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Abstract

In machine learning, learning curves are a metric that plots performance versus
training set size. They inform decisions about data acquisition, model selection, and
hyperparameter tuning. Despite their importance, recent research suggests that our
understanding of learning curve behavior remains limited. In this work, we investigate
learning curves from a classification perspective to better understand their structural
properties. By framing learning curves as time series and applying time series classifi-
cation (TSC) techniques, we uncover several key findings: (1) training accuracy curves
are significantly more distinguishable across models than validation or test curves; (2)
learning curves become more informative and discriminative after a sufficient number
of anchor points; and (3) TSC models that emphasize global structural features out-
perform those focused on local or pointwise characteristics. These results not only offer
new insights into the nature of learning curves but also suggest promising directions
for future work, including the development of specialized models that move beyond
conventional time series assumptions.

1 Introduction

Learning curves describe the performance of a machine learning model on a specific task as
a function of the training set size used to solve that task [1]. Learning curves are valuable
for several reasons: they help estimate how much data is needed to reach a desired level of
performance, support early stopping when further training is unlikely to improve results, and
enable early discarding of underperforming models during model selection [1]. In machine
learning, it is common to use parametric formulas to extrapolate learning curves and make
decisions based on these predictions. These formulas assume that performance generally
improves as the training set grows [2]. While this is often true, real-world learning curves
can behave unexpectedly, showing what are referred to as 'ill-behaving curves' [2]. As a
result, there is a growing need for new models that can handle such irregular patterns more
effectively.

Recent research has shown that deep learning-based approaches may offer more ac-
curate extrapolations than traditional parametric methods. Notably, the LC-PFN [3], a
transformer-based model trained on synthetic curves to approximate Bayesian inference,
has demonstrated superior performance. Despite progress in modeling the shape of learning
curves [2], recent findings continue to reveal unexpected patterns [4], suggesting that our
understanding of learning curves remains incomplete and further exploration is warranted.

One promising direction for deepening this understanding is through classification. Prior
work has observed that different learning algorithms yield distinctly shaped learning curves [5].
Building on this observation, this work investigates whether it is possible to classify learners
based on the shapes of their learning curves. In doing so, we aim to explore the conditions
under which learning curves are most distinguishable, and which classification methods are
most effective. Through the process of classification, we may extend our knowledge on
learning curves, and be able to better extrapolate them in the future. To the best of our
knowledge, this is the first systematic attempt to classify learning curves by learner identity.

The key idea of this work is to treat learning curves as time series, as they exhibit core
characteristics typical of time series data. To evaluate this approach, four experiments are
conducted. First, binary classifiers are trained on all possible pairs of learners to explore
similarities in their learning curve behavior. The second and third experiments examine
the impact of different data representations on classification performance. Lastly, a range



of classifiers is tested, including state-of-the-art models from each major category of time
series classification.

The remainder of this paper is structured as follows. Section 2 lays out the related
work for this research. In Section 3, the core idea of treating learning curves as time series
is introduced and the motivations behind this approach are outlined. Section 4 describes
the experimental setup in detail, which is followed by Section 5 presenting the results of
our classification experiments. In Section 6, the implications of the findings are discussed,
limitations highlighted, and the results interpreted in light of the research goals. Section 7
concludes the paper and outlines possible directions for future work. Finally, Section 8
addresses responsible research practices, including considerations around reproducibility,
data transparency, and ethical use of resources.

2 Related Work

This section reviews prior research that forms the foundation of this study. It covers three
areas: (i) theoretical and empirical insights into learning curve behavior, (ii) data resources
and models central to this work, and (iii) time series classification (TSC) methods that
enable the proposed approach.

2.1 Learning Curve Behavior and Evaluation Practices

A foundational contribution to this study is the comprehensive literature review on learning
curve shapes by Viering et al. [2]. Investigations into the shape and behavior of learning
curves reveal that while model performance often improves with more training data, devia-
tions from this trend—commonly referred to as ’ill-behaving curves’—are not uncommon [2].
These findings challenge the assumptions underlying many traditional parametric extrap-
olation formulas. Learning curves have also been shown to play a crucial role in guiding
decisions around data acquisition, model selection, and early stopping [1].

Further, since a major part of this research involves comparing the performance of various
classifiers, it is important to acknowledge prior work on best practices for classifier evalua-
tion. Such prior work includes studies focused on ensuring replicability of experiments [6],
the use of appropriate statistical tests to assess significance [7], and broader guidelines on
how to conduct reliable comparisons between learning algorithms [8, 9]. These works helped
guide the experimental setup and result interpretation in this paper.

