<]
TUDelft

Delft University of Technology

Two-Sided Dynamics in Ridesourcing Markets

de Ruijter, A.J.F.

DOI
10.4233/uuid:dee95ae4-0be9-4cd0-a90f-ef7d7f8a8653

Publication date
2024

Document Version
Final published version

Citation (APA)
de Ruijter, A. J. F. (2024). Two-Sided Dynamics in Ridesourcing Markets. [Dissertation (TU Delft), Delft
University of Technology]. https://doi.org/10.4233/uuid:dee95ae4-0be9-4cd0-a90f-ef7d7f8a8653

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.


https://doi.org/10.4233/uuid:dee95ae4-0be9-4cd0-a90f-ef7d7f8a8653
https://doi.org/10.4233/uuid:dee95ae4-0be9-4cd0-a90f-ef7d7f8a8653

Two-Sided Dynamics

in Ridesourcing Markets



Two-Sided Dynamics
in Ridesourcing Markets

Arjan de Ruijter
Delft University of Technology



| ! i-..i.-.;:.-
CRITICAL
MANS

AMSTERDAM INSTITUTE FOR
European Research Council ADVANCED METROPOLITAN SOLUTIONS

This doctoral dissertation was supported by the CriticalMaaS project (grant number
804469), which is financed by the European Research Council and the Amsterdam
Institute for Advanced Metropolitan Solutions.



Two-Sided Dynamics
in Ridesourcing Markets

Dissertation

for the purpose of obtaining the degree of doctor
at Delft University of Technology
by the authority of the Rector Magnificus Prof.dr.ir. T.H.J.J. van der Hagen
chair of the Board for Doctorates
to be defended publicly on
Tuesday, 14 January 2025 at 12:30

by

Arjan Jacobus Franciscus DE RULJTER
Master of Science in Transportation, Infrastructure & Logistics
Delft University of Technology

born in Wageningen, the Netherlands



This dissertation has been approved by the promotors.

Composition of the doctoral committee:

Rector Magnificus Chairperson
Prof.dr. O. Cats Delft University of Technology, promotor
Prof.dr.ir. JJW.C. van Lint Delft University of Technology, promotor

Independent members:

Prof.dr. M.E. Warnier Delft University of Technology

Prof.dr.ir. K. Bogenberger Technical University of Munich, Germany

Prof.dr.ir. S. Bekhor Technion - Israel Institute of Technology, Israel

Dr. K. Zhang Ecole polytechnique fédérale de Lausanne, Switzerland
Prof.dr.ir. S.P. Hoogendoorn Delft University of Technology

TRAIL Thesis Series no. T2025/1, the Netherlands Research School TRAIL

TRAIL

P.O. BOX 5017

2600 GA Delft

The Netherlands

E-mail: info@rsTRAIL.nl

ISBN: 978-90-5584-357-2

Copyright © 2025 by Arjan de Ruijter

All rights reserved. No part of the material protected by this copyright notice may be repro-
duced or utilized in any form or by any means, electronic or mechanical, including photocopy-
ing, recording or by any information storage and retrieval system, without written permission
of the author.

Printed in the Netherlands



To those who saved my life,
and those who have always been there for me.






Acknowledgements

More than 2,000 days have passed since I began my PhD — a journey that now repre-
sents nearly a fifth of my life. While the PhD journey was inherently challenging —
hardly surprising for any doctoral candidate — several unexpected personal obstacles
emerged, creating steep and unforeseen paths. Now, at the end of this arduous jour-
ney, I look back with profound gratitude, feeling privileged to have encountered kind
and inspiring individuals, to have grappled with challenging problems, and to have
had the opportunity to prioritise my well-being. Just like the dynamics of two-sided
ridesourcing markets uncovered in this dissertation, an individual’s success is revealed
to be the intricate result of many others’ decisions. In the following pages, I would
like to express my deepest appreciation to those who were instrumental in helping me
reach this significant milestone.

First of all, I would like to thank my supervisors Oded and Hans. Thanks to your
support, the PhD was not just an enjoyable experience, but even a welcome distraction
during personally difficult times. Oded, our collaboration began during my MSc thesis
and ultimately set me on the path to doctoral research. I will always be grateful for
the time and care you took in helping me find a research topic that truly intrigued
me, which has certainly ignited my academic appetite. Throughout my academic
journey, you were the best mentor I could have imagined — always available, patient,
interested, supportive, and understanding. Your sharp (and prompt) comments still
amaze me to this day. I suspect that you must have had access to Al-based writing
tools a few years ahead of everyone else. Hans, throughout my PhD, you proved
to be an example for me in many other ways. Your creative mind helped me look
at my research from different angles, always in an unforced manner. I particularly
appreciate your honesty and directness, which definitely helped me gain confidence in
my abilities. We talked a lot about personal setbacks, and your perspective was truly
valuable. Your character is genuinely unique in academia, and those who have the
opportunity to work with you in the future are very fortunate.

I would also like to thank Martijn, Klaus, Shlomo, Kenan and Serge, the indepen-
dent members of my doctoral committee. Discussing my research with each one of
you helped me gain a better understanding of the positioning and quality of my work.
I would like to give special thanks to Serge and Klaus. Serge, I appreciate the time you
took discussing personal issues, providing understanding and new perspectives from
your experience. I also appreciate your efforts in bringing the department (virtually)
together during COVID. Klaus, I am deeply grateful for your hospitality during my
research visit to Munich, as well as for the genuine interest you showed in me and

vii



viii

my work, both before and long after my stay. I really admire the informal atmosphere
you have created in your group, it made me feel at home from the very first moment
I arrived. It is truly unique that for every hour of work, at least 10 minutes were
spent laughing. Given the high pace in our joint runs and your cross-country skiing
performances, I must however tell you ”’You need to calm down”.

Then, I owe a huge thank you to my wonderful family. Your support after my
tragic accident in the French Alpes in March 2022 was absolutely heartwarming. Your
immediate presence and support turned this bizarre experience into one I can look
back on fondly, rather than with struggle or pain. I could never have imagined how
much we would grow as a family or how deeply we would come to appreciate one
another. As Martin Luther King Jr. aptly said, “Only when it is dark enough can you
see the stars.” Each one of you has contributed to the completion of this dissertation
in your own unique way, and for that, I am truly grateful. Tonny, you have always
been, without a doubt, my greatest support. Everyone deserves a deeply empathic,
genuinely interested and loving mother like you. I cannot describe how grateful I am
for having you in my life. Jacques, my loving father, I appreciate the tremendous
amount of time you’ve spent fuelling my curious (though still not technical) mind,
which has certainly led me to where I am today. Your words and actions have given
me confidence in what I do in life, for which I am deeply grateful. Laura, you are
and always have been a warm and caring sister. Designing the wonderful cover of
this dissertation during a time when you had little energy is a true testament to your
character. And of course my sincere and helpful sister Linda, you have always been
there for me when I need it. Having you as a private doctor (and advisor) in Grenoble
was an enormous privilege. I would also like to thank my godmother Gertie for her
wise words and my godfather Jac for his humour.

Moreover, I would like to thank my friends, for who they are and what they have
done for me. Jasper, talking to you has shaped my view on the world and inspired
my current career path. I love how we can alternate between deep conversations and
endless fun. Max, the definition of a caring friend, I deeply value your presence on
and off the bike (except the rare times you drop me on a climb). Dorus, Jenneke
and Xenia, my first aid team, thank you for your care after my ski accident, the good
conversations and the games. Sorry for ruining your holidays! Jacob, you were there
for me in the most difficult of times, which I will never forget. Our lunch runs certainly
boosted my well-being. Stan, thank you for making me laugh with whatever you do
or say. Joeri, for the trips, talks, quizzes and fantasy sports games, which were always
a welcome distraction from my PhD. Laura, for your interest, the board games we
played, and the movies we did (and did not) watch. Kevin and Inge, for your positive
spirit (except when it comes to my dishwashing skills) and the wrap lessons. Willard,
my lifelong friend, for your lightheartedness, which has definitely taught me to think
and act differently myself, and in doing so, contributed to a stress-free PhD experience.
Savanne, for your kindness and empathy. Clarice, for the coffee breaks and the laughs.
Niels, for all the games you introduced me to (except for that one). Rick, for your
never-ending sunshine. Henjo, for your imitations and that time you had to dismount
on the Paterberg. Myrthe and Luca, for your patience during all the times I was late
or unresponsive. Yara, Anna, Anke, Marleen and Rutger, for the conversations and



iX

fun trips. Pui-Yuen, Ivar and Laureen, for the good food and the board games. Elise,
for your curiosity and open-mindedness. Thomas and Sanne, for your positive energy.
Kristel, for sharing your passion for the outdoors. Max from across the pond, for the
lovely time blowing bubbles at the barn. And last but not the least, my dear friends
from the Apfelstrudeltrein, for igniting my passion for cycling, which has certainly
cleared my mind during the PhD.

Then, I am very grateful for my (ex-)colleagues, many of which I now consider
to be good friends, and one of them even more than that... Lucia, thank you for
your continued love and support, for going on adventures together, but most of all for
your tolerance of my bad humour. Peyman, for chess lunch (or should I say lunch
chess?), the ball games in the office and the great dinners with your family. Nejc,
my comrade in the department since the start of the Master’s, thank you for the talks,
your cakes and kindly accepting my jokes about Slovenia. Jesper a.k.a. the Champ,
for our deep conversations over dinner. Nirvana, for your genuine interest and the
Italian classes, grazie! Julia, my sparkly neighbour in the office, for the game talk,
walks and pomodoro’s. Arco, for your frivolity and the Moccachino’s. Tessa, for
your friendliness and perspectives on sustainability. Niels, for the football conversa-
tions, which were mostly fun for me in the first half of my PhD, and mostly fun for
you in the second half. Victor, for your kindness and dedication when it comes to
reducing our department’s emissions. Vincent and Conchita, for helping me with the
formatting of the dissertation. Of course many more (former) colleagues deserve to be
mentioned: Nagarjun, Ziyulong, Joelle, Monique, Martijn, Callum, Alexandra, Nina,
Renate, Nicola, Francesca, Francesco, Anne, Matthew, Lucas, Fatemeh, Ali, Saman,
Saeed, Yiru, Sara, Guopeng, Dehlaila, Moreen, Marije, Suzanne, Edwin, Dian, Ha-
neen, Shadi, Goncalo, Winnie, Dorine, Yan, Marco, Merve, Mahsa, Abhi, Bing, Ro-
drigo, Renzo, Jaime, Iria, Samkie, Zhenji, Alex, Ehab, Konstanze, Malvika, Sanmay,
Maria, Ding, Subodh, Rafal, Arek, and so many others, thank you for making my PhD
unforgettable.

I would also like to give a big shout out to my colleagues in Munich. Florian and
Roman, thank you for your unwavering support, especially in tackling the persistent
coding issues. The (failed) rush to meet the TRB deadline feels almost amusing in
hindsight, but it had its silver lining — it gave me the chance to stay a bit longer.
Yunfei and Isabella, thank you for the coffees and the fun conversations. Uli, thank
you for being such a wonderful host, both in the office and on the (too few) bike
paths in the Munich hinterland. Santiago, thank you for your voice messages and
your proactive efforts in organising activities. Martin, Mario, Tanja, Freddy, Philipp,
Joanna, Victoria, Natalie, Yamam, Anna, Fabian, Joel, Antonios, Patrick, Mehdi and
many others, thank you for making the summer of 2023 the highlight of my PhD!

For some others, there is no need to explain why this dissertation would not have
been possible without them. I would like to thank Pierre-Alexandre, Guillaume,
Jacques, Nicolas and the helicopter staff for the provided first aid, as well as the doc-
tors and nurses in CHU Grenoble Alpes, for their life-saving healthcare and friend-
liness. I would also like to thank Angelo and his friends for their selfless help and
care on the day of the incident. You all hold a very special place in my heart. The
accident has also led me to meet Lesley and his mother Ellen. I am grateful for the



extraordinary story that we share. Finally, Wouter, thank you for your understanding,
kindness and honest advice, which have been invaluable in helping me navigate past
and ongoing challenges. The tools I have gained from our conversations, along with
the lessons learned from my accident, have collectively contributed to a stronger and
more resilient mindset, which I am confident will continue to prove useful for future
setbacks. This represents the most meaningful personal outcome of my PhD. I hope
the findings presented in this dissertation can also contribute to a better life for those
driving for ridesourcing platforms and citizens in urban areas around the world.

Sincerely,

Arjan de Ruijter
Delft, December 2024



Contents

1

2

Introduction
I.1 Motivation . . . . . . . . . . e
1.2 Theoretical background . . . . . ... ... ..o oL
1.3 Researchquestions . . ... . ... ..................
1.4 Researchapproach . . ... ... ... ... .. ... .......
1.5 Researchcontext . . .. ... ... ... ... ... .. . . .....
1.6 Thesis contributions . . . . . . . .. ...
1.6.1 Scientific contributions . . . . . .. ... ... 0oL L.
1.6.2  Societal contributions . . . . . . ... ... oL L.
1.7 Thesisoutline . . . . . ... ... ... ..
Evolution of Labour Supply in Ridesourcing
2.1 Introduction . . . . . . . . . .. ...
2.1.1 Ridesourcing system dynamics . . . . . . . . ... ... ...
2.1.2  Study contributions . . . . . ... ... L
2.2 Methodology . . . . . . . . ... ...
2.2.1 Informationdiffusion . . . . . .. .. .. ... ... ...
2.2.2 Platform registration . . . . . . . ... ... ...
2.2.3 Labour participation . . . . . . . . ... ..o
224 TImplementation . . . . . . . . .. ... Lo
2.3 Experimentaldesign . . . .. ... ... ... ... ... ...,
231 Set-up . ...
2.3.2 Scenariodesign . . . . . ... ...
2.3.3 User equilibrium optimality . . . . . .. ... ... .. ...
24 Results. . . . .. ..
2.4.1 Phases in ridesourcing provision . . . . . . .. ... ... ..
2.4.2  Supply market conditions . . . ... ... ... ... ...
243 Platformpolicies . . . . . . . .. ... o
244  Entrybarriers . . . . . ...
2.4.5 System optimum supply and user equilibrium solutions . . . .
24.6 Modelsensitivity . . . . . . ... L
25 ConcClusions . . . . . . ...
2.5.1 Study significance . . . . ... ... ... 0oL
252 Keyfindings . . ... ... ...
2.5.3 Policy implications . . . . . . ... ... ...

X1

—_
— O O \O 0 O\ N 1D — =i

—



Xii

Contents

254 Futureresearch . . ... ... ... ... .......

3 Day-to-day Dynamics in Two-Sided Ridesourcing Markets

3.1 Introduction . . . . . . ... ... ...
3.2 Conceptual framework . . ... ... ... .. ... ... ..
3.2.1 Networkeffects . . . . ... ... ... ... ...
3.2.2 Keymarketvariables . . . . ... ... ... ... ..
3.3 Methodology . . ... ... ... ... ... .
3.3.1 Information diffusion . . . . . ... .. ... ... ..
332 Registration . . . . ... ..o
3.3.3 Platform participation . . . .. ... .. ... ....
334 Learning . ... ... ... ...
3.3.5 Within-day operations . . . .. ... ... ......
33.6 Implementation . . . .. .. ... ... ........
34 Experimentaldesign . . . ... ... ... . .......
341 Set-up . . ...
342 Scenariodesign . . . . . ... ... L.
3.4.3 Performance indicators . . . . . .. .. ... .. ...
35 Results. . . ... ..o
3.5.1 Dynamics, randomness and heterogeneity . . . . . . .
3.5.2 Potential marketsize . . . ... ... ... ... ...
3.5.3 Double-sided pricing strategy . . . . . ... ... ..
3.5.4 Information diffusion & registration . . . . . ... ..
36 Conclusions . . . . . ... ...
3.6.1 Study significance . . .. ... ... ... ......
3.6.2 Takeaways . . . . . . . ...
3.6.3 Futureresearch . . . ... ... ... ... ......

4 Ridesourcing Platforms Thrive on Socio-Economic Inequality

4.1 Introduction . . . . . . ... .. ...
4.2 ApplicationandResults . . . . . ... ... ... L.
4.2.1 Macroscopiceffects . . ... ... ... ... ...,
4.2.2 Societal implications . . . ... ... ... ... ..
423 Pricing . ... ... o
424 Extreme (in)equality . . . ... ... .........
43 Discussion. . . .. ...
44 Methods . . . . . . ..
44.1 Traveldemanddata . .. ... .............
442 Modelling framework . ... ... ... .......
443 Implementation . . . . ... ... ...........

4.5 Dataavailability . . . . ... ... ... oL



Contents xiii
5 Two-Sided Dynamics in Duopolistic Ridesourcing Markets with Private

and Pooled Rides 103

5.1 Introduction . . . . . ... . ... ... 104

52 Methodology . . . . . ... . ... 108

5.2.1 Single-homing . . . . ... ... 110

5.22 Multi-homing . . . . .. ... oo 117

5.23 Implementation . . . . . . . . .. ... 119

5.3 Experimentaldesign . . . ... . ... ... 121

531 Set-up . . . ... 121

5.32 Scenarios . . . ... ... 124

54 Results. . . .. ... e 124

5.4.1 Market structure & servicetypes . . . . . . . . ... ... .. 124

542 Multi-homing . . . . . ... ... o 130

55 Conclusion . . . . . ... 133

5.5.1 Study significance . . . ... ... ... ... ... .. 133

552 Keyfindings . .. ... ... ... o 133

5.5.3 Policy implications . . . . . . . ... ... ... 134

554 Futureresearch . . . ... ... .. ... ... ... ..., 135

6 Conclusions 137

6.1 Mainfindings . . . . . . . ... Lo 137

6.2 Implications for practice . . . . ... ... .. ... ... ..., 142

6.3 Limitations & futureresearch . . . . . . ... ... ... 0. 143

A 147

B 155

Bibliography 157

Summary 175

Samenvatting (Summary in Dutch) 179

About the author 183

TRAIL Thesis Series publications 187






Chapter 1

Introduction

1.1 Motivation

Ridesourcing enterprises such as Uber, Lyft, DiDi, Grab, and Bolt have revolutionised
the taxi industry by introducing two-sided platforms. Awaiting the deployment of
fully autonomous vehicles, these platforms utilise advanced real-time algorithms to
seamlessly connect travellers with private car owners. Operating on a commission-
based model, they charge a fee for each transaction between passengers and drivers
— a strategy that minimises risk in fluctuating circumstances. By treating drivers as
independent contractors rather than direct employees, these platforms enable flexible
work hours tailored to personal commitments (Chen et al., 2019). At the same time,
increased revenues during peak demand can motivate drivers to adjust their schedules
and driving behaviour in response to demand, especially when surge pricing is intro-
duced. This inherent supply-demand balancing mechanism facilitates prompt servic-
ing with minimal waiting times for travellers and minimal idle time for drivers.

The emergence of ridesourcing however does not inherently guarantee an increase
in social welfare. Ridesourcing driver protests, strikes and lawsuits around the world
for instance highlight that the gig economy business model might not universally ben-
efit all drivers. One of the possible factors contributing to ridesourcing driver dissat-
isfaction is the lack of access to social securities provided by traditional employment,
by which drivers bear risks previously carried by service providers. These risks en-
compass income loss during individual hardships (e.g., illness) as well as market-wide
downturns (e.g., sudden demand drops, as seen during the COVID-19 pandemic). In
fact, it has been found that ridesourcing platform may result in systematically low
earnings, even below the local minimum wage (Mishel, 2018; Manzo IV & Bruno,
2021). This can possibly be attributed to the flexibility these services offer, allowing
individuals to work during periods of low labor opportunity cost, even when limited
earnings are anticipated. Financial commitments - following for instance from access
to a vehicle - may also compel drivers to work despite low earnings. Both factors can
contribute to a ‘prisoner’s dilemma’ in ridesourcing supply, where drivers’ work de-
cisions lead to an oversupplied market, at the expense of the income of all drivers. In
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addition, excessive driver idle time in such oversupplied markets could induce what is
known as a ‘wild goose chase’ (Castillo et al., 2017), where idle drivers cover substan-
tial distances in anticipation of trip requests, not only incurring additional operational
costs but also contributing to increased traffic congestion. Tirachini & Gomez-Lobo
(2020) found that ridesourcing platforms may also contribute to road congestion by
drawing users away from public transport and active modes, and through induced
travel demand. A study initiated by Uber and Lyft based on their own data confirmed
the potential contribution of ridesourcing providers on congestion levels in six cities
in the US (Balding et al., 2019). Finally, the emergence of ridesourcing platforms has
been found to be potentially harmful for taxi operators and their drivers (Yu et al.,
2020; Ling et al., 2023).

While empirical evidence showcases both positive and negative impacts of rides-
ourcing systems in specific cities (Tirachini et al., 2020; Yang et al., 2021; Schaller,
2021; Cats et al., 2022; Oh et al., 2022; Erhardt et al., 2022), uncertainty persists re-
garding the circumstances dictating whether these systems prove more or less advanta-
geous for various stakeholders. The societal implications of ridesourcing may extend
beyond the effects on ridesourcing users, drivers, and service providers to encompass
individuals using, working for, or providing alternative transportation services, as well
as road users and local residents. The limited available data provided by ridesourcing
providers, typically delivered only when mandated by local authorities, falls short in
facilitating a comprehensive cross-context analysis of ridesourcing impacts as well as
in identifying the mechanisms contributing to positive and negative ridesourcing im-
pacts. At the same time, insights derived from generalised two-sided markets (Rochet
& Tirole, 2003, 2006; Armstrong, 2006; Armstrong & Wright, 2007; Rysman, 2009;
Weyl, 2010; Belleflamme & Peitz, 2019), for instance regarding social welfare effects
associated with such (monopolistic or oligopolistic) markets, likely do not readily ap-
ply to ridesourcing markets due to the intricate and highly spatio-temporal nature of
ridesourcing service delivery.

Enhanced understanding of how context and service configurations impact the per-
formance of ridesourcing systems would allow establishing under which conditions
and how ridesourcing operations can be stimulated or constrained in order to improve
the social welfare generated in these markets. This requires a thorough analysis en-
compassing key ridesourcing system indicators influenced by factors such as traveller
preferences, labour market dynamics, service configurations, and transportation sys-
tem characteristics.

1.2 Theoretical background

The majority of studies investigating ridesourcing system performance contingent
upon context and market attributes focus on examining the impact of platform strate-
gies on the ridesourcing market equilibrium. This includes exploring the effect of
static dual-sided pricing mechanisms (Taylor, 2018; Bai et al., 2019; Sun et al., 2019b;
Nourinejad & Ramezani, 2020; Hu & Zhou, 2020; Ke et al., 2020a; Xue et al., 2021),
analysing both fares and commissions. Other works specifically investigate spatial
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and dynamic pricing strategies (Banerjee et al., 2015; Cachon et al., 2017; Castillo
et al., 2017; Zha et al., 2018a; Guda & Subramanian, 2019; Chen & Hu, 2020; Bes-
bes et al., 2021; Ma et al., 2022). Another key research topic is the optimisation and
exploration of platforms’ matching rules, both for (private) ride-hailing (Feng et al.,
2021; Xu et al., 2018; Ozkan & Ward, 2020; Baccara et al., 2020; Bokényi & Hannék,
2020) and ride-pooling (Santi et al., 2014; Alonso-Mora et al., 2017a; Qian et al.,
2017, Vazifeh et al., 2018; Simonetto et al., 2019; Yan et al., 2020; Ke et al., 2020b).
Other platform strategies that have garnered interest in the scientific community are
the optimisation of reward schemes (Yang et al., 2020), penalising request cancella-
tions (Wang et al., 2019), service design of pick-up and drop-off locations (Stiglic
et al., 2015; Fielbaum et al., 2021), routing and repositioning instructions (Wallar
et al., 2018; Braverman et al., 2019; Yu et al., 2019, 2023; Engelhardt et al., 2023),
and hiring dedicated drivers to ensure a minimum level of supply (Lee & Savelsbergh,
2015; Dong et al., 2021).

Another body of literature delves into platform regulation and subsidies designed
to enhance the social welfare generated within these markets. Explored regulations
encompass a range of measures such as limiting platforms’ commissions (Zha et al.,
2016, 2018a,b; Vignon et al., 2023), imposing fare restrictions (Yang et al., 2022; Li
et al., 2022), implementing per-trip or zone-based congestion taxes (Li et al., 2019),
setting limits on fleet sizes (Li et al., 2019; Yu et al., 2020; Zhang & Nie, 2022; Liet al.,
2022), capping cruising activities (Zhang & Nie, 2022), and establishing a minimum
wage for drivers (Li et al., 2019; Benjaafar et al., 2022). Subsidisation strategies aimed
at enhancing overall social welfare include subsidising pooled rides (Fang et al., 2017),
rides to or from public transport stops (Liu et al., 2023), and socially desirable routes
(Ke & Qian, 2023).

While previous studies primarily investigate the strategies of monopolistic rides-
ourcing providers, several works focus on platform competition in markets with mul-
tiple service providers (Zha et al., 2016; Séjourné et al., 2018; Bryan & Gans, 2019;
Zhou et al., 2020; Cohen & Zhang, 2022; Zhang & Zhang, 2022). Other studies ex-
plore ’coopetition’ strategies aimed at addressing the decline in matching efficiency
resulting from market fragmentation when multiple platforms compete for demand
and supply (Pandey et al., 2019; Vignon et al., 2023; Guo et al., 2023b; Bao et al.,
2023).

As two-sided platforms, ridesourcing system performance also depends on travel
demand and properties of the local labour market. Prior research on travel demand has
looked into the effect of trip density (Kondor et al., 2022), the spatio-temporal distribu-
tion of trips (Bimpikis et al., 2019; Bokanyi & Hanndk, 2020; Soza-Parra et al., 2022;
Meskar et al., 2023; Lotze et al., 2023), travellers’ sensitivity to delays (Taylor, 2018)
and their propensity to sharing a ride with other passengers (Beojone & Geroliminis,
2021; Zhu & Mo, 2022). Supply-side attributes of which the effect has previously
been examined include the size of the labour market (Benjaafar et al., 2022), workers’
opportunity costs (Cachon et al., 2017; Taylor, 2018) and their sensitivity to income
(Dong et al., 2021).

Finally, operating within a broader transportation system, the characteristics of
the road network and alternative modes also impact ridesourcing system performance.
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The existing literature on this topic is limited to examining the effect of the average
vehicle velocity (Bilali et al., 2022; Lotze et al., 2023) and the provision of dedicated
parking locations (Xu et al., 2017; Beojone & Geroliminis, 2021).

The above-mentioned works have in common that they rely on aggregate functions
for describing ridesourcing supply and demand. In reality, supply and demand are the
result of many complex and interdependent decisions by individual (potential) users
and suppliers, across various temporal dimensions. Travellers for instance encounter a
spectrum of decisions ranging from contemplating the acquisition of a private vehicle
depending on the service quality of ridesourcing (a strategic decision) to the choice
of registering with a ridesourcing platform (a tactical decision) and accepting spe-
cific ride offers (an operational decision). Prospective ridesourcing drivers encounter
strategic decisions like investing in a vehicle based on projected earnings and costs,
tactical decisions such as deciding about their working days, and operational decisions
including their working hours, movement patterns when assigned or idle, and whether
to accept or decline specific ride requests.

There are many interdependencies in these decisions. For instance, travellers’ and
workers’ platform utilisation decisions hinge on a prior decision to sign up, often
linked with associated costs. Furthermore, agents encounter imperfect information
in many of their decision-making processes. Take, for instance, drivers who lack
a guaranteed wage; instead, their earnings can fluctuate considerably depending on
luck in the matching processes (Bokanyi & Hannak, 2020) and on work decisions
of other drivers. This underscores that drivers and travellers at least partially rely
on (personal and shared) information from past experiences. Consequently, learning
and communication processes may wield considerable influence over the supply and
demand dynamics in the ridesourcing ecosystem.

The concept of path dependency within processes influencing supply and demand
dynamics could imply that minor alterations in initial conditions may lead to vastly
diverse market outcomes. For instance, the provision of ridesourcing services — re-
lying on harnessing network effects within the user-driver matching process — might
be susceptible to a critical mass (Navidi et al., 2020). Guo & Huang (2022) note that,
owing to these network effects, the initial market shares of ridesourcing providers in
a duopolistic market significantly influence their equilibrium market shares. When all
other factors are held constant, both travellers and drivers tend to opt for the larger
platform, as it tends to facilitate superior overall matches, thereby minimising trav-
ellers’ waiting times and drivers’ idleness.

Previous studies have overlooked the intricate nature of disaggregated components
within ridesourcing supply and demand, particularly the nuanced spatio-temporal in-
teractions involved in travellers’ and workers’ decisions and in matching drivers and
users. Consequently, these studies fail to consider the influence of path dependencies
in ridesourcing supply and demand, neglecting how past conditions or decisions shape
the current dynamics of ridesourcing supply and demand. This oversight has led to the
following knowledge gaps, hindering a comprehensive understanding of the societal
implications of ridesourcing systems:
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1. Understanding how ridesourcing system performance may evolve over time.
This concerns transitional phases during its evolution as well as day-to-day vari-
ations in the steady state arising from stochastic processes in agents’ day-to-day
and within-day decisions.

2. Comprehending the potential diverse equilibria achievable in ridesourcing pro-
vision, stemming from path dependency triggered by initial variations. This en-
compasses systematic disparities — for instance, differences in market shares in
duopolistic markets due to varied entry times — as well as random differences
resulting from stochasticity in travellers’ and workers’ decisions and experi-
ences.

3. Understanding how individual travellers’ and drivers’ decision-making processes
influence ridesourcing market performance. This encompasses various factors
including peer-to-peer communication processes, learning behaviour, opportu-
nity costs, registration costs, etc. Furthermore, there is a need to explore the
diverse nature of these attributes across the population to better understand the
effect of heterogeneity within ridesourcing dynamics.

4. Grasping (possibly long-term) distributional effects within ridesourcing. It in-
cludes comprehending which agents ultimately are most likely to utilise rides-
ourcing platforms, depending on individuals’ characteristics such as drivers’
opportunity costs, travellers’ travel preferences and spatio-temporal trip charac-
teristics.

5. Understanding the robustness of ridesourcing systems to market disruptions,
such as regulatory changes, the rise of alternative services, evolving economic
situations, or a pandemic.

1.3 Research questions

This dissertation provides an answer to knowledge gaps 1-4, investigating the effect of
variables associated with the decision-making processes of the three key stakeholders
in ridesourcing markets: platform providers, consumers and suppliers. We do not
explicitly vary the properties of the transportation system (Fig. 1.1).

Specifically, the following research question is answered in this dissertation:

How do market features (such as the number of service providers, platform pric-
ing and service type), along with travel demand and labour market characteris-
tics, influence the evolution of ridesourcing systems?

The following sub questions are addressed to answer the main research question:

1. What is the impact of fleet decentralisation in ridesourcing for drivers, travellers
and service providers? (Chapter 2)



6 1 Introduction
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Figure 1.1: Conceptual representation of key factors influencing in ridesourcing pro-
vision. In this dissertation, we focus on the effect of service configurations,
travel demand and labour market characteristics.

2. What are the main network effects in two-sided ridesourcing markets, and what
is their aggregated effect on system performance? (Chapter 3)

3. How do ridesourcing performance indicators depend on the degree of socio-
economic inequality in society? (Chapter 4)

4. How does social welfare from the ridesourcing market differ between duopolis-
tic and monopolistic settings, and under what conditions is each market outcome
more likely to emerge? (Chapter 5)

1.4 Research approach

We adopt an agent-based modelling approach for representing the decisions of trav-
ellers (potential consumers) and job seekers (potential suppliers) associated with the
ridesourcing market. Besides modeling within-day ridesourcing operations — such
as user-driver matching, user pairing in ride-pooling, and driver repositioning — we
also model various day-to-day processes that affect ridesourcing supply and demand.
These include platform information diffusion, registration decisions, and daily work
choices.

Fig. 1.2 illustrates captured (day-to-day and within-day) interactions between sup-
ply and demand in the ridesourcing market. These interactions allow us to model
two-sided network effects in ridesourcing provision. The figure identifies which inter-
actions are relevant to each sub-research question and specifies the attributes associ-
ated with the labour market, provided services, and travel demand that are investigated
in this dissertation. Additionally, it highlights key performance indicators for different
market stakeholders as derived from our model.

To answer the first research question, we model the labour supply decisions of
drivers, including how they are exposed to platform information and how learn from
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Figure 1.2: Conceptual representation of the methodology adopted in this disserta-
tion, including references to the sub research questions. Solid lines in-
dicate day-to-day interactions, dashed lines represent within-day interac-
tions.

experience. By representing within-day operations, we capture supply-side competi-
tion, i.e. the negative feedback loop between ridesourcing supply and driver income.
As a reference, we evaluate ridesourcing operations based on fixed fleet sizes, allow-
ing a comparison of the fleet size following from decentralised work decisions with
the socially optimal fleet size. Furthermore, we vary job seekers’ labour opportunity
costs, their work preferences, learning and communication processes, costs incurred
to get access to a vehicle, and platform pricing.

To answer the second and third research question, we add the day-to-day decisions
of travellers, inducing positive feedback loops (cross-side network effects) between
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supply and demand. We vary the effect of travel demand characteristics, platform
pricing instruments, information processes affecting travellers’ and job seekers’ deci-
sions, and vehicle costs. To answer the third research question, we vary the degree of
heterogeneity in travellers’ value of time and job seekers’ opportunity costs, mimick-
ing the effect of socio-economic inequality in society.

To address the fourth research question, we model the decisions of job seekers
and travellers in a market with two service providers, capturing network effects across
platforms. Our approach accounts for individuals that will exclusively use a single
platform and individuals that will opt to use multiple platforms simultaneously. We
then evaluate the effect of offered service types (private or pooled rides), supply-side
market registration costs and travellers’ and job seekers’ multi-homing preferences.

The following assumptions apply throughout our approach:

* Platforms opt for static pricing, both within-day and day-to-day.

* Ridesourcing operations do not affect travel times in the network, i.e. travel
speeds are exogenous variables in our models.

* The emergence of ridesourcing provision does not result in induced demand for
travel (but can reduce demand for other modes).

 Operators of alternative modes do not change their operations in response to the
state of the ridesourcing market.

1.5 Research context

This study is part of the CriticalMaaS project, funded by the European Research Coun-
cil and the Amsterdam Institute for Advanced Metropolitan Solutions. The project’s
focus is to analyse supply and demand dynamics within two-sided mobility markets.
It involves exploring the behavioral patterns of both travellers and drivers within these
markets and investigating the systemic impacts of their decisions through simulations.
To facilitate this, the open-source simulation framework MaaSSim (Kucharski & Cats,
2022) was developed. The day-to-day ridesourcing model presented in this disserta-
tion is integrated into this framework.

The case study used throughout this dissertation aims to replicate ridesourcing op-
erations in the municipality of Amsterdam, the Netherlands. We do so by mimicking
the demand for travel, labour market characteristics, the road network, ridesourcing
pricing, and attributes of alternative transportation modes. Specifically, we utilise a
dataset generated by the activity-based model Albatross (Arentze & Timmermans,
2004) as a point of departure for the representation of travel demand in Amsterdam.
Ridesourcing fares mirror Uber’s strategy in Amsterdam, excluding surge pricing. In
addition to ridesourcing, travellers have access to bicycles, private cars and public
transport. Considering the widespread ownership of bicycles in the Netherlands, cy-
cling does not involve any cost. Public transportation choices are based on the route
that provides the fastest arrival at the destination, determined using OpenTripPlanner.
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Public transport fares correspond to the standard rates established by the Amsterdam
transport authority.

1.6 Thesis contributions

1.6.1 Scientific contributions

This dissertation pioneers the examination of ridesourcing market evolution through
the development of a day-to-day model for ridesourcing supply and demand, includ-
ing their interaction. Our innovative approach allows for a comprehensive exploration
of the market’s dynamics before and after reaching an equilibrium state. By delv-
ing into the (stochastic) decision-making processes of potential drivers and travellers,
our research offers a holistic understanding of the varied market equilibria that could
arise. Moreover, the agent-based nature of our models unveils insights into (possibly
long-term) heterogeneous outcomes in ridesourcing provision, accounting for path de-
pendency in supply and demand processes.

Below, we present the key contributions by chapter:

Chapter 2: Evaluating decentralised ridesourcing supply dynamics.

We model the feedback loop between job seekers’ ridesourcing market decisions and
their earnings. This allows us to compare decentralised ridesourcing supply levels
to fleet sizes when platforms opt to employ drivers. We also investigate the socially
optimal fleet size, considering the perspectives of travellers, drivers and the service
provider. We explore uncharted contextual variables’ effects on ridesourcing dynam-
ics, such as registration costs, information diffusion, reservation wage heterogeneity,
and more.

Chapter 3: Mapping and modelling two-sided network effects in ridesourcing
provision.

First, we outline and explain the key network effects in ridesourcing provision. Then,
we model them by incorporating travellers” mode choices — accounting for trip-
specific alternatives — in the decentralised model for ridesourcing supply, thereby
endogenously modelling ridesourcing demand and supply. This allows for examining
how the size of the potential market — i.e. the number of travellers and job seekers
— and two-sided pricing strategies impact ridesourcing system performance.

Chapter 4: Investigating the influence of socio-economic inequality on ridesourc-
ing performance.

We investigate the impact of socio-economic inequality on ridesourcing demand and
supply by examining the effect of heterogeneity in travellers’ value of time and job
seekers’ labour opportunity costs. We explore platforms’ tuning of pricing based on
the degree of socio-economic inequality in society, including the consequences for
travellers and drivers.
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Chapter 5: Analysing duopolistic ridesourcing market outcomes depending on
service types and multi-homing behaviour.

We analyse traveller and job seeker choices in an initially duopolistic ridesourcing
market, examining conditions favouring either market domination or co-existence.
Besides ride-hailing, our study encompasses ride-pooling, allowing the exploration of
the impact of platforms’ service type on platform co-existence. We comprehensively
assess ridesourcing effects on vehicle kilometers, considering drivers’ deadheading
decisions as well as modal shifts following ridesourcing provision. This study also
pioneers the investigation of market outcomes in scenarios where some travellers and
job seekers engage in multi-homing while others do not.

1.6.2 Societal contributions

This dissertation delves into the evolution of ridesourcing markets depending on di-
verse aspects such as ridesourcing configurations, pricing strategies, travel demand,
and labour market properties. Specifically, it examines drivers’ earnings, traveller ex-
perience, the total vehicle distance associated with ridesourcing, and service providers’
profitability under these conditions, shedding light on underlying mechanisms. These
insights may inform effective regulations and subsidies to enhance societal outcomes
of ridesourcing in urban settings worldwide.

For example, in Chapter 2 we compare fleet sizes and driver earnings between
two-sided ridesourcing platforms and one-sided mobility services. Such an analysis
unveils the prisoners’ dilemma in the decision to work for a ridesourcing platform,
advocating for regulatory interventions to ensure fair driver earnings. Furthermore,
our assessment of two-sided pricing strategies (Chapters 2-5) highlights the trade-offs
that exist between user experience, driver earnings and platform revenue, informing
possible pricing regulations to safeguard multiple stakeholders’ interests.

Chapters 3 and 4 explore the influence of contextual factors like travel demand, the
size of the job market and socio-economic inequality on ridesourcing performance,
including two-sided welfare effects. This analysis elucidates likely target markets
for ridesourcing. Chapter 5 delves into the societal ramifications based on service
offerings, considering modal shifts and deadheading kilometers associated with rides-
ourcing. Understanding performance indicators under varying competition levels and
service types can aid policymakers in shaping market configurations conducive to so-
cietal welfare.

Beyond offering insights into potential target markets for ridesourcing providers,
shaped by labour market and travel demand specifics, service providers can leverage
knowledge gained regarding the transitional phases inherent in ridesourcing markets.
This includes understanding their durations, contingent upon various factors. Addi-
tionally, understanding how (initial) variations in market shares impact market out-
comes can serve as valuable guidance for new market entrants.
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1.7 Thesis outline

The main body of this thesis is structured into three parts, as illustrated in Fig. 1.3. Part
I delves into network effects within ridesourcing provision. Within this part, Chapter
2 focuses on exploring supply-side network effects, while Chapter 3 illuminates two-
sided network effects in ridesourcing provision. Part I, encompassing Chapter 4, ex-
amines ridesourcing dynamics in various socio-economic contexts. Part III, consisting
of Chapter 5, investigates diverse market structures, i.e. monopolistic and duopolis-
tic markets with private and shared rides. The dissertation is concluded in Chapter
6, which offers comprehensive responses to the research questions posed, provides
recommendations for policy makers to improve the social outcomes of ridesourcing
markets and suggests potential avenues for future research.

1. Network effects II. Socio-economic IIl. Market structure
context & service types
2.
Labour supply
dynamics 4. 5.
Socio-economic Platform

3. inequality co-existence

Two-sided

dynamics

Figure 1.3: Outline of this dissertation.






Chapter 2

Evolution of Labour Supply in
Ridesourcing

In this chapter, we investigate the effect of decentralisation in supply - inherent to the
gig economy - on the evolution of on-demand transit services. To this end, we pro-
pose a dynamic model comprising of the subsequent supply-side processes: (i) initial
exposure to information about the platform, (ii) a long-term registration decision, and
(iii) daily participation decisions, subject to day-to-day learning based on within-day
matching outcomes.

A series of experiments is constructed to study the effect of supply market proper-
ties and pricing strategies, providing indications for the need, effectiveness and costs
of potential market regulations. We also compare the fleet size following from indi-
vidual workers’ decisions to the fleet size in one-sided service provision, based on
profit-maximisation or maximisation of social welfare considering the perspectives of
travellers, drivers and service providers. We specifically investigate dynamics in rides-
ourcing supply, resulting from growing ridesourcing awareness and path dependency
in workers’ registration and participation decisions.

This chapter is based on the following article:

de Ruijter, A., Cats, O., Kucharski, R., & van Lint, H. (2022). Evolution of labour
supply in ridesourcing. Transportmetrica B: Transport Dynamics, 10(1), 599-626.

13
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2.1 Introduction

In many service industries the role of businesses is shifting from service provision
to facilitating the exchange of services, typically through the creation of virtual two-
sided marketplaces. When suppliers in a two-sided market are individual contractors
rather than businesses, the market is considered to be part of the gig economy. In
contrast to traditional fixed labour contracts offering long-term security to all parties
involved, labour in the gig economy is organised through more flexible arrangements.
Not only does this allow service providers to respond more adequately to changes in
demand than operators with more traditional forms of labour, it also means that they
may be exempted from paying employee benefits (Prassl & Risak, 2015). Unfortu-
nately, recent protests demonstrate that the value gig workers derive from the flexibil-
ity to set their own working schedules (Hall & Krueger, 2018; Chen et al., 2019) may
not outweigh the loss of financial security associated with flexible labour agreements.
While the social desirability of these new forms of labour agreements is disputed, the
gig economy has gained ground across many industries.

Transportation is a predominant example with platform businesses in food de-
livery (Just Eat Takeaway, Uber Eats, DoorDash), package delivery (Amazon Flex)
and passenger services (Uber, Lyft, DiDi). Service providers in the third category
are commonly referred to as ridesourcing providers or Transport Network Companies
(TNCs). Typically, ridesourcing businesses reward drivers based on satisfied demand
rather than based on time spent working for the platform. Hence, in contrast to tra-
ditional transit operators with employed drivers, they do not bear the cost of excess
labour available through their platform. This is beneficial especially in times of rapidly
declining travel demand, such as during the COVID-19 pandemic.

