%
TUDelft tese
DELFT UNIVERSITY OF TECHNOLOGY

RESEARCH MINOR
TA-MI-077

Mincomp - a program to calculate a likely

mineralogical bulk composition from XRD
and XRF results

Author:
Jaap REGELINK

7th of November 2014

Mincomp - a program to calculate a

likely mineralogical bulk composition
from XRD and XRF results

RESEARCH MINOR
TA-MI-077

Faculty:
Faculty of Civil Engineering and Geosciences

Department:
Department of Geoscience and Engineering

Author:
Jaap Regelink

Studentnumber:

4064526

Date:
7th of November 2014

Superuvisor:
Dr. K.H.A.A. Wolf

Commission:
Drs. M.M. van Tooren
Dr. K.H.A.A. Wolf

Date Presentation:
25th of November 2014

All rights reserved. No parts of the material protected by this copyright notice may be reproduced or
utilized in any form or by any means, electronic or mechanical, including photocopying, recording or by
any information storage and retrieval system, without written permission from the copyright owner. The
author accepts no liability or responsibility for any damage or loss resulting from the use of Mincomp.

Abstract

A lot of X-ray diffraction and X-ray fluorescence tests are performed in the department of Geoscience
and Engineering to calculate a rocks likely mineralogical bulk composition. The old program used for
this task was considered not user friendly enough, therefore an updating process of the old Mincomp
program has been performed.

During this updating process attention has been paid to justify the presence of the minerals in the
Mineral Inventory of the program, and to the programming sequence by comparing Mincomp to other
available programs, in order to write a new program.

The results were compared to other available programs when writing of the program was finished, to
identify differences between the programs and identify the shortcomings of Mincomp, as well as a justi-
fication of the used method.

In general, the results of Mincomp are comparable with the results of other available programs, however
the results on some samples differed in the calculated amount of Kaolinite and Illite, this is mainly caused
by the allocation order of the program. It is recommended to investigate this difference a bit more and
possibly revise the algorithm that is used at this moment.

Contents

1 Introduction
2 Inventory of minerals
2.1 Mineral overview e
3 Inventory of programs
3.1 Sednorm L e e e
3.2 LPNorm e e
3.3 Moduscalc e
3.4 Minlith0
3.5 A2M L L e e
3.6 Comparison of the programs
4 Algorithm
4.1 Program workflow
4.1.1 Step 1 - Provide metadata and check data
4.1.2 Step2-XRDinputdata
413 Step3-XRFinputdata.
4.1.4 Step 4 - first allocation stage L
4.1.5 Step 4 - second allocation stage
4.1.6 Step 5 - third allocation stage
4.1.7 Step 6 - Conversion of data and final result
5 Results
5.1 Comparison with Sednorm
5.1.1 Comparison with all minerals selected
5.1.2 Comparison with exactly the same minerals
5.1.3 Combined graphs and tables
5.2 Comparison with Minlith
5.2.1 Comparison with all minerals selected
5.2.2 Comparison with exactly the same minerals
5.2.3 Combined graphs and tables oL 0oL
5.3 Comparison with LPNorm
5.3.1 Comparison with all minerals selected,
5.3.2 Comparison with exactly the same minerals
5.3.3 Combined graphs and tables L.
54 Moduscalc e e
5.4.1 Comparison with all minerals selected
5.4.2 Comparison with exactly the same minerals
5.4.3 Combined graphs and tables
6 Discussion
7 Recommendations
7.1 Programming-related recommendations oL oL oL
7.2 Algorithm-related recommendations L 0L

11

13
13

17
17
18
19
19
20
20

21
21
21
22
22
22
22
23
23

25
25
27
29
31
33
34
35
36
37
37
39
41
42
43
45
47

51

Chapter 1

Introduction

This report deals with the updating project of the Mincomp computer program designed by K.H.A.A.
Wolf. In order to do so, a literature study was performed and updated data were used to renew the
program.

The need for a consistent mineral quantification, based on X-ray diffraction and X-ray fluorescence data
of rock sampleswas the main reason for starting this project. The older Mincomp program performs
this job really well, but was considered not user-friendly enough and not up-to-date enough to be used
throughout the department. Therefore an updating process has been carried out.

Mincomp is designed for calculating a normative mineral composition of sedimentary rocks, and

focuses on the minerals mainly found in sedimentary rocks, therefore the inventory of minerals included
in Mincomp will be discussed. The reason to include a specific mineral, but also the chemical composition
of a specific mineral will be discussed, the ideal chemical composition is used mostly. Apart from the
main minerals found in sedimentary rocks, some less general minerals are also included such as glauconite
and anorthite. More rare minerals like Manganese-bearing minerals are not included in this program.
Apart from the inventory of minerals, an inventory of Mincomp comparable programs is also included.
The differences in mineral composition, inventory of minerals and calculation process will be discussed.
Programs in this inventory differ in the calculation method, making use of Linear Algebra or using an
Algorithm. Differences in the mineral inventory included in the different programs were also observed,
as some of the compared programs were designed to calculate the likely mineralogical bulk composition
of a specific type of rock in mind.
Finally Mincomps results will be compared to the results of the Mincomp comparable programs, to create
a benchmark and validate the results of Mincomp. Extra attention has been paid to the differences
in calculated amounts of minerals, as differences were sometimes quite significant. For each available
dataset, Mincomp has been run to calculate a mineralogical bulk composition in two ways, to validate
its results.

10

Chapter 2

Inventory of minerals

2.1 Mineral overview

Mincomp was developed for analyzing sedimentary rocks, therefore the list of minerals is limited to
common sedimentary minerals. A couple of trace minerals are included, such as rutile, but most of the
trace elements are not included in this program. This is because the focus of the program is to give
a likely mineralogical bulk composition; the allocation of trace elementsc which make up 1 % of the
samplec was not considered a primary aspect of the program.

There are some minerals that have a variable chemistry, for example chlorite and montmorillonite. In
these cases the empirical formula has been used in order to calculate the amount of these minerals.

Principal minerals in the Earth’s Crust

Mineral Presence in %, based on the actual mineral composition
Quartz 12
Potash feldspars 12
Plagioclase feldspars 39

Micas)
Amphiboles 5
Pyroxenes 11
Olivines 3.6

Clay minerals and Chlorite 4.6
Calcite and Aragonite 1.5
Dolomite 0.5
Magnetite and Titanomagnetite 1.5
Other minerals like Garnet, Kyanite, etc. | 4.9

Coal and hydro-carbons accessory
Total 100

Table 2.1: Abundance of minerals in the Earth’s Crust. (Ronov and Yaroshevsky, 1967)

From the data that Ronov and Yaroshevsky (1967) present in table 2.1 the most important sedimen-
tary minerals were selected, this list was extended by the information Wolf (2006) presented. Individual
minerals were researched based on the works of Deer et al. (1966), Anthony et al. (1995) and Barthalmy
(2013). The included minerals are presented in table 2.1, and are discussed in detail in this chapter.

11

Mineral Chemical formula p M \Y%
[g/cm3] [g/mol] [cm3/mol]
Pyrite FeS, 5.01 119.99 23.95
Hematite Fe, 04 5.3 159.7 30.13
Rutile TiO, 4.25 79.87 18.79
Gibbsite Al(OH), 2.34 78.004 33.34
Goethite FeO(OH) 38 88.858 23.38
Halite NaCl 2.17 58.44 26.93
Calcite CaCOq 2.7 100.09 36.93
Dolomite CaMg(COs;), 2.84 184.41 64.93
Magnesite MgCO, 3 84.32 28.11
Siderite FeCO4 3.96 115.86 29.26
Anhydrite CaS0O, 2.97 136.95 46.11
Apatite Cay(PO,)5(OH) 3.19 506.318 158.72
Chlorite FeMg, Al(Si;Al)O,,(OH)g 2.65 587.384 221.65
Glauconite K, 6Nag osFeq ;Mg 4 Al 5515 §O4,(OH), | 2.67 426.93 159.90
Muscovite K,Al,(SigAl,)O4(OH), 2.82 796.652 282.50
Kaolinite AL,Si,0,(0OH), 2.6 258.172 99.30
Ilite KAl (Si;Al)O,,(OH), 2.75 398.326 144.85
Montmorillonite | Cag 17Nag 51 Mgg 33A1; 6751,014(OH), 41 | 2.35 383.77 163.30
Quartz Si0, 2.62 60.09 22.94
Albite NaAlSi;Og4 2.62 262.24 100.09
Anorthite CaAl,Siy, Og 2.73 279.02 102.21
Orthoclase KAISi;Oq4 2.56 278.35 108.73
Water H,0 0.998 18.016 18.05
Organic Matter | CH 75500 04650.004N0.013 - 13.794 -

Table 2.2: Mineral list, formulas from Deer et al. (1966), density from Barthalmy (2013)

Mineral weight is calculated with element weights from Tro (2010). Mineral densitys are the averaged
values from Barthalmy (2013).

Pyrite FeS, If Sis present in the XRF data, this trace element is allocated to Pyrite. Sulphur usually
is present in very small amounts, so it is allocated previous to the bulk in allocation stage 1.

Hematite Fe,O; Hematite is a key component in iron ores, and is accountable for the common red
coloration of rocks (Deer et al., 1966). Hematite is calculated using excess iron, or if present in XRD
analysis.

Rutile TiO, As Ti usually only occurs as a trace element, it is allocated in the first stage to Rutile.
Other programs use Anatase, but Rutile is more common in sediments. (Wolf, 2006)

Gibbsite A1(OH); The aluminahydroxide Gibbsite is one of the three main components of bauxites
and laterites (Deer et al., 1966). It can be used for excess Al, but was not available in the first version
of MINCOMP.

Goethite FeO(OH) The iron-hydroxide Goethite is also incorporated in this program, Goethite com-
monly occurs as a weathering product from other iron-bearing minerals, but also accumulates as a
precipitate from marine waters. In some iron ores it is the main component. (Deer et al., 1966)

Halite NaCl The salt Halite is also common in sedimentary rocks. It can occur by evaporation of
seawater, which leads to the deposition of Halite (Deer et al., 1966), in this program, all chlorine is
allocated to Halite.

12

Calcite CaCO; Calcite is one of the most common minerals on earth, as the main mineral in most
limestones. It occurs as a primary precipitate and in the form of fossil shells. (Deer et al., 1966) Calcite
can be calculated with Ca, when there is excess Ca after alumina-silicate allocation, or if presence is
proven from XRD data or thin-sections.

Dolomite CaMg(CO3), Dolomite is another common mineral in limestones, it can form as a primary
mineral but is more common as secondary mineral when Calcite or Aragonite reacts with Magnesium
(Deer et al., 1966). Dolomite can be calculated when excess Ca or Mg is present, or if presence is proven
from XRD data or thin-sections.

Magnesite MgCO, If excess amounts of Mg are present after allocation stage 2, it can be allocated to
Magnesite. Otherwise, Magnesite is only allocated if presence is proven from XRD data or thin-sections.

Siderite FeCO5; With Siderite as well as the other carbonates, it is usually only allocated if it is
present from XRD data or thin-sections. Another case is an excess amount of iron after allocation stage
2, and a high enough total weight loss to compensate for the CO,.

Anhydrite CaSO, Anhydrite is used instead of Gypsum, because the attached water is allocated to
the total weight loss. Anhydrite is calculated if SO4 is measured by the XRF-test.

Apatite Cag(PO,)3(OH) Apatite is not uncommon in sedimentary rocks, it occurs as detrital sedi-
mentary mineral. (Deer et al., 1966; Wolf, 2006) Fluorine occurs in many common rock-forming minerals
which occur in both igneous and sedimentary rocks, such as apatite, silicates such as muscovite, and a
range of amphiboles and mica minerals. Substitution of the OH ™ ion is commonplace. (Salminen et al.,
2005) Fluorine is by far the most abundant halogen in sedimentary rock types. Clastic sediments can
contain up to percentage level amounts of fluorine. (Salminen et al., 2005)

However, Calcium-Apatite or Hydroxyapatite is used instead of the more common fluor-apatite, this is
because fluorine is usually only measured in very low amounts in the XRF analysis, and the current
version of Mincomp doesn’t support a variable chemistry.

Chlorite FeMg,Al(SizAl)O,,(OH)g Chlorite is a common mineral in argillaceous sediments, in
which it can occur as authigenic or detrital mineral. Because of the size of the crystals it is usually very
difficult to characterize the minerals.

For Chlorite, the ideal formula of Clinochlore is used.

Glauconite K, 4Na, (sFe, Mg, Al ;Si; ;O0,0,(OH), Glauconite is a sheet-silicate which occurs
almost exclusively in marine sediments, particularly greensands (Deer et al., 1966; Anthony et al., 1995),
and is therefore considered in this program. Because of the variation in chemical formula, the empirical
formula presented at the website Webmineral.com is used.(Barthalmy, 2013)

Muscovite K,Al,(SigAl,)0,,(0OH), Muscovite is a very common mineral in igneous rocks, but less
common in sedimentary rocks as initially believed. It is often mixed with chlorite and montmorillonite.
(Deer et al., 1966)

Kaolinite Al,Si,O;(OH), Probably the most common clay mineral is Kaolinite, it is formed prin-
cipally by the hydrothermal alteration or weathering of feldspars and other silicates. Kaolinite isn’t
subject to much variation.

Illite KA1,S(SizAl)O,4(OH), Illite is a very common clay mineral if many shales and mudstones,
but can also occur in limestones. It can be deposited after weathering of silicates, but can also be formed
during diagenesis. (Deer et al., 1966) Here Illite is calculated using K.

Montmorillonite Ca,, ;,Na, ;Mg 33Al; 4;S1,0,7(OH), 4; Montmorillonite, a member of the smectite-
group, is a very common clay mineral, and widely found in soils and shales which have resulted from
weathering of basic rocks. Montmorillonite will only form if there is enough Magnesium available. (Deer

et al., 1966) Since the mineral can have great variability, the empirical formula for Montmorillonite from
(Deer et al., 1966) is used.

13

Quartz SiO, One of the most common minerals in the world, a high amount of quartz is often present
in sedimentary rocks. Mincomp calculates the amount of quartz after the allocation of alumina-silicates,
all excess Si is allocated to Quartz.

Albite NaAlSi;Og Albite and Anorthite are end-members of the plagioclase group, both are incor-
porated in the mineral list. Albite is a common authigenic mineral and sedimentary mineral (Deer et al.,
1966) and is therefore included.

The amount of Albite can be calculated with Na.

Anorthite CaAl,Si,Og The other end-member of the plagioclase group, Anorthite, is also present
in the program. Since Anorthite is the first mineral that is formed when the magma cools down, it is
also the most vulnerable to weathering, and therefore less likely to occur in a sedimentary rock. If the
presence of Anorthite is proven by the XRD test, it can be calculated with Ca.

Orthoclase KAISi;Og The K-feldspar Orthoclase is usually only calculated if its presence is proven
by the XRD test. It is a very common mineral in igneous rocks, but it can also be present in argillaceous
sediments as a weathered mineral. The weathering products of Orthoclase are used for the formation of
different clays.

14

Chapter 3

Inventory of programs

The goal of normative analysis is to determine the mineralogy of rocks from their bulk chemical com-
position. A norm is a calculated inventory of mineral abundances in a rock, and is accurate when these
approach or equal the actual mineral amounts, collectively referred to as the mode. (Caritat et al., 1994)
There have been developed a number of computer programs to calculate these norms for sedimentary
rocks over the last decades, for example: Sednorm (Cohen and Ward, 1991) , Moduscalc (Laube et al.,
1996) , LPNorm (Caritat et al., 1994) , A2M (Posch and Kurz, 2007) and Minlith (Rosen et al., 2004).
All programs obviously have in common that they calculate a mineral norm, but there are some differ-
ences between the programs.

The biggest difference between the available programs lies in the calculation methods, Sednorm and
Minlith rely on an algorithm of allocating different element-oxides to different minerals, in a pre-defined
routine. The others rely on Linear Algebra to solve a system of z equations with z unknown variable,
this of course results in different outcomes.

Linear programming calculation methods often try to find a "best-fit’ approximation to the sample (Laube
et al., 1996) while algorithm-based programs rely more on the experience of the user. It must be stressed
that different solution techniques generally give different results. (Rosen et al., 2004)

Both methods have specific advantages and disadvantages, while linear algebra is a more sophisticated
calculation method and provides room for statistical routines to, for example, estimate the degree of
reliability, (Laube et al., 1996) it usually provides no room for experience-based operator input.
Algorithm based programs have the downside that the allocation process is rigid and predefined, and
therefore allow less variation in chemical composition and the list of minerals that is used for calculation
(Caritat et al., 1994). However, these programs do provide room for experience-based operator input
(Cohen and Ward, 1991), the operator therefore can influence the calculation method based on extra
knowledge of the sample.

Following this introduction a discussion about several available programs will follow in the next sec-
tions.

3.1 Sednorm

Developed in 1991 by Cohen and Ward, Sednorm was one of the first programs developed to calculate
a normative mineral composition. It uses a predefined allocation routine to allocate element-oxides to
certain minerals. It was also one of the first computer programs that gave some space for user-input.
Some of the operator choices that could be made were the distribution of K into Muscovite/Illite or into
K-feldspar, but also the Ca:Na ratio in Smectite could be set.

The developers have chosen a rather small selection of minerals that are incorporated in the calculation
sequence, this is because they claim these minerals make up the bulk content of most sediments. (Cohen
and Ward, 1991)

15

S-Pyrite

S-Gypsum l

1 -
2
il o
/ Ca- Caicite

v ¢ | Mg-Magnesite

EEme

g:.:a__ Smectite
tre.Me * 27 Fe-Siderite

\]CO,—CarbonatUs"
@
S 7

o .

