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ABSTRACT The Modular Multilevel Converter (MMC) has garnered significant interest recently due
to its superior harmonic performance and improved efficiency in high-voltage direct current electrical
grids. Model Predictive Control (MPC) is widely adopted for the MMC applications, as it provides a
straightforward control design, facilitates the inclusion of multiple control objectives through a flexible
cost function formulation, and offers excellent control performance. An emerging and promising solution
involves integrating MPC with machine learning (ML)-based models, in which neural networks learn MPC
behavior and predict the results as the traditional MPC does. In this paper, a multi-layered neural network
is designed to approximate the control behavior of MPC correctly, enabling a substantial reduction in
computational effort during real-time operation and replacing the complex optimization routines of MPC
with lightweight neural network regression models that are both efficient and decoupled from the algorithmic
complexity of traditional MPC. The performance of controllers is evaluated under both small and large
disturbances in active power and reactive power.

INDEX TERMS Machine learning, modular multilevel converter, model predictive control, feedforward

neural network.

I. INTRODUCTION
Modular Multilevel Converters are up-and-coming solutions
among various voltage source converter technologies due
to their excellent scalability, modularity, and suitability for
high-power and high-voltage applications, particularly in
high-voltage-direct-current transmission systems [1], [2].
MMC has garnered significant interest recently due to its
modular structure and for providing several advantages,
including superior harmonic performance and improved
efficiency, including enhanced power quality, scalability, low
harmonic distortion, high efficiency, fast dynamics response,
and improved fault tolerance [1], [3], [4], [5], [6], [7].
Despite the many advantages that MMCs have, a sig-
nificant limitation in controlling MMCs stems from their
computational complexity. This challenge escalates rapidly
with increasing numbers of submodules (SMs) or output
voltage levels. The control algorithm’s computational burden
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is growing significantly as more SMs are added, creating
practical implementation constraints for high-voltage appli-
cations with numerous SMs. However, their complex internal
configuration and numerous switching states pose significant
challenges for precise and efficient control, requiring entering
the new advanced control era, such as MPC and ML-based
MPC approaches. Numerous model-based control techniques
have been studied for MMC systems to control the MMCs
and to highlight their importance, including Linear Quadratic
Regulation (LQR) [8], adaptive control [9], and MPC [10].
Among various control strategies, MPC has proven partic-
ularly effective for MMCs, due to its predictive capability
and flexibility in handling multivariable dynamics. MPC
has gained widespread adoption; it can evaluate the system
state and provides a robust framework for managing these
complexities, offering optimal control solutions in real time
while explicitly handling constraints [10], [11], [12].
However, a significant limitation in MPC applications
arises from the extensive number of switching states, signif-
icantly increasing the computational load and complicating
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real-time execution [13], [14], [15]. Despite its benefits,
a major challenge of MPC lies in the intensive compu-
tational effort required for the online optimization [16].
The complexity escalates particularly in explicit MPC,
where many input sequences must be evaluated at each
sampling instant to determine the optimal control action. This
computational demand becomes even more pronounced when
the controller is tasked with regulating multiple constraint
variables simultaneously, thereby complicating real-time
implementation. The computational effort associated with
MMC control has been reduced from the primary cost
function by decoupling the SM capacitor-voltage regulation
in [17]. In the work [18] further alleviates the burden by
introducing a novel MPC framework that segments the
cost function into three distinct components, each tailored
for specific control objectives, effectively minimizing the
number of evaluated states. A fast MPC approach is presented
in [19], incorporating an SM voltage balancing method to
enhance speed and responsiveness. Again, to address the
issues, the Laguerre functions have been integrated into the
formulation of discrete-time MMC models [10], [11], [20].
Using Laguerre functions significantly reduces dependency
on the control horizon, thereby reducing the computational
effort required for prediction and making it easily applicable.
Despite these advancements, the fundamental nature of
MPC remains unchanged, namely, the need to evaluate
switching possibilities at every time step. Consequently,
the applicability of MPC remains constrained to systems
operating at relatively low switching frequencies.

To address these challenges, ML techniques, particularly
neural networks, have been explored as a promising alter-
native. A basic neural network architecture can be trained
offline by making use of the data from conventional MPC
controlling the MMC. Once trained, the neural network can
replicate the control behavior of MPC while significantly
reducing the real-time computational burden. Moreover,
the data-driven nature of neural networks offers increased
robustness against model inaccuracies, making them suit-
able for practical implementations of predictive control in
complex power conversion systems. A supervised learning
framework is introduced in [21] and [22] to replicate the
behavior of MPC with significantly lower computational
complexity. The advancement in artificial intelligence has
significantly improved the control capabilities of various
kinds of power converters by enabling intelligent and efficient
control strategies [23]. ML algorithms have demonstrated
the potential to optimize converter real-time performance by
learning from the historical data and dynamically adjusting
the control parameters. By using supervised learning meth-
ods, it is possible to develop ML-based MPC controllers that
mimic the decision-making process of MPC. These models
can predict optimal control actions with minimal delay,
making them efficient alternatives to traditional optimization-
based approaches. Replacing conventional MPC with neural
network model predictive control (NNMPC) offers a promis-
ing approach to mitigate the computational complexity
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associated with traditional MPC in MMC applications [24].
A developed ML model, such as a neural network, can
be trained offline using data that is generated from the
traditional MPC operating under various load conditions,
current references, and model parameters. Once trained, the
NNs can replicate the control behavior of the MPC while
significantly reducing real-time computational requirements.
This approach is thus suitable for real-time control appli-
cations, especially in systems like MMCs, where the high
computational complexity of traditional MPC often poses a
challenge [12], [24], [25].