The question remains whether a decentralisation of supply is truly a win-win
for service provider, suppliers and consumers in the ride-hailing market. Early evi-
dence suggests that in addition to losing access to social provisions related to employ-
ment, ridesourcing drivers may receive inadequate financial compensation for sup-
plied labour. In Chicago for example, strong competition between suppliers has led
to average driver earnings below the local minimum wage (Henao & Marshall, 2019).
Besides suppressing driver earnings, oversupply contributes to road congestion by in-
ducing repositioning by idle drivers waiting to be matched (Beojone & Geroliminis,
2021). Travellers on the other hand may benefit from an oversupplied market through
low waiting times and few denied requests.

Sustained supply of labour to a platform with low payouts suggests that the tragedy
of the commons may apply to the ridesourcing market. It occurs when excessive
participation leads to a depletion of the total value derived from participation on the
platform. A potential reason why drivers may continue to participate under these con-
ditions is that they have limited alternative opportunities in the labour market. Over-
supply in the ridesourcing market may also be explained by large temporal variations
in labour opportunity costs underlying the value of flexible work (Chen et al., 2019;
Ashkrof et al., 2020). When a potential driver is not involved in alternative activi-
ties - such as alternative employment or education - on a particular day, (s)he may be
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tempted to work for the platform even when expected earnings are low. In other words,
varying opportunity costs caused by activity schedules may disturb the balancing loop
of competition in labour supply.

In contrast, ridesourcing platforms may struggle to attract enough suppliers to the
market when the labour market is strong, especially when employment yields high
social security benefits. This hampers travellers’ chances to find a (quick and cheap)
ride. When ride requests have to be rejected or when travellers stop making requests
altogether, the service provider is confronted with lost revenue. This may ultimately
result in the termination of the service. Farrell & Greig (2017) have observed that
the growth of on-demand service platforms in many cities is indeed limited by the
availability of workers rather than customers.

In order to comprehend the societal implications of ridesourcing, we thus need
to understand how the decentralisation of supply affects the fleet size of a ride-hailing
service. Considering the bottom-up nature of ridesourcing supply, its analysis requires
investigating system-level effects of factors influencing individual driver’s labour de-
cisions. This includes not only strategical decisions by the platform, but also labour
market properties and driver characteristics. In this study, we therefore focus on struc-
tural supply deficits / surpluses that may exist in the ridesourcing market. Hence, we
study labour supply only at the extensive margin as opposed to highly temporal imbal-
ances in supply and demand which may follow from hourly variations in opportunity
costs and/or travel demand, i.e. we will capture how many drivers work on a day, but
not how long they work on that day.

2.1.1 Ridesourcing system dynamics

The emergence of ridesourcing has not gone unnoticed in the scientific community.
In a review of ridesourcing literature, Wang & Yang (2019) have identified four major
research problems related to the impact of emerging ridesourcing services. These
topics include the effect of ridesourcing on other modes of transportation (Qian &
Ukkusuri, 2017; Zhu et al., 2020; Ke et al., 2020b; Yu et al., 2020; Ke et al., 2021), its
broader societal and environmental impacts (Rayle et al., 2016; Clewlow & Mishra,
2017; Yu et al., 2017; Jin et al., 2018), competition between service providers (Zha
etal., 2016; Zhou et al., 2020), and the effectiveness of regulations in the ridesourcing
market (Zha et al., 2018a,b; Li et al., 2019; Yu et al., 2020). A key factor when
identifying the societal impacts of ridesourcing is the pricing strategy adopted by the
service provider. Hence, many studies revolve around the optimisation of ridesourcing
pricing strategies, including the specification of ride fares and driver wages (Banerjee
et al., 2015; Taylor, 2018; Zha et al., 2018a,b; Bai et al., 2019; Sun et al., 2019b;
Bimpikis et al., 2019; Nourinejad & Ramezani, 2020; Dong et al., 2021).

A common feature of previously mentioned works is that the ridesourcing mar-
ket is represented using a static steady-state model. While allowing insightful anal-
yses into ridesourcing equilibria, there are two downsides to this approach. First,
static models are incapable of explaining system evolution towards proposed equilib-
ria. Second, these models fail to capture key dynamic processes that are inherent to
ridesourcing provision. Arguably, the equilibria sketched in previous studies may not
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be realised in practice. In the following, we distinguish several complex day-to-day
processes underlying the emergence of decentralised ridesourcing supply.

First, labour supply decisions are affected by a driver’s participation history. Be-
cause there is no guaranteed participation reward and drivers lack proper means of
communicating with other drivers (Robinson, 2017), drivers’ own experiences form
an important source of information in the participation decision. Given that ridesourc-
ing earnings are highly sensitive to system variables such as travel demand and other
drivers’ labour decisions (Bokanyi & Hanndk, 2020), there may be large day-to-day
variations in the average participation reward. Moreover, due to path-dependent spa-
tial relations between successive matchings of drivers and travel requests, ridesourc-
ing earnings may be distributed unevenly among participating drivers. To illustrate,
a driver who is assigned to deliver a passenger in a low demand area may struggle to
find a subsequent ride. ’Unlucky’ individuals with below average earnings may de-
cide to leave the platform before learning that the system average earnings were higher
than their personal earnings. Hence, the unpredictability of ridesourcing earnings can
affect the amount of labour available for platform operations.

Second, participation may require making financial investments or entering into
contracts. Even though entry barriers for ridesourcing are typically lower than those
for conventional taxis (Hall & Krueger, 2018), empirical findings still show an in-
crease in vehicle ownership in the population associated with the launch of a rides-
ourcing service (Gong et al., 2017). This demonstrates that ridesourcing drivers do
not necessarily drive for the platform with a vehicle they already owned. In addi-
tion, a taxi license or appropriate driver insurance may need to be obtained to enter
the ridesourcing market (Baron, 2018). Hence, participation decisions are preceded
by a registration decision in which required investments are traded off against antic-
ipated future revenues from participation. The discrepancy in costs between regis-
tration (with entry costs) and participation (when entry costs are sunk) implies that
studies neglecting registration choice may either overestimate or underestimate the
ridesourcing fleet size. This depends on whether the drop in the number of registered
drivers outweighs more frequent participation by registered drivers to compensate for
the capital costs associated with platform registration (Hall & Krueger, 2018).

Based on a theory of innovation diffusion (Rogers, 2010), there are two more steps
preceding drivers’ platform participation choice: (1) becoming aware of its existence
and (2) being persuaded to gather more information about its utility. Variations in
attitudes, preferences and social network may explain why individual agents may un-
dergo these stages at different moments in time. The rate at which potential drivers
may start considering registration is relevant because a very rapid increase in supply
may lead to sharply decreasing participation earnings. A slow diffusion on the other
hand may lead to a prolonged situation with long waiting times and therefore dissat-
isfied travellers.

To gain a better understanding of equilibria in ridesourcing systems, we need dy-
namic models that can account for the previously mentioned processes in drivers’
labour supply decisions. To the best of our knowledge, applications of day-to-day
learning models for ridesourcing systems have been limited to only a few studies.
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One of these has represented ridesourcing evolution with learning behaviour by
drivers. Djavadian & Chow (2017) proposed a stochastic day-to-day approach with
an integrated within-day operating policy, in which travellers choose ridesourcing if it
maximises their expected consumer surplus, anticipating travel time based on experi-
ence. Drivers supply labour when their learned perceived income exceeds a determin-
istic income threshold, implying that variables other than expected income that play a
role in drivers’ labour supply decisions are neglected. The model proposed by Djava-
dian & Chow (2017) also does not account for the stages preceding participation, such
as the registration process. The method is applied only to a minimal case study repre-
senting access to and egress from a single railway station, with supply levels limited
to 20 drivers or lower.

Cachon et al. (2017) and Yu et al. (2020) propose a semi-dynamic model con-
sisting of a registration phase and a participation phase. Both phases are strictly
separated in time, which means that the model cannot capture interactions between
participation decisions of existing drivers and the registration decisions of potential
drivers. Dong et al. (2021) apply a similar methodology when studying ridesourc-
ing service providers opting for a dual-sourcing strategy. Drivers in their study first
decide whether they take up an employment offer by the provider, giving up work
schedule flexibility in return for reduced income uncertainty. In the second phase,
those that rejected the offer decide on platform participation. Drivers are only offered
employment once, i.e. there is no feedback loop between participation and employ-
ment. The aforementioned studies apply macroscopic models to represent the within-
day matching process, neglecting complex disaggregate spatio-temporal within-day
relations between supply, demand and service provider that influence drivers’ labour
supply decisions.

2.1.2 Study contributions

We represent the long-term evolution of ridesourcing supply by explicitly considering
complex interactions between within-day ride-hailing operations, registration barriers
and day-to-day variations in opportunity costs. We do so by proposing a day-to-day
learning model with a decentralised labour supply, explicitly distinguishing between
two dimensions: registration and participation. For platform registration, we develop a
probabilistic agent-based model that accounts for registration costs, opportunity costs
and anticipated income levels. We propose a macroscopic model based on an epi-
demiological process to represent diffusion of information between registered and
non-registered drivers, concerning the awareness of and satisfaction with the rides-
ourcing platform. For the daily participation decision, we establish a probabilistic
agent-based choice model that acknowledges that drivers’ daily participation decision
is not merely based on the expected income on a given day derived from accumu-
lated day-to-day experience, but which also depends on unobserved factors such as
variations in opportunity costs.

We integrate our day-to-day model into MaaSSim, an agent-based discrete event
simulator of mobility-on-demand operations (Kucharski & Cats, 2022). The agent-
based nature of this model allows us to capture heterogeneity in ridesourcing earnings
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following from disaggregate and spatially-dependent interactions between demand,
supply and platform dynamics in ridesourcing operations, which may affect the emer-
gent ridesourcing fleet.

The model is applied to a case study representing a realistic urban network, with
up to 1000 vehicles, to allow for the examination of emergence properties in a decen-
tralised supply market in ridesourcing provision. More specifically, we construct an
experiment to find the extent to which labour supply in the market is dependent on
the availability and cost of labour in the market. This allows us to answer whether
ridesourcing provision risks attaining undesired levels of supply, i.e. over- or under-
supplied. In addition, our experiment includes an investigation of the commission rate
charged by the platform, in order to explore the implications of profit maximisation in
a decentralised market, for both drivers and travellers. Other variables that we study
are platform registration barriers and variability in drivers’ daily opportunity costs,
in order to understand how they characterise supply in ridesourcing provision. Fi-
nally, we employ an exhaustive search for establishing the optimal ridesourcing fleet
size for travellers, drivers and service provider, which we compare to the equilibrium
participation volume in decentralised ridesourcing provision.

2.2 Methodology

We develop an agent-based day-to-day model with driver agents potentially willing to
work for the platform. These agents are at any given moment in time in one of three
states: uninformed, interested or registered. Uninformed driver agents are potential
drivers currently unaware of the existence of the service. Interested drivers are those
that have been informed about the existence of the platform and now monitor the aver-
age participation reward. They make an occasional registration decision. Once drivers
are registered, they make a daily participation choice, based on the expected income
that is learned from previous driving experiences. This is simulated by integrating our
day-to-day model, comprising of information diffusion, registration and participation,
with a within-day ride-hailing model (Figure 2.1). This model simulates within-day
interactions between driver agents, traveller agents and the platform agent.

In this section, we describe the five sub models constituting our approach. We also
provide more information about the implementation of the model.

2.2.1 Information diffusion

Rogers (1995) argues that the diffusion of information about an innovation is a social
process. Individuals seek information from peers to guide the adoption decision, espe-
cially from those that have previously adopted the innovation. Information spreading
via word-of-mouth is considered to be, to some extent, similar to virus transmission
in a network. Hence, many information diffusion models are based on compartment
models from epidemics (Zhang et al., 2016). In these models, the population is di-
vided into different classes depending on their current stage of the disease, typically
distinguishing susceptible, infectious and recovered agents, although many other com-
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Figure 2.1: Conceptual framework of the proposed dynamic ridesourcing model, in-
cluding references to subsections in which a particular submodel is ex-
plained

partments are possible (Pastor-Satorras et al., 2015). One of the main benefits of rep-
resenting information diffusion with epidemic compartment models is that they do not
require the specification of the underlying (social) network, which is typically hard to
observe in word-of-mouth communication.

We assume that an SI model with susceptible (i.e. uninformed) and infectious
(i.e. informed) agents suffices. Consider a pool of N potentially interested drivers, of
which I(¢ — 1) are informed (i.e. interested or registered) at the start of day r — 1. If we
assume that all uninformed drivers are equally likely to be informed on a given day,
then we can formulate the probability for an uninformed driver to be informed at the



20 2 Evolution of Labour Supply in Ridesourcing

start of the next day as:

inform(t) _ ﬁinf'l(t — 1)
N

in which By, represents the average information transmission rate, or more specifi-

cally, the probability that information is transmitted in a contact between an informed

an uninformed agent multiplied by the average daily number of contacts of agents.

p @2.1)

2.2.2 Platform registration

Before informed driver agents can participate, they need to trade off registration costs
and participation benefits. In contrast to the approach of Cachon et al. (2017) - one of
the few works to represent the registration process in ridesourcing supply - we assume
that informed drivers base their registration decision on the average expected income
of already registered drivers, rather than on a probability distribution of incomes pre-
sented to drivers in advance. Since registration represents a relatively long-term labour
decision, we model the decision to be occasional rather than daily. More specifically,
we assume that on any given day drivers have a probability ¥ of making a registration
decision.

Drivers register with the platform when the expected earnings from participating
exceed the total costs related to participation and registration. Participation cost in-
cludes the opportunity cost of the time spent working as well as a potential disutility
associated with the driving activity. From hereon, participation cost will be referred
to as the reservation wage, a term used in labour economics to define the minimum in-
come level for which drivers are willing to accept specific work (Franz, 1980). Regis-
tration costs, on the other hand, correspond to capital expenses which are independent
of participation, such as investment in a vehicle and insurance. We formalize drivers’
registration choice with a binary random utility model, in which the registration utility
of an informed driver agent d is determined by the net income that drivers expect to
collect with participation on the platform, which is defined as the average expected

income of already registered drivers ;" minus a constant penalty C; to represent cap-
ital registration costs. The alternative utility - to remain unregistered - is determined
by the reservation wage to represent the time cost of participation on the platform. We
apply a logit model with parameter fBreg, and an error term &g, to account for unknown
dynamics in registration choice. The particular utilities and the resulting probability
of registration for a driver d on day ¢ are, respectively, formulated as:

U;ﬁ;giSt = ﬁreg : (IleTp - Cd) + Ereg 2.2)
U;tmegiSt — ﬁreg Wy + Ereg 2.3)

v-exp(U*™)
exp(U;;:gist) + exp(U;tnregist)

peE(d 1) = (2.4)
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2.2.3 Labour participation

In the following, we introduce the specification of registered drivers’ participation
choice, including how drivers anticipate future income based on personal experience.

Participation choice

Similar to other studies representing ridesourcing supply (Banerjee et al., 2015; Djava-
dian & Chow, 2017; Taylor, 2018; Bai et al., 2019), we model participation based on
drivers’ expected income and reservation wage. We assume a positive relation be-
tween income and labour supply, thus following the neoclassical theory of labour sup-
ply (Chen & Sheldon, 2016; Angrist et al., 2017; Xu et al., 2020). Notwithstanding,
there are likely to be other factors in play driving participation choice, such as planned
activities for the particular day, which are typically difficult to observe. Therefore, in
the determination of the utility to participation or to remain idle, next to the reservation
wage W; and expected income I;fp, we include an error term &,;,. We apply a logit
model with parameter Sy, and error term &y, to represent the degree of randomness
in the participation choice model, which indicates the significance of non-observed
factors influencing the participation choice. The utility and corresponding probability
of participating for a driver d on day ¢ are specified as follows:

Ug[articipate _ Bptp . I;;(P + &ip (2.5)
U‘i;tile _ ﬁptp Wy + &pp (2.6)
participate
pparticipate(dJ) _ exp(Udl - ) 2.7)

exp ( U(g)[articipate) +exp ( U[ift“e )

Ride-hailing operations

The financial reward for participation is modeled with the within-day simulation model
of the MaaSSim simulator (Kucharski & Cats, 2022). It allows to capture complex
spatiotemporal within-day interactions in ridesourcing between three types of agents:
travellers, (participating) drivers and the platform. The following assumptions are
made about the operational strategies of these agents in the operational model.

Driver agents’ labour supply decisions are limited to the extensive margin, i.e.
they will work during all hours considered by the within-day model. Drivers will
accept all ride requests assigned to them in this time frame. Unassigned drivers do not
reposition, instead they remain idle at their drop-off location until assigned to a new
request. Driver agents are faced with per-kilometre operating costs §.

Each day, a traveller agent makes an identical trip for which it requests a ride on
the platform. If the time to receive an offer exceeds a threshold 6, the traveller will
revoke its ride request. If an offer is received within the tolerance threshold, it will be
accepted. Ride offers cannot be cancelled at a later stage.

The platform agent offers private rides on a road network with static travel times. It
assigns requests to drivers whenever two constraints are met: (1) there are unassigned
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requests on the platform, and (2) there are idle drivers. It allocates the request-driver
pair with the least amount of travel time from the driver’s location to the request lo-
cation. For each transaction, the ridesourcing platform charges a commission rate 7.
Ride fares on the platform are comprised of a base fare fi,s and per-kilometre fare
f km-

We now specify Qreq as the (virtual) queue of unassigned requests on the platform
and Qygriver as the (virtual) queue of idle drivers. t#;, corresponds to the travel time
from the location of an idle driver i € Qgriver to the pick-up location of an unassigned
request u € Qreq. The matching function to find the request-driver pair (u*,i*) with
the least intermediate travel time is then formulated as follows:

(u*,i*) = argmin ft;, (2.8)
LtEQrcq € Qdriver

The earnings of ridesourcing drivers follow directly from ride fares paid by travellers.
If the daily pool of travel requests is denoted as R, and the direct distance from request
location to destination is denoted as s, the payout PO, to a driver for serving a single
request r € R is defined as:

POr:(fbase+fkm'sr)'(1_7r) 2.9

The total payout POy, to a driver on a specific day is the sum of the payouts PO, from
requests served by this specific driver on a particular day 7. Defining a,; as a binary
assignment variable indicating whether driver d picks up request r on day ¢, we can
formulate driver’s daily payout as:

POy =Y PO, -amy (2.10)

rer

The net experienced income of a participating driver I3 can now be formulated as:
I3 = POy, — OCy, (2.11)

where, in consideration of deadheading distance DH,;,, OCy; represents a driver’s op-
erational costs on day ¢:

OCyr = (Y sr-arq+DHy) - 8 (2.12)

rer

Learning

As stated before, participation choice depends on the earnings that are expected on
a particular day. Given that the typical ridesourcing driver has limited connections
to other drivers (Robinson, 2017), anticipated earnings are predominantly based on
individual experiences. Considering memory decay (Ebbinghaus, 2013) and dynamics
in ridesourcing system variables, we cannot assume that drivers weigh all experiences
equally. In the absence of empirical evidence for the specification of the learning
function in ridesourcing labour supply, we rely on findings from learning in another
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travel-related context. Bogers et al. (2007) demonstrate that conditional on sufficient
experience, learning in route choice can be described using a Markov formulation.
In this study, we propose a two-phase learning model for driver’s perceived income
to differentiate learning behaviour by experienced and inexperienced drivers. When
the number of days of participation experience E,;; exceeds a threshold @, learning is
described with a Markov formulation similar to Bogers et al. (2007). However, when
E4 is below w, drivers compute the unweighted average past income as a proxy for
their expected income, to prevent oversensitive and abrupt reactions to the first few
experiences. With the actual experienced income on the previous day specified as
I3 |, we define the expected income I;;" of driver d for day 7 as:

P = (1—x)- 170+ I (2.13)

in which x represents the weight attributed to the last experience as opposed to all
previous experiences, which is formulated as:

0 was—1=0
K=< 1/(Ezx+1) O0<Eg wii—1 <O (2.14)
/o otherwise

in which wy; is a binary variable to indicate whether a driver participated on a past day
i€{l,...,t — 1} and Ey defines the number of days during which the driver has so
far gained a participation experience:

Ey= ) wa (2.15)

2.2.4 Implementation

In this subsection, we describe the definitions for convergence and the number of
replications in the experiment.

Simulation framework

We implement our day-to-day driver model in MaaSSim, an open-source agent-based
discrete event simulator of mobility-on-demand operations, programmed in Python
(Kucharski & Cats, 2022). Both supply and demand are represented microscopically.
For supply this pertains to the explicit representation of single vehicles and their move-
ments in time and space, while for demand this pertains to exact trip request time and
destinations defined at the graph node level. Travel times in the network are precom-
puted and stored in a skim matrix.

Convergence

A key property of ridesourcing systems is that the size of the fleet may fluctuate on a
day-to-day basis. Due to a random component in participation choice, these variations
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even occur when the system is otherwise in a steady state. To determine whether a
ridesourcing system has achieved a steady state, we therefore need to examine other
indicators. We argue that a combined analysis of two indicators suffices to establish
the convergence of the system. First, there should be few new entrants in the market,
i.e. the number of agents with the ability to participate is relatively stable. Second, the
degree of learning among registered drivers needs to be minimal, i.e. their expected
reward of participation is relatively stable. Together, those criteria imply that the ex-
pected fleet size shows limited variations from day to day. The number of drivers that
actually decide to participate may still fluctuate due to stochasticity in the participation
decision.

We formalise the convergence criteria by checking whether relative day-to-day
changes in the number of registered drivers G; and the expected income of registered
drivers I;ip exceed a convergence parameter ¢. The supply evolution process has
sufficiently converged when ¢, which is set to approach 0, has not been exceeded on
k consecutive days:

G i—G i
J il o Wie {0, k—2,k—1} (2.16)
Nt—j—l
Ly =Lyl
Jg— Jg—j— .
—;;Xp‘ lf <@ VdeG,Vje{0,1,....k—2k—1} (2.17)
d=J—

Replications

Due to stochastic components in information diffusion, platform registration and par-
ticipation, we need to replicate the experiment for statistical significance. We deter-
mine the number of required iterations R(m) based on a number of initial replications
m, with a formula commonly used in stochastic traffic simulations Burghout (2004):

S (m) ‘t | l-a 2
Rim)= | ——212 (2.18)
X (m) * Erepl
where X (m) and S(m) are, respectively, the estimated mean and standard deviation of
the mean expected income in the population in equilibrium from a sample of m runs,

Erepl is the allowable percentage error of estimate X (m) of the actual mean, and o is
the level of significance.

2.3 Experimental design

A series of experiments are constructed for investigating the significance of supply
market conditions, platform pricing and service entry barriers in ridesourcing provi-
sion. In this section, we introduce the experimental design.
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2.3.1 Set-up

We apply the proposed approach to the city of Amsterdam, currently hosting rides-
ourcing service UberX. It is estimated that in 2019, a total of 8 million taxi or rides-
ourcing rides took place in Amsterdam, served by 5,000 - 7,000 drivers (Gemeente
Amsterdam, 2019). On an average day, this amounts to approximately 20,000 hailed
rides. Considering that it is not likely that all people in Amsterdam potentially in-
terested in driving for a ridesourcing platform actually served at least a single rides-
ourcing ride in 2019, we assume that the total ridesourcing supply pool in Amsterdam
consists of 10,000 drivers.

Demand is sampled once from a database of rides longer than 2.5 kilometres,
generated by the activity-based model Albatross for the Netherlands (Arentze & Tim-
mermans, 2004). It is assumed that travellers are willing to wait five minutes to be
matched after requesting their ride, i.e. patience threshold 6 is set to 5. Participating
drivers do not make within-day work shift decisions. A single day in the simulation
consists of eight hours, corresponding to a typical working day. We simplify the per-
formance of the underlying road network with a universal (constant) traffic speed of
36 km/h on all network links. Ride fares in the experiment are equal to the standard
tariffs charged to travellers by Uber in Amsterdam (Uber Technologies Inc., 2020a),
i.e. a base fare of €1.40 and an additional €1.21 per kilometre. Unlike Uber’s pricing
model, there is no minimum ride tariff. In the reference scenario that is used through-
out the experiment, the commission rate 7 is set to Uber’s 25% (Uber Technologies
Inc., 2020b). As it has been demonstrated that the reservation wage of Uber drivers
might be higher or lower than the minimum wage in a given labour market (Chen et al.,
2019), we set the reservation wage W, in the experiment to €80, which is close to the
minimum daily wage in the Netherlands (Government of the Netherlands, 2020).

We set the information transmission rate Sy to 0.2 so that after around 50 itera-
tions all potential drivers are likely to be informed. Choice model parameters f.; and
Bpip are set to 0.2 and 0.1 respectively, representing that unobserved factors are likely
to play a larger role in short-term participation, when drivers have more information
about the specification of these variables, compared to registration. With ¥ set to 0.2,
we expect 20% of informed drivers to make a registration decision on a given day. The
learning threshold @ is set to 5 days, implying that after five experiences the weight
of each new experience in the determination of the expected income has dropped to
0.2, and remains equal afterwards. Convergence parameters ¢ and k are set to 0.01
and 10, respectively.

With each driver assigned a probability of 10/N to be registered at the start of
the simulation, we expect an initial registration volume of 10 drivers. Their initial
expected income ISXP is set to the sum of reservation wage W, (€80 in the reference
scenarios) and the daily share of registration costs C; (€20 in the reference scenarios).
All other driver agents start in the uninformed state.

We empirically establish that the computational load of a single day in the simula-
tion scales directly with the number of requests and vehicles in the system, implying
that if we represent the real-world population with a 10% sample for supply and de-
mand, similar to other studies applying agent-based models in the transportation field
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(Kaddoura, 2015; Bischoff & Maciejewski, 2016), we can reduce the total computa-
tional load of our experiment by 90%. Given that we perform a scenario analysis in
which each scenario requires multiple replications of our day-to-day simulation ap-
proach, we can benefit greatly from the efficiency gain offered by sampling. However,
we need evidence that sampling has a limited effect on our simulation results, espe-
cially given that ridesourcing may benefit from economies of scale (Zha et al., 2016).
Therefore, we compare the resulting system performance indicators for a 10% sample
of demand and supply to the indicators when we do not apply sampling. Based on
three replications for each scenario, we observe that a less efficient matching algo-
rithm in the scenario with sampled supply and demand may lead to a slightly higher
average waiting time for travellers, indicating that simulation based on a 10% sam-
ple might lead to slightly overestimated travel times. Remarkably, other performance
indicators of the service do not seem to be affected by sampling. The expected in-
come in equilibrium, for example, differs by less than 1%. Only in the early driver
adoption stage, with limited supply, we note a discrepancy in the average income of
drivers, which is quickly overcome once supply increases. Our analysis demonstrates
that registration and participation volumes scale directly from a 10% sample to supply
and demand levels representing the full population, which indicates that in this case
a 10% sample of supply (N = 1000) and demand (M = 2000) is sufficiently large to
represent ridesourcing dynamics for the whole city.

When deciding how many replications of the experiment are needed, we allow a
relative error gep of 0.01, based on statistical significance & of 0.01.

2.3.2 Scenario design
Supply market

In this part of the experiment, we investigate the extent to which the volume of the
pool of potential drivers N is a decisive factor for ridesourcing supply in equilibrium.
Compared to the reference scenario (DP1000 in Table 2.1), which assumes a relatively
large pool of potential drivers compared to current supply in the network, in alternative
scenarios (DP200 - DP800) we test values for N that are smaller, i.e. between 200 and
800 drivers with intervals of 200.

Another supply market condition that is expected to affect emergent ridesourcing
supply is the reservation wage, which may be high or low depending for example on
the ease of access to alternative sources of income (Baron, 2018; Chen et al., 2019).
First, we examine six alternative scenarios in which the reservation wage is considered
to be homogeneous across the population of drivers. With these scenarios, labeled
RW50 - RW110 in Table 2.1, we cover the range of reservation wages from €50 to
€110. Then, we consider three additional scenarios with heterogeneity in reservation
wage W, to represent that the opportunity cost of ridesourcing participation may vary
across the population due to uneven opportunities in the labour market. We represent
the heterogeneity in W; with a normal distribution in which the mean is equal to the
homogeneous reservation wage value from the reference scenario (€80). In scenarios
HRO - HR30, we test the effect of reservation wage heterogeneity on ridesourcing
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Table 2.1: Scenario design

Label N(-) Wa (€) Bop Wtil/€)  w(-) C4(€)
DP200 200 80 0.2 0.25 20
DP400 400 80 0.2 0.25 20
DP600 600 80 0.2 0.25 20
DP800 800 80 0.2 0.25 20
DP1000* 1,000 80 0.2 0.25 20
RWS50 1,000 50 0.2 0.25 20
RW60 1,000 60 0.2 0.25 20
RW70 1,000 70 0.2 0.25 20
RWS80* 1,000 80 0.2 0.25 20
RW90 1,000 90 0.2 0.25 20
RW100 1,000 100 0.2 0.25 20
RW110 1,000 110 0.2 0.25 20
HRO* 1,000  .#7(80,0) 0.2 0.25 20
HR10 1,000  .4(80,10) 0.2 0.25 20
HR20 1,000  .47(80,20) 0.2 0.25 20
HR30 1,000  .47(80,30) 0.2 0.25 20
IV005 1,000 80 0.05 0.25 20
1v0o10 1,000 80 0.1 0.25 20
1vV020* 1,000 80 0.2 0.25 20
1vV050 1,000 80 0.5 0.25 20
1vV100 1,000 80 1.0 0.25 20
CF5 1,000 80 0.2 0.05 20
CF15 1,000 80 0.2 0.15 20
CF25%* 1,000 80 0.2 0.25 20
CF35 1,000 80 0.2 0.35 20
CF45 1,000 80 0.2 0.45 20
CF55 1,000 80 0.2 0.55 20
RCO 1,000 80 0.2 0.25 0
RCI10 1,000 80 0.2 0.25 10
RC20* 1,000 80 0.2 0.25 20
RC30 1,000 80 0.2 0.25 30
RC40 1,000 80 0.2 0.25 40

* .
Reference scenario

supply with four values for the standard deviation of the reservation wage distribution:

€0 (i.e. homogeneous reservation wage), €10, €20 and €30.

Since participation in our approach is modelled with a probabilistic participation
choice model, we can also investigate how opportunistic behaviour in labour supply
affects ridesourcing supply levels. We do this by varying the participation logit model
parameter [, representing the relative weight that drivers assign to income as op-
posed to other, in our model unobserved, variables. Lacking empirical evidence for
the value of By, in scenarios IV005 - IVI00 we test a relatively large range of values:

from 0.05 to 1.0.
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Platform pricing

The main instrument that ridesourcing platforms hold to steer supply is their pricing
strategy, including the ride fare structure and the commission rate, i.e. the proportion
of each transaction retained by the platform. We investigate the implications of price
settings in the ridesourcing market for drivers and travellers, accounting for the dy-
namics related to supply, by analysing a series of scenarios covering a relatively large
range of commission rates 7: from a limited 5% to more than half of the ride fare,
55%, with intervals of 10%. The scenarios are included in Table 2.1 as scenarios CF5
- CF55.

Entry barriers

Ridesourcing uptake - and potentially excessive competition - on the supply side may
partially be accredited to low entry barriers (Rayle et al., 2016). On the other hand, a
lack of capital participation costs may also lead to less frequent participation (Hall &
Krueger, 2018). Hence, we investigate the effect of financial entry barriers, such as a
taxi license, on emergent ridesourcing supply. We examine five scenarios for which
we vary the registration cost parameter C,, which represents costs that are sunk in
participation but not in registration. We consider two extreme scenarios, one in which
capital costs are absent, and one in which capital costs add up to half the reservation
wage (€40). In the three intermediate scenarios, the relative penalty for registration
amounts either €10, €20 or €30. In Table 2.1, the scenarios are labeled RCO - RC40.

2.3.3 User equilibrium optimality

Unlike transportation services in which drivers are employed by the service provider,
supply in ridesourcing is a decentralised process centered around the labour decisions
of individual drivers. So far, we have considered how to test the effect of labour
market characteristics, platform policies and entry barriers on ridesourcing supply, but
not yet how the emerging user equilibria compare to supply if controlled by a central
service provider or organisations representing the interests of travellers and drivers.
Specifically, we investigate the optimality of decentralised ridesourcing supply from
three different perspectives:

* Service provider (platform): Aims to maximise the profit from collecting a fee
from each transaction between travellers and drivers

 Traveller union: Representing the interests of travellers, it aims to minimise
travel times and rejected requests. We formalize this objective with a value
of time of €8/h, which was found to be the average value for travellers in the
Netherlands (Rijkswaterstaat, 2020), and assigning a penalty of €8 for each
rejected request.

* Driver union: Representing the interests of the driver community, it aims to
maximise total driver surplus in the system. The surplus for an individual driver
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is defined as the difference between its actual earnings /5" and reservation wage
W, (Chen et al., 2019).

We search for the optimal fleet size for the three different parties by perform-
ing a brute-force search, testing their respective objective functions for a single day
assuming various participation volumes. We test values around the user equilib-
rium in the base scenario: from 20 to 300 participating drivers in steps of 20, i.e.
m = [20,40,...,280,300].

2.4 Results

We analyse the results of our experiments focusing on the evolution process of rides-
ourcing and specifically the role of the supply market and pricing policy. Table 2.2
contains the comprehensive list of KPIs on day 200 of our iterative simulation, when
all replication runs have converged to an equilibrium.

2.4.1 Phases in ridesourcing provision

In this subsection, we examine the evolution of ridesourcing supply and the impli-
cations for suppliers specifically for one of the reference scenarios, RWS80 (Figure
2.2a,b). In accordance with the specification of the information diffusion process, all
1,000 driver agents are eventually informed about the existence of the service. In
equilibrium, considering multiple simulation iterations, after 200 days on average less
than half of those agents (420) are registered, of which on a typical day approximately
a third participate (145 drivers). We identify five phases in the evolution process:

1. Day 0 - 10: Due to a lack of information, few driver agents have registered,
meaning participation is low as well. Participating drivers profit from a lack of
competition and can make a high profit.

2. Day 10 - 20: Information transmission speeds up. Informed drivers are likely to
register as they observe a high average income. Participation increases rapidly,
leading to a collapse in the experienced income. Drivers start to learn that their
anticipated income may not be feasible.

3. Day 20 - 50: Information diffusion continues. Drivers further downscale their
income expectation based on new participation experiences. As a result of the
drop in expected income, the average driver participates less frequently. The
number of registered drivers still increases, albeit at a slower pace than before.
As a consequence, the total participation volume increases marginally, leading
to a further decrease in the experienced income level.

4. Day 50 - 100: All drivers are now informed. Registration continues at a decreas-
ing pace, yet participation increases only marginally since individual drivers
participate less frequently, as a result of the continuing decrease in the average
expected income.
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Table 2.2: KPIs in equilibrium for all scenarios
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DP200 200 198 125 8596 1049  89.36 1993 1000 1628 5217
DP400 400 301 136 7756 1062 8225 2075 100.0 1536 5217

DP600 600 350 140 75.04 10.57 80.38 21.15 100.0  151.1 5217
DP800 800 377 142 73.79 10.77 79.48 20.85 100.0 150.5 5217
DP1000 1000 425 145 71.83 10.29 77.58 21.47 100.0 148.8 5217 64.8

RWS50 1000 572 228 45.11 11.38 51.19 21.27 100.0  127.0 5351 58.1
RW60 1000 504 192 54.17 11.33 60.63 22.49 100.0 137.7 5351 68.5
RW70 1000 454 167 63.34 11.21 69.41 22.02  100.0 145.5 5351 62.0
RW80 1000 422 147 72.42 11.03 78.36 21.51 100.0 1535 5351 64.2
RW90 1000 396 133 81.53 10.81 86.49 2192  100.0 1642 5351 74.2
RW100 1000 368 118 90.98 10.21 96.56 20.89  100.0 1853 5351 75.8
RW110 1000 339 106 100.33 9.76 105.14 17.58 99.7 2279 5334 71.0

HRO 1000 398 143 71.56 13.62 78.98 23.22 100.0 152.8 5230 70.0
HR10 1000 382 149 67.46 14.23 75.76 24.07 100.0 149.2 5230 55.4
HR20 1000 393 168 60.95 14.01 67.51 2412 100.0 138.0 5230 52.4
HR30 1000 410 188 55.43 14.49 60.56 2290 100.0 1305 5230 53.6

[ o
— ®© %0~
WMo o

V005 1000 401 158 70.36 10.67 72.51 2233 100.0  150.0 5312 56.5
V010 1000 415 148 72.86 10.32 77.48 20.77 100.0 1558 5312 60.3
V020 1000 432 137 74.15 10.30 83.11 20.94 100.0 161.3 5312 65.5
V050 1000 482 125 75.86 10.63 90.79 21.00 100.0 173.8 5312 68.5
V100 1000 538 120 77.67 10.51 93.86 2070 100.0 1769 5312 91.7

CF5 1000 472 181 73.23 16.91 85.61 30.94 100.0  129.2 1042 56.4
CF15 1000 441 163 72.95 13.11 82.15 25.47 100.0 137.5 3125 62.4
CF25 1000 400 144 72.85 10.24 77.94 2029  100.0 148.0 5195 72.6
CF35 1000 356 120 72.25 7.61 75.25 1424  100.0 166.1 7265 734
CF45 1000 240 70 70.70 3.88 72.04 8.26 86.7 363.3 7962 77.0
CF55 1000 52 11 67.03 2.08 67.29 4.14 16.9 194.1 1751 18.4
RCO 1000 885 168 62.52 10.73 69.30 2275 100.0 1434 5394 68.3

RC10 1000 632 157 66.57 10.95 74.35 2172 100.0  148.6 5388 63.0
RC20 1000 429 149 72.12 11.19 78.13 2049  100.0 1529 5384 68.7
RC30 1000 287 138 78.87 11.08 84.04 20.53 100.0  158.0 5384 60.0
RC40 1000 205 128 85.84 11.24 89.75 19.09 100.0 164.1 5383 55.7

5. Day 100 - 200: Equilibrium is reached. Registrations and the decrease in ex-
perienced and expected income are now limited. Participation remains constant
over time.

There are two aspects in Figure 2.2b worth highlighting. First, the average ex-
pected income of drivers converges to a value below the average experienced income.
Figure 2.2c provides an explanation for the discrepancy in expected and experienced
income: drivers with a low expected income are relatively unlikely to participate com-
pared to drivers with a higher expected income, and consequently less likely to “up-
date’ their expected income based on a new (likely more positive) driving experience.
Convergence is reached when the average experienced income is equal to the average
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Figure 2.2: (a) The evolution of the number of registered, informed and participating
drivers, (b) the evolution of the average expected and experienced income,
and (c) the distribution of expected income for participating drivers versus
registered drivers in equilibrium

expected income of participating drivers, which is higher than the average expected
income of all - also non-participating - drivers. Second, the presented evolution pro-
cess demonstrates that, when we assume that variables other than expected income
play a role in participation choice, the average daily income of participating drivers
on the platform may converge to a value below the reservation wage (Figure 2.2b).
This can be attributed to unobserved variables in participation, like scheduled activ-
ities for a given day, which cause a significant group of drivers to work even when
their experienced income is below the reservation wage (Figure 2.2c). In fact, more
than half of the drivers that participate on a given day in the equilibrium expect to
earn less than their reservation wage. This finding emphasizes that the main value of
a ridesourcing service may be found in the flexibility it offers, as suggested also by
Chen et al. (2019), rather than in providing a satisfactory level of income over a longer
period of time.

2.4.2 Supply market conditions

In this subsection, we present the effect of the size of the driver pool, the reservation
wage and unobserved variables in participation on dynamic ridesourcing provision.
The information diffusion process is not affected in scenarios, except for those with
an alternative size of the driver pool (see Equation 2.1).

Driver pool

When the pool of drivers is limited to 200 (scenario DP200 in Table 2.1), we find
that an equilibrium state is reached around day 50 (Table 2.2). In this state, nearly
all potential drivers have registered (Figure 2.3e) and the participation frequency is
fairly stable at a high level (Figure 2.3f). When the pool of potential drivers is larger,
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there are still unregistered drivers left around this time in the simulation, of whom a
part decides to sign up in a later phase. This explains why the transition process takes
longer in our experiment when the pool of potential drivers is large.

For 200 potential drivers, we find an equilibrium average expected income for
registered drivers that exceeds their reservation wage by nearly 10%. In all other
scenarios, representing supply markets of 400 potential drivers or more, the average
drivers fails to match the reservation wage, falling short by 5 - 10% (Figure 2.3a).
It is striking that there seems to be little difference in service performance when a
supply market consists of 1000 drivers as opposed to 400 drivers. In both cases, after
approximately 25 iterations supply is sufficient to saturate the market and serve all
requests in the system (Figure 2.3b), without a significant difference in the average
waiting time for travellers (Figure 2.3c). Figure 2.3d shows that the similarity in
travellers’ level of service follows directly from the daily participation volume, which
is approximately equal in both scenarios. Apparently, 600 additional potential drivers
in the supply market only yield around 125 more registrations around the 200th day
(Figure 2.3e), while those that are registered also participate less frequently when the
potential supply market is large (Figure 2.3f), on average 34% versus 46% of the days.
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Figure 2.3: The effect of the size of the driver pool on the evolution of (a) the expected
income of registered drivers as ratio of their reservation wage, (b) the
share of requests that are satisfied, (c) the average waiting time for pick-
up for travellers, (d) daily participation volumes, (e) the total number of
registered drivers, and (f) the share of registered drivers that participate

The finding that ridesourcing supply converges to an invariant participation vol-
ume for different sizes of the labour supply market, as long as the total supply vol-
ume is relatively high compared to demand, demonstrates the existence of a balancing
effect in ridesourcing supply. In such a market, the frequency of participation com-
pensates for the size of the pool of registered drivers, which means that negative con-
sequences related to oversupply have an inherent upper bound. Notwithstanding, in
this upper bound, expected income may be below the reservation wage. Only when
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the size of the supply market is limited to a value close to the invariant participa-
tion volume when the supply market is sufficiently large, we find expected income
to exceed the reservation wage. This resonates with the introduction of supply caps,
implemented for example in New York City, in raising ridesourcing drivers’ average
income. The results also show that travellers may not suffer much from a supply cap,
at least as long as the cap is set to a sensible level.

Homogeneous reservation wage

Based on our experiments, the reservation wage of potential drivers has a minor ef-
fect on the duration of the transition process. The equilibrium condition is reached
marginally more quickly when the reservation wage of drivers is low (Table 2.2). This
may be caused by more registrations in an early phase of the evolution (Figure 2.4e)
due to lower labour opportunity costs. While there are still new registrations in a later
phase, the relative increase in the size of the pool of registered drivers is low compared
to scenarios with higher reservation wages.

Remarkably, we find that in equilibrium the ratio between expected income and
reservation wage is constant for various reservation wages (Figure 2.4a), slightly un-
der 1. It means that as the reservation wage in a market increases, the expected income
in equilibrium increases proportionally. The effect of reservation wage on the level of
service for travellers seems to be limited. Even in scenario RW110, in which labour
costs are least favourable for supply, i.e. the reservation wage equals 110 euros, sup-
ply is sufficient to serve all requests (Figure 2.4b), albeit travellers are confronted with
longer travel times than in scenarios with a lower cost of labour (Figure 2.4c). The
additional waiting time is, however, limited to a maximum of two minutes and thereby
fairly limited. The differences in waiting time stem from participation volumes that
vary between 100 and 230 for different specifications of the reservation wage (Figure
2.4d). Lower participation when labour supply is costly results both from fewer reg-
istrations (Figure 2.4e) and less frequent participation among those registered (Figure
2.41).

