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Abstract—Side channel attacks are a serious threat to inte-
grated circuits. They are hardly detectable and use inherent
information leaked by the hardware to infer sensitive information
like secret keys. Over the last ten years, numerous side channel
attacks have been examined, exploring various forms of leakage
channels such as time, power, electromagnetic field, photon
emission, and acoustic. Among them, power side channel attacks
are the most popular ones. Developing an appropriate counter-
measure against such attacks requires a deep understanding of
these attacks. This paper presents a study of the most popular
power attacks such as differential power attack and correlation
power attack and discusses the latest countermeasures in this
domain and their shortcomings.

Index Terms—Side channel attacks, profiled attacks, non-
profiled attacks, countermeasures, leakage assessment

I. INTRODUCTION

Without a proper implementation, cryptographic algorithms
such as Advanced Encryption Standard (AES), RSA, Elliptic
Curve Cryptography (ECC) etc. are vulnerable to data at-
tacks [1]. Several studies showed that adversaries can easily
break the secrecy of the cryptographic algorithms using hard-
ware attacks. Examples of such attacks are fault injection [2],
side channel analysis (SCA) [3, 4], and hardware Trojans [5].
Among these hardware attacks, side channel attacks are one
of the most difficult ones to protect as they are completely
passive. These attacks extract sensitive information using
covert channels such as power consumption, electromagnetic
radiation, timing information, etc. Side channel attacks are
continuously improved (e.g., usage of deep learning [6]) while
the required equipment also becomes cheaper [7]. This makes
it is important to understand where we are currently standing
with respect to side channel attacks.

The first side channel attack was introduced by Paul C.
Kocher in 1996 [3]. The author showed that carefully mea-
suring the execution time of certain operations can reveal the
secret key. Three years later, Kocher et al. [4] showed that
power consumption can also leak secret information. Many
different power based side channel attacks have been proposed
after that. They have been grouped and classified in several
papers. In [8], the authors presented a tutorial on physical
attacks in which they extensively discussed simple power
analysis, differential power analysis, and correlation power
analysis. In [9], the authors published a chapter on side channel
attacks and leakage assessment equipment. In [1, 10] the
authors presented an overview on power attacks and hardware-
based countermeasures. In [11], the authors published a survey

on the security of differential power analysis. In [12], the
authors published a study on machine learning-based power
threats. Last but not least, in [13] the authors presented an in-
depth study on the most popular power attacks as well as test
vector leakage assessment. Note that most of these surveys
focus on a specific topic of side channel attacks. For example,
in [10] and [1], the authors focus only on hardware-based
countermeasures where other implementation such as software
ones are ignored. In [11], the survey targeted a single attack
namely differential power analysis. In [12] the focus was only
on machine learning attacks, while [13] ignored machine
learning attacks in their survey. A survey that covers most
aspects in power side channel analysis aspects (i.e., attacks,
countermeasures, leakage assessment styles) is still missing.

This paper briefly discusses the history of power based
side channel attacks and their countermeasures. It provides
a classification of the attacks and countermeasures and gives
examples of the most common attacks and countermeasures
within each class, respectively. Finally, it discusses the various
methods to perform a leakage assessment of the implemented
cryptographic algorithms. In summary, the contributions of this
paper are:

• An overview of the current threats of the side channel
attacks

• A classification of the existing countermeasures and their
limitations

• An overview of leakage assessment techniques and their
shortcomings.

The remainder of the paper is organized as follows. Sec-
tion II provides a classification of power attacks and describes
the most famous ones in more detail. Section III classifies
the state-of-the-art countermeasures and provides examples
of each class. Section IV gives an overview of proposed
leakage assessment techniques. Finally, Section V discusses
and concludes this paper.

II. SIDE CHANNEL ATTACKS

Power based side channel attacks are attacks where a
malicious adversary takes advantage of the power consumption
to deduce secret information. These attacks can be classified
in non-profiled and profiled attacks as shown in Figure 1. Each
class is briefly explained next.