2.2 The LCDB and the LC-PFN

Two key contributions in recent literature are central to this study: the Learning Curve
Database (LCDB) [5] and the Learning Curve Prior-Fitted Network (LC-PFN) [3].

The LCDB serves as the primary data source for our experiments. This research uses
version 1.1 of the LCDB, currently the largest available database of its kind [4]. The LCDB
contains prediction and ground truth vectors for 24 classification algorithms across 265
datasets. These predictions are recorded at various training set sizes, referred to as an-
chors [5]. For each anchor point, there are 25 different data splits, providing 25 accuracy
values per learner per dataset. The anchor points are consistent across all learning curves,
meaning that while each curve may have different lengths, the recorded data points are al-
ways at the same positions. Further, the LCDB contains train, validation, and test accuracy
curves for all of the learners.



The LC-PFN is, to our knowledge, the only deep learning model shown to consis-
tently outperform traditional parametric methods in learning curve extrapolation. It uses a
transformer architecture trained on a large set of synthetic learning curves to approximate
Bayesian posterior inference [3]. Its promising results highlight the potential of neural mod-
els in this domain and motivate further research into deeper representations of learning curve
dynamics. This study complements such efforts by focusing on classification as a means of
understanding the structural properties of learning curves: insights which could, in turn,
inform the design of better extrapolation models.

2.3 Time Series Classification Models

Given that learning curves evolve sequentially with training set size, they are naturally suited
to time series modeling. A detailed discussion of this perspective is provided in Section 3. To
this end, a diverse range of TSC models is evaluated in this study. To ensure broad coverage,
we include representative models from each of the eight broad types of TSC models defined
in the recent paper by Guijo-Rubio et al. [10].

e Distance-based: These models rely on distance metrics to assess similarity between
time series. We use shapeDTW [11], which enhances dynamic time warping (DTW)
by taking point-wise local structural information into consideration.

e Feature-based: These extract statistical features from the entire series and train a
classifier on the resulting vectors. As a baseline for feature-based classifiers, Fresh-
PRINCE [12] will be used in our experiments.

e Interval-based: A subset of feature-based models, these extract features from ran-
dom intervals within the time series and build ensembles over them. We employ
DrCIF [13], an extension of the Canonical Interval Forest (CIF) classifier [14], which
combines diverse interval representations for improved performance.

e Kernel/convolution-based: These models apply convolutional operations over sub-
series and use the results as features. We evaluate the two variants of the original
ROCKET [15] classifier: its more computationally efficient counterpart MiniRocket [16],
and the performance-optimized MultiRocket [17], all of which use random kernels,
pooling operations, and a ridge classifier.

e Deep learning: Deep neural networks are widely used for TSC due to their scalability
and ability to learn complex patterns [18]. We use InceptionTime [19], a CNN-based
model inspired by Inception modules from image classification. Following best prac-
tices, we use an ensemble of five InceptionTime models for improved stability and
accuracy.

e Shapelet-based: These models classify time series based on the presence of discrim-
inative subsequences (shapelets). We use a shapelet transform classifier implemented
in sktime [20], which follows the approaches described in [21, 22].

e Dictionary-based: These models use a bag of words-like approach to base classifica-
tion on the number of occurrences of approximated subseries (patterns) [10]. For our
experiments we will use the Temporal Dictionary Ensemble (TDE) classifier [23], as it
is the state-of-the-art model for this category.



e Hybrid: Finally, we evaluate HIVE-COTE 2.0 [13], the most accurate known ensem-
ble model, and the state-of-the-art on the UCR archive [24]. HIVE-COTE integrates
classifiers from several categories, including TDE, DrCIF, Arsenal (an ensemble of
ROCKET models), and a shapelet transform classifier.

3 Learning Curves as Time Series

Time series classification (TSC) involves predicting a discrete target variable from a (po-
tentially multivariate) time series [13]. TSC methods have proven effective in domains such
as healthcare [25] and seismology [26], where sequential data carries critical information. In
this work, we adopt a similar perspective by treating learning curves as time series. While
learning curves are not time series in the traditional sense, they exhibit several defining
characteristics that justify this approach.

A time series is typically defined as "a set of data collected at usually equally spaced
points in time" [27]. Although learning curves are not indexed by time, the training set
size can act as a substitute for the time axis, since it increases in a fixed and monotonic
order. Additionally, while anchor points may not represent equally spaced intervals in terms
of training size, they are consistent across all curves. This consistency allows the treatment
of them as equally spaced time steps for the purpose of modeling.