This paper presents an ML-based MPC approach as an
efficient alternative to traditional MPC for MMCs. Data
were collected from the Laguerre-based MPC formulation
to approximate the controller behavior and used to train a
neural network. This trained model replicates the control
policy, enabling fast predictions with reduced computational
overhead. Simulation results depict that the ML-based con-
troller closely matches the performance of traditional MPC
and discrete linear quadratic regulator (DLQR) approaches
in the unconstrained case, effectively regulating the MMC.

Based on the above discussion in the present article, the key
contributions of the present work are highlighted as follows

1) We introduce a variable substitution to reformulate the
state-weighting matrix in the cost function. Replacing
the identity matrix with a tailored non-identity matrix
enables unequal prioritization of state variables accord-
ing to their significance for the control objectives.

2) The present study applies the proposed NNMPC
approach to the MMC. It includes simulation results
obtained with the traditional MPC and the benchmark
DLQR controller to enable a clear comparative perfor-
mance assessment.

3) The proposed controller is tested under different
constraint scenarios, including rate and amplitude
limits and combined constraints of both rate and
amplitude, and their effect on the output current. Again,
the sensitivity analysis using Laguerre parameters is
systematically investigated

The present paper is organized as follows: Section II
presents the discrete-time model of the MMC and MPC
formulation. Section III details the development of the neural
network-based MPC framework. Section IV provides the
simulation results to validate the proposed control strategy.
Section V comments on this paper’s overall results and offers
future potential directions.

Il. MATHEMATICAL FORMULATION OF THE MMC AND
MPC

A. STATE-SPACE MODEL OF MMC

The MMC presents a three-phase structure comprising three
legs, each corresponding to a separate phase, j € {a, b, c}.
Every leg includes a lower and an upper arm, and each arm
is composed of Ngys half-bridge SMs, as depicted in Fig. 1,
where the voltages and currents in the upper (denoted as U)
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FIGURE 1. MMC topology.

and lower (denoted as L) arms can be described by:

JUL mULyUL UL ULULUL
U/ A/ e A A A
Here, mY*F are the insertion indices of the upper and

J
UL UL
lower SMs, respectively, and Ve s Yy Tepresent sum of

SM capacitor voltages, and equivalent voltages on SMs,
respectively. The development of the converter model is
based on the approach described in [26]. By adopting the X—
A notation, it is possible to express the variables associated
with the upper and lower arms of the converter as follows:

.U .J,
17 +1;
A _ U L X J
lj = lj lj ) lj - 2 ) (23.)
U _ L U
A VGG s VGG (2b)
Ve = Vg = s
2 2
mjA = ij — ]L mj?: = my + m-L (2¢)
U A 2 )
A ij—i—Vﬁ,,j B —m; vcj—l-m Véi 24d)
T T 2
U L DIND! A A
E_ij—i—ij_m ij—i—m Ve )
Vigi = = . (2e)
J 2 2

The dgz-frame variables [11], [26] are created using Park
transformation:

cos(wpt) cos (wot — 27”) cos (a)ot — 4—”)

sin(wot) sin (a)o

Pwo(f)=§ ¢
i 1
2

2
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Next, the differential equations are written by considering
inductor currents and capacitor voltages as state variables:

SA =G
d oy Vi~ (oL + RisL) i~ G,
= (qu) - Iz (3a)
i (;Eq) _ Vqu + (Rapmlz — 2CULarmJZ) ldq ’ (3b)
dt Larm

P )

i (iE) _ Vde Vi, T R’l’mlz (3¢)
dt z ZLarm Larm ’

where w is the angular frequency, and Lg7 = L, + L“2"" JReg =
R, + R“%. I is the identity matrix of dimension 2 x 2, while
5= 01
—-10|
The operational dynamics of the MMC can be fully char-
acterized by the following discrete-time differential equation:

Xm = ApmXm + Bpii, where X, = [ld f,tf,tﬁ A]T i
the state that corresponds to the output current and u =

¥y .3 % Vie LA A LA AT
[de’qu’sz - Ve — Vi Vg — v, 1" represents

difference between the corresponding voltages in the dg-
frame [10], [11], [27]. Matrices A, and B,, are given by:

[ZRam 25 0 0 0

Larm
20 Fem 00 0
0 0 Frem o 0

—R%
0 0 0 Lo
0 0 0 o R

- eq

) 1 1 1 1 1
B, = diag | — , = , = 1. @

arm Larm Larm ng ng

The zero-order hold (ZOH) method [11] is used as standard
in controller design and is applied here to discretize the MMC
continuous state-space model [27]:

Xm(k + 1) = Ap(T)Xm(k) + By(Ty)u(k) (5a)
Yk + 1) = Cp(To)xm(k), (5b)

Where C,(T5) is an identity matrix, and A,(7) and B,,(T) are
given as the exact solution of the differential equation as:

B,(T,) = A} (eAme - 1) B,.

The resulting model provides AC and DC representations of
the MMC.