\ K,CaNa-=Feldspar l K -Muscovite
[———

K =lllite
Si-=Quartz
Al- Gibbsite Al,Si=Kaolinite i
Ti-Anatase
Fe,Mn-Hematite :
{ H20-Water

Figure 3.1: Flowchart for Sednorm. (Cohen and Ward, 1991)

Sednorm options available in calculation sequence

Option | Function

Distribute K into Muscovite/Illite

Include or exclude feldspar

Set distribution of K Muscovite/Illite : Feldspar in ratio

Incorporate sulphur as sulfide(Pyrite) or as sulphate(Gypsum)

Include or exclude smectite

Set ratio of Ca:Na in Smectite in ratio

Set ratio of Mg:Fe in Smectite in ratio

Distribute Mg initially into Dolomite or Smectite

O 00| | O UY = W| DN —

Distribute Fe initially into Smectite or Siderite

Availability of CO, data

Fix HyO at the initial concentration

Do or do not review options selected after calculation

Table 3.1: Sednorm options available in calculation sequence. (Cohen and Ward, 1991)

3.2 LPNorm

Developed in 1993 by (Caritat et al., 1994), LPNorm uses linear algebra to calculate the normative
mineral composition. The program was developed, bearing in mind the drawbacks of a fixed algorithm
method. The developers therefore tried to overcome these drawbacks.
rigid allocation, the inability to take chemical variability into account and the restricted list of minerals
available for calculation.
The program creates a system of equations and calculates a 'best-fit’ solution to the problem. Since this
sometimes can result in unsatisfactory results (in terms of high slack wt%), the objective function also

16

They mention the fixed and

can be maximized. In this case, the program tries to find a solution with as less slack wt% possible.
(Caritat et al., 1994)
Here, slack refers to the percentage of unallocated weight.

3.3 Moduscalc

Developed (Laube et al., 1996), Moduscalc calculates the normative mineral composition with linear
algebra. Therefore a system of equations in the form Ax = b is generated, with the vector A containing
the minerals, and the vector x containing the individual weight portions. Because this system is usually
overdetermined, the number of element-oxides is greater than the number of minerals, it can not be solved
exactly. To overcome this problem, Moduscalc tries to calculate a 'best-fit’ solution to the problem.
Apart from calculating a normative mineral composition, Moduscalc also calculates the likelihood of the
solution, as well as the quality of calculation. (Laube et al., 1996)

3.4 Minlith

Minlith is a newer computer program, developed by (Rosen et al., 2004). Minlith uses an experience-
based algorithm to calculate the normative mineral composition. It is aimed at mature sediments, but
can be used, with care, for younger sediments. The algorithm is built based on a reference database of
600 samples, instead of user-experience. Also in this program the operator-input is limited. In order to
comply to the statistical data from the reference database, different mineral assemblages are pre-defined
and the computer program calculates which assemblage matches the sample the most. (Rosen et al.,
2004)

Input data, in wt %:
Si0,= ...etc

A

Conversion to molecular quantities:
'Si' = wt % SiO,x 10000 / 60.0843 etc

Y

Allocation stage |
(minor mineral components)

Estimation of ferriferous coefficient (F),
and hence chlorite composition

A

Allocation stage |l
(alumina-bearing minerals)

Allocation stage Il
(carbonates, oxides, silicates)

Conversion to wt %, for each mineral:
wt % of mineral = amount of mineral (mol. qouantities)
x molecular weight of mineral / 10000

A

Recalculation, so mineral
weight percentages sum to 100 %

Figure 3.2: Flowchart for Minlith. (Rosen et al., 2004)

17

3.5 A2M

A2M is the newest program discussed in this report developed (Posch and Kurz, 2007). This program also
uses linear algebra to calculate the normative mineral composition. A2M differs from the other programs,
apart from the most likely norm, it calculates all possible outcomes from the system of equations. These
are then represented as a convex polyhedron in the solution space. This polyhedron contains all possible
solutions to the set of linear equations.

However, all minerals is not completely true, A2M also uses a pre-defined list of minerals, but it does
calculate all the different options. (Posch and Kurz, 2007)

Less knowledge about the sample generally results in very big deviations in the possible outcomes, the
result is not precise.

3.6 Comparison of the programs

Most of the papers discussing the different programs show correlation graphs, in which the correlation
between the calculated normative mineral composition and the actual mineral composition is shown.
Most authors refer to other programs and make comparisons between them, but unfortunately only the
authors of LPNorm showed a real data comparison between LPNorm and Sednorm. These results were
close to eachother, the main difference was the weight percentages of Quartz and Kaolinite. But results
were generally alike. In chapter 5, Mincomp will be compared to the other programs.

Program Method Minerals | Intuitive | Variation in chemical composition
Sednorm Algorithm 18 yes no

LPNorm Linear Algebra | 10 No semi

Moduscalc | Linear Algebra | 12 No No

Minlith Algorithm 25 No semi

A2M Linear Algebra | oo No yes

Mincomp | Algorithm 22 semi no

Table 3.2: Comparison of available programs.

18

Chapter 4

Algorithm

The algorithm can be separated into different steps, according to the flow diagram of Mincomp. Since
Mincomp was written from scracth, the procedure is explained in this chapter.

4.1 Program workflow

Change mineral data

Declare sample information:
-user
-sample reference
-name output file

Correct data check

Mineral select mode:

Select minerals individually -batch
-individual

\ 4

XRF input data |«

v

Calculate:

-oxide wt% - Allocation of minerals
-element wt% ld (multiple stages)

-weight loss

v

Final result

Figure 4.1: Flowdiagram Mincomp.

4.1.1 Step 1 - Provide metadata and check data

As the user starts the program, either from the .exe in Windows or in a Linux shell, the program asks
to provide metadata about the user and the sample, to make it easier to look up the results after the
result has been calculated.

19

Mincomp then displays the inventory of minerals, with the used densitys and molar weights. The user
can change these values if he likes, but it is not necessary for the program to function.

4.1.2 Step 2 - XRD input data

The data gained from XRD and XRF tests are not readily usable for the program. For example, they
could be delivered in a .docx or .pdf file and these files can’t be read by the program.

The XRD data has to be inserted first, the program will prompt a choice for included minerals in the
calculation process.

The user can choose between Batch and Individual mode. When choosing Batch the program will include
all minerals in the calculation process and tries to calculate an amount for each mineral. When choosing
Individual mode the user can individually select minerals which will be included in the calculation process.
The Batch mode is useful when knowledge about the sample is scarce, the results from Mincomp can
give a first insight in a likely mineralogical bulk composition. The Individual mode is useful when there
is better knowledge about the rock’s mineral content, as only the minerals present in the rock can be
selected and included in the calculation process, yielding a more accurate result.

4.1.3 Step 3 - XRF input data

To insert the XRF results into Mincomp is the next step. The program will ask for the amount of the
following element oxides, in order of increasing element weight: F, Na,O, MgO, Al,O4, SiO,, P,Os,
P, SO4, S, Cl, K,0, CaO, TiO4 and Fe,O5. The data from an XRF analysis is usually in the form of
weight percentages element-oxides, for example: 33,2 wt% Al,O5. The XRF input data is converted to
molar quantities since Mincomp doesn’t calculate with molar percentages, but with molar quantities. A
sample weight has to be entered in order to convert to molar quantities, when this field is left blank,
Mincomp then uses a default weight of 1000.0mg.

4.1.4 Step 4 - first allocation stage

The allocation of minerals is split into 3 stages, with in the first stage the allocation of trace minerals.
These are common sedimentary minerals which usually contain the amount of the elements allocated in
stage 1. The whole amount of these elements is allocated to these trace minerals. The following minerals
are allocated:

’ Mineral \ Control oxide ‘
Pyrite S
Rutile Ti
Halite Cl
Anhydrite | SO4
Apatite P

These minerals are allocated to the corresponding trace elements, and therefore allocated first.

4.1.5 Step 4 - second allocation stage

During the second allocation stage the alumina-silicates are allocated, this process is less straightforward
than the first allocation stage, and consists of more minerals. If different minerals with the same con-
trolling oxide are proven to be present from the XRD results, then arbitrary choices in allocation have
to be made. For example: Muscovite and Illite are both calculated based on the available amount of
K, 0, since it is not possible to quantify the individual amounts of these minerals based on XRF data, an
arbitrary distribution of K,O has to be made. The user can specify this distribution and is not bounded
by the options provided by the program. The following minerals are allocated:

20

’ Mineral \ Control oxide
Chlorite Mg, Fe
Glauconite K,Na,Mg
Muscovite K
Illite K
Montmorillonite | Ca,Na,Mg
Albite Na
Anorthite Ca
Orthoclase K

4.1.6 Step 5 - third allocation stage

With the trace elements and the alumina-silicates allocated, the remainder is usually made up from
quartz and carbonates. There are still a few options available in the third allocation stage. Excess
Al,O4 can be allocated to Gibbsite or Kaolinite, excess Fe,O5 can be allocated to Hematite or Siderite,
excess CaO can be allocated to Calcite or Dolomite and excess MgO can be allocated to Magnesite
or Dolomite. The availability of these options depend on the selected minerals for calculation and the
availability of a specific element in this allocation stage. When different minerals with the same element
have to be calculated, an arbitrary division has to be made; this is explained in section 4.1.5. The third
allocation stage consists of the following minerals:

’ Mineral \ Control oxide ‘
Hematite | Fe
Gibbsite Al
Goethite Fe
Calcite Ca
Dolomite | Ca,Mg
Magnesite | Mg
Siderite Fe
Kaolinite | Al
Quartz Si

4.1.7 Step 6 - Conversion of data and final result

The contents are calculated with molar quantities, since the input data were provided in weight percent-
ages, the output data is converted back to weight percentages.

Since the minerals won’t exactly add up to 100 % the data are normalized to 100 %. Bear in mind that
the outcome is a likely mineralogical bulk composition and that the calculation process is based upon
some assumptions. Therefore the result is not an exact match to the rocks mineral content. The final
result is presented in both weight percentages and volume percentages of the sample, also a graph is
made to quickly review the result of the program.

21

22

Chapter 5

Results

Mincomp has been tested for usability and reliability, but comparison with similar programs is the most
important part to verify results. Rock sample data presented by other authors are used to calculate a
result with Mincomp and this result is compared to the outcome of other programs.

The comparison with each program is divided into two parts. The first part is a comparison with

Mincomp with all minerals included in the calculation sequence. This way, Mincomp tries to calculate
an amount for each mineral specified in it’s calculation list. The result is not necessarily accurate but
could provide some first insights in a possible mineralogical bulk composition.
The second part is a comparison with Mincomp with exactly the same minerals as were calculated in
the other program, this has been carried out to minimize differences in the calculation process and
therefore minimize the differences between the results. The aim is to calculate an accurate result which
doesn’t differ that much from the results of other programs. Differences are acceptable, but have to be
explainable.

The results of Mincomp are compared with the results of other programs by the use of the datasets
presented by the authors of Sednorm (Cohen and Ward, 1991) , as they were one of the first developers
of a normative calculation program, most other programs also refer to this dataset, therefore this was
the easiest way to compare results.

Caritat et al. (1994) also used this data-set for comparison with their program, LPNorm, they used the
Bersham Mudstone (Nicholls, 1962) for comparison.

Rosen et al. (2004) didn’t use the Sednorm dataset for reference, but the authors presented another
dataset for testing, this set is included in this report, since Mincomp has been comparised with Minlith
as well.

Posch and Kurz (2007) didn’t present any test result for A2M unfortunately, so a comparison was not
possible. This was also the case with the program Modan of Paktunc (1998), they didn’t present test
results, so comparison with Modan is also not possible.

5.1 Comparison with Sednorm

Cohen and Ward (1991) used the following datasets:

23

Carbonate-altered Bersham Mudstone | Average sedimen-
lithic siltstone | (Nicholls, 1962) tary rock (Garrels
(Ward et al., 1990) and Mackenzie,
1971)

Element oxide | wt% wt% wt%

Na,O 0.8 0.6 0.9

MgO 1.8 0.3 2.6

A1,0, 15.5 20.6 14.6

Si0, 52.5 62.6 59.7

P,0O4 0.2 0.2 0.0

SO, 0.04 0.02 0.0

Cl 0.0 0.0 0.0

K,O 1.2 3.3 3.2

CaO 8.9 0.3 4.8

TiO, 0.8 0.9 0.0

Fe,O4 4.1 1.1 4.8

MnO 0.1 0.02 0.0

H,O 1.5 4.8 3.4

CO, 11.2 0.9 47

Table 5.1: Datasets presented by Cohen and Ward (1991), for the program Sednorm.

24

5.1.1 Comparison with all minerals selected

Carbonate-altered lithic siltstone

wt%
0 5 10 15 20 25 30
T T T T T T T
Pyrite | : 8 |
Hematite :300'3 Sed%rm -
Rutile ; %’; Minc%]mpl -
Gibbsite | | 0! B
Goethite | : 8 -
Halite | | B
Calcite : '] 11?,)§7 -
Dolomite — : 8 -
Magnesite :O:I 3.8 |
Siderite | 3%362 -
Anhydrite L (;).48 10-2 |
Apatite ; (()J%N |
Chlorite —| ‘0:] 6.55 -
Glauconite | : 8 -
Muscovite :]I:Iw 5 -
Kaolinite | : 126.7 9899 |
MMlite | 125 4 B
Montmorillonite : 8 -
Quartz — : 13 1 3.5
Albite | 2 = B
Anorthite | : 8 -
Orthoclase | 1:] 174 1 'l 9.9 1 1 | | -

Figure 5.1: Results for Carbonate-altered lithic siltstone dataset (Ward et al., 1990).

When we take a look at the result of Mincomp in comparison with the result of Sednorm, we see that in
general the results are much alike and that the differences mainly occur because every mineral is included
in Mincomp’s calculation process for this run. There is not much difference between the result for the
minerals that are mainly present in the sample, the differences between Kaolinite and Quartz are only 3%.

Mincomp doesn’t calculate an amount for Magnesite, contrary to Sednorm, this is because magnesium
is allocated to Chlorite in an earlier stage. Sednorm uses Magnesite to allocate excess Magnesium.
Sednorm shows a higher percentage of Siderite, and does include Hematite as well, contrary to Mincomp.
ITron is partly allocated to Chlorite in the second allocation stage, excess iron is allocated to Siderite only.
Since it is not possible to quantify the exact amounts of Muscovite and Illite when both are present in
the calculation process, an arbitrary division had to be made. In this case an even distribution has been
chosen. The sum of the weight percentages of Muscovite and Illite is equal to the amount of Muscovite
calculated by Sednorm.

Contrary to Sednorm, Mincomp has calculated an amount for Albite, since it was included and enough
weight was available to allocate an amount to Albite.

Mincomp calculated a lower amount of Orthoclase than Sednorm, in Mincomp Orthoclase is calculated
after allocation of potassium to Illite and Muscovite, opposite to Sednorm which calculates Orthoclase
before Illite and Muscovite.

25

Bersham Mudstone

wt%
0 5 10 15 20 25 20 o5
T T T T : : : ‘
Pyrite | : 3' 1072]
Hematite :300'4 Sed%rm I
Rutile E 829 Min§mp1 I
Gibbsite { | I
Goethite | : 8 I
Halite : 8 I
Calcite F(?Q I
Dolomite | : 8 I
Magnesite ::'00'6 I
Siderite | :1:'0(1)54 I
Anhydrite | | (2)‘74 = I
Apatite ; %i? I
Chlorite | -2 - I
Glauconite | : 8
Muscovite — ‘[0 616 I
Kaolinite —| : 1916 ;
Tlite |, m——— 3,
Montmorillonite — : 0 1 8.3
e osr
Albite | -2 - I
Anorthite | l] %.1] I
10
Orthoclase ! T 6.4 | | 1 | 1 | |

Figure 5.2: Results for Bersham Mudstone dataset (Nicholls, 1962).

The results for the Bersham Mudstone dataset (Nicholls, 1962) show roughly the same differences as for
the Carbonate-altered lithic siltstone dataset (Ward et al., 1990).

We see a difference in the amount of Chlorite, Mincomp calculates an amount because Chlorite is in-
cluded in the calculation process, while Sednorm doesn’t.

For the Bersham Mudstone the authors didn’t include Muscovite in the calculation process but decided
to allocate all K,O to Illite. In Mincomp this amount is distributed to three different minerals; Mus-
covite, Illite and Orthoclase, hence the difference.

Mincomp does calculate a higher amount for Kaolinite, this is because of its position in the calculation
process.

The difference in wt% Montmorillonite can be explained by the difference in the used chemical composi-
tion, Sednorm uses NaMgAl;[SigOq0](OH), while Mincomp uses Cag 1, Nag 5, Mgg 33A1; 6751,0,5(0H), 4, -
Since there is almost no CaO present in the sample, and the little amount of CaO is used to allocate
Anhydrite, there is none left to calculate an amount for Montmorillonite.

26

5.1.2 Comparison with exactly the same minerals

Carbonate-altered lithic siltstone

wt%
0 5 10 15 20 25 30 35
‘0 T T T T T T T
Pyrite | : 0 |
| —
. 00.3
Hematite | 0 Sedlr?orm |
4| =o7 — |
Rutile = 0.8 Min(impg
Gibbsite | | 0! B
. 10
Goethite | 0 |
Halite : 8 |
Calcite : '] 1155%7 |
Dolomite : 8 |
Magnesite — ??6 |
| ——
Siderite | 56923 |
Anhydrite | L g 48102 L
Apatite —| E] %Z}N |
Chlorite || B
Glauconite : 8 |
. e §
Muscovite | 1.98 |
Kaolinite | : 126.7 Cslias
Wite | | 0 B
. . 10
Montmorillonite | 0 |
Qs |- S
Albite | B
. 10
Anorthite - 0 |
Orthoclase | ::] 334 1 9.9 |
[| | | | | | |

Figure 5.3: Results for Carbonate-altered lithic siltstone dataset (Ward et al., 1990).