One of the key challenges in applying TSC methods to learning curves stems from the
assumptions baked into many state-of-the-art models. Most of these models are developed
and benchmarked using the UCR archive [24], which has become the standard testbed for
TSC. However, the UCR archive has received criticism for its lack of diversity in sequence
characteristics [24]. In particular, it consists entirely of uniform-length time series, where
each instance has the same number of time steps. This feature represents an idealized
scenario that does not always reflect real-world data [28], and learning curves are a clear
example of this deviation, as their lengths can vary depending on the learner and dataset.
As a result, many of the models used in our experiments required learning curves to be
preprocessed into uniform-length sequences before training, prompting an exploration of
various preprocessing strategies. This distinction informed both the model selection and
experimental design in this study.

4 Experimental Setup

As previously mentioned, the experiments in this study are based on version 1.1 of the
Learning Curve Database (LCDB) [4]. To ensure robustness, the LCDB provides data
from 25 splits of learning curves for each learner in each dataset. To reduce the variance
introduced by individual splits and obtain a more stable representation of each curve, the
mean accuracy across these 25 splits was computed. This preprocessing step resulted in a
total of 6360 learning curves prior to any further modification.

Since the task involves classification, we evaluate model performance using five-fold strat-
ified cross-validation across all experiments. This approach ensures that class distributions
are preserved within each fold, mitigating the effects of class imbalance and improving the
reliability of the reported metrics. Additionally, in experiments 2 through 4, we included a
dummy classifier to provide a baseline for comparison and better contextualize our results.

A key challenge in working with these learning curves is that they vary in length, due
to differences in how many anchor points are present across datasets. In the context of this



study, the "length" of a curve refers to the number of accuracy values it originally contained,
before any padding was applied. Many time series classification models (including those used
in this research) require input sequences to be of equal length. To address this, all learning
curves were padded with zeros at the end to match the length of the longest curve. Notably,
the LCDB includes both error rate and classification accuracy curves for each learner. In
this work, we opted to use the accuracy curves, as zero-padding is more appropriate in that
context.

4.1 Grouping Classifiers For a Reasonably Difficult Classification
Task

Experiment 2-4 in this study involve multiclass classification tasks spanning all 24 learn-
ers from the LCDB. Initially, each learner was treated as a distinct class label. However,
this formulation proved overly challenging for most models: classification accuracies were
uniformly low, and performance differences between classifiers were too small to yield mean-
ingful comparisons.

In order to conduct more informative experiments, the task was reformulated by group-
ing learners into broader categories, thereby reducing the complexity of the classification
problem. The goal was to create a version of the task that remained non-trivial, yet allowed
for clearer differentiation among models and more interpretable results.

A total of six learner groups were constructed, with each group containing learners
exhibiting similar learning curve characteristics. The primary basis for this grouping was
the results from Experiment 1, where low pairwise binary classification accuracy between
learners indicated a high degree of similarity in their learning curves. These empirical
similarities were then supported, where possible, by theoretical or practical knowledge about
the underlying behavior of the respective learners. Additionally, care was taken to minimize
class imbalance among the groups. While complete uniformity was not always possible,
an effort was made to keep the number of learners in each group relatively even, ensuring
that no single group dominated the classification task due to data volume alone. The exact
grouping is as follows:

e Group 1: Perceptron, PassiveAggressive, SGDClassifier, SVC _linear
e Group 2: Decision Tree, ExtraTree, MLP
e Group 3: SVC_poly, SVC_rbf, ens.ExtraTrees, ens.RandomForest, KNN

e Group 4: MultinomialNB, ComplementNB, GaussianNB, BernoulliNB, NearestCen-
troid

e Group 5: RidgeClassifier, LogisticRegression, LDA
e Group 6: DummyClassifier, SVC _sigmoid, QDA, ens.GradientBoosting

For a more detailed explanation on the formulation of each group, see Appendix A.3

4.2 Specific Experiment Setups

Until now, this section has focused on the general setup that was applied collectively to
all experiments, or a group of them. Now, we will look into the specific setups of each
experiment.



Experiment 1 focused on binary classification between each possible pair of learners.
The binary classification was based on the sample-wise accuracy curves of the learners, and
curves below a length of 50 were removed from the dataset. For the binary classification
task, MiniRocket [16] was used as the classifier for its strong baseline performance and
computational efficiency. The experiment was conducted separately for the train, validation,
and test accuracy curves respectively.

Experiment 2 examined the trade-off between classifier performance versus increasing
minimum length cutoffs for curves. Unlike Experiment 1, this and the subsequent exper-
iments were multi-class classification tasks, where classifiers were trained to distinguish
among all 24 learners (grouped into 6 groups) rather than performing pairwise binary classi-
fication. In the context of the experiment, the minimum length cutoff means that all curves
that have a length below the minimum length cutoff point are discarded from the sam-
ple set. Specifically, we used validation accuracy curves in this experiment, as once again,
they are more independent to the training process compared to the test and train accuracy
curves [3]. Finally, to explore this trade-off, we train two classifiers: MiniRocket [16] and
FreshPRINCE [12].

