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Abstract

For scenarios of high penetration of renewable energy, it becomes increasingly relevant to improve the dispatchability of supply
for wind and solar power plants. Baseload power plants, required to produce a minimum power production at all times, are
discussed in this context. The baseload constraint can be satisfied with renewable sources when combined with a storage system
but at a high cost. This work studies the design drivers of such a storage system when consisting of short and long-term storage.
The capacities of the short-term and long-term storage components are calculated as part of a linear optimization problem with
the objective of minimizing the cost of baseload, using a metric based on a net present value formulation. Our analysis, based on
10 locations in Northern Europe, highlights a high sensitivity of optimal storage sizing to storage cost assumptions. In addition,
the cost of baseload is found to be correlated to the share of renewable power produced above baseload, but not to the correlation

between price and wind power, suggesting arbitrage plays a minor role in the business case.

1 Introduction

An important challenge of renewable generation is how to man-
age its weather dependence. For scenarios of high penetration
of renewables, there is a risk of not supplying power dur-
ing days of low wind or solar availability. As such, there is
increased interest in improving the dispatchability of renewable
energy sources, i.e. their ability to produce power on demand
regardless of weather conditions. One of the tender criteria for
the Dutch wind farm Hollandse Kust Noord was to develop
innovations for supply flexibility in offshore wind farms [1].
Dispatchability can be achieved on a short time scale by using
a storage system to compensate for the error in power pro-
duction due to an imprecise forecast [2—4]. Another example
of dispatchability is a power plant providing baseload power
regardless of the weather conditions. Baseload power produc-
tion can be provided with renewable energy, using concentrated
solar power [5] or storage systems combined with a wind-solar
PV hybrid power plant [6].

However, providing baseload power requires a large energy
storage capacity, which tends to be expensive for estab-
lished short-term storage (STS) technologies such as lead-acid
(LEAD) and lithium-ion batteries (LIB). The alternative is to
use long-term storage (LTS) systems, such as pumped-storage
hydropower (PSH) or compressed air energy storage (CAES),
which tend to have a low marginal cost for energy storage, but
a high cost for power capacity. A combination of STS and LTS
is likely to be adequate to satisfy the baseload constraint, where
the proportion of each storage type depends on its techno-
economic properties. When it comes to costs, there is a large
diversity among existing technologies, as shown in Fig. 1 with
data from [7]. There is also uncertainty in future costs for tech-
nologies in development such as gravity storage (G), pumped
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Fig. 1 Energy and power capacity storage costs used in this
work (reference values and ranges) compared to the data from
[7]. Projected future costs are indicated with (f). The meaning
of the suffixes A and C is explained in Section 3.

thermal energy storage (PTES) or hydrogen storage combined
with electrolyzers and fuel cells (H2). As such, it is particu-
larly relevant to understand how a cost variation impacts the
storage system sizing. In this context, we address the following
research questions:

+  What is the optimal balance between STS and LTS to satisfy
baseload power production at minimal cost?

+  What is the sensitivity of the sizing and total cost to storage
cost assumptions and site characteristics?

Our study focuses on the storage sizing problem for a hybrid
wind-storage power plant required to produce baseload power.
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2 Model and optimization problem
2.1 Storage system model

The storage system is modelled as a combination of short-term
storage (STS) and long-term storage (LTS), indicated by the
subscript j = 1, 2, respectively. Each storage type is described
by its energy capacity Ej, power capacity 15]- and round-trip
efficiency 7);, as well as its power and energy level over time,
P; and E;, for j = 1,2. The storage losses are taken into
account during discharge. We use the convention of positive
power for discharge, and negative power for charge. As a result,
the operation of each storage type can be modelled by three
equations describing (i) the relation between power and energy
during charge and discharge, (ii) the limit on storage power
related to its power capacity and (iii) the limit on stored energy
related to the energy capacity. They are represented below:

~AtP! if P! <0

1 gt — At —
E! E! Al bt eise t=1,.,n, (1)
J
— P, < P! <P, t=1,.,n, )
0<E!<E, t=1,..,n+1, 3

where the superscript [ is to used to indicate the time step,
At refers to the time step duration and n is the number of time
steps with P, € R" and E; € R**', forj = 1,2.

