing errors regarding
over- and underestimation of loading space.
In table 1, the applicable loading conditions are
converted to model characteristics. The table also
shows which characteristics are currently included
in the loading division process, and which char-
acteristics are included in the proposed loading
division.
Wässcher et al. [3] have described a large num-
ber of cutting and packing problems. They are

grouped by their desired objective, dimensional-
ity, characteristics of the items to be loaded, and
characteristics of the loading objects (trailers).
For the problem of this research, they are defined
as input minimization, fixed dimensions, strongly
heterogeneous items and weakly heterogeneous
trailers, respectively. The related literature case
is the Multiple Bin Size Bin Packing Problem
(MBSBPP).

To construct the mathematical model, the de-
cision variables presented by De Almeida and
Figueiredo [1] and Jin et al. [2] are used. They
are shown below.

xik, yik, zik x, y and z-coordinate of

origin of sub item k of

of item i

lx1i, lx2i absolute orientation

variables of item i

aij ,bij , cij , dij , relative orientation

eij , fij variables of items i and j

Xit check if item i is packed in trailer t

Yt check if trailer t is in solution

Variables lx1i and lx2i are an extension of lxi for
non-symmetrical items (figure 2). A schematic
overview of the relative orientations is shown in
figure 3.

2
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(a) lx1 = 1

(b) lx2 = 1

Figure 2: Decision variables orientations

Figure 3: Orientation of item j with re-
spect to item i, and corresponding deci-
sion variables

Proposed approach

The mathematical model is given in equations
1 - 11a.

min Z =
T∑
t

Yt (1)

subject to:

xik + lik + w ver ≤ xjl (2a)

yik + w ver ≤ yjl − wjl (2b)

zik + hik + w hor ≤ zjl (2c)

yik = yi0 +
(
lx1i − lx2i

)
∗ ykik (3a)

xik = xi0 +
(
lx1i − lx2i

)
∗ xkik (3b)

zik = xi0 + zkik (3c)

0 ≤ xik − lx2i ∗ lik (4a)

xik + lx1i ∗ lik ≤ Lt (4b)

0 ≤ yik − lx2i ∗ wik (5a)

yik + lx1i ∗ wik ≤ Wt (5b)

0 ≤ zik (6a)

zik + hik ≤ Ht (6b)

I∑
i

mi ≤ mlegislation (7a)

I∑
i

mi bogie ≤ mlegislation bogie (7b)

I∑
i

mi fifthwheel ≤ mlegislation fifthwheel (7c)

I∑
i

Xit ≤ M ∗ Yj (8)

Yit ∗ Yjt ∗ csrvi = Yit ∗ Yjt ∗ csrvj (9)

Yit ∗ Yjt ∗ bphsi = Yit ∗ Yjt ∗ bphsj (10)

aik + bik + cik + dik + eik + fik ≥ 1 (11a)

aik + bik + cik + dik + eik + fik ≤ 3 (11b)

xik, yik, zik, integer (11c)

lx1i, lx2i, aij − fij ,Xit,Yt, binary (11d)

To reduce complexity, overlap equations 2a - c,
used to obtain the origin coordinates of the sub
items, are a simplified version, depicting a specific
orientation of two items. The complete equations
applicable to all orientations can be found in the
main report of this research. Equations 3a - c
connect the sub items (k > 0) to their respective
main items (k = 0). Equation pairs 4a - b, 5a -
b, and 6a - b make sure that all items are placed
completely within trailer bounds. The constraints
7a - c check the legislation regarding the maxi-
mum allowable load and the maximum axle loads
and fifth wheel loads. Equation 8 adds a trailer to
the solution when an item is packed to the trailer.
Equations 9 and 10 state that each trailer only has
one conservation system and one building phase.

3
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Finally, equations 11a - d ensure the duality of the
binary variables and that the overlap constraints
are defined properly.

The presented mathematical model is unable to
account for both the item stability and the item
movement constraints. Besides, the presented
constraint regarding the axle loads (equations 7b
- c), cannot be captured by regular MIP solver
software such as Gurobi, due to the presence of
decision variables in the denominator. Further-
more, the computation time for a model of the
scale of this research is expected to be unaccept-
ably high. This stresses the need for a different
approach, in the form of a heuristic model, which
will be presented next.

Figure 4 shows a schematic of the main func-
tions of the model. The output is shown at the
bottom of the figure: a solution for the loading
division. There are several steps required to get
there.