Experiment 3 revolved around the idea that the different types of accuracy curves
provided to us by the LCDB [5], as well as the combinations of these curves, could provide
further distinguishability among the learners. To explore this idea, we conducted an experi-
ment using the MiniRocket [16] classifier, selected again for its strong baseline performance
and computational efficiency. We tested various combinations of learning curves by concate-
nating them into a single input sequence. Padding was applied in a consistent manner: each
curve was followed by zero-padding up to a fixed index, ensuring that the starting index of
each subsequent curve was aligned across all samples (e.g., the second curve always started
at index 133), resulting in uniform input lengths for the classifier. To maintain data quality,
only curves with a minimum length of 50 were included.

Experiment 4 expanded the scope to include a broad range of classifiers, represent-
ing all eight major time series classification (TSC) model categories outlined in Section 2.
The implementations of each of the algorithms used in this experiment was taken from the
sktime [20] library. See Appendix A.1 for the hyperparameter configurations of each model
used. In this experiment, classification was performed using a combination of training and
validation accuracy curves. This choice was informed by the results of the third experiment
(see Figure 3), where the train-+validation combination significantly outperformed single-
curve classification scores. Train-+validation was preferred over train+test, as validation
curves offer greater independence from the training process and the final evaluation [3]. Fur-
thermore, while incorporating all three curve types produced similar classification accuracy,
omitting test curves improved computational efficiency without sacrificing performance.

5 Results

To evaluate the distinguishability of learning curves across different learners, we conducted
a series of classification experiments using version 1.1 of the LCDB [4]. Each experiment
investigates a specific aspect of this question, from pairwise learner comparisons to model
type and input curve selection.



5.1 Experiment 1: Pairwise Binary Classifiers

One of the main research questions in this study is whether learning curves from differ-
ent learners can be reliably distinguished from one another. Given the 24 learners in the
LCDB, a multi-class classification approach across all learners was deemed infeasible due
to the complexity that such a task would introduce. Instead, a more targeted approach
was adopted: binary classifiers were trained for each possible pair of learners (a total of
276 pairs), allowing a focused evaluation into how distinguishable two learners are based on

their learning curves.
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The results are presented in Figure 1. A diverse range of accuracy values is observed
across learner pairs. Certain learner groups (such as variants of Naive Bayes) exhibit high
similarity, making them difficult to distinguish. Conversely, some learners, including the
DummyClassifier, SVC _sigmoid, and QDA, consistently yield high classification accuracy
across all pairings, suggesting that their learning curves are notably distinct from those of
other learners.

An additional observation emerges when comparing the structure of the classification ma-
trices derived from different types of accuracy curves (train, validation, and test). Learners
that exhibit similar validation accuracy curves tend to have similarly shaped test accuracy
curves, and vice versa, suggesting a strong alignment between these two curve types. How-
ever, the relationship between training accuracy curves and the other two is less consistent.
For instance, while DecisionTree and FaxtraTrees show similar training accuracy curves to
ensemble methods like ens. FxtraTrees and ens. RandomForest, their validation and test ac-
curacy curves remain more easily distinguishable. Notably, training accuracy curves tend to
yield higher classification accuracy overall, implying they are more effective at differentiating
between learners. Due to the high similarity between validation and test accuracy matrices,
the test accuracy matrix is not shown here to avoid redundancy and is instead included in
Appendix A.2. These observations highlight the importance of curve type when analyzing
learner similarity.

5.2 Experiment 2: Different Minimum Length Cutoffs

A key motivation behind this experiment is to investigate whether certain unique patterns
in learning curves, particularly those associated with ’ill’ behavior, tend to emerge only after
a sufficient number of anchor points. If this is the case, then shorter curves may contain
insufficient information for reliable classification, whereas longer curves may exhibit more
distinctive features.

As previously discussed, learning curves in the LCDB vary in length due to factors such
as differences in dataset sizes. It is important to understand how the minimum required
length of a learning curve impacts both the classification performance and the number of
usable samples. Intuitively, longer curves should offer better performance, as they provide
more temporal information. However, applying a length-based filter also reduces the avail-
able training data, potentially introducing issues such as class imbalance, overfitting, and
increased variance across validation splits. The results of this trade-off are shown in Figure 2.