The results for the Carbonate-altered lithic siltstone dataset are much alike, the only big difference is in
Kaolinite and Orthoclase.

Mincomp calculates a higher amount of Kaolinite, this is because of the allocation order as earlier
explained, the amount of Orthoclase is lower because of the lower availability of Al,O4 after allocation
of Kaolinite.

27

Bersham Mudstone

wt%
0 5 10 15 20 25 30 35
I —o T T T T T T
Pyrite | ‘ é 10 |
|-
. 004
Hematite 0 Sedlr?orm |
g | = 0.9 [=] |
Rutile = 089 MinC:O]mpz
Gibbsite | | B
. 10
Goethite | 0 |
Halite | | B
Calcite ?8'_210,2 [
Dolomite | : 8 |
Magnesite | = 0.6 579 |
Siderite | E 11'%_)9 |
Anhydrite : 8 L
Apatite | ; %17 |
Chlorite : 8 |
Glauconite | : 8 |
Muscovite | : 8 |
Kaolinite | : 1 21.6 34050
Ilite |, e 318
. . : 1 8.3
Montmorillonite | —_— |
Quartz | : : 29'.9?%14 |
Albite || B
. 0]
Anorthite | 0 |
Orthoclase : 8 |
I I I I I I I I

Figure 5.4: Results for Bersham Mudstone dataset (Nicholls, 1962).

For most of the minerals there are only minor differences in the results, the differences for Kaolinite,
Illite, Montmorillonite and Quartz are a greater.

Sednorm calculates a lower amount of Kaolinite than Mincomp, and a higher amount of Illite, while the
chemical composition of Illite is different from the used chemical composition in Mincomp, the allocation
order is the main reason for the difference in the amount of these minerals.

28

5.1.3 Combined graphs and tables

Table 5.2: Program results for Carbonate-altered lithic siltstone data (Ward et al., 1990). Mincomp-1
refers to the first run with all minerals included. Mincomp-2 refers to the second run with individually

selected minerals.

Mineral Sednorm | Mincomp-1 | Mincomp-2
wt% wt% wt%
Pyrite 0.0 % 0.0 % 0.0 %
Hematite 0.3 % 0.0 % 0.0 %
Rutile 0.7 % 0.7987 % 0.7987 %
Gibbsite 0.1 % 0.0 % 0.0 %
Goethite 0.0 % 0.0 % 0.0 %
Halite 0.0 % 0.0 % 0.0 %
Calcite 15.3 % 15.3738 % | 15.3738 %
Dolomite 0.0 % 0.0 % 0.0 %
Magnesite 3.8 % 0.0 % 3.7607 %
Siderite 6.2 % 4.6344 % 5.9320 %
Anhydrite 0.0 % 0.05478 % | 0.05478 %
Apatite 0.4 % 0.4739 % 0.4739 %
Chlorite 0.0 % 6.5493 % 0.0 %
Glauconite 0.0 % 0.0 % 0.0 %
Muscovite 5.0 % 2.4895 % 4.9791 %
Kaolinite 26.7 % 28.9876 % | 34.4543 %
Illite 0.0 % 2.4895 % 0.0 %
Montmorillonite | 0.0 % 0.0 % 0.0 %
Quartz 31.5 % 28.134 % 31.216 %
Albite 0.0 % 6.7657 % 0.0 %
Anorthite 0.0 % 0.0 % 0.0 %
Orthoclase 9.9 % 1.7395 % 3.3398 %

29

Mineral Sednorm | Mincomp-1 | Mincomp-2
wt% wt% wt%
Pyrite 0.04 % 0.0 % 0.0 %
Hematite 0.4 % 0.0 % 0.0 %
Rutile 0.9 % 0.8945 % 0.8945 %
Gibbsite 0.0 % 0.0 % 0.0 %
Goethite 0.0 % 0.0 % 0.0 %
Halite 0.0 % 0.0 % 0.0 %
Calcite 0.2 % 0.0 % 0.06 %
Dolomite 0.0 % 0.0 % 0.0 %
Magnesite 0.6 % 0.0 % 2.7151 %
Siderite 1.4 % 0.6488 % 1.5873 %
Anhydrite 0.0 % 0.0274 % 0.0 %
Apatite 0.4 % 0.4739 % 0.4739 %
Chlorite 0.0 % 4.7284 % 0.0 %
Glauconite 0.0 % 0.0 % 0.0 %
Muscovite 0.0 % 9.1615 % 0.0 %
Kaolinite 21.6 % 33.8644 % 34.3226 %
Illite 34.8 % 9.1614 % 27.484 %
Montmorillonite | 8.3 % 0.0 % 7.4068 %
Quartz 314 % 28.266 % 29.93 %
Albite 0.0 % 2.5306 % 0.0 %
Anorthite 0.0 % 0.1116 % 0.0 %
Orthoclase 0.0 % 6.4014 % 0.0 %

Table 5.3: Mincomp and Sednorm results compared on Bersham Mudstone dataset. Mincomp-1 refers
to the first run with all minerals included. Mincomp-2 refers to the second run with individually selected
minerals.

Correlation for Carbonate-altered lithic siltstone

50 T T T T .
R2=1 o Mincomp?2
A Sednorm
40 |- . ¢ LPNorm
Mincompl
m
g 30 - n
5 8
5
£ 20 n
102 .
0 | | | |
0 10 20 30 40 50

wt% Mincomp?2

30

Correlation for Bersham Mudstone

50 T T T T N
R2 =1 o Mincomp?2
a2 Sednorm
40 1 . ¢ LPNorm
17 % Mincompl
" 17, 7
g 30 =
=
ks
IS al6
+ 20 s
2 o
16
104 =
(&2 L | | |
0 10 20 30 40 50

wt% Mincomp2

Figure 5.5: Results for Bersham Mudstone data. 16 - Kaolinite, 17 - Illite, 19 - Quartz.

5.2 Comparison with Minlith

Rosen et al. (2004) used the following dataset:

Element oxide | Weight percentage
Na,O 0.43 %
MgO 3.04 %
Al O, 17.9 %
Si0, 66.57 %
P,O; 0.01 %
P 0.0 %
SO, 0.0 %

S 0.026 %
Cl 0.0 %
K,O 413 %
CaO 0%
TiO, 0.73 %
Fe,O, 0.85 %
FeO 3.01 %
(FeO), 3.78 %
MnO 0.01 %
C 0.11 %

Table 5.4: Chemical Analysis from Mumme et al. (1996) for the program Minlith

The authors of Minlith use a ferriferous coefficient to determine the amount of iron in the mineral
Chlorite, therefore they calculate FeO, with : FeO, = 0.9 - FeO + Fe, Oy,

In order to compare, the total Fe is calculated and divided by 2, to estimate the amount of Fe,O4 since
Mincomp doesn’t include FeO.

Based on these values, they calculated the mineral quantities of Carbon, Rutile, Pyrite, Albite, Chlo-
rite, Illite, Orthoclase, Serpentine, Pyrolusite and Quartz. In the following table, the result calculated
with Mincomp is also presented. Note, that some of the calculated minerals in Minlith are not present
in Mincomp and vice-versa, therefore comparison is unfortunately not that accurate.

The authors of Minlith used Serpentine Mg,[Si,O5](OH), and Pyrolusite MnO, , while Mg is used for
allocating serpentine, and Mn is used for Pyrolusite.

31

Manganese is not included in Mincomp, Mincomp is focused on accurate calculation of the bulk of the
material, not on trace amounts of rarer elements, therefore Pyrolusite is not included. Serpentine also
isn’t included in Mincomp, serpentine is usually present in magmatic rocks for example in Dunite (Deer
et al., 1966), but is not that common in sedimentary rocks. Magnesium is used for calculating Dolomite
or Montmorillonite. Since there is only one test result available for Minlith a comprehensive comparison
is not possible, also the lack of several minerals (Muscovite, Glauconite, Hematite and Anhydrite) in
Minlith does not support the comparison, instead two less common minerals are included.

In general the results are quite similar but a more thorough comparison would have been favourable.

5.2.1 Comparison with all minerals selected

S3 sample
wt%
0 5 10 15 20 25 30 35 40 45
; 5 1072Y T T T T T T T T
Pyrite | =
yrite 1) 4 79 102 —
Hematite : 8 M:ll b =
S| =074 inlit B
Rutile DOO'73 v = :
S incomp |
Gibbsite 0
. 10
Goethite | 0 =
Halite | | -
Calcite : 8 =
. 10
Dolomite | 0 =
Magnesite : 8 =
. . 10
Siderite | 118 =
Anhydrite : 8 =
. 10
Apatite —| o =
.| e 948 |
Chlorite L ' 11.07
Glauconite : 8 =
. 10
Muscovite - = 1155 =
.. |
Kaolinite - 1 90.83 4;05
Illite - 1155 e
Montmorillonite | : 8 =
: 1 40.58
Quartz — [— 1 32.01
. | — |
Albite | 1.81 =
Anorthite : 8 =
o 0.38
Orthoclase | —————— 8.07 |
Carbon | : 8'11 =
Serpentine —| : é -1072 =
Pyrolusite ::(') 0.92 =
| | | | | | | | | |

Figure 5.6: Results for S3 dataset (Mumme et al., 1996).

The big difference between results is the distribution of potassium between different minerals. In the
first Mincomp run every mineral was included, therefore the available amount of potassium has been
distributed between Illite, Muscovite and Orthoclase. Minlith doesn’t divide the available mass between
different minerals like Mincomp does. The amount of Illite is therefore much lower in Mincomp than
in Minlith. Another reason is a difference in the molecular formula of Illite, the authors of Minlith
incorporate iron and magnesium as well, resulting in a much greater molar mass of the mineral.
Mincomp calculates an amount for Kaolinite, while Minlith didn’t incorporate Kaolinite in their calcu-
lation.

32

5.2.2 Comparison with exactly the same minerals

wt%
0 5 10 15 20 25 30 35 40 45
T
I
I
|
|

T T T T T T T T T
Pyrite |

=
Hematite =
Minlith
Rutile =

=
Gibbsite | Mincomp2

Goethite |
Halite |
Calcite |
Dolomite —
Magnesite
Siderite
Anhydrite
Apatite -

Chlorite | : -

Glauconite
Muscovite |

Kaolinite |

Tllite

1117.33

Montmorillonite |

1 40.58
1 42.3

Albite | o =

Quartz —

Anorthite

Orthoclase |

1 11.97

Carbon

Serpentine —|

— g ——

o= Olo OCO
—_

1]
=
©
o

Pyrolusite | : =
| | | | | | |

o

Figure 5.7: Results for S3 dataset (Mumme et al., 1996).

When we look at the second run with Mincomp, the differences become smaller. In general the results
are very similar, minor differences in most minerals, and only great differences in Illite and Orthoclase.
As K,O is divided between Orthoclase and Illite, the amount of Illite becomes much larger than the
amount of Illite calculated by Minlith, Minlith also incorporates Mg and Fe in the chemical composition
of Illite. (Rosen et al., 2004)

33

5.2.3 Combined graphs and tables

Mineral Minlith | Mincomp-1 | Mincomp-2
wt% wt% wt%
Pyrite 0.05 % 0.0479 % 0.0479 %
Hematite - 0.0 % 0.0 %
Rutile 0.74 % 0.7268 % 0.7268 %
Gibbsite 0.0 % 0.0 % 0.0 %
Goethite 0.0 % 0.0 % 0.0 %
Halite 0.0 % 0.0 % 0.0 %
Calcite 0.0 % 0.0 % 0.0 %
Dolomite 0.0 % 0.0 % 0.0 %
Magnesite 0.0 % 0.0 % 0.0 %
Siderite 0.0 % 1.1818 % 0.0 %
Anhydrite - 0.0 % 0.0 %
Apatite 0.0 % 0.0% 0.0 %
Chlorite 9.48 % 11.0722 % 11.0722 %
Glauconite - 0.0 % 0.0 %
Muscovite - 11.5515 % | 0.0 %
Kaolinite 0.0 % 20.8293 % 0.0 %
Illite 44.05 % | 11.551 % 17.327 %
Montmorillonite | 0.0 % 0.0 % 0.0 %
Quartz 40.58 % | 32.905 % 42.303 %
Albite 3.68 % 1.8094 % 3.6189 %
Anorthite 0.0 % 0.0 % 0.0 %
Orthoclase 0.38 % 8.0713 % 11.9678 %
Carbon 011 % | - -
Serpentine 001 % |- -
Pyrolusite 092% | - -

Table 5.5: Minlith norms compared to Mincomp on Mumme et al (1996) S3 sample. Mincomp-1 refers to
the first run, with all minerals included. Mincomp-2 referst to the second run, with individually selected
minerals.

Correlation for S3 sample

50 T T T T .
R2 =1 e Mincomp?2
17 & 4 Minlith
40 |- 4 8 o Mincompl
%) 019
g 30 =
=
ks
IS 16
< 207 2
15
10 |- A o1y =
o
O | | | |
0 10 20 30 40 50

wt% Mincomp2

Figure 5.8: Results for S3 Sample. 15 - Muscovite, 16 - Kaolinite, 17 - Illite, 19 - Quartz.

34

5.3 Comparison with LPNorm

5.3.1 Comparison with all minerals selected

Carbonate-altered lithic siltstone

wt%
0 5 10 15 20 25 30
T T T T T T T
Pyrite | : 8 |
Hematite | |0 = B
ematite 0 LPNorm
. =] =
Rutile - = |
i 08 Mincompl
Gibbsite | 0 |
. 0]
Goethite | 0 |
Halite : 8 |
Calcite | :] 1'5127 I
Dolomite : 8 |
Magnesite :0:' 4 |
| ——
Siderite | 4 636 |
Anhydrite | L 2 45102 L
Apatite —| ‘:100 47 |
Chlorite | Y == B
Glauconite : 8 |
Muscovite | |:] 9,49 110 |
Kaolinite | : 1 26 9899 |
. 10
Illite 2.49 |
Montmorillonite | : 8 |
;) 31
Quartz S 13 3
| ——
Albite | - B
Anorthite : 8 |
Orthoclase | L 174 |
I : I I I I I I

Figure 5.9: Results for Carbonate-altered lithic siltstone dataset (Ward et al., 1990).

The results are in general alike, with only big differences in the amounts of Muscovite, Orthoclase, Chlo-
rite and Magnesite.

The difference in the amounts of Magnesite and Chlorite is explained by the distribution of MgO to
Chlorite in allocation stage 2, therefore no MgO is available for allocation of Magnesite in allocation
stage 3.

The difference in Muscovite is because of the distribution of K,O to Muscovite, Illite and Orthoclase,
Minlith allocates all K,O to Muscovite for this sample.

35

Bersham Mudstone

wt%
0 5 10 15 20 25 30 35
{0 T T T T T T T
Pyrite | o |
. 10 g‘
Hematite - 0 LPNorm |
. = 1 [
Rutile = |
[:0] 0.89 Mincompl
oy |
Gibbsite | 0 |
Goethite : 8 |
Halite | | B
Calcite : 8 |
. 0]
Dolomite | 0 |
Magnesite | : 8 |
Lo | E==m2 |
Siderite = 0.65
. 10
Anhydrite 974102 L
. 10
Apatite | 5047 |
. | ———
Chlorite —— 473 |
Glauconite | : 8 |
L | o -
Muscovite " 1 9.16
N 1 17 B
Kaolinite L 3556
. ; 1 3
Illite -, 1 0.16 D
Montmorillonite | : 8 |
[1 36
Quartz — : 58 07
. |0 i
Albite — 953
. 0]
Anorthite | 0.11 |
10
Orthoclase | ——— 6.4 |
I I I I I I I I

Figure 5.10: Results for Bersham Mudstone dataset (Nicholls, 1962).

The difference in Muscovite/Illite/Orthoclase is explained earlier, and is because of the distribution of
K,O to these three minerals, therefore Mincomp calculates an amount for Orthoclase and Muscovite
while Minlith only included Illite.

The amount of Kaolinite is a lot higher, because of the allocation of Kaolinite prior to Illite.

The amount of Quartz is lower in the results of Mincomp, this is because a great deal of SiO, is allocated
to alumina-silicates.

36

5.3.2 Comparison with exactly the same minerals

Carbonate-altered lithic siltstone

wt%
0 5 10 15 20 25 30
T T T T T T T
Pyrite | : 8 |
H .| 10 E L
ematite 0 LPNorm
Rutile | — = B
e [0.8 Mincomp?2
Gibbsite { |) B
. 10
Goethite | 0 |
Halite | | B
Calcite : : 1'5127 |
Dolomite | : 8 |
Magnesite | I:I3476 |
E—]
Siderite 1 ——— g()‘% n
Anhydrite | : 8 L
Apatite | : 8 L
Chlorite : 8 |
Glauconite : 8 |
Muscovite | :]' 5%6 |
Kaolinite : 1 26 5945
iite || B
. . 10
Montmorillonite | 0 |
Quartz — : 5306]
E—|
Albite 1+ ———— 6777 n
Anorthite | : 8 |
Orthoclase | : 8 |
I I I I I I I

Figure 5.11: Results for Carbonate-altered lithic siltstone dataset (Ward et al., 1990).

The result of both programs are much alike, there are only minor differences in the results for Kaolinite
and Quartz. The surplus of Kaolinite is compensated by a lower amount of Quartz.