Ap(Ty) = T,

B. MPC FORMULATION

The discrete-time MMC model can be characterized with %
denoting the control signals and X, representing the output
signals. An integral action is incorporated into the output
formulation to ensure zero steady-state error, producing the
enhanced discrete-time MMC model. The standard MMC
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model, is given by the following equation: (6)

|:A?cm(k+1)}_|: Ap(Ty) ()T] [Aiém(k)]
Yk +1) | [CoToANTy) 1 y(k)

F(k+1) A x(k)

By(Ty) -
+ |:C,,(TS)B,,(TS):| Au(k), (6a)
—

B

y(k) = [0, 11X(k). (6b)
e
C

Here, 0is a zero matrix, Au(k) = u(k)—u(k—1) and AX,,(k+
1) = Xu(k + 1) — X,,,(k) is the forward difference where (k)
and u(k — 1) indicates the input to the system, for instance k
and k — 1, respectively.

In conventional MPC schemes, using the input incre-
ment A# in the cost function, particularly under high
sampling frequencies and stringent closed-loop performance
requirements, necessitates many parameters, specifically a
longer control horizon N.. This can lead to numerical
ill-conditioning and a significant increase in computational
effort. To address this, a Laguerre function-based representa-
tion [28] is introduced that approximates the input increment
sequence Au = [Au(k;) Au(k; + 1) --- Au(ki + N, — D]T.
Instead of directly optimizing each increment, this method
reformulates the problem using a pulse basis operator A§(i),
allowing Aui(k; + j) to be expressed as:

Autki +j) = [8(@) 8G = 1) --- 8G—Nc+ D], (D
where §(i) denote the pulse operator is expressed as:

6(i>=[1’ =0 ®)
0, ifi#0.
This transformation significantly reduces the number of
optimization parameters, decreasing the computational load
during real-time implementation. Consequently, the MPC
becomes more efficient and suitable for fast dynamic systems
like MMCs [28].

At the k' time step, the control parameter changes from
Au(k) to 7j as

Ak + kilk) = L(k|k)" 7, (9a)
L(ki + 11k) = A;L(ki|k), (%9b)
where
a 000
B a0

Ar=1-gpa0|

LO)= B[l —ad® - (=1YV1a"-1]",

_ T

n:[cl cy ... CN] .

The parameter a represents Laguerre’s network pole,
where 0 < a < 1 ensures network stability. In this work,
we select @ = 0.237 and define 8 = /1 — a%. The number
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of terms N used to approximate the system response is set to
N =4.

The optimal value of the vector, 7, is obtained by
minimizing the cost function while also satisfying the
constraints of equality and inequality. So the cost function in
this case is derived based on the DLQR as the base, which is
expressed as:

NP
minJ = > 5k +mlk)" Q¥(k +mlk) + 7" Rij,  (10a)
K m=1
subject to M7 < b, (10b)
X(k 4+ mlk) = (F(k) — Yk +mlk)T.  (10c)

The weighting matrices satisfy Q > 0 (positive semidefinite)
and R > O (positive definite). Also, M and b are
column vectors representing constraint information related to
amplitude, rate, or a combination of both, and r(k) denotes
the reference signal. While a common practice sets 0 =
CTC (yielding an identity matrix in standard cases) where
C is the output matrix, our specific control problem requires
a modified Q matrix to be positive definite and different
from the identity matrix. To achieve this transformation in a
structured way, we modify the output matrix C in (6). Let us
define C = EC, where E is a nonsingular matrix. This change
requires adjusting the output vector as ?(k) = Ci(k) =
Ey(k), and the state vectoras:

Bk + 1) = [(ATuk + D) ESk+ )] A

By applying the following transformations, the corre-
sponding augmented discrete-time MMC model in (6) can be
reformulated as:

AXp(k + 1)
E-5k + 1)
[ A, O] AXu(k) B, >
e R AR
Therefore, these modifications are also valid for the aug-
mented plant model.

The cost function in MPC is generally designed to
minimize the deviation between the output signal and the
desired setpoint (reference) signal. A standard form of such
a cost function can be expressed mathematically, which may
serve as a basis for developing the specific form of the cost
function used in this work. To explore the structure and
influence of the weighting matrix Q, we consider two distinct
cases formulated and discussed in the subsequent sections.

The general cost function is of the form that minimizes the

error between the setpoint (reference) signal and the output
signal. It is expressed in the form:

Xtk+1)= |: ] = AX(k) + BAu(k)

Nl’
J=min > [Fk) -
K m=1
x(F(ki) —3) + " Rif], (12)
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or

J =min(R — Y)' (R — Y) + 7" Ry (13)
n

Our objective is to reformulate the cost function to resemble
the structure of the standard DLQR cost function. To achieve
this, we analyze the specific choices of the weighting matrix
Q under which the cost function in (12) becomes equivalent
to the DLQR form. We can align both formulations by
selecting Q as a symmetric positive semi-definite matrix
that emphasizes the tracking error similarly to the DLQR
framework. This alignment ensures that our approach inherits
the desirable stability and performance characteristics of
DLQR control design. To investigate this equivalence,
we consider two distinct cases for the setpoint signal, which
will be discussed in detail as Case I and Case II in the
following sections.