2.2 Cost of baseload

We use the term cost of baseload to represent the financial
burden of satisfying a baseload constraint during the project
lifetime. This metric represents the difference between the Net
Present Value (NPV) for the wind farm with and without a
baseload constraint. It is calculated from the overnight capital
cost of the storage system and the possible revenues obtained
by arbitrage on the day-ahead market, with electricity prices
denoted by Apam. The cost of baseload is a function of the
design variables x = [Py, Py, E1, Ey, P, Py, Ey, E,]":

m ., p= B  Apam(P1 + Ps)
— (AP + \E;) Z—HT

J k=1

)
j=1
“
where (J” represents the transpose operator, and A\F, \Y are
the cost per energy and power capacity, respectlvely The life-
time of the storage type m; relative to the project lifetime m is
taken into account to represent possible replacements. Both m
and m; are expressed in years. We use 7 as the real interest rate
instead of the discount rate in order to take in account the infla-
tion in the calculation, here assumed constant over the project
duration.

2.3 Integrated sizing optimization

The storage system is sized using a linear program with the

a baseload power constraint with a reliability of 99%, repre-
sented by the vector P,;,. The time steps where the baseload
production is required are fixed before the optimization. The
energy and power capacity for each storage type, as well as
their hourly operation for one year, are considered as design
variables. Constraints are enforced to ensure that (i) the total
power produced, considering the wind farm production Pg,
satisfies the baseload constraint and does not exceed a maxi-
mum bound P, (ii) the storage energy levels are equal at the
start and end of the year, and (iii) the storage model is respected
(Eq. 1-3). The following problem formulation is obtained:

min c¢(x)
s.t Pmin_PWFSP1+P2Smax(oapmaX_PWF)
B! = Er j=1,2
B - E < -AtP! t=1,.n j=12 ©
At

Ef—E <——P t=1,.,n j=12
s

Eq. (2-3) j=1,2

Equation 1 is included in the problem formulation in a
relaxed form, in order to maintain a linear formulation. While
this choice is less common than a mixed-integer linear formu-
lation, it has been used in energy system design studies [8, 9]
and allows the computational burden to be decreased by sev-
eral orders of magnitude. The linear program is solved using
MOSEK [10]. Figure 2 shows an example of storage opera-
tion with optimal design. The difference in operation between
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Fig. 2 Optimal operation strategy for the reference case to sat-
isfy a 10 MW baseload constraint in terms of energy levels and

objective to minimize the cost of baseload ¢ while satisfying ~Ppower production, using STS-A and LTS-R.
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the two storage types is correctly captured, where STS tends to
operate at a higher frequency than LTS. In addition, the contri-
bution of the storage types to the baseload is shown. At the end
of day 86, the power shifts from the 10 MW baseload to 0 MW,
illustrating the 99% reliability.

3 Case studies

The sizing methodology is applied to several test cases, with
different storage cost assumptions and site characteristics. We
use one reference for the LTS (LTS-R) and two for the STS,
listed in Table 1 and represented in Fig. 1. They are not asso-
ciated with specific technologies but are used as an abstract
representation of long and short-term storage systems. The two
reference STS systems correspond to different costs, adapted
from the cost assumption for utility-scale batteries in 2050
described in [7]. STS-C assumes a conservative evolution of
the costs, whereas STS-A uses an advanced scenario which
leads to lower costs. The wind power production is calcu-
lated using the Renewables.ninja platform*, based on a global
reanalysis dataset, and a virtual wind farm model [11, 12].
Wind power production time series are extracted for a 100 MW
wind farm for 10 offshore locations in Nothern Europe shown
in Fig. 3, and using three different wind turbine technologies
listed in Table 2. This results in 30 cases, with the reference
case corresponding to the location of Hollandse Kust Noord
with turbine technology A. The price time-series are obtained
from ENTSO-E [13] with a pass-band filter to remove extreme
events. Data are extracted for 2019. Furthermore, we use a
project duration of 20 years, a 3 % real interest rate and a
maximum power of I00MW.