37

Bersham Mudstone

wt%
0 5 10 15 20 25 30 35
I 0 I T T T T T T
Pyrite | |
K .
Hematite | 0 LPI\?orm |
. =1 [
Rutile = |
::0] 0.89 Mincomp2
Gibbsite | 0 |
Goethite : 8 |
Halite | | B
Calcite L % 10-2 |
Dolomite : 8 |
Magnesite : 8 |

Siderite 0 6% |
Anhydrite : 8 |

Apatite ‘DOO 47 |

| ——

Chlorite | 0 B
Glauconite : 8 |
Muscovite | : 8 |

Kaolinite | : 117 3551
Ilite | ey 136
Montmorillonite | : 8 |
Quartz — : D 136
Albite | B

. 10

Anorthite - 0 |
Orthoclase : 8 |

I I I I I I I I

Figure 5.12: Results for Bersham Mudstone dataset (Nicholls, 1962).

The obvious differences are observed for Kaolinite and Illite, Mincomp calculating a 15% higher amount
for Kaolinite and a 9% lower amount for Illite. This is again due to the allocation used in the program,
a higher amount is allocated to Kaolinite this way.

The lower amount of Quartz is due to the fact of the high amount of SiO, allocated to both Illite and
Kaolinite.

38

5.3.3 Combined graphs and tables

Mineral LPNorm | Mincomp-1 | Mincomp-2
wt% wt% wt%
Pyrite 0% 0.0 % 0.0 %
Hematite 0% 0.0 % 0.0 %
Rutile 1% 0.7987 % 0.7987 %
Gibbsite 0% 0.0 % 0.0 %
Goethite 0% 0.0 % 0.0 %
Halite 0% 0.0 % 0.0 %
Calcite 16 % 15.3738 % 15.8842 %
Dolomite 0% 0.0 % 0.0 %
Magnesite 4% 0.0 % 3.761 %
Siderite 6 % 4.6344 % 5.932 %
Anhydrite 0% 0.05478 % 0.0 %
Apatite 0% 04739 % | 0.0 %
Chlorite 0% 6.5493 % 0.0 %
Glauconite 0% 0.0 % 0.0 %
Muscovite 10 % 2.4895 % 9.958 %
Kaolinite 26 % 28.9876 % 29.446 %
Illite 0% 2.4895 % 0.0 %
Montmorillonite | 0 % 0.0 % 0.0 %
Quartz 31 % 28.134 % 28.056 %
Albite 7% 6.7657 % 6.7654 %
Anorthite 0% 0.0 % 0.0 %
Orthoclase 0% 1.7395 % 0.0 %

Table 5.6: LPNorm norms compared to Mincomp, Carbonate-altered lithic siltstone. (Ward et al., 1990)

Mineral LPNorm | Mincomp-1 | Mincomp-2
wt% wt% wt%
Pyrite 0% 0.0 % 0.0 %
Hematite 0% 0.0 % 0.0 %
Rutile 1% 0.8945 % 0.8945 %
Gibbsite 0% 0.0 % 0.0 %
Goethite 0% 0.0 % 0.0 %
Halite 0% 0.0 % 0.0 %
Calcite 0% 0.0 % 0.06 %
Dolomite 0% 0.0 % 0.0 %
Magnesite 0% 0.0 % 0.0 %
Siderite 2% 0.6488 % 0.6488 %
Anhydrite 0% 0.0274 % 0.0 %
Apatite 0% 0.4739 % 0.4739 %
Chlorite 6 % 4.7284 % 4.7284 %
Glauconite 0% 0.0 % 0.0 %
Muscovite 0% 9.1615 % 0.0 %
Kaolinite 17 % 33.8644 % 32.244 %
Illite 36 % 9.1614 % 27.484 %
Montmorillonite | 0 % 0.0 % 0.0 %
Quartz 36 % 28.266 % 31.217 %
Albite 0% 2.5306 % 0.0 %
Anorthite 0% 0.1116 % 0.0 %
Orthoclase 0% 6.4014 % 0.0 %

39

Table 5.7: Program results for Bersham Mudstone dataset (Nicholls, 1962).

Correlation for Carbonate-altered lithic siltstone

50 T T T T X
R2 =1 o Mincomp?2
a2 Sednorm
40 . ¢ LPNorm
Mincompl
199)
g 30 |- =
B 8
X
< 20 2
10 a0 |
0é L L L L
0 10 20 30 40 50

wt% Mincomp2

5.4 Moduscalc

The authors of Moduscalc Laube et al. (1996) included two datasets with their article, it are two samples
of cuttings of a hydrothermally altered siliciclastic sedimentary rock. They focus on the chemical end-
member of the alteration process. For example, May (1994) showed that the alteration process was
dominated by the mineral reaction: chlorite — kaolinite + dolomite + ankerite + siderite.

However, many minerals are not included, which makes a comparison difficult and inaccurate. The
authors included two extra minerals; Rhodochrosite and Al-Celadonite. Al-Celadonite makes up for
relatively hihg percentages of the sample, which doesn’t benefit the comparison.

The XRF-results of Laube et al. (1996) state the presence of FeO, while Mincomp uses Fe, O3, the number
of moles of FeO was divided by 2 to estimate the amount of Fe,O4.

Element oxide | Sample LM41 | Sample LM50
wt% wt%
F 0 0
Na,O 0.11 0.16
MgO 1.48 1.18
Al,O4 18.43 17.01
Si0, 59.41 61.28
P,O4 0.14 0.14
P 0 0
SO, 0 0
S 0 0
Cl 0 0
K,O 4.84 4.15
CaO 0.28 0.24
TiO, 0.93 0.9
Fe,O4 0 0
FeO 3.072 5.956

Table 5.8:

Chemical analyses from Laube et al. (1996) for Moduscalc

40

5.4.1 Comparison with all minerals selected

LM41 sample

wt%
T T T T T - ;
Pyrite | : 8 |
. 10 =
Hematite - 0 = |
Moduscalc
. 10 us
Rautile | — 0.93 = B
. . 0 Mincompl
Gibbsite | 0 B
Goethite : 8 B
Halite -| | B
. 10
Calcite | 0 B
Dolomite | : 8 B
Magnesite | : 8 i
Siderite ::] 3.38 19.4 |
Anhydrite : 8 i
Apatite —| ‘DOO 33 B
Chlorite | 0 539 B
Glauconite : 8 |
Muscovite | ‘[0 13 B
Kaolinite | 1153 — |
i ' 1 26.4
Mlite -, 1354 6 B
Montmorillonite | : 8 |
Quartz : e 1 32.5
Albite |10 B
Anorthite ?004?) B
Orthoclase ‘[0 XV B
Rhodochrosite | :2100.5 |
Al-Celadonite ; 0 115.1 B
| | | | | | |

Figure 5.13: Results for LM41 dataset (Laube et al., 1996).

The difference in Siderite is explained by the allocation of Fe,O5 to Chlorite as well. Since all minerals
were included and a sufficient amount of MgO was available, Chlorite was allocated.

Again, greater differences in the amounts of Muscovite/Illite and Kaolinite. This is of the distribution
of K,O to Muscovite, Illite and Orthoclase instead of only Illite in Minlith.

The higher amount of Kaolinite, due to the allocation order, makes up for the lower amount of Quartz.
Mincomp doesn’t include Rhodochrosite and Al-Celadonite.

41

LM50 sample

wt%
0 10 15 20 25 30 35
10 T T T ‘ ‘ ‘
Pyrite | 0 B
| —
Hematite | : 8 s B
Moduscalc
Rutile 0 = B
u = 0.89 inco
epe | o Mincompl |
Gibbsite 0
. 10
Goethite | 0 B
. 10
Halite | 0 B
. 10
Calcite + 0 B
. 10
Dolomite | 0 B
Magnesite : 8 B
o : 19.7
Siderite | ——— 3 45 i
Anhydrite : 8 B
. 10
Apatite - B 0.33 B
. 10
Chlorite | ———— 4.29 i
Glauconite | : 8 B
. 10
Muscovite - 1 11.55 B
N 115.4 .
Kaolinite ¢ 121.99
. : 1 23.8
llite — 1 11.55 B
Montmorillonite | : 8 |
; 1 37.9
Quartz [129.96 B
. 10
Albite | 0.45 B
Anorthite | ?0022 B
10
Orthoclase |~ 5 o7 i
Rhodochrosite | :300'4 B
Al-Celadonite ; 0 12 B
I | | I I ! . 1

Figure 5.14: Results for LM50 dataset (Laube et al., 1996).

We see differences in Siderite, this is due to the fact that a percentage of the available iron is allocated
to Chlorite, which isn’t present in Moduscalc.

The difference in Illite is due to the fact that when several potassium-bearing minerals are present in the
calculation list of Mincomp, the total amount of potassium is evenly distributed to the different minerals.
The amount of Kaolinite is slightly higher, due to the allocation order of Mincomp.

There is a small difference in the amount of Quartz, this is because more SiO, is used to calculate
Kaolinite, Illite, Muscovite and Orthoclase.

42

5.4.2 Comparison with exactly the same minerals

LM41 sample

wt%
10 15 20 25 30 35 40

Pyrite |

=

Hematite =

Moduscalc
| —

Rutile

=
L Mincomp?2
Gibbsite

Goethite
Halite
Calcite

Dolomite |

_——— - o
ot

[elellolellelelelelelelle)alle)olioYol{o)

Magnesite | 2 |

H!

Siderite = : =
Anhydrite

=
~
[

Apatite —|

@

Chlorite
Glauconite

Muscovite |

cCooocoo 000

115.3

Kaolinite |

119.45

1 26.4

Illite

140.63

oo

Montmorillonite |

1 32.5

Quartz —

124.94
Albite | n

S B e

— - o
oile
NP
ot

© o
\V]

Anorthite y =

oo

Orthoclase

o
=]
t

Rhodochrosite | : =
1 15.1
I I I I I I I I

Al-Celadonite

(=]} | Ren)

Figure 5.15: Results for LM41 dataset (Laube et al., 1996).

The amount of Kaolinite is a bit greater, due to allocation order.

The amount of Illite is a lot greater than from Moduscalc, since all available KO is allocated to Illite
it makes up a huge amount of the sample. In Moduscalc a great amount of K,O is allocated to Al-
Celadonite, which isn’t present in Mincomp.

The amount of Quartz is lower, due to the high amount of Illite.

43

LM50 sample

wt%

10 15 20 25 30 35
T T T T T T T

Pyrite |

| —
= |

Moduscalc
=

Hematite

Rutile p—
Mincomp2

Gibbsite

Goethite
Halite
Calcite |

Dolomite |

JEERSSE U N U S —)
ot

[=lellelelielelielelo)eloXoloXolo Yol

Magnesite | - =
19.7

H N
=~
(=}

i

w

—

Siderite |
Anhydrite |

Apatite

w
w

Chlorite |
Glauconite |

Muscovite |

OOOOOOOOOO

115.4

Kaolinite |

1119.7

1 23.8

Illite

134.65

oo

Montmorillonite |

Quartz —

1 30.02
Albite | =

—_— ' ——

o

O

o

-
w
=

Anorthite : =

[\
ot

Orthoclase |

Rhodochrosite |

112
| | | | | | |

Al-Celadonite

%A_AUAAD
ofleseeo
=~

Figure 5.16: Results for LM50 dataset (Laube et al., 1996).

The second run shows high amounts of Kaolinite and Illite, the relatively high amount of Kaolinite is
because of teh allocation order, the high amount of Illite is because all potassium is allocated to Illite in
the second run. Moduscalc distributes potassium into Illite and Al-Celadonite, hence the difference.
The lower amount of Quartz is due to the high amounts of Kaolinite and Ilite.

44

5.4.3 Combined graphs and tables

Mineral Moduscalc | Mincomp-1 | Mincomp-2
wt% wt% wt%
Pyrite - 0.0 % 0.0 %
Hematite - 0.0 % 0.0 %
Rutile - 0.9264 % 0.0 %
Gibbsite - 0.0 % 0.0 %
Goethite - 0.0 % 0.0 %
Halite - 0.0 % 0.0 %
Calcite - 0.0 % 0.0 %
Dolomite - 0.0 % 0.0 %
Magnesite 0% 0.0 % 3.095 %
Siderite 9.4% 3.383 % 4.449 %
Anhydrite - 0.0 % 0.0 %
Apatite - 0.332 % 0.332 %
Chlorite - 5.39 % 0.0 %
Glauconite - 0.0 % 0.0 %
Muscovite - 13.54 % 0.0 %
Kaolinite 15.3 % 21.769 % 19.4468 %
Illite 26.4 % 13.543 % 40.629 %
Montmorillonite | - 0.0 % 0.0 %
Quartz 325 % 24.666 % 24.943 %
Albite 0% 0.3041 % 0.9178 %
Anorthite 0.9 % 0.446 % 0.446 %
Orthoclase - 9.463 % 0.0 %
Rhodochrosite 0.5% - -
Al-Celadonite 151 % - -

Table 5.9: Test results for Moduscalc LM41 dataset, Mincomp-1 refers to run with all minerals included,
Mincomp-2 refers to run with individually selected minerals.

45

Table 5.10: LM50 sample from Moduscalc, Mincomp-1 refers to the first run with all minerals included,

Mineral Moduscalc | Mincomp-1 | Mincomp-2
wt% wt% wt%
Pyrite - 0.0 % 0.0 %
Hematite - 0.0 % 0.0 %
Rutile - 0.8945 % 0.0 %
Gibbsite - 0.0 % 0.0 %
Goethite - 0.0 % 0.0 %
Halite - 0.0 % 0.0 %
Calcite - 0.0 % 0.0 %
Dolomite - 0.0 % 0.0 %
Magnesite 0.0 % 0.0 % 2.462 %
Siderite 9.7 % 3.464 % 4.31 %
Anhydrite - 0.0 % 0.0 %
Apatite - 0.332 % 0.332 %
Chlorite - 4.288 % 0.0 %
Glauconite - 0.0 % 0.0 %
Muscovite - 11.55 % 0.0 %
Kaolinite 15.4 % 21.99 % 19.70 %
Illite 23.8 % 11.55 % 34.65 %
Montmorillonite | - 0.0 % 0.0 %
Quartz 37.9 % 29.96 % 30.02 %
Albite 0.0 % 0.446 % 1.34 %
Anorthite 0.7 % 0.25 % 0.251 %
Orthoclase - 8.07 % 0.0 %
Rhodochrosite 0.4 % - -
Al-Celadonite 12.0 % - -

Mincomp-2 refers to the second run with individually selected minerals.

wt% others

Figure 5.17: Results for LM41 dataset. 16 - Kaolinite, 17 - Illite, 19 - Quartz, 23 - Orthoclase.

Correlation for LM41 dataset

50 T T T T ;
R2 -1 o Mincomp2
aModuscalc
40 |- * o Mincomp1
19
A
30 |- =
A
17
o)
20 .
A23 A
16 7
106 & —
08 | | | |
0 10 20 30 40 50

wt% Mincomp2

46

wt% others

Figure 5.18: Results for LM50 dataset. 16 - Kaolinite, 17 - Illite, 19 - Quartz, 23 - Orthoclase.

50

40

30

20

Correlation for LM50 dataset

‘ ‘ ‘ RQ‘ -1 o Mincomp?2
aModuscalc
| 1A9 s a Mincompl
A
A
16
423 A
I 17 |
Vi
| | | |
0 10 20 30 40 50

wt% Mincomp?2

47

48

Chapter 6

Discussion

The computer program Mincomp was developed to calculate a likely mineralogical bulk composition
of sedimentary rocks in a quick and easy way. The algorithm relies on X-ray diffraction and X-ray
fluorescence data of the sample and follows a set of rules to calculate the synthetic mineral content.
Mincomp incorporates the most common sedimentary minerals and is therefore useful for calculating the
synthetic mineral content of all sorts of sedimentary rocks. It makes use of a rigid allocation sequence,
which delivers constant results. The program can be used in two different modes, batch mode and
individual mode. While making use of the batch mode, the program evaluates every mineral incorporated
in the program and tries to allocate an amount to this mineral. Batch mode is useful if almost no
information is available for a specific sample. While making use of the individual mode, the user can
specify which minerals are likely to be present in the sample, for more accurate results. It can’t be stressed
enough, that the accuracy of Mincomps calculation improves when more information is available about
the sample.

Test results of comparison between different programs available show acceptable results for many different
sedimentary rocks, the results are in general alike. Minor differences between quantities allocated to
specific minerals occur, but are explainable and are mostly due to the algorithm sequence, differences in
chemical formula, and the absence of specific minerals in other program.

Mincomp is written in Python 2.7 and relies on NumPy 1.8.1, Mincomp is executable on most platforms,
as an independent executable on Windows and in a terminal on Linux; deployment on a Virtual Machine
is also possible.

Mincomp is a quick and simple method to obtain quantitative mineralogical information about rock
samples when XRD and XRF results are available, and provides a first insight in likely mineralogical
bulk compositions.

49

50

Chapter 7

Recommendations

7.1 Programming-related recommendations

Mincomp is written in Python 2.7 and relies on NumPy 1.8.1. Python is a very versatile program-
ming language and the Numerical Python module is excellent for numerical data analysis. However,
the programming style of Mincomp can be further improved by making use of Python Pandas. Python
Pandas is an extra module for data analysis and provides flexible and fast dataframes. While making
use of Python Pandas the necessity to transform between different data types becomes obsolete. Python
Pandas provides much better dataframes compared to the NumPy arrays used in this version of Mincomp.

While it could be improved in terms of efficiency, one has to say that with the current hardware the
computational times are already small. Improvement of data management would not necessary benefit
the user in terms of notable reduced computing time. Already the computing time is in the order of
miliseconds, but the program will be better structured and won’t have to perform irrelevant data trans-
formations anymore.

7.2 Algorithm-related recommendations

At this point, Mincomp usually calculates a higher amount of Kaolinite than most other programs, and
calculates a smaller amount of Quartz, this is due to the allocation sequence. While Kaolinite is calcu-
lated in the second stage, a lot of Sodium is allocated to Kaolinite. While allocating these clays a lot
of SiO, is used, this is subtracted from the total, so in the end when Quartz is allocated, less SiO, is
available to calculate Quartz.