1) CASE |
Suppose 7(k) = 0, theg from equation (12), we can assume
that é(k + m|k) = 0 — Y(k + m|k). Then the cost function:

N,
- T -
7=> (0 — Sk + mlk)) (0 — 5k + mlk))
m=1
+ i Ri
NP
= D x(ki +mlk)" CTET ECx(ki + mlki) + 1" Rij. (14)

m=1

By comparing the cost functions in equations (10a) and (14),
we find that they are identical when r(k) = 0 if and only if

0=CTETEC. (15)

2) CASEII
In the case when 7(k) # 0. Then, based on equation (12),
we want to reformulate the cost function in a DLQR-like
structure, recall the output matrix as

C=E[01]
We define a vector X, (k;) = [07 (E~'7(k:)T17, where X.(k;)
and the augmented state variable X(k) have the same
dimensions, with the number of zero entries equal to
the dimension of AX,(k). This structure ensures that the
reference can be expressed as

(ki) = CX,(k;). (16)

Here, it is crucial to note that during the processes of
prediction and optimization, the setpoint signal 7(k;) remains
constant throughout the optimization horizon. Again, in this
case, the state vector is categorized as

Xk + 1) = [(ATn ()T (E~'F (ki) — ki + m|k,»))>T]T
(17)

VOLUME 13, 2025

We choose a vector '}V and pre-assume the DLQR cost
function and matrix Q:

NP
J =" %k + mlk)" QX(k + mlk) + 7" Rij,

m=1

by substituting the value of the Q and X, one can obtain the
following

va
=7 [ ATtk mik)T (& (k) — 506+ mik) |
m=1

L[o0 AX(ki + mlk;) +iTRY
0 ETE| [E~'(F(k) — (ki + mlkp) | T T

NP
=> [(?(ki) S+ mik))
m=1
x (EYTETEE™! (?(k,-) — (ki + m|ki)) + r‘;’TRﬁ}.

After simplifying, we get

Ny
J= nrgng1 [(?(ki) — Sk + m|k,->)T
x (7ki) = 306+ mlk)) + ﬁTRﬁ}. (18)

This demonstrates that equations (12) and (18) are identical,
confirming that the cost function aligns with the DLQR
formulation used thus far.

Again, from equation (12) it follows that:

NP
J=min > [(r(k) =3 (r(k) = 3) + ii" Rif].

m=1
NP
J = mi k) — ) (E Y ETEE!
mﬁmg[((r() WHE
x ((r(k;) —3) + i Rij]
Ny
= mi E~\(r(k) =) TETE
H%mm;[( (r(ki) — y))

x (E~Y(r(kj) — ) + i’ Rij]

N,
T = [(AZuk)T (E-'F ki) — (ki + mlki))" ]
m=1
0 0 AXp(k; + m|k;)
10 ETE| | E7! Gtk + mlki) — F(ks))

+ 1" Rij
N,
= D" X(ki + mlk)" (CE)" (CE)X(ki + mlk;) + 7" Rij.
m=1
(19)
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which is equivalent to DLQR cost function. Therefore, we can
confidently state that the cost function remains consistent
with that of the DLQR, validating our approach even for a
nonzero setpoint. Based on this discussion, we ensure that
the DLQR is the base for our approach, and the optimization
problem is defined in equation (10), where Q = CTETEC,
M and b are column vectors representing the constraint
information related to both rate and amplitude limitations. For
this problem, we set

_s 2 —1
R=10""x1, E:|:3_2].

Ill. NEURAL NETWORKS BASED MPC CONSTRUCTION
Neural networks are powerful tools for modeling complex
systems because they can process information in parallel
and perform distributed computations. They are instrumental
when accurate mathematical models are unavailable or only
partial knowledge of the system states is accessible. With
sufficient training data, neural networks can learn the system
behavior and provide accurate approximations of system
behaviors by removing the traditional computations.

Due to system identification by neural networks, their
nonlinear characteristics, and their ability to learn directly
from data without requiring prior system knowledge, neural
networks are well-suited for use in MPC frameworks. They
can capture the dynamics of complex, multivariable systems,
making them highly valuable in advanced control strategies.
There are several types of neural networks, such as the
multilayer perceptron (MLP), radial basis function (RBF)
network, and various recurrent neural networks (RNNs).
Despite their differences, all these networks and chosen
architectures share common components like layers, neurons
(nodes), and weighted connections. In this work, we employ
a particular multilayer neural network, which is widely
used in various applications involving prediction, system
identification, and control.

Since our application involves predicting multiple future
outputs, we use the neural network iteratively. The output
from each prediction step is fed back into the network as
input for the next step. This approach allows us to generate a
sequence of future values that can be integrated into the MPC
strategy.

In our present work, a feedforward neural network with
hidden layers, each using the hyperbolic tangent activation
function, and a linear output layer was trained using
the Levenberg-Marquardt algorithm (LM) (trainlm) in
MATLAB to model the nonlinear system under study. The
loss function is critical for training, quantifies prediction
errors, and guides weight optimization.

To evaluate prediction accuracy, we employed the mean
squared error (MSE) as the loss function, defined as follows:

1 g T A
MSE = - ;[y(t) -3]" [y - 3],

169332

where N is the number of data points, y; is the true output,
and ; is the predicted output. MSE is suitable for regression
due to its differentiability and sensitivity to errors, making it
ideal for the continuous outputs of this problem.