From Figure 2, a general trend can be observed: increasing the minimum length cutoff
tends to improve classification accuracy. However, this improvement plateaus and eventually
reverses beyond a cutoff of approximately 90 anchor points. At this stage, the number
of eligible curves drops sharply, resulting in a smaller and potentially less representative
training set. This reduction not only diminishes model generalizability but also increases
variance across validation folds, as seen in the rising standard deviation beyond the 110-point
cutoff.

Some minor deviations from the overall trend are also observed. For instance, the rel-
atively low variance at the 100-point cutoff and a slight uptick in accuracy between the
110 and 120 cutoffs for the FreshPRINCE classifier may reflect randomness due to limited
sample sizes, rather than consistent performance gains.

Additionally, a dummy classifier was included as a baseline in this experiment. As an-
ticipated, its accuracy and variance remained constant regardless of the minimum length
cutoff applied. Specifically, the dummy classifier consistently achieved an accuracy of ap-
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for the FreshPRINCE (left) and MiniRocket (right) classifiers as minimum length cutoff is
increased.

proximately 0.236, with a standard deviation around 0.001 across all cutoff values. These
stable results were omitted from Figure 2 to maintain clarity and readability of the plots.

5.3 Experiment 3: Different Combination of Curves

Until this point, the experimental focus has primarily centered on validation accuracy curves.
This choice was partly motivated by the precedent set in the LC-PFN paper [3], where
validation curves were used for extrapolation since they are more independent compared
to training and test accuracy curves. However, upon examining the results of the pairwise
classification experiments for the training and test accuracy curves (see Figures 1 and 5),
we hypothesized that incorporating multiple types of curves might improve classification
performance. Notably, training accuracy curves appeared to differ more across learners,
whereas validation and test accuracy curves showed greater similarity. To explore this idea,
we tested various combinations of learning curves by concatenating them into a single input
sequence.

The results, summarized in Figure 3, reveal several key insights. First, classification
based on training accuracy curves alone outperforms using only validation or test accuracy
curves. This supports our initial hypothesis that training curves are more distinguishable
across learners. Second, the similarity between validation and test curves is reflected in their
comparable classification results; switching between them (e.g., validation-only vs. test-only,
or validation-+train vs. test+train) yields similar accuracies. This is further supported by
the observation that combining validation and test curves does not yield improvements over
using either curve individually.

Overall, the highest performance was achieved when training accuracy curves were com-
bined with either validation, test, or both. A t-test analysis confirmed that the combinations
train+validation, train+test, and all three curves significantly outperformed all other combi-
nations, while showing no statistically significant differences among themselves. In addition,
using only training accuracy curves was significantly better than using only validation, only
test, or validation+test. These findings suggest that training curves contain the most in-
formative signals for classification, and that combining them with other curve types may
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enhance performance without introducing redundancy.

5.4 Experiment 4: Model Comparison

The final experiment consists of comparing different time series classification (TSC) models
on the task of classifying learners based on the learning curves. This comparison helps
identify which model types are most effective at capturing the distinguishing features of
learning curves and provides insight into what makes learning curves unique.
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racy value written on top of the bars. Accuracy + standard deviation shown as error on the
bars. Baseline score of DummyClassifier indicated on the top right.

As shown in Figure 4, the best-performing model is MultiRocket [17], whose superior-

ity is statistically significant based on a paired t-test. Overall, feature-based time series
classifiers consistently outperformed other model categories. Notably, both MiniRocket [16]

10



and FreshPRINCE [12] achieved higher accuracy than HIVE-COTE 2.0 [13], a model widely
recognized as state-of-the-art on the UCR benchmark [24]. In contrast, the Temporal Dictio-
nary Ensemble (TDE) [23] performed substantially worse than the other models, suggesting
that dictionary-based approaches may be poorly suited for learning curve classification. The
weak performance of TDE may have also negatively impacted the ensemble performance of
HIVE-COTE 2.0, which incorporates TDE as a component model.

It is worth noting that several models, including Shapelet Transform, DrCIF, TDE, and
HIVE-COTE 2.0, were subject to training time limits of 2, 4, 4, and 12 hours respectively.
The time limits were put in place in order to maintain practical experiment runtimes. While
these constraints may have marginally reduced performance, prior studies indicate that these
models typically reach at least 99% of their full potential within such time limits [13]. As
such, the relative rankings observed here are unlikely to be significantly impacted by these
restrictions.

6 Discussion and Future Work

The results presented in Section 5 offer several insights that contribute to a deeper under-
standing of the behavior and structure of learning curves across different learners.