It is recommended to test how a different order of allocating minerals would affect the final result
of Mincomp. If a better allocation order can be created it is recommended to implement it in a newer
version of Mincomp.

One can choose to incorporate more minerals in the program, or more element oxides from the XRF

results. The program can benefit from it in terms of a more precise allocation of ’trace’ minerals, but it
wouldn’t affect the bulk composition of the sample.

51

52

Acknowledgements

I hereby would like to thank my supervisor Dr. Karl-Heinz Wolf, who supported me throughout my
minor project. His support and guidance were of great value to me in order to finish project. Without
his encouragement and patience this project would not have been finished.

I also would like to thank Drs. Maaike van Tooren, who provided answers to my numerous mineral-
related questions, especially to questions which weren’t answers in the books.

53

54

Bibliography

John W. Anthony, Richard A. Bideaux, Kenneth W. Bladh, and Monte C. Nichols. Handbook of Miner-
alogy. Mineral Data Publishing, Tucson, Arizona, 1995.

Barthalmy. Mineralogy database, November 2013. URL http://www.webmineral.com.

Patrice De Caritat, John Bloch, and Tan Hutcheon. Lpnorm: A linear programming normative analysis
code. Computers and Geosciences, 20(3):313-347, 1994.

David Cohen and Colin R. Ward. Sednorm - a program to calculate a normative mineralogy for sedi-
mentary rocks based on chemical analyses. Computers and Geosciences, 17(9):1235-1253, 1991.

W.A. Deer, R.A. Howie, and J. Zussman. An introduction to the rock-forming minerals. Longmans,
Green and Co. Ltd, 1966.

R.M. Garrels and F.T. Mackenzie. Evolution of sedimentary rocks. W.W. Norton, New York, 1971.

N. Laube, S. Hergarten, and H.J. Neugebauer. Moduscalc - a computer program to calculate a mode
from a geochemical rock analysis. Computers and Geosciences, 1996.

W.G. Mumme, G. Tsambourakis, I.C. Madsen, and R.J. Hill. Improved petrological modal analysis from
x-ray powder diffraction data by use of the rietveld method. Journal of Sedimentary Research, 1996.

G.D. Nicholls. A scheme for recalculating the chemical analysis of argillaceous rocks for comparative
purposes. American Mineralogist, 47(1-2):34-46, 1962.

A. Dogan Paktunc. Modan: an interactive computer program for estimating mineral quantities based
on bulk composition. Computers and Geosciences, 24(5):425-431, 1998.

Maximilian Posch and Daniel Kurz. A2m - a program to compute all possible mineral modes from
geochemical analyses. Computers and Geosciences, 33:563-572, 2007.

A. B. Ronov and A. A. Yaroshevsky. Chemical composition of the earth’s crust. Geophysical Monograph
Series, 13:37-57, 1967.

Oleg M. Rosen, Ali A. Abbyasov, and John C. Tipper. Minlith - an experience-based algorithm for
estimating the likely mineralogical compositions of sedimentary rocks from bulk chemical analyses.
Computers and Geosciences, 30:647-661, 2004.

R. Salminen, M.J. Batista, M. Bidovec, A. Demetriades, B. De Vivo, W. De Vos, M. Duris, A. Gilucis,
V. Greogorauskiene, J. Halamic, P. Heitzmann, A. Lima, G. Jordan andG. Klaver, P. Klein, J. Lis,
J. Locutura, K. Marsina, A. Mazreku, P.J. O’Connor, R.T. Ottesen S.A. Olsson, V. Petersell, J.A.
Plant, S. Reeder, 1. Salpeteur, H. Sandstrém, U. Siewers, A. Steenfelt, and T. Tarvainen. Geochemical
Atlas of Europe. Part 1: Background Information, Methodology and Maps. Geological Survey of
Finland, Espoo, 2005.

Nivaldo J. Tro. Principles of Chemistry, a molecular approach. Pearson Education International, 2010.

C.R. Ward, D.R. Cohen, A. Crouch, D. Panich, S. Schaller, and P.K. Dutta. Assessment of gas ignitabil-
ity risk by frictional effects from coal mine rocks; end-of-grand report. Technical report, National
Energy Research Development and Demonstration Program, Commonwealth Department of Primary
Industries and Energy, Canberra, 1990.

K.H.A.A. Wolf. The interaction between underground coal fires and their roof rocks. PhD thesis, TU
Delft, 2006.

55

56

Appendix A - Mincomp User
Manual

Introduction

This manual describes how to use the program Mincomp to calculate the synthetic mineral composition
based on X-ray diffraction (XRD) and X-ray fluorescence (XRF') test results. The output is a ’.dat’ file
in which all the information is stored, and a graph giving an overview of the sample content.

The program is executed in the command-line for ease of use, and simplicity.

Installing Mincomp - Windows

The program doesn’t need to be installed on a computer, but can be executed from a commandline,
or by doubleclicking ’startup.exe’. ’startup.exe’ is located in the ’dist’ folder. The program runs on a
Virtual Machine on Linux as well (Apple Mac is not tested).

The program is written in Python 2.7, while using NumPy 1.8.1, however the user doesn’t need to have
anything installed on his computer, all dependencies are included in the package.

Note that ’startup.exe’ needs to be in the same folder as all the other files, for ease of use a shortcut to
’startup.exe’ can be created.

Installing Mincomp - Linux

Running Mincomp on Linux is even easier, the file can be loaded in the terminal right away. The file
is located in the ’dist’ folder, and it needs to be there in order for file dependencies. By entering the
command “python startup.py” the program will be loaded into the terminal. See figure 7.1. Python 2.7
needs to be installed in order to run the program.

Terminal - + x
jaapregelink@jaapregelink-MS-1688 python startup.py

This program works best with a screen width of 185
For best use, maximize your screen

Please give a name for the output file: |

Figure 7.1: Starting Mincomp in a terminal window on Linux.

Starting Mincomp

When starting the application, a command windows shows up. It is important that the width of the
command windows is at least 105, otherwise problems will arise with text formatting. The program
would still work, but it would like less nice. Therefore, a width of at least 105 is recommended. The first
part of the program is to fill in your information. How you want the output file to be named, your own
name, and a project reference. You can see how this screen looks in figure 7.2.

57

Terminal

This program works best with a screen width of 185
For best use, maximize your screen

Please give a name for the output file: example

Please type your name: example user

Please type a reference:

example referencel]

Figure 7.2: The startup screen from Mincomp, with filled-in information.

The mineral table and reviewing information

The next step in the process is to review the mineral data that is used in the program. The values are
all from An introduction to the Rock Forming Minerals by Deer, Howie and Zussman. In the table the
used mineral weights and densitys are displayed, you can change the mineral weights and densities if you

would like to, but it is necessary. See figure 7.3.

Terminal

The following mineral data will be used throughout the program:

EITS

Hematite
Rutile
Gibbsite
Goethite
Hali
Calcite
Dolomite
Magnesite
Siderite
Anhydrite
Apatite
Chlorite
Glauconite
Muscovite
Kaolinite
Illite
Montmorillonite
Quartz
Albite
Anorthite
Orthoclase

ical formula

Fe0(OH)

NaCl

caco3

CaMg(cC03)2

MgC03

FeC03

Cas04

Ca5(P04)3(0H)

FeMg4AL (Si3A1)010(0H)8
KO.6NaB.05Fel.5Mg0.4A10.3513. 8016 (0H) 2
K2A14(5i6A12)020

AL251205(0H)4

KAL2(Si3A1)010(0H)2
(Ca®.17Na@.31Mge.33A11.67)514010(0H)2.61
5i02

NaAl5i308

CaAl25i208

KALS1308

Do you want to edit the mineral data? (y/n) nf]

Figure 7.3: The mineral table, with the used data.

Adding minerals to the calculation list

The result from the X-ray diffraction test will be a list of minerals present in the sample.
These minerals have to be added to Mincomp’s ’calculation list’, this can be done in two ways:

e Batch - add all minerals available in Mincomp to the list
e Individual - select and add minerals individually to the list

While using the Batch option, all minerals specified in Mincomp will be added to the list, and the
program will try to calculate it’s amount present in the rock sample. The minerals don’t have to be

necessarily present in the sample. See figure 7.4.

While using the Individual option, you have to select minerals specified in Mincomp individually and
add them to the list. The program will calculate it’s amount present in the rock sample. While using the
individual option, only the minerals you expect to be present in the rock sample will be processed in the

58

Mass

program sequence, and an amount will be calculated. It gives a more precise end result in comparison
to the Batch option. See figure 7.5.

Terminal - + x
Do you want to add all minerals to the calculation list, or do you want to select them individually?
y: I want to add them all to the list
n: I want to select the minerals individually
n
Please add mineral for calculation (corresponding number) 1

Current list:
Pyrite

Do you want to add another mineral? (y/n) y
Please add mineral for calculation (corresponding number) 2

Current list:

Pyrite

Hematite

Do you want to add another mineral? (y/n) |

Figure 7.4: Individually selecting minerals, and adding them to the calculation list.

Terminal - + x
Do you want to add all minerals to the calculation list, or do you want to select them individually?
y: I want to add them all to the list
n: I want to select the minerals individually

e selected the following minerals for calculation:

Hematite
Rutile
Gibbsite
Goethite
Halite
Calcite
Dolomite
Magnesite
Siderite
Anhydrite
Apatite
Chlorite
Glauconite
Muscovite
Kaolinite
Illite
Montmorillonite

Figure 7.5: Adding all the minerals to the calculation list with Batch mode.

Inserting X-ray Fluorescence data

The X-ray Fluorescence (XRF) data must be inserted manually, by typing in the weight percentage of
a specific element oxide. The process is straight-forward, and the program checks if the values do not
exceed 100 %. If the sample amount is known, it can be inserted to calculate the molar amounts as
well. If the sample amount is kept empty, a default value of 1000.0 mg is used. The sample amount is
not really needed for calculation, but it is needed for the program sequence. When all the information
is inserted, the program will calculate the molar amounts of element oxides and the molar amounts of
specific elements. It will summarize the data and display it as a table, see figure 7.7.

Allocation stages

The greatest part of the allocation stages is straight-forward and is executed without input from the
user. In the first allocation stage the amounts of trace minerals are allocated, during the second stage

59

Terminal - + ®

Please fill in the wt% for the element-oxides, without wt%

Available mass = 180.8
Please fill in the value for F @

Available mass = 180.8
Please fill in the value for Na20 ©.8

Available mass = 99.2
Please fill in the value for Mgd 1.8

Available mass = 97.4
Please fill in the value for Al203 15.5

Available mass = 81.9
Please fill in the value for 5i02 ||

Figure 7.6: Inserting XRF data into Mincomp.

Terminal - + %

The following element weights will be used:

Element (mmol)

£
=

COHODODOHOO
DO HODODOWoO o

Figure 7.7: Summarized data.

the aluminium-silicates and clay minerals are allocated. In the third and last allocation stage quartz,
carbonates and the remainder of minerals. During the second and third allocation stage user input is
sometimes necessary. Some minerals can be calculated by using multiple main elements, for example, if
you want Glauconite to be calculated according to the available amount of Magnesium, you can set that
option, but you can also choose other elements.

Terminal - + %
Second allocation stage

You have selected Glauconite, the amount of this mineral can be calculated with different elements.

With which el t do you want to calculate the quantity of Glauconite?
1. Potassium
2. Sodium
3. Magnesium

Figure 7.8: Choose a main element to calculate Glauconite

Some minerals are much alike, or have almost the same chemical formula, in that case an arbitrary
distribution of a specific element has to be made. How much of the available mass is allocated to a
specific mineral. The user has two choices, the default option is an equal distribution between the
different elements. The second option is to make a custom distribution, this way you can distribute for
example 75% of K,O to Illite, and 25% to Orthoclase. See figure 7.9

60

Terminal - + ®

The number of minerals to be calculated with Potassium is 4, therefore a distribution has to be made.
The default distribution is 8.25 per mineral
But you can also use a custom distribution

Do you want to use the default distribution, or create a custom distribution?
1. Default
2. Custom

Figure 7.9: Mincomp asks how to distribute a specific element between different minerals.

Final result

After all the allocation stages, Mincomp displays a final result including the weight percentages and
volume percentages of the different minerals that were present in the calculation list. The final result,
but also the intermediate results, are printed to an output file. In this file everything that has been done
with the program is stored. Also, the program draws a graph for quick visualization of the amounts of
different minerals.

61

62

0 N e AR W N

0 W W W W W NN NN NN NN NN R R R e e e e
B O R R O © 0N 0 oA N RO © LN O h W N = O ©

Appendix B - Python source files

#Start —up prompt

#import numpy as np

from numpy importsx

from math importx

from fractions importx

from operator import itemgetter
import matplotlib

matplotlib . use ()

import pylab

import time

import mineral_data

import os

import matplotlib.pyplot as plt

#Declare variable localtime , which is printed in the output file.
localtime = time.asctime(time.localtime (time.time()))

print

print

#We start by creating a log file
filename = raw_input()

#Create output file and print name, reference and date.

file_.out = open(filename + ,)

file_out . write(*100 +)

file_out . write ()
file_out . write(+ str(localtime) +)

user = raw_input()

user_reference = raw_input()

file_out .write(+ str(user) +)

file_out . write(+ str(user_reference) +)

file_out . write (*100 +)

#Print the list of minerals in a formatted way.

print

print .format(mineral_data.example [6],
mineral_data.example[0], mineral_data.example[1], mineral_data.example[2],
mineral_data.example[3], mineral_data.example[4])

print *100
for i in mineral_data.all_minerals:
print format (i[6],1[0],i[1],i[2],i[3],1
[4])
print

#You don’t have to edit the mineral data, if you don’t want to.

edit-mode = raw_input()
#But if you want to, it calls the edit_mineral module.
if edit_-mode = or edit_-mode=— or edit_-mode=—

import edit_mineral

#declare calculate_minerals as a list.
calculate_minerals = ([])

63

J

s #Needed in order to calculate mineral amounts.
9 add_minerals_to_list = raw_input(

)

o oo

60
61 add_all = raw_input(

)
62 if add_all=— or add_all= or add_all=

63 calculate_minerals =([0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21])
64 add_minerals_to_list =
65

66 #Add all the minerals you want.

67 while add_minerals_to_list=— or add_minerals_to_list= or add_minerals_to_list=
68 input_minerals = int (raw_input (
))
69 while (input_minerals—1) in calculate_minerals:
70 input_minerals = int (raw_input(

))

71 while (input_-minerals—1) > 21:

72 input_-minerals = int (raw_input(
))
73 calculate_minerals.append(input-minerals —1)
74 print
75 for i in calculate_minerals:
76 print mineral_data.all_minerals[i][0]
77 add_minerals_to_list = raw_input()
78
79
so calculation_list = ([])
81
s2 for i in calculate_minerals:
83 calculation_list .append(mineral_data.all_minerals[i][0])
84
85
s6 #If user is finished , show the complete list of minerals.
87 print
ss print *100
so for i in calculate_minerals:
90 print mineral_data.all_minerals[i][0]
91 print *100
92
93 #Print the selected minerals to output file.
94 file_out .write()
95 file_out .write()
96 file_out .write(+ .format (,

k) b ’ k)))

or file_out .write(*100)

98 for i in calculate_minerals:

99 file_out . write(+ .format (mineral_data.
all_minerals [i][6], mineral_-data.all_minerals[i][0], mineral_-data.all_minerals[i
][1] , mineral_data.all_minerals [i][2], mineral_data.all_minerals[i][3], mineral_data.
all_minerals [i][4]))

100

101

102 #next step, XRF input

103 import xrf_input

104
105
106 #write xrf_input data to output file
107 file_out .write()
0s file_out .write()
19 file_out .write(.format (, ,
))))
110 file_out .write (+ x100)
111 for i in xrf_input.elox_list:
112 if float(i[4]) != 0:
113 file_out . write(+ .format (i[0],i[4],i[5],1
6], [9]))
114 file_out .write()
115 file_out . write(+ str(xrf_input.total_weight_sample) +)

64

116 #file_out .write(”The sum of weight percentages

117
118

119

145
146

148
149
150
151
152
153
154
155
156
157
158
159
160
161

162
163
164
165
166
167
168
169

before

.total_before_normalization) + 7 %\n”)

normalization

is 7

FHF I

volume

print
print .format (, ,
b)
print *90
for i in xrf_input.elox_list:
if float(i[4]) != 0:
print .format (i[0],i[4],1[5],1[6],1i[9])
#
#
First Allocation Stage
#
#
#mineral_moles = array ([” Mineral name”, mole amount, weight, wt%, volume,
percentage |
0 1 2 3 4
anhydrite_moles = array (| , 0, 0, 0, 0, 0])
pyrite_moles = array ([, 0, 0, 0, 0, 0])
gibbsite_moles = array (| , 0, 0, 0, 0, 0])
goethite_moles = array (| , 0, 0, 0, 0, 0])
hematite_moles = array (| , 0, 0, 0, 0, 0])
quartz_moles = array (| , 0, 0, 0, 0, 0])
rutile_moles = array (| , 0, 0, 0, 0, 0])
halite_moles = array (| , 0, 0, 0, 0, 0])
calcite_moles = array (| , 0, 0, 0, 0, 0])
dolomite_moles = array (| , 0, 0, 0, 0, 0])
magnesite_moles = array ([, 0, 0, 0, 0, 0])
siderite_moles = array (| , 0, 0, 0, 0, 0])
apatite_moles = array (| ,0, 0, 0, 0, 0])
albite_.moles = array (| , 0, 0, 0, 0, 0])
anorthite_moles = array (] , 0, 0, 0, 0, 0])
chlorite_moles = array (| , 0, 0, 0, 0, 0])
glauconite_moles = array (| , 0, 0, 0, 0, 0])
muscovite_moles = array (| , 0, 0, 0, 0, 0])
orthoclase_moles = array (| , 0, 0, 0, 0, 0])
kaolinite_moles = array (| , 0, 0, 0, 0, 0])
illite-moles = array (| , 0, 0, 0, 0, 0])

montmorillonite_moles =
Trace mineral allocation
oxygen = float (16.00)

hydrogen = float (1.008)
carbon = float (12.01)
#Anhydrite [CaSO4]
if in calculation_list:
if float(xrf_input.elox_so3[9])
xrf_input.elox_so3 [9]):
anhydrite_moles [1] = float (xrf_input.elox_.so3[9])
xrf_input.elox_cao[9] = float(xrf_input.elox_cao[9])
xrf_input.elox_so3 [9] = float(xrf_input.elox_so3[9])
xrf_input.weight_loss = xrf_input.weight_loss — (4.0
oxygen
#Apatite [Cab(PO4)3(OH)]
if float(xrf_input.elox_p[9]) != float(0) or float(xrf_input.elox_p205[9])
if not in calculation_list:
yn = raw_input (
)
if yn = or yn — :
calculation_list .append ()

array ([

65

— float (anhydrite_moles |
— float (anhydrite_moles |
)xfloat (anhydrite_moles [1