To minimize the MSE, t rainlm employs backpropaga-
tion to compute the gradients of the MSE with respect to
the network weights, forming the Jacobian matrix. The LM
algorithm then optimizes the weights. A detailed analysis of
the LM algorithm is provided in Appendix A.

The complete setup for the NNMPC working process,
data collection, neural network training, and using the
trained model for control performance, is clearly described
in Algorithm 1. Again, in order to help visualize each stage,
a flowchart is also provided in Fig. 2, showing the step-
by-step procedure from initial data preparation to real-time
implementation on the MMC system.

Algorithm 1 Neural Network-Based Output Predic-

tion for MPC
Input: System matrices Ap, By, Cp; Initial state Xo;

Control input sequence {ﬁk}g:l from MPC
Output: Trained neural network A for output
prediction

1 Initialize state: X; < Xo;

2 fork=1toN — 1do

3 Compute output: yx = CpXy;

4 Update state: Xx41 = ApXx + Bplix;

5 Store input-output pair: X; = [ug, Xk ], Y& = Ykt1;

6 Assemble training data: X = {Xk}ivz_]l, Y = {Yk}ivz_ll;

7 Define and train NN: V' = train(X, Y) with
activation functions tansig and purelin,
training algorithm t rainlm, epochs = 3000,
regularization = 0.05;

8 Split data: 70% training, 15% validation, 15% testing;

9 Evaluate performance: compute MSE; compare
predicted vs actual outputs;

10 foreach new input-state pair Uy, x| during MPC
execution do

11 L Predict output: §’k+1 = N ([, X 1);

The optimal network architecture was determined by tar-
geting a minimum MSE of 107>, at which point training was
terminated. The configuration that first attained this target
MSE was selected among the candidate models. To provide a
more comprehensive assessment of predictive performance,
we also report a mean absolute error (MAE) of 0.09, which
is less sensitive to large deviations, and a mean absolute
percentage error (MAPE) of 0.01876%, which quantifies
relative prediction accuracy. Upon completion of training,
the model’s generalization capability was evaluated on an
independent validation dataset. If validation performance
proved unsatisfactory—indicating potential underfitting or
overfitting—the model was re-trained either by re-initializing

VOLUME 13, 2025
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FIGURE 2. Flowchart of NNMPC algorithm.

weights and biases or by modifying the network structure to
achieve improved accuracy.

IV. PERFORMANCE EVALUATION AND SIMULATION
RESULTS OF MPC AND NNMPC

A. PARAMETERS FOR MMC

To evaluate the performance of the MMC model illustrated in
Fig. 1, the parameters are given in Table 1.

The active and reactive power setpoints were intentionally
varied to evaluate the dynamic performance of the MMC
when controlled using both conventional MPC and NNMPC.
These variations were clearly observed through the output
currents in the dgq reference frame. The study examines
two main scenarios: small and large disturbances. For each
scenario, simulations of two events were performed at
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TABLE 1. System Parameters of MMC Used in Simulations.

Name Symbol | Value

Arm inductance Layrm 0.15 [p.u.]
Arm resistance Rurm 0.0015 [p.u.]
AC filter inductance | Ly 0.12 [p.u.]
AC filter resistance Ry 0.003 [p.u.]
Sample time Ty 2 [ms]

TABLE 2. Simulation scenarios for NNMPC under small and large
disturbances.

Changes Variable 1st Change | 2nd Change
Small Active power 0.5 p.u. (10) 1.0 p.u. (30)
Reactive Power 0.2 p.u. (20) 1.0 p.u. (30)

Large Active power -1.0 p.u. (40) 1.0 p.u. (80)
Reactive Power | -1.0 p.u. (50) 0.5 p.u. (80)

iy step
i DLQR
—— i3 MPC
—— i} NNMPC

Uq

Uq

‘Sampling Instant

FIGURE 3. Case-study with unconstrained scenario showing Auy 4
dynamics.

different time intervals. Both active and reactive power
variables were evaluated, each undergoing changes at specific
time instances, as detailed in Table 2.

B. SIMULATION RESULTS FOR THE UNCONSTRAINED
CASE

First, we consider the unconstrained case, where no con-
straints are imposed on state variables. At the initial state,
the active as well as reactive power setpoints are set to
zero, as illustrated in Figs. 3—4. The traditional MPC,
NNMPC, and DLQR responses closely align, tracking the
same trajectory. When the setpoint changes, comparisons at
various sampling instants reveal nearly identical responses
between the controllers. Under small disturbances, MPC,
NNMPC, and DLQR demonstrate comparable performance,
exhibiting minimal overshoot, while for larger disturbances,
the overshoot is larger. The MMC plant’s output and control
input results for the unconstrained case are depicted in
Figs. 3—4. These results demonstrate the system’s sensitivity
to disturbance magnitude when state constraints are absent,
underscoring its dynamic response under such conditions.
Without constraints, both the MPC and NNMPC approaches
yield performance comparable to the DLQR, as the DLQR is
commonly used as a baseline for evaluating these controllers.
This similarity arises because, in the unconstrained case,
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the predicted plant output can also be obtained using the
DLQR method. However, this equivalence holds only in
the unconstrained scenario. The DLQR approach becomes
inapplicable where introduced, as it cannot explicitly handle
constraints on states or inputs. Therefore, in the constrained
case, we focus on the predicted plant outputs obtained using
MPC and NNMPC, which are inherently capable of handling
such constraints. This capability is one of the key reasons
why MPC and NNMPC are widely adopted in practical
applications.