First, the pairwise classification experiment and the corresponding results in Figure 1 re-
veal consistent patterns of similarity and distinction among learners based on their training,
validation, and test accuracy curves. Several learner pairs, such as SVC _poly and SVC'_rbf,
ens. ExtraTrees and ens. RandomForest, and all variations of Naive Bayes classifiers exhibit
strong structural similarities across all three curve types, making them more difficult to
differentiate. In contrast, learners such as DummyClassifier, QDA, and SVC _sigmoid con-
sistently display highly distinctive curve patterns, yielding high classification accuracy in
pairwise comparisons. These observations are consistent with findings from the LCDB 1.1
paper [4], which identifies these same learners as being the most "ill-behaved." However,
our results suggest that ill-behavior alone does not fully explain similarity or distinctiveness
in learning curves. For instance, DecisionTree, ExtraTrees, and ens.GradientBoosting all
exhibit low rates of ill-behaved curves (1.5%, 1.9%, and 1.9% respectively for validation ac-
curacy curves), yet only the first two demonstrate high similarity in their validation accuracy
curves, indicating that other structural factors are also at play.

Another key observation is the comparatively high distinguishability of training accuracy
curves across learners, relative to validation and test accuracy curves. Interestingly, valida-
tion and test accuracy curves exhibit highly consistent structural alignment. Learners with
similar validation accuracy curves also tend to have similar test accuracy curves, and vice
versa. These relationships are further reinforced by the results in Figure 3, which show min-
imal performance gains when combining validation and test accuracy curves. This suggests
that many validation curve-based approaches developed in the context of LCDB [5] and LC-
PFN [3] may extend effectively to test accuracy curves with little modification. In contrast,
the distinctiveness of training accuracy curves presents a potential opportunity for future
work: their incorporation could enhance learner classification or provide complementary
insights not captured by validation or test accuracy curves alone.

The experiment in Section 5.2 examined how varying the minimum-length threshold
impacts classification performance. As anticipated, longer curves generally lead to higher
accuracy, as they provide the model with more informative input. However, setting the
threshold too high limits the number of usable samples, which can hurt performance due to
insufficient training data. Although the two classifiers used in this experiment showed minor
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differences in their behavior, both largely followed this overall trend. The results indicated
that a minimum length threshold in the range of 50 to 90 offered the best balance between
accuracy and variance.

Finally, in Section 5.4, we compared the performance of various TSC models for classi-
fying learning curves. Among all evaluated methods, MultiRocket [17] achieved the highest
accuracy, aligning with prior results showing that it is competitive with the state-of-the-art
on the UCR archive [24], including HIVE-COTE 2.0. Notably, the FreshPRINCE [12] clas-
sifier also demonstrated surprisingly strong performance. While FreshPRINCE is generally
considered a strong but relatively simple feature-based model, its performance on learning
curves exceeded that of more complex deep learning models such as InceptionTime [19],
which typically perform better on standard time series classification tasks [10].

These results suggest that feature-based classifiers, such as FreshPRINCE, DrCIF [13],
and MultiRocket (which incorporates first-order derivatives), are particularly effective for
learning curve data. This implies that global characteristics of curves (such as trend, slope,
and variability), may be more informative for distinguishing learners than localized temporal
patterns or precise pointwise differences. In contrast, deep learning models like Inception-
Time, which are optimized for capturing small-scale local behavior and temporal informa-
tion, may be less well-suited to the broader structural nature of learning curves. It is also
important to note that, while learning curves can be treated as time series for classification
purposes, they lack certain defining characteristics of traditional time series, such as season-
ality or periodicity. Furthermore, models that rely on strict temporal alignment (like the
distance-based shapeDTW [11]) struggle with the inherent noise and variability of learning
curves. This supports the conclusion that learning curves are better understood through
their high-level structure rather than precise alignment or local behavior.

It is important to acknowledge a limitation in the experiments of Section 5: hyper-
parameter tuning was not performed exhaustively for the TSC models. Instead, we used
general-purpose settings recommended by the model authors. This likely had the greatest
impact on more complex models, such as InceptionTime, which are more sensitive to hy-
perparameters. However, because no model received specialized tuning, the comparisons
remain fair. Moving forward, a promising research direction would be the development
of deep learning models tailored specifically to learning curves; models that do not rely
on time series assumptions, but instead focus on the unique structural characteristics of
learning curve data.

Overall, these findings emphasize the nuanced structure of learning curves and the im-
portance of selecting appropriate curve types and lengths when designing models or analyses
based on them. They also highlight several promising directions for future work, including
more systematic use of training curves and deeper investigation into curve behaviors beyond
those captured by traditional metrics of ill-behavior.