+ str(xrf_input

!= int (0) and float(xrf_input.elox_cao[9]) >= float (

1])
1])
])

= float (0):

1

o0

2

183
184

185

187
188
189
190

191

192
193
194

195

196

197

198
199

201

2

=3

2
203
204
205

206
207
208
209

210
211

212
213
214
215
216
217

218
219
220
221
222
2

]

3
224
225
226
227
228
229

232
233

234

235
236

#Pyrite [FeS2]
if

elif float (xrf_input.elox_p[9]) != float(0) and float(xrf_input.elox_-p205[9]) != float

(0):

xrf_input.elox_p [9] = float(xrf_input.elox_p[9]) + float(xrf_input.elox_p205][9])
xrf_input.elox_p205[9] = 0

not in calculation_list:

yn = raw_input (
)
if yn — or yn — :
calculation_list .append ()

in calculation_list:

if float(xrf_input.elox_-p[9]) != int(0) and float(xrf_input.elox_p205[9]) = float (0)

and float (xrf_input.elox_cao[9]) >= float(Fraction(5,3))*float(xrf_input.elox_-p[9]):
apatite_moles [1] = float(Fraction(1,3))*float(xrf_input.elox_p[9])
xrf_input.elox_cao [9] = float(xrf_input.elox_cao[9]) — (5.0)«float (apatite-moles|[1])
xrf_input.elox_p[9] = float(xrf_input.elox_p[9]) —(3.0)xfloat(apatite_moles[1])
xrf_input.weight_loss = xrf_input.weight_loss — (13.0)xfloat (apatite_moles[1])x
oxygen —(1.0)xfloat(apatite_moles[1])+hydrogen

elif float(xrf_input.elox_p[9]) = int(0) and float (xrf_input.elox_p205[9]) != int(0)

and float (xrf_input.elox_cao[9]) >= float(Fraction(5,3))*float(xrf_input.elox_-p205
[9]) :

apatite_moles [1] = float(xrf_input.elox_-p205[9]) /(3.0)

xrf_input.elox_cao[9] = float(xrf_input.elox_cao[9]) — (5.0)*float(apatite_moles|[1])
xrf_input.elox_p205[9] = float (xrf_input.elox_p205[9]) —(3.0)xfloat (apatite_moles
[1])

xrf_input.weight_loss = xrf_input.weight_loss — (13.0)«float (apatite_moles[1])x
oxygen —(1.0)xfloat(apatite_moles[1])+hydrogen

#Halite [NaCl]

if float(xrf_input.elox_cl[9]) != float(0):
not in calculation_list:
yn = raw_input (
)
if yn = or yn =— or yn — or yn =—
calculation_list .append()

in calculation_list:

if xrf_input.elox_cl[9] != int(0) and float (xrf_input.elox_na20[9]) >= float(Fraction

(1,2))«float (xrf_input.elox_-cl[9]):
halite_moles [1] = float (xrf_input.elox_cl[9])
xrf_input.elox_na20[9] = float (xrf_input.elox_-na20[9]) — (0.5)=*float(halite_moles

(1)
xrf_input.elox_cl[9] = float(xrf_input.elox_cl[9]) — float(halite_moles [1])

in calculation_list:

if float(xrf_input.elox_s[9]) != int(0) and float(xrf_input.elox_fe203[9]) >= (0.5)

float (xrf_input.elox_s[9]):

pyrite_moles [1] = (0.5)*float(xrf_input.elox_s[9])

xrf_input.elox_s [9] = float(xrf_input.elox_s[9]) — 2«xfloat(pyrite_moles[1])
xrf_input.elox_fe203[9] = float(xrf_input.elox_fe203[9]) — float(pyrite_moles[1])

#Rutile [TiO2]

in calculation_list:

if xrf_input.elox_-tio2[9] != int(0):

rutile_moles [1] = float(xrf_input.elox_tio2[9])
xrf_input.elox_tio2 [9] = float(xrf_input.elox_tio2[9]) — float(rutile_moles[1])
xrf_input.weight_loss = xrf_input.weight_loss — 2xfloat(rutile_moles[1]) *oxygen

mineral_list = (pyrite_moles, rutile_moles, halite_moles, anhydrite_moles, apatite_moles

)

#display the mole amounts of elements after trace mineral allocation

237 print

238 print .format ()

230 print *100

240 print

241 print .format (,)

66

242 print *40
243 for i in xrf_input.elox_list:

244 if i[4] !'= int(0):
245 print .format (i [0], float(i[9]))
246

247 #display the amounts of minerals after trace mineral allocation
248 print

240 print .format (,)
250 print *40

251 for i in mineral_list:

252 print .format (i[0], float(i[1]))
253

254 print xrf_input.weight_loss

256 #write information to output file

257 file_out . write ()

258 file_out . write()

250 file_out . write (%x100)

260 file_out .write(+ .format (,))
261 file_out .write(+ x40)

262 for i in xrf_input.elox_list:

263 if i[4] != int(0):

264 file_out . write(+ .format (i [0], float(i[9])))

265

266 file_out .write()

267 file_out . write(.format (,))

26s file_out .write (+ x40)

260 for i in mineral_list:

270 file_out . write (+ .format (i[0], float(i[1])))

271

272

273

274

275 # +#
276 F# #
277 # Second Allocation Stage #
278 # #
279 # #
280

281

282

283

284

285 #In the second allocation stage difficulties show up, when minerals with a great

286 #similarity are present in the test results. For example, Orthoclase and Muscovite.
287 #Therefore an arbitrary choice has to be made, what amount of a specific element

288 #is allocated to a mineral.

289 #To simplify this we create a subroutine, that checks if these minerals are present.
290

201 potassium_list = []

202 sodium_list = []

203 magnesium_list = []

294

295

206 mineral_list = (pyrite_moles, rutile_moles, halite_moles, anhydrite_moles, apatite_moles
b

297 chlorite_moles , glauconite_moles, muscovite_moles, illite_moles ,

298 montmorillonite_moles , albite_moles, anorthite_moles, orthoclase_moles)

299

300 print

301 print .format ()

302 print *100

303

304 #1f glauconite and montmorillonite are present, they can be calculated with different
elements, here you can choose

305 if in calculation_list:

306 glauconite_list = int(raw_input(

))

307 if in calculation_list:
308 montmorillonite_list = int (raw_input (

67

309
310
311

328
329
330
331

332
333
334
335
336
337

339
340
341

369

375

))

#There are multiple minerals that consist of potassium ,

they are transferred to a list
if in calculation_list:

potassium_list .append (orthoclase_moles)

if in calculation_list:

potassium_list .append (muscovite_moles)

if in calculation_list:
potassium_list.append(illite_moles)

if they

if in calculation_list and int(glauconite_list) =
potassium_list .append(glauconite_moles)

#Same as above, but for sodium
if in calculation_list:
sodium _list .append(albite_moles)

if in calculation_list and int(glauconite_list) =

sodium_list .append(glauconite_moles)

are

2:

selected by the

if in calculation_list and int(montmorillonite_list) = 1:
sodium_list .append (montmorillonite_moles)

#Same as above, but for magnesium
if in calculation_list:

magnesium_list .append(chlorite_moles)

if in calculation_list and int(montmorillonite_list) = 2:
magnesium_list . append (montmorillonite_moles)
if in calculation_list and int(glauconite_list) =
magnesium_list . append (glauconite_moles)

print
file_out . write(
if not potassium_list:
print
file_out . write()
else:
for i in potassium_list:
print i[0]
file_out . write(str(i[0]) +)
print
file_out . write(
if not sodium_list:
print
file_out . write()
else:
for i in sodium_list:
print i[0]
file_out .write(str(i[0]) +)
print
file_out . write(
if not magnesium-_list:

print
file_out . write()
else:
for i in magnesium_list:
print i[0]
file_out .write(str(i[0]) +)
print

if len(potassium_list) > 1:

print
potassium_list)) +

print

print

potassium_custom = 0

while potassium_custom == O0:
potassium_custom = int (raw_input (
if potassium_custom =— 1:

print

3:

+ str(len(

user

+ str(float (Fraction(1,len(potassium_list)))) +

68

376 for i in potassium_list:

377 i[1] = float(Fraction(1l,len(potassium_list)))=*float(xrf_input.elox_k20[9])

378 elif potassium_custom =— 2:

379 print

380 j =1.0

381 for i in potassium_list:

382 print + str(j)

383 i[1l] = float(raw_input(+ str(i[0]) +)) *
float (xrf_input.elox_-k20[9])

384 j =] — float(i[1l])/float(xrf_input.elox_k20[9])

385 else:

386 print

387 potassium_custom = 0

3ss elif len(potassium_list) = 1:

389 for i in potassium_list:

390 i[1] = float(xrf_input.elox_-k20[9])

391

302 if len(sodium_list) > 1:

393 print + str(len(
sodium_list)) +

394 print + str(float (Fraction(1l,len(sodium_list)))) +

395 print

396 sodium_custom = 0

397 while sodium_custom =— 0:

398 sodium_custom = int (raw_input(

))

399 if sodium_custom =— 1:

400 print

401 for i in sodium_list:

402 i[1] = float(Fraction(1l,len(sodium_list)))*float(xrf_input.elox_-na20/[9])

403 elif sodium_custom =— 2:

404 print

405 j =10

406 for i in sodium_list:

407 print + str(j)

408 i[1l] = float(raw_input(+ str(i[0]) +)) *
float (xrf_input.elox_-na2o0[9])

409 j =] — float(i[1l])/float(xrf_input.elox_na2o0([9])

410 else:

411 print

412 sodium_custom = 0

413 elif len(sodium_list) = 1:

414 for i in sodium_list:

415 i[1] = float (xrf_input.elox_-na2o0[9])

416

417 if len(magnesium_list) > 1:

418 print + str(len(
magnesium_list)) +

419 print + str(float (Fraction(1l,len(magnesium_list)))) +

420 print

421 magnesium_custom = 0

422 while magnesium_custom =— 0:

423 magnesium_custom = int (raw_input (

))

424 if magnesium_custom =— 1:

425 print

426 for i in magnesium_list:

427 i[l] = float(Fraction(1,len(magnesium_list)))*float(xrf_input.elox_mgo[9])

428 elif magnesium_custom =— 2:

429 print

430 j =10

431 for i in magnesium_list:

432 print + str(j)

433 i[1l] = float (raw_input(+ str(i[0]) +)) *
float (xrf_input.elox_-mgo [9])

434 j =] — float(i[1l])/float(xrf_input.elox.mgo[9])

435 else:

436 print

69

437
438
439
440
441
442
443

445

446

447

448

449

461
462
463

465

466

467

469

470

479

480

481

483

magnesium._custom = 0
elif len(magnesium_list) = 1:
for i in magnesium_list:
i[1l] = float(xrf_input.elox-mgo[9])

#Anorthite [CaAl2Si208]

in calculation_list:

if float(xrf_input.elox_cao[9]) != int(0) and float(xrf_input.elox_al203[9]) >= (2.0)x

float (xrf_input.elox_cao[9]) and float(xrf_input.elox_sio2[9]) >= (2.0)=«float (
xrf_input.elox_cao [9]):

anorthite_moles [1] = float (xrf_input.elox_cao[9])

xrf_input.elox_cao [9] = float(xrf_input.elox_cao[9]) — float (anorthite_moles[1])
xrf_input.elox_al203[9] = float(xrf_input.elox-al203[9]) —(2.0)xfloat (
anorthite_moles [1])

xrf_input.elox_sio2 [9] = float(xrf_input.elox_sio2[9]) — (2.0)*float(anorthite_moles
[1])

xrf_input.weight_loss = float(xrf_input.weight_loss) —(8.0)xfloat(anorthite_moles
[1]) xoxygen

elif min(float(xrf_input.elox_cao[9]), float(xrf_input.elox_al203[9])/(2.0), float(

xrf_input.elox_sio2[9]) /(2.0)) < float (anorthite_moles[1]):

anorthite_moles [1] = float(xrf_input.elox_cao[9])

xrf_input.elox_cao [9] = float (xrf_input.elox_cao[9]) — float(anorthite_moles[1])
xrf_input.elox_al203[9] = float(xrf_input.elox_al203[9]) —(2.0)xfloat (
anorthite_moles [1])

xrf_input.elox_sio2[9] = float(xrf_input.elox_.sio2[9]) — (2.0)x*float(anorthite_moles
1)

xrf_input.weight_loss = float(xrf_input.weight_loss) —(8.0)*float(anorthite_moles
[1]) *xoxygen

#Albite [NaAlSi308]

in calculation_list:

if float(xrf_input.elox_-na2o0[9]) >= float(albite_moles[1]) and float(xrf_input.

elox_al203 [9]) >= float(albite_moles[1]) and float(xrf_input.elox_sio2[9]) >= (3.0)=*
float (albite_moles [1]):

xrf_input.elox_-na2o0[9] = float(xrf_input.elox_na20[9]) — float(albite_moles[1])
xrf_input.elox_al203[9] = float(xrf_input.elox_al203[9]) — float(albite_moles[1])
xrf_input.elox_sio2 [9] = float (xrf_input.elox_sio2[9]) — (3.0)=*float(albite_moles
[1])

xrf_input.weight_loss = float(xrf_input.weight_loss) — (8.0)«float (albite_moles[1])x
oxygen

elif min(float(xrf_input.elox_na20[9]), float(xrf_input.elox_al203[9]), float(

xrf_input.elox_sio2[9]) /(3.0)) < float(albite_moles[1]):

albite_moles [1] = min(float (xrf_input.elox_na20[9]), float(xrf_input.elox_al203[9]),
float (xrf_input.elox_-sio2[9]) /(3.0))

xrf_input.elox_na20[9] = float(xrf_input.elox_-na20[9]) — float(albite_moles[1])
xrf_input.elox_al203[9] = float (xrf_.input.elox-al203[9]) — float(albite_moles[1])
xrf_input.elox_sio2[9] = float(xrf_input.elox_sio2[9]) — (3.0)*float (albite_moles
1)

xrf_input.weight_loss = float(xrf_input.weight_loss) — (8.0)x*float(albite_moles[1])x
oxygen

#Chlorite [FeMg4Al(Si3Al)0O10(OH) 8]

in calculation_list:

if float(xrf_input.elox_fe203[9]) >= float(chlorite_moles[1]) and float(xrf_input.

elox-mgo [9]) >= (4.0)«float (chlorite_moles[1]) and float(xrf_input.elox_-al203[9]) >=
(2.0)«float (chlorite_moles [1]) and float(xrf_input.elox_sio2[9]) >= (3.0)=xfloat (
chlorite_moles [1]):

xrf_input.elox_fe203[9] = float(xrf_input.elox_fe203[9]) — float(chlorite_moles[1])
xrf_input .elox.mgo [9] = float(xrf_input.elox.mgo[9]) — (4.0)«float (chlorite_moles
[1])

xrf_input.elox_al203[9] = float(xrf_.input.elox_-al203[9]) — (2.0)=*float(
chlorite_moles [1])

xrf_input.elox_sio2[9] = float(xrf_input.elox_sio2[9]) — (3.0)*float(chlorite_moles
[1])

xrf_input.weight_loss = float (xrf_input.weight_loss) — (18.0)*float(chlorite_moles
[1]) *xoxygen — (8.0)xfloat(chlorite_-moles[1])x*hydrogen

elif min(float (xrf_input.elox_fe203[9]), float(xrf_input.elox_.mgo[9])/(4.0), float (

xrf_input.elox_al203[9]) /(2.0), float(xrf_input.elox_sio2[9])/(3.0)) < float(
chlorite_moles [1]):

70

485
486

488

489

490

492

493
494

495

497
498

499

505
506
507
508
509
510

511

516

518

chlorite_moles [1] = min(float (xrf_input.elox_fe203[9]), float(xrf_input.elox_-mgo[9])
/(4.0), float(xrf_input.elox_al203[9]) /(2.0), float(xrf_input.elox_sio2[9]) /(3.0))
xrf_input.elox_fe203 [9] = float (xrf_input.elox_fe203[9]) — float(chlorite_moles[1])
xrf_input.elox.mgo [9] = float (xrf_input.elox-mgo[9]) — (4.0)=*float(chlorite_moles
1)

xrf_input.elox_al203[9] = float (xrf_input.elox-al203[9]) — (2.0)xfloat (
chlorite_moles [1])

xrf_input.elox_sio2 [9] = float (xrf_input.elox_sio2[9]) — (3.0)=*float(chlorite_moles
[1])

xrf_input.weight_loss = float(xrf_input.weight_loss) — (18.0)*float(chlorite_moles
[1]) *oxygen — (8.0)«float(chlorite_moles [1])=+hydrogen