Figure 4: Model overview

As can be seen in the figure, the model consists
of two main functions: the ALNS heuristic and
the layer heuristic. Using the results of the first
iteration for the loading division and loading se-
quence, a new iteration for the loading division
is started. The loading division is improved by
moving items between trailers and removing or

adding trailers. Subsequently, the corresponding
loading sequence is generated to see if the new
loading division indeed is an improvement.

Next is the working principle of the model. When
the model is initiated, first all the items are sorted
by their conservation system and building phase.
a separate ALNS heuristic function is executed
for each unique conservation-phase combination.
Throughout the iterations, the results for the load-
ing division are evaluated against the current best
solution. The solution is expressed in the form of
the objective in equation 12:

min Z = W1(nr. of trailers)+W2(fill%*) (12)

In equation 12, W1 and W2 are weights (W1 = 1
and W2 = 0.01) and fill%* is defined as the fill-
ing percentage of the most empty trailer in the
solution. Naturally, the number of trailers is the
primary objective. This is always an integer (there
are no half trailers), and every solution with less
trailers than the current solution should always
be defined as a better solution. The filling per-
centage is a secondary objective to help identify
better solutions. The choice of weights means the
primary objective is always prioritized over the
secondary objective.
A new solution is only considered when it is feasi-
ble, that is, if all items could correctly be placed
during the loading sequence. The ALNS heuris-
tic uses its multiple removal and repair heuris-
tics to destroy and create new solutions by swap-
ping around items between trailers. The different
heuristics have different traits that enhance the
search for better solutions. At the end of each
iteration, the loading sequence is generated using
the layer heuristic.
The layer heuristic is designed to create a load-
ing sequence according to the loading division
presented by the ALNS function. Therefore, it
receives the items allocated to a certain trailer as
input, and returns the loading sequence for that
trailer, similar to the example of figure 5.

The ALNS function and the layer heuristic con-
tinuously interact with each other, alternately
creating a new loading division and its respective
loading sequence. Finally, after the model has run
for a certain number of iterations, the resulting
best objective is collected.
When the ALNS heuristics for all conservation-
phase combinations are finished, the total best

4



Jasper Krombeen 2021.MME.8540

Figure 5: Loading sequence transport lot 331

objective can be calculated.
This best solution is then complemented by a pal-
let item function, that assigns all the items that
are small enough to fit on a pallet to the load-
ing division. The solution is improved once more
by a merging function, that merges trailers with
unique conservation-phase combinations and low
filling rates, to further reduce the number of trail-
ers.

Experimental results

In this paragraph, several experiments will be con-
ducted in the form of sensitivity analyses. First,
the best parameter values will be used to deter-
mine the performance of the model, which will be
compared to the existing solution at ASK Romein.
To secure the validity of the results, each test is
conducted 25 times, thereby reducing the effects
of random chance.

The case scenario used for the experiments is
a project recently executed at ASK Romein. The
project regards a data center consisting of over
7500 steel components. In the original loading
division created for this project, a total of 121
transport lots were created, corresponding to 121
trailers.

The model performance is shown in (table 2).

Since the model guarantees a solution consisting
of only 92 trailers, this means that the traditional
loading division can be reduced by at least 29
trailers or 24%, which is an enormous reduction.
Furthermore, the computation time is far supe-
rior, and the model is capable to check all eleven
loading conditions.

Three types of experiments are conducted using
this data set. There are two versions of the model
to be tested: one that produces a deterministic
initial solution, and one with a slightly random-
ized initial solution.
For the first experiment, the effect of the number
of iterations for each ALNS heuristic on the com-
putation time and solution quality is tested.
The goal of this test is to find a trade-off between
the solution quality and the computation time.
Figures 6 and 7 show the experimental results.

In figure 6, the primary objective is shown for tests
with various iterations. As can be seen in the fig-
ure, for the deterministic approach, using less than
4 iterations results in unfeasible solutions. For all
feasible results, there is no significant difference
in the solution quality. For the randomized initial
solution approach, tests with 6 or more iterations
result in a feasible solution. Again, there is no
significant difference in solution quality between
feasible solutions.
Figure 7 shows there is a significant difference in

5



Jasper Krombeen 2021.MME.8540

current approach: proposed approach:

guaranteed solution: 121 trailers 92 trailers (-24%)

best solution: 121 trailers 90 trailers (-26%)

time needed approx. multiple hours <10 min

loading conditions loading division loading division and loading sequence

Table 2: Results for 25 tests with 4 ALNS iterations, a deterministic initial solution and 10 removed
items per iteration

Figure 6: Experiment 1: primary objective versus computation times for various
ALNS iterations

6
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Figure 7: Experiment 1: computation times for various ALNS iterations

the computation time, which seems to be pro-
portional to the number of iterations, as can be
expected.

