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The stability of the nematic phase composed of structureless semiflexible surfaces interacting
via their mutual excluded volume is analyzed. A highly oriented state would be unfeasible in
the second virial approximation. It is argued that higher-order virial terms could stabilize the

nematic state.

I. INTRODUCTION

A considerable amount of experimental research has
been devoted to elucidating the smectic—nematic transition
for concentrated solutions of bidimensional micelles (see,
e.g., Refs. 1-14). A consensus is emerging of the structural
changes occurring near the transition®'%: The disks in the
nematic phase have a comparatively small diameter (=10
nm); in order to form the smectic phase they align into layers
maintaining their integrity more or less; at the continuous
transition these layers coexist with inhomogeneous lamellae
containing isolated disks and others defects; the defects in
the smectic phase persist well beyond the transition. This
picture is particularly clear judging from the freeze-fracture
micrographs of saline decylammonium chloride solutions. '
Thus, there is no evidence so far for the existence of a nema-
tic phase of rippled or semiflexible sheet-like micelles (i.e., a
phase without positional order). This has prompted us to
investigate the stability of such a state. We shall view the
micelles as surfaces without any structure so that our analy-
sis may pertain to other systems as well.

The nematic phase of long worm-like micelles is stable
as has been shown recently. !® This work is based on the theo-
ry of confined persistent chains as developed by polymer
theorists.'®=>? It has been pointed out® that these ideas are
very similar in concept to those introduced for confined sur-
faces.?*~*° In spite of this similarity one anticipates that cer-
tain phenomena may vary qualitatively as a function of the
dimension of the fluctuating surface. For instance, the ex-
cluded volume between thin disks or platelets is proportional
to their diameter cubed but this is no longer true for slender
rods. As will be be pointed out in the last section this is
ultimately the reason for the difference in stability mecha-
nisms for the respective (semiflexible) particles.

The outline of the paper is as follows. The orientational
entropy or free energy AF,, is calculated as a function of the
variational parameter @ occurring in a Gaussian trial func-
tion. In Sec. III a deflection length A is introduced by a scal-
ing argument. The orientational free energy derived via A
agrees with AF,. with regard to its functional dependence on
a and allows us to specify a previously unknown constant.
The excluded-volume effect is given as a virial expansion,
each of the terms except the third depending on the effective
platelet size proportional to A. The total free energy is mini-
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mized in Sec. V and a discussion of the limitations of this
work is given in Sec. VL.

. ORIENTATIONAL ENTROPY OF A NEMATIC OF
SEMIFLEXIBLE SURFACES

First, we briefly review the statistical properties of an
unconfined elastic surface. Let the configuration of mini-
mum elastic free energy be the flat interface in which we
define the coordinate system (x,y) and let every point of this
plane be specified by the vector r = (x,y). Thermal motion
induced by the system temperature T will cause a displace-
ment {(r) of the surface from this reference configuration.
To a first approximation the free energy of the surface de-
scribed by the configuration £(r) is*!

AF, =—;—K’ Jdr(A,g')z, (1
where K’ denotes the elastic modulus of curvature and the
integration is implied on the area 4 of the reference surface.
We delete higher-order terms and contributions arising from
compression and extension of the surface?*?! The disre-
gard of the surface tension is discussed in Sec. VI.

In order to infer various averages from Eq. (1) we fol-
low the analysis of Ref. 25 switching to Fourier transforms
like

g(ry =3 "¢, (2)
Equation (l)qis rewritten as '

AF, =Y AF, (3)
with ’

AF, =} K'Aq"l,|* (4)

On canonical averaging, every mode contributes { kT in
view of the equipartition theorem. Hence, we have