#11lite [KAI2Si4010(OH) 2]

if

in calculation_list:

if float(xrf_input.elox_k20[9]) >= float(illite_moles[1]) and float(xrf_input.

elox_al203 [9]) >= (2.0)*float (illite_moles[1]) and float(xrf_input.elox_sio2[9]) >=
(4.0)*«float (illite_moles [1]):

xrf_input.elox_k20[9] = float(xrf_input.elox_k20[9]) — float(illite_moles[1])
xrf_input.elox_al203 [9] = float(xrf_.input.elox_al203[9]) — (2.0)x*float(illite_moles
1)

xrf_input.elox_sio2 [9] = float (xrf_input.elox_sio2[9]) —(4.0)«float(illite_moles[1])
xrf_input.weight_loss = float(xrf_input.weight_loss) — (12.0)x*float(illite_moles[1])
xoxygen —(2.0)xfloat(illite_moles[1])+hydrogen

elif min(float(xrf_input.elox_k20[9]), float(xrf_input.elox_al203[9]) /(2.0), float(

xrf_input.elox_sio2[9]) /(4.0)) < float(illite_moles[1]):

illite_moles [1] = min(float (xrf_input.elox_k20[9]), float(xrf_input.elox_al203[9])
/(2.0), float(xrf_input.elox_sio2[9]) /(4.0))

xrf_input.elox_-k20[9] = float(xrf_input.elox_-k20[9]) — float(illite_moles[1])
xrf_input.elox_al203[9] = float(xrf_input.elox_al203[9]) — (2.0)*float (illite_moles
[1])

xrf_input.elox_sio2[9] = float(xrf_input.elox_sio2[9]) —(4.0)xfloat(illite_moles[1])
xrf_input.weight_loss = float (xrf_input.weight_loss) — (12.0)*float (illite_moles [1])
xoxygen —(2.0)xfloat(illite_moles[1])+hydrogen

#Muscovite [K2Al14Si8020(OH) 4]

if

if

in calculation_list:

muscovite_moles [1] = (0.5)*float (muscovite_moles[1])
if float(xrf_input.elox_-k20[9]) >= (2.0)*float (muscovite_moles[1]) and float(xrf_input

.elox_al203[9]) >= (4.0)*float (muscovite_moles[1]) and float(xrf_input.elox_sio2[9])
>= (8.0)*float (muscovite_moles[1]):

xrf_input.elox_k20[9] = float(xrf_input.elox_k20[9]) — (2.0)xfloat(muscovite_moles
1)

xrf_input.elox_al203[9] = float (xrf_input.elox-al203[9]) — (4.0)xfloat (
muscovite_moles [1])

xrf_input.elox_sio2 [9] = float(xrf_input.elox_sio2[9]) — (8.0)*float(muscovite_moles
(1])
xrf_input.weight_loss = float (xrf_input.weight_loss) — (24.0)x*float (muscovite_moles

[1]) xoxygen —(4.0)*xfloat(muscovite_moles[1])x*hydrogen

elif min(float (xrf_input.elox_k20[9]), float(xrf_input.elox_al203[9])/(2.0), float(

xrf_input.elox_sio2[9]) /(4.0)) < float (muscovite_moles[1]):

muscovite_.moles [1] = min(float (xrf_input.elox_k20[9]), float(xrf_input.elox_al203
[9]) /(2.0), float(xrf_input.elox_sio2[9])/(4.0))

xrf_input.elox_k20[9] = float(xrf_input.elox_k20[9]) — (2.0)*float(muscovite_moles
(11

xrf_input.elox_al203[9] = float (xrf_input.elox_al203[9]) — (4.0)*float (
muscovite_moles [1])

xrf_input.elox_sio2 [9] = float(xrf_input.elox_sio2[9]) — (8.0)x*float(muscovite_moles
(1)
xrf_input.weight_loss = float(xrf_input.weight_loss) — (24.0)«*float (muscovite_moles

[1]) xoxygen —(4.0)*float(muscovite_moles[1])x*hydrogen

3 #Orthoclase [KAISi308]

in calculation_list:

if float(xrf_input.elox_k20[9]) >= float(orthoclase_moles[1]) and float(xrf_input.

elox_al203 [9]) >= float(orthoclase_moles[1]) and float(xrf_input.elox_sio2[9]) >=
(3.0)«float (orthoclase_moles [1]) :

xrf_input.elox_k20[9] = float(xrf_input.elox_k20[9]) — float(orthoclase_moles[1])
xrf_input.elox_al203[9] = float(xrf_input.elox_al203[9]) — float(orthoclase_moles

(11

71

529

530

536
537
538
539
540

547

549

551

o
o
IS

o
o

7

o o @

560

562

xrf_input.elox_sio2 [9] = float (xrf_input.elox_sio2[9]) — (3.0)=*float(
orthoclase_moles[1])

xrf_input.weight_loss = float (xrf_input.weight_loss) — (8.0)«float (orthoclase_moles
[1]) *xoxygen

elif min(float(xrf_input.elox_k20[9]), float(xrf_input.elox_al203[9]), float(xrf_input

.elox_sio2[9]) /(3.0)) < float(orthoclase_moles[1]):

orthoclase_moles [1] = min(float (xrf_input.elox_k20[9]), float(xrf_input.elox_al203
[9]), float(xrf_input.elox_sio2[9])/(3.0))

xrf_input.elox_k20[9] = float(xrf_input.elox_k20[9]) — float(orthoclase_moles[1])
xrf_input.elox_al203[9] = float(xrf_.input.elox_-al203[9]) — float(orthoclase_moles
[1])

xrf_input.elox_sio2[9] = float (xrf_input.elox_sio2[9]) — (3.0)x*float (
orthoclase_moles[1])

xrf_input.weight_loss = float (xrf_input.weight_loss) — (8.0)=*float(orthoclase_moles
[1]) *xoxygen

#Glauconite [K0.6Na0.05Fel.5Mg0.4A10.3Si3.8010(0OH) 2]

if

in calculation_list:

if float(xrf_input.elox_-k20[9]) >= (0.6)«float(glauconite_moles[1]) and float (

xrf_input.elox_na2o0[9]) >= (0.05)«float (glauconite_moles[1]) and float(xrf_input.
elox_-fe203[9]) >= (1.5)«float (glauconite_moles[1]) and float (xrf_input.elox_-mgo[9])
>= (0.4)xfloat (glauconite_moles[1]) and float (xrf_input.elox_al203[9]) >= (0.3)x
float (glauconite_moles [1]) and float (xrf_input.elox_sio2[9]) >= (3.8)«float(
glauconite_moles [1]):

xrf_input.elox_k20[9] = float(xrf_input.elox_-k20[9]) — (0.6)x*float(glauconite_moles
[1])

xrf_input.elox_na20[9] = float(xrf_input.elox_-na20[9]) — (0.05)*float (
glauconite_moles [1])

xrf_input.elox_fe203[9] = float(xrf_input.elox_fe203[9]) — (1.5)«float (
glauconite_moles [1])

xrf_input.elox_mgo [9] = float(xrf_input.elox.mgo[9]) — (0.4)x*float(glauconite_moles
1)

xrf_input.elox_sio2[9] = float (xrf_input.elox_sio2[9]) — (3.8)x*float (

glauconite_moles [1])
xrf_input.weight_loss = float (xrf_input.weight_loss) — (12.0)x*float(glauconite_moles
[1]) *oxygen — (2.0)xfloat (glauconite_moles[1])+*hydrogen

elif min((0.6)*float (xrf_input.elox_k20[9]), float(xrf_input.elox_-na20[9])/(0.05

)7
float (xrf_input.elox_fe203[9]) /(1.5), float(xrf_input.elox-mgo[9]) /(0.4), float(
xrf_input.elox_al203[9]) /(0.3), float(xrf_input.elox_sio2[9])/(3.8)) < float(
glauconite_moles [1]):
glauconite_moles [1] min(float (xrf_input.elox_k20[9]) /(0.6), float(xrf_input.
elox_na20[9]) /(0.05), float(xrf_input.elox_fe203[9])/(1.5), float(xrf_input.elox_mgo
[9]) /(0.4), float(xrf_input.elox_-al203[9])/(0.3), float(xrf_input.elox_sio2[9])

/(3.8))

xrf_input.elox_k20[9] = float(xrf_input.elox_k20[9]) — (0.6)x*float(glauconite_moles
[1])

xrf_input.elox_na20[9] = float(xrf_input.elox_-na20[9]) — (0.05)*float (
glauconite_moles [1])

xrf_input.elox_fe203[9] = float (xrf_input.elox_fe203[9]) — (1.5)*float (
glauconite_moles [1])

xrf_input.elox-mgo [9] = float(xrf_input.elox-mgo[9]) — (0.4)x«float (glauconite_moles
i

xrf_input.elox_sio2 [9] = float (xrf_input.elox_sio2[9]) — (3.8)x*float(

glauconite_moles [1])
xrf_input.weight_loss = float (xrf_input.weight_loss) — (12.0)x*float (glauconite_moles
[1]) *xoxygen — (2.0)*float (glauconite_moles[1])+hydrogen

#Montmorillonite [Ca0.17Na0.31Mg0.33A11.67Si4010(0H)2.61]

if

in calculation_list:

if float(xrf_input.elox_cao[9]) >= (0.17)«float (montmorillonite.moles[1]) and float (

xrf_input.elox_-na20[9]) >= (0.31)«float(montmorillonite_moles[1]) and float (
xrf_input.elox.mgo [9]) >= (0.33)«float (montmorillonite_moles[1]) and float (xrf_input
.elox_al203[9]) >= (1.67)«float(montmorillonite_moles [1]) and float (xrf_input.
elox_sio2[9]) >= (4.0)=*float (montmorillonite_moles[1]):

xrf_input.elox_cao [9] = float(xrf_input.elox_cao[9]) — (0.17)«float (
montmorillonite_moles [1])

xrf_input.elox_na20[9] = float(xrf_input.elox_-na20[9]) — (0.31)*float (
montmorillonite_moles [1])

xrf_input.elox_mgo[9] = float(xrf_input.elox.mgo[9]) — (0.33)x*float (

montmorillonite_moles [1])

72

563 xrf_input.elox_al203[9] = float (xrf_input.elox-al203[9]) — (1.67)=float (
montmorillonite_moles [1])

564 xrf_input.elox_sio2 [9] = float(xrf_input.elox_sio2[9]) — (4.0)=*float(
montmorillonite_moles [1])
565 xrf_input.weight_loss = xrf_input.weight_loss — (12.61)*float(montmorillonite_.moles

[1]) *oxygen — (2.61)«float(montmorillonite_moles[1])*hydrogen

566 elif min(float (xrf_input.elox_sio2[9]) /(4.0), float(xrf_input.elox_al203[9]) /(1.67),
float (xrf_input.elox-al203[9]) /(0.17), float(xrf_input.elox-mgo[9]) /(0.33), float (
xrf_input.elox_na20[9]) /(0.31)) < float(montmorillonite_moles [1]) :

567 montmorillonite_moles [1] = min(float (xrf_input.elox_sio2[9]) /(4.0), float(xrf_input.
elox_al203[9]) /(1.67), float(xrf_input.elox_al203[9])/(0.17), float(xrf_input.

elox_-mgo [9]) /(0.33), float(xrf_input.elox_na20[9]) /(0.31))

568 xrf_input.elox_cao [9] = float(xrf_input.elox_cao[9]) — (0.17)x*float (
montmorillonite_moles [1])

569 xrf_input .elox_na2o0[9] = float(xrf_input.elox_na20[9]) — (0.31)xfloat(
montmorillonite_moles [1])

570 xrf_input .elox_-mgo [9] = float(xrf_input.elox.mgo[9]) — (0.33)x*float (
montmorillonite_moles [1])

571 xrf_input.elox_al203[9] = float (xrf_input.elox_-al203[9]) — (1.67)=«float (
montmorillonite_moles [1])

572 xrf_input.elox_sio2[9] = float(xrf_input.elox_sio2[9]) — (4.0)x*float (
montmorillonite_moles [1])

573 xrf_input.weight_loss = xrf_input.weight_loss — (12.61)*float(montmorillonite_moles

[1]) *xoxygen — (2.61)xfloat(montmorillonite_moles[1])+hydrogen

576 #display the mole amounts of elements after trace mineral allocation
577 print

578 print .format (,)
579 print x40

580 for 1 in xrf_input.elox_list:

581 if i[4] != int(0):

582 print .format (i[0],i[9])

583

584 #display the amounts of minerals after second mineral allocation stage
585 print

586 print .format (,)
587 print *40

588 for 1 in mineral_list:

589 print .format (i[0],i[1])

590
501 print xrf_input.weight_loss
592
593

504 #write information to output file

505 file_out .write()

s06 file_out .write()

so7 file_out . write(+ .format (,))
s08 file_out .write(+ %40)

500 for 1 in xrf_input.elox_list:

600 if i[4] != int(0):

601 file_out . write (+ .format (i[0],i[9]))

602

603 file_out .write()

604 file_out .write(.format (,))

605 file_out .write(+ %40)

606 for i in mineral_list:

607 file_out . write(+ .format (i[0],i[1]))

608

609

610

611 # #
612 # #
613 # Third Allocation Stage #
614 #
615 +#
616

617 print

615 print .format ()

619 print %100

620 print

621

622

73

623
624
625
626
627

629
630
631

632

634
635
636
637
638
639
640
641
642
643
644

645

646
647

649

660
661
662

664
665
666
667
668
669
670
671
672
673

674

675
676
677
678

679

681
682
683
684

calcium_list = []
magnesium_list
aluminium_list = |

if in calculation_list:
dolomite_list = int(raw_input(

if in calculation_list:
calcium _list .append(calcite_moles)

if in calculation_list and int(dolomite_list) = 1:
calcium _list .append(dolomite_moles)

if in calculation_list:
magnesium_list . append (magnesite_moles)
if in calculation_list and int(dolomite_list) ==2:

magnesium_list . append (dolomite_moles)

if len(calcium-_list) > 1:
print + str(len(
calcium_list)) +
print
for i in calcium_list:
print i[0]

print + str(float(Fraction(1,len(calcium_list)))) +
print
calcium_custom = 0
while calcium_custom = 0:

calcium_custom = int(raw_input(

))
if calcium_custom =— 1:
print

for i in calcium_list:
i[l1] = float (Fraction(1,len(calcium_list)))*float(xrf_input.elox_cao[9])

elif calcium_custom =— 2:
print
j =1.0
for i in calcium_list:
print + str(j)
i[l1] = float (raw_input(+ str(i[0]) +))*

float (xrf_input.elox_cao[9])
j =j — float(i[1])/float(xrf_input.elox_cao [9])
else:
print
calcium_custom = 0
elif len(calcium_list) = 1:
for i in calcium_list:
i[1l] = float(xrf_input.elox_cao[9])

if len(magnesium_list) > 1:

print + str(len(

magnesium_list)) +
print + str(float(Fraction(1l,len(magnesium_list)))) +
print
magnesium_custom = 0
while magnesium_custom == 0:

magnesium_custom = int (raw_input(

))
if magnesium_custom =— 1:
print

for i in magnesium_list:
i[1] = float (Fraction(1,len(magnesium_list)))*float(xrf_input.elox_-mgo[9])
elif magnesium_custom =— 2:
print

74

685
686
687
688

689
690
691
692
693
694
695
696
697
698
699
700
701

703
704
705
706
707
708
709

710
711
712
713
714

715
716
717

718
719
720
721
722
723
724

725
726
727
728
729
730
731

733
734
735
736
737

739
740

j=1.0
for i in magnesium_list:

print + str(j)
i[1] = float (raw_input(+ str(i[0]) +))*
float (xrf_input.elox_mgo[9])
j =j — float(i[1l])/float(xrf_input.elox-mgo[9])
else:
print
magnesium_custom = 0
elif len(magnesium_list) = 1:
for i in magnesium_list:
i[1l] = float(xrf_input.elox_-mgo[9])
#Siderite [FeCO3]

if

in calculation_list:

if xrf_input.elox_fe203 != int(0):

siderite_moles [1] = float (xrf_input.elox_-fe203[9])

xrf_input.elox_fe203[9] = float(xrf_input.elox_fe203[9]) — float(siderite_moles[1])
xrf_input.weight_loss = xrf_input.weight_loss — (3.0)xfloat(siderite_moles[1])x
oxygen —float (siderite_moles[1])*carbon

#Calcite [CaCO3]

if

in calculation_list:

if float(xrf_input.elox_cao[9]) >= float(calcite_moles[1]):

xrf_input.elox_cao [9] = float(xrf_input.elox_cao[9]) — float(calcite_moles[1])
xrf_input.weight_loss = float(xrf_input.weight_loss) — (3.0)x*float(calcite_moles[1])
xoxygen — float (calcite_moles[1])x*carbon

#Dolomite [CaMg(CO3) 2]

if

in calculation_list:

if float (xrf_.input.elox_cao[9]) >= float (dolomite_.moles[1]) and float (xrf_input.

elox_mgo [9]) >= float (dolomite_moles[1]):

xrf_input.elox_cao [9] = float(xrf_input.elox_cao[9]) — float(dolomite_moles[1])
xrf_input.elox.mgo [9] = float (xrf_input.elox-mgo[9]) — float (dolomite_moles[1])
xrf_input.weight_loss = float(xrf_input.weight_loss) — (6.0)*float(dolomite_moles
[1]) *xoxygen — (2.0)*float(dolomite_moles[1])*carbon

#Magnesite [MgCO3]

if

in calculation_list:

if float(xrf_input.elox_mgo[9]) >= float(magnesite_moles[1]):

xrf_input.elox_mgo [9] = float(xrf_input.elox_mgo[9]) — float (magnesite_.moles[1])
xrf_input.weight_loss = float(xrf_input.weight_loss) — (3.0)xfloat (magnesite_moles
[1]) xoxygen — float(magnesite_moles[1])*carbon