7 Conclusions

This work demonstrates that learning curves, commonly used to assess model performance
across increasing training set sizes, can reveal additional insights when analyzed through
the process of classification. By examining the training, validation, and test accuracy curves
available in the LCDB [5], we find that validation and test curves share strong structural
similarities, while training curves display distinctly different patterns. This suggests that
while validation accuracy has traditionally been the focus of learning curve research, test
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accuracy curves can serve a similar role, and incorporating training curves may offer new,
complementary perspectives.

A key methodological contribution of this study is the framing of learning curves as
time series, allowing us to apply a wide range of time series classification (TSC) methods to
distinguish between learners. Among the evaluated TSC approaches, feature-based models
performed best, likely because they emphasize global curve characteristics such as trend,
variability, and slope. In contrast, deep learning models and distance-based methods, which
rely more heavily on temporal alignment or local patterns, were less effective, likely due to
the noisy and non-periodic nature of learning curves. These findings highlight the need for
future research into models tailored specifically to learning curves, rather than generic time
series.

We also explored how the minimum number of curve points affects classification perfor-
mance. Our results indicate that longer curves provide more discriminative power, particu-
larly after a certain threshold of anchor points is reached. This finding aligns with previous
research [5] showing that certain types of ill-behavior, such as peaking, may only emerge
later in the learning process.

Finally, our results show that distinguishability is not limited to ill-behavior as a primary
differentiator between learners. Even learners with low rates of ill-behaved curves [4] can
be effectively distinguished, suggesting that additional, currently underexplored structural
features may contribute to differences in learning curves across learners.

8 Responsible Research

This research was carried out in alignment with the TU Delft Code of Conduct for Respon-
sible Research Practices [29]. In particular, it was guided by the university’s core values:
diversity, integrity, respect, engagement, courage, and trust. The following paragraphs out-
line the specific measures taken to follow these principles throughout the research process.

Ensuring the reproducibility of experimental results was a key objective throughout
this study. To support reproducibility, each experiment was executed multiple times to
account for variance and provide statistically robust results. Wherever randomness was
involved, a fixed seed was used to guarantee consistency across runs. Finally, all code and
implementation details have been made publicly available. The repository containing the
code used in this research can be accessed here. For more details regarding the repository,
see Appendix B.1.

All external works and sources that informed this research have been appropriately cited.
In addition, this thesis makes limited use of generative Al tools to support the formulation
and structuring of text. These tools were not used to generate ideas, design experiments,
or analyze data. A detailed overview of how generative AI was used can be found in Ap-
pendix B.2.

As with any machine learning research, data bias is an important consideration. The
experiments in this study are based on data obtained from the Learning Curve Database
(LCDB) [5], which provides prediction data from 24 classifiers across 265 datasets. Rather
than relying on a single training-test split, the LCDB includes 25 randomized splits at each
anchor point. This helps reduce variance and mitigate the effect of noise, contributing to
more reliable performance estimates. Moreover, because this work operates on learning
curves rather than raw data involving human inputs, it is less susceptible to certain forms
of bias typically associated with sensitive or demographic information.
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https://github.com/sinanbasaran/cse-3000

The broader objective of this research, and of ongoing work on LC-PFNs, is to improve
learning curve extrapolation. Better extrapolation techniques can support more efficient
model selection, early stopping strategies, and better-informed decisions about data acqui-
sition [1]. While increasing the efficiency and accessibility of machine learning has clear
benefits (such as reducing computational cost and democratizing access) it also carries eth-
ical considerations. Machine learning has already had a significant impact in fields such as
healthcare and education. However, the same advancements can be exploited by malicious
parties for harmful purposes, such as generating deepfakes, conducting automated phishing
attacks, or reinforcing algorithmic bias in surveillance systems. As such, it is essential that
improvements in efficiency are accompanied by continued attention to ethical standards,
transparency, and the development of regulations.
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A Experiments

This section holds additional figures and information regarding the experiments of this study.

A.1 Model Hyper-Parameters

Table 1: Hyper-parameters for each model used in the experiments (as implemented in
sktime)

Model Hyper-Parameters (defaults)

FreshPRINCE n_estimators=200, random_state=42,
default_fc_parameters=comprehensive

DrCIF n_estimators=500, min_interval=4,
n_intervals=None, base_estimator=CIT,

random_state=42, time_limit_in_minutes=240

MiniRocket num_kernels=10000, max_dilations_per_kernel=32,
random_state=42

MultiRocket num_kernels=10000, max_dilations_per_kernel=32,
n_features_per_kernel=4, random_state=42

Arsenal num_kernels=2000, n_estimators=25,
rocket_transform=’rocket’

InceptionTime n_epochs=1500, batch_size=64, n_filters=32,
use_residual=True, use_bottleneck=True,
bottleneck_size=32, depth=6, kernel_size=40,
random_state=42