The results imply that a weak labour market, associated with low reservation
wages, leads to reduced income levels for suppliers in the ridesourcing market, be-
cause new suppliers are attracted to the market as a result of a lack of alternative
employment, creating competition for pick-ups. Ridesourcing providers on the other
hand can potentially profit from the inflow of supply in times of economic recession
by means of reduced waiting time for travellers, which may attract new demand, or
alternatively, by giving them the opportunity to increase the commission rate without
sacrificing the level of service for travellers.

Heterogeneous reservation wage

It can be expected that the minimum income that drivers want to collect with rides-
ourcing participation is not equal for all drivers, for example because some drivers
have better access to alternative employment than others. To capture reservation wage
heterogeneity, one of the set of scenarios included in our experiment is directed at
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Figure 2.4: The effect of (homogeneous) reservation wage on the evolution of (a) the
expected income of registered drivers as ratio of their reservation wage,
(b) the share of requests that are satisfied, (c) the average waiting time
for pick-up for travellers, (d) daily participation volumes, (e) the total
number of registered drivers, and (f) the share of registered drivers that
participate

investigating ridesourcing supply for different reservation wage distributions, with the
same mean U as the reference scenario but different standard deviations ©.

Figure 2.5a shows that when there is a lot of variation in drivers’ reservation wage
(scenario HR30), the expected income of registered drivers in equilibrium is relatively
low. Yet, a high value for o does not seem to lead to a slower registration process
(Figure 2.5b). In fact, participation appears to be higher with strong heterogeneity in
the reservation wage (Figure 2.5¢). Figure 2.5d demonstrates that in such a scenario,
a relatively high share of registered drivers has a low reservation wage, meaning that
they are relatively like to supply labour on a given day, even when they expect a low
income. It explains also why registration (Figure 2.5b) peaks early in a scenario with
high o: drivers with a reservation wage below the mean benefit significantly from
registration and are thus relatively likely to register. Due to the quick influx of drivers
and the fact that drivers that are still unregistered have a relatively high reservation
wage, registrations then slow down quickly. High participation volumes in scenarios
with strong heterogeneity result in a low average income for drivers in the system
(Figure 2.5¢) and slightly lower waiting times for travellers (Figure 2.5f).

The results imply that with a high degree of inequality in the labour market, rides-
ourcing markets may be flooded with drivers with limited labour opportunities else-
where. Due to their weak position in the labour market, they are willing to work for
ridesourcing platforms even when wages are low, providing competition for other par-
ticipating drivers. Our experiment demonstrates that high participation may only yield
limited benefits in terms of the average waiting time for travellers, while the income
for drivers may be significantly lower than in scenarios with lower participation. We
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Figure 2.5: The effect of heterogeneity in reservation wage on (a) the evolution of the
average expected income of registered drivers as ratio of their reservation
wage, (b) the evolution of the total number of registered drivers, (c) the
evolution of daily participation volumes, (d) the probability density func-
tion of reservation wage for registered drivers, (e) the evolution of average
experienced income of participating drivers as ratio of their reservation
wage and (f) the evolution of the average waiting time for pick-up for trav-
ellers

conclude that especially in labour markets characterised by large inequalities supply
caps may be necessary to guarantee a socially desired minimum income for ridesourc-
ing drivers.

Unobserved variables in participation

Choice parameter B, represents the value drivers attach to income as opposed to other
variables in participation decisions. A low By, indicates that drivers supply labour to
the platform more opportunistically, potentially working one day but not the next even
when the income they anticipate is the same. Our results show that while B, has a
limited effect on the average expected income of drivers registered with a platform
(Figure 2.6a), there is a clear difference in the average actual income generated by
participating drivers (Figure 2.6b). The reason for this discrepancy is that in the sce-
nario with the highest value for Sy, (scenario /V100), despite a slightly higher average
expected income, on average approximately 40 fewer drivers actually decide to par-
ticipate compared to the scenario with lowest S, (Figure 2.6¢). Figure 2.6d provides
an explanation for this phenomenon. With expected income as the dominant variable
for participation when By, is high, a driver that expects to make an income just below
their reservation wage is relatively unlikely to participate, and consequently, also to
update its income expectation based on new, potentially more positive, experiences.
In this scenario, drivers confronted with a negative driving experience are therefore
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less likely to participate thereafter compared to scenarios with a lower value of By,
resulting in a large group of ’dissatisfied” drivers with an income just below the reser-
vation wage, but ultimately also in a (relatively small) group of drivers profiting from
the lack of competition when it comes to serving rides. Participating drivers in this
scenario earn on average approximately 15% more than their reservation wage, com-
pared to 10% less in the scenario with a B,y of 0.05. The average waiting time for
travellers is, however, also highest in this scenario (Figure 2.6f).

Due to slightly higher expected earnings when income is the dominant factor in
the participation decision, more unregistered drivers decide to sign up in later phases
of the transition process (Figure 2.6e) compared to scenarios in which By, is low.
Hence, the equilibrium market state is achieved more quickly when drivers attribute
more value to variables other than income.
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Figure 2.6: The effect of the valuation of income in participation choice on (a) the
evolution of the average expected income of registered drivers as ratio of
their reservation wage, (b) the evolution of average experienced income of
participating drivers as ratio of their reservation wage, (c) the evolution
of daily participation volumes, (d) the probability density function of ex-
pected income (as ratio of their reservation wage) for registered drivers,
(e) the evolution of the total number of registered drivers and (f) the evo-
lution of the average waiting time for pick-up for travellers

To summarize, if we assume that income is not the sole explanatory variable for
participation, in line with what is suggested by early research on labour supply of
ridesourcing drivers Chen et al. (2019), the average income for participating drivers
in a ridesourcing system is likely to turn out relatively low, since every day a portion
of drivers is willing to participate for a wage below their reservation wage, increasing
competition for supply in the system. This implies that, in such a scenario, the rides-
ourcing service may be valuable for drivers wishing to supply labour flexibly, utilising
the service for example only on days without planned activities or other work, but less
so for drivers using the platform as a replacement for a full-time job.
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2.4.3 Platform policies

We observe that a lower commission allows for higher earnings in early transition
phases (Figure 2.7a), which convinces more potential drivers to register in this time
frame (Figure 2.7e). After increased supply-side competition has brought earnings
down, the number of new registrations slows down in all scenarios. In scenarios in
which initially many drivers register, the relative increase in the size of the pool of
registered drivers is lower than in scenarios in which fewer drivers registered. This
means that these markets end up in an equilibrium state more quickly. This trend
applies however only up to a certain point. When commissions are increased further,
corresponding to a commission rate of 55% in the experiment, hardly any drivers will
register at all. In that case, the market equilibrium is achieved very quickly.

Interestingly, we find that the expected income of drivers in equilibrium is hardly
affected by the commission fee that is charged by the platform (Figure 2.7a). A com-
mission rate of 55% (scenario CF55) yields an expected driver income which is not
more than 10% lower than when the commission rate is set to only 5%. Ridesourcing
users, on the other hand, can strongly be affected by the platform commission rate.
The additional inconvenience is fairly limited when the commission rate is set to 35%
as opposed to 5%, inducing an average additional waiting time of less than one minute.
However, with a commission rate of 45% or 55%, a part of the requests needs to be
rejected and the waiting time of the remaining travellers is significantly longer (Figure
2.7b, 2.7¢). In fact, when the commission rate is 55%, only 20% of requests can be
satisfied in equilibrium. Figures 2.7d and 2.7e demonstrate that supply adjusts itself
to the commission rate that is in effect, which provides an explanation for why income
levels are largely unaffected, while the level of service for an average ride strongly de-
teriorates. In this particular experiment, a commission rate of 45% appeared to be the
optimal strategy for the ridesourcing provider, generating approximately 8,000 euros
per day in equilibrium (Figure 2.7f).

These findings demonstrate that, profit-wise, the collection of a higher share per
request may outweigh revenue loss from not being able to serve all incoming requests.
This implies that profit maximisation in ridesourcing provision may come at the ex-
pense of travellers, who are exposed to longer waiting times and a higher probability
of being rejected altogether. Interestingly, ridesourcing drivers are hardly affected by
strategical platform behaviour relating to the commission rate, since driver registra-
tion is slower when commission rates are high. At the same time, we observe that
within a certain range, platform profit can be vastly improved without significantly af-
fecting riders in the system. Our experiment shows that a non-optimal pricing strategy
in terms of profit (in the experiment a commission rate of 35% as opposed to 45%),
may result in near-optimal platform profit and driver income, with a much improved
level of service for travellers. Thus, it might be worthwhile for authorities to con-
sider regulating the commission rate while considering its consequences for service
affordability.
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Figure 2.7: The effect of platform commission rate on the evolution of (a) expected
income of registered drivers as ratio of their reservation wage, (b) the
share of requests that are satisfied, (c) the average waiting time for pick-
up for travellers, (d) daily participation volumes, (e) the total number of
registered drivers, and (f) daily platform profit

2.4.4 Entry barriers

The need for vehicle, insurance and medallion acquisition may prevent interested
drivers from registering with a ridesourcing platform. In some markets, these fac-
tors are more prevalent than in others. We mimic markets with different registration
regimes by varying registration cost parameter C;. We find that when registration costs
are high, indeed, significantly fewer drivers will register with a ridesourcing platform
(Figure 2.8a). The markets corresponding to these scenarios more quickly reach a
state in which the number of new registrations is negligible in terms of its effect on
the daily number of participating drivers.

We observe that the marginal decrease in registration volume when C; grows is
especially large when registration costs are limited. In a scenario without registra-
tion costs (scenario RC0), nearly 900 drivers register with the platform, compared to
approximately 430 when registration costs add up to €20 per day, and just over 200
when the daily registration penalty amounts to €40. The consequence is that registra-
tion costs lead to reduced participation (Figure 2.8b) and ultimately to a higher aver-
age experienced (Figure 2.8¢c) and expected (Figure 2.8d) income. Registration costs
can thus be a crucial factor for whether drivers, on average, end up earning above or
below the reservation wage. However, considering that registration costs need to be
subtracted from the income of drivers, a scenario with C; equal to 40 still turns out
to be least favourable for drivers, as demonstrated by Figure 2.8e. In this scenario
drivers that participate earn back on average 75% of their total costs (including the
cost of participation and registration), compared to 88% when registration does not
bear any costs and the total costs are made up of the reservation wage (and operational
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costs). This, however, considers only the income of participating drivers. It should not
be forgotten that also registered drivers that do not participate on a given day end up
with a negative daily profit due to their capital registration costs. In case they cannot
easily discard their registration costs, for example by selling their car, it might still
be their best option to keep participating, even when this results in a negative net in-
come. Due to reduced supply, travellers may also be worse off when a ridesourcing
service comes with high registration barriers for drivers (Figure 2.8d), the extent to
which likely dependent on context-specific variables. In our particular experiment,
travel times are hardly affected by registration costs.

The results imply that ridesourcing providers, drivers and travellers may also suf-
fer from high entry barriers for potential suppliers. Consequently, policies that aim
at reducing the costs related to registration may be beneficial, for example offering
affordable vehicle insurance deals to drivers.
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Figure 2.8: The effect of registration costs on the evolution of (a) the average expected
income of registered drivers as ratio of their reservation wage, (b) the total
number of registered drivers, (c) daily participation volumes, (d) average
experienced income of participating drivers as ratio of their reservation
wage, (e) average experienced income of participating drivers as ratio of
the sum of their reservation wage and daily share of registration costs and
(f) the average waiting time for pick-up for travellers

2.4.5 System optimum supply and user equilibrium solutions

In this section, we elaborate on the social optimality of a decentralised ridesourcing
supply and discuss the implications for how regulation should be designed to safe-
guard the interests of different stakeholders in the process. The user-equilibrium so-
lution obtained from our model is compared with the system optimum supply-level
that is obtained from a brute force search for the optimal fleet size. Figure 2.9a shows
the profit of a ridesourcing platform for different participation levels. Next to the
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typical ridesourcing scenario in which self-employed drivers get paid based on the
rides they serve, we consider an alternative scenario in which drivers, instead, earn a
guaranteed hourly wage, while also getting their operational costs reimbursed. Com-
paring platform profit in both scenarios, we observe a major difference in the financial
consequences of oversupply for the service provider. In the typical ridesourcing sce-
nario with fare-based payouts, oversupply does not induce additional costs, because
ridesourcing providers pay drivers based on served demand, not participation. In the
event of abrupt market contraction (e.g. pandemic crisis), for example, compared to
service providers with employed drivers, ridesourcing providers benefit from reduced
driver payouts that will partially offset the lower earnings from fares. Hence, a con-
sequence of transaction-based driver payments is that, in contrast to more traditional
transit providers paying drivers based on the number of hours worked, ridesourcing
providers lack an incentive to curb their supply. In fact, as Figure 2.9b shows, they
can benefit from oversupply as it leads to lower travel times for travellers, and thus,
potentially, increased demand. These benefits are, however, relatively limited after
supply reaches a specific point, which appears to be the minimum supply for which
(nearly) all requests can be served. More supply will result in more efficient matches
between drivers and travellers, yet yielding a minor effect on the travel times for riders
in the system.

(a) Platform o (b) Traveller union

(c) Driver union
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Figure 2.9: Optimality of supply in a system with fare-based driver payouts (assuming
a platform commission rate of 25%) and a system with wage-based driver
payouts, for (a) the service provider, aiming at maximum profit, (b) the
traveller union, minimising costs from waiting and rejected requests, (c)
the driver union, maximising driver earnings over the reservation wage,
and (d) an authority that evaluates the three previous objectives equally,
maximising the summed net value



2.4.5 System optimum supply and user equilibrium solutions 41

Figure 2.9a also shows that fare-based driver payments are not necessarily optimal
for the service provider. In the presented scenario, the service provider would actually
be better off paying an hourly wage to a relatively limited number of drivers, thereby
earning the full share of ride fares, than allowing self-employed drivers to collect
these fares in return for a fee. It should be noted that this particular example does not
consider that employed drivers may be entitled to social benefits and that drivers may
not be willing to work for the minimum wage.

When taking the driver perspective, we find that the optimal fleet size in the fare-
based scenario is relatively low (Figure 2.9c), peaking between 40 and 100 participat-
ing drivers. If supply is even lower, a lot of potential income is lost due to rejected
requests, however, if it is higher, excessive competition leads to incomes below the
reservation wage, and consequently, dissatisfied drivers. For supply volumes over 120
the total driver surplus is in fact negative. Yet, remarkably, in the reference scenar-
ios of our experiment with decentralised supply, we find average daily participation
volumes of approximately 150 drivers in equilibrium. This demonstrates that in the
ridesourcing market the notion of ’the tragedy of the commons’ may apply, in which
the self-interested labour decisions of individual drivers lead to a suboptimal result for
the whole group: excessive competition for rides and ultimately low payouts.

If we consider a society in which the societal value of a single monetary unit is
independent of the party that it is assigned to, i.e. an extra profit of one euro for the
platform or a single driver has the same value as a travel cost saving of one euro for one
traveller, we find that the optimal ridesourcing fleet size for our particular experiment
is 100 drivers, as illustrated by the total net value sketched in Figure 2.9d. Lower sup-
ply levels are undesired from the platform’s and travellers’ perspective, while higher
supply leads to a significantly deteriorated driver income with only a very limited
benefit for travellers. The social optimum in this case is thus considerably lower than
the user equilibrium, which depicts the potential value of supply caps in ridesourcing
markets. Although ridesourcing providers are typically reluctant to accept the imple-
mentation of supply caps, our analysis illustrates that their negative effect on rider
level of service and ultimately platform profit may be very limited, especially in a sat-
urated market. In this particular case, a reduction of supply from 300 to 100 drivers
only induces a single minute of extra waiting time per request.

We note that the socially optimal fleet size for ridesourcing services is equal to
that of a transit service with employed drivers, because the objective function for
the net total value ultimately contains the same elements: revenue from fares, opera-
tional costs and labour participation costs. The only difference is the distribution of
those over different stakeholders. If a society indeed considers a single monetary unit
equally valuable to all stakeholders, it can thus be stated that only the fleet size of an
on-demand transit service matters from a societal perspective, not whether drivers are
paid for participating or based on the travel requests they satisfied.
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2.4.6 Model sensitivity
Learning

Learning parameter o indicates how drivers value recent experiences compared to
preceding experiences over time. A low value of ® corresponds to a situation in
which drivers assign a relatively high value to their recent experience (see Equation
2.14), for example because they believe old experiences are not representative for the
present state of the system or because they cannot perfectly memorize their income
from previous days. In contrast, if @ goes to infinity, drivers’ expected income equals
their average experienced income. In this study, we assumed ® to be equal to 5,
indicating that the weight of new experiences decreases to 0.2 within 5 days, and stays
constant thereafter. To establish to what extent the results presented in this section are
specific to the learning parameter, we have repeated the experiment for the reference
scenarios, while varying the value of the learning parameter @ between 3 and 100.
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Figure 2.10: The effect of the rate of learning on (a) the evolution of the average ex-
pected income of registered drivers as ratio of their reservation wage,
(b) the probability density function of expected income (as ratio of their
reservation wage) for registered drivers, (c) the evolution of daily par-
ticipation volumes, (d) the evolution of average experienced income of
participating drivers as ratio of their reservation wage, (e) the evolution
of the average waiting time for pick-up for travellers and (f) the evolution
of the total number of registered drivers

We find that @ has a limited effect on ridesourcing provision. One of the notable
differences is that, although the mean expected income in equilibrium is unaffected
by @ (Figure 2.10a), the distribution of expected income over registered drivers dif-
fers (Figure 2.10b). This can be explained by the fact that when @ is small, drivers
are more likely to ’overreact’ to a single negative experience, resulting in a pool of
"unsatisfied” drivers with expected income levels significantly below the reservation
wage. These drivers will not be tempted to participate again, limiting participation
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on the platform (Figure 2.10c) and driving up the experienced income (Figure 2.10d)
and ultimately the expected income of the other registered drivers (Figure 2.10b). It
also results in a minor difference in the average waiting time for travellers (Figure
2.10e). Moreover, we establish that registration volumes slightly diverge in an early
stage of adoption (Figure 2.10f). The reason is that when @ is small, drivers more
quickly observe that earnings are dropping (Figure 2.10d), which they communicate
to drivers that have not yet registered. Nevertheless, the effect of @ was found to be
limited and we do not expect a major impact on the main findings regarding dynamics
in ridesourcing supply.

Information diffusion

This study considers that drivers need to become aware about the existence of a rides-
ourcing service before they can supply labour to it. To this end, we introduce an
information diffusion process with a transmission rate fBir of 0.2. Lacking empiri-
cal evidence of the specification of the information diffusion process, we need to test
whether our findings also apply under different diffusion settings. We test four alter-
native values for S, ranging between 0.05 and 1.0. We find that, given a value for
Binf that allows (nearly) all drivers to be informed at the end of the simulation (Figure
2.11a), the specification of the diffusion process has hardly any effect on labour sup-
ply in equilibrium. The different scenarios for B¢ converge to the same participation
volume (Figure 2.11b), with a similar average expected income (Figure 2.11c), aver-
age waiting time for travellers (Figure 2.11d) and service rate (Figure 2.11e), which
demonstrates the generalisability of the results, concerning the value of Bj,¢. Although
the indicators are similar in equilibrium, we note clear differences in the adoption pro-
cess. When By is high, many drivers become aware about the service at the same
time. In an early phase of adoption (phase 1 as introduced in Subsection 2.4.1), when
there are few drivers supplying labour to the platform and income levels are high, this
leads to a big registration peak (Figure 2.11f) and excessive participation, with rela-
tively low driver incomes and limited waiting times for travellers. In scenarios with
a lower information transmission rate we do not observe such a peak in participation,
but rather a steady increase towards the equilibrium value. As a consequence, in sce-
narios in which communication about innovations takes place slowly, it takes longer
before the level of service reaches a satisfactory level, with the large majority of rides
accepted and a relatively low average waiting time for travellers.

2.5 Conclusions

2.5.1 Study significance

This study is pioneering in analysing the dynamics of (decentralised) ridesourcing
supply while accounting for labour supply decisions considering both long-term plat-
form registration and short-term participation. Our platform registration submodel
considers that registration requires information about earnings, and that it comes with
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one-off registration costs like insurance and vehicle acquisition, which are sunk in sub-
sequent participation decisions. With a probabilistic participation choice submodel,
we account for unobserved variables in the decision to work on a given day, like
planned activities for this particular day. The model is applied to the case of Ams-
terdam in order to investigate the effect of supply market properties, platform pricing
and supply-side entry barriers on the evolution of ridesourcing supply. In addition, we
comment on the optimality of decentralised ridesourcing supply from the perspectives
of drivers, travellers and service provider, based on an exhaustive search.

The results demonstrate that labour supply in ridesourcing may be non-linear and
undergo several transitions, hereby inducing significant variations in average income,
profit and level of service. It highlights the need for models capturing dynamic inter-
actions in ridesourcing provision, such as the one presented in this work.

2.5.2 Key findings

Fleet size. We find that in a decentralised system, as long as drivers earn a com-
petitive income and not yet all potential drivers are registered, new suppliers are at-
tracted to the market at a relatively high pace. For the base scenario of our experiment,
this phenomenon results in an equilibrium participation volume of 150 drivers. With
this level of supply, there is relatively strong competition for pick-ups, resulting in
payouts below drivers’ reservation wages. Instead, for the community of (potential)
ridesourcing drivers in our experiment, a fleet size of 40 - 100 drivers is considered
to be optimal. Such a solution implies that the fewer drivers participating will earn
a significantly higher income. The above findings demonstrate that the tragedy of
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the commons may apply in ridesourcing provision, in which the self-centered labour
decisions of individuals ultimately harm the common interests of the group.

Unlike traditional transit providers with employed drivers, ridesourcing providers
lack a direct financial incentive to curb supply. Our results demonstrate however
that there may be an alternative balancing loop in ridesourcing supply, i.e. profit-
maximising service providers may be best off claiming a relatively high rate on fares
collected through their platforms, even when this means that fewer drivers will partic-
ipate and, consequently, that a portion of the travel requests has to be rejected. In our
experiment, in equilibrium approximately 60 drivers participate when a platform opts
for a profit-maximising commission rate of 45%, compared to 180 drivers when the
commission rate is 25%. This results in a decline in the probability that a request can
be matched from 100% to 85%, and in an increase in the average waiting time from
2 to 6 minutes. Remarkably, average drivers earnings in the experiment are hardly af-
fected by the commission rate of the platform. The rationale here is that the influx of
new drivers on the platform is limited when the commission rate is high. This implies
that registration barriers may mitigate the tragedy of the commons in ridesourcing

supply.

Labour market effect. The expected income is especially low when the average
reservation wage is low. In this case, drivers are relatively quick to register, leading to
a fierce competition and ultimately a decreasing income for those already registered.
Free-lance workers in the market will thus suffer from a shrinking economy in which
other labour opportunities are scarce. The same applies to a labour market with large
inequalities, in which ridesourcing services are flooded with drivers that have limited
opportunities in the market, and are willing to work even when earnings are low.

2.5.3 Policy implications

Supply regulation. Similarly to the results of the semi-dynamic model by Yu et al.
(2020), our findings provide support for the potential effectiveness of a supply cap,
which has for example been implemented in New York City. It may push earnings
over the reservation wage without significantly impeding travellers’ waiting times. At
the same time, our results show that the value to which the cap is set is crucial. For
instance, in our experiment, supply caps above 400 drivers or more would yield no
effect on driver income. On the other hand, we find that when supply caps are too
restrictive, they may be detrimental to the level of service offered by the platform.
This is in line with the results of the queuing theoretic equilibrium model formulated
by Li et al. (2019), demonstrating that a supply cap can lead to reduced driver earnings
when too many consumers leave the market. In any case, given that capital registration
costs jeopardise the income of drivers, transit authorities should avoid supply caps that
assign an additional cost to operation under the supply cap.

Pricing strategy. A profit-maximising platform will increase its commission rate up
to the point that so many drivers opt out that lost commission from rejected requests
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outweighs the higher revenue on remaining requests. Our experiments demonstrate
that at this point already a significant portion of ride requests may need to be rejected.
In addition, we find that such a profit-maximising strategy may result in relatively
long waiting times for travellers. These results suggest that the pricing strategy of a
ridesourcing platform may need to be regulated. Our results in fact demonstrate that
this may be highly beneficial from a societal standpoint, given that a near-optimal
profit can be achieved with a significantly lower commission rate, yielding a much
improved level of service for travellers. This confirms earlier findings based on an
analytical economic model by Zha et al. (2016) regarding the effectiveness of regu-
lation of the commission in increasing the social welfare generated by ridesourcing
platforms.

2.5.4 Future research

In this study, we focus on supply evolution in order to understand its dynamics and
describe emerging phenomena, which can be further embedded in models of co-
evolution of supply and demand. An interesting direction for future research is the
extent to which outcomes of a monopolistic market are also applicable to markets
in which service providers compete for supply and demand. For example, future re-
search may consider how supply evolution is affected by aggressive penetration pric-
ing strategies aimed at pushing other service providers out of the market. It may also
be interesting to analyse how external shocks to the market lead to swings in the tran-
sition process. Our model can be extended to study supply evolution of ridesourcing
services offering pooled rides, which will affect the income of participating drivers. In
essence, our approach with a day-to-day shell and a core capturing within-day dynam-
ics allows to analyse ridesourcing supply evolution under various operational within-
day strategies.

As a concluding remark, we stress the need for more empirical evidence on labour
supply by ridesourcing drivers, as model input - based on cross-sectional data - and
for validation of the results - based on longitudinal data. Enhancing the empirical un-
derpinning on labour supply behaviour by (potential) ridesourcing drivers will support
the specification of a simulation framework like the one presented here and thereby
allow to significantly improve our knowledge on ridesourcing implications for drivers,
travellers, platforms and society at large.



Chapter 3

Day-to-day Dynamics in
Two-Sided Ridesourcing
Markets

In this chapter, we present a conceptual representation of the interaction between sup-
ply and demand in the ridesourcing market to understand why these markets may
be prone to evolve towards particular - potentially socially undesirable - equilibrium
states. This analysis considers the speed and quality of matches for travellers and
drivers.

In addition, we add travellers’ platform registration and participation decisions
to the previously introduced day-to-day model for ridesourcing supply. Modelling
two-sided network effects in ridesourcing provision allows us to investigate the effect
of two-sided market conditions and platform strategies on system performance. In
this chapter we for instance vary the size of the potential ridesourcing market — i.e.
the number of travellers and job seekers in an area — to establish how the success
of ridesourcing provision is dependent on the scale of the market. Additionally, we
examine different per-kilometre fares, commission rates, platform awareness diffusion
speeds, and registration costs.

This chapter is based on the following article:

de Ruijter, A., Cats, O., & van Lint, H. (in press). Day-to-Day Dynamics in Two-Sided
Ridesourcing Markets. Transportmetrica B: Transport Dynamics.
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3.1 Introduction

In many cities around the world, ride-hailing constitutes an alternative to using a pri-
vate car or line-based public transport. The uptake of services like Uber and DiDi can
be attributed to combining the benefits associated with private transport - i.e. door-to-
door mobility - as well as with public transport - i.e. being exempted from the burden
associated with private vehicle ownership. While ride-hailing may be used in isolation
from other modes, it may also be used as an access or egress mode for more affordable
and efficient public transport services (Stiglic et al., 2018; Young et al., 2020).

The effect of the introduction of ride-hailing services is not limited to the trans-
portation sector per se. Most ride-hailing companies are exemplars of the gig econ-
omy, which means that they are essentially operators of a two-sided marketplace be-
tween travellers and self-employed drivers. This practice is referred to as ridesourcing.
Ridesourcing drivers enjoy freedom in selecting their working hours and days (Hall &
Krueger, 2018; Chen et al., 2019; Ashkrof et al., 2020) while losing access to social
securities provided by traditional labour contracts. Their financial reward is typically
based on satisfied demand rather than the time spent working.

Outsourcing supply to freelancers may allow service providers to respond more
adequately to changing circumstances, e.g. to declining demand as a result of a pan-
demic. Whereas traditional transportation service providers are restricted by long-
term labour contracts, ridesourcing market operators benefit from a day-to-day bal-
ancing mechanism for supply and demand that is inherent in two-sided markets. This
mechanism consists of two feedback loops (Parker et al., 2016). First, market par-
ticipants compete with each other for the service offered by participants on the other
side of the market. Hence, market participation is less attractive when there are many
participants on this side of the market. At the same time, competition on one side
is advantageous for participants on the other side, as it gives them more options to
choose from.

While feedback loops between supply and demand may be an advantageous prop-
erty of two-sided markets, there is no guarantee that the achieved market equilibrium
approaches the social optimum. For instance, considering that two-sided markets gen-
erate value by exploiting cross-group network effects, they may require a minimum
level of supply and demand to be viable (Evans & Schmalensee, 2016). As a result,
an insufficient user base on either side may result in a downward spiral that leads to
the termination of the service. Particular market conditions may inhibit the attraction
of travellers and drivers to the market. A platform may for example struggle to attract
drivers when job seekers have plenty of alternative labour opportunities in the market,
or when social security is highly valued by workers.

Clearly, there is uncertainty surrounding the market share that will be captured
by ridesourcing services, in relation to the earnings of drivers participating in these
markets, and the level of service offered to travellers. Considering that the social
optimum in a two-sided market can be different than in a one-sided market (Rochet &
Tirole, 2003), it is interesting to find out under which conditions ridesourcing services
will yield the utmost societal value, taking into account the perspectives of travellers,
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drivers and the intermediate platform, i.e. the mobility service provider. This requires
accounting for network effects - including potential asymmetries - in the two-sided
ridesourcing market.

Several scientific works study ridesourcing systems with endogenous supply and
demand. These studies have revolved around the optimisation of a platform’s match-
ing procedure (Chen et al., 2020; Ausseil et al., 2022; Wang et al., 2023a,c; Xie et al.,
2023) and pricing strategy (Banerjee et al., 2015; Taylor, 2018; Zha et al., 2018b,a; Bai
et al., 2019; Sun et al., 2019b; Bimpikis et al., 2019; Nourinejad & Ramezani, 2020;
Turan et al., 2020; Chen et al., 2021; Xu et al., 2022; Lei & Ukkusuri, 2023; Meskar
et al., 2023), competition between platforms (Zha et al., 2016; Zhou et al., 2020; Sun
& Liu, 2023), the evaluation of wider transportation effects (Qian & Ukkusuri, 2017;
Zhu et al., 2020; Ke et al., 2020b; Yu et al., 2020; Ke et al., 2021), and the exploration
and evaluation of potential regulations (Zha et al., 2018b,a; Li et al., 2019; Yu et al.,
2020; Li et al., 2022; Vignon et al., 2023). A common property of these works is that a
static, i.e. an equilibrium-based, model is applied to describe the ridesourcing market.
Such an approach neglects however several key day-to-day processes in ridesourcing
provision.

First, according to the theory of innovation diffusion (Rogers, 1995), both sides of
the market need to be exposed to information about a platform before they can decide
to make use of it. When exposure to information is slow on at least one of the sides of
the market, it may be difficult to generate and exploit network effects that are key to
the success of these platforms. At the same time, the speed among which awareness
spreads may depend on the number of users as well as on the experience of these users.

Second, a registration decision needs to be made before the platform can be used.
While for travellers there are no financial costs associated with the registration deci-
sion, drivers may need to acquire a vehicle, insurance and/or a taxi licence. Although
registration barriers may be lower than for conventional taxis (Hall & Krueger, 2018),
an increase in vehicle ownership associated with the emergence of ridesourcing (Gong
et al., 2017) demonstrates that not all ridesourcing drivers may have owned a car be-
fore signing up with the platform. On the one hand, registration is a barrier which may
prevent people from driving for the platform. On the other hand, registration may lead
to more frequent participation given that drivers are financially more dependent on the
service once they have contracts or debts that need to be paid off.

Third, the participation decisions of travellers and (potential) drivers are path de-
pendent. For instance, interested job seekers rely on past earnings as an indicator for
the financial reward for a day of platform work, in the absence of a guaranteed wage.
With limited means of communication amongst drivers (Robinson, 2017), individ-
ual experience is likely the most important source of information available to drivers
when making a participation decision. Drivers may experience different earnings from
the system average due to luck (randomness) in the matching process, which can be
substantial in ridesourcing (Bokanyi & Hanndk, 2020). Other sources of day-to-day
fluctuations in driver earnings are systematic and random changes in the number of
fellow job seekers deciding to work for the platform as well as in the number of trav-
ellers deciding to request a ride on the platform. Similarly, randomness in matching,
and systematic and random changes in two-sided participation volumes may lead to
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biased expectations of waiting time among travellers. This phenomenon could be
more predominant if travellers are highly sensitive to waiting time or to being denied
service.

In consideration of previously mentioned dynamic processes, we establish two
main benefits associated with developing a day-to-day model of the ridesourcing mar-
ket. First, accounting for dynamic processes related to ridesourcing supply and de-
mand (including their interaction) may yield different equilibria than suggested by
models neglecting these processes. For instance, network effects in the matching of
travellers and drivers could imply that a critical mass exists in ridesourcing provision,
i.e. with too few drivers and users the service is not interesting enough for participants
(on both sides of the market) to continue using the service. When platform awareness
spreads slowly in the population of potential consumers and suppliers, the critical
mass may not be reached as initial market participants experience inadequate service
and will opt out from participating in the future before other potential participants
are informed. In addition, initial variations in earnings (across drivers) and waiting
time (across users) following from randomness in matching may affect participation
in the long run, given that *unlucky’ drivers (travellers) - having experienced relatively
poor earnings (level of service) compared to the system average over a certain period
of time - are less likely to continue working for (requesting rides on) the platform
than ’lucky’ drivers (travellers), preventing them from learning that the overall earn-
ings (level of service) are better than what they personally experienced. A day-to-day
model for the ridesourcing market can be useful in exploring the system effect of at-
tributes associated with these dynamic processes, including the diffusion of platform
information, registration and participation.

Second, compared to a single-day model, a multi-day model can provide several
additional insights about the ridesourcing market. This includes information about (i)
system performance in different stages of evolution, which is also useful in explaining
why certain equilibria are reached, (ii) day-to-day variations in system performance
following from randomness in participation decisions, (iii) distributional effects fol-
lowing from matching luck and path dependency in participation, and (iv) the range
of equilibria towards which a ridesourcing market may evolve in order to determine
the importance of random events and path dependency in day-to-day processes in the
ridesourcing market.

Third, a multi-day model allows to explore the effect of day-to-day pricing strate-
gies, including penetration pricing, as well as investigating how ridesourcing markets
respond to changing circumstances, such as shocks in travel demand.

So far, few studies have represented the day-to-day dynamics of the ridesourcing
market, none of which have captured all previously mentioned dynamic processes.
Djavadian & Chow (2017), for example, account for learning income and waiting
time from experience, but neglect the steps preceding platform usage, i.e. information
diffusion and registration. In addition, the scalability of their model is unclear given
that it has only been applied to a small case study, consisting of a maximum of 10
drivers and 20 requests. Yu et al. (2020) and Cachon et al. (2017) propose a semi-
dynamic model with a single registration phase and a subsequent platform utilisation
phase. Consequently, their models disregard the feedback loop existing from platform
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utility to new registrations. Their models also neglect disaggregate spatio-temporal
relations between supply and demand. de Ruijter et al. (2022a) consider information
diffusion, registration and daily experience-based utilisation decisions for drivers, but
not for travellers, with demand for ride-hailing being considered exogenous. Finally,
Mo et al. (2023) introduce a stochastic evolutionary dynamic game model to analyse
ridesourcing market evolution, focusing on trust dynamics, complaint mechanisms,
and rating systems. Their approach overlooks the interplay between market participa-
tion (supply and demand) and market performance (service quality and driver income).

We address the stated research gap by investigating the long-term co-evolution of
supply and demand in the two-sided ridesourcing market by means of representing
sequential individual decisions of drivers and travellers. Specifically, we propose an
agent-based day-to-day model for ridesourcing demand and supply, consisting of (i)
an information diffusion model, (ii) a platform (de)registration model, (iii) a daily
platform utilisation model and (iv) a learning model. The proposed model integrates
a within-day operational model for ride-hailing (Kucharski & Cats, 2022) to account
for spatial path-dependent processes in vehicle-passenger assignment.

We apply the model to a case study representing a realistic urban network. The
model allows us to investigate the range of equilibria to which the market may evolve
as well as day-to-day dynamics and distributional effects in system performance be-
fore and after reaching the equilibrium. Considering the presence of network effects in
ridesourcing provision, we also investigate how the ridesourcing market equilibrium
is affected by the size of the potential market. This may determine whether matches of
high-quality are produced, and ultimately, whether the market attains a critical mass.
Furthermore, we construct an experiment to find how pricing policies, specifically ride
fares and platform commission, influence the ridesourcing market equilibrium. To-
gether, these two pricing instruments determine to what extent travellers and drivers
are charged for the service offered by the platform, i.e. for utilising its marketplace.
Because the total transaction volume in a two-sided market is inherently dependent on
the allocation of the service fee over consumers and suppliers (Rochet & Tirole, 2006),
we expect pricing to have significant implications for the market equilibrium. With the
experiment, we specifically investigate the implications of a profit-maximising pricing
strategy for travellers and drivers, which provides indications for the need to regulate
pricing in the ridesourcing market.

In order to understand emergent equilibria in ridesourcing provision, we need to
comprehend which specific network effects govern the interaction between ridesourc-
ing supply and demand, and how they relate to each other. We therefore propose in
the following subsection a conceptual framework encompassing the main interactions
between potential (double-sided) ridesourcing market participants. From this frame-
work, we derive the key network effects in the market.

3.2 Conceptual framework

Demand for ridesourcing follows from travellers choosing ridesourcing over other
modes of transportation for a given trip. Potential demand thus equals the number of
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trips in an area in which a ridesourcing provider is active in a given time period. Here,
we assume that there is only one ridesourcing provider. Ceteris paribus, greater overall
demand for travel will lead to more demand for the ridesourcing service (relation /
in Figure 3.1). Suppliers in the market are individuals looking to earn money by
driving for the platform. Hence, we can define potential supply in the market as the
number of individuals open to a job opportunity. It needs to be considered that a
vehicle, insurance and potentially a license is required before an individual can drive
for the platform. Hence, job seekers decide whether they would like to gain access
to the market by considering the costs associated with registration in addition to the
financial reward for supplied labour. Ceteris paribus, more job seekers results in more
individuals with access to the market (2), which yields more market participation (3).
It should be noted that registration costs on the demand side are limited, and therefore
not included in the analysis.
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Figure 3.1: Conceptual representation of the ridesourcing market

Ride fare

In reality, neither the probabilities that travellers opt for ridesourcing nor the prob-
abilities that job seekers register and participate are static. There are several attributes
influencing the outcome of these decisions, several of which may directly depend on
the state of the market. For travellers, this pertains to waiting time, which is perceived
negatively in their mode choice decision making process (4). Ridesourcing riders
experience waiting when the platform is looking for a match (5) and when the as-
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signed driver is driving to the request pick-up location (6). Considering that travellers
with pending ridesourcing requests compete for the same limited pool of resources,
i.e. drivers, the average time needed by the platform to match a request to a driver
increases with the number of ride requests, all other factors held constant (7). Con-
versely, when more drivers participate in the system, the average assignment time of
a request will decrease (8).

The average request pick-up time (after assignment) is also dependent on the num-
ber of ridesourcing requests and the number of drivers in the market. Pick-ups at any
given moment in time are short either when there are many idle drivers or when there
are many unassigned requests. Imagine for instance a market with a (large) pool of
idle drivers but no pending requests. Under these circumstances, a new travel request
will increase the average pick-up time of following requests, as a driver is removed
from the pool of drivers to serve this request, which leaves subsequent requests with
fewer idle drivers. An additional driver on the other hand will decrease the pick-up
time of the next request as the platform can assign more drivers to this request. Con-
trarily, when there are pending requests but no idle drivers, an additional driver will
increase the average pick-up distance as the next driver that becomes available (after
dropping off a passenger) can be assigned to fewer travellers. In such a market addi-
tional travellers on the other hand will yield a lower average pick-up time. Hence, the
relation between the number of requests and the average pick-up distance (9), and the
relation between the number of participating drivers and the average pick-up distance
(10), can be negative or positive, depending on the ratio of supply to demand.

The financial reward for labour supplied to the ridesourcing market is a key at-
tribute in job seekers’ decisions to register with the platform, to participate in the
market, and how many hours to work when they choose to participate. In this study
we neglect the latter, i.e. we focus on labour supply at the extensive margin. There are
two theories for how the amount of labour supplied to a market depends on earnings.
The neoclassical theory of labour supply assumes a positive wage elasticity of labour
supply. It represents the notion that labour becomes more attractive when earnings are
high, which has been supported by several empirical studies on ridesourcing supply
(Chen & Sheldon, 2016; Sun et al., 2019a; Xu et al., 2020). A second theory con-
siders labour decisions as reference-dependent, implying that suppliers have a target
income, which results in a negative wage elasticity of labour supply. Although evi-
dence has been found for a negative wage elasticity in taxi markets (Camerer et al.,
1997; Chou, 2002), this has been dismissed as an econometric artefact in a later work
(Farber, 2015). We follow the neoclassical theory of labour supply in conceptualising
the participation decision (/7). Similarly, we expect a positive relationship between
participation reward and registration probability (/2). Like waiting time for travellers,
the participation reward is directly affected by the volume of supply and demand in
the market. Participation earnings depend not only on the number of rides that can
be served on a given day, but also on the net earnings per ride (/3). As ridesourcing
drivers bear operational costs, deadheading reduces ride earnings (/4), which means
that drivers, like travellers, benefit when pick-up times are short. Idle time is another
important variable explaining participation earnings. No income is generated when
drivers are idle (/5). Considering competition for passengers, an increase in the num-
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ber of ride requests results in less idle time (/6), and an increase in the number of
participating drivers in more idle time (/7).

Finally, we consider how a platform’s pricing strategy affects the co-evolution
of supply and demand in the ridesourcing market. A higher commission directly re-
duces driver’s earnings per satisfied request (/8). Ride fares on the other hand increase
driver’s earnings per request, all other factors being equal (/9). As travel costs are per-
ceived negatively in mode choice, higher fares reduce demand for ridesourcing (20).
In this study, we assume a constant commission rate and fare structure, i.e. there is no
surge pricing and there are no day-to-day adjustments of the pricing strategy based on
the state of the market, i.e. the platform’s pricing strategy is assumed constant. We
believe that the key network effects in ridesourcing provision (described in Section
3.2) can be captured without consideration of such complex pricing dynamics. Hence,
commission and ride fares are exogenous variables in the conceptual framework pre-
sented in Figure 3.1.

3.2.1 Network effects

From the conceptual framework we can identify several network effects in the rides-
ourcing market. First, we highlight the network effects associated with an increase in
ridesourcing demand:

A. Increasing request assignment time (arrows 7-5-4 in Figure 3.1). Negative,
same-side network effect. There is competition amongst travellers with rides-
ourcing requests, increasing the average time needed by the platform to find a
driver that can serve the request.

B. Change in pick-up time (9-6-4). Positive or negative, same-side network ef-
fect. Depending on market conditions, better or worse matches are found when
there are more requests, resulting in a lower or higher average time between
being matched to a driver and being picked up.

C. Change in deadheading (9-14-13-11, 9-14-13-12-3). Positive or negative,
cross-side network effect. Change in pick-up time also affects drivers, decreas-
ing or increasing operational costs associated with serving a request.

D. Decreasing driver idle time (/6-15-11, 16-15-12-3). Positive, cross-side net-
work effect. More requests means that drivers spend less time waiting to be
matched.

There are four corresponding network effects associated with the volume of partici-
pating drivers.