A. Non-profiled attacks techniques
In these attacks, an attacker gets access to a target electronic

device that runs a cryptographic algorithm. Thereafter, the at-
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Fig. 1. Classification of Power Attacks

tacker tries to perform a key recovery by correlating a leakage
model with obtained power traces during the execution of the
cryptographic algorithm. Famous examples of these types of
attacks are Simple Power Attack(SPA) [4], Differential Power
Attack (DPA) [4], Correlation Power Attack (CPA) [14],
Collision Power Attack [15], Zero Value Attack [16], and
Machine learning Attack [17]. Each one of these attacks will
be explained briefly next.

1) Simple Power Attack (SPA): An SPA attack can be
carried out by merely observing changes in power usage
throughout the execution of the target operation (e.g., RSA
encryption). It’s worth noting that in this attack no particular
mathematical computations are required. The attack on the
unprotected RSA implementation based on the multiply-square
algorithm is a well-known example [4]. Observing the peak
power values of the square and multiply operations during
encryption and decryption allows the attacker to retrieve the
key [4].

2) Differential Power Attack (DPA): In DPA attacks [4], the
attacker selects a small portion of the key (i.e., 8-bits for AES),
divides the traces in two sets for 256 hypothetical key values
based on a single bit at the output of the SBOX and selects
the key belonging to the two sets where the mean difference
between them is the highest. This process is repeated until the
full key is recovered.

3) Correlation Power Attack (CPA): Correlation power side
channel attacks [14] work as follows. The attack on AES starts
similarly as DPA, but instead of creating two sets based on
single bit at the output of the SBOX, the used key is estimated
using the Pearson coefficient correlation, which is computed
using Equation 1. In the equation, hk,i represents the hamming
weight/distance of the ith intermediate operation (e.g., SBOX
in AES, square and multiply in RSA), k the subkey value
of the encryption/decryption execution, tk,j the sample point
j within the sub-trace k, and n the number of traces. In
asymmetric algorithms, the key is recovered in a bit-by-bit,
in contrast to symmetric algorithms where this is determined
by the width of the SBOX output (which equals 8 for AES).

ri,j =

∑n
(hk,i − µhi

)(̇tk,j − µtj )√∑n
(hk,i − µhi

)
2∑̇k

(tk,j − µtj )
2

(1)

4) Collision Power Attack: Collision attacks [15] aim at
situations where two encryptions with different inputs and
an unknown key will produce the same intermediate values
(e.g. hamming weight/distance). If an adversary can identify
from the power consumption two encryption operations that
contain this occurrence, the collision can be exploited. Since
a collision only exists for a subset of the potential key space,
each successful collision allows the attacker to narrow the key
search space.

5) Zero Value Attack: Zero value attacks [16] take advan-
tage of the fact that known plaintext (e.g. setting it to zero)
will lead to the leakage of information that exposes the secret
key. These type of attacks mainly target implementations that
contain countermeasures and aim to remove the randomization
generated by those countermeasures. An example of such an
attack can be found in multiplicative masking where zero input
values cannot be randomized using multiplicative mask [18].

6) Machine learning Attack: Machine learning attacks [17]
use the leakage model to distinguish between traces and derive
the key from them. These attacks mainly target asymmetric
algorithms such as RSA and ECC. For example, k-means is
a clustering algorithm [17] that is commonly used to apply
such attacks. Starting with an initial guess/prediction, it splits
the training set into k distinct clusters. For each collected
trace, it iteratively detects the nearest cluster center (centroid)
and updates the centroids based on the mean of all training
instances assigned to it until no changes occur anymore. To
put it another way, the aim is to discover a partitioning
that minimizes the total cluster variance. To determine the
distance between two traces, the squared Euclidean distance
can be used. Once the clusters are created, the partial traces
that belong to the two clusters represent either a square or
multiplication operation. Once these operations have been
defined, the key can be recovered in a bit-by-bit fashion [17].

B. Profiled Attacks
In contrast to non-profiled attacks, in a profiled attack an

adversary uses a similar or identical device under his control
to create a leaking template known as the profiling phase.
After that, the attacker correlates the power traces of the target
device and compares them with the template to recover the
key; this phase is also known as extraction phase. Both phases
are explained next.