4 Results

4.1 Drivers for the optimal storage sizing

We first study the optimal storage sizing across test cases
and for different baseload levels. Several conclusions can be
drawn from our results, based on Fig. 4. A higher baseload
level increases the total energy capacity but lowers the share
of STS in the total energy and power capacity. Indeed, the
LTS becomes more relevant due to its low energy capacity
cost when the baseload increases and the energy requirement
with it. Thus, there is more investment in LTS even though
the LTS power capacity cost is 10 times higher than for STS.
Furthermore, the data shows that the total power capacity is
equal or below the baseload level for the conservative STS
costs assumption. In contrast, there is a tendency to oversize
the storage when the STS is cheaper (STS-A), suggesting that
the storage system is used for arbitrage. We note that there is a
large variation in total power and energy capacity overall, and
the share of STS, suggesting that the optimal sizing is sensitive
to the specific site characteristics.

*www.renewables.ninja

g
=~

Reference site

Fig. 3. Site locations and associated energy market zones.

Table 1 Characteristics of the three reference storage systems

STS-A STS-C LTS-R
Energy capacity cost [USD/kWh] 75 175 5.0
Power capacity cost [USD/kW] 150 150 1500
Round trip efficiency [%] 85 85 50
Lifetime [years] 10 10 20

Table 2 Characteristics of the three wind turbine technologies

Technology A B C
Hub height [m] 80 135 140
Rotor diameter [m] | 130 126 164
Rated power [MW] | 40 6.5 8.0
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Fig. 4 Impact of baseload level on optimal storage sizing, for
all case studies and for two STS cost assumptions and LTS-R.
The data for the reference case is highlighted with black lines.
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The influence of the STS energy capacity cost is reported
in more detail in Fig. 5. The total power capacity is insensi-
tive to the storage costs above a certain threshold (around 100
USD/kWh). Below this threshold, the tendency to size the stor-
age above the baseload level is confirmed. However, no trend
appears in terms of energy capacity, which indicates a larger
impact of site characteristics. Finally, there is a large variation
of sizing between the two cost assumptions STS-A and STS-
C, suggesting that the uncertainty on future costs is likely to
translate into uncertainty on the optimal storage sizing.
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Fig. 5 Impact of a variation of STS energy capacity costs on
the optimal sizing, for all case studies and using the reference
long-term storage (LTS-R). The data for the reference case are
highlighted in black.

4.2 Cost of baseload sensitivity to storage costs

We further analyse the impact of LTS and STS storage cost
assumptions on the cost of baseload. This is done by varying
the LTS power capacity cost and the STS energy capacity cost,
over ranges represented in Fig.1. These two metrics are used
since they are dominating the costs of the two types of stor-
age. The other two cost parameters are kept constant: A = 150
USD/kW and A\¥ = 5 USD/kWh. Figure 6 shows the variation
in the cost of baseload for the reference case and a 10 MW
baseload. To put the numbers into perspective, the variation of
cost of baseload corresponds to a share of the wind farm capital
expenditure between 3% and 16%, assuming a cost of offshore
wind power of 3000 USD/kW [14]. For high LTS costs, the
cost of baseload is mostly driven by the STS cost (vertical con-
tour lines) and the storage system almost entirely consists of
STS (cyan region). This means that it is only relevant to con-
sider LTS for baseload hybrid power plants below a certain cost
threshold. The opposite trend can be observed for high STS
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Fig. 6 Contour plot of the cost of baseload for the reference
case and varying LTS and STS costs. Regions with low STS or
LTS capacity in the optimal design are represented in dark blue
and cyan, respectively.
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Fig. 7 Contour lines of the cost of baseload for all cases. For
clarity, only two contour lines are represented for each case,
passing through two pre-determined points marked as black
circles and corresponding to low and average storage costs.
Regions with low STS or LTS capacity are represented in dark
blue and cyan, respectively. The color intensity represents the
number of cases having a low STS or LTS capacity. The data
for the reference case are highlighted in black.

costs. These trends can be generalized to all cases, as shown in
Fig.7. Our data suggest that for expected future costs of LTS
(Af < 2000 USD/kW), the cost of baseload is primarily driven
by the LTS costs (horizontal contour line). We note that the
regions where the optimal design is dominated by one type of
storage are similar across cases, but not identical.
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power and the share of wind power produced above baseload.
the scatter of points for STS-A and STS-C.