E. Increasing driver idle time (/7-15-11, 17-15-12-3). Negative, same-side net-
work effect. There is competition amongst participating drivers for pick-ups,
increasing the time drivers spend waiting for assignment.
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F. Change in deadheading (/0-14-13-11, 10-14-13-12-3). Positive or negative,
same-side network effect. Depending on market conditions, better or worse
matches are found when there are more participating drivers, resulting in a de-
crease or increase in operational costs associated with deadheading to the pick-
up location.

G. Change in pick-up time (/0-6-4). Positive or negative, cross-side network ef-
fect. Change in pick-up time directly affects travellers that opt for ridesourcing.

H. Decreasing request assignment time (8-5-4). Positive, long-term, cross-side.
More participating drivers makes it easier for the platform to find a driver that
can serve a pending request.

3.2.2 Key market variables

Based on the previous analysis, three within-day variables govern all network effects
in the ridesourcing market: (i) the average time drivers are idle before being assigned
to a request, (ii) the average time before a request is matched to a driver, and (iii) the
average time a driver needs to pick-up a traveller after assignment. The first two vari-
ables are essentially the matching time for drivers and travellers, respectively. When
assignment happens immediately when there is at least one idle driver and one unas-
signed request independent of the proximity between requests and drivers, matching
time is directly - yet not merely - related to the ratio between supply and demand. For
instance, when there are many drivers relative to travellers with a ridesourcing request,
drivers will spend a relatively large share of their shift in an idle state, while requests
will be quickly answered. Conversely, when there are many requests relative to the
number of drivers, it will take long before requests are answered, while drivers will be
able to serve many requests in a given time frame.

The third mentioned variable that governs network effects in the ridesourcing mar-
ket - the average request pick-up distance - relates to the quality of matches rather
than matching speed. As we have previously explained, whether additional requests
and participating drivers increase or decrease the average match quality depends on
the ratio of idle drivers to pending requests. Next to the supply-demand ratio, match
quality depends on the scale of the (two-sided) market. The matching algorithm yields
more efficient matches when there is a lot of supply and demand.

We have established that the ratio between supply and demand affects both match
time (request match time and driver idle time) and match quality (average pick-up
distance). In Table 3.1 we summarise how match time and quality depend on the
supply-demand ratio. Below, we provide an argument for why ridesourcing markets
may evolve towards equilibria in which supply and demand are not well adjusted, i.e.
one in which one side has many unassigned participants. Per definition unbalanced
markets yield matches with a limited pick-up distance between traveller and driver, as
a platform is guaranteed to have options in its assignment of drivers to requests. A
low pick-up time benefits both travellers and drivers. In such an asymmetrical mar-
ket, one side experiences a very high level of service, benefiting both from limited
matching time and limited pick-up time. Participants on the other side are faced with
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a long average matching time, but this is at least partially compensated for by quick
pick-ups. In a well-balanced market, in contrast, the average pick-up time is not nec-
essarily low, although it may be depending on the number of drivers and unassigned
requests and the adopted matching algorithm. In such a market, participants on both
sides may be faced with matching time depending on whether at that particular mo-
ment in time there are more idle drivers or more unassigned requests. Such a market
equilibrium could be sub optimal for travellers and drivers alike. We therefore propose
that ridesourcing markets could evolve towards asymmetrical equilibria in which one
side "pays’ with matching time for the high match quality that benefits both travellers
and drivers. Which of the sides would be on the wrong end of this two-sided mar-
ket phenomenon depends on how sensitive their market participation decisions are to
match time and match quality.

Table 3.1: Matching quality and speed depending on the ratio between supply and

demand.
Market state Driver idle time Request match time Pick-up time
Many idle drivers Long Short Short
Many pending requests Short Long Short
Balanced supply and demand Medium Medium Medium

3.3 Methodology

We develop a model representing the day-to-day and within-day behaviour of potential
consumers and suppliers in the two-sided ridesourcing market. Potential consumers
in the market are formalised as travellers with a daily (repetitive) trip request, for
which they reconsider their mode of transportation everyday. Potential suppliers are
represented as job seekers deciding whether they want to register with and work for the
ridesourcing platform based on anticipated earnings. A single platform agent matches
ridesourcing requests to available drivers, charging a commission on each transaction.
An operational representation of the model is presented in Figure 3.2 and explained
below.

In the ensuing, we describe the main modelling elements and pinpoint similar-
ities and differences in the processes on the two sides of the market. First, both
sides include a macroscopic model to represent the diffusion of exposure to infor-
mation about the platform, which is a prerequisite for individual agents to participate
in the market. This process is captured in modules S1 and D1, for supply and de-
mand respectively. Second, job seekers, unlike travellers, are confronted with an addi-
tional (de)registration decision, capturing the trade-off between anticipated earnings
and long-term investment costs (module S2). Third, both registered drivers and in-
formed travellers are faced with a daily platform utilisation decision. Drivers decide
whether they expect the participation reward to outweigh opportunity costs for a day
of work (module S3), whereas travellers decide whether they expect ridesourcing to
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Figure 3.2: Operational framework for the ridesourcing market

offer them most utility, compared to a private car, bike and public transport alterna-
tive. The expectations are updated by means of a learning process. In modules S4 and
D3, respectively, we capture how drivers and travellers trade-off previous experiences.
These modules also include how unregistered agents learn about income and waiting
time. The model is integrated in an agent-based model (module O1) for within-day
ride-hailing operations (Kucharski & Cats, 2022). This module accounts for varia-
tions in experience across participating drivers as well as across passengers, which
may follow from microscopic spatio-temporal relations between supply and demand.
Throughout the multi-day simulation, the platform’s matching rules and pricing poli-
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cies are fixed. The assumption here is that the service operations remain unchanged
during the analysis period. The simulation is terminated once income and waiting
time hardly evolve anymore from one day to the other.

In the following subsections, we describe each model component in more detail.

3.3.1 Information diffusion

Slow diffusion of ridesourcing market awareness among travellers and job seekers
can hinder the build-up towards a critical mass and ultimately result in the failure of
the service. In general, there is limited empirical evidence for how potential users
become aware about innovations, and particularly, how travellers and job seekers be-
come aware about the ridesourcing market. The diffusion of platform awareness likely
depends on highly complex, context-specific information processes, including peer-
to-peer interactions, mass media communication and platforms’ marketing strategies.
In consideration of the lack of empirical underpinning for awareness diffusion in the
ridesourcing market, particularly when it comes to the effect of global communication
sources, we opt for a simple model based on peer-to-peer communication between
informed and uninformed agents. The model satisfies two features that we consider
likely to be important in the process: (i) platform diffusion is likely slow in early
phases of adoption, when few travellers and job seekers are already aware about the ex-
istence of the platform, before speeding up, and (ii) ultimately all agents are informed
about the existence of the ridesourcing market, in line with the wide-spread familiarity
with ridesourcing platforms nowadays, for instance in the Netherlands (GerZini€ et al.,
2023). Specifically, we model the diffusion of platform awareness with an epidemic
compartment model with *infected’ (informed) and ’susceptible’ (uninformed) agents.
As information diffusion in social networks has been found to resemble virus spread-
ing (Zhang et al., 2016), epidemic models are a common method for representing
information diffusion processes. Past applications include word-of-mouth communi-
cation in marketing (Goldenberg et al., 2001), information diffusion through blogs
(Gruhl et al., 2004; Su et al., 2015) and the diffusion of rumours over social networks
(Trpevski et al., 2010).

Considering the lack of empirical underpinning for the adopted platform aware-
ness model, we analyse the sensitivity of our results to the awareness diffusion process
in Subsection 3.5.4.

Supply-side (S1)

Assume a pool S = {sj,...,sy} of N job seekers, which at the start of a given day ¢
are divided into three subpools: those that are uninformed about the platform S}, those
that are informed yet not registered with the platform Si, and those that are registered
with the platform Sj, so that:

S=S'USiuS; G.D
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Information about the existence of the platform is transmitted from informed job
seekers to uninformed job seekers at a rate Wyyp, i.€. Wsyp represents the multiplication
of the average daily number of contacts of agents by the probability that information
is transmitted in a contact between an informed an uninformed job seeker. The prob-
ability that a random uninformed job seeker s € S} is informed about the ridesourcing
platform’s existence on day ¢ then equals:

Woup - S U ST

pisrtltorm — N (32)

Demand-side (D1)

Consider a pool of K travellers C = {cy,...,ck }. At the start of day 7, the pool is sub-
divided into a group of travellers previously informed about the ridesourcing service
C; and those that have not yet been informed C}'. In other words:

c=cuct (3.3)

Information diffusion rate Wy, represents the multiplication of the average daily
number of contacts of agents by the probability that information is transmitted in a
contact between an informed an uninformed traveller. We define the probability that
an uninformed traveller ¢ € C}' receives information on day ¢ as:

picrtlform _ wdeﬂ}(' |Cfl| (3.4)

3.3.2 Registration
Supply-side (S2)

Before job seekers can participate as drivers in the ridesourcing market, they need to
register themselves with a ridesourcing platform. There may be substantial costs as-
sociated with being registered, i.e. with the ability to work in the market as opposed to
operational costs when driving. For instance, participation in the ridesourcing market
requires access to a vehicle, which may be subject to several requirements imposed by
the platform and/or regulators. For instance, in many contexts ridesourcing platforms
are regulated as taxi services, which implies that registering with a ridesourcing plat-
form may come with acquiring a taxi license, an on-board computer, an appropriate
number plate and suitable insurance coverage. As self-employed agents, ridesourc-
ing drivers may be confronted with other business expenses such as social security
contracts (pension, disability insurance, etc.) and financial administration costs.

To account for previously described (possibly medium- to long-term) expenses as-
sociated with being registered with a ridesourcing platform, we assume that job seek-
ers are confronted with a daily cost b when they are registered with the ridesourcing
service. Given the unlikelihood of daily reconsideration of one’s registration status,
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we assume that job seekers have a probability ¥ of considering (de)registration at the
end of day r.

The registration decision is modelled as a trade-off between registration costs and
anticipated ridesourcing earnings. Because the registration horizon is unknown, we
consider the registration decision as a trade-off between registration costs b and an-
ticipated earnings for the coming day i, the latter being determined by previous ex-
periences (further explained in Subsection 3.3.4). The underlying assumption is that
agents expect no fundamental changes (while allowing for day-to-day variations) in
system performance until the next time registration is (re)considered. In establishing
anticipated earnings, we need to account for the possibility of part-time driving, i.e.
that registered drivers do not necessarily receive a participation reward everyday. The
probability pP* THCIPAS that a registered driver s € S} participates on a given day ¢ is de-
fined in Subsection 3.3.3. The anticipated earnings for a day of work equal iy, and the
opportunity costs of a day of work r,. The latter is referred to as the reservation wage
in labour theory. We assume that the reservation wage is job seeker dependent but in-
dependent of time and day, i.e. reservation wage r; is drawn from a normal distribution
once with mean L, and standard deviation such that the expected Gini-coefficient of
the reservation wage distribution equals grv.

The utility Uy gistered being registered on a day ¢ follows from having the oppor-
tunity to work on that day, i.e. the opportunity to earn more than the labour opportunity
costs. We formalise the registration decision with a binary random utility model with
parameter P, and error term &eg to account for other variables in the registration
decision. Hence:

Uregistered participate

st = ﬁreg *Dst (fst - rs) + Sreg (35)

The utility of not being registered on a day follows from saving money associated
with being registered: '
U;nreglstered _ ﬁreg b+ £reg (3.6)

The probability that an informed, yet unregistered job seeker s € S} registers with
the platform at the end of day ¢ is then formulated as follows:

registered
-exp(U =,
regist v p( seS;t+1 ) 3.7)
565},t - registered unregistered .
! X . X X
¢ p(UseS;,tH )+e p(Uses;,tJrl )

Accounting for day-to-day variations in earnings, registered job seekers will re-
main registered for at least A days, even when earnings in this period are less than
expected. The probability that a job seeker s € S that has been registered for ny days
on day ¢ cancels its registration equals:

. unregistered
deregist __ nv exp(UseS{,t+1 ) (3.8)
sesit T (Uregistered)+ (Uunregistered) :
EXPWsegr 1 ) TEXP\Wesr 111
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with:

0 otherwise

n= {1 na 2 A (3.9)

Demand-side

For travellers, registration does not yield significant cost, safe for downloading an
app and a few minor administrative tasks. We ignore these and assume all informed
travellers have direct access to the platform.

3.3.3 Platform participation
Supply-side (S3)

Registered job seekers are faced with a daily platform participation decision. We fol-
low the neoclassical theory of labour supply (Chen & Sheldon, 2016; Sun et al., 2019a;
Xu et al., 2020), i.e. registered job seekers supply labour to a ridesourcing platform
when the anticipated income iy, exceeds the opportunity costs of working time ry.
Similar to the registration decision, we apply a random utility model to account for
additional variables in the participation decision, such as day-to-day variations in job
seekers’ reservation wage as a result of varying activity schedules. The error term is
defined as &, and the choice model parameter as B The utility of participating, the
utility of choosing an alternative activity, and the resultant probability of participating
in the ridesourcing market on day ¢ for registered job seeker s € S} are respectively
formulated as:

L N (3.10)
U2 = Bop - 15 + &ptp G.11)
praticipate _ exp(Uy ) (3.12)

exp(Ugarticipate) + exp(Uj}h)

Demand-side (D2)

Each informed traveller agent ¢ € C! makes a daily trip. Next to ridesourcing, their
mode choice set M consists of a bike, private car and public transport alternative.
Travellers consider time and cost attributes in choosing their travel mode, as well as
alternative-specific preferences. The value of time varies by mode and traveller. In-
vehicle time, waiting time, and vehicle access time are perceived differently, i.e. there
are separate time parameters B!, B4t and B3, The travel cost associated with
the choice for mode m is defined as p., (constant from day to day), which has a

weight of Bog in the utility function. Alternative-specific preferences may also vary
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across travellers in the population, hence we specify ASC,,, as traveller c’s alternative-
specific constant for mode m. We assume that mode attributes are valued equally
by different travellers. Each transfer induces a penalty Bganster, Which applies to the
public transport alternative alone. The attributes - and hence utilities - of all modes
except ridesourcing are constant. For ridesourcing, the anticipated waiting time is an
endogenous variable, all other variables are constant. A random utility model with
error term Enode 1S applied to account for other variables in mode choice (such as
weather conditions). With v, as the time in or on a vehicle, a.,;, as the access time
to reach a pick-up location, W, as the anticipated waiting time at a pick-up location,
and g, as the number of transfers, we can formulate the utility of different modes in
M for traveller c on day ¢, and the probability that those modes are chosen, as:

mode __ pivt access wait A N
Uctm = Pem * Vetm + ﬁcm “detm + ﬁcm “Werm + ﬁtranster “Yetm

+ Bcost *Pem +ASCcm ~+ €mode (3-13)

exp ( Umode)

mode __ ctm
ctm T d
ZmGM exp(Uc‘}‘,(,; e)

(3.14)

It should be noted that only the decision whether ridesourcing is chosen is a rele-
vant output of the choice model in the broader context of our day-to-day ridesourcing
model.

3.3.4 Learning

Travellers and job seekers are faced with imperfect information in decisions related
to the ridesourcing market. In this subsection, we describe how travellers learn about
waiting time and job seekers about income. We assume that those agents that can
participate in the market, i.e. informed travellers C! and registered job seekers ST, will
rely solely on own experience. Those agents that cannot participate, i.e. uninformed
travellers C! and unregistered job seekers S U S!, lack personal experience and instead
rely on information from other agents.

Considering memory decay (Ebbinghaus, 2013), it is unlikely that agents weigh
all experiences or received information equally when anticipating utility of platform
utilisation for the coming day. Lacking empirical evidence for the specification of the
learning function in a ridesourcing setting, we rely on findings from learning in route
choice behaviour (Bogers et al., 2007). Hence, we describe learning using a Markov
process formulation, in which k € (0, 1) represents the weight that agents attribute to
the most recent piece of information as opposed to previously gathered information.

Supply-side (S4)

We assume that at the end of day ¢ unregistered, informed job seekers S} receive a
daily private signal about the earnings of participating drivers. There is no systematic
error in the communication between unregistered and registered drivers, which means
that signal x;; received by job seeker s € S; at the end of day ¢ is drawn from a normal
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distribution with mean equal to the average experienced income of registered drivers
on this day i;. We assume that the standard deviation of this distribution equals ®
times the standard deviation Gti of experienced income on day 7. Registered job seekers
instead learn from personal experience. No learning takes place when those registered
job seekers did not participate on this day.

Consider a group of participating drivers S} C ST on day . The ridesourcing in-
come of participating driver s € S equals iy, on this day. Information yy; collected by
job seeker s about the income on this day depends on whether they were registered
and whether they participated:

Xt s E S}
Vst = 1 st se Sk (3.15)
iy otherwise
X ~ N (i, - G) (3.16)

The earnings expected by driver s for day ¢ is now formulated as:

zvt: (17K)'l¢s,171+’<'ys,171 (3.17)

When a job seeker is first informed about ridesourcing income, they fully rely on
the first income signal, hence by = Xy

Demand-side (D4)

When travellers are first informed about the ridesourcing service, they receive a wait-
ing time signal x.;. There is no systematic error in the communication between agents.
Signal x; is drawn from a log-normal distribution with mean equal to the average ex-
perienced waiting time of ridesourcing users on this day w;. The resulting standard
deviation of the distribution equals @ times the standard deviation o of the experi-
enced waiting time on day ¢, i.e. x4 ~ A (W;,®-0,"). The maximum waiting time
that can be communicated to a traveller is one hour. Once informed, travellers rely on
personal experience for learning waiting time.

Assume on day ¢ a group of travellers CY C C! opts for the ridesourcing service.
Ridesourcing user ¢ € CP experiences a waiting time for pick-up w,,. For day ¢, trav-
ellers anticipate waiting time w,,. With K as the weight attributed by travellers to
the most recent piece of information as opposed to previous information received, the
anticipated waiting time for day ¢ is defined as:

Wct:(I*K)'Wc.tfl‘i’K'Wc,tfl (3.18)
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3.3.5 Within-day operations

A discrete-event within-day model for ride-hailing operations Kucharski & Cats (2022)
allows us to establish the earnings of drivers (following from collected trip fares, plat-
form commission and operating costs associated with serving passengers and dead-
heading, all captured in the within-day model) and the waiting time of travellers opting
for ridesourcing, including variations across agents, based on the supply and demand
on a given day. In the adopted within-day model, market participants accept all match
offers by the platform. Drivers follow shortest paths to pick-up and drop-off locations,
and when unassigned stay idle at their last drop-off location until assigned to a new
request. We assume that passengers do not need time to embark and disembark the
vehicle. In this subsection, we introduce the matching procedure and how earnings
and waiting time are determined. We refer to the study of de Ruijter et al. (2022a) for
more details.

Matching

At any moment during day ¢, there is a (virtual and possibly empty) queue of idle
drivers Qgriver € S}J waiting to be assigned to a traveller, and a (virtual and possibly
empty) queue of travellers with unsatisfied requests on the platform Qreq C CP. We
define 7. as the travel time from the location of an idle driver s € Qgyiver to the pick-
up location of an unassigned traveller ¢ € Qreq. The matching function to find the
traveller-driver pair (c¢*,s*) with the least intermediate travel time, given that both

queues are non-empty, is formulated as follows:

(¢*,s")= argmin T, (3.19)
€€Q0req,SE€Qdriver

Income

Drivers directly collect the fares paid by passengers they serve. Ride fares comprise of
a base rate fpase and a per-kilometre rate fi,. The platform withholds a fixed portion
7 - the commission rate - on each transaction between a traveller and a driver. Let
us denote the direct distance from a the request location of traveller ¢ € Cf to their
destination as d.. The revenue of a driver for serving this traveller is then defined as:

R. = (fbase +fkm 'dc) . (1 - ”) (3.20)

The total revenue Ry, of driver s € S} on a specific day ¢ is the sum of the payouts
R. from requests served by this specific driver on this day. Defining &, as a binary
assignment variable indicating whether driver s picks up passenger c on day ¢, their
daily revenue is formulated as follows:

Ry = Z R.- ésct (321)

cec?
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The net experienced income of a participating job seeker iy, can now be formulated
as:

iss = Ry — Oy (3.22)

where, in consideration of deadheading distance Dy, (distance for picking up as-
signed travellers) and per-kilometre operational costs 8, the total operational costs of
driver s on day ¢ are:

= Z de-Eser +Dy) -0 (3.23)

cec?

Waiting time

The experienced waiting time w,, of a traveller with a ridesourcing request ¢ € C’
comprises of the time between requesting a ride and getting assigned, i.e. the matching
time, and the time it takes for the driver assigned to the traveller to reach the pick-up
location, i.e. the pick-up time. We lack empirical evidence for how travellers perceive
denied service. In this paper, we simply assume a (constant) high cost P in case
waiting time exceeds a patience threshold 6.

3.3.6 Implementation

Our day-to-day ridesourcing model is implemented in Python and integrated into
MaaSSim, a simulation environment for two-sided mobility platforms. The public
transport alternative available to each traveller is determined based on a query in
OpenTripPlanner (OTP). Only the public transport itinerary with the earliest arrival
time is considered by a traveller.

Convergence

The multi-day simulation can be terminated once the system reaches a steady state.
We establish two criteria for convergence, corresponding to the two sides of the mar-
ket. First, for five days in a row, the average expected earnings I; of registered job
seekers should not change more than a convergence parameter ¢. This indicates (i)
that ridesourcing earnings are fairly constant and (ii) that job seekers have learned
about it. The first criterion is formalised as:

AR A
Myp vz e {0,...,4} (3.24)
t—z—1

with:
I = |Sr Z st (3.25)

SES]
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Second, the average expected waiting time W, of informed travellers should not
change more than the previously defined convergence parameter ¢, again for five days
in a row:

|"Vt—z - VVt—z—l ‘

<¢ Vze{0,...,4} (3.26)
‘/Vlfzfl
with: 1
Wo=r Y W (3.27)
Gl ceci
Replications

The simulation model includes stochastic components in information diffusion, plat-
form registration and participation. We determine the number of required replications
Z(n'™") based on a number of initial replications ™™, using a formula commonly used
in stochastic traffic simulations (Ahmed, 1999; Burghout, 2004). We apply their for-
mula to both sides of the market, i.e. both equilibrium waiting time and income need
to be statistically significant.

Let us denote the average anticipated ridesourcing income by registered job seek-
ers in equilibrium in a single iteration as I*, and the the corresponding average an-
ticipated waiting time of informed travellers as W*. Then I* (n'"') and W* (ni"!), and
si(n™) and sy (n"') are, respectively, the estimated mean and standard deviation of
I* and W* from a sample of m runs. When we define the allowable percentage error of
estimate 7* (n"') and W* (n™") of the actual mean as €ep1, and the level of significance
as o, the minimum number of replications is:

2

.. 2 ..
. Sj (nlmt) nit_ 1-a Sw(nlmt) it 1-a
Z(nlmt) — max ( 1 n 1,5 ’ n 1,5 (3.28)

F(ninit) . grepl W(ninit) . Srepl

Traveller subpopulation

Considering that mode-specific constants are heterogeneous in the pool of travellers,
some travellers are more likely to choose ridesourcing for their trip than others. To
reduce the computational complexity of the simulation, we filter travellers based on
their probability to choose ridesourcing when there is no waiting time, i.e. when w,, =
0. If in such an ’ideal’ scenario traveller agents have a probability below parameter
they will be removed from the original pool of travellers.
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3.4 Experimental design

3.4.1 Set-up

We apply our simulation framework to a case study devised based on the City of Am-
sterdam, in terms of the potential ridesourcing market, the underlying road network,
ridesourcing operations and characteristics of alternative modes.

Our case study represents roughly a 10% sample of travel demand in Amsterdam
over a period of eight hours, as well as an estimated 10% sample of all job seekers.
A sample size of 10% is comparable to the samples taken in other works studying
transportation problems with agent-based models (Kaddoura, 2015; Bischoff & Ma-
ciejewski, 2016). Tests with larger sample sizes confirm that a 10% sample is suffi-
ciently indicative for system performance under the full population of travellers and
job seekers. In absolute terms, the sampling yields K equal to 75,000 travellers and N
to 2,500 job seekers. Travellers with a below 5% probability to opt for ridesourcing
even in the event of an immediate pick-up are assumed to never consider ridesourcing
for their trip, i.e. x is set to 0.05.

Travel demand is drawn once from a database of trips generated based on the
activity-based model of Albatross for the Netherlands (Arentze & Timmermans, 2004),
in which only trips longer than 2 kilometres are considered. The average value of in-
vehicle time in the population of travellers is set to €10 per hour, based on the most
recent estimation of the value of in-vehicle time for car commuters in the Netherlands
(Kouwenhoven et al., 2014). The standard deviation of the value of in-vehicle time
distribution is set so that the resulting Gini-index for inequality in value-of-time equals
0.35, similar to the observed inequality in gross income in the Netherlands (Arts et al.,
2019). Travellers perceive walking time to a stop / pick-up location 2 times more
negatively than in-vehicle time, i.e. B25°*% = 2BM and time waiting for a vehicle 2.5
times more negatively, i.e. B4 =2.58M based on Wardman (2004). Biking time
is perceived twice as negative as in-vehicle time to represent the strenuous and ’un-
productive’ nature of cycling (Borjesson & Eliasson, 2012). The penalty for transfers
in public transport is set to 5 minutes of in-vehicle time (Yap et al., 2020). Mode-
specific constants are based on preferences observed in urban areas in the Netherlands
(Gerzini€ et al., 2023). Travellers with a ridesourcing request are assumed to be will-
ing to wait up to 10 minutes for a match (6 = 10 min) and to perceive a rejected
request as equivalent to 30 minutes of waiting time (P = 30 min).

Similar to travellers’ perception of in-vehicle time, job seekers’ reservation wage
is drawn from a log-normal distribution with a standard deviation that results in a Gini-
index gy of 0.35. The mean reservation wage [y equals €25 per hour, based on the
average gross hourly income in the Netherlands (Centraal Bureau voor de Statistiek,
2022). Informed job seekers are expected to (re)consider registration every 10 days,
i.e. yis set to 0.1. Job seekers that participate start their working day at a random
location in the network.

We assume a road network with a (static) universal link travel speed of 36km/h
for cars and 14.4 km/h for bikes. The public transport alternative for each traveller is
based on service operations on November 1st, 2021, both in terms of its timetable and
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Table 3.2: Specification of other model parameters, with references to sensitivity tests.

Indicator Parameter ‘ Value ‘ Unit ‘ Sensitivity test

Information transmission speed Ysup> Ydem 0.1 - Subsection 3.5.4
Learning weight K 0.22 - Appendix A.3.1

Income sensitivity in registration Breg 0.2 util/€ | Appendix A.3.2
Income sensitivity in participation Botp 0.1 util/’€ | Appendix A.3.2
Minimum registration time A

5 days Appendix A.3.3

Rel. variation in wait time and inc. signals w 0.5 Appendix A.3.5
Convergence condition () 0.01 - -
Allowable percent. error of estimate of mean Erepl 0.1 - -
Level of significance a 0.05 - -

 Selected after learning of travel time in route choice (Bogers et al., 2007).

fares (i.e. €0.99 base fare and an additional €0.174 per km). Private cars are assigned
with a parking time of 10 minutes, as well as parking costs of €15 in the city centre
and €7.5 elsewhere. The total per-kilometre operating costs of cars are set to €0.5,
based on an estimation of the operating costs of a medium-sized car in the Netherlands
(Nibud, 2022). We assume that ridesourcing drivers have lower operating costs, i.e.
€0.25 per kilometre, representing more intensive usage of their cars compared to other
car owners. Ridesourcing pricing is based on Uber’s pricing strategy in Amsterdam,
surge pricing is not considered in this study. It implies that commission 7, base fare
Joase and per-kilometre fare fi, are set to 25%, €1.5 and €1.5/km in the reference
scenario. The daily costs b associated with being registered with the ridesourcing
platform (for job seekers) are set to €20.

At the start of the simulation, registered job seekers expect earnings equal to their
reservation wage, while (informed) travellers expect no waiting time upon initialisa-
tion. 10% of all agents (job seekers and travellers) are initially informed. Of the
originally informed job seekers, 20% is immediately registered with the ridesourcing
platform. The model’s sensitivity to these starting conditions is evaluated in Appendix
A2.

The specification of the remaining model parameters is provided in Table 3.2.

3.4.2 Scenario design

To investigate how the size of the potential ridesourcing market affects system perfor-
mance, we sample from the pool of travellers and job seekers specified in Subsection
3.4.1. We assume a fixed ratio of 50 travellers per job seeker, i.e. the (relative) sample
size is similar for supply and demand. We test the following relative sample sizes:
{0.05,0.1,0.2,0.4,0.6,0.8, 1.0}, corresponding to potential demand ranging between
3,750 and 75,000 travellers, and potential supply ranging between 125 and 2,500 job
seekers.
We also evaluate the platform’s pricing strategy, comprising of a (time-independent)

per-kilometre fare fi,, and commission rate 7. We test per-kilometre fares ranging be-
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tween 0.5 and 2.5 €/km, in steps of 0.5 €/km, in combination with commission rates
ranging from 5% to 55%, in steps of 5%.

3.4.3 Performance indicators

We formulate four surplus-related performance indicators, one for drivers, travellers
and platform each, and one the sum of the previous three.

First, registered job seekers obtain a positive value from the ridesourcing platform
when participation earnings in the long run outweigh experienced labour opportunity
costs and registration costs. Hence, we formulate the total driver surplus on day ¢ as
the summed difference between experienced earnings iy and reservation wage rg for
all participating drivers, minus the total costs associated with registration:

thrivers _ Z (ist _ rs) _ |S;’| -b (3.29)

sesP

Travellers experience a welfare gain as a result of having an additional travel al-
ternative. The welfare gain can be measured by computing the difference in Logsums
(De Jong et al., 2007) with and without a ridesourcing alternative. In this study, we
only consider the welfare gain of those opting for ridesourcing (i.e. Cf C C}). The
Logsums are formulated as:

LS =Y In [ Y (exp(USe®) —smode)] (3.30)
cec?  |me(M—{RS})
LS}V = Z In [ Z (exp(US‘,zde) — Smode)] (3.31)
cec? meM

The total traveller surplus is converted to a monetary unit by dividing the differ-
ence in Logsums by the marginal utility of income:

LS}V — LS
,BCOSt

Assuming that the service provider has no operational costs, the value for the ser-
vice provider equals the total commission collected off satisfied ridesourcing requests:

travellers
‘/t =

(3.32)

Vrp]atform —r. Z (fbase + fim .dc). Z ésct (3.33)

CEC}) SES}J

In this study, we do not analyse the contribution of ridesourcing to total vehicle
mileage, i.e. we assume that the contribution is negligible. We define the value derived
from the ridesourcing market by society on day ¢ as the (unweighted) sum of the driver
surplus, traveller surplus and platform profit:

societ; i latfi
thOCle y V;drlvers + Vttravellers + th atform (3.34)
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3.5 Results

Here, we present the results of our experiments. In Subsection 3.5.1, we specifically
explore the evolution of the ridesourcing market, the effect of stochasticity in starting
conditions and agent decisions, and their effect on within-day outcomes, and distribu-
tional effects in the reference scenario. In Subsections 3.5.2 and 3.5.3, we demonstrate
how the ridesourcing market equilibrium is affected by the size of the potential mar-
ket and by platform pricing strategies, respectively. In Subsection 3.5.4, we evaluate
the effect of two attributes related to dynamic processes in the market: the two-sided
information diffusion rate and (supply-side) costs associated with registration.

3.5.1 Dynamics, randomness and heterogeneity

In Figure 3.3, we present the evolution of the main system performance indicators -
the average of different instances of the experiment - in the reference scenario.

The majority of travellers and job seekers is initially unaware about ridesourcing
platform existence. Those that are informed are optimistic about earnings and waiting
time, i.e. informed travellers expect no waiting time and informed drivers expect
earnings equal to their reservation wage. We then observe four phases in the evolution
of the market:

1. Double-sided market correction after unrealistic expectations (days 0-5).
With informed travellers and job seekers initially optimistic about the service,
a relatively large share of them tries the platform. On the first day for instance,
around 50% of registered job seekers and nearly 3% of informed travellers -
which appears to be the upper bound for the ridesourcing market share - partici-
pate in the market (Figure 3.3A). Job seekers quickly learn that anticipated earn-
ings cannot not be realised (3.3B), while travellers observe that there is waiting
associated with choosing ridesourcing for their trip (3.3E). Therefore, regis-
tered job seekers become increasingly less likely to participate and informed
travellers increasingly less likely to choose ridesourcing in this early phase.
Since the decrease in participation probability is larger for job seekers than for
travellers, the number of satisfied requests per driver increases in this phase.
This results in increased daily earnings (3.3B) even though the earnings per sat-
isfied request decreases (3.3C) due to higher deadheading costs. At the same
time, travellers’ matching time increases (3.3E). Figure 3.3B demonstrates that
the average reservation wage of registered job seekers drops, i.e. job seekers
with an above average reservation wage are relatively likely to deregister and
relatively unlikely to register with the platform.

2. Bounce-back in supply (days 5-25). The average reservation wage of reg-
istered job seekers drops further (3.3B) as job seekers with a high reservation
wage continue to deregister, while those that register have a below average reser-
vation wage. As a result, the probability that a registered job seeker participates
increases significantly, from just over 20% to more than 60%. An increase in
supply results in a higher likelihood that requests can be assigned to a driver
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Figure 3.3: Evolution of the ridesourcing market in the reference scenario

(3.3D and 3.3E). It also leads to a decrease in the average pick-up time (3.3E).
In this market evolution phase, however, the average probability that ridesourc-

ing is chosen for a trip still decreases, given that the average expected waiting
time is still increasing.

. Double-sided growth (days 25-50). In this phase, there is a net growth in the
share of informed agents that are registered. The average reservation wage of
registered drivers is relatively stable. Considering that the number of informed
job seekers increases while earnings are fairly constant (a relatively minor in-
crease in driver idle time is approximately compensated for by a decrease in
deadheading costs per request, Fig. 3.3C), supply-side market participation in-
creases as well. On the demand side of the market, more travellers have be-
come aware about the service. Those informed are increasingly likely to use
ridesourcing as the average pick-up time drops. The latter is caused by more
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favourable matches with a growing number of users on both sides of the mar-
ket.

4. Market equilibrium (days 50+). In this phase, the key system performance
indicators only change marginally (satisfying the convergence criteria defined
in Subsection 3.3.6). Nearly all agents are now aware about the existence of the
service, and the probability that they use the platform is approximately constant.

We observe a discrepancy in the pace in which job seekers and travellers learn.
Figure 3.3 shows that at the end of the second transition phase, there is no fundamental
difference in what job seekers expect to earn and what they actually earn. On the
demand side, however, the average time that a traveller expects to wait when choosing
ridesourcing is higher than the average experienced waiting time of users (3.3E). A
reason why demand-side learning may be slow in the ridesourcing market is that its
market share is relatively low, i.e. in equilibrium around 2.2% of all travel demand. In
other words, the average informed traveller has a low probability of receiving private
information about the waiting time. This applies especially to travellers who have been
relatively unlucky in their experiences with the platform (Figure 3.4C), i.e. those who
on average experienced a high waiting time when opting for ridesourcing compared to
travellers with similar trip requests. With a high expected waiting time, they become
less likely to use the service in the future. In other words, the waiting time of travellers
that have been relatively unlucky in the matching process will regress to the mean
more slowly than the waiting time of travellers who have been relatively lucky. As
shown by Figure 3.3E, travellers requesting a ride with the platform expect a waiting
time that is close to the actual experienced waiting time. It may take a very long time
for the other travellers to learn about the average experienced waiting time.

The observation that job seekers learn much more quickly than travellers in the
reference scenario may not solely be explained by a discrepancy in the market partici-
pation probabilities between potential suppliers and consumers in the market. Another
possible explanation follows from our modelling assumption that job seekers - due to
market asymmetry in costs required for registration - exchange more information with
peers than travellers do with fellow travellers.

When we further examine distributional effects in system performance (in equi-
librium), we find that job seekers can expect relatively large day-to-day variations in
income. The experienced earnings of participating drivers resembles a normal distri-
bution with a relatively large standard deviation compared to the mean (Figure 3.4A).
It implies that on an average day under steady-state conditions some drivers earn very
little and some earn a lot. We find that random effects play a non-negligible role also
in travellers’ experiences. The majority of travellers have to wait less than two min-
utes to be picked-up, while some others are faced with a waiting time exceeding 10
minutes (3.4C). The waiting time distribution resembles an exponential distribution.

We observe that, at least in the reference scenario, spatial properties have a lim-
ited effect on experienced system performance. There is no significant relationship
between drivers’ starting location and their income (3.4B) and between travellers’ re-
quest location and their waiting time (3.4D).
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Figure 3.4: Distributional effects in earnings and waiting time in the ridesourcing
market equilibrium (single instance of the reference scenario)

Finally, we investigate the effect of random variations in agents’ preferences and
stochastic processes in the simulation, i.e. in information diffusion, registration choice
and participation choice. We observe minor differences in the performance indicators
in the market equilibrium when comparing different instances of the simulation. We
find the variability in market participation across instances - based on 20 instances -
to be larger on the supply side of the market. Based on the 20-day moving average,
the market converges to a supply-side participation volume between 110 and 122 job
seekers (Fig. 3.5A), depending on randomness in initial conditions and evolutionary
processes. The (relative) variation in market participation across instances is more
limited on the demand side (3.5C), with the the 20-day moving average ridesourcing
demand in equilibrium ranging from 1,580 to 1,700 requests.

The relative difference in the range of market participation volumes to which the
market converges between both sides can at least partially be explained by the abso-
lute volume of market participation on both sides, i.e. there are substantially more
travellers than drivers, implying that the decisions and attributes of individual trav-
ellers have a more limited effect than the decisions and attributes of individual drivers.
Another explanation could be that travellers are less sensitive to waiting time than job
seekers are to income. The relative variation between instances in the 20-day moving
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average of average experienced driver earnings (3.5B) and experienced user waiting
time (3.5D) is comparable.
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Figure 3.5: 20-Day Moving Average (MAyo) and daily values of ridesourcing market
participation and system performance indicators for different instances
(replications) of the reference scenario. System performance for one of
the instances is highlighted.

Another characteristic of the ridesourcing market provided by the dynamic model
are day-to-day variations in system performance, which can occur even in the market
equilibrium. Fig. 3.5 demonstrates that even when the market has converged, there
are non-negligible variations in daily ridesourcing supply (3.5E) and demand (3.5G),
which result in substantial day-to-day variations in the average experienced driver
earnings (3.5F) and user waiting time (3.5H). For instance, in a particular instance of
the experiment, the average daily earnings in the market equilibrium are found to be
as low as €70 on some days, and as high as €85 on other days, whereas the average
waiting time is found to vary between 2 and 3.5 minutes from day to day. We observe
that random variations in registration and participation decisions are not the sole ex-
planation for these day-to-day variations in system performance, i.e. initial random
variations affect the likelihood that agents participate in the future. We take as ex-
ample one of the instances of the experiment highlighted in Fig. 3.5. A period of a
few days around day 125 with slightly lower participation compared to the average -
possibly intensified by random spikes in ridesourcing demand - leads to temporarily
higher ridesourcing earnings. This yields a spike in supply-side participation (up to
125 drivers on a day). Due to increased competition, the ridesourcing earnings drop
substantially, which is followed by a drop in supply-side participation levels (down to
just over 100 drivers per day). In the end, market participation and earnings converge
back to the average in equilibrium. It demonstrates that in ridesourcing provision not



3.5.2 Potential market size 75

just day-to-day variations but also more structural fluctuations (in this case for approx-
imately 25 days) in system performance can occur, following from path dependency
in market participation decisions.

3.5.2 Potential market size

Figure 3.6 shows how ridesourcing system performance is affected by the (double-
sided) size of the potential market. We find for instance that when there are only
3,750 travellers and 125 individuals open to a job opportunity, the market will evolve
towards an equilibrium in which hardly any trip requests are satisfied (Figure 3.6D).
Under these conditions, critical mass cannot be achieved as ridesourcing supply and
demand are too thin resulting with large temporal variations in supply and demand.
Consequently, drivers are occasionally idle (when there are no unassigned trip re-
quests), while at other times there are unassigned requests without any driver avail-
able. Supply shortage is then likely to be sustained due to the long average pick-up
time (long deadheading) following from the inefficiency of the matching algorithm
when supply and demand are scarce (3.6E). As drivers on an average day serve few
requests (3.6G), participating in the market is unattractive. This further reduces the
probability that a request can be assigned to a driver.
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Figure 3.6: Equilibrium system performance indicators depending on the size of the
potential market (in which there are 30 travellers for each job seeker)

Already with 7,500 travellers and 250 job seekers in the market we observe sus-
tained supply and demand for ridesourcing. This corresponds to just 1% of the esti-
mated potential market size of ridesourcing in Amsterdam. In this scenario, only 3.5%
of all job seekers are registered in equilibrium (3.6A), of which on an average day less
than 30% participate (3.6B). Although limited supply results in a matching failure for
24% of trip requests (3.6D) and in relatively long waiting for the other requests (3.6E),
each day still a small portion (0.5%) of travellers is willing to request a ride with the
platform (3.6C).
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We observe that system performance improves considerably with the size of the
potential market. This resonates with the existence of positive network effects (specif-
ically B, C, G and H in Subsection 3.2.1) in the ridesourcing market, i.e. users facil-
itating the matching algorithm by enabling better matches. We find for instance that
the average pick-up time decreases from five minutes when there are 15,000 travellers
and 500 job seekers to around two minutes when there are 75,000 travellers and 2,500
job seekers (3.6F). As a result, the modal share of ridesourcing more than doubles
(3.6C). Lower deadheading costs (associated with driving to the request pick-up loca-
tion) yields higher per-request earnings for drivers (3.6H). We establish that network
effects marginally diminish as the potential market grows larger. In other words, with
each additional traveller and job seeker in the market, the marginal increase in rides-
ourcing market share decreases (3.6C). This is an inherent feature of the ridesourcing
market, given that there is a theoretical minimum pick-up time of 0 minutes, corre-
sponding to a situation with unlimited supply. Hence, as the potential market grows,
the market share will converge to the market share that is attained when travellers ex-
pect no waiting time. We find that in a potential market with 75,000 travellers and 500
job seekers, the pick-up time is already limited to just over two minutes (3.6F). More
dense potential supply and demand at this point will yield only minor benefits.

3.5.3 Double-sided pricing strategy

In this subsection, we analyse the effect of a platform’s pricing settings, i.e. the per-
kilometre fare and platform commission, on the market equilibrium. The main system
performance indicators are shown in Figures 3.7 and 3.8.