(1,17 = (K4g*) ™!, (5)

where the dimensionless modulus K'is K ' scaled by k, 7. We
are interested especially in the orientational surface fluctu-
ations described by 0(r) = [6,(r),0,(r)], i.e, the angle
between the normal to the rippling surface and the normal to
the reference plane. If the deviations are small (6,, 6, <1)
wehave §, = — df /dx and 6, ~ — d¢ /dy so that the Four-
ier component of the orientation is simply
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(16410 = (KAg*) ™. (6)
As shown in Ref. 25, Eq. (6) eventually yields the following

expression for the orientational correlation function for two
points s and t on the surface:

<02(s - t))iso = (le(s) - e(t) |2>iso

z(ﬂK)—llan;—t'. )

A short distance cutoff a of about the size of a molecule must
be introduced in order to avoid a divergence. Equation (7)
leads to a persistence length

P=aexp2nK. (8)

Note that |s — t| > asince the surface is regarded as a contin-
uum.

Let us now consider a suspension of surfaces packed
sufficiently to cause a presumably stable nematic phase. Pro-
vided the surfaces are large enough, the orientational order
can be specified by a distribution function f{1) where ¢ is
now defined as the angle between the normal to the surface
and the director. For large surfaces the director is simply the
normal to the reference plane so that ¢ is identical with
02(r) for all r. The function fpertains to all surface elements
of the micelles except those very close to the rims. Assuming
the degree of ordering is not too low, we approximate / by a
Gaussian®’ depending on a variational parameter a:

fW) =laexp —la® (0<y<lin), (a>1), (9)
Ay = fim— i, f fsinvdp=1+0(a").
(¢]

This is generally the leading order solution to integral equa-
tions arising from the minimization of the total free ener-
gy.>* It is useful to view Eq. (9) as a constraint. But for a
calculation to leading order of the orientational entropy it
suffices to use a weaker restriction or second moment condi-
tion:

2

(W)nem =—
a

This constraint alludes to Helfrich’s ruse of calculating the
change in the confinement free energy.?* Every mode (q) of
a rippling surface experiences a constant torque = because
the same fapplies to all possible sections. Therefore, we can
write

<|9ql2>r;n11 = <|0q|2>i;l +7
=KAq* + 7.

(10)

(11)

Fortunately, we can eliminate 7 since the following relation
applies:

() rem =4 —lj ds{18(8)[2) nem

= (184 ") nem (12)
q
— k) "n(45 + 1)),
a‘r
Thus, on using the constraint [Eq. (10)] we get
AK (13)

r=20 (7=,
aZ

where the dimensionless parameter y has been introduced
for convenience:

y=8mKa . (14)

Lastly, we derive the orientational free energy of N semi-
flexible surfaces in the nematic state by employing Helfrich’s
expression for the free energy per mode?*:

1 ( 0 2)iso
AFo = Nk T s 1n(—'i_)

q (leq‘2>ncm
NAkyTg(y)
— 1
87a’ (19
with
gy =y(l—e )" '=In(e”— 1), (16)

g= —Iny+14+00%, y-0,
g=W+De ?+0@ye %), y>l.

Note that Eq. (15) can be understood heuristically as fol-
lows. One can associate a two-dimensional harmonic oscilla-
tor with a force constant k, proportional to (|8, |*) ~' with
every mode q. The entropy of such an oscillator in a canoni-
cal ensemble is easily shown to be —In &k, + a constant.
Thus, if the system is viewed as a sum of independent oscilla-
tors we attain Eq. (15).

lli. DEFLECTION LENGTH

It is possible to understand the qualitative form of the
orientational free energy [Eq. (15)] by appealing to a scal-
ing argument. We first formulate a deflection length A: This
is analogous to the A of Ref. 19 for a worm-like chain within a
cylindrical tube, to the length scale £, of Ref. 25 for a fluctu-
ating surface in a lamellar phase and to the roughness length
A }’* of Ref. 27 for wandering walls (note that the logarith-
mic terms in the expression for the free energy'® should be
deleted™).