4.3 Cost of baseload sensitivity to site characteristics

Finally, we study how the cost of baseload varies with the wind
power production characteristics. Figure 8 shows the cost of
baseload for all cases as a function of three metrics: the Pear-
son correlation between price and wind power, the mean wind
power and the share of power produced above baseload. As
expected, our data shows that the cost of baseload increases
with the baseload level. However, it is weakly correlated to the
price/wind correlation and the mean wind power. Despite that it
is weak, we note that the correlation to the price/wind correla-
tion consistently changes from a positive trend to a negative one
for the STS-A and STS-C cost assumptions, respectively, con-
firming the tendency to rely more on arbitrage for the STS-A
case, which pays off most for large negative correlation. Fur-
thermore, we can observe a stronger correlation to the third
metric, which represents the extent to which the baseload con-
straint is already covered by wind power production. These
results highlight two main drivers for the cost of baseload: the
baseload level and the energy to be transferred by the storage
to satisfy the baseload constraint.

5 Discussion

The analysis presented in this work suggests that above a cer-
tain threshold for the STS cost, the optimal total power capacity
of the storage system is approximately equal to the baseload
level. Otherwise, oversizing is beneficial to increase arbitrage
revenues. However, this threshold corresponds to the most
optimistic cost assumptions for 2050. As such, oversizing is
unlikely to be beneficial.

In addition, our results show a large sensitivity of storage
sizing to the storage cost. This raises the question of the rel-
evance of the sizing method, based on a simple but common
storage model, for future project developments. The benefit of
one type of storage over the other may be better accounted for

The dotted and dashed lines are linear regression lines based on

if the model is able to capture the effect of storage degrada-
tion and leakage for example. Furthermore, the storage is sized
using an assumption of perfect information, which may lead
to unrealistic operation schedules. Finally, the objective of the
sizing methodology is a metric based on an NPV formulation.
While this metric has the benefit of being linear in the design
variables, other metrics such as the levelized cost of energy or
the ratio between NPV and total capital expenditure are often
preferred for the sizing of hybrid power plants [15].

While solar PV can improve the business case of hybrid
power plants, we focus on a wind-storage configuration. A
preliminary analysis showed no financial benefits of adding
solar PV for the considered sites with high wind and low
solar resources, in accordance with the literature [16]. How-
ever, we expect our results to be valid for hybrid power plants
combining wind and solar PV.

Finally, this study highlights the financial burden of baseload
power production with renewable sources. While a baseload
constraint may be beneficial for grid stability and reliability of
supply, there is currently no such constraint imposed on renew-
able power plant project developers. Financial incentives could
be put in place, such as subsidy premiums. However, storage
system projects might be more adequately developed as inde-
pendent units, as studied in [8]. In addition, a constant baseload
is an abstract constraint that does not reflect well the way the
energy market functions. Future work on the topic of dispatcha-
bility should be done to develop new constraints characterizing
the desired flexibility of power supply.

6 Conclusions

This work highlights several trends in the design drivers for a
storage system of a wind-storage hybrid power plant satisfy-
ing a constant baseload power production. We characterize the
total energy and power capacity and the balance between short-
term and long-term storage to minimize the financial burden



of baseload production. For different offshore site locations in
Northern Europe and different storage cost assumptions, the
following conclusions are drawn:

+ At expected future costs of long-term and short-term stor-
age, the total power capacity of the storage system is
approximately equal to the baseload power level.

* The higher the baseload level, the higher the share of long-
term storage in the total energy and power capacity.

+ At expected future storage costs, the cost of baseload is
primarily driven by the cost of long-term storage.

+ The main drivers for the cost of baseload are the baseload
level and the share of renewable energy produced at a power
above baseload.
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