In our experiment, a profit-maximising service provider will opt for a per-kilometre
fare of €1 and a commission of 30% (Figure 3.8C). With this strategy, approximately
3.9% of all travellers opt to request a ride using the ridesourcing platform (3.7C), of
which 99.5% is successfully matched to a driver (3.7D). There are however two near-
optimal pricing strategies, which result in more than 99% of the maximum profit.
These alternative strategies comprise of charging a higher fare, i.e. €1.25 per kilo-
metre, as well as a higher commission, i.e. either 35% or 40% (3.8C). As a result,
the platform profit per request is respectively 45.8% and 66.7% higher than when a
platform opts for the profit-maximising strategy with a fare of €1.0 per kilometre and
a 30% commission. It shows that pricing decisions for the service provider represent
a trade-off between the number of transactions in the market and the earnings per
transaction. In the experiment, the profit-maximising strategy prioritises the former,
the two near-optimal strategies the latter. Compared to the profit-maximising strat-
egy, the alternative near-optimal strategies for instance result in a significantly lower
ridesourcing market share, i.e. a reduction of 27.4% when 7 is 35% and a reduction
of 36.3% when 7 is 40% (3.7C). As a result, fewer job seekers participate in the mar-
ket (3.7A, 3.7B). We can conclude that several (near-)optimal pricing strategies may
result in a vastly different value derived by job seekers (Figure 3.8A) as well as by
travellers (Figure 3.8B), depending on whether the transaction volume or earnings per
transaction is prioritised. From a wide societal value, the latter may be undesired.
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We also note that only two fares — €0.75 or €1.0 per kilometre — are Pareto
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cient in the ridesourcing market. This demonstrates the significance of network effects
in the ridesourcing market. Without network effects, travellers would prefer a minimal
fare as they benefit directly from lower travel costs, while job seekers prefer a max-



78 3 Day-to-day Dynamics in Two-Sided Ridesourcing Markets

imum fare as they would earn more. In our experiment, however, the per-kilometre
fare in the optimal pricing strategies for travellers and job seekers, respectively, is
relatively close, i.e. €0.75 for travellers (3.8B) and €1.0 for job seekers (3.8A). To
understand why the interests of travellers and job seekers are relatively well aligned,
we analyse ridesourcing system performance under very low and very high fares.

First, a very low per-kilometre fare, corresponding to €0.5 in the experiment,
comes at the expense of the level of service offered to travellers. With this strategy,
fares are so low that ride earnings barely cover for drivers’ operating costs, which in-
clude costs associated with deadheading (3.7I). As a result, job seekers are relatively
unlikely to register (3.7A) and participate (3.7B) in the market. With few other drivers,
those that still participate will not face any idle time (3.7G) and may be able to serve
over 40 passengers a day (3.7H). Yet, the net earnings per ride are so low, down to €1,
that a lack of competition will not incentive more job seekers to participate in the mar-
ket. With low supply, the platform has difficulties assigning drivers to ride requests.
The probability that no driver is found before a traveller loses patience (3.7D) is high,
and so is the average matching time for requests for which a driver is found before the
request is cancelled (3.7E). With low level of service, travellers become significantly
less likely to opt for ridesourcing (3.7C).

With travel cost as one of the main determinants of mode choice, high per-kilometre
fares also significantly reduce the probability that ridesourcing is chosen by travellers
(3.7C). While high fares lead to high earnings per ride (3.71), a low ridesourcing mar-
ket share of ridesourcing implies that drivers serve only few requests on any given
day (3.7H) and earn less than in a scenario with a lower per-kilometre fare. Drivers
spend over 80% of their time in an idle state (3.7G) when the per-kilometre fare equals
€2.5, even though there are relatively few other job seekers participating in the market
(3.7B). We can conclude that under high ridesourcing fares the loss of ridesourcing de-
mand outweighs the increase in earnings per request and the reduction in the number
of participating colleagues.

Travellers and job seekers also have similar interests when it comes to the com-
mission rate applied by the platform. As it directly reduces the money that a driver
receives for serving a passenger (3.71), a high commission makes participating in the
market less attractive (3.7B). With relatively few participating drivers relative to rides-
ourcing demand, drivers spend less time waiting to be assigned (3.7G), while trav-
ellers may start to experience longer matching times (3.7E). On both sides of the mar-
ket there will be fewer participants, which implies that the matching algorithm yields
matches with a lower quality, i.e. with a higher average pick-up time / more deadhead-
ing (3.7F). In other words, due to the presence of network effects in the ridesourcing
market, the costs that a commission induces for drivers is partially redistributed to
travellers. A profit-maximising platform (3.8C) will raise the commission up to the
point that the loss of satisfied ridesourcing demand - either because travellers do not
opt for ridesourcing or because their request cannot be fulfilled - outweighs the higher
profit per satisfied request.
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3.5.4 Information diffusion & registration
Information diffusion rate

We explore the effect of the platform awareness diffusion rate to test the hypothesis
that ridesourcing markets may fail to reach a critical mass when information diffusion
is slow. The results presented in Fig. 3.9 do not provide evidence for this hypothe-
sis. For different (two-sided) diffusion speeds, the market converges to approximately
the same equilibrium, with approximately 115 daily drivers and 1,600 daily travel re-
quests. Logically, the equilibrium is achieved faster when (double-sided) information
diffusion is fast. We find that the demand-side diffusion speed is substantially more
decisive for the time to reach an equilibrium than the information diffusion rate among
job seekers. The reason is that more demand - when more travellers are informed about
the service - results in substantially higher driver earnings (3.9B), attracting more sup-
pliers to the market (3.9A), even though fewer job seekers are informed about the
platform. The more limited sensitivity of travellers to waiting time implies that fast
diffusion of platform awareness among job seekers in early stages of adoption only
yields a minor increase in the ridesourcing market share.
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Figure 3.9: 20-day moving average of key ridesourcing market performance indica-
tors for different two-sided information diffusion speeds.
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Registration barriers

Fig. 3.10 demonstrates how costs associated with supply-side registration affect the
adoption of ridesourcing platforms. We observe that when registration costs are lim-
ited to 5 euro per day, there is a substantial increase in the number of job seekers that
register in the first 25 days of the simulation, whereas there is a net decrease in reg-
istration for the scenarios with daily registration costs of 20 or 35 euro (3.10A). As
initially equal earnings are anticipated in the different scenarios, more registered job
seekers also implies more supply-side participation when registration costs are limited
(3.10B). Although this results in lower waiting time for travellers (3.10E,F), the as-
sociated increase in ridesourcing market share is limited (3.10D). Hence, the average
number of drivers per ride request increases and the average earnings of drivers drop
(3.10C). While those that are registered will participate less frequently compared to
scenarios with higher registration costs due to their lower expectations of income, the
difference in registration volume is large enough to compensate for the decrease in
participation likelihood, i.e. those registered still participate in the market sporadi-
cally, which in reality may happen for instance when they are in need of money and/or
when they have limited alternative activities on that day. In other words, we find that
in a scenario with limited registration costs more job seekers participate in the market
equilibrium, resulting in a better level of service for travellers yet substantially lower
participation earnings for drivers. The latter implies that drivers may not benefit from
lower costs associated with platform registration.

3.6 Conclusions

3.6.1 Study significance

This study pioneers in mapping the network effects that shape the co-evolution of sup-
ply and demand in the two-sided ridesourcing market. The novel conceptual represen-
tation of the ridesourcing market allows us to better understand why the ridesourcing
market may be prone to evolving towards particular - not necessarily socially optimal
- market equilibria. Furthermore, we also mimic the co-evolution of demand and sup-
ply in ridesourcing with a simulation model that accounts for subsequent disaggregate
processes on both sides of the market. These processes include word-of-mouth com-
munication about the service (both sides), long-term registration decisions (supply),
daily platform utilisation decisions (both sides) and learning from individual experi-
ence (both sides). By integrating our model into a within-day model for ride-hailing
operations, we allow for the emergence of non-uniform earnings and waiting times
across market participants. We apply the model to a case study that mimics the City
of Amsterdam, studying day-to-day processes in the adoption of ridesourcing, the re-
lation between the size of the potential ridesourcing market and system performance,
as well as the societal implications of platforms’ double-sided pricing strategies.
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Figure 3.10: 10-day moving average of key ridesourcing market performance indica-
tors for different daily costs b associated with registration for job seekers.

3.6.2 Takeaways

We now formulate the key takeaways from our analysis of the two-sided ridesourcing
market.

Conceptual framework

The ridesourcing market is characterised by the presence of numerous (same-side and
cross-side) network effects. Network effects are governed by changes in the total
waiting time for travellers and the non-revenue time of drivers. Both variables are
determined by match time - how quickly are users assigned to users on the other side -
and match quality - once assigned, how quickly can a driver reach a traveller. Whereas
there is a conflict in the match time of travellers and drivers, i.e. both prefer many
unassigned users on the other side of the market, travellers and drivers have similar
interests when it comes to match quality. Match quality is optimal when there are
many idle users on one side of the market. This could be a reason why ridesourcing
markets may evolve towards an asymmetrical equilibrium state in which pick-ups are
quick, but one side is confronted with a relatively long matching time. This may be
a point of attention for authorities in areas in which ridesourcing platforms are active
(or even dominant).
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Dynamics and heterogeneity

The ridesourcing market may undergo several transitions before ending up in a steady
state condition. In each transition phase, system performance changes rapidly. Even
in the steady state, job seekers and travellers experience significant day-to-day varia-
tions in earnings and waiting time, respectively. This is not only due to randomness
in the matching process, but also due to random components in individual registration
and participation decisions. Initially small (two-sided) day-to-day variations in partic-
ipation levels can result in larger day-to-day variations as market participation levels
affect the earnings and waiting time experienced by drivers and travellers, respectively.
We find that matching luck explains variations in experiences across market partici-
pants much more than spatial properties do. The long-term wage gaps that may follow
from matching luck is an issue previously addressed by Bokdnyi & Hannék (2020).

Path dependency in mode choice yields a systematic discrepancy between market
experiences and expectations on the demand side of the ridesourcing market. Due to
differences in registration costs and the probability to participate between (potential)
suppliers and consumers, learning is likely more successful on the supply side of the
market.

The speed at which the market reaches the equilibrium is affected more by plat-
form awareness diffusion on the demand side than on the supply side. This fol-
lows from increased driver earnings when demand-side platform awareness spreads
quickly, as newly informed travellers try the service. Adequate supply is attracted
to the market even when relatively few job seekers are informed about the platform.
We observe that the information diffusion rate on both sides has limited affect on the
eventual equilibrium.

Potential market size

A ridesourcing system may fail to attain a critical mass in markets with limited poten-
tial supply and demand. In our experiment, only around 1% of the estimated density of
potential ridesourcing supply and demand in Amsterdam is needed to realise a critical
user mass. We find that there may be sustained supply and demand even though the
service is unreliable and pick-up times are long. The above findings suggest that rides-
ourcing may be viable - although possibly substantially less beneficial for travellers
and drivers - even in (more) rural areas.

Double-sided pricing strategy

In setting commission and ride fares, a service provider weighs the (emergent) market
transaction volume and the profit per transaction. A strategy in which the former is
traded off for the latter is per definition harmful to passengers and drivers. Conse-
quently, two strategies resulting in an approximately equal (and potentially near max-
imum) profit may yield a significantly different value when the interests of travellers
and job seekers are also considered.

We find that the conflicting interests between market participants and platform
are associated with platform commission more than with fares. Due to the presence
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of network effects, the interests of travellers, drivers and platform are relatively well-
aligned when it comes to fares. A low (per-kilometre) fare repels drivers, which makes
market participation unattractive for travellers, while a high (per-kilometre) fare re-
pels travellers, making driving unattractive. While commission also reduces market
participation, the crucial difference is that the reduction in market share may be com-
pensated for by higher earnings on the remaining transactions. In our experiment, a
profit-maximising service provider opts for a 30% commission at the great expense of
travellers and drivers.

Transport authorities may consider to regulate the commission rate to manage the
distribution of benefits amongst stakeholders. As such regulations will lead to an
increase the ridesourcing market share, its effect on platform profit may be limited.

Registration barriers

Based on our analysis, ridesourcing drivers do not necessarily profit from low costs as-
sociated with registration. In such a scenario, many more job seekers register with the
platform, leading to strong competition among drivers, and consequently low driver
earnings. Although lower earnings imply that registered agents are less likely to par-
ticipate in the market, the total participation volume is still larger as substantially more
job seekers are registered when there are hardly any registration costs.

3.6.3 Future research

Our conceptual analysis of the ridesourcing market hints at the emergence of asym-
metrical market equilibria as the match quality - important to passengers and drivers
alike - is jeopardised when supply and demand are well-balanced. World-wide driver
protests over income suggest that drivers as opposed to travellers end up paying for
a low pick-up time by means of a relatively long idle time between rides. We would
like to know if an asymmetrical ridesourcing market favouring travellers is indeed an
inherent property of the ridesourcing market. It will require investigating the effect of
market conditions other than those considered in this study.

Such market conditions include the spatial distribution of demand, the characteris-
tics of competing modes, how many job seekers are available in an area relative to the
total demand for travel, and how socio-economic attributes (incl. vehicle ownership)
are distributed in the population. We observe for instance that the economic attributes
of job seekers participating in the ridesourcing market are non-representative for the
full population of job seekers, i.e. they have a below average reservation wage. Socio-
economic inequalities may hence explain why the ridesourcing market may be prone
to evolving towards an equilibrium in which drivers incur significant waiting. At the
same time, future research could differentiate between drivers with and without private
vehicles, to establish how vehicle ownership affects market dynamics.

While this study assumes constant pricing strategies, both our conceptual frame-
work and day-to-day simulation model of the ridesourcing market can be extended
with pricing dynamics. This would allow inspecting how a ridesourcing service provider
can steer its evolution with (day-to-day) penetration pricing — to overcome slow
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adoption and capture a critical mass — and with (within-day) surge pricing. The
latter requires more insights into the work shift decisions of ridesourcing drivers — so
as to balance supply and demand. Our models can also be extended to feature multiple
platform agents competing for drivers and travel demand. In consideration of scaling
effects observed in this study, it is relevant to explore whether platforms can co-exist
and at what societal cost (or benefit). As ride-pooling may fundamentally change how
supply and demand co-evolve, with users potentially benefiting from the presence of
travellers with similar itineraries, future research may also explore the evolution of
ridesourcing services offering pooled rides.

In the model specification process, we observed a significant knowledge gap re-
garding how travellers evaluate attributes related to ridesourcing and, particularly, how
job seekers decide whether they wish to supply labour to a ridesourcing platform. Due
to this lack of insights, we opted for relatively simplified submodels for behaviour in
our agent-based simulation, while also testing for model’s sensitivity to several key
parameters. Generally, agent-based simulation models like the one presented in this
study rely heavily on detailed behavioural insights, both as model input and for vali-
dation. Hence, we emphasize the need for empirical studies investigating ridesourcing
labour supply — including registration, working days and work hours — as well as
travellers’ perception of ridesourcing. This is especially relevant in anticipation of
needed research on the societal implications of platform competition in ridesourcing
markets.



Chapter 4

Ridesourcing Platforms Thrive
on Socio-Economic Inequality

Limited available market share data seems to suggest that ridesourcing platforms ben-
efit from, even thrive on, socio-economic inequality. We suspect that this is associated
with high levels of socio-economic inequality allowing for cheap labour as well as
increasing the share of travellers with a considerably above-average willingness to
pay for travel time savings and comfort. In this chapter, we adopt the agent-based,
two-sided day-to-day model for ridesourcing markets presented in the previous chap-
ter to test the relation between inequality and system performance, considering also
two-sided network effects in ridesourcing provision. We do so by varying the hetero-
geneity in travellers’ values of time and job seekers’ reservation wages. Our experi-
ments cover scenarios for the entire spectrum ranging from perfect equality to extreme
inequality. For several of such scenarios, we explore how platforms will adjust their
two-sided pricing strategies. In our analyses of ridesourcing performance, we specif-
ically examine the earnings of drivers, the quality of the service for travellers and the
service provider’s profit.

This chapter is based on the following article:

de Ruijter, A., Cats, O., & van Lint, H. (2024). Ridesourcing platforms thrive on
socio-economic inequality. Scientific Reports, 14(1), 7371.

85
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4.1 Introduction

In the gig economy, independent contractors provide services to consumers via inter-
mediary platforms. Industries in which the gig business model has become especially
prevalent include passenger transportation, delivery of food and goods, provision of
household tasks, and care work (Vallas & Schor, 2020). The main benefit associated
with working in the gig economy is autonomy (Manyika et al., 2016; Forde et al.,
2017; Hall & Krueger, 2018; Chen et al., 2019; Berger et al., 2019; Schor, 2021). In
principle, gig workers can freely decide which platforms to work for, when to work
for these platforms, which jobs to take, and how to fulfil these jobs. In reality, auton-
omy may be limited by rules and mechanisms imposed by platforms, as well as by
demand fluctuations (Rosenblat & Stark, 2016; Calo & Rosenblat, 2017; Rosenblat,
2018; Ravenelle, 2019; Schor, 2021). In fact, courts in the United Kingdom and the
Netherlands have ruled that workers of ride-hailing provider Uber are self-employed
only on paper (The Supreme Court, 2021; Rechtbank Amsterdam, 2021), assessing
the relationship between drivers and platform to meet all conditions of traditional em-
ployment. In Amsterdam, there was a similar ruling for food delivery platform Deliv-
eroo (Gerechtshof Amsterdam, 2021), which led to its departure from the Netherlands
(Vlaanderen, 2022).

While average hourly earnings on gig platforms are not necessarily lower than the
wage paid by employers that are active in similar industries (Sundararajan, 2017), gig
workers lack access to social security provisions, including a guaranteed minimum
wage, retirement plans and paid (sick) leave. Consequently, workers in the gig econ-
omy are exposed to much more uncertainty when it comes to income than employees.
Essentially, gig workers now bear the risks that were previously carried by business
and state. These risks include shrinking demand, as in the recent COVID-19 pandemic
(Benner et al., 2020), health issues, damage to assets and (financial) impropriety by
customers (Rosenblat, 2018; Ravenelle, 2019), but also chance in platform matching
(Siihr et al., 2019; Bokédnyi & Hanndk, 2020). With a substantial share of gig workers
relying on highly volatile income from platform work to cover costs of living (Smith,
2016; Benner et al., 2020), the emergence of the gig economy may result in larger
income inequality in society. More so, dependency on platform earnings limits gig
workers’ freedom, which can contribute to below average earnings in the gig econ-
omy (Schor et al., 2020).

While the provision of some services exchanged in the gig economy demands
extensive training (e.g. writing, consulting, designing), many other gig economy ser-
vices require limited skills. This includes driving, housekeeping and specific online
tasks such as filling out surveys. As a result, many gig markets predominantly attract
workers with a below average income (Smith, 2016; Berger et al., 2019), in particu-
lar migrant workers (Hall & Krueger, 2018; Hua & Ray, 2018; Berger et al., 2019;
Holtum et al., 2022). Due to a scarcity of alternative income opportunities, these indi-
viduals might find themselves compelled to work for such platforms despite earning
limited wages. While minimum wages ensure a foundational income for workers in
conventional markets, self-employed individuals engaged in the gig economy do not
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have this income safeguard. This situation suggests that platforms within the gig econ-
omy are particularly likely to - more than service providers with employed staff - gain
advantages from socio-economic disparities by leveraging inexpensive labour.

The ridesourcing (or ride-hailing) sector, represented by platforms such as Uber,
Lyft, and DiDi, stands out as a gig industry that may significantly benefit from socio-
economic disparities. Ridesourcing platforms not only profit from accessing abundant
inexpensive labour but also cater primarily to individuals with above-average socio-
economic positions. That is to say, users are assured a direct and private ride resem-
bling a taxi service, at a typically substantially higher fare compared to traditional
public transportation (Cats et al., 2022). Moreover, as the average distance between a
matched traveller and driver (at the time of assignment) decreases with the (double-
sided) size of the ridesourcing market (de Ruijter et al., 2022b), socio-economic in-
equalities may allow ridesourcing platforms to exploit network effects in matching that
yield benefits for travellers (less waiting), drivers (less idle time) and platform (more
profit through induced demand). Because taxi market supply is typically regulated, it
is expected that taxi operators profit less from such network effects than ridesourcing
platforms do.

Fig. 4.1 seems to suggest that there may be a correlation between socio-economic
inequality in a country and the usage of ridesourcing. This is based on data for just
eight countries however, for which one-time Uber usage is used as a proxy for the
prevalence of ridesourcing. Unfortunately, reliable city-level indicators for ridesourc-
ing across numerous cities are not available. We therefore need alternative means to
testify the relation between socio-economic inequalities and ridesourcing system per-
formance. We argue that an agent-based simulation is very well suited for this purpose,
as it allows to examine the effect of heterogeneity in socio-economic characteristics,
and in isolation of other market properties that may affect ridesourcing performance.
Such conditions may include the quality of alternative modes of transportation, rides-
ourcing pricing and imposed regulations.

Previous agent-based modelling exercises have provided insights into ridesourcing
as a first / last mile solution for public transport (Djavadian & Chow, 2017; Alemi &
Rodier, 2018), driver earnings (Djavadian & Chow, 2017; de Ruijter et al., 2022a,b),
platform pricing policies (Djavadian & Chow, 2017; Chen et al., 2021; de Ruijter
et al., 2022a,b), the effect of labour market characteristics (Djavadian & Chow, 2017;
de Ruijter et al., 2022a,b), ride-pooling system performance (Nourinejad & Roorda,
2016; Beojone & Geroliminis, 2021; Wilkes et al., 2021), and the design of charging
infrastructure for an electric fleet (Bauer et al., 2019; Alam et al., 2022). An agent-
based representation of the ridesourcing market was also used for studying income
inequalities resulting from ridesourcing operations (Bokdnyi & Hanndk, 2020). In
this study, in contrast, we investigate the dependency of ridesourcing platforms on
socio-economic inequalities, including pricing decisions of profit-maximising plat-
forms, which has hitherto remained unexplored. Due to network effects in ridesourc-
ing, selecting a profit-maximising strategy entails a complex trade-off between market
volume and the profit per transaction (de Ruijter et al., 2022b), of which the outcome
is not obvious. At the same time, it is not evident how socio-economic inequality af-
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Figure 4.1: The share of adults in selected countries (based on data availability) that
used Uber at least once in a I-year period following April 1st 2021 (Fleck,
2022) plotted against the country’s Gini coefficient for income inequality
(The World Bank, 2022). It suggests that a positive relationship exists
between socio-economic inequality and ridesourcing market share.

fects the distribution of social welfare between travellers and workers, which depends
on the ratio between supply and demand (de Ruijter et al., 2022b).

We fill this knowledge gap by adopting an agent-based simulation model of double-
sided ridesourcing markets, MaaSSim (Kucharski & Cats, 2022), integrated into a
day-to-day framework representing network effects in the ridesourcing market (de Rui-
jter et al., 2022b). The model simulates daily labour supply decisions in consideration
of the anticipated income and the reservation wage of ridesourcing, i.e. the minimum
wage required to be willing to work for the platform. The latter depends on a job
seeker’s access to alternative employment opportunities. Mode choice is represented
with a logit model incorporating several attributes, including the anticipated waiting
time when opting for ridesourcing. Platform earnings and waiting time are learned pri-
marily from personal experience, determined with an operational ride-hailing model
in which travellers and drivers are matched based on their proximity (Kucharski &
Cats, 2022). The adopted simulation model also accounts for diffusion of platform
awareness which may hinder market participation in early phases. In addition, it cap-
tures suppliers’ (medium- to long-term) trade-off between registration costs (which
are negligible for travellers) and anticipated participation benefits.

As participation is modeled endogenously on both sides of the market (as daily
labour supply and mode choice), the day-to-day ridesourcing model generates disag-
gregate output on which travellers and job seekers participate in the market, depend-
ing on their socio-economic properties. This is in turn used to identify how socio-
economic inequality affects ridesourcing system performance indicators, considering
(exclusively) the direct effect of heterogeneity in travellers’ and job seekers’ time per-
ceptions. This includes analysing how a profit-maximising platform adjusts its pricing
strategy depending on the distribution of income in society, evaluating also the impli-
cations for riders and drivers.
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4.2 Application and Results

We apply the double-sided ridesourcing market simulation model to a case study re-
sembling the city of Amsterdam, the Netherlands. In addition to ridesourcing, trav-
ellers can choose between private car, bike and public transport. The first three modes
operate on a road network with the same spatial configuration as the road network
of Amsterdam, yet with universal (mode-specific) link travel speeds. Public transport
service quality is based on GTFS data for Amsterdam.

Each traveller and each job seeker in the simulation represents 10 individuals in re-
ality, in correspondence with other transportation studies in which agent-based models
are applied (Kaddoura, 2015; Bischoff & Maciejewski, 2016; de Ruijter et al., 2022b).
This procedure results in 75,000 traveller agents and 2,500 job seeker agents that can
potentially participate in the ridesourcing market in Amsterdam. Trip attributes are
taken from data generated based on the activity-based model of Albatross (Arentze
& Timmermans, 2004). Behavioural preferences related to travel and employment
choices are specified based on findings reported in past studies (Wardman, 2004;
Borjesson & Eliasson, 2012; Kouwenhoven et al., 2014; Yap et al., 2020; GerZinic
et al., 2023; Centraal Bureau voor de Statistiek, 2022).

Model outputs include the profit generated by the platform, the share of requests
that are satisfied, the average time travellers spent waiting before being picked-up, and
the income of drivers. In addition, we formulate subsequent surplus-based welfare
indicators for travellers and drivers.

We investigate the effect of socio-economic inequalities by adjusting the parame-
ter o of the log-normal distributions used to describe heterogeneity in travellers’ value
of time (VoT) and job seekers’ ridesourcing reservation wage. Our experiments cover
scenarios for the entire spectrum ranging from perfect equality to extreme inequality,
i.e. standard deviations resulting in Gini coefficients g between 0 and 0.95 (in steps
of 0.05). In the following, we focus primarily on scenarios corresponding to urban
Gini coefficients observed in the real world. This concerns Gini coefficients (in terms
of disposable income) between 0.23 (Astana) and 0.67 (Curitiba, Pretoria and Johan-
nesburg) (Knudsen et al., 2020). Most European and US cities fall in the middle of
this range (e.g. Oslo 0.27, Amsterdam 0.37 and (Greater) New York 0.42). We devote
a separate subsection to discuss ridesourcing system performance under extreme (i.e.
unobserved) (in)equality.

4.2.1 Macroscopic effects

Our experiments show that within the range of observed urban Gini coefficients, the
greater the socio-economic inequality is, the higher the participation on both sides
of the ridesourcing market is. Fig. 4.2A suggests a strong near-linear positive re-
lationship between socio-economic inequality and demand for ridesourcing. To il-
lustrate, ceteris paribus, a ridesourcing market attracts approximately three times as
much travel demand in an area with a Gini coefficient of 0.65 compared to one in an
area with a Gini of 0.25 (4.4% vs 1.5% market share). The relative increase in market
participation is even larger on the supply side of the market. Here, we observe an
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Figure 4.2:

economic inequality in society. (A) Modal split of ridesourcing, for the
entire population as well as for the 25% and 5% most time-sensitive trav-
ellers (i.e. those with the highest willingness to pay for travel time reduc-
tions). (B) Share of job seekers participating in the ridesourcing market,
for the entire population as well as for the 25% and 5% of job seekers with
the lowest reservation wage. (C) Level of service indicators: service rate
(share of requests that is satisfied) and customer waiting time before pick-
up. (D) Driver activities and income. The highlighted area in each graph
corresponds to observed values of the Gini coefficient in cities around the
world.

exponential increase in market participation with growing socio-economic inequality
(Fig. 4.2B). When g is 0.65, on average 17.0% of all job seekers work in the rides-
ourcing market, compared to just 2.4% when g = 0.25.

The difference in income inequality elasticities between supply and demand sides
of the market implies that ridesourcing markets operating in more unequal societies

tend to end

up in a more oversupplied market state. When comparing an environment
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Figure 4.3: Distribution of (A) value of time of travellers opting for ridesourcing,
and (B) reservation wage and earnings of job seekers participating in
the ridesourcing market, for different values of Gini coefficient g. Mean
value of time and reservation wage are provided for the entire population
as reference. The highlighted area in each graph corresponds to observed
values of the Gini coefficient in cities around the world.

where g = 0.25 to one where g = 0.65, approximating the most equal and the most
unequal urban region worldwide, respectively, the ratio of supply to demand more
than doubles. While in both scenarios customers are guaranteed instant assignment
to a driver (Fig. 4.2C), the average distance between matched travellers and drivers
decreases with socio-economic inequality, particularly in the lower range of social
inequality. This results in shorter waiting times for travellers (down to less than a
minute when g = 0.65, Fig. 4.2C) and less deadheading for drivers (Fig. 4.2D). Yet,
due to strong competition for rides, drivers spend substantially more of their time in an
idle state (i.e. waiting to be matched): 83% vs 52% (Fig. 4.2D). Consequently, driver
earnings are, ceteris paribus, considerably lower in contexts where socio-economic
inequality is high (Fig. 4.2D). In our experiment, the average driver earns €5.81 per
hour when g = 0.65 compared to €12.17 when g = 0.25.

4.2.2 Societal implications

Our results demonstrate that the extent to which ridesourcing is more popular among
travellers with an above average value of time depends on the socio-economic in-
equality level (Fig. 4.3A). For instance, when g equals 0.25, of the 5% travellers with



92 4 Ridesourcing Platforms Thrive on Socio-Economic Inequality

(A) Consumer surplus (B) Supplier surplus (C) Platform profit (D) Total societal value
4 ) 80

60 2 60

40 - 0 40

J 4-
2 R 20-

0~ y L4 y 0~ y \ 0+
00 02 04 06 08 10 00 02 04 06 08 1O 00 02 04 06 08 10 00 02 04 06 08 10

Gini coefficient g Gini coefficient g Gini coefficient g Gini coefficient g

Value (x €1000)

0

Figure 4.4: Social welfare generated by ridesourcing markets depending on the de-
gree of socio-economic inequality. We present four indicators (de Ruijter
et al., 2022b). (A) Consumer surplus, defined as the increase in logsums
when ridesourcing is added to the choice set. (B) Supplier surplus, defined
as the summed difference between job seekers’ earnings and costs asso-
ciated with the ridesourcing market, including labour opportunity costs
and registration costs. (C) Profit from commissions. (D) The total social
welfare, defined as the sum of the previous three. The highlighted area in
each graph corresponds to observed values of the Gini coefficient in cities
around the world.

the highest value of time, 4.7% chooses ridesourcing as their mode of travel for their
trip (Fig. 4.2A), around three times the population average. When g is 0.65, almost
1 in 5 individuals in the respective group opts for ridesourcing, nearly five times the
population average. The ridesourcing market then attracts travellers with an average
value of time of more than 20 euro per hour, including some extremely time-sensitive
travellers, compared to an average value of time of approximately 13 euro per hour
when g = 0.25.

We observe even greater differences in supply-side participation depending on job
seekers’ reservation wage. When g = 0.25, of the 5% individuals with the lowest
reservation wage, 46.9% participate in the ridesourcing market on an average day
(Fig. 4.2B), compared to just 2.9% for the entire population of job seekers. This
results in an average driver reservation wage of just over a third of the average job
seekers’ reservation wage. The participation rate of the 5% job seekers with the lowest
reservation wage peaks at g = 0.5 (93.3%), after which it marginally decreases due to
diminishing earnings. Yet, if we take the 25% job seekers with the lowest reservation
wage instead, we find increasing participation rates beyond g = 0.5 (Fig. 4.2B). When
g exceeds 0.6, the average ridesourcing driver’s reservation wage lies below €2 per
hour (Fig. 4.3B), less than 10% of the population average. Fig. 4.3B demonstrates
that the average hourly ridesourcing earnings exceed the average reservation wage of
drivers by €2-€4 independent of the geographical area’s Gini coefficient. Since both
indicators vary between drivers, particularly earnings, not all drivers earn more than
their reservation wage.

We observe that the consumer surplus increases exponentially with the Gini coeffi-
cient (Fig. 4.4A). This increase stems from (i) ridesourcing becoming more attractive
due to increased supply, and (ii) the presence of highly time-sensitive travellers that
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Figure 4.5: Platform profit depending on platform’s pricing strategy and the degree of
socio-economic inequality in society. Profit is given relative to the profit
under reference strategy with fim = 1.5 €/km and © = 25%.

benefit considerably from a direct service. Fig. 4.4B shows that in scenarios with
limited inequality, the aggregated supplier surplus, which also accounts for costs as-
sociated with registration (the ability to participate), may be negative. Due to the
relatively low participation probability in this case, registration costs are not offset
by participation earnings. Platform profit increases linearly with the Gini coefficient
(Fig. 4.4C). Considering fixed pricing, this follows directly from a linear increase in
ridesourcing demand (Fig. 4.2A). In socio-economically unequal urban areas, the so-
cietal value generated by ridesourcing platforms, defined as the sum of the consumer
surplus, supplier surplus and platform profit, consists predominantly of the consumer
surplus (Fig. 4.4D).

4.2.3 Pricing

In all previous scenarios, the platform per-kilometre fare fi;, and the commission
rate T were set to €1.5 and 25%, respectively, based on Uber’s pricing in Amster-
dam (Uber Technologies Inc., 2020a). We hypothesize, however, that a higher de-
gree of socio-economic inequality allows for higher fares - as the demand-side tar-
get group of ridesourcing becomes more cost-insensitive - and a higher commission
rate - as the supply-side target group of ridesourcing becomes more insensitive to
income. We therefore proceed with analysing platform profit and other social wel-
fare indicators for eight alternative pricing strategies, with fi, = {€1,€1.5,€2} and
= {15%,25%,35%}. Furthermore, we do so for four different levels of socio-
economic inequality, i.e. g = {0.2,0.35,0.5,0.65}. The results are presented in
Figs. 4.5 and 4.6.

We find that when g = 0.2, a low per-kilometre fare is crucial to maximising plat-
form profit (Fig. 4.5). A platform then generates 63.4% more profit when opting for a
per-kilometre fare of €1 instead of €1.5, assuming an optimal 25% commission rate.
This strategy yields a nearly 50% increase in demand-side participation and a 15%
increase in supply-side participation. The moderate commission rate of 25% is then
found optimal for the platform whereas a high commission rate, in combination with
low fares, deters too many job seekers. In contrast, a low commission rate generates
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Figure 4.6: (A) consumer surplus and (B) supplier surplus depending on platform’s
pricing strategy, for different levels of socio-economic inequality. Values
are relative to reference pricing strategy with fyxm = 1.5 €/km and © =
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insufficient induced demand (through reduced waiting following from latent supply)
to compensate for a lower profit per satisfied request.

When g = 0.65, we find that the per-kilometre fare fi,, has a limited effect on
platform profit. The reason is that induced demand from lower fares (while account-
ing for changes in supply) is counteracted by a lower profit per market transaction.
Conversely, the commission rate 7 is a crucial platform pricing instrument for profit
maximisation in socio-economically unequal societies. A commission rate of 35%
compared to 25% (with fy, = €1.5) for instance yields 36.9% more platform profit.
Having a very low reservation wage, few drivers are deterred when a platform opts for
such a commission (14.8% of drivers), so that the increase in platform commission
only results in a marginal reduction of ridesourcing demand (2.3%). In terms of plat-
form profit, the lower market share is substantially compensated for by a higher profit
margin on remaining demand.

Platform pricing decisions may not only strengthen the previously proposed (posi-
tive) relationship between socio-economic inequality and platform profit (in Fig. 4.4C),
but also the (negative) relationship between socio-economic inequality and driver
earnings (in Fig. 4.2B). Fig. 4.6B shows that a higher commission rate results in a
substantially lower supplier surplus, suggesting that profit-maximising behaviour in
socio-economically unequal societies is likely to come at the expense of drivers. Such
a strategy also harms travellers, albeit to a much lesser extent as the relation between
commission and consumer surplus is much less pronounced (Fig. 4.6A). In areas with
limited inequality, on the other hand, profit-maximising strategies are less costly for
participants in the two-sided market. Due to the presence of few job seekers with a
low reservation wage, the platform is more restricted in setting its commission. In
fact, in a relatively equal society a profit-maximising pricing strategy entails charging
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low fares, which is likely to benefit both travellers (directly) and drivers (less idle time
through induced demand).

4.2.4 Extreme (in)equality

In the preceding, we provided evidence for a positive relationship between socio-
economic inequality and ridesourcing market share within the range of observed in-
equality. In this subsection, we analyse ridesourcing performance under degrees of
socio-economic inequality which extent beyond the range of those currently observed
amongst urban societies worldwide.

First, we observe that in hypothetical societies with g above the observed maxi-
mum of 0.67, (a further) increase in Gini coefficient does not induce a further increase
in (demand-side) ridesourcing market share (Fig. 4.2A). In fact, from g = 0.8 onward,
there is a strong negative relationship between inequality and ridesourcing modal split,
and thereby platform profit. The reason is that, in such societies, few travellers have
an extremely high value of time, while everyone else is very insensitive to travel time
and therefore unlikely to opt for the relatively expensive ridesourcing service. With
few customers and many drivers willing to work for little, driver earnings are very low
in highly unequal societies, down to less than €3 per hour on average when g = 0.95
(Fig. 4.2D). Travellers, on the other hand, experience a supreme service with just a
one minute average pick-up time (Fig. 4.2C).

At the other end of the spectrum, i.e. for g below the minimum observed real-world
value of 0.23, we observe that the ridesourcing market ends up in an undersupplied
state. Even though drivers face little to no matching time given limited competition
for requests, their earnings are limited by considerable deadheading for picking up
customers (Fig. 4.2D). With very little heterogeneity in reservation wages, few job
seekers are willing to drive for the resulting wage. At the same time, the ridesourcing
platform fails to attract substantial demand, which is required to minimise drivers’
deadheading, because (i) there are few time-sensitive travellers that otherwise benefit
most from the existence of ridesourcing, and (ii) the presence of few drivers implies
a poor level of service. In other words, ridesourcing dependency on network effects -
i.e. few market participants resulting in low matching efficiency - can exacerbate gen-
eral unwillingness to participate in the market when the pools of travellers and drivers
are relatively homogeneous in terms of their socio-economic properties. This indi-
cates that operating a ridesourcing platform in a society with limited socio-economic
inequalities may not be viable. In fact, in our experiment when g is below 0.1, not a
single job seeker is willing to drive for the platform (Fig. 4.2B).

4.3 Discussion

Our findings show that the profit generated by ridesourcing platforms increases sub-
stantially with socio-economic inequality. We identify four (intertwined) mechanisms
which contribute to this relation. First, there are more time-sensitive travellers in
unequal societies. These travellers are relatively likely to opt for the direct, private
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service offered by ridesourcing platforms. Second, there are more job seekers willing
to participate for limited market earnings. In fact, we observe that ridesourcing supply
is even more elastic than demand in relation to inequality, so that ridesourcing markets
are more likely to end up substantially oversupplied in unequal societies. This results
in an improved level of service due to shorter waiting times. The difference between
supply and demand elasticity (in relation to inequality) arguably stems from two un-
derlying reasons: (i) asymmetry in the distributions of reservation wage and value of
time, i.e. both distributions are right-skewed, implying that the majority of individuals
have a below average value of time / reservation wage, and (ii) that income is likely
more important in working decisions than travel time is in mode choice; whereas at
the same time it is undeterred by decreasing driver earnings and increased level of ser-
vice as inequality grows. Third, increased market participation (on both sides) yields
better quality matches, i.e. the average pick-up distance decreases with the scale of the
market. This results in an even better level of service, and ultimately, a larger market
share. Fourth, the abundant presence of job seekers with a low ridesourcing reserva-
tion wage allows the platform to raise its commission rate, which yields a higher profit
per served traveller.

Whereas socio-economic inequality is beneficial for companies operating rides-
ourcing markets as well as for travellers requesting rides on these platforms, the
earnings of drivers participating in these markets decrease considerably with socio-
economic inequality. This is the outcome of increased competition for ridesourcing
requests as a result of the abundance of job seekers with a low ridesourcing reservation
wage in socio-economically unequal societies. Furthermore, this may be aggravated
by profit-maximising pricing decisions, i.e. platforms opting for a higher commission
under large inequality. Based on our experiments, it is highly unlikely that rides-
ourcing markets evolve towards an undersupplied market equilibrium, a market state
potentially benefiting drivers. In our experiments, it only occurs for Gini coefficient g
of 0.15 or smaller, whereas the minimum value observed in reality is 0.23.

Our results indicate that societies with a high degree of socio-economic inequality
are likely target markets for ridesourcing service providers. We observe low driver
earnings particularly in these markets, down to less than one fifth of the average job
seeker’s reservation wage of €25 per hour. Authorities may therefore consider poli-
cies aimed at improving the earnings of ridesourcing drivers in socio-economically
unequal urban areas. This may include regulation of the commission, which we find
to benefit travellers as well. Alternatively, driver earnings may be boosted with supply
caps, as implemented for instance in New York City, aiming to reduce supply-side
competition.

The presented results follow from applying an agent-based model representing the
interactions between the key actors in the ridesourcing market to a case study resem-
bling the city of Amsterdam. While this approach allows to explore the effect of the
entire range of inequality levels - from perfect equality to extreme inequality - as well
as platform’s pricing strategy in isolation from other factors, results should not be in-
terpreted without caveats. For instance, our method assumes that travellers’ value of
time and job seekers’ reservation wage follow a log-normal distribution (resulting in a
similar Gini coefficient), based on an estimation of the distribution of (gross) income
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in the Netherlands. While there is evidence that the reservation wage of a job is related
to income in previous work (Feldstein & Poterba, 1984), it is also influenced by other
factors, including the (personal) perceived attractiveness of the job. Yet, given its asso-
ciation with income, it seems likely that the reservation wage distribution is in reality
right-skewed, a key condition for the supply elasticity related to socio-economic in-
equality to exceed the corresponding demand elasticity. Furthermore, future research
can account for spatial correlations in travellers’ and job seekers’ time perceptions
associated with socio-economic inequality, i.e. spatial clustering of high and low in-
come households, the effect of which on ridesourcing systems is uncertain. At the
same time, heterogeneity in travellers’ and job seekers’ time valuations may not be
the sole mechanism through which socio-economic inequality can affect ridesourcing
systems. For instance, socio-economic inequalities may contribute to safety concerns
(Wilkinson & Pickett, 2010; Hummelsheim et al., 2011; Vieno et al., 2013). In the
literature, there is no consensus whether ridesourcing is perceived positively or nega-
tively with regard to safety (Gloss et al., 2016; Acheampong, 2021; Liu et al., 2022),
and therefore it is undetermined how such a consideration would affect the market
share of ridesourcing.

All in all, we consider it probable that ridesourcing platforms thrive on socio-
economic inequality. While the transportation and demand features vary from one
location to another, the mechanism of cheap labour and time-sensitive ridesourcing
users allowing for network effects and higher platform commission in unequal ur-
ban areas is likely universal. We recommend future research investigating exactly
how context attributes such as labour market conditions, demand and transportation
system features affect the relationship between socio-economic inequality and rides-
ourcing performance. We anticipate that repositioning - not captured in this work -
may further contribute to a negative relationship between socio-economic inequality
and ridesourcing drivers’ income. The reason is that travellers’ waiting times are al-
ready minimal (and the service rate maximal) without drivers repositioning, implying
that repositioning - while potentially benefiting individual drivers in the short run - is
likely to yield minimal induced demand at the system level, instead resulting only in
additional operational costs for drivers.

It would be valuable to delve deeper into the intricate, bidirectional relationship
between ridesourcing platforms and socio-economic inequality, in addition to exam-
ining the effect of other factors than inequality, such as the average income in the
population. While a previous study has touched upon how ridesourcing platforms
may contribute to socio-economic inequality (Bokanyi & Hanndk, 2020), their anal-
ysis omitted the daily decisions made by both ridesourcing users and job seekers.
This omission presents an opportunity to investigate how these decisions influence
the dynamics of inequality. Understanding the potential existence and magnitude of a
reinforcing feedback loop in this context could shed light on the complexities of the
ridesourcing market’s influence on socio-economic disparity, and vice versa.

Finally, examining the impact of socio-economic inequalities on various mobility
services beyond ridesourcing could also offer intriguing insights. At the same time,
we expect that gig platforms outside of passenger mobility may benefit in a similar
way from socio-economic inequality as ridesourcing providers do. This applies par-
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ticularly to markets for low-skill services that are most interesting for cost-insensitive
individuals, such as platforms for household jobs, meal delivery or grocery delivery.