Let us focus on two points s and t on a test surface. When
the distance |s — t| is comparatively small the surrounding
layers exert very little influence on the correlation between
the normals to the surface at s and t. Therefore, to a first
approximation we have (82 (|s — t|)) pem = {0 2(|$ — t]) )iso
but only as long as |s — t| is so small that (82(|s — t|) )i
< (¥*) nem - Thus, a section of the surface with area of order
|s — t|* has its normal pointing towards the director on the
average and deviations of the section as a whole are de-
scribed by Eq. (9). But the internal orientational fluctu-
ations given by (8%(|s —t|)),.m are much smaller so to a
first approximation the section behaves effectively like a rig-
id platelet.

Evidently the relation (B2(Is — t|)) nem
=(67(|s — t])), cannot hold for all |s — t| since the iso-
tropic correlation function increases monotonically with
s —t| whereas Egs. (9) and (10) imply that
(62(|s — t|) ) nem must be severely restricted because of the
prevailing nematic order. In effect, we can write

(02(Is — 1)) nem = €02(8) Y nem + €0(1) )nem

= 2(¥") pem (17
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for |s — t|>A where A is an intensive length scale indepen-
dent of the surface area 4. Hence, for very large surfaces the
expression

lim A—szds dt{07(|8 — t]) ) nem = 2{¥") nem (18)

A— o

exhibits the boundedness of the nematic correlation func-
tion.

The crossover length A is explicitly derived by using the
following scaling postulate:

(62(/{)>550=(¢2>nem' (19)
On the one hand, the relation
(02(]s = ]) ) nem (€ 7(|s — t]) )i, is pushed to its outer limit
of validity, i.e., as |s — t| increases towards A. On the other,
the bound on {(82(|s — t|) ) eem implied by Eq. (18) is as-
sumed to be a reasonable estimate as we decrease |s — t|
down to A. This type of reasoning—connecting different
physical regimes—is often used in qualitative analysis.

Equations (7), (10}, and (19) lead to

A =ae"”, (20)

where we have had to introduce an as yet unknown numeri-
cal coefficient 77 because Eq. (19) is not an exact equality.
The scale A is rightly called a deflection length. Locally a
probe surface behaves ideally according to Eq. (7)
(|s —t] 54). Globally, ie., when |s —t|>A the orienta-
tional correlation function is markedly restrained by the ne-
matic field [see Eq. (17)]. Geometrically there is only one
way we can visualize the fluctuating surface; it must be rip-
pled, the characteristic length scale of the ripples being A. In
other words, the nematic field exerted by the surrounding
surfaces continually deflects the probe surface to and fro so
that every normal to it points toward the director on average
and their orientational distribution conforms to Eq. (9).
Surfaces of area 4 much larger than A ? must be viewed as
semiflexible.>*

Because we have postulated that a3 1, the deflection
length A is much smaller than the persistence length P [Eq.
(8)] pertaining to the isotropic state. Thus, we reach the
apparent paradox that a sheet of area 4 such that 4 2 ¢ 4 < P>
behaves like a rigid surface in dilute solution although its
rippling would be crucial in the nematic state.

We conclude that there are effectively NAA ~2 units or
platelets each contributing about k5 T to the orientational
free energy:

AF,, =NAA ~%kyT (A>AY). @n

It is remarked that the free energy per semiflexible sheet
must be extensive, i.e., proportional to 4 when A> A 2. If we
disregard terms of logarithmic order as is consistent with the
analysis of the previous section, we discern that Egs. (20)
and (21) agree with Eq. (15) provided # = L. Since we now
have a precise expression for the deflection length, we next
formulate the excluded-volume interactions.

IV. EXCLUDED-VOLUME EFFECT

We have argued that our system in volume ¥ consists of
NAA ~? effective platelets of area 4 2. We now postulate that

the interactions can be represented by a virial expansion of
the form

Fo=ksTNAZ™2 S (n—1)"'B (ﬁ‘.‘;)"_' (22)
a=2 "\
with

B, = A"~ Vh, (), (23)

where B, are the virial coefficients and N44 —2¥ ! is the
platelet density. Very little is known about the functions
h, (a) for n>3. For unconnected thin disks we do know that
the second virial term can dominate the others when the
solution is highly ordered.* In that case a Gaussian ansatz
like Eq. (9) works remarkably well.