ShapeletTransformClassifier n_shapelet_samples=10000, batch_size=100,
random_state=42, transform_limit_in_minutes=120

TDE n_parameter_samples=250, max_ensemble_size=50,
max_win_len_prop=1, min_window=10,
randomly_selected_params=50, dim_threshold=0.85,
max_dims=20, random_state=42,
time_limit_in_minutes=240

HIVE-COTE Includes components: TDE, DrCIF, ShapeletTransform,
Arsenal
Each component uses its own default hyper-parameters as
above

random_state=42, time_limit_in_minutes=720
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A.2 Experiment 1: Test Accuracy Pairwise Matrix
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Figure 5: Pairwise binary classification accuracy matrix for test accuracy curves. Exact
accuracy for the binary classifier trained on learner A and learner B is written on their
intersection.

A.3 Group Formulation: in Detail

For experiments 2-4, we simplified the classification task by grouping the 24 learners into
six distinct categories. These groups were constructed by considering similarities in valida-
tion accuracy curves, theoretical relationships among models, and trying to minimize class
imbalance across groups.

Group 1 was defined primarily based on empirical similarities in their validation ac-
curacy curves, as seen in Figure 1. These similarities were somewhat unexpected from a
theoretical perspective but were consistent across multiple runs.

Group 2 includes Decision Tree and ExtraTree, which are closely related both theoret-
ically and empirically. MLP was added to this group primarily to reduce label imbalance,
though it also shares some surface-level similarity in performance patterns with the decision
tree-based models.
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Group 3 was formed based on both theoretical and empirical similarities. The support
vector classifiers (SVC_poly and SVC _rbf) naturally fit together, while the ensemble meth-
ods (ens.ExtraTrees and ens.RandomForest) are structurally similar and commonly used for
tabular data. Interestingly, KNN also exhibited similar validation accuracy curves and was
thus included in this group.

Group 4 contains all variants of the Naive Bayes classifier, which consistently showed
similar validation performance. NearestCentroid was grouped here due to its close resem-
blance in behavior to the Naive Bayes models, despite its differing underlying assumptions.

Group 5 includes RidgeClassifier, LogisticRegression, and LDA, all of which are lin-
ear models that operate similarly in terms of classification approach and yield comparable
learning dynamics.

Group 6 consists of outlier models whose learning curves were clearly distinguishable
from all other learners. While there is no strong theoretical link among the models in this
group, they were grouped together due to their shared dissimilarity with all other groups.

B Responsible Research Considerations

This section contains additional information regarding the responsible research considera-
tions of this work.

B.1 Reproducibility and the Codebase

All code necessary to reproduce the experiments in this study is publicly available at:
https://github.com/sinanbasaran/cse-3000. Each of the four main experiments is im-
plemented in a dedicated Jupyter notebook:

e experiment-pairwise-classification.ipynb - implements Experiment 1 (Pairwise
Binary Classifiers)

e experiment-different-lengths.ipynb - implements Experiment 2 (Different Mini-
mum Length Cutoffs)

e experiment-combined-curves.ipynb - implements Experiment 3 (Combined Curve
Types)

e experiment-model-comparisons.ipynb - implements Experiment 4 (Model Compar-
isons)

To ensure full transparency and reproducibility:
e All figures used in the paper are available in the plots directory.

e All classification scores, metrics, and experiment outputs are stored in the scores
directory.

e Trained models for all experiments are saved in the trained_models directory.

The only exception is HIVE-COTE 2.0, which is excluded from the trained_models direc-
tory due to its size (approximately 14 GB per fold, across 5 folds). All other models are
available and can be used directly to replicate our results.
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B.2 Usage of Generative Al

The following table outlines the use of generative Al tools during the writing of this paper:

Task

Yes

No

Rewriting and polishing paragraphs

v

Help with LaTeX formatting (e.g., clickable references, figures, tables)

v

Designing experiment structure

Implementing the models or running the experiments

Formulating research question or hypothesis

Analyzing results or drawing conclusions

Writing any section from scratch

NENESENEN

Table 2: Overview of generative Al usage during the writing of this paper.

For further clarification, the writing process was conducted as follows:
e FEach section was initially written independently by the author.

o Generative Al was then used selectively to improve phrasing and polish specific para-

graphs.

e The resulting output was subsequently carefully reviewed and revised as needed
to ensure consistency with the author’s writing style, intent, and the overall content

of the paper.

An example prompt to rewrite a section is as follows:

"Rewrite the following paragraph on related work, do not add additional infor-
mation, and make sure to use simple language, similar to the one already used.

<section>"
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