4.4 Methods

4.4.1 Travel demand data

Travel demand is taken from a data set generated with an activity-based model for
the Netherlands (Arentze & Timmermans, 2004), selecting trips with origin and des-
tination in the studied area, with a trip distance of at least 2 kilometres, and a request
time between 09:00 and 18:00. Travellers’ value of time is drawn from a log-normal
distribution with a mean of €10 per hour, and a standard deviation corresponding to
Gini coefficient g. Each day, travellers make the same trip, for which they reconsider
their travel mode on a daily basis. To reduce the computational complexity of the
simulation, all travellers with a below 5% probability of choosing ridesourcing when
no waiting time is anticipated are assumed to never opt for ridesourcing.

4.4.2 Modelling framework

Our model captures daily participation decisions in the ridesourcing market (Fig. 4.7).
We thereby represent how agents learn from individual participation experience, or
through the experience gained by others. Experiences are represented with a within-
day operational model for ride-hailing (Kucharski & Cats, 2022), based on double-
sided participation volumes. Our day-to-day model accounts for barriers to partici-
pation, i.e. platform registration. This requires platform awareness and trading off
potential investments associated with the ability to participate in the market against
anticipated participation earnings. In the ensuing we describe the processes captured
in our model in more detail.

DAY-TO-DAY

Learning »  Registration » Participation

h

Ride-hailing
operations

WITHIN-DAY

Figure 4.7: Day-to-day processes captured in the simulation model, for a single side
of the ridesourcing market.

Participation

Assume job seeker s has a reservation wage ry, drawn once from a log-normal distribu-
tion with a mean of €25 per hour and a standard deviation that yields Gini coefficient
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g. It represents the minimum wage for which they are - on a typical day - willing to
drive for the ridesourcing platform. With this assumption, our model follows the neo-
classical theory of labour supply (Chen & Sheldon, 2016; Sun et al., 2019a; Xu et al.,
2020). Our participation model considers that variables other than the anticipated
income iy, (for day r) and the reservation wage r, may play a role in participation deci-
sions, by means of applying a random utility model with sensitivity parameter S, and
error term &yp. The utility and the resulting probability that job seeker s participates
in the market on day ¢ are as follows:

UEamcnpate — ﬁplp . (fst _ rs) + Ep 4.1

. 1
participate
st - 1+ exp( . Uparticipate) (4.2)
st

At the same time, each day traveller ¢ chooses a transport mode from a choice
set M. In addition to ridesourcing, this set contains three alternative modes: private
car, bike and public transport. Walking is not considered given its limited modal
share for trips longer than 2 kilometres (Schaap et al., 2015). Travellers consider five
attributes in their mode choice: in-vehicle time v, the sum of access and egress
time ac,, waiting time W, the number of required transfers g, and travel cost p,.
The choice model parameters associated with these attributes are denoted B!, access,
B At Banser» and PBeost» respectively. Only the stop waiting time W, of ridesourcing
is dynamic, i.e. depending on supply and demand levels on that particular day. Mode-
specific preferences are captured by means of an alternative-specific constant ASCy,.
A random utility model with an error term &p,04. is applied to account for unobserved
variables in the mode choice. The utility associated with mode m and the probability
of choosing that mode are as follows:
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Ride-hailing operations

We adopt an agent-based model, MaaSSim, for simulating the within-day dynamics of
ride-hailing systems (Kucharski & Cats, 2022), in order to obtain passengers’ waiting
time and drivers’ income depending on supply and demand levels. Each day, eight
hours are simulated. Participating drivers work all eight hours, i.e. there is no work
shift choice. We assume that drivers lease their vehicles, bearing per-kilometre opera-
tional costs of 0.25 €/km (Nibud, 2022), which covers for fuel, insurance, and minor
maintenance costs. Matching takes place whenever there is a non-empty virtual queue
of unassigned requests and a non-empty virtual queue of idle drivers. The platform
agent assigns idle drivers to pending requests based on their proximity, i.e. the closest
pair is selected. All match offers are accepted by travellers and drivers. A ride request
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is revoked if unanswered after 10 minutes, which is perceived as 30 minutes of waiting
to account for inconvenience associated with not finding a driver. Drivers remain idle
at their last drop-off location until assigned to a new request. When driving, they move
at a (constant) speed of 36 km/h (Kfzteile24, 2019). The platform applies a distance-
independent base fare f,s., an additional per-kilometre fare fy,s, and a commission
rate 7.

Learning

We apply a Markov model to represent learning from experience, i.e. each agent as-
signs a weight of 20% to their last experience as opposed to all previous information.
Agents that are not registered do not gain first-hand experience and instead rely on in-
formation from other (registered) agents. Each day, each passenger (driver) receives a
private signal of the waiting time (earnings) in the system, which we draw from a ran-
dom distribution with mean equal to the average experienced waiting time (earnings),
and standard deviation equal to 0.5 times the standard deviation of the distribution of
experienced waiting time (income).

Registration

We assume that agents can only participate in the market if they have been informed
about the existence of the service. We model this with two (separate) epidemic com-
partment models, one for job seekers and one for travellers. The probability to be
informed on day ¢ depends on the share of fellow job seekers or travellers, respec-
tively, that have been previously informed, and information transmission rate Y.

In addition, we assume that driving for the platform - unlike requesting a ride
on the platform - requires medium- to long-term investments, representing entering
into vehicle leasing and insurance contracts for instance. Every day, (informed) job
seekers have a 10% probability of evaluating their registration status. We assume that
the daily costs associated with being registered (vehicle leasing costs) are 20 euros
(ANWB, 2024), which cannot be cancelled in the first 5 days after registration. In
(de)registration decisions, they consider participation probability p&™"“P*¢ ie. the
fact that participation earnings i, may need to outweigh reservation wage r, by more
than the daily registration costs, to cover for participation-independent registration
costs on days that they do not participate in the market. (De)registration choice is -
similar to participation choice - modeled with a random utility model, with sensitivity
parameter ﬁreg and error term Ereg-

4.4.3 Implementation

The simulation is terminated once both the average expected waiting time and the
average expected income change by less than 1% for five days in a row. The model is
implemented in Python. We replicate the experiment for statistical significance, with
the number of replications based on the average anticipated driver earnings and the
average anticipated user waiting time.
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4.5 Data availability

Network data for Amsterdam is retrieved from OpenStreetMap, public transport itin-
eraries from OpenTripPlanner. Travel demand is harvested from the Albatross data
set (Arentze & Timmermans, 2004). The code to generate ridesourcing system per-
formance indicators in market equilibrium for given socio-economic inequality and
pricing settings is available here: https://github.com/Arjan-de-R/MaaSSim.


https://github.com/Arjan-de-R/MaaSSim




Chapter 5

Two-Sided Dynamics in
Duopolistic Ridesourcing
Markets with Private and
Pooled Rides

In the analyses presented in previous chapters, the provision of ridesourcing was lim-
ited to a single service provider. In this chapter, we extend the model for two-sided dy-
namics in ridesourcing markets to allow for markets with two service providers, each
offering either private or pooled rides. This allows us to (i) analyse how fragmentation
costs — potential efficiency losses in matching in a market with fragmented demand
and supply — vary with market features and user attributes, and (ii) under which of
these conditions markets with multiple service providers are sustainable.

Our experiments consist of two parts. First, we evaluate how the evolution of the
market is affected by whether private or shared rides are offered by each ridesourcing
provider, assuming drivers and users enter in exclusive arrangements with platforms.
Second, for a market with two platforms offering private rides, we analyse whether
multi-homing can be effective in countering market fragmentation costs, which in-
cludes evaluating how rewarding such a strategy is for travellers and drivers.

This chapter is based on the following article:

de Ruijter, A., Engelhardt, R., Dandl, F., GerZini¢, N., van Lint, H., Bogenberger, K. &
Cats, O. (2024). Two-Sided Dynamics in Duopolistic Markets with Ride-hailing and
Ride-pooling. 12th Symposium of the European Association for Research in Trans-
portation (hEART), Aalto, June 2024.
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5.1 Introduction

Ridesourcing platforms have revolutionised the taxi industry by leveraging the ubig-
uity of smartphones and mobile data to connect travellers directly with private drivers.
Advanced real-time algorithms for matching trip requests and drivers adopted by these
platforms allow for efficient pick-ups. At the same time, the outsourcing of vehicle
and labour supply to freelance drivers can enhance the alignment between supply and
demand levels. The platform business model allows ridesourcing providers to seam-
lessly expand from one city to others, which may explain why in numerous cities
worldwide, ridesourcing service is offered by various platforms concurrently. For ex-
ample, Uber and Lyft provide ridesourcing services in New York City, while Uber and
Bolt offer similar services in Amsterdam.

As the efficiency of the matching of drivers and riders in ridesourcing services
is intricately linked to the scale of the market (de Ruijter et al., 2022b), the overall
system efficiency is likely to be smaller in ridesourcing markets with multiple ser-
vice providers compared to monopolistic markets (Séjourne et al., 2018). This affects
travellers through longer waiting, drivers through less productive working, platforms
through lower market shares and the general public through higher vehicle mileage.
In New York City, it was estimated that fragmentation of a market with only private
rides (from hereon referred to as a ride-hailing market) leads to a 4-6% increase in the
minimum fleet size required to serve all trips in case of two providers and 6-10% if
there are three providers (Vazifeh et al., 2018). (Frechette et al., 2019; Kondor et al.,
2022; Zhou et al., 2022a,b) establish that market fragmentation costs strongly depend
on context variables, including the number of service providers, the initial fleet size,
trip density, the market share of ride-hailing and traffic speeds. While in Manhattan,
for example, the increase in the minimum fleet size associated with market fragmenta-
tion (assuming fixed taxi demand) is estimated at just 2.5%, it is estimated at 8.5% for
Singapore, 37% for San Francisco, 55% for Vienna, and even 67% for Curitiba (Kon-
dor et al., 2022). Variations in fragmentation costs between cities are mainly driven
by differences in the average urban traffic speed and the density of demand, both of
which have been observed to have a negative correlation with fragmentation costs.

An important shortcoming of the aforementioned studies on market fragmentation
costs is that they assumed fixed demand and supply per service provider, while in
reality ride-hailing markets may be prone to developing towards a winner-takes-all
equilibrium (Bai & Tang, 2022). Kondor et al. (2022) highlight that smaller players
(platforms) face a comparatively higher cost associated with market fragmentation.
This could trigger a feedback loop where the declining service quality of the smaller
platform diminishes its attractiveness to potential consumers and suppliers, further
exacerbating the reduction in service quality. Ultimately, this cycle might lead to a
scenario where the larger platform emerges as the sole provider in the market. As a
consequence, monopolists could exploit their market dominance by raising fares and
commission to the detriment of travellers and drivers.

Multi-homing behaviour by travellers and drivers can possibly prevent or mitigate
potential undesirable consequences associated with ride-hailing market fragmentation
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(Loginova et al., 2022), i.e. the emergence of monopolistic markets or a subopti-
mal service when multiple platforms co-exist. Multi-homing enables both suppliers
and consumers to use multiple platforms concurrently. Drivers can receive requests
from various platforms, while travelers can check vehicle locations on different plat-
forms or request rides from multiple platforms simultaneously, thereby increasing the
likelihood that an idle driver is in the proximity of a pending trip request. However,
substantial (financial and non-financial) costs may be associated with the practice of
multi-homing (Guo et al., 2023a), explaining the mere 25% multi-affiliation among
drivers in Chicago (Zhang & Nie, 2021) and the 17% of ride-hailing consumers in
New York City using multiple platforms (Chitla et al., 2023).

It is plausible that market fragmentation costs are even larger — and consequently
winner-takes-all markets even more likely — in the provision of ride-pooling, com-
pared to ride-hailing. The reason is that ride-pooling system efficiency is highly scale-
dependent (Tachet et al., 2017) given that pooling relies on compatibility in trip re-
quests in addition to driver-request pairings. Similarly to ride-hailing, trip density and
market shares are crucial for generating sufficient demand to obtain acceptable wait-
ing times, i.e. the likelihood of finding a driver in proximity. However, in the case of
ride-pooling there is the additional need to obtain acceptable detour times, i.e. the like-
lihood of finding in addition to a driver also several travel requests within spatial and
temporal proximity. Passenger utility can either increase (better matches, occurring
particularly when demand for ride-pooling is already high) or decrease (longer de-
tours, particularly when demand is moderate) with demand for ride-pooling (Fielbaum
et al., 2023). Ride-pooling fragmentation costs further depend on pooling thresholds
set by the platform and the spatial distribution of trip requests (Zhang et al., 2022).

At the same time, markets with service differentiation between platforms, for in-
stance when one service provider offers hailing and the other one pooling, may be
less prone to winner-takes-all equilibria (Vignon et al., 2021). These service types tar-
get (at least partially) different market segments: pooling serves cost-sensitive users,
while hailing accommodates the preferences of time-sensitive individuals.

Previous research examining ridesourcing market equilibria following from com-
petition among ridesourcing providers, including traveller and driver responses, has
focused on three key areas. First, a substantial body of literature has delved into the
intricate dynamics of pricing arising from the strategic decisions of competing service
providers in the market (Zha et al., 2016; Nikzad, 2017; Ahmadinejad et al., 2019;
Wu et al., 2020; Benjaafar et al., 2020; Ni et al., 2021; Zhang & Nie, 2021; Sun &
Ertz, 2021; Bai & Tang, 2022; Zhang et al., 2023; Sen & Ghosh, 2023; Huang et al.,
2023; Cai et al., 2023; Sun & Liu, 2023). Notably, research by Zha et al. (2016) and
Nikzad (2017) demonstrate that competition in the ride-hailing market may not nec-
essarily lead to lower service prices as platforms compete for suppliers in addition to
consumers. Second, multiple studies evaluate the impact of multi-homing in rides-
ourcing markets based on analytical models (Bryan & Gans, 2019; Bernstein et al.,
2020; Zhang & Nie, 2021; Loginova et al., 2022; Bai & Tang, 2022; Li et al., 2023).
Resulting from a trade-off between enhanced matching efficiency and increased plat-
form pricing power (as platform competition is more limited) under multi-homing,
whether multi-homing increases or decreases social welfare remains subject of de-
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bate without a unanimous consensus. Lastly, a separate strand of research examines
’coopetition’ strategies, where competitors collaborate to mitigate matching ineffi-
ciencies in competitive ridesourcing markets (Pandey et al., 2019; Vignon et al., 2021;
Cohen & Zhang, 2022; Engelhardt et al., 2022b; Guo et al., 2023b; Wang et al., 2023b;
Bao et al., 2023). These studies investigate a range of strategies, including bilateral
and centralised trading, as well as launching joint services with profit-sharing arrange-
ments.

In determining ridesourcing market equilibria, previous studies substantially sim-
plify interaction effects between supply and demand in the evolution of ridesourc-
ing services, visualised in Fig. 5.1. First, previous works utilise aggregate matching
functions for determining how double-sided market participation utilities depend on
double-sided participation levels (relations marked (A) in Fig. 5.1), by which they
neglect the spatio-temporal nature of within-day ride-hailing and ride-pooling oper-
ations. This includes matching based on current trip requests and vehicle locations,
driver repositioning and ride offer acceptance decisions. Second, macroscopic func-
tions are applied for the reverse relationship, i.e. to establish platform participation
levels depending on system performance (relations marked (B) in Fig. 5.1). Hereby,
previous studies into ridesourcing fragmentation effects neglect market participation
barriers, uncertainty in participation decisions, and spatio-temporal properties affect-
ing mode choice. This also applies to generic studies investigating competition among
two-sided platforms (Rochet & Tirole, 2003; Armstrong, 2006; Armstrong & Wright,
2007; Jeitschko & Tremblay, 2019; Belleflamme et al., 2019).

Customer
(B) level of service

(A)

A )

(A)

Driver income
Day-to-day

Figure 5.1: Conceptual representation of the interaction between supply and demand
in the ridesourcing market.

We address the stated research gap with an agent-based model capturing both
within-day ride-hailing and ride-pooling operations as well as day-to-day processes
affecting market participation levels. In particular, our study has the following spe-
cific (interrelated) contributions:

I. Day-to-day Dynamics in the Two-Sided Market: In our day-to-day model,
we represent diffusion of platform awareness, tactical registration decisions and
daily market participation decisions in consideration of imperfect information,
i.e. following from learning from own and others’ experience. The need for ac-
counting for such (disaggregate) dynamic processes has been reiterated by Guo
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& Huang (2022). The day-to-day model enables exploring under which condi-
tions initial differences in market shares between platforms — resulting from
platform entry timing or random advantages — translate to winner-takes-all (or
asymmetric) market outcomes. In addition, accounting for day-to-day processes
in ridesourcing provision allows for establishing day-to-day variations that may
occur in system performance in the market equilibrium, a feature that has not
been commented on in previous research.

Detailed Ridesourcing Dynamics with Competition: We model the within-
day interactions between individual service providers, users and drivers, ac-
counting for their spatio-temporal attributes and possibly resulting in distribu-
tional effects. Specifically, the model represents platform matching, ride offer
acceptance decisions and repositioning decisions, all affecting experiences with
the platform and, consequently, market participation levels. In addition, ac-
counting for drivers’ repositioning allows us to give a more complete picture of
the effect of ridesourcing on the vehicle kilometres travelled.

Ride-Hailing and Ride-Pooling: In addition to modelling within-day opera-
tions exclusively for platforms offering private rides, we extend our analysis
to incorporate ride-pooling services. This allows us to examine the likelihood
of winner-takes-all markets in ride-pooling compared to ride-hailing, consid-
ering network effects in traveller pairing. We also explore market competition
effects when one platform offers ride-hailing and the other offers ride-pooling,
potentially targeting distinct user groups based on trip-related attributes, mode
preferences, and socio-economic characteristics, the importance of which has
been underlined by the results of Zhang & Nie (2021).

Single- and Multi-Homing: We account for multi-homing practices in our day-
to-day and within-day models, i.e. (participating) drivers and travellers can be
tied to a single platform or open to offers on multiple platforms. Contrary to pre-
vious works investigating multi-homing, our approach allows for investigating
mixed multi-homing scenarios, i.e. scenarios in which some agents multi-home
while others single-home, in line with what is observed in reality (Jiang et al.,
2018; Zhang & Nie, 2021; Chitla et al., 2023). We can explore the effect of
different multi-homing scenarios on aggregated system performance as well as
the experiences of single-homers and multi-homers separately.

Endogenous Demand: Unlike previous approaches, our model accounts ex-
plicitly for alternative modes, thereby capturing how ridesourcing propensity
depends on travellers’ departure time and their trip origin and destination. This
allows us to investigate modal split shifts associated with the introduction of
ridesourcing services depending on several factors, including multi-homing and
which service types are offered by each provider. Hereby, the model provides a
more complete picture of the potential effect that ridesourcing provision has on
the number of vehicle kilometres travelled.
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The remainder of the paper is organised in the following way. In Section 5.2,
we describe the developed simulation model, including day-to-day and within-day
processes associated with multi-homing and single-homing agents in the ridesourcing
market. We describe our case study, designed to mimic the city of Amsterdam, and the
scenario design of our experiments in Section 5.3. Section 5.4 contains a description
of the results of our analyses, which are summarised in Section 5.5 along with their
implications for policy makers and future research.

5.2 Methodology

Assume a ridesourcing market with platforms P = {py,...,p,}, each offering ride-
hailing (’solo’ rides) or ride-pooling in area A. Platforms in P generate revenue by
charging a commission on each transaction between travellers and drivers in the mar-
ket. We assume constant pricing and commissions, both within-day (operational) and
day-to-day (tactical). Demand for each platform follows from the mode choice deci-

sions of traveller agents T = {ry, ..., } which make a daily trip within the boundaries
of A. The fleet size of ridesourcing platforms depends on the daily work decisions of
job seeker agents J = {ji,..., ji}, who compare the utility derived from driving in the

ridesourcing market to the utility of alternative opportunities.

We study the implications of ridesourcing market fragmentation using a simulation
model designed to capture multiple day-to-day processes associated with ridesourcing
supply and demand, as well as the within-day operations of such markets, as visualised
in the conceptual framework in Fig. 5.2. Specifically, on each day in our day-to-day
simulation model of the ridesourcing market the following five subsequent processes
take place:

L. Diffusion of market awareness — a precondition for platform registration —
is captured through a peer-to-peer communication process for the aggregated
ridesourcing market, i.e. agents learn about the existence of all platforms in P
when (first) exposed to information about the ridesourcing market. The aware-
ness diffusion speed depends on the number of unaware individuals as well as
the number of market participants. The platform awareness diffusion process is
described in more detail in Subsections 5.2.1 (single-homing agents) and 5.2.2
(multi-homing agents).

II. Agents that are aware of the existence of the market make an occasional plat-
form registration decision, in which they trade off expected benefits from partic-
ipating in a platform with long-term costs associated with platform registration.
Here, we also model how they learn about system performance by communicat-
ing with agents about recent experiences in the market. The registration decision
of travellers and job seekers is described in more detail in Subsections 5.2.1 and
5.2.2.

III. Registered agents then make a daily platform participation decision, in which
they compare the expected utility derived from platform participation to the util-
ity of alternatives, i.e. alternative modes for travellers and alternative activities
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for job seekers. The expected utility derived from using the platform for trav-
ellers depends on the expected waiting time, in-vehicle time and ride fare. For
job seekers, it depends on the expected financial return. We refer the reader to
Subsections 5.2.1 and 5.2.2 for more information about the participation deci-
sions.

IV. In representing the within-day ridesourcing operations following from previ-
ously mentioned participation decisions, we capture platforms’ matching of cus-
tomers to drivers and in case of ride-pooling also to other customers, customers’
ride offer acceptance decisions, as well as drivers’ repositioning behaviour. The
within-day model is described in more detail in Subsections 5.2.1 and 5.2.2.

V. Customers and drivers update their expected participation utility for the next day
based on their individual experience participating in the ridesourcing market.
Day-to-day learning is modelled using a Markov process formulation, which
we further elaborate on in Subsections 5.2.1 and 5.2.2.

Initialise travellers | Initialise job seekers
(trip attributes, travel preferences, |€ START (reservation wage, multi-homing,
multi-homing, registration) I registration)
IV. Within-day operations

Platform A Request
l. rejected I
Awareness Awareness
diffusion Trip Matching diffusion
passenger

request

.
: Registration
Ride offer Serve choice
choice t passenger(s)

Assign to driver

Assign to driver

Participation

Matching

Other
activity
Zonal
demand

Day-to-day

Figure 5.2: Conceptual representation of the day-to-day simulation model.

Both traveller agents and job seeker agents in the model are either (inherently)
unwilling or willing to multi-home. Specifically, travellers T are subdivided into two
subsets: single-homing travellers 7’, who will only enter in exclusive arrangements
with platforms, and multi-homing travellers T” who will always register with all plat-
forms in P if they decide to incur market registration costs. Similarly, single-homing
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job seekers J' will exclusively register with a single platform, whereas multi-homing
job seekers J” will register with all platforms in P. The probability that travellers and
job seekers are open to multi-homing are denoted p™¥ and pi*, respectively.

In Subsection 5.2.1, we describe previously mentioned day-to-day processes in the
ridesourcing market in more detail for single-homing agents. In Subsection 5.2.2, we
elucidate the distinctions in these processes for agents engaged in multi-homing. In
Subsection 5.2.3 we explain how market convergence is established based on double-
sided platform participation levels, how we determine the number of replications for
statistical significance, and how the computational complexity of the simulation model
is kept low.

5.2.1 Single-homing

For the description of the different model components in the remainder of this section,
we use set notations for relevant (single-homing) traveller and job seekers subpopu-
lations. These notations are visualised in Fig. 5.3. First, the populations of single-
homing travellers 7’ and job seekers J' are subdivided into those aware of the rides-
ourcing market on any given day k — (7”){™ and (J'){"*", respectively — and those
not aware — (7)™ and (J')"*V¥", respectively. Aware agents are further subdi-
vided into individuals registered with platform p (for each p € P) and individuals that
are not registered with any platform on day k. Registered agents can be further classi-
fied depending on the result of their participation decision on this day. Following from
the participation decisions in the day-to-day model, Travellers opting to (exclusively)
use a ridesourcing platform p on day k are from hereon referred to as customers C;,k,

job seekers working (exclusively) for this platform as D/,. (T" );‘,ﬁ denotes travellers

registered job seekers with p that

reject

registered with p that choose another mode, (J') Dk

opt for another activity.

Awareness diffusion (I)

Insufficient awareness during the initial stages of innovation adoption can impede in-
novation’s uptake. For ridesourcing specifically, slow propagation of awareness could
result in a service’s failure if it prevents the formation of a critical user mass. There
is generally limited empirical evidence regarding how potential users become aware
of innovations, particularly within the context of the ridesourcing market. It is likely
influenced by a complex interplay of factors, including peer-to-peer interactions, mass
media communication, and platform marketing strategies. Due to the dearth of em-
pirical underpinning for the awareness diffusion process in the ridesourcing market,
especially concerning the impact of marketing strategies and global communication
sources, we have chosen to employ a model based on peer-to-peer interactions.
Specifically, we propose a diffusion model in which the (aggregated) awareness
diffusion rate on each side of the market depends on market participation levels. Dur-
ing interactions between a ridesourcing market participant — i.e. a customer or a
driver, and independent of whether they single-home or multi-home — and someone
unaware of ridesourcing — ¢ € (7)™, j € (J') "¢ — there exists a probability
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T’ J
(T/)Zware (Tl)znaware ( J/)iware ( J’) znaware
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Figure 5.3: Tree diagrams visualising set notations associated with (a) single-homing
travellers and (b) single-homing job seekers. Each branch is related to
one of the day-to-day processes in ridesourcing evolution, either aware-
ness diffusion (first branch level in the tree), registration decisions (second
level) or participation decisions (third level).

v of transmitting awareness about ridesourcing. We assume that every day travellers
T ={r,...,1,} and job seekers J = {ji,...,#;} communicate randomly with respec-
tively yaWareness,rav ap( yawarenesss jndjviduals on their side of the market. With C/ as
the set of multi-homing customers and D/ as the set of multi-homing drivers on day
k, the probabilities that unaware travellers and unaware job seekers become aware of
ridesourcing market P on this day, respectively, are:

. y,awareness,trav /1 /
inform,traveller _ vy <|Ck | + ZPGP ‘Cka

" : . Vre (T (5)

V- yawareness,js . (|D;</‘ 4 ZpeP |D;)k|)
l

The preceding specification of the awareness diffusion model contains the following
implicit assumptions:

¢ti]t€1form7js _ , V] c (J/)znaware (5.2)

1. Individuals are either entirely unaware or aware of the entire ridesourcing mar-
ket, i.e. of all or none of the platforms in P.

2. Travellers do not receive information about the ridesourcing market’s existence
from job seekers, and vice versa.

3. Ultimately, all travellers and job seekers learn about the ridesourcing market,
unless the market reaches an equilibrium in which no travellers or no job seek-
ers participate in the ridesourcing market. This is in line with the widespread
familiarity with ridesourcing platforms seen today, as exemplified in the Nether-
lands (Gerzinic et al., 2023).
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Platform registration (II)

Since the process of (de-)registering with a platform can be time-consuming and
comes with substantial medium- to long-term (financial) commitments, registration
decisions have a more tactical nature compared to travellers’ and job seekers’ daily
market participation decisions. Therefore, it is assumed that on a given day travellers
and job seekers that are aware of the ridesourcing market reevaluate their registration
status — being registered or unregistered — with a probability y. In addition, we
assume that they cannot deregister in the first v days after registering with a platform.

Our model assumes two subsequent decision-making processes in the registration
decisions of (single-homing) job seekers. The first one entails the choice between plat-
forms, the second one the choice between being registered with the preferred platform
and not being registered at all. Travellers in our model do not make the second deci-
sion, following the limited burden associated with demand-side registration, i.e. a few
administrative procedures. In other words, we assume that they will always register
with one of the platforms in P.

Prior to the registration decision, travellers seek information about waiting time
and pooling detours when using ridesourcing platform p, while job seekers seek in-
formation about the earnings when driving for this platform. Specifically, we assume
that travellers and job seekers are informed about the experiences of y™&'* agents par-
ticipating (on their side of the market) in platform p on day k — 1. We apply a Markov
process formulation to represent a higher valuation of recent information in compari-
son to past information, considering possibly on-going evolution of ridesourcing plat-
forms’ participation levels. Particularly, travellers and job seekers assign a weight
K™ to the average received information signals %, and %;,, respectively, rela-
tive to their (personal) previous expectation for relevant indicator £, x—1 and £, 1.
Hence:

Tipk = (1= 10™) - Zp a1+ K Kapk (5.3)
2 comm 2 comm =~
Bjpk = (L= K50 ) - Rjps—1 + Kok - Ejpi (5.4)

The assigned weight can vary between registered agents and unregistered agents,
considering that the former group can accumulate personal experiences:

comm,registered \registered
yccomm __ ) K LE(T) (5.5)
1pk K.comm,unregistered otherwise .
comm,registered : 7yregistered
yecomm _ ) € JE ) (5.6)
Jjpk commsunregistered otherwise

Specifically, the indicators travellers learn about are platforms’ waiting time wy .,
and relative detour factor z;,; when opting for pooling. Job seekers learn about income
i;px when spending a day driving for the platform.
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Travellers When making a registration decision, (single-homing) travellers choose
to register with one or none of the platforms in P. The utility derived from registering
with platform p depends on the expected utility when travelling with this platform
Ut‘;‘,‘cve], the composition of which is described in Subsection 5.2.1. We assume that
unobserved variables are less prominent in (more tactical) registration decisions com-
pared to daily participation decisions, which we account for by multiplying the travel
(participation) utility associated with platform p with parameter 8, taking the value

of 1 or more, when determining the utility of being registered with this platform:

registered __ ptrav travel
Utpk — 6 : U[pk (5‘7)

We apply a Logit model so that the probability of being registering with platform
p at the end of day k is formulated as follows:

registered
(Pregistered _ eXp (Utpk )

tpk registered
ZpEP exp(Utp,% )

(5.8)

Job seekers Single-homing job seekers first decide on their preferred platform, as-
suming they need to register with one, followed by an actual registration decision
for this platform. In the first decision, they compare, for all platforms in P, the ex-
pected daily surplus s;,; associated with being registered with platform p over not
being registered at all. The definition of the (economic) surplus in our model is taken
from Small & Rosen (1981). Specifically, the surplus depends on the expected utility
Ufpaf(mpate derived from driving for the platform and the expected utility U;-‘h derived
from alternative opportunities in the time otherwise spent working. The surplus value
accounts for observed and unobserved variables in the participation decision by inte-
gration of income sensitivity parameter "

In (exp(U;);]zticipate) T eXp(U;’lt))
Sipk = ﬁinc

(5.9)

We refer the reader to Subsection 5.2.1 for the definitions of Uf;tiCipate and U J"?‘h.

We apply a Logit model with sensitivity parameter fr&PRM and error term

gregisier g that the utility and probability of registering with platform p (if market
registration were to be required) are, respectively, defined as:

registered __ preg,platform register

pregsered _ gresplatom g gres (5.10)
registered
(pregislered _ eXp(Ujpk ) (5.11)
Jjpk - Uregistered :
Z[JEP CXp( Jjpk )
s istered istered : s

Based on probabilities ® = § g5, - ¢ }, single-homing job seekers

select platform p* as their preferred platform when registering.
We posit that job seekers incur a daily expense denoted as T when they are regis-
tered in the ridesourcing market. With Bre&market a5 the monetary sensitivity parameter
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in the market registration decision, the utility of registering in the ridesourcing market
(considering the previous choice for platform p*) is now denoted as:

U;;glstered _ ﬁreg,market . (Sjp*k _ Y) + gregister (5.12)

As for the platform registration model, we assume a logit model specification for
the market registration decision (Eq. 5.10). With the utility of the alternative choice
— not registering to the market — fixed to 0, the probability of being registered in the
ridesourcing market on day & for a job seekers making a registration decision on that
day is formulated as:

registered
(Pr.egistered _ eXp(Ujk ) (5.13)
J exp(U;Iiglstered) +1

Job seekers’ sensitivity to monetary gains may be different in platform choice
compared to market registration choice. We therefore introduce two separate multi-
pliers @isplatform apnq gismarket for converting job seekers’ income sensitivity B (in
participation choice) to the monetary sensitivity parameter in registration choice:

Breg,platform — ejs,platform . ﬁinc (514)
ﬁreg,market _ 6j57market . ﬁinc (5'15)

Market participation (IIT)
Travellers Every day, travellers (T’ );e,fiSt registered with ridesourcing platform p

decide to request a ride offer using this platform or to opt for another mode of trans-
portation for their daily trip. In making their choices, travellers assess travel time,
cost, and mode-specific preferences. Notably, in our model travellers’ value of time
may vary across modes, and different time attributes, namely in-vehicle time, waiting
time at a stop, and stop access time, may be perceived distinctively. Value of time and
mode-specific attributes may also vary among individuals.

Hence, we specify time parameters BV, B4, and B¢ to describe a traveller’s
perception of in-vehicle time, waiting time and stop access time, respectively. Finan-
cial costs associated with the selection of mode m on day k are expressed as f;,,x and
allocated a weight of S in the utility function. Preferences associated with modes
are accounted for by specifying ASC;,, as the constant of traveller ¢ related to mode
m. If public transport is offered, transfers induce an above and beyond utility penalty
denoted as piransfer,

Mode attributes and consequently utilities are considered constant from day-to-
day for all modes other than ridesourcing. In contrast, in the case of ridesourcing,
the (expected) waiting time (when opting for solo or pooling) and in-vehicle time
(when opting for pooling) are endogenous variables, while all other variables remain
constant.

To address attributes other than time, cost and mode-specific constants in mode
choice, a random utility model is employed with error term £™°%. We define ¥y
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as the (anticipated) time spent on-board a vehicle, a;,; as the access time required
to reach a pick-up location / stop, W;,;; as the (anticipated) waiting time at a pick-up
location / stop, and o, as the number of transfers with mode m on day k. The set
of modes is denoted M} and includes platform p if a traveller is registered with this
platform on day k. The utility associated with each mode in M, for traveller ¢ and the
subsequent probability of choosing that particular mode are, respectively, determined
as follows:

travel __ pivt A access wait  ~ transfer
Utmk = P Vimk + Btm Ak + Btm Wimk + ﬁ * Otmk

+ﬁCOSt 'ﬁmk+ASCIm+£m0de (516)

exp ( Utravel )

travel __ tmk
tmk T travel
ZmGMk exp(Utmk )

(5.17)

Job seekers Every day, registered job seekers decide whether they want to spend
their day driving for the platform. We assume that they decide to work when the
expected income, denoted as ¢ jk» surpasses the opportunity costs associated with their
working time, represented as r;. This assumption is in line with the principles of
the neoclassical theory of labour supply, as detailed in previous research (Chen &
Sheldon, 2016; Sun et al., 2019a; Xu et al., 2020).

Similar to the previously described registration decision, we utilise a random util-
ity model to account for various factors influencing the participation decision apart
from income. These factors include day-to-day fluctuations in job seekers’ reservation
wage due to varying activity schedules. We introduce an income sensitivity parameter
B"¢ and an error term £P¥¢PAe o encompass income-related and random elements
and imperfect knowledge in the decision-making process.

The utility associated with driving, the utility associated with alternative opportu-

nities, and the resulting likelihood that registered job seeker j € (J ’);f,fismed works for
platform p on a given day k are, respectively, defined as:
U;);]I(ticipate _ ﬁinc . ijpk + gparticipate (5.18)
U;lt _ Binc rj+ gharticipate (5.19)
participate
¢Pa]zticipate _ eXp (Uij ) (5.20)
]p P t 0 ‘t °
(U + exp(UF)

Within-day simulation (IV)

The within-day model captures the short-term decision-making of drivers, customers
and platforms on day k in a time-based simulation. The goal is to model travel and
driving experiences in the market to establish (actual) experienced attributes for rides-
ourcing customers (i.e. fare, travel time, waiting time) and drivers (i.e. revenue, cost),
which likely differ from their expectations in (pre-day) participation decisions. The
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within-day model’s outcomes for the most recent day, combined with historical data,
inform travellers’ and job seekers’ decisions about future market registration and par-
ticipation.

As an outcome of the day-to-day model, input to the within-day simulation are job
seekers D;k C J' that decided to work as drivers for platforms p € P. Single-homing
drivers have exclusive arrangements with platforms, i.e. ﬂpepD;k = 0. Likewise,
travellers that seek to use ridesourcing service p on a given day are described by the
set of customers C;k C T'. Each customer ¢ € C;k is described by an origin location
o¢ 1, destination location d;- * and a request time 7. . Again, single-homing customers
are tied to a single platform, i.e. (,cp C;k = (0. During the simulation, the goal of
each platform is to assign schedules (a sequence of stops) to drivers working for the
platform that serve incoming customer requests.

A simulation time step (typically set in seconds or minutes) consists of three main
steps: 1) Driver states (e.g. position, on-board customers) are updated according to
the currently assigned plan. 2) Incoming customer requests are treated sequentially.
Requests are replied by corresponding platforms with an offer consisting of estimated
waiting time, travel time and fare, which is used by the customer to decide for (or
against) a platform. 3) The platform centrally re-optimises currently assigned driver
schedules.

A platform is here assumed to either offer only solo or only pooled rides. In
this study, the trip assignment objective for both platforms is to minimise the fotal
driving time (for the platform). For a ride-hailing service, this will minimise the time
deadheading to pick-up locations and for a ride-pooling service, two customers will
share a trip unless the total vehicle time to perform both rides with a single vehicle
is longer than two vehicles providing the service. For this study, time constraints are
introduced to provide an attractive, yet operationally efficient service for customers. A
maximum waiting time of 6" and a maximum relative detour/delay time of gdetour
(compared to the direct route travel time) are imposed. The detour/delay time also
includes boarding of other passengers, where each boarding process is modelled to
last v seconds.

Offers are created by the platform by inserting the pick-up and drop-off of a cus-
tomer request into the current schedules of its drivers, and selecting the one with the
best change in the above-mentioned criterion. If no feasible option is found, a request
is rejected by the platform. From this schedule, expected waiting time and travel time
for the customer is extracted. Platforms offering solo rides are operated based on a
base fare f**¢ and a solo km fare f™. Pooling is offered to travellers at a discount
A (on the whole fare). If they receive an offer, single homing customers will accept
this offer, i.e. they do not wait for future offers or (re)consider alternative transport
options. After a customer booked the service with one of the platforms, this platform
will inform the assigned driver about the new plans. For simplicity, it is assumed that
drivers accept all new assignments.

As the insertion procedure usually results in sub-optimal assignments of trip sched-
ules to drivers, a global re-optimization is triggered and performed by each platform.
The algorithm is based on Alonso-Mora et al. (2017b). As this algorithm is not the
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focus of this study, the reader is referred to Engelhardt et al. (2020) for details of its
implementation.

Once drivers become idle (i.e. do not have a trip assigned by a platform), they
might consider driving to network regions where they expect demand to increase the
probability for a new assignment and therefore to increase revenue. It is assumed that
these repositioning trips are not suggested by the platform, but rather — similar to
platforms like Uber or Lyft — chosen by drivers themselves. Specifically, we assume
that idle drivers at the end of each hour consider repositioning to neighbouring zones
based on the anticipated (daily) demand (explained in Subsection 5.2.1) in each of
these zones and their current zone. The probability of repositioning to each zone
equals the relative share of expected trips in the zone.

After the simulation, drivers evaluate their profit by subtracting driving costs from
their revenue, which includes the sum of all fares of customers they served, while
considering platform commission rate 7.

Learning (V)

To capture learning from own experience travelling or working with a platform, we
apply a similar Markov process formulation as for learning from other people’s expe-
rience, i.e. the process which is described in Section 5.2.1. To be precise, a weight
KPrivale jq assigned to personally experienced system performance indicators on day
k relative to previously gathered information up to this day, including information
from communicating with others when deciding about platform registration. Hence,
if customer ¢ € C;k (driver j € D;k) experiences indicator x; (x ;) on day k, their ex-
pectation for the value of this indicator £; 441, (£ k+1,p) associated with platform p
for the next day is defined as:

xAt‘k-‘rl,p — (1 — K-Private) 'xAtpk + K.private Xipk (521)

S ivatey | » ivat
<xj,k+1,p = (1 _ gprval e) Rjpk + jcprivate 'xjpk) (5.22)

The indicators that customers learn about are waiting time (if a request is denied
by the platform, waiting time is perceived to be I" minutes) and in-vehicle pooling
detour times, whereas drivers learn about income.

In addition, job seekers also learn about the ridesourcing demand per zone, albeit
not from own experience. Our model assumes that at the end of each day all (regis-
tered) job seekers are informed about the total ridesourcing demand per zone on that
day (e.g. by a transport authority), information that (merely) guides their within-day
repositioning decisions (described in Section 5.2.1). We assume a similar learning
process as for the other indicators, i.e. they assign a weight x9°m4 to the information
provisioned on the last day as opposed to all previously provisioned information.

5.2.2 Multi-homing

In this Subsection, we describe how the relevant day-to-day and within-day processes
in the ridesourcing market are adapted for multi-homers, i.e. travellers and job seekers
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that are open to being matched on all platforms in P when they decide to participate
in the ridesourcing market on any given day.

Awareness diffusion (I)

The market awareness diffusion process is independent of agents’ willingness to multi-
home.

Platform registration (II)

Considering limited demand-side registration costs, multi-homing travellers will choose
to be registered with all platforms in P when making a registration decision. Ac-
cordingly, multi-homing travellers are not interested in platform-specific indicators
and will inquire only about (recent) experiences of multi-homers participating in the
ridesourcing market, information that is used to guide future mode choice decisions.
We assume that single-homing agents only communicate with registered agents that
single-home, specifically about the utility associated with individual platform usage
(U&akmmpate, Vp € P). Contrary to single-homing travellers, multi-homing travellers
also learn about the expected fare when multi-homing, which in a market with a ride-
hailing and a ride-pooling provider depends on whether they get assigned to a private
or shared ride. Their platform-independent registration decision implies that they ex-
perience uncertainty in ride fares, given that solo and pooling providers offer different
fares.

The same general principle applies for supplying labour to the ridesourcing mar-
ket. Multi-homing job seekers do not make a platform decision, and hence are only
interested in learning the aggregated market utility U7," 1Pt Single-homing job

seekers instead learn about individual platform utilities Ujf.)lfm‘"p “€ (Vp € P). How-
ever, contrary to multi-homing travellers, multi-homing job seekers do make a market
registration decision, given (possibly substantial) costs Y associated with the ability to
drive for ridesourcing platforms. These costs are equal for single-homers and multi-
homers, i.e. they are only incurred for the first platform.

Market participation (IIT)

Similar to the registration decision, multi-homing agents either participate with all
platforms or with none of them. To be precise, if multi-homing travellers opt for
ridesourcing over other modes of transportation they request offers on all platforms
in P. Essentially, the entire ridesourcing market P is included in the available set of
modes My, the utility of which depends on platform-independent performance indi-
cators, learnt from other multi-homing agents as well as own experience. Similarly,
multi-homing job seekers that choose to work are available to serve requests on all
platforms in P. Hence, as opposed to single-homing agents, the participation deci-
sions of multi-homing agents are based on aggregated ridesourcing market utilities
U]PkaI HCIPX rather than platform-specific utilities UJI.’;EICIPMC, Vp e P.
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Within-day (IV)

When multi-homing is enabled, small adaptations for drivers and customers in the
within-day model are made. In this case, multi-homing drivers DZ are available for
work on all platforms in P. Similarly, multi-homing customers C; request trips from
all platforms in P.