The function A, (a) is simply proportional to (sin ¥} ...,
where ¥ denotes the angle between the normals of two plate-
lets. Hence we have

hy(a) = b,a™"?, (24)
where the constant b, is of order unity. The ternary terms
must be calculated by adding a third platelet to another al-
ready touching pair so that

hy(a) = b,a= 277, (25)

The constant p is positive for the additional factor should
decrease with increasing order. Note that p =~ 1/4 for slender
rods.?® The other functions have the property
d|h,(a)|
da

Note that &, (a) need not be positive for all #.33
If we introduce the volume fraction ¢ = 4aNV ~' we
can rewrite Eq. (22):

F., = kyTNAa™ %[ b,pa~'"%e V¥

<0. (26)

Fibgpla P24, @7

with

24Ei (n__1)-l¢n~lhn(a)e(l/z)(n-”y‘ (28)
noe= 4

Here we have extracted the second and third virial terms
from the series.

V. MINIMIZATION OF THE FREE ENERGY

We assume the surface area A of every sheet is an invar-
iant quantity. Accordingly, we need to minimize the total
Helmholtz free energy AF . = AF, + AF,, + AF,,, where
AF, is a term independent of a. If the number of molecules in
a surface were to vary (as for a micelle for instance), we
would have to focus on the chemical potential y of 2 mole-
cule instead. Thisis givenby u = a’°4 ~'9AF ., /ONand AF,
would still be independent of & provided 4> A *. We empha-
size that growth and order cannot couple for large systems.
It turns out that our conclusions are independent of whether
thesurface is kept fixed or not, so here we analyze AF, , only.
When it is minimized with respect to &, we get [see Egs.
(14), (15), (20), and (27)]
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V(1 — e=)? =dmba™ " PpeP7(1 — p)
+47(p + Dbsa =~ VpZe? — 8waZ,

(29)
with
1= 3 (= )7L (@) (get)
n=4
1 _1[ - /2y n—1 ]
——ya h, (@) (@e'??) —2e? 2,1\
2 y n;4 ¢7 *
(30)
In discussing the solution to Eq. (20) we proceed by

stages:

(i) First, we assume the second virial approximation is
adequate, setting b, and 4, (n>4) equal to zero. Then, Eq.
(29) possesses a solution only if y is smaller than unity. Since
our surfaces are viewed as continuous we must demand A > a
or y> 1. Hence, the second virial approximation denies the
existence of a highly ordered nematic.

(ii) Next, we take the third virial coefficient into ac-
count. In that case, Eq. (29) is best attacked numerically. In
the concentration range 0.001 S @ €1 we find that a = 0K
where w is a factor varying from about unity to 4 and only
slightly dependent on the constants p,, b,, and b, (b, and b,
are of order unity; 0 < p <2). The term on the left-hand side
of Eq. (29), which arises from the orientational free energy,
does not play a role in determining this solution. Thus, the
third virial term stabilizes the second. The dominating influ-
ence of the factors e"/? and e’ in Eq. (29) explains the
insensitivity of the end result to the precise values of b,, b,
and p and to the orientational confinement term.

(iii) Itis impossible to make headway with regard to the
higher-order terms unless further suppositions are made.
Let us hypothesize that the virial coefficients [Eq. (23) ] are
close to those pertaining to the hard disk gas. Then, X}
would be negative except perhaps under exceptional circum-
stances. Furthermore, it is reasonable to suppose that the nth
term of one of the series is of the same order of magnitude as
the sum of the remaining terms beyond n, provided the
orientational ordering is high enough. This is true for the
Monte Carlo simulations of disks.>* Hence, if ge''/?”” is not
too large and a is not too small we reach a plausible upper
bound on |2} |:

DPHES LRy g (31)
Equations (29) and (31) lead to virtually the same conclu-
sions as those of the previous paragraph. Again, the expo-
nential terms dominate the solution so the precise magnitude
of the various constants is almost irrelevant. The fact that
the inclusion of the estimate equation (31) makes little dif-
ference with regard to the end result is consistent with our
assumptions concerning the virial series.