The second experiment tests the effect of ran-
domizing the initial solution. The original initial
solution heuristic does not contain any random-
ness factor. This means, that for each new experi-
ment, the same initial solution is generated. Using
the original, deterministic, initial solution heuris-
tic, most of the time leads to exactly the same
results, even though the improvement heuristics
do contain a randomness factor. This observation
induces the possibility that the model may get
stuck in a local optimum.
Therefore, a slightly altered initial solution heuris-
tic, containing a randomness factor, is tested
against the original initial solution heuristic.
Figure 8 shows that both approaches are able
to report the best solution of 90 trailers, but the
model with the deterministic approach guarantees
a solution of 92 trailers and has a lower standard
deviation and mean, which makes it superior.

The third test focuses on another parameter, the
number of items to be removed during each ALNS
iteration. This experiment is designed to find the
best value for this parameter.
To reduce testing computation times, instead of
the full data set, samples of the data set are used.
The samples are chosen carefully, so that they
strongly represent the full data set. Figure 9

shows the normal distribution results for one of
the samples. It can be observed that varying the
number of items removed has no effect.

(a) 6 ALNS iterations

(b) 50 ALNS iterations

Figure 9: Experiment 3: Normal distri-
butions for data set sample phase 451 -
conservation T– for various numbers of
items removed

7



Jasper Krombeen 2021.MME.8540

Figure 8: Experiment 2: primary objective function vs computation time for 6
ALNS iterations

Discussion

In this report, a model is presented that auto-
mates and optimizes the loading processes for
steel transport. The research revolves around two
loading processes: the loading division, e.g. allo-
cating items to different trailers, and the loading
sequence, e.g. placing items onto the trailer.
The possibility of automating the process of load-
ing division is investigated. Furthermore, the
loading sequence process is generated digitally and
implemented in the loading division process. This
means that besides the loading division condi-
tions, also the conditions for the loading sequence
can be checked as early as the calculation and
design phase.
The presented model consists of an ALNS heuris-
tic, that is responsible for the loading division,
and the new layer heuristic, introduced in this
report, that generates a loading sequence.

Looking at the experiments, the number of ALNS
iterations has very little influence on the primary
objective, and is proportionally related to the

computation time. The former induces that the
model has difficulty in improving the firstly cre-
ated initial solution, possibly because the initial
solution itself already has a good quality. The
proposed number of ALNS iterations (four) is the
lowest number that guarantees a feasible solution.
The model that creates a deterministic initial so-
lution has a better performance than the model
with a randomized initial solution. Both are ca-
pable of achieving the best reported solution of
90 trailers, but the objectives of the deterministic
approach have a lower mean and standard devia-
tion, making it a much more robust model.
Finally, when comparing test results for several
values of the number of items removed in each
iteration, no significant differences are reported.
This confirms that the model is very reliant on the
first created initial solution, and that this initial
solution is already of a very high quality.

The layer heuristic fills a gap in the literature
for more practical loading optimization problems.
It provides a revolutionary answer to the complex
problem of loading steel components and has a
more than respectable computation time.

8
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To give a good insight in the performance of the
proposed model, its results are compared to the
current approach at the company of ASK Romein.
This leads to three conclusions:

1. The model is capable of reducing the exist-
ing loading division by at least 29 trailers on
a total of 121, which translates to a reduc-
tion of at least 24%.

2. The computation time for the model is in
any case lower than the current time spent
on creating the loading division. Besides,
the proposed model can run without human
supervision, which means no working hours
are wasted during the execution.

3. The proposed model includes the loading
conditions for the loading sequence process,
instead of just the loading division condi-
tions that can currently be checked when
making the loading division, by digitally
generating the loading sequence. Because
of this, it can be secured that the loading
sequence can be executed.