For multi-homing drivers, it is assumed that they are available for service for all
platforms p € P only when they are idle and looking for new assignments. Once they
receive a new assignment from platform p, they log off from all other platforms and
are no longer available for driving tasks there until completing assignments from p.
During this time, they can get subsequent assignments from p. Only when they be-
come idle again, they log in again to the other platforms. It is additionally assumed
that drivers always accept an assigned driving task immediately by any platform. In
the model, driver j* is therefore complemented by a set ISj* describing the set of cur-
rently logged in platforms, which is updated accordingly when a driver receives a new
assignment or becomes idle. Before creating an assignment, a platform always checks
the logged in drivers.

Multi-homing customers request trips from all platforms in P. The platforms then
check feasible solutions, and compute the best solution according to their matching
objective — minimising total driving time — and produce an offer based on this solu-
tion. If multiple platforms offer the service, the offer (and therefore platform) with the
highest utility as given in Eq. (5.16) (with actual ride offer characteristics and without
the error term) is chosen.

Learning (V)

In our model, the way multi-homers learn from experience is similar to how single-
homers learn from experience. There is again one key distinction: single-homers
acquire insights into the service quality of individual platforms, while multi-homers
gain knowledge about the collective ridesourcing market.

5.2.3 Implementation
Convergence

We determine market convergence based on double-sided participation levels. For this
purpose, we evaluate the evolution of the number of (single-homing) agents choosing
each individual platform as well as the number of multi-homers participating in the
market, for both sides of the market. Formally, we define the following two sets of
participation indicators, the first set associated with market demand and the second set
associated with market supply:

¢ = (U1} )l e} (5.23)

peEP

" = (U {10} {10 )]} (5.24)

PEP
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In determining convergence, we should neglect random — i.e. non-systematic — day-
to-day variations in market participation levels following from random components in
peer-to-peer communication and decision-making processes. Formally, we define that
the simulation has converged on day k& when the absolute day-to-day change in the
uMA2_day Moving Average (MA) of the uMA!-day Moving Average (MA) — nested
to further smoothen out random, short-term fluctuations — has been below demand
for all demand-side participation indicators g € G%™ and below @*“PP"Y for all supply-
side participation indicators g € G*'P, each for n days in a row:

‘MAuMAZ (MAIJMAI (g))k,h —MA Ma (MA#MAI (g))k7h71 ‘ < gdemand
Vhe{0,...,n},Vg € G*™ (525

‘MA“MAZ (MAIJMAI (g))kih*MAHMAZ (MA”MAl (g))k7h71 ’ < PP
Vhe{0,...,n},Vg € G (5.26)

Replications

In light of previously described stochastic processes pertaining to ridesourcing supply
and demand, we need to run multiple replications to test and prove the statistical sig-
nificance of our simulation results. In doing so, we utilise the same indicators that are
used to determine convergence. We opt for a method previously applied in simulating
monopolist ridesourcing markets (de Ruijter et al., 2022a,b).

This method is based on the sample mean g(g) and standard deviation sg(g) of
convergence indicators g € G%™ U G*"P based on ¢ initial simulation runs. The number

of simulation runs that are needed, depending on confidence level 1 — o and allowable
repl

error £€P" of each indicator estimate g is determined by:
2
Sg (Q) ! tm_l 1-a
Z(qg) = max _— 5.27
(q) g€GdemuGsup ( grep] ( )
in which the allowable error depends on the absolute value of indicator g:
£repl,rel 5 5 >
8repl — el g(Q) g(q) —.C (528)
greptrel. ¢ otherwise

Computational complexity

Each day in our simulation model requires modelling numerous decision-making pro-
cesses involving a substantial population of agents as well as accounting for compu-
tationally complex within-day matching between customers and drivers, particularly
when ride-pooling is offered. We limit the computational complexity of the simulation
model by applying a filter to the traveller population based on their propensity of se-
lecting ridesourcing based on their individual mode choice preferences. Specifically,
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if traveller agents exhibit a probability lower than the threshold defined by parameter
x even in the ideal conditions — i.e. in a situation where they expect neither waiting
time nor in-vehicle delays, while receiving (pooling) discount A on their fare — then
they are subsequently excluded from the initial pool of travellers, i.e. they are assumed
to choose another mode on any given day.

Simulation framework

The day-to-day processes associated with ridesourcing supply and demand are imple-
mented in MaaSSim (Kucharski & Cats, 2022), and the within-day operational model
in FleetPy (Engelhardt et al., 2022a), both of which are open-source agent-based
simulators of mobility-on-demand services programmed in Python. The overarching
simulation framework (FleetMaaS) is available here: https://github.com/Arjan-de-R/
FleetMaaS.

5.3 [Experimental design

5.3.1 Set-up

In this section, we outline the set-up of our experiments, which has been designed
to mimic the city of Amsterdam, the Netherlands. This pertains to relevant aspects
such as the potential ridesourcing market, the underlying road network, ridesourcing
operations, and characteristics of alternative modes.

For the travel demand in Amsterdam, we employ a data set generated with the
activity-based model Albatross (Arentze & Timmermans, 2004), selecting only trips
of 2 kilometres and longer. In terms of the number of trip requests, we sample one-
tenth of the total estimated demand in Amsterdam during an eight-hour window to
limit the computation time of the day-to-day simulation. Similarly, we aim to rep-
resent one-tenth of all job seekers residing in Amsterdam. This relative sample size,
10%, aligns with prior research in the domain of agent-based modeling for trans-
portation problems (Kaddoura, 2015; Bischoff & Maciejewski, 2016; de Ruijter et al.,
2022a,b). In absolute terms, this sampling yields a total of » = 100,000 travellers and
[ =2,500 job seekers. In the reference scenario, all of these agents single-home, i.e.
p"™ = 0% and p¥* = 0%. In our analysis, travellers with a likelihood of below 5% to
select ridesourcing, even under ideal conditions, are assumed to completely disregard
ridesourcing, i.e. we set y to 0.05. This amounts to approximately 70% of travellers in
the reference scenario, aligning with the cumulative share of travellers found in a la-
tent class model to be unlikely to adopt ridesourcing for urban trips in the Netherlands
(Gerzinic€ et al., 2023).

Ridesourcing vehicles utilise a road network with spatially heterogeneous yet
static travel speeds. Concretely, we assume that drivers operate with a speed of 85%
the speed limit. This value has been set so that the average travel speed based on
the shortest paths (in terms of travel time) for all origin-destination pairs in Amster-
dam approximates the average observed traffic speed in Amsterdam on a working day
in reality (TomTom, 2023). We set 30 seconds as the time needed for pick-ups and
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drop-offs in ride-hailing (v = 30). In ride-pooling, each additional stop results in a
10-second delay. Each ride-pooling vehicle has capacity for 4 passengers.

Drivers incur per-kilometre operational costs §™ of €0.25. Pricing of solo rides-
ourcing rides is set following Uber’s approach in Amsterdam, omitting surge pricing.
This entails charging a base fee f°2° of 1.5€ and a per-kilometre fee fX™ of €1.5.
We assume that pooling platforms offer travellers a guaranteed one-third discount on
solo trip fares, i.e. A is 33.33%, even when no sharing eventually occurs. Platforms
withhold 25% of the fares transferred from travellers to drivers, i.e. T = 25%. The
daily costs associated with being registered in the ridesourcing market for job seekers
is set to €15. Market information about past demand that is communicated to job
seekers to guide their repositioning decisions is provided per Gebied (area, majority
of which are in the range of 2-10 km?) as established by the municipality of Ams-
terdam (Gemeente Amsterdam, 2023). Platforms adopt a maximum allowed pooling
delay 69 of 40% the direct in-vehicle time when matching customers to other
customers. The time interval between consecutive (re-)assignments is one minute.
Travellers with a ridesourcing request are willing to wait at most 10 minutes until
pick-up, i.e. %4 = 10 minutes.

Beyond ridesourcing, the set of potential travel modes encompasses cycling, pri-
vate vehicle usage and public transportation. The (in-vehicle) travel time with private
car is the same as with a ride-hailing (private ride) provider. Access and egress take 5
minutes each. In addition to per-kilometre operational costs of 0.5 €/km, which are
twice as high as those of ridesourcing drivers due to less frequent usage of their cars,
private car users are charged a fixed fee of 15€ for parking in the city centre — i.e.
in areas Centrum-West and Centrum-Oost as specified by the municipality (Gemeente
Amsterdam, 2023) — and €7.50 elsewhere. Cyclists are assumed to use a private
bike, i.e. this travel option is always free of charge. They travel using the same net-
work as cars, yet, at a fixed speed of 15 km/h. Travellers’ travel time and the number
of required transfers when travelling with public transport is based on the itinerary
leading to the quickest arrival at the destination, queried using OpenTripPlanner for
September 19th 2023, based on travellers’ origin, destination and trip request time.
Public transport fares are determined based on the (full rate) fares as established by
the transport authority of Amsterdam, i.e. a base charge of €1 and an additional €0.20
for every kilometer travelled.

Travellers’ in-vehicle time perceptions, cost perceptions and mode-specific con-
stants are based on a mixed logit model estimated using a data set of stated preference
choices (Gerzini€ et al., 2023) for urban travel behaviour in the Netherlands. In the
estimated choice model, in-vehicle time is distributed lognormally and mode-specific
constants are distributed normally in the population of travellers. The ride-pooling
constant equals the solo (ride-hailing) constant minus a (uniformly distributed) shar-
ing penalty. We refer to Table 5.1 for the estimated values of the distributions of
in-vehicle time, mode-specific constants and willingness to share.

We assume that all travellers perceive waiting time at a stop or pick-up location
2.5 times more negatively and walking time (for access and egress) 2 times more neg-
atively than in-vehicle time (Wardman, 2004). A minute spent on a bike is perceived
2 times more negatively than a minute spent in a motorised vehicle, accounting for
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Table 5.1: Mode choice parameter distributions

Parameter Distribution
In-vehicle time Lognormal(-2.760, 12)
Ride-hailing constant N (-5.18, 1.92%)
Pooling penalty %10, 0.554]

Bike constant N(0,5.75%)

Private car constant N (-1.96, 3.192)

Public transport constant ~ .A4(-4.14, 1.15%)

required physical exertion and limited productivity otherwise (Borjesson & Eliasson,
2012). Each transfer in public transport is perceived as 5 minutes of in-vehicle time
(Yap et al., 2020) by all travellers. Compared to daily mode choice decisions, we
assume that unobserved variables are less dominant in registration decisions by as-
signing a value of 3 to registration utility multiplier 6,

Job seekers’ reservation wage is distributed lognormally, with a mean of 25€/h
— equal to the average hourly wage in the Netherlands (Centraal Bureau voor de
Statistiek, 2022) — and chosen standard deviation so that the resulting Gini coeffi-
cient of reservation wage in the lognormal distribution equals 0.35 — close to the Gini
coefficient of gross income in the Netherlands (Arts et al., 2019). Income sensitivity
parameter in participation 8" is set to 0.05. We set §i™market to 2() and @is:Platform ¢4,
100 to represent that job seekers are more income sensitive in tactical registration de-
cisions — particularly in the choice between platforms — than in daily participation
decisions. The probability y that job seekers (re)evaluate their ridesourcing registra-
tion status on a given day is set to 15%. They cannot deregister from a platform in
the first 5 days after registering, i.e. v =15. Daily costs T for being registered in the
ridesourcing market add up to 20€, based on (short-term) vehicle leasing costs in the
Netherlands (ANWB, 2024).

In learning, travellers and job seekers assign a weight of 0.2 to their last private
experiences (i.e. kP13 —=(.2), a weight of 0.2 to the most recent information pro-
vided by the platform about zonal demand (i.e. k%™d = (.2), a weight of 0.2 to re-
cent information from others, based on communication with y*#st = 50 agents, when
personally registered in the market (i.e. xcommregistered — ( 2y and of 0.333 when un-
registered (i.e. xcommunregisiered — () 333y We configure I to be 30 minutes, i.e. we
assume that travellers perceive denied service as 30 minutes of waiting time.

For the assigned parameter values in awareness diffusion, and determining con-
vergence (established empirically) and the required number of replications in our ex-
periments, we refer to Table 5.2.

At the beginning of the simulation, registered job seekers expect to earn the aver-
age reservation wage, while informed travellers expect no waiting time and no detour
when opting for pooling. Initially, 20% of all agents (job seekers and travellers) are
informed. Each initially informed (single-homing) traveller is registered with one of
the platforms, while each initially informed job seeker has a 50% probability to be
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Table 5.2: Awareness diffusion (left) and convergence/replication (right) parameters.

Parameter Value Unit Parameter Value Unit
v 50 % [LVIN} 25 days
yawareness,lrav 8 travellers UMA2 100 days
ywareness.js 2 job seekers demand 2 customers/day
@SUPPYY 0.05 drivers/day
n 25 days
a 5 %
srepl,rel 5 %
¢ 200 agents

registered with one of the platforms. The initial choice between platforms is random.
Each day, drivers start at a randomly selected location in the network.
5.3.2 Scenarios

In our first set of experiments, we evaluate and compare three duopolistic (two plat-
forms at the start of the simulation) market structures depending on whether each plat-
form offers ride-hailing or ride-pooling. We compare the results to two monopolistic
benchmark scenarios.

* Solo-solo: two platforms each offering a solo (ride-hailing) service

* Solo-pool: one platform offering a solo service, the other a ride-pooling service
* Pool-pool: two platforms each offering a ride-pooling service

* Solo: monopolistic platform offering solo (ride-hailing) service (benchmark)

* Pool: monopolistic platform offering ride-pooling service (benchmark)

The following set of experiments is focused on a market with two service providers
each offering ride-hailing (solo-solo). We test the effect of multi-homing behaviour by
simultaneously varying the share of travellers and the share of job seekers that are will-
ing to multi-home. For each of the two, we test three values: 0% (only single-homing),
50% (half single-homing, half multi-homing) and 100% (only multi-homing).

The total set of experiments is summarised in Table 5.3.

5.4 Results

5.4.1 Market structure & service types

Fig. 5.4 shows that the market may develop towards a winner-takes-all market equilib-
rium when two platforms offer a solo service (solo-solo scenario). Fig. 5.5 provides an
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Table 5.3: Design of the two experiments. The values in bold are reference variable
values used in the other experiments.

#  Variable(s) Tested values

1 Market structure (1) solo-solo, solo-pool, pool-pool, solo, pool
2 Demand-side multi-homing (1) 0%, 50%, 100%
Supply-side multi-homing (2) 0%, 50%, 100%

explanation for this development, highlighting the evolution of key performance indi-
cators for five different replications. In early phases of market evolution, both demand
(Fig. 5.5A) and supply (Fig. 5.5C) are subject to (purely) random day-to-day variations
resulting in (random) differences in the average customer waiting time (Fig. 5.5B) and
driver income (Fig. 5.5D) between platforms. This kick-starts a reinforcing feedback
loop that leads travellers and drivers to gradually switch to the initially more lucky
(and consequently larger) platform, which previously offered lower waiting times and
higher earnings. Fig. 5.5 illustrates that the time required to reach a winner-takes-all
outcome varies substantially between replications, influenced by the randomness in
participation decisions during the initial days. Fig. 5.4 demonstrates that the resulting
(winner-takes-all) equilibrium in the solo-solo market is similar to the equilibrium if
only one platform had initially entered the market (solo).

In a market in which one platform offers a solo service and the other a pooling
service (solo-pool), both platforms can co-exist. We observe that the solo platform
attracts more demand and particularly more supply than the ride-pooling platform.
With more active drivers per trip request, travellers opting for the solo provider ex-
perience a lower waiting time than users of the ride-pooling platform. For instance,
nearly all solo users are picked up within five minutes of requesting a ride, whereas a
substantial number of ride-pooling users experience a waiting time of over five min-
utes (Fig. 5.6A). In addition, the majority of ride-pooling users faces an additional
delay due to detouring to pick-up other passengers, with a maximum of 9 minutes
(Fig. 5.6B). Yet, approximately 4,000 travellers prefer ride-pooling over ride-hailing
due to the lower pooling fares. Notably, drivers experience (roughly) the same earn-
ings on both platforms, the distribution of which is shown in Fig. 5.6C for a random
day in the equilibrium state. Selecting the platform that offers solo rides results in a
higher revenue per served traveller; however, also leads to elevated operational costs
per served traveller. Additionally, drivers face more idle time when working for the
solo platform, a consequence of heightened supply-side competition within this plat-
form.

The market with two ride-pooling providers (pool-pool) evolves towards an equi-
librium with two approximately equally large platforms. A likely contributing factor
for why a winner-takes-all scenario does not occur in such a market in our experi-
ments (as opposed to a solo-solo market) is that pooling discounts are offered ex-ante,
i.e. discounts are independent of actual sharing. Hereby, travellers will opt for the
platform with the fewest other users to limit the chance of actually sharing their trip
with other travellers, providing them with a (more) direct trip for the same fare. This
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Figure 5.4: Evolution of five key ridesourcing market indicators (demand for rides-
ourcing, the average time from requesting a trip to being picked up by a
driver, the average ride-pooling detour time relative to travellers’ average
shortest-path travel time, ridesourcing fleet size, and the average income
of a ridesourcing driver per day) based on a single replication of the ex-
periment for each of the market types. A market with one initial service
provider converges to equilibrium within 200 days, whereas markets with
two initial providers take more time to converge. Specifically, when both
providers offer ride-pooling, convergence takes the longest — nearly 400
days. While this figure shows the evolution of performance indicators for
only one replication of each scenario, we observe similar patterns in other
replications, even though the speed of convergence varies. Figure 5.5 il-
lustrates the evolution of the ridesourcing market across different replica-
tions of the solo-solo market scenario.

negative network effect in ride-pooling has been described as the extra-detour effect
by Fielbaum et al. (2023). In this case, this effect prevails over two positive network
effects in ride-pooling: (i) the so-called better-matching network effect (more compat-
ible trips result in less detouring) which generally occurs under already dense demand
(ride-pooling in our experiments has a limited market share), and (ii) a network effect
resembling the Mohring effect in public transport (drivers choosing the platform with
most demand to maximise their productivity).

When considering the (demand-side) market share of ridesourcing markets de-
pending on which services are offered (Fig. 5.7), we find that the largest market share
(over 10%) is attained when one platform offers a ride-hailing service and the other a
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Figure 5.5: Evolution of five key ridesourcing market indicators (first 200 days) in
the solo-solo market (demand for ridesourcing, the average time from re-
questing a trip to being picked up by a driver, the average ride-pooling
detour time relative to travellers’ average shortest-path travel time, rides-
ourcing fleet size, and the average income of a ridesourcing driver per
day) for multiple replications of the experiment. We observe a similar,
though more gradual, development when travellers / job seekers commu-
nicate with fewer others about travel time / income, i.e. for values of y*¢'s*
lower than 50.
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Figure 5.6: Distribution of A. Experienced waiting (pick-up) time, B. Experienced in-

vehicle time, and C. Experienced driver income for each platform in the
solo-pool market, for a random day in the equilibrium (based on a single
replication of the experiment).

ride-pooling service. The ride-hailing platform in this market caters for time-sensitive
users and the ride-pooling platform for less time-sensitive users, typically with rela-
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tively long trips (Fig. 5.8). If only ride-pooling is offered, either by a single provider
or two providers, the market share is still close to 10%, as time-sensitive users may
prefer ride-pooling over other modes when no private rides are offered in the market.
We find that in all scenarios in which ride-pooling is provided by at least one platform
arelatively large share (compared to other scenarios) of ridesourcing users would have
otherwise opted for public transport (2.3-2.4% of all travellers). The market share of
ridesourcing is most limited when only the solo service is provided, as some cost-
sensitive users prefer using public transport considering its lower fares. Yet, still over
9% of travellers will choose ridesourcing in such a scenario.
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Figure 5.7: Market share of ridesourcing in the market equilibrium depending on the
number of (initial) service providers and their service types, including
what modes would have been chosen if ridesourcing had not been offered.

Ride-pooling is anticipated to provide a more efficient service in terms of the vehi-
cle mileage needed to serve a single user compared to ride-hailing. Fig. 5.9 shows for
different market types the number of ridesourcing vehicle kilometres divided by the
sum of the shortest path distances between users’ origins and destinations in the mar-
ket equilibrium. A value of less than 1 essentially implies that the ridesourcing system
is more efficient than a system in which everybody uses a private car to travel between
their origins and destinations. We observe, however, that in all scenarios, indepen-
dent of the number of (initial) service providers and service types that are offered, the
number of vehicle kilometres per effective passenger kilometre (defined as the sum of
vehicle kilometres divided by the sum of shortest path distances of all trips served in
the ridesourcing market) is at least 1. It implies that ridesourcing in our experiments
is never more efficient (in terms of the total vehicle distance) than private car usage.
The ridesourcing market is least inefficient when ride-pooling is offered by a single
service provider (pool). In such a scenario, multiple passengers share a vehicle for
a substantial portion of all vehicle kilometres. Yet, high-occupancy sharing is rare
given the fairly limited market share of the ride-pooling provider. At the same time,
a substantial number of empty vehicle kilometres are generated due to repositioning
and driving to users’ pick-up locations. When the ride-pooling market is subdivided
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Figure 5.8: Relative market share of ride-hailing (solo) and ride-pooling (pool) de-
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Figure 5.9: Total mileage of ridesourcing vehicles divided by the sum of the shortest
path distances between ridesourcing users’ origins and destinations.

over two platforms (pool-pool), less efficient matches are produced, and hence, the
total vehicle mileage (to serve similar demand) is 6.4% higher than in a market with
one ride-pooling provider.

When one platform offers a ride-hailing service and the other a ride-pooling ser-
vice (solo-pool), substantially less sharing takes place. Users opting for the ride-
pooling platform for instance never share their vehicle with more than one co-rider at
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a time. At the same time, more repositioning takes place as more drivers are attracted
to the ridesourcing market (relative to ridesourcing demand), inducing higher driver
idle time. In such a market, approximately 1.20 vehicle kilometres are generated for
each effective kilometre on the shortest path between users’ origins and destinations.
A ridesourcing market without ride-pooling (solo or solo-solo) is least beneficial from
a vehicle mileage standpoint as each effective passenger kilometre induces 1.29 vehi-
cle kilometres. Not only do drivers never serve multiple passengers simultaneously,
they also spend significant time repositioning in anticipation of new requests. The
reason is that relatively many drivers are attracted by the higher fares of the solo ser-
vice compared to the pooling service, resulting in substantial driver idle time, which
induces repositioning.

5.4.2 Multi-homing

Insofar, we assumed that all agents (travellers and job seekers) enter in exclusive ar-
rangements with platforms. Our model allows to test alternative scenarios in which
some or all travellers and/or job seekers are open to multi-homing (i.e. will register
either with all or none of the platforms). We do so for a market with two ride-hailing
platforms (solo-solo). First, we examine a scenario in which half of travellers and half
of job seekers multi-home.

In Fig. 5.10 we present key performance indicators differentiating single-homing
and multi-homing agents. Fig. 5.10A shows that nearly 5,000 multi-homing travellers
(10% of the total) request a ride in the ridesourcing market (i.e. using both platforms).
Of the single-homing travellers, a small majority requests a ride on the platform that
offers the lowest waiting time (Fig. 5.10B), whereas a smaller share of travellers re-
quests with the competitor (following past personal luck with the platform or posi-
tive information signals from others). On average, travellers open to multi-homing
are marginally more likely to request in the ridesourcing market than travellers un-
willing to engage in multi-homing. We observe a similar pattern on the supply-side
(Fig. 5.10C), i.e. one platform attracts a higher number of single-homing job seekers
than its competitor. This stems from the difference in earnings observed between the
two platforms (Fig. 5.10D). As for travellers, job seekers that are willing to multi-
home are more likely to participate in the market than those that are not willing to do
so. This difference is more pronounced among job seekers than among travellers.

Fig. 5.10 also provides insights into the added value of multi-homing for both
travellers and job seekers (explaining previous described differences in market partic-
ipation between single-homing and multi-homing agents). For travellers, it increases
their chances of being matched to nearby drivers, reducing their average experienced
pick-up time to approximately 78 seconds, compared to 94 using only the leading plat-
form and 111 requesting only on the competitor platform (Fig. 5.10B). For drivers, it
increases their chances of being assigned to nearby trip requests, reducing their idle
time. It results in an average income of €120.97 per day, compared to €106.90 for
drivers working only for the leader platform and €102.34 for drivers working only for
the competitor.
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Figure 5.10: Market participation volumes and experiences, differentiating between
agents opting exclusively for the leading platform, agents opting exclu-
sively for the competitor (smaller platform), and agents opting for both
platforms (multi-homing) in a scenario in which 50% of job seekers and
50% of travellers are open to multi-homing. Indicators presented are
(A) The number of travellers requesting in the market, (B) The average
waiting time (pick-up time), (C) The number of job seekers driving in the
ridesourcing market, and (D) The average drivers’ income.

Our results highlight that in the scenario in which half of travellers and half of
job seekers prefer to multi-home each platform manages to attract both multi-homing
travellers / job seekers and single-homing travellers / job seekers, even though one
platform offers a lower waiting time and higher earnings than the other. We observe
a similar market equilibrium when half of travellers multi-home but none of the job
seekers do (Fig. 5.11A,D). When half of job seekers multi-home but none of the trav-
ellers do, all single-homing job seekers will opt for the same platform, as this platform
offers substantially higher earnings. On the smaller platform, they compete for too
limited demand with multi-homers available on both platforms. It illustrates that a
general lack of willingness to multi-home may result in a more skewed market equi-
librium in terms of platforms’ market shares.

We observe that when all travellers multi-home, all job seekers multi-home, or
both, the market evolves towards an equilibrium with two equally large platforms.
In such a scenario, either demand or supply (or both) is guaranteed to be equal due
to one side of the market’s multi-homing behaviour, hence, platform choice becomes
irrelevant for single-homing agents on the other side of the market. Hence, single-
homers are equally likely to opt for either platform.
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Figure 5.11: Key ridesourcing performance indicators for different two-sided multi-
homing shares: (A) Relative demand-side market share (trip requests) of
the leading ridesourcing platform, (B) The number of unique ridesourc-
ing trip requests, (C) The average time before a traveller with a request
is picked up, (D) Relative supply-side market share (drivers) of the lead-
ing ridesourcing platform, (E) The number of unique drivers, and (F)
The average driver’s income per day.

Our results show that as multi-homing counteracts market fragmentation costs in
markets with more than one service provider, an increase in the willingness to multi-
home in the population results in higher total demand for ridesourcing (Fig. 5.11B),
associated with a decrease in the average request pick-up time (Fig. 5.11C). Similarly,
multi-homing can result in higher supply (Fig. 5.11E) following an increase in driver
earnings (Fig. 5.11F). Notably, market supply and demand are (slightly) higher in the
scenario in which all agents multi-home and both platforms are equally large than in
the market equilibrium in which only one platform remains as the sole provider (the
scenario in which no agent is willing to multi-home), even though the ridesourcing
market is not confronted with market fragmentation costs in either case. This can
be explained by the fact that in the multi-homing scenario, travellers always choose
between two offers, opting for the one that offers them the highest utility (minimal
pick-up time when no ride-pooling is offered). The ride offer can differ between
platforms as drivers that are assigned to serve a request on a platform are assumed to
temporarily log off from the other platform. It implies that they can be scheduled to
serve a consecutive request on the first platform but not on the second. Apparently, in
our experiments a system in which travellers choose between offers results in a better
system performance than a system in which platforms decide about the offer, which in
this case is based on a minimisation of the total driving time in the system (excluding
driver repositioning).
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5.5 Conclusion

5.5.1 Study significance

In this work, we develop an agent-based model that allows studying the evolution of
two-sided ridesourcing platforms operating in duopolistic markets. The model rep-
resents day-to-day market participation decisions by potential consumers (travellers’
mode choice decisions) and suppliers (job seekers’ work decisions) in the ridesourc-
ing market, accounting for information diffusion processes, learning from experience
and platform registration decisions. A key component of the model is the detailed
within-day representation of ridesourcing operations, capturing platforms’ matching
decisions, drivers’ repositioning decisions, and travellers’ trip offer acceptance deci-
sions, including their interactions. It supports both ride-hailing and ride-pooling.

The developed model allows exploring under which conditions duopolistic rides-
ourcing markets evolve into a winner-takes-all state and when both platforms maintain
their presence in the market. In addition, the model offers insights into the implica-
tions of market fragmentation when platforms co-exist, including (possibly unevenly
distributed) effects on driver earnings, travel times, platform revenues, and vehicle
mileage. Integrating mode choice, the model can also be used to shed light on modal
shifts following the introduction of ridesourcing. In this study, we demonstrate the
model’s capabilities by evaluating the effect of platforms’ service type (private or
pooled rides) and two-sided multi-homing behaviour.

5.5.2 Key findings

Our experiments demonstrate that network effects in the provision of ride-hailing
(solo rides only) facilitate winner-takes-all markets. Random initial differences in
platforms’ two-sided participation levels translate into structural differences as partic-
ipation with the larger platform yields shorter waiting times and higher earnings. We
observe that a winner-takes-all scenario does not occur when at least one of the ser-
vice providers opts for pooled rides. When both platforms offer ride-pooling, ex-ante
pricing discounts incentivise travellers to opt for the platform with more limited de-
mand to minimise detours from pooling, even though drivers prefer the platform with
most trip requests. Apparently, negative network effects in ride-pooling (extra detours,
increased competition for matches) may outweigh positive network effects (induced
supply, better matches). Based on our findings, two platforms can also co-exist when
one offers ride-hailing and the other ride-pooling. Both services cater to different
travellers, not only based on their sensitivity to time — as shown by our analysis
and previously by a latent class analysis of urban travel behaviour in the Netherlands
(Gerzini€ et al., 2023) — but also on the distance of their trip. In our experiments, the
solo provider attracts more users and particularly more drivers than the ride-pooling
provider. Drivers face the same earnings on both platforms, with shorter idle time on
the ride-pooling platform and higher revenue per served request on the ride-hailing
platform.
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We find that markets in which ride-pooling is offered by at least one platform are
more efficient (in terms of vehicle distance) than markets without ride-pooling. This
effect is not only attributed to passengers sharing a vehicle but also to more limited
(empty-vehicle) repositioning. As ride-pooling platforms attract fewer drivers than
ride-hailing platforms, they experience reduced idle time, which diminishes their in-
centive to reposition themselves. Our results also provide insights into the market frag-
mentation costs associated with duopolistic ride-pooling markets. Due to less efficient
matches, each effective passenger kilometre requires 6.4% more vehicle kilometers in
such a market compared to a monopolistic ride-pooling market. The effect of market
fragmentation on travel time, driver earnings and platform revenue are limited.

Furthermore, our study sheds light on potential modal shift patterns following
the introduction of ridesourcing, indicating that markets in which ride-pooling is of-
fered attract relatively many (generally cost-sensitive) public transport users relative
to markets without ride-pooling. This may at least partially negate the benefits of
ride-pooling when it comes to serving passengers with minimal vehicle mileage. At
the same time, our results demonstrate that there is a large overlap in the target group
of ride-hailing and ride-pooling platforms, i.e. the total market share of ridesourcing is
only marginally larger when both ride-hailing and ride-pooling are offered compared
to markets in which one of the two is offered.

Our experiments highlight that multi-homing can prevent the emergence of a winner-
takes-all platform in markets with two initial ride-hailing providers. When either all
travellers, job seekers, or both, multi-home, both platforms reach approximately equal
sizes in the market equilibrium. An equilibrium state with one larger and one smaller
platform can also emerge. This occurs when some travellers and/or some job seekers
(but not all) multi-home. In that case, there may be a discrepancy in earnings and
waiting time between two platforms, with the majority or all single-homing travellers
and job seekers choosing the larger (better) platform (and multi-homers participating
on both platforms). Our results also provide insights into the benefit derived from
multi-homing. In a market in which half of travellers and half of job seekers multi-
home, multi-homing drivers earn approximately €14 per day more than drivers work-
ing solely for the larger platform and approximately €18 more than drivers working
solely for the smaller platform. Travellers are also better off multi-homing. Their av-
erage waiting time is 16 seconds shorter than the waiting time of travellers requesting
only with the larger platform, and approximately half a minute shorter than travellers
requesting only with the smaller platform.

5.5.3 Policy implications

Our model enables a more comprehensive perspective on the potential impact of rides-
ourcing services on the number of vehicle kilometers on urban roads. Based on a case
study modelled after Amsterdam, using a 10% sample of travel demand, we for in-
stance find that in addition to serving passengers more efficiently, ride-pooling plat-
forms likely induce less repositioning with those platforms attracting fewer drivers
than ride-hailing platforms. Our findings however also highlight that negative net-
work effects associated with detours in ride-pooling (prevalent particularly when ride-
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pooling demand is limited) can contribute to markets with multiple co-existing ride-
pooling providers, substantially reducing the overall efficiency of ride-pooling matches.
It does not only result in lower distance savings but it also reduces the market’s
value for users, suppliers and service providers. Hence, transport authorities can con-
sider policies limiting market entry for service providers or encouraging multi-homing
among travellers and job seekers in order to minimise market fragmentation effects.
Ride-pooling matching efficiency is also compromised when a ride-pooling provider
operates alongside a ride-hailing provider, with the latter drawing significant demand
from the former. Finally, our results provide evidence that ride-pooling (as well as
ride-hailing) induces significant modal shifts away from active modes (bicycles) and
efficient modes (public transport), which negates at least a part of (already limited)
distance savings attained with shared rides, and possibly more.

In summary, the potential of ride-pooling to reduce traffic levels is limited when
(1) relatively few travellers opt for ride-pooling, and (ii) those who do predominantly
switch from more distance-efficient modes. In Amsterdam, both conditions likely
apply, with the city featuring high-quality bicycle infrastructure and public transport,
along with relatively short trips. In our experiments, representing 10% of trips in
Amsterdam, ride-pooling actually results in additional vehicle kilometers compared
to private cars. However, distance savings from ride-pooling have been observed to
be highly dependent on scale (Engelhardt et al., 2019), suggesting that a reduction in
vehicle kilometres could be feasible under real-world trip densities.

5.5.4 Future research

While this study has explored several aspects of ridesourcing market evolution, many
areas remain under-investigated and warrant further research. For instance, the evo-
lution of ridesourcing markets can be studied in alternative contexts. This includes
examining markets with more than two initial service providers and those where plat-
forms simultaneously offer private and shared rides. Other factors of which the effect
can be tested using our model include the properties of alternative modes, travel de-
mand characteristics (including trip density and travellers’ preferences), and labour
market conditions. Such studies would help to determine the conditions under which
ridesourcing platforms are likely to coexist, a single platform is likely to dominate, or
all platforms may cease to exist (possibly due to the tragedy of the commons in rides-
ourcing provision). While the current study assumed static market conditions, our
model can also be used to investigate how ridesourcing markets respond to changing
contexts, such as a sudden drop in demand like the one witnessed during the COVID-
19 pandemic.

In addition, future research can focus on evaluating (possibly dynamic) platform
pricing strategies — i.e. platforms strategically setting fares of ride-hailing and ride-
pooling (with pooling discounts determined ex-ante or ex-post) as well as platform
commission — to gain better insights into the implications of platform competition,
rather than platform co-existence as studied in this work. This includes studying the
effect of (possibly two-sided) loyalty programs. At the same time, future research may
explore in more detail cooperation strategies to minimise market fragmentation costs
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among platforms, such as the introduction of a broker platform (Engelhardt et al.,
2022b).

Finally, there is a significant gap in understanding several day-to-day processes
in the ridesourcing market, presenting a crucial area for future research, particularly
regarding information diffusion. Given the limited empirical evidence, we used sim-
plified models as a starting point for model development, with the intention of incor-
porating more complex factors as more data becomes available. Market awareness
could for instance be influenced by market utility or participation levels. Addition-
ally, there could be platform-specific awareness not accounted for here. Furthermore,
the model could be extended to include endogenous multi-homing, where travellers
and job seekers decide to multi-home based on a comparison of the benefits and costs
associated with multi-homing. Addressing these research gaps will provide deeper in-
sights into the dynamics of ridesourcing markets, which can support effective policies
for improving driver income, reducing user travel time, increasing platform revenue,
and decreasing overall traffic levels.



Chapter 6

Conclusions

In this chapter, we present our main findings and conclusions per research question,
followed by overall conclusions and implications for practice. Finally, we provide
recommendations for future research.

6.1 Main findings

Below, we answer each of the proposed research questions.

What is the impact of fleet decentralisation in ridesourcing for drivers, travellers
and service providers? (Chapter 2)

In Chapter 2, we modeled the daily evolution of ridesourcing platform supply by ex-
amining how individuals make decisions regarding registration and work opportuni-
ties within the platform. This includes understanding how platform awareness spreads
among potential drivers and how they learn from their previous experiences with the
platform. Our analysis explores the differences between a decentralised, emergent
fleet and a centralised, selected fleet, presenting implications for various stakeholders
in the ridesourcing market.

Our findings indicate that the supply decisions of ridesourcing workers mimic
the prisoners’ dilemma. In the reference scenario of our experiments, approximately
150 drivers are active daily in the ridesourcing market, whereas coordination among
drivers would result in a smaller workforce, between 40 and 100 drivers. The prison-
ers’ dilemma arises due to variations in the opportunity costs for workers, resulting in
significant market participation even when workers anticipate limited average finan-
cial returns. Each driving worker imposes costs on other drivers, contributing to higher
idle times, which are not factored into individual decisions based on comparing earn-
ings with time-dependent opportunity costs. Consequently, we find that ridesourcing
earnings decline with the population’s reservation wage.

Furthermore, we note that the ridesourcing fleet might surpass the fleet size of cen-
tralised mobility-on-demand services. In our experiments, an operator would opt for
a fleet of 100 drivers based on the minimum wage, 50 fewer drivers than the fleet in
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decentralised ridesourcing. A smaller fleet than 150 vehicles leads to more unmet de-
mand, while the expenses of a larger fleet than 150 are not compensated by additional
revenue from serving more trip requests.

Our results illustrate that a higher platform commission may be more harmful to
travellers than to drivers, reducing participation levels among drivers and subsequently
decreasing driver idle time. Notably, a profit-driven service provider might choose a
higher commission even if it results in a substantial share of unmet trip requests due
to reduced labour supply.

Lastly, we highlight that ridesourcing labor supply might experience non-linear
shifts and transitions, causing significant variations in average income, profit, and
service levels. The trajectory of ridesourcing supply depends on multiple factors, in-
cluding the diffusion of platform awareness, traveller learning behavior, and platform
registration costs.

It is crucial to examine the extent to which our findings in Chapter 2 are reliant
on the assumption of exogenous ridesourcing demand, which is further explored in
Chapter 3.

What are the main network effects following from ridesourcing demand and sup-
ply, and what is their effect on ridesourcing system performance? (Chapter 3)

In Chapter 3, we outline two-sided network effects present in ridesourcing provision.
We find that network effects are governed by changes in travellers’ waiting time and
drivers’ non-revenue time. While both travellers and drivers benefit from high-quality
matches (how fast drivers reach travellers after being matched), they have conflicting
interests when it comes to matching time, i.e. long matching time for drivers typically
implies a limited matching time for travellers, and vice versa. We reason that high-
quality matches are more likely when one side has many idle users, which may lead
ridesourcing markets toward an uneven equilibrium, with swift pick-ups but longer
matching times on one side.

We also simulate supply and demand dynamics in the ridesourcing market by in-
tegrating a mode choice model, considering trip-specific alternatives to ridesourcing,
into the day-to-day model for ridesourcing supply presented in Chapter 2. Our simu-
lation results confirm that the ridesourcing market may undergo multiple transitional
phases before reaching a steady state, marked by rapid changes in performance in-
dicators. Even after the market equilibrium is attained, job seekers and travellers
encounter significant day-to-day variations in earnings and wait times due to initial
randomness in the matching process and in individual registration decisions, amplified
by path-dependent market participation decisions. For instance, drivers experiencing
unfavorable luck might grow dissatisfied, causing them to abstain from participation
and hindering learning that their experiences were due to bad luck in matching.

Based on our simulation results, we can also conclude that ridesourcing provision
may be feasible even when the potential market is small. In such markets, however,
the service tends to be more unreliable and generally of lower quality than in markets
with more travel demand and individuals looking for a job opportunity.

A service provider weighs the number of trips against the profit per trip when
setting commission rates and ride fares. Prioritising per-trip earnings over transac-



6.1 Main findings 139

tion volume harms both passengers and drivers, with possibly only marginal gains for
the service provider. We observe that network effects align interests for passengers,
drivers and the platform when it comes to ride fares. Therefore, conflicting interests
between service providers and market participants mostly stem from platform com-
mission rather than from (per-kilometre) ride fares.

Finally, we observe that ridesourcing drivers do not necessarily benefit from low
costs associated with the ability to work in the market, such as vehicle leasing costs.
A surge in job seekers registering with the platform intensifies driver competition,
resulting in reduced earnings, which at least partially compensates for the reduction
in fixed costs.

How do ridesourcing performance indicators depend on the degree of socio-eco-
nomic inequality in society? (Chapter 4)

We hypothesize that ridesourcing platforms benefit from, even thrive on, socio-eco-
nomic inequality, as high levels of socio-economic inequality allow for cheap labour
as well as increasing the share of travellers with a considerably above-average will-
ingness to pay for travel time savings and comfort. We test this hypothesis in Chap-
ter 4 by concurrently modifying the standard deviation of travellers’ value of time
distribution and job seekers’ reservation wage distribution to correspond to different
Gini-coefficient values.

Based on scenarios within the range of real-world Gini-coefficient values, our find-
ings show two mechanisms contributing to a substantial positive relationship between
socio-economic inequality and demand for ridesourcing. First, as mentioned previ-
ously, there are more travellers with a high willingness to pay a premium for us-
ing ridesourcing over other, more time-consuming modes of transportation in socio-
economically unequal societies. Second, a significantly larger number of job seekers
opt to work in these markets, even when anticipating meager earnings, given that more
job seekers lack adequate alternative work opportunities. In fact, we observe that the
supply elasticity (in relation to inequality) is larger than the demand elasticity. This
arguably stems from two underlying reasons: (i) asymmetry in the distributions of
reservation wage and value of time, i.e. both distributions are right-skewed, implying
that the majority of individuals have a below average value of time / reservation wage,
and (ii) that income is likely more important in work decisions than travel time is in
mode choice; whereas at the same time it is undeterred by decreasing driver earnings
and increased level of service as inequality grows. The increase in supply (absolutely
as well as relative to demand) results in faster matching and pick-ups for travellers,
and thereby in induced demand for ridesourcing.

Our results demonstrate that the benefits associated with providing a ridesourcing
service in a socio-economically unequal society is not limited to servicing more de-
mand. Inequality also allows platform operators to charge a higher commission, by
which they capitalise on the abundance of job seekers with a low ridesourcing reser-
vation wage. This, in addition to intensified competition between drivers, implies that
the earnings of ridesourcing drivers decrease considerably with socio-economic in-
equality, down to less than one fifth of the average job seeker’s reservation wage in
societies with extreme levels of socio-economic inequality.
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How is the social welfare derived from the ridesourcing market different in duo-
polistic and monopolistic markets, and under which circumstances is each mar-
ket structure more likely to emerge? (Chapter 5)

We show that network effects in ride-hailing provision (private rides) can lead to
winner-takes-all markets, where larger platforms offer shorter wait times and higher
earnings. However, this effect diminishes when at least one platform provides ride-
pooling. When both platforms offer ride-pooling, pricing incentives lead travellers to
choose platforms with less demand to avoid detours, despite drivers preferring plat-
forms with more requests. If one platform offers ride-hailing and the other one ride-
pooling, both cater for different user needs. Drivers earn the same on both platforms,
experiencing less idle time on the ride-pooing platform and higher per-trip earnings
on the ride-hailing platform.