VI. CONCLUDING REMARKS

The instability of the nematic phase in the second virial
approximation stems from the peculiar dependence of the
excluded-volume effect on the deflection length A. This scale
representing an effective platelet size is a rapidly decreasing

Theo QOdijk: Stability of the nematic phase

function of @, a parameter related to the degree of orienta-
tional order. In effect, the excluded volume between platelets
scalesas A 3, whereas the number of binary collisions between
platelets is proportional to A ~* since the number of platelets
scales as 4 2. Thus, the free energy of interaction is propor-
tional to 4 ~'. Although there is an orientational factor
h,(a) in the excluded volume which diminishes as the parti-
cles align, this reduction is not enough by far to compensate
for the decrease in the deflection length. By contrast, in solu-
tions of worm-like micelles the excluded-volume effect is
proportional to 4 2 which is exactly compensated by the num-
ber of collisions between deflection segments (~A4 ~2) so
that the theory is markedly different.'®

We have reasoned that the instability due to binary colli-
sions between platelets might be overcome by higher-order
interactions. When a plausible though far from rigorous
form for the third virial coefficient B, is postulated, the ne-
matic state is stabilized under certain conditions. The addi-
tional free energy taken into consideration is in fact, inde-
pendent of A because B, is proportional to A 6, whereas the
number of ternary collisions scales as A ~°. Our analysis of
terms higher than the third is even more speculative. It is
conceivable, though highly unlikely, that they could destabi-
lize the nematic phase. However, if the suspension is viewed
as a solution of effective platelets of size A, the higher-order
terms would stabilize the nematic a bit more. Another effect
that could influence the stability is the interfacial tension o.
It can be disregarded when oA 2<aky T. This condition is
justified by noting that the calculation in Secs. II and III
allows the platelet area to be stretched between A ? and
A2(1 4+ a™") because each platelet is displaced by Aa /2
along the director, on average.

In addition, our analysis has several other limitations.
The parameter @ must be large enough (a> 10, 5say).
Hence, the conclusions regarding stability imply rather high
values for K; the theory could be of use in describing mem-
branes, micelles, and other stiff surfaces, but would probably
not be helpful in assessing the feasibility of nematic states for
bicontinuous microemulsions. An investigation of slightly
ordered states would be interesting. However, a bifurcation
analysis does not appear trivial because we would have to
know the functional dependence of the total free energy on
the distribution function.>* The incorporation of forces oth-
er than purely repulsive is also of interest since they might
restrain the rapid decrease of the deflection length A with
decreasing order. Furthermore, it is well to stress that we are
modeling real systems by continuous surfaces. It is conceiv-
able, though barely so, that highly wrinkled nematic sur-
faces might exist whose order is induced on a molecular
scale.

Finally, it is pertinent to point out that the existence of
smectic order is governed by rules of a different nature. Posi-
tional ordering of micellar or other layers imposes a charac-
teristic thickness d between them. In view of the fact that
(£?(r)) =1r?(0%(r)), the deflection length is approximately
given by A, =~dK '/2. Since d can vary within narrow bounds
only, the same applies to 4., in contrast to the behavior of 4
in the nematic. Likewise, the excluded-volume manifests it-
self differently in the smectic. Every platelet in the nematic is
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subject to the prevailing orientational order but it can still
sample the whole volume of the system. This sampling is no
longer possible in the smectic phase. Unfortunately, we are
not able to answer the problem posed in the Introduction,
namely the relative stability of the smectic for micellar sur-
faces. At present there are simply too many uncertainties in
the magnitude of the interactions involved.
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