#Hematite [Fe203]

if

in calculation_list:

if xrf_input.elox_fe203 != int(0):

hematite_.moles [1] = (0.5)*float(xrf_input.elox_fe203[9])
xrf_input.elox_fe203[9] = float(xrf_input.elox_fe203[9]) — (2.0)*float (
hematite_moles [1])

xrf_input.weight_loss = xrf_input.weight_loss — (3.0)xfloat(hematite_moles[1])*
oxygen

#Goethite [FeO(OH)]

if

in calculation_list:

if xrf_input.elox_-fe203 != int(0):

goethite_moles [1] = float(xrf_input.elox_-fe203[9])

xrf_input.elox_-fe203[9] = float (xrf_input.elox_-fe203[9]) — float(goethite_moles[1])
xrf_input.weight_loss = xrf_input.weight_loss — (2.0)xfloat (goethite_moles[1])*
oxygen — lxfloat(goethite_moles[1])*hydrogen

print calculation_list

if

if

in calculation_list:

aluminium_list . append (gibbsite_moles)

in calculation_list:

aluminium_list .append (kaolinite_moles)

7

752

764

775
776
77T
778
779
780

782
783
784

785
786

788

789

791

792

793

794
795
796
797
798
799
800
801
802
803
804
805

if len(aluminium_list) > 1:

print
print + str(len(
aluminium-_list)) +
print + str(float (Fraction(1,len(aluminium_list)))) +
print
aluminium_custom = 0
while aluminium_custom == O0:
aluminium_custom = int (raw_input(
))
if aluminium_custom =— 1:
print
for i in aluminium_list:
i[1] = float (Fraction(1,len(aluminium_list)))*float(xrf_input.elox_al203[9])
elif aluminium_custom =— 2:
print
j=1.0
for i in aluminium-_list:
print + str(j)
i[l] = float (raw_input(+ str(i[0]) +)) *
float (xrf_input.elox_al203[9])
j =1j — float(i[1])/float(xrf_input.elox_al203[9])
else:
print
aluminium_custom = 0
elif len(aluminium_list) = 1:
for i in aluminium_list:
i[1l] = float(xrf_input.elox_al203[9])

#Gibbsite [Al(OH) 3]

if in calculation_list:
if xrf_input.elox_-al203[9] != int(0):
xrf_input.elox_al203 [9] = float(xrf_input.elox_al203[9]) — float(gibbsite_moles[1])
xrf_input.weight_loss = float(xrf_input.weight_loss) — (3.0)«float (gibbsite_moles
[1]) *oxygen — (3.0)xfloat(gibbsite_moles [1])+hydrogen
#Kaolinite [A128i205(OH) 4]

if in calculation_list:

if float(xrf_input.elox_-al203[9]) != int(0) and float(xrf_input.elox_sio2[9]) != int
(0):
kaolinite_-moles [1] = float (0.5)*float (kaolinite_moles[1])
xrf_input.elox_al203[9] = float(xrf_input.elox_al203[9]) — (2.0)*float (
kaolinite_moles [1])
xrf_input.elox_sio2[9] = float(xrf_input.elox_.sio2[9]) — (2.0)x*float(kaolinite_moles
[1])
xrf_input.weight_loss = float (xrf_input.weight_loss) — (9.0)*float(kaolinite_moles
[1]) *oxygen — (4.0)«float (kaolinite_moles[1])x«hydrogen

elif min(float (xrf_input.elox-al203[9]) /(2.0), float(xrf_input.elox_sio2[9])/(2.0)) <
float (kaolinite_moles [1]) :
kaolinite_-moles [1] = min(float (xrf_input.elox_al203[9])/(2.0), float(xrf_input.
elox_sio2[9]) /(2.0))
xrf_input.elox_al203[9] = float(xrf_.input.elox_-al203[9]) — (2.0)=*float(
kaolinite_moles [1])
xrf_input.elox_sio2[9] = float (xrf_input.elox_-sio2[9]) — (2.0)*float(kaolinite_moles
[1])
xrf_input.weight_loss = float (xrf_input.weight_loss) — (9.0)*float(kaolinite_moles
[1]) *oxygen — (4.0)«float (kaolinite_moles [1])=*hydrogen

#Quartz [SiO4]

if in calculation_list:
if xrf_input.elox_sio2 != int(0):
quartz_moles [1] = float (xrf_input.elox_sio2[9])
xrf_input.elox_sio2 [9] = float(xrf_input.elox_sio2[9]) — float(quartz_moles[1])
xrf_input.weight_loss = xrf_input.weight_loss — (4.0)*float(quartz_moles[1])*oxygen
mineral_list = (pyrite_moles, hematite_moles, rutile_moles, gibbsite_moles,
goethite_moles , halite_moles, calcite_moles, dolomite_moles,

magnesite_moles, siderite_moles , anhydrite_moles, apatite_moles,

76

806 chlorite_moles , glauconite_moles, muscovite.moles, kaolinite_moles ,

807 illite_.moles , montmorillonite_moles, quartz_moles,
808 albite_moles , anorthite_moles, orthoclase_moles)
809

810 #display the mole amounts of elements after trace mineral allocation
811 print

s12 print .format (,)
s13 print *40

s14 for i in xrf_input.elox_list:

815 if i[4] != int(0):

816 print .format (i [0], float(i[9]))

817

s18 #display the amounts of minerals after third mineral allocation stage
s19 print

s20 print .format (,)

s21 print *40

g22 for i in mineral_list:

823 print .format (i[0], float(i[1]))

824

s25 print xrf_input.weight_loss

826

s27 #write information to output file

s2s file_out . write ()

s20 file_out .write()

ss0 file_out .write(+ .format (,))
s31 file_out .write(+ %40)

s32 for 1 in xrf_input.elox_list:

833 if i[4] != int(0):

834 file_out .write (+ .format (i [0], float (i[9])))
835

s36 file_out .write()

s37 file_out .write(.format (,))

s3s file_out .write(+ *40)

g30 for i in mineral_list:

840 file_out . write(+ .format (i[0], float(i[1])))
841

842

sa3 #Calculate weight of mineral from molar mass, and molar quantity

saa for (i,j) in zip(mineral_list, mineral_data.all_minerals):

845 i[2] = float(i[1l]) = float(j[3])

846

847 #Calculate back to weight percentages

sas for i in mineral_list:

849 i[3] = (float(i[2])/float(xrf_input.total_weight_sample))xfloat (100)

851 #Calculate volume of mineral
ss2 for (i,j) in zip(mineral_list , mineral_-data.all_minerals):
853 i[4] = float(i[1]) = float(j[4])

855 total_volume = (0.0)

ss6 #Calculate total volume

g57 for i in mineral_list:

858 total_volume = float (total_-volume) + float (i[4])

859

gseo #Calculate percentage of total volume

g61 for i in mineral_list:

862 i[5] = (float(i[4])/float(total_volume))xfloat (100)

s66 #display weight and volume percentages
867 print

s6s print .format ()

860 print *100

870 print

s71 print .format (R R)

s72 print *60

g73 for i in mineral_list:

874 print .format (i[0], str(float(i[3])) + , str(float(i[5])) +
)

875

s76 svalues = ([])

s77 slabels = ([])

7

886

© W N U A W N e

e
N

15
16
17

19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

36

sindex = ([])

for i in mineral_list:
svalues.append (float (i[3]))
slabels.append(i[0])

sindex = ([0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21])

plt.barh(sorted (sindex, reverse=True), svalues, height=0.25)
pylab.yticks (sorted(sindex, reverse=True), slabels)
plt.title (user_reference)

pylab.xlim ([0,100])

pylab . xlabel ()

ax = plt.gca()

ax.grid (True)

plt.savefig(filename + , bbox_inches=)

#write weight and volume percentages to file

file_out .write()
file_out . write (.format ())
file_out . write()
file_out .write(.format (, ,))
file_out . write (+ *60)
for i in mineral_list:
file_out . write(+ .format (i [0], str(float(i[3])) + ,
str(float (i[5])) +))
file_out .write(

file_out .close ()

L L

T T T
XRF data input module
This module handles the input of the element—oxides, and gives a
message when you reached 100%
#
A small explanation, the total available amount is of course 100%
weight. Assigning weight to a particular element oxide will cause
subtraction of that amount of the total. Therefore, it checks for
each element oxide if there is mass available, if there isn’t, it
will return that you have used all available mass.
e Ly LU Ly LU T S TS Y R TR

from numpy importsx

#First we will create the element oxide arrays, in which the data will be stored.
#Note that numpy arrays fields will be formatted as ’numpy—string ’.

#elox_xx = array ([name, molweight elox, element, molweight element, wt%, true weight,
elox moles, conversion factor, element weight, element moles])

0 1 2 3 4 5

6 7 8 9

elox_f = array (| , 19.00, , 19.00, 0, 0, 0, 1, 0, 0])

elox_na2o = array (] ., 61.98, , 22.99, 0, 0, 0, 0.742, 0, 0])

elox_mgo = array (| , 40.31, , 24.31, 0, 0, 0, 0.603, 0, 0])

elox_al203 = array ([, 101.96, , 26.98, 0 ,0, 0, 0.529, 0, 0])

elox_sio2 = array (| , 60.09, , 28.09, 0, 0, 0, 0.467, 0, 0])

elox_p205 = array (| , 141.94, , 30.97, 0, 0, 0, 0.436, 0, 0])

elox_p = array (| , 30.97, , 30.97, 0, 0, 0, 1, 0, 0])

elox_so3 = array (| , 80.07, , 32.07, 0, 0, 0, 0.401, 0, 0])

elox_s = array (["5", 32.07, , 32.07, 0, 0, 0, 1, 0, 0])

elox_cl = array (][, 35.45, , 35.45, 0, 0, 0, 1, 0, 0])

elox_k20 = array (] ., 94.20, , 39.10, 0, 0, 0, 0.83, 0, 0])

elox_cao = array (| , 56.08, , 40.08, 0, 0, 0, 0.715, 0, 0])

elox_tio2 = array (| , 79.87, , 47.87, 0, 0, 0, 0.599, 0, 0])

elox_fe203 = array (| , 159.70, , 55.85, 0, 0, 0, 0.699, 0, 0])

elox_h20 = array (| , 18.0018, , 1.008, 0, 0 , 0, 0.112, 0, 0])

elox_co2 = array (] . 44.01, , 44.01, 0, 0, 0, 0.364, 0, 0])

elox_o = array (| , 32.00, , 32.00, 0, 0, O, 0, 0, 0])

37

39
40
41
42
43
44
45

= o

&

[T TS T O
¥

~

65
66
67
68

70
71
72
73
74
75

77
78

80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100

101

102

104
105
106
107
108

elox_list=(elox_f, elox_na20, elox.mgo, elox_al203, elox_sio2,
elox_so3 , elox_s, elox_cl, elox_k20, elox_cao, elox_tio2,

elox_total = float (100)

weight_loss = float (0)

print
if elox_total > 0:
print + str(elox_total)
elox_f[4] = float (raw_input(
elox_total = elox_total — float(elox_f[4])
if elox_total > 0:
print + str(elox_total)
elox_na2o0 [4] = float (raw_input (
elox_total = elox_total — float (elox_na2o0 [4])
if elox_total > 0:
print + str(elox_-total)
elox_mgo [4] = float (raw_input(
elox_total = elox_total — float (elox_-mgo [4])
if elox_total > 0:
print + str(elox_total)
elox_al203 [4] = float (raw_input(
elox_total = elox_-total — float(elox_-al203[4])
if elox_total > 0:
print + str(elox_total)
elox_sio2 [4] = float (raw_input(
elox_total = elox_total — float(elox_sio2 [4])
if elox_total > 0:
print + str(elox_total)
elox_p205[4] = float (raw_input (
elox_total = elox_total — float(elox_p205[4])
if elox_total > 0:
print + str(elox_total)
elox_p [4] = float (raw_input(
elox_total = elox_total — float (elox_p [4])
if elox_total > 0:
print + str(elox_-total)
elox_s03 [4] = float (raw_input(
elox_total = elox_total — float (elox_so3[4])
if elox_total > 0:
print + str(elox_-total)
elox_s [4] = float (raw_input(
elox_total = elox_total — float(elox_s[4])
if elox_total > 0:
print + str(elox_total)
elox_cl[4] = float (raw_input(
elox_total = elox_-total — float(elox_cl[4])
if elox_total > 0:
print + str(elox_total)
elox_k20 [4] = float (raw_input (
elox_total = elox_total — float (elox_k20[4])
if elox_total > 0:
print + str(elox_total)
elox_cao [4] = float (raw_input (
elox_total = elox_total — float(elox_cao [4])
if elox_total > 0:
print + str(elox_total)
elox_tio2 [4] = float (raw_input(

79

elox_p205 ,
elox_fe203)

elox_p,

109
110
111
112
113
114
115
116
117
118
119
120
121
122
123

124
125
126
127
128
129
130
131

139
140

141
142
143
144
145

146

147

148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170

[SA I VR R

elox_total = elox_total — float(elox_tio2 [4])

if elox_total > 0:
print "\nAvailable mass " 4 str(elox-total)
elox_fe203[4] = float (raw_input(” Pleasce [ill in the value for Fe203 7))
elox_total = elox_total — float(elox_fe203 [4])

#if the available amount reaches zero, you can’t assign mass to another element—oxide.
#therefore, it will ask for the other test data.
elif elox_total = O0:

print "\nYou have used all available mass.”

#The other case, if weight percentage exceeds 100 percent. Data has to be filled in

again .
elif elox_total < 0:
print "\nThe input is invalid, please fill in correct amounts.”

import xrf_input

#Sample weight, needed to convert weight percentage to actual weight.
weight = raw_input(”\nPlease (i1l in the total weight of the sample (in mg) 7)
if weight = "":
total_weight_sample = 1000.0
elif weight > 0:
total_weight_sample = float (weight)

if elox_total > O0:
weight_loss = ((float(elox_total)/100) * total_weight_sample) + float(weight_loss)

#1f data is not normalized, the data will not add up to 100%, the difference is
considered as weight—loss.
#weight_loss = weight_loss 4+ total_before_normalization

#Data input is correct, the next step is to convert weight percentage to actual weight ,
and molar quantities.

#elox_xx = array ([name, molweight elox, element, molweight element, wt%, true weight,
elox moles, conversion factor, element weight, element moles])
0 1 2 3 4 5
6 7 8 9

#convert weight percentage to actual weight (in mg)
for i in elox_list:
i[5] = (float(i[4]) / 100)*total_weight_sample

#convert elox weight to elox moles
for i in elox_list:
i[6] = float(i[5])/float(i[1])
#convert elox weight to mass of specific element by using conversion factor
for i in elox_list:
i[8] = float(i[5])=float(i[7])
#convert element weight to element moles
for i in elox_list:
i[9] = float(i[8])/float (i[3])
#add the oxygen in the element oxides to weight loss
for i in elox_list:

weight_loss = ((1—float (i[7]))*float(i[5])) + float(weight_loss)

print "\nThe total weight loss is: 7 4 str(weight_loss)

#mineral data for calculation , the inputs are density, mass and volume.

from numpy importsx*

80

6
7
8

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

#mineralname_data = array ([density , mass, volume])

eXample = ([K b b b b
; 1)

0 1 2 3 4 5

6

Pyrite = array (| , , 5.01, 119.99, 23.95, , 1)

Hematite = array (| R , 5.3, 159.7, 30.13, , 2])

Rutile = array (][, , 4.25, 79.87, 18.79, , 3])

Gibbsite = array (] , . 2.34, 78.004, 33.34, . 4])

Goethite = array (| R , 3.8, 88.858, 23.38, , 5])

Halite = array (| , , 2.17, 58.44, 26.93, , 6])

Calcite = array (| , , 2.71, 100.09, 36.93, 7D

Dolomite = array (| R , 2.84, 184.41, 64.39, , 8])

Magnesite = array (| , , 3, 84.32, 28.11, , 9])

Siderite = array (] R , 3.96, 115.86, 29.26, , 10])

Anhydrite = array ([, , 2.97, 136.95, 46.11, , 11])

Apatite = array (| , , 3.19, 506.318, 158.72, , 12])

Chlorite = array (] , . 2.65, 587.384, 221.65, ,
13])

Glauconite = array (| , , 2.67,
426.93, 159.90, ", 14, 0])

s Muscovite = array (| , , 2.82, 796.652, 282.50, , 15, 0])

Kaolinite = array (| , , 2.6, 258.172, 99.30, , 16])

Illite = array (] , , 2.75, 398.326, 144.85, , 17, 0])

Montmorillonite = array (| , ,
2.35, 383.77, 163.30, , 18])

Quartz = array ([, , 2.62, 60.09, 22.94, , 19])

Albite = array ([, . 2.62, 262.24, 100.09, , 20])

Anorthite = array (| , , 2.73, 279.02, 102.21, , 21])

Orthoclase = array (| , , 2.56, 278.32, 108.73, , 22, 0])

all_minerals = array ([Pyrite, Hematite, Rutile, Gibbsite, Goethite, Halite
Calcite, Dolomite, Magnesite, Siderite, Anhydrite, Apatite,
Chlorite , Glauconite, Muscovite, Kaolinite, Illite , Montmorillonite ,
Quartz, Albite, Anorthite, Orthoclase])

import mineral_data

edit_-mode =
while edit_-mode =—

edit_mineral = int(raw_input(
))
edit_mineral_data = int(raw_input(
))

mineral_data.all_minerals [edit_mineral —1][edit_mineral_data+1] = float (raw_input (

))
print mineral_data.all_minerals|[edit_mineral —1]
edit-mode = raw_input ()

81