C. Profiling Phase
In this step, the adversary uses a similar or identical device

that he or she completely controls to develop a behavioral
model of the targeted device. This phase consists of the
following steps:
Step 1: In this step, the adversary looks for a device that
behaves in a similar way as the target device.
Step 2: In this step, the adversary selects and defines the
point of attack (e.g., the output of SubByte operation in AES
algorithm or square and multiply functions in RSA).
Step 3: In this step, the adversary measures several power
traces of the chosen target point of attack.
Step 4: In this step, the adversary assigns a label to each
trace acquired in Step 3. Depending on the cryptographic
methodology employed, the label can be computed in a variety
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of ways. The hamming weight/distance of the SBOX output
is the most commonly used label in AES algorithm [6].
Asymmetric algorithms, on the other hand, often use the main
operations as labels, e.g., square and multiply in RSA [19].
Step 5: Finally, The adversary designs/builds a template to
characterize the traces. The model is build from the traces
and labels collected in Steps 3 and 4, respectively.

D. Extraction Phase

During this phase, the adversary attempts to extract the
secret information from the target device by applying the steps
below:
Step 1: in this step, the adversary locates the device of attack.
Step 2: in this step, the adversary identifies the point of attack,
i.e., the operation used to extract the labels during the profiling
phase. For instance, the output of SBOX function in AES.
Step 3: in this step, the adversary measures several power
traces that contain the point of attack. This step requires the
traces to be sliced when asymmetric algorithms are used (e.g.,
slicing square and multiply operations in RSA). Slicing is not
required for symmetric algorithms; there each power trace is
represented with a single label.
Step 4: in this step, the adversary guesses the label value of
each measured trace of Step 3. For AES algorithm, the labels
can be seen as the results of the hamming weight/distance,
while for asymmetric algorithm the labels represent the exe-
cuted function (e,g., square and multiply in RSA).
Step 5: Finally, the adversary derives the secret key from the
obtained labels. The key is retrieved in a bit-by-bit fashion
when asymmetric algorithms from the identified operations of
the previous step. The returned bits must be concatenated from
left to right or right to left, depending on the methodology
employed to recover the whole key. Symmetric algorithms
need an additional steps, as the leakage model results (e.g.,
hamming weight) must be converted to a sub-key value. This
additional step is depicted in Algorithm 1. The subkey is
obtained after calculating the likelihood of key values. To
predict a subkey value, the likelihood of all potential subkey
scenarios from subkey = 0 to 255 are evaluated by computing
the leakage model results for each plaintext/ciphertext.

There are many examples of profiled attacks both for sym-
metric and asymmetric algorithms. In this section we selected
the most famous ones (i.e., template based attacks (TBA) [20],
machine learning Attacks(ML-SCA) [21], and deep learning
based side channel attacks (DL-SCA) [6]). Note that there are
many variations proposed. Next each of them will be briefly
described.

1) Template-based Attack: In this attack, the multivariate
normal distribution is used to create a profile. The profile
consists of multiple covariance matrices C and mean vectors
m of the points of interest of the collected power traces. First,
the measured traces are grouped based on their Hamming
weight/distance (HW/HD) value. Next the covariance and
mean are computed for selected samples (i.e., the points of
interest) within the traces for every HW/HD group. They are
identified by Ch mh for HW/HD with value h.

During the attack phase, the adversary uses the probability
distance to correlate measured power traces with the profile.

Algorithm 1 Symetric Algorithms: Key Extraction
1: procedure KEY EXTRACT(Predictionset, ptarray)
2: Pk[0, 255] = key probability
3: Prediction = the results of the trained model on the

attack traces
4: pt = is the plaintext used in the encryption process.
5: for each sub-key do
6: Pk[0, 255] = 0
7: for j in trace-set do
8: X0,255 = predict(trace)
9: for k=0 to 255 do

10: HWk = HW (SBOX[pt[j]
⊕
k])

11: Pk[k] = Pk[k] + log(Predictionj [HWk])
12: end for
13: end for
14: guesssubkey = max(Pk)
15: end for
16: end procedure