This master thesis is executed at the company
ASK Romein.
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List of parameters

lik length of sub item k of item i 0 ≤ i ≤ I, 0 ≤ k ≤ K

wik width of sub item k of item i

hik height of sub item k of item i

xkik relative distance between the x-coordinates of the origins

of main item i and its sub item k

ykik relative distance between the y-coordinates of the origins

of main item i and its sub item k

zkik relative distance between the z-coordinates of the origins

of main item i and its sub item k

cmxi x-position center of mass of item i (including sub items)

mi mass of item i (including sub items)

Lt trailer length

Wt trailer width

Ht trailer height

w ver vertical stoppage wood thickness

w hor horizontal stoppage wood thickness

Bxt distance between trailer front and bogies of trailer t

Fxt distance between trailer front and fifth wheel of trailer t

Mt empty mass of trailer t

Mflatrack flatrack mass

mblegislation allowable rear bogie axle load

mflegislation allowable fifth wheel load

mlegislation allowable item load

csrvi conservation system of item i

bphsi building phase of item i

M large number

10
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A.2 Model structure

In this part of the appendix the documentation for the model can be found. The two most important
functions of the model, the ALNS and layer heuristic, are more thoroughly explained. To fully under-
stand the way the model works, figure 43 shows the structure of the model, which consists of multiple
layers that are all interacting with each other.

Figure 43: Algorithm structure

In the remainder of this subsection, the most important functions present in figure 43 will be discussed.

The first layer of the model is the main file. Here all input parameters are generated. Further-
more, all other functions and heuristics are initiated from this file.
The main file contains a function to load in all the items of the data set into the python environment.
This function has the capability to load only samples of the full data set, such as one specific building
conservation-phase combination, or one main building phase. The output of this function is a list
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containing all normal items and a list containing all pallet items, the items that are small enough to
be transported on pallets. These pallet items will not be considered during the main process of the
model, but will be assigned to trailers in the closing stages, as will be described later in this subsection.

The next function determines all conservation-phase combinations that are present in the given data
set. It uses the previously mentioned item lists as input and returns a list containing conservation
systems and dictionaries containing the respective lists of phases ordered by conservation system.

Next, a new function is started for each phase-conservation combination. This function creates an
initial solution as well as a new ALNS heuristic to improve the initial solution for a fixed number of
iterations.
The initial solution is created by a special repair heuristic designed specifically for this task. This
heuristic, ’initial repair heuristic’, is a first greedy heuristic in the sense that it takes the first item
from the list and places it in the first trailer, until the trailer is full, after which a new trailer is added.
When the repair heuristic is finished, the layer heuristic is executed for the first time, to determine
the loading sequence of each created trailer, and see whether space is over- or underestimated.

Next, the ALNS heuristic is initiated. this heuristic destroys and repairs the current solution for
a fixed number of iterations, depicted in figure 43 as ’iterationsALNS’.
For each new iteration, a removal heuristic is picked to destroy the current solution. Part of this
removal heuristic is an analysis function that checks whether the current solution is feasible or not.
There are two options:

1. The current solution is not feasible: the removal heuristic will only remove the items that could
not be placed in the previous iteration.

2. The current solution is feasible: the removal heuristic will remove a number of items dependent
on the type of heuristic.

There are two types of removal heuristics. The first is called ’random removal heuristic’, and, as the
name suggests, randomly removes a number of items from random trailers. The second type is called
’empty trailer removal heuristic’, and removes items from the most empty trailer, so that maybe this
trailer can be fully emptied in future iterations.

When the removal heuristic is finished, the repair heuristic takes over to re-arrange the removed
items. There are two types of repair heuristics as well. Again, the first is random repair, which
randomly finds a feasible trailer to place an item in. The second is called ’common height repair
heuristic’, and tries to place an item in a trailer that has multiple items of similar height. This can
be beneficial, because on the trailer, layers are created consisting of items with identical heights.
At the end of each repair heuristic, the layer heuristic is called again to determine the loading sequence
corresponding to the new solution. Next, an analysis function is initiated to determine the next steps
and to save intermediate results.

When all building phase - conservation combinations have run the required number of iterations,
the model is close to the end. Only the final analysis has to be executed.
The first step of the final analysis is to combine the results from all different combinations into one
solution, so that the final number of trailers can be known. The next step is to add all items that are
small enough to be placed on a pallet with other small items. These items are added to trailers that
still have not met their maximum weight and axle loads.
The next step is to merge some trailers that only have a few items. These are the trailers that have
a similar conservation system and main building phase (main building phase of phase 204 is 2, for
example). If all items from two of these trailers can be placed on one trailer, the merger is successful.

Finally, the final solution is generated and plots and tables are exported.
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