Analyzing system output responses under constrained
scenarios is essential, as it provides valuable insights into
controller performance and stability under practical operating
conditions. Most of the MMC plant challenges are based on
constraints.

C. SIMULATION RESULTS FOR CONSTRAINT SCENARIOS
One of the distinguishing features of MPC compared to
DLAQR is its inherent ability to handle constraints within the
online optimization process. In this section, we investigate
how three distinct constraint scenarios influence the plant’s
output by comparing the responses obtained from both
traditional MPC and the proposed NNMPC approach:

1) Rate constraint;

2) Amplitude constraint;

3) Both rate and amplitude constraints.
Constraints on the system output may be considered in the
current analysis, although this can be included and visualized
if required; in some cases, they may lead to system instability.

1) RATE CONSTRAINT
To observe the effect of rate constraints, we have imposed
three different rate constraint scenarios, which are outlined
in the following cases:

@) [Aug| = |Aug| = 30;

(®) [Aug| = |Augy| = 40;

©) |Auq| = |Auy| = 60.

(d) unconstrained case.

The results obtained from both the MPC and NNMPC
approaches exhibit similar behavior. Moreover, the signifi-
cant impact of the rate constraints on the output signals iﬁ
and iﬁ is observed. From the Figs. 5-7 it is clear that the rate
constraints do not violate the corresponding constraints limit
as we impose on it.

2) AMPLITUDE CONSTRAINT
To analyze the effect of amplitude constraints on the system’s
output dynamics, we consider the following limits:

@) |ual = lugl = 30;

(®) |ugl = |uq| = 40;

(©) lug| = |uql = 60;

(d) unconstrained case.

The influence of these amplitude bounds on the system’s
output is illustrated in Figs. 8-10. The conventional MPC and
the proposed NNMPC, both exhibit the similar performances
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FIGURE 4. Case-study with unconstrained scenario showing Aug q
dynamics.
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FIGURE 5. Dynamics of / dA current with constrained voltage scenarios:
upper left - |Aug| = 30; upper right - |Augy| = 40; lower left - |Augy| = 60;
lower right - |Aug| = 400 (unconstrained case).

ug MPC
100 100 uq NNMPC
| S b
50 50
=
§ 0 S o
-50 -50
-100 -100
0 20 40 60 80 100 0 20 40 60 80 100
Sampling Instant Sampling Instant
100 100
50 50
=
S o 3 o
-50 -50

-100 -100
0 20 40 60 80 100

Sampling Instant

S}

20 40 60 80 100
Sampling Instant

FIGURE 6. Dynamics of ug voltage with constrained scenarios: upper left
- |Aug| = 30; upper right - |Augy| = 40; lower left - [Auy| = 60; lower
right - | Aug| = 400 (unconstrained case).

across all cases, demonstrating that the neural network has
effectively learned the underlying control behavior of the
MPC and accurately replicates its response. The control
inputs remain within the specified amplitude limits from
minor disturbances, with no violations observed. However,
under larger disturbances, the control effort approaches
the imposed bounds. As shown in Fig. 9, even when the
inputs reach their limits, the constraint handling capability
of both control strategies ensures compliance. Interestingly,
Fig. 10 reveals that while the control inputs ug , stay
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FIGURE 7. Dynamics of Auy voltage with constraints: upper left -
|Aug| = 30; upper right - |Aug| = 40; lower left - |Aug| = 60; lower right
- |Aug| = 400 (unconstrained case).
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FIGURE 8. Dynamics of i dA current with amplitude constraints: upper left
- lug| = 30; upper right - |ugy| = 40; lower left - |uy| = 60; lower right -
|ug| = 400 (unconstrained case).
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FIGURE 9. Dynamics of ug current with amplitude constraints: upper left
- lug| = 30; upper right - |ugy| = 40; lower left - |ugy| = 60; lower right -
|ug| = 400 (unconstrained case).

within their respective limits, the rate of change Aug g,
may temporarily exceed expected dynamics under significant
disturbances. This suggests that while the absolute control
values are constrained, the dynamics of the control signal
are more aggressive in response to sudden changes in system
conditions.

The dynamic behavior of the system under each of these
amplitude constraints is illustrated in Figs. 8-10. These
figures highlight how different amplitude limits influence
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FIGURE 10. Dynamics of Aug voltage with amplitude constraints: upper
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- |ug| = 400 (unconstrained case).
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FIGURE 11. Dynamics of ug with rate |[Auy| and amplitude |uy|
constraints: upper left - case (a); upper right - case (b); lower left - case
(c); lower right - case (d).
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FIGURE 12. Dynamics of Aug with rate |Aug| and amplitude |uy|
constraints: upper left - case (a); upper right - case (b); lower left - case
(c); lower right - case (d).

the overall system response. The constraints |uy| = |uy| =
30 significantly impact the control of the output response.
Specifically, they lead to a noticeably higher undershoot
when compared to the cases with higher constraints (|Aug| =
|Au,y| = 60) and the unconstrained scenario. This behavior
highlights the trade-off between tight rate limitations and
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FIGURE 13. Effect of prediction horizon Np with fixed Laguerre
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FIGURE 14. Effect of Laguerre pole a with fixed Np and N.
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FIGURE 15. Effect of Laguerre terms N with fixed Np and a.

the controller’s ability to promptly correct deviations in the
system responsively.