This is shown in Equation 2. In the equation, h denotes the
template number (i.e., the corresponding HW/HD set) and t
an attack trace. The value of the leaking model is determined
by the template that produces the highest results. Note that the
traces used for attack must be aligned with the traces used for
profiling.

f(t) = 1√
(2π)n×det(Ch)

× exp(− 1
2 × (t−mh)

′ × C−1
h × (t−mh)) (2)

2) Machine Learning Attack: In machine learning (ML)
attacks [21], the multivariate normal distribution is replaced by
ML techniques such as Support Vector Machine (SVM). SVM
is a binary classifier. First a feature selection method is used
to reduce the dimension (i.e., trace length) of the power trace.
Thereafter a classifier is used to learn the features. During
the profiling phase, the classifier creates two hyperplanes in
a high-dimensional space with the goal of classifying the
data. The data separation takes place in such a way that the
hyperplanes are furthest away from each other. During the
extraction phase, the classifier is used to classify the attack
traces based on the distance to both planes. The percentage
of correct classifications among the power traces from the
test sets are used to determine the success rates. Note that
SVMs are designed to perform a binary classification and
hence can be used in three ways to perform an attack on
symmetric algorithms [22]: (1) separate the results of hamming
weight/distance to two groups (i.e., less than or greater than
4), (2) separate the results of the hamming weight/distance
based on even or odd, and (3) separate the results of ham-
ming weight/distance based on the value of the fourth least
significant bit.

3) Deep Learning: During the profiling phase, the attacker
builds and trains a neural network. The attacker must first
specify the neural network’s structural parameters (such as
depth, width, and activation function). After that, training is
performed on traces that have labels attached to them. The
attacker separates the dataset (i.e., traces and their labels) into
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a training set (usually 80 percent to 90 percent of the total
dataset) and a validation set. The attacker ends the training
when the training and validation accuracy is high enough. In
extraction phase, the attacker applies the traces collected from
the target device to the trained neural network. The results
obtained from the neural network are subsequently used to
extract the key.

III. SIDE CHANNEL COUNTERMEASURES

Several countermeasures to power attacks have been sug-
gested over the last two decades. As shown in Figure 2,
these countermeasures can be classified based on two met-
rics: technique (i.e,. obfuscation and balancing) and imple-
mentation level (i.e., software, hardware architecture, cir-
cuit/implementation, and technology). Next, the different
countermeasures will be discussed based on their technique.

A. Obfuscation

Countermeasures based on obfuscation attempt to ran-
domize the power behaviour irrespective of the performed
operation. There are many examples of such techniques at
different implementation levels available in the literature. At
software level, one of the famous examples of obfuscating
the power consumption for mainly symmetric algorithms is
using masking [23]. Masking works by splitting the algorithm
calculations’ sensitive intermediate operations into d+ 1 ran-
dom shares in such a way that analyzing d shares reveals no
information about the secret value. Other examples of software
level obfuscating are random order execution [24], random
delay insertion [25], message and/or exponent blinding [19]
and SBOX confusion [26]. In [24], random instructions with
random register accesses are inserted between the original
instructions sequence of the encryption/decryption process,
which changes the power behaviour each time. In [25], the
power behaviour is altered by inserting random NOP instruc-
tions which causes misalignment in the power traces. In [19],
the key and/or the message of asymmetric algorithms are
randomized in each execution. In [26], the SBOX of AES
algorithm is implemented using a neural network which con-
fuses the power behaviour of the leakage model. Note that this
countermeasure, unlike the others, targets the leakage model.
In hardware, similar to software, masking [27] is the most
popular countermeasure. Another example of a hardware based
countermeasure is random delay insertion [28], where the
delay is inserted by logic gates. Note that the other software
level techniques can be also implemented in hardware. At
circuit level, the power consumption can be obfuscated by
modifying the logic cells as is the case for masked dual-rail
pre-charged logic [29] or by having an additional source in the
system to injected noise [30]. At technology level, emerging
devices such as memristors can be used for obfuscation by
exploiting cycle-to-cycle variation.

B. Balancing

The goal of balancing techniques is to keep the power usage
as stable as possible during sensitive operations. Similarly
to obfuscation techniques, there are many examples of such
techniques studied in the literature at every implementation

level (i