We find that markets in which ride-pooling is offered by at least one platform are
more efficient (in terms of vehicle distance) than markets without ride-pooling. This
effect is not only attributed to passengers sharing a vehicle but also to more limited
(empty-vehicle) repositioning following higher driver productivity. At the same time,
our findings illustrate that modal shifts away from public transport partially negate
the benefits of ride-pooling when it comes to serving passengers with minimal vehicle
mileage. When ride-hailing is offered next to ride-pooling, most users will opt for the
former service.

We observe that market fragmentation in ride-pooling yields a 6.4% increase in
vehicle kilometers. It also reduces the overall quality of service, driver earnings and
platform revenue, although effects are limited.

Our experiments highlight that multi-homing can prevent the emergence of a winner-
takes-all platform in markets with two initial ride-hailing providers. We observe that
an increase in the share of travellers and job seekers open to multi-homing is associ-
ated with a more evenly split market equilibrium. When half of travellers and half of
job seekers multi-home, multi-homing drivers earn approximately €10 per day more
than drivers working solely for the larger platform and approximately €20 more than
drivers working solely for the smaller platform. Travellers are also better off multi-
homing. Their average waiting time is approximately 10 seconds shorter than the
waiting time of travellers requesting only with the larger platform, and more than a
minute shorter than travellers requesting only with the smaller platform.

This brings us to answering the main research question that was posed in Chapter 1 of
this dissertation.

How do market features (such as the number of service providers, platform pric-
ing and service type), along with travel demand and labour market characteris-
tics, influence the evolution of ridesourcing systems?

In this dissertation, we investigate the effect of several conditions associated with
travel demand and the labour market, as well as different platform strategies and mar-
ket configurations. Below, we summarise our findings.

We analyse various market features, primarily focusing on platforms’ two-sided
pricing approaches. In Chapter 2, we explore how a platform might set its commis-
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sion to optimise profits, assuming that changes in supply do not influence travellers’
choices. We find that a platform may choose a high commission, even at the cost of
attracting too few drivers to meet all ridesourcing demand. This holds true even when
incorporating traveller mode choice influenced by supply levels into the model. We
note that a high platform commission adversely affects both drivers (reduced earnings)
and travellers (reduced quality of service). Conversely, the interests of the platform,
drivers, and travelers tend to align regarding ride fares. Both low fares (resulting in
insufficient supply) and high fares (resulting in inadequate demand) harm all stake-
holders. In Chapter 4, we explore how a platform might adapt its pricing strategy
based on socio-economic inequality levels. We illustrate that in egalitarian societies,
high commissions may not be viable as they deter suppliers, drastically reducing the
number of completed rides. In such scenarios, low fares maximise platform profits,
given that few users are willing to pay a premium to save travel time. However, in un-
equal societies, operators might leverage the low opportunity costs of job seekers by
implementing high commissions, further reducing driver earnings. In Chapter 5, we
explore the effect of platforms’ service offerings, specifically private or shared rides.
Our results show that platforms are more likely to co-exist when at least one of them
offers ride-pooling. At the same time, we observe that ride-pooling is most efficient
when offered by a single provider and in the absence of a ride-hailing provider.

We also delve into the impact of various travel demand and labour market charac-
teristics. In Chapter 3, we highlight the significance of the size of the potential market
in which a provider operates, in terms of the total number of trips and the number of
job seekers. Our findings reveal that although larger markets produce better matches,
ridesourcing provision may remain viable even in smaller markets. Chapter 4 exam-
ines the influence of socio-economic inequality on ridesourcing provision. It show-
cases that, in addition to allowing for a higher commission rate, ridesourcing service
providers benefit from attracting more travellers in unequal societies, by catering to
time-sensitive users and through improved quality of service following from an in-
crease in ridesourcing supply. Additionally, in Chapter 2, we examine the isolated
effect of drivers’ reservation wages, unveiling that lower reservation wages intensify
competition among drivers, resulting in reduced earnings. This chapter underscores
the divergence between the individual decisions of ridesourcing drivers and the collec-
tive interests of drivers, as drivers fail to internalise their impact — increased idle time
— on fellow drivers. Chapter 5 showcases how (two-sided) willingness to engage
in multi-homing can prevent winner-takes-all ride-hailing markets without inducing
market fragmentation costs.

We observe that ridesourcing markets may undergo several transition phases. We
observe how information diffusion processes, associated with awareness and market
performance, affect ridesourcing evolution. Generally, we find that these processes
affect the speed at which a steady state is achieved but not the ultimate equilibrium
state, in terms of the number of drivers and trip requests. Our results also provide
insights into how random processes in travellers’ and job seekers’ market participation
decisions affect ridesourcing performance indicators, even in the steady state. Finally,
we observe that costs associated with platform registration incentivises full-time work



142 6 Conclusions

in the market. A significant portion of the additional costs incurred by registered
drivers may be offset by increased productivity, resulting from reduced competition.

6.2 Implications for practice

First, the identification of the prisoner’s dilemma in job seekers supply decisions
(Chapter 2) provides support for the potential effectiveness of supply caps, imple-
mented for instance in New York City. Our findings show that a cap in supply may
push earnings over the reservation wage without significantly impeding travellers’
waiting times. At the same time, our results show that the value to which the cap
is set is crucial. Supply caps that are set too loose yield no effect on driver income,
whereas limits that are too strict are detrimental to the quality of the service offered
by ridesourcing platforms.

Our analyses of platform pricing strategies (Chapters 2-4) also yield implications
for the need of regulating the pricing decisions of ridesourcing providers. Our exper-
iments provide evidence that profit-driven platforms may increase their commission
rates to levels that induce substantial costs on both drivers (resulting in considerably
lower earnings) and customers (yielding a significantly slower and less reliable ser-
vice). Specifically, we observe that the marginal decline in supplier and consumer sur-
pluses associated with a higher platform commission may be substantially larger than
the corresponding marginal increase in platform profit. Hereby, our results suggest
that regulating the commission rate of ridesourcing providers can effectively improve
the social welfare derived from ridesourcing markets, which is in line with findings
of Zha et al. (2016). This insight is most valuable in areas with strong inequality in
socio-economic opportunities, where profit-driven operators opt for the highest com-
mission rates. Given that our results suggest that operating a ridesourcing platform is
generally more profitable under socio-economically unequal conditions, it is partic-
ularly likely that ridesourcing providers will start offering services in such contexts.
Our results furthermore suggest that there is no need for fare regulation in ridesourc-
ing markets, as the interests of travellers, drivers and service providers associated with
fares are largely aligned due to presence of cross-side network effects in ridesourcing
provision.

We find that ride-pooling, compared to ride-hailing, tends to reduce reposition-
ing and attracts fewer drivers, leading to more efficient passenger service (Chapter
5). However, when ride-pooling demand is low, ride-pooling provision is prone to
negative network effects due to inefficient detours. Hence, a transport authority can
consider limiting market entry for new service providers. Alternatively, it can encour-
age multi-homing among travellers and job seekers to mitigate market fragmentation
costs. Additionally, our analyses provide evidence that ridesourcing — particularly
ride-pooling — may draw users from active modes and public transport. In areas in
which active modes and public transport have a high market share, such as in Amster-
dam, ridesourcing provision is therefore likely to increase traffic following described
modal shift patterns.
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6.3 Limitations & future research

We identify four avenues for future research based on the research gap introduced in
Chapter 1 and the answers provided by this dissertation.

Examining the effect of other context variables on ridesourcing provision.
In this work, we examine the effects of various travel demand and labour market
factors. Although we cover several key aspects, many remain unexplored. To provide
a more comprehensive picture of the societal implications of ridesourcing, it could
be valuable for instance to analyse how alternative transport services such as public
transport and micromobility influence ridesourcing provision (and vice versa).

Moreover, examining system performance under varying spatio-temporal demand
distributions would offer valuable insights, particularly when ride-pooling is offered.
While our research emphasizes how socio-economic inequality affects ridesourcing
through variations in travellers’ value of time and drivers’ reservation wage distribu-
tions, it is important to recognise other ways in which socio-economic factors might
impact ridesourcing, including for example their influence on travellers’ valuation of
safety and on the number of job seekers in the population. Future studies could further
investigate alternative socio-economic indicators, such as mean income levels, rather
than focusing solely on the distribution of income.

Additionally, our research did not delve into the dependency of ridesourcing provi-
sion on road network conditions, including road topologies and travel speeds. Under-
standing how ridesourcing markets operate in uncongested networks or in scenarios
where ridesourcing vehicles have access to dedicated lanes could offer crucial insights
into the benefits and costs of ridesourcing services.

Investigating market dynamics under changing circumstances.

In this dissertation, we capture interactions between ridesourcing supply and demand
under static market conditions. In real-world scenarios, market conditions are subject
to change, as exemplified by the recent COVID-19 pandemic. Exploring the adaptive
responses of two-sided ridesourcing markets to changing conditions would therefore
be insightful. Our day-to-day ridesourcing model facilitates such an analysis. Fu-
ture research might encompass investigating the market’s reactions to the following
changes:

* Regulatory changes: Alterations in government regulations, such as new op-
erational constraints and licensing requirements can directly affect ridesourcing
companies, drivers, and users.

e Market competition: Increased competition from alternative transportation
services can disrupt the market.

¢ Economic Factors: Economic downturns, changes in fuel prices, or fluctua-
tions in consumer disposable income can influence user demand, driver partici-
pation, and overall market stability.
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* Technological advancements: Rapid technological changes, including the in-
troduction of autonomous vehicles or innovations in transport technology, may
transform the ridesourcing landscape, affecting market dynamics and employ-
ment for drivers.

* Natural disasters or pandemics: Unforeseen events like natural disasters or
global health crises (e.g., pandemics like COVID-19) can profoundly impact
ridesourcing markets by causing fluctuations in demand, altering travel patterns,
and influencing user behavior due to safety concerns.

¢ Labour market conditions: Changes in labour markets, including shifts in
employment opportunities or alterations in wage expectations, can influence the
supply of drivers and their willingness to participate in the ridesourcing market.

* Consumer preferences: Evolving user preferences, such as growing environ-
mental consciousness or changes in convenience expectations, can lead to shifts
in demand patterns, favouring certain types of transportation services over oth-
ers.

Exploring the effectiveness and implications of more complex (possibly dynamic)
platform strategies.

This study illuminates the key pricing mechanisms employed by ridesourcing service
providers: traveller fares and driver commissions. Future research can delve into
the broader societal implications arising from more intricate pricing strategies. This
involves for instance studying how ride-pooling discounts can attract users away from
less efficient ride-hailing platforms.

Our day-to-day model for ridesourcing can also be extended to analyse dynamic
pricing decisions like penetration pricing, pricing wars, and loyalty programs. Such
extensions facilitate the examination of platform competition (rather than just platform
co-existence), considering realistic responses from travellers and drivers. Our model
can also integrate within-day dynamic pricing, such as surge pricing, by modelling
drivers’ work shift decisions in response to changing operational circumstances. This
approach enables an exploration of the societal impacts of surge pricing, including its
long-term effects on driver wages.

Investigating cooperative strategies between competitors to avert pricing wars and
address market fragmentation effects, while considering day-to-day dynamics in rides-
ourcing supply and demand, is another interesting avenue for future research.

Unravelling the strategic, tactical and operational decisions of (potential) rides-
ourcing users and drivers.

Our agent-based approach to studying ridesourcing markets relies heavily on empir-
ical insights into the strategic, tactical, and operational choices made by potential
users and suppliers within this domain. Many questions about these decisions remain
unanswered, encompassing aspects such as (two-sided) selection processes between
platforms, the considerations driving job seekers’ decisions regarding driving-related
investments, the comparative valuation of income versus other factors by drivers, the
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mechanisms through which drivers and travellers interact to discuss market experi-
ences, and a myriad of other related factors that shape decision-making in this ecosys-
tem.

Strengthening the empirical foundation surrounding the mode choice decisions of
travellers, and particularly, the work decisions of potential ridesourcing drivers, will
improve the validity of the simulation framework presented in this study. This will
notably advance our understanding of ridesourcing implications for drivers, travellers,
platforms, and society on a broader scale.



146 6 Conclusions




Appendix A

In this appendix, we provide supplementary information that supports the analyses
and findings presented in Chapter 3.

A.1 Model validation

While our agent-based model and case study have been designed based on the char-
acteristics of the ridesourcing operations in Amsterdam, we do not claim that they are
exactly the same. For instance, considering the availability of trip demand data, we
model a service area that is substantially smaller than the one in which services are
operating in reality. We intend to explore possible network effects in the ridesourcing
market, using Amsterdam as an example, rather than to quantify such network effects
specifically for Amsterdam.

Nevertheless, we can compare the simulation outcomes with real-world values as
a sanity check for whether the experiments resemble real ridesourcing operations in
Amsterdam. In Table A.1, we present how our simulation results (reference scenario)
compare to metrics of Uber in Amsterdam. It is important to note that (i) consid-
ering limited available data, the real-world values are based on rough estimations,
requiring combining different data sources for some indicators, and (ii) that the pre-
sented real-world metrics of Uber only provide a snapshot of ridesourcing operations
in Amsterdam, which have been observed to undergo significant variations (Fouarge
& Steens, 2021).

We find that all considered performance indicators are of the same order of mag-
nitude in our simulation as observed in the real-world (Table A.1). For instance, we
find that the average time that a driver works relative to a 40-hour working week is
similar in the simulated ridesourcing market (65%) as for Uber in Amsterdam (60%).
Notwithstanding, there are a few apparent differences. The average Uber driver in
Amsterdam earns more in reality than in our simulations. Several explanations are
possible for this difference. First, the accuracy of the income data provided by Uber
has been criticised (van Bergeijk, 2017; Gemeente Amsterdam, 2022). Second, Uber’s
operations in Amsterdam may not have attained a steady state yet, a hypothesis sup-
ported by data demonstrating significant double-sided growth in the period from 2015
to 2019 (Fouarge & Steens, 2021). Third, as mentioned previously, ridesourcing oper-
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Table A.1: Comparing simulation model outcomes (equi-
librium attained in the reference scenario) to
estimated ridesourcing properties in Amster-

dam
Indicator Simulation Real-world
Rides per active driver hour 1.74 1.26%
Modal split (%) 22 3.4b
Average part-time factor 0.65 0.60°
Average driver revenue (€/h) 15.47 22.85¢
Average trip distance (km) 5.4 9.0¢

4 Based on the total number of ordered taxi rides in Amsterdam
(Gemeente Amsterdam, 2020), and the total number of Uber
drivers in Amsterdam and their active hours (Fouarge & Steens,
2021).

b Based on the modal split of taxi in Amsterdam (Amster-
dam, 2019) and the share of taxi rides that were ordered online
(Gemeente Amsterdam, 2020).

¢ Reported based on Uber data (Fouarge & Steens, 2021).

ations in our simulation are strictly limited by Amsterdam’s municipality boundaries.
In reality, Uber’s service coverage extends far beyond Amsterdam, including interna-
tional airport Schiphol, nearby cities Alkmaar, Almere and Haarlem, and larger and
more distant cities such as Utrecht, Rotterdam and The Hague. Consequently, the
average ride distance of Uber in Amsterdam (9.0 km) is indeed considerably longer
than simulated for the reference scenario (5.4 km). As long-distance rides are more
profitable than short-distance rides, spatial coverage is a plausible explanation for the
difference between simulated and real-world ridesourcing earnings. Finally, our simu-
lation model assumes that ride fares are strictly distance-based, while drivers in reality
can earn more under surge pricing. The relatively short average ride distance in the
simulated ridesourcing market may also explain why the number of rides per active
driver hour is high relative to Uber’s operations in Amsterdam.

Considering the difference in case study area and possible inaccuracy in the esti-
mation of real-world performance indicators, we believe that it suffices for the simu-
lation results to be of the same order of magnitude as the estimated indicators for the
real world, which is the case based on Table A.1.

A.2 Sensitivity to starting conditions

In this section of the Appendix, we describe how sensitive our simulation outcomes
are to starting conditions.
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A.2.1 Informed agents

The share of job seekers and the share of travellers that are initially informed have no
effect on the equilibrium, only on how fast the equilibrium is reached.

A.2.2 Registered job seekers

The share of informed job seekers that are registered at the start of the simulation has
no effect on the equilibrium, only on system performance before the equilibrium is
reached.

A.2.3 Income

Below, we describe the sensitivity of simulation outcomes to the ridesourcing earnings
anticipated by (registered) job seekers at the start of the simulation. We observe that
when registered job seekers expect half of their reservation wage at the start of the
simulation, slightly fewer (i.e. approximately 1-2% fewer) job seekers and travellers
end up participating in the market in equilibrium. The mechanism leading up to this
difference is that initially very few job seekers participate, which leads to large varia-
tions in the experiences of travellers, i.e. some experience short waiting while others
are denied service. These mixed experiences are communicated to travellers that are
newly informed, i.e. those that receive negative signals may never try the service (and
thereby never gain new information). As mentioned before, the effect on the market
equilibrium is not significant.

A.2.4 Waiting time

The waiting time anticipated by informed travellers at the start of the simulation has
no effect on the equilibrium, only on system performance before the equilibrium is
reached.

A.3 Sensitivity to model parameters

In Subsection 3.5.4, we test the effect of double-sided information diffusion rates and
supply-side registration costs on system outcomes. Below, we present sensitivity anal-
yses for several other model parameters associated with day-to-day processes in the
ridesourcing market.

A.3.1 Learning

Below, we describe the effect of learning parameter x, the weight that travellers and
job seekers assign to the latest piece of information as opposed to previously gathered
information (own or other agents’ experiences). The results are presented in Fig. A.1.

We observe that while agents learn more quickly when the system transitions from
one phase to another when they assign more value to recent information, the learning
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parameter overall has very limited influence on the emerging market equilibrium, i.e.
(most) agents ultimately learn about changes in system performance indicators. One
way in which the learning parameter affects the equilibrium is that when agents assign
very little value to recent information (k = 0.05), the effect described in Subsection
3.5.1 that some travellers with above average experienced waiting never learn about
the system average waiting time becomes more predominant.
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Figure A.1: Ridesourcing system evolution depending on learning parameter K.

A.3.2 Job seekers’ sensitivity to income

In this subsection of the appendix, we evaluate the effect of the relative value assigned
by job seekers to income in registration and participation decisions: Breg and By,
respectively (Fig. A.2).

We find that the specification of B has a significant effect on the number of
job seekers that end up registering with the platform. However, the effect on market
participation is limited. In other words, when job seekers assign more value to income
in the registration decision, fewer job seekers will register, but those that register are
more likely to eventually participate in the market. Ultimately, supply and demand
volumes are hardly affected by the adopted beta’s in the registration and participation
models.

A.3.3 Minimum registration duration

Below, we describe the sensitivity of our results to the number of days A that job
seekers are assumed not to be able to deregister after registering with the ridesourcing
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Figure A.2: 20-day moving average of key system performance indicators depending
on job seekers’ sensitivity to income in registration and particpation de-
CIsions.

platform (Fig. A.3). We observe that this may have a significant impact on the number
of job seekers that are registered with the platform in the equilibrium. When registered
job seekers are bound to long-term commitments after registering, for instance for
50 days in the simulation, dissatisfied job seekers need to wait long before they can
deregister. These dissatisfied job seekers are, however, unlikely to participate in the
market, implying that the total participation volume is affected only minorly by the
minimum registration duration. The effect on travellers is even more limited, i.e. the
market attracts hardly any additional travellers when the registration commitment is
long, following from slightly higher supply-side participation.

A.3.4 Registration decision frequency

Here, we investigate the sensitivity of the simulation outcomes to the probability y
that job seekers consider (de-)registration on a day (Fig. A.4). We observe that this
parameter has a similar, albeit much smaller, effect as the minimum registration du-
ration, i.e. when job seekers are less likely to make a (de-)registration decision, more
job seekers will end up registered in equilibrium, as dissatisfied registered agents are
less likely to deregister from the platform. However, these dissatisfied job seekers are
unlikely to participate even when registered, so the effect on actual labour supply to
the platform is limited to a few drivers per day. The effect on the demand-side market
share of ridesourcing is even smaller.
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Figure A.3: 20-day moving average of system performance indicators depending on

Figure A.4: 20-day moving average system performance indicators depending on reg-
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A.3.5 Variation in income and waiting time signals

Fig. A.5 shows how @, the multiplier of the standard deviation of the experienced in-
come and waiting time distributions used to generate the distribution of corresponding
signals, affect our simulation results for the reference scenario. We observe that there
is no fundamental difference in system indicators depending on ®, except when this
parameter is very high (i.e. 1, corresponding to a scenario in which agents each com-
municate with just 1 other agent). In such a scenario, the average traveller anticipates
a longer waiting time (approximately 1 minute extra) when choosing ridesourcing, re-
sulting in a slightly lower demand for ridesourcing. The higher expected waiting time
when the standard deviation of income and waiting time distributions in information
signals is relatively large is likely a model artifact. The assumed normal distribution
for waiting time signals is restricted to non-negative values given that negative waiting
times are impossible. This can produce a (positive) waiting time bias in communica-
tion between agents.
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Appendix B

In this appendix, we provide supplementary information that supports the analyses
and findings presented in Chapter 4.

B.1 Gini coefficient of the lognormal distribution

The following formula is used to convert between lognormal parameter ¢ and Gini
coefficient g:

o =2erf !(g) (B.1)

B.2 Replications

As our simulation model contains several processes with stochastic components (i.e.
participation choice, registration choice and the diffusion of platform awareness), we
replicate the experiment for statistical significance. To determine the number of re-
quired replications for each scenario, we apply a method originally used in traffic
simulations (Ahmed, 1999; Burghout, 2004). We denote [* as the average anticipated
ridesourcing income by (registered) job seekers in equilibrium in a single iteration,
and W* as the corresponding average anticipated waiting time of (informed) travellers.
We define I*(m) and W*(m), and s; (m) and sy (m), respectively, as the estimated mean
and standard deviation of I* and W*, based on a sample of m runs. We denote the al-
lowable percentage error of estimate 7*(m) and W*(m) compared to the actual mean
as Eepl, and the level of significance as a. Then, the minimum number of replications
based on a sample of m runs is:

Si(m)'tm_l.l—Toz 2 Sw(m)'tm_lﬁl—Ta 2
Z(m) = max ) -6 \ W) - e (B.2)
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B.3 Experimental set-up

B.3.1 Alternative modes

Private cars use the same road network as ridesourcing vehicles and operate at the
same speed. Private car users require 10 minutes to access and park their vehicle,
and face per-kilometre costs of 0.5 €/km (Nibud, 2022), as well as (fixed) parking
costs at their destination. These parking costs are 15 euro in the city centre (i.e. the
area enclosed by IJ river and Singelgracht), and 7.5 euro elsewhere. Bikes operate
on the same network, albeit with a 2.5 times lower speed (Fietstelweek, 2016). The
choice for a bike comes without costs or access / parking time. For public transport,
travellers consider the itinerary with the earliest possible arrival time based on their
trip request time, queried using OpenTripPlanner based on a representative weekday
(November 1st, 2021). Public transport fares are based on the fare scheme operated
by Amsterdam’s public transport provider GVB on this same date.

B.3.2 Mode choice parameters

One minute of walking and waiting time are perceived 2 and 2.5 times more nega-
tively than one minute of in-vehicle time (Wardman, 2004), i.e. f2®s = 2. BV and

,2’3“ =25- [3,‘,‘[‘ Each transfer in public transport is perceived as 5 minutes of in-
vehicle time (Yap et al., 2020). Bike time is perceived twice as negative as in-vehicle
time (Borjesson & Eliasson, 2012; van Ginkel, 2014). Cost parameter S0 and alter-
native specific constants (ASCs) are taken from a study investigating urban travel in

the Netherlands (Gerzinic et al., 2023).

B.3.3 Other model parameters

Table B.1 presents the specification of the remaining model parameters.

Table B.1: Specification of model parameters.

Parameter ‘ Value ‘ Unit ‘ Description

73 0.1 | - Information transmission speed

Breg 0.2 | util/€ | Income sensitivity in registration

Bowp 0.1 | util/€ | Income sensitivity in participation

Erepl 0.1 | - Allowable percentage error of estimate of mean
01 0.05 | - Level of significance

B.3.4 Initialisation

Job seekers and travellers have a 10% probability to be aware about the platform at
the start of the simulation. Informed job seekers have an initial 20% probability to be
registered. Lacking experience, they expect earnings equal to their reservation wage.
Informed travellers expect no waiting time.
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Summary

Ridesourcing providers like Uber, Lyft, and others have transformed the taxi indus-
try by employing two-sided platforms, connecting travellers with private car owners
through real-time algorithms. These platforms offer flexible work hours to drivers in
exchange for renouncing access to social and financial securities. Early evidence sug-
gests that ridesourcing markets may end up being oversupplied, which can result in
low driver earnings and possibly increase traffic levels. Ridesourcing may also con-
tribute to congestion by drawing users from public transport or inducing new trips.
The limited available data provided by ridesourcing platforms does not allow for in-
vestigating how the performance indicators of ridesourcing for various stakeholders
depends on characteristics of travel demand, the labour market, the provided service,
and the wider transportation system, hindering effective regulations or subsidies for
improving the social welfare associated with these markets.

Previous modelling approaches for such an analysis rely on aggregate functions
for describing ridesourcing supply and demand. In reality, supply and demand are
the result of many complex and interdependent decisions by individual (potential)
users and suppliers, across various temporal dimensions. By overlooking the intricate
and path-dependent nature of disaggregated components within ridesourcing supply
and demand, the existing literature fails in providing insights into how ridesourcing
systems evolve over time. This encompasses how the market may evolve to different
equilibria — for instance monopolistic versus duopolistic markets — depending on
starting conditions and random components in stakeholders’ decisions, matching and
peer-to-peer communication processes.

To address the stated research gap, we opt for an agent-based modelling approach
representing the decisions of travellers (potential consumers in the ridesourcing mar-
ket) and job seekers (potential suppliers). In addition to modelling within-day rides-
ourcing operations, including user-driver matching, traveller pairings (in ride-pooling)
and drivers’ repositioning decisions, we model numerous day-to-day processes affect-
ing ridesourcing supply and demand, including the diffusion of platform information,
registration decisions and daily work decisions. We apply this model to a case study
aimed at replicating ridesourcing operations in the municipality of Amsterdam, the
Netherlands. We do so by mimicking Amsterdam’s travel demand, labour market
characteristics, road network, ridesourcing pricing, and attributes of alternative trans-
portation modes.
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First, we investigate the effect of decentralisation of supply inherent in ridesourc-
ing provision, assuming exogenous demand (Chapter 2). To this end, we propose a
dynamic model comprising of the subsequent supply-side processes: (i) initial ex-
posure to information about the platform, (ii) a long-term registration decision, and
(iii) daily participation decisions, subject to day-to-day learning based on within-day
matching outcomes. A series of experiments is constructed to study the effect of
supply market properties and pricing strategies, providing indications for the need,
effectiveness and costs of potential market regulations. Our experiments reveal a sim-
ilarity between ridesourcing workers’ decisions and the prisoners’ dilemma. In the
reference scenario, approximately 150 independent drivers engage daily in the mar-
ket, in contrast to around 40 to 100 drivers had potential drivers coordinated their
market participation decisions. Fluctuations in labour opportunity costs drive plat-
form work, resulting in increased idle times and reduced earnings. Our study shows
that, perhaps counter-intuitively, higher platform commissions impact travellers more
negatively than drivers, reducing competition between drivers. A platform may accept
an increase in denied trips in order to generate a higher profit on satisfied requests. Our
results also demonstrate that ridesourcing labour supply may evolve non-linearly due
to factors like platform awareness and traveller behavior, influencing income, profits,
and service levels, showcasing the complex relationship between market dynamics
and influencing factors.

Second, we present a conceptual representation of the interaction between sup-
ply and demand in the ridesourcing market to understand why these markets may be
prone to evolve towards particular — potentially socially undesirable — equilibrium
states (Chapter 3). We explain why an equilibrium state with matching time asymme-
try — i.e. a market that is either considerably over- or undersupplied — may yield
high-quality matches, mitigating matching time disutility on the competitive side of
the market. We then add travellers’ platform registration and participation decisions
to the previously introduced day-to-day model for ridesourcing supply to model pre-
viously mapped two-sided network effects in ridesourcing provision. It allows us to
investigate the effect of two-sided market conditions and platform strategies on sys-
tem performance. For instance, we vary the size of the potential ridesourcing market
— i.e. the number of travellers and job seekers in an area — to establish how the
success of ridesourcing provision is dependent on the scale of the (potential) mar-
ket. We demonstrate that ridesourcing operations may be viable even when potential
supply and demand in an area are limited. Our simulation results also suggest that a
profit-maximising ridesourcing platform may trade-off market transaction volume for
higher earnings on successful transactions, a strategy that is harmful to the interests of
travellers and drivers, and possibly of (very) limited benefit to the platform.

Third, we test the hypothesis that ridesourcing platforms benefit from, even thrive
on, socio-economic inequality, enabling cheap labour as well as increasing the share
of travellers with a considerably above-average willingness to pay for travel time sav-
ings and comfort (Chapter 4). We do so by varying the heterogeneity in travellers’
values of time and job seekers’ reservation wages in the previously described agent-
based model for two-sided ridesourcing markets. Our experiments cover scenarios
for the entire spectrum ranging from perfect equality to extreme inequality. For sev-
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eral of such scenarios, we explore how platforms will adjust their two-sided pricing
strategies. In our analyses of ridesourcing performance, we specifically examine the
earnings of drivers, the quality of the service for travellers and the service provider’s
profit. Our analysis shows a strong, positive relationship between socio-economic in-
equality and ridesourcing market share. This is the outcome of the combination of
cheap labour and time-sensitive ridesourcing users, reinforced by network effects in-
herent to ridesourcing markets. We find that driver earnings are minimal in urban
areas with large socio-economic inequality. In such contexts, drivers are more likely
to face a high platform commission, and yet, fierce competition for passengers.

Fourth, we extend our model for two-sided dynamics in monopolistic ridesourcing
markets to allow for markets with two service providers, each offering either private
or pooled rides. This allows us to (i) analyse how fragmentation costs — resulting
from potential efficiency losses in matching in a market with fragmented demand and
supply — vary with market features and user attributes, and (ii) under which of these
conditions markets with multiple service providers are sustainable. Our experiments
reveal a winner-takes-all outcome only when both platforms offer private rides, and
conditional on neither riders nor drivers engaging in multi-homing. Service providers
are more likely to co-exist when ride-pooling is offered by one of them — following
differences in target demographics — or by both — following longer detours as de-
mand increases. In our experiments, fragmented ride-pooling markets (based on two
providers) produce 6.4% additional vehicle kilometres in comparison to monopolistic
ride-pooling markets. There are also notable market fragmentation costs for platform
users, drivers and service providers. In addition, our results indicate that ridesourcing,
especially ride-pooling, can draw considerable demand away from distance-efficient
modes like bicycles and public transport. It highlights that possible benefits and costs
associated with ridesourcing depend on local preferences and transportation system
characteristics. Finally, the developed model allows us to shed light onto the impact
of daily costs associated with platform registration as well as the potential (individual)
benefits of engaging in multi-homing for users and drivers.

To summarise, in this dissertation we explore the impacts of various factors linked
to travel demand, labour market conditions and service configurations on ridesourcing
market evolution. This encompasses the assessment of two-sided pricing strategies,
platform co-existence, service type, market scale effects and socio-economic indica-
tors. Specifically, we analyse the dynamic nature of ridesourcing indicators, delving
into the influence of learning and communication processes, alongside the impact of
different traveller and job seeker decision-making attributes. Our findings showcase
that the ridesourcing market can potentially gravitate towards significantly varied equi-
libria, influenced by initial conditions and previously mentioned processes linked to
travellers’ and job seekers’ ridesourcing market decisions. By shedding light on the
mechanisms contributing to undesirable market outcomes, this dissertation aims to of-
fer policymakers valuable insights into regulating the ridesourcing market to enhance
overall social welfare.
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Ridesourcing-aanbieders zoals Uber en Lyft hebben de taxibranche getransformeerd
door tweezijdige platforms te lanceren die reizigers via realtime algoritmes verbin-
den met particuliere autobezitters. Deze platforms bieden chauffeurs flexibele werk-
tijden in ruil voor het afzien van toegang tot sociale en financiéle zekerheden. Er
zijn aanwijzingen dat ridesourcing-markten te veel chauffeurs kunnen aantrekken, wat
kan leiden tot lage inkomsten voor chauffeurs en tot extra verkeersbewegingen. Ri-
desourcing kan verder bijdragen aan congestie door gebruikers van het openbaar ver-
voer te trekken of door nieuwe reizen uit te lokken. De beperkte beschikbare data
over ridesourcing-platforms maakt het lastig om te onderzoeken hoe de verschillende
prestatie-indicatoren van ridesourcing afhangen van de kenmerken van de reisvraag,
de arbeidsmarkt, de aangeboden dienst en het bredere transportsysteem, waardoor ef-
fectieve regelgeving of subsidies voor het verbeteren van de sociale welvaart in deze
markten worden belemmerd.

Eerdere modelbenaderingen voor een dergelijke analyse vertrouwen op geaggre-
geerde functies voor vraag en aanbod in de markt. In werkelijkheid zijn vraag en
aanbod het resultaat van vele complexe en onderling athankelijke beslissingen van
individuele (potenti€le) gebruikers en chauffeurs, over verschillende tijdsdimensies.
Door voorbij te gaan aan de ingewikkelde en padafhankelijke aard van deze processen,
slaagt de bestaande literatuur er niet in om inzicht te verschaffen in hoe ridesourcing
systemen zich in de loop van de tijd ontwikkelen. Dit omvat hoe de markt kan evolue-
ren naar verschillende evenwichten — bijvoorbeeld monopolistische of duopolistische
markten — afhankelijk van startcondities en willekeurige componenten in de beslis-
singen van belanghebbenden, matching van reizigers en chauffeurs, en peer-to-peer
communicatieprocessen.

Om deze onderzoeksleemte op te vullen, kiezen we voor een agentgebaseerde mo-
delbenadering die de beslissingen van reizigers (potenti€le gebruikers van ridesourcing-
diensten) en werkzoekenden (potenti€le chauffeurs) nabootst. Naast het modelleren
van alledaagse ridesourcingactiviteiten, waaronder het matchen van gebruikers en
chauffeurs, het onderling koppelen van passagiers (bij ride-pooling), en het herpo-
sitioneren van chauffeurs, modelleren we talrijke dagelijkse processen die van invloed
zijn op vraag en aanbod in de ridesourcing-markt, waaronder de verspreiding van in-
formatie, registratiebeslissingen en werkbeslissingen. We passen dit model toe op een
casestudy gericht op het nabootsen van ridesourcing-activiteiten in de gemeente Am-
sterdam, Nederland. We doen dit door kenmerken met betrekking tot de reisvraag,
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de arbeidsmarkt, het wegennetwerk, prijsstrategieén in de markt, en alternatieve ver-
voerswijzen in Amsterdam te repliceren.

Eerst onderzoeken we het effect van de decentralisatie van het aanbod dat inherent
is aan het aanbieden van ridesourcing, uitgaande van een exogene vraag (hoofdstuk 2).
Daartoe ontwikkelen we een dynamisch model dat bestaat uit de volgende processen
aan de aanbodzijde: (i) initi€le blootstelling aan informatie over het platform, (ii) een
registratiebeslissing op lange termijn, en (iii) dagelijkse deelnamebeslissingen, onder-
hevig aan leerprocessen volgend uit de toewijzing van gebruikers aan chauffeurs. Een
reeks experimenten is geconstrueerd om het effect van eigenschappen van de aanbod-
markt en prijsstrategieén te bestuderen, wat aanwijzingen oplevert voor de noodzaak,
effectiviteit en kosten van mogelijke marktregulering. Onze experimenten laten een
gelijkenis zien tussen de beslissingen van ridesourcing-chauffeurs en het gevangenen-
dilemma. In het referentiescenario nemen ongeveer 150 onafhankelijke chauffeurs
dagelijks deel aan de markt, in tegenstelling tot ongeveer 40 tot 100 chauffeurs als
werkzoekenden hun beslissingen om deel te nemen aan de markt zouden codrdineren.
Dagelijkse schommelingen in het reserveringsloon van werkzoekenden leidt tot meer
chauffeurs op het platform, wat resulteert in meer inactiviteit en minder inkomsten.
Onze studie toont aan dat, misschien contra-intuitief, hogere platformcommissies een
negatiever effect hebben op reizigers dan op chauffeurs, doordat ze de concurrentie
tussen chauffeurs verminderen. Een platform kan een toename van geweigerde reizen
accepteren om een hogere winst te genereren op vervulde aanvragen. Onze resulta-
ten tonen ook aan dat het aanbod van ridesourcing-arbeid niet-lineair kan evolueren
door factoren zoals platformbekendheid en reizigersgedrag, wat een invloed heeft op
inkomsten, winsten en serviceniveaus, wat de complexe relatie tussen marktdynamiek
en beinvloedende factoren aantoont.

Ten tweede presenteren we een conceptuele voorstelling van de interactie tussen
vraag en aanbod in de ridesourcing-markt om te begrijpen waarom deze markten ge-
neigd kunnen zijn te evolueren naar bepaalde — potentieel sociaal ongewenste —
evenwichtstoestanden (hoofdstuk 3). We leggen uit waarom een evenwichtstoestand
met asymmetrie in de matching tijd — d.w.z. een markt die ofwel aanzienlijk over-
of onderaanbod heeft — matches van hoge kwaliteit kan opleveren, wat een hogere
wachttijd voor een match aan de competitieve kant van de markt kan mitigeren. Ver-
volgens voegen we de registratie- en deelnamebeslissingen van reizigers toe aan het
eerder geintroduceerde dag-tot-dag model voor het aanbod van ridesourcing om eer-
der in kaart gebrachte tweezijdige netwerkeffecten in het aanbod van ridesourcing te
modelleren. Hierdoor kunnen we het effect van tweezijdige marktomstandigheden
en platformstrategieén op de systeemprestaties onderzoeken. We vari€ren bijvoor-
beeld de omvang van de potenti€le ridesourcingmarkt — d.w.z. het aantal reizigers en
werkzoekenden in een gebied — om vast te stellen hoe het succes van ridesourcing-
voorziening afhangt van schaaleffecten. We tonen aan dat ridesourcing-activiteiten
levensvatbaar kunnen zijn, zelfs als het potenti€le aanbod en de vraag in een gebied
beperkt zijn. Onze simulatieresultaten suggereren daarnaast dat een winstmaximali-
serend ridesourcing platform een lager transactievolume kan accepteren in ruil voor
hogere winsten op succesvolle transacties, een strategie die schadelijk is voor de be-
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langen van reizigers en chauffeurs, en mogelijk van (zeer) beperkt nut voor het plat-
form.

Ten derde testen we de hypothese dat ridesourcing platforms profiteren van, en
zelfs gedijen bij, sociaaleconomische ongelijkheid, door goedkope arbeid mogelijk te
maken en het aandeel van reizigers met een aanzienlijk bovengemiddelde bereidheid
om te betalen voor reistijdbesparingen en comfort te verhogen (Hoofdstuk 4). We doen
dit door de heterogeniteit in de tijdswaarderingen van reizigers en de reserveringslo-
nen van werkzoekenden te variéren in het eerder beschreven agentgebaseerde model
voor tweezijdige ridesourcingmarkten. Onze experimenten omvatten scenario’s voor
het hele spectrum van perfecte gelijkheid tot extreme ongelijkheid. Voor verschillende
van deze scenario’s onderzoeken we hoe platforms hun tweezijdige prijsstrategieén
zullen aanpassen. In onze analyses van de prestaties van ridesourcing markten kijken
we specifiek naar de inkomsten van chauffeurs, de kwaliteit van de dienstverlening
voor reizigers en de winst van de dienstverlener. Onze analyse laat een sterke, po-
sitieve relatie zien tussen sociaaleconomische ongelijkheid en het marktaandeel van
ridesourcing. Dit is het resultaat van de combinatie van goedkope arbeid en tijdgevoe-
lige gebruikers van ridesourcing, versterkt door netwerkeffecten die inherent zijn aan
ridesourcingmarkten. We vinden dat de inkomsten van chauffeurs minimaal zijn in
stedelijke gebieden met grote sociaaleconomische ongelijkheid. In dergelijke contex-
ten is de kans tevens groter dat chauffeurs te maken krijgen met een hoge commissie
van het platform, en desalniettemin met hevige concurrentie om passagiers.

Ten vierde breiden we ons model voor tweezijdige dynamiek in monopolistische
ridesourcing markten uit naar markten met twee dienstverleners, die elk ofwel private
ofwel gepoolde ritten aanbieden. Dit stelt ons in staat om (i) te analyseren hoe frag-
mentatiekosten — als gevolg van potenti€le efficiéntieverliezen bij matching in een
markt met gefragmenteerde vraag en aanbod — variéren met marktkenmerken en ge-
bruikersattributen, en (ii) onder welke van deze voorwaarden markten met meerdere
dienstverleners levensvatbaar zijn. Onze experimenten laten alleen een winner-takes-
all uitkomst zien wanneer beide platforms privéritten aanbieden, en op voorwaarde
dat gebruikers noch chauffeurs aan multi-homing doen. Dienstverleners hebben meer
kans om naast elkaar te bestaan wanneer ride-pooling wordt aangeboden door één van
hen — als gevolg van demografische verschillen in doelgroep — of door beide — als
gevolg van langere omwegen naarmate de vraag toeneemt. In onze experimenten pro-
duceren gefragmenteerde ride-pooling markten (gebaseerd op twee aanbieders) 6,4%
extra voertuigkilometers in vergelijking met monopolistische ride-pooling markten.
Deze marktfragmentatie gaat gepaard met kosten voor platformgebruikers, chauffeurs
en dienstverleners. Daarnaast geven onze resultaten aan dat ridesourcing, met name
ride-pooling, een aanzienlijke vraag kan onttrekken aan afstandsefficiénte vervoers-
wijzen zoals de fiets en het openbaar vervoer. Het benadrukt dat mogelijke voordelen
en kosten in verband met ridesourcing afhangen van lokale voorkeuren en kenmer-
ken van het transportsysteem. Tot slot laat het ontwikkelde model ons toe om licht te
werpen op de impact van de dagelijkse kosten die gepaard gaan met platformregistra-
tie en op de potentiéle (individuele) voordelen van multi-homing voor gebruikers en
chauffeurs.
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Samenvattend onderzoeken we in dit proefschrift de effecten van verschillende
factoren die verband houden met de reisvraag, arbeidsmarktomstandigheden en dienst-
configuraties op de ontwikkeling van ridesourcing-markten. Dit omvat de verkenning
van tweezijdige prijsstrategieén, platform coéxistentie, diensttype, schaaleffecten in
de markt en sociaaleconomische indicatoren. Specifiek analyseren we de dynamische
aard van ridesourcing-indicatoren, waarbij we ons verdiepen in de invloed van leer- en
communicatieprocessen, naast de impact van verschillende beslissingskenmerken van
reizigers en werkzoekenden. Onze bevindingen laten zien dat de ridesourcing-markt
potentieel kan evolueren naar aanzienlijk gevarieerde evenwichten, beinvloed door
initi€le omstandigheden en eerder genoemde processen die verband houden met de
beslissingen van reizigers en werkzoekenden in de markt. Door licht te werpen op de
mechanismen die bijdragen aan ongewenste marktuitkomsten, beoogt dit proefschrift
beleidsmakers waardevolle inzichten te bieden in het reguleren van de ridesourcing-
markt met als doel om de totale sociale welvaart volgend uit de markt te vergroten.
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