3) BOTH RATE AND AMPLITUDE CONSTRAINTS

To investigate the combined effect of rate and amplitude
constraints on the output response, we impose the following
limits To understand the effect of rate and amplitude
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constraints together on the output response, the following
limits on rate and amplitude constraints are imposed:

(@) |Augl = |Augl = 30, |ug| = |ug] = 30;
) [Aug| = |Aug| = 40, Jua| = |ug| = 40;
©) 1Augl = | Aug| = 60, |ug] = lug| = 60.
(d) unconstrained case.

The corresponding responses of the system under both
small and large disturbances are illustrated in Figs. 11-12.
The results demonstrate that after imposing both amplitude
and rate constraints, the control signals 14,4 and Aug 4 remain
within their specified limits across all disturbance levels.
Furthermore, the traditional MPC and the proposed NNMPC
yield nearly identical responses, effectively satisfying the
constraints even under larger disturbances. This observation
confirms that the neural network model successfully captures
the constraint-handling behavior of the conventional MPC
approach.

D. SIMULATION RESULTS BASED ON THE SENSITIVITY
ANALYSIS

The influence of Laguerre’s parameter (a, N) and the predic-
tive horizon (NV,) is depicted in Figs. 13-15. The predictive
horizon N minimally impacts system behavior for fixed
values of @ and N at given sampling time, 7. Specifically,
the response of the neural networks-based system remains
identical for N, = 4 and N, = 40, demonstrating that the
MMC model is essentially independent of the length of the
predictive horizon in this case. In this case, the output of
the NNMPC system follows the setpoint more accurately,
as clearly depicted in Fig. 13. We fix the prediction horizon
and sampling time to observe the Laguerre parameters’ effect
on the neural network-based model’s output. The Laguerre
parameters @ and N exhibit more significant effects on system
performance, as increasing the parameter N causes the system
poles to converge toward those of the underlying DLQR
controller. As a result, the behavior of the NNMPC closely
resembles that of the DLQR controller. Although the system
output shows significant fluctuations from the reference
signal at some instances, this behavior is depicted in Fig. 14.
Again, increasing the pole parameter a drives the system
toward instability. Specifically, when the pole is chosen as
a = 1, the eigenvalues shift toward the boundary of the unit
circle. These results suggest that while the predictive horizon
can be kept relatively short without performance degradation,
careful selection of Laguerre parameters (N and a) is crucial
for maintaining system stability and achieving desired control
performance.

V. CONCLUSION

In this study, we present a neural network-based MPC
strategy for controlling the MMC plant model. Traditional
control methods often struggle with MMCs because of
their complex structure and large number of submodules,
which make real-time control more difficult and increase
computational load. To overcome these challenges, a multi-
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layer neural network is used to learn the plant’s dynamic
behavior. After training, the network can accurately predict
the MMC system’s output from the input variables, removing
the need for a detailed mathematical model.

The major contribution of this paper is the development
of a cost function in which the weighting matrix Q is non-
identity. This matrix is derived through a transformation of
the output matrix, necessitating corresponding adjustments in
the augmented model of the MMC. The resulting non-identity
QO matrix has unequal weighting of the system states, enabling
more flexible tuning and a more precise representation of
control objectives.

Further to evaluate the effectiveness of the proposed
framework, we analyzed the plant’s output behavior across
different control scenarios. Firstly, we deeply considered
the investigation of the unconstrained case, where it was
observed that the output response from our proposed NNMPC
controller is aligned with similar output response behaviour
with the DLQR, traditional MPC, and the proposed NNMPC
all produce similar output responses. The results confirm
that the neural network is well-trained and successfully
mimics the behavior of a traditional MPC. The proposed
simulations show that the NNMPC framework can control
the system effectively, providing accurate predictions while
significantly reducing the computational cost. The proposed
method performs well across different operating conditions,
including setpoint tracking. These results show that the
NNMPC approach is robust, adaptable, and well-suited for
real-time control of MMC systems.

APPENDIX A

The objective of the training procedure is to find the network
weight coefficients that minimize the discrepancy between
the actual outputs y(t) and the outputs produced by the
artificial neural network, denoted by y. More formally, the
cost function employed for training in this work is the MSE
(where N represents the total number of samples)

1 N
LO) = 50 > [0 =5]" [y = 3]. (20)
t=1

The LM algorithm is developed specifically to address
the nonlinear least-squares problems. When working with
experimental or observed data, least-squares problems are
commonly used for model fitting. The process achieves this
by defining an objective function, which sums the squared
differences between the values predicted by the model and
the actual measurements. Minimizing this sum results in
the optimal parameters for the selected model, thereby
reducing the difference between the model predictions and
the actual values. This method serves as a cornerstone in
data analysis, statistics, and numerous scientific applications,
offering a robust framework for interpreting and modeling
observed patterns [29]. One of the important properties of
the LM method is its adaptive nature. When the current
parameter estimates are far from the optimum, the algorithm
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behaves like gradient descent, helping to ensure stable
and cautious convergence. Conversely, when the parameters
approach their optimal values, it behaves more like the
Gauss-Newton method, allowing for faster convergence. Due
to this flexibility in choosing the search direction at each
iteration, the LM algorithm tends to be more robust than the
Gauss-Newton method alone, which is considered one of its
main advantages. In general, curve fitting involves adjusting
a model function y(¢, p), which depends on a vector p of n
parameters and an independent variable 7 to best match a set
of N observed data points (¢, y;). The common way is to
minimize the MSE between the measured y; and the estimated
output y(#;, p), as given earlier in equation (20). The MSE can
be expressed as below:

Lp) = (y=5@) Wy —350)), @1)
Again,

Lp) =y"Wy = 2" W) + 5@ Wip). (22

where, the matrix W is diagonal, and its elements given by

1
Wi, i) = N (23)
In general, curve fitting involves adjusting a model function
y(t, p), which depends on an independent variable ¢ and
a vector of n parameters p, best to match a set of N
When the model function ¥(¢, p) is nonlinear concerning the
parameter vector p, minimizing the cost function defined in
equation (20) must be performed using iterative methods.
One widely used approach is the gradient descent algorithm,
which updates the parameter estimates in the opposite
direction of the gradient of the target function.
The gradient of this function regarding the parameters p
can be obtained as follows:

JaL . T 0 ~
— =2(y— W—(y— . 24
5y = 20 =IW) W (v =30) (24)
Due to independency of y with p, this expression can be
rewritten as
o AT 0Y(P)
==2(y—3(p) W o (25)

Now the Jacobian matrix J is defined as the partial derivatives
that capture the local sensitivity of the estimated outputs to
parameter modifications

35
I=2, (26)
ap
The gradient becomes:
oL T
— =2y WJ. 27
% (y=3) 27)

For every successive step, it is important to compute vector i
that adjusts the parameter vector p. This update may guide the
parameters toward the steepest descent of the target function.
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The update vector for the basic gradient descent method can
be estimated as follows

hgd =a1JTW(y—51), (28)

where o is a positive scalar that controls the step size in the
gradient descent direction. By applying the first-order Taylor
series expansion of the model output around the current
parameter estimate p, the following expression is rewritten
as

. . 9y .
y(p+h)%y(p)+£h=y+1h. (29)

For the next step, derivation using the expression from
equation (21) and substituting the linearized model output,
we have:

Lp+h) ~y' Wy + 3T W3
—2y'Wy =200 = T Wi+ kT JTWIh.  (30)
In order to find the parameter # which minimizes this
approximate cost function, we set its gradient with respect
to i equal to zero:
dL(p+h) _
oh

Solving this condition leads to the update equation used in the
Gauss—Newton algorithm:

=20 = H'WiJ +28TITWT =0. 31

JTWI) hgn =TT W (y = ). (32)

The LM algorithm is smart because it can act like gradient
descent or the Gauss—Newton method when needed. In every
step, it updates the parameters using this rule:

TWI + M) o =TT W (y —3), (33)

where A and [ stand for the damping factor and identity
matrix, respectively. When A is large, the update behaves
similarly to gradient descent, producing cautious steps toward
the minimum. As A decreases over successive iterations,
the algorithm increasingly resembles the Gauss-Newton
approach, allowing faster convergence near the optimum. The
perturbation vector Apy which further is expressed as:

hiv = (ITWI+00) " TTW(y — 9. (34)

The convergence of the LM algorithm is particularly ensured
if the cost function L consistently decreases for every step,
which is inspired by the Lyapunov theory, requires:

AL =L(p+h) — L(p) < 0. (35)

Ensuring this condition holds throughout optimization is
preferred. In order to formulate the expression for AL, one
subtracts the value of the function L(p) from L(p + h),
obtaining the following expression.

AL = =2(y — ) Wih +h"JTWih. (36)

This derivation illustrates how the parameter update &
contributes to reducing the cost function at each iteration.
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By substituting the expression for 4 from equation (34) into
the variation of the objective function AL given by (36), one
arrives at:

AL = =20y =N WIUTWI + A1)~ T TW(H — )

+[UTWI D) ITW @ -]

(ITWI + 2L = A)(JTWI + 1) TTW(y =)

= =WIUTWI + D)7 IT Wi (y - $)
— = WIITWI ) (T W
+) T TTW( - )

=—(—-»NWIUTWI + D" UTwy —3)
—A|TwWI +aD" T Wy - y)||2. (37)

Here, the last two terms are negative semidefinite or at least
non-positive definite, ensuring that AL < 0 under typical
conditions. The first term in equation (37) is non-positive
because it is a quadratic form involving the matrix (J T WJ +
AD~!, which is symmetric and positive definite. Similarly,
the second term is non-positive as it is scaled by the damping
parameter A > 0. In the derivation, the notation -T
indicates the transpose of the inverse matrix. Since (J7 WJ 4+
M )_1 remains positive definite, the only scenario where the
expression in equation (37) does not yield a negative value—
specifically when AL = 0 occurs whenJ” W (y—3) = 0. This
result effectively demonstrates that the algorithm achieves
local stability in the Lyapunov sense concerning the quadratic
objective function defined earlier in (20). A detailed analysis
quantifying the degree of local stability is not included here,
as it would require a more in-depth exploration beyond the
scope of this work. It is worth mentioning that, in practical
terms, the algorithm consistently performed effectively and
successfully reached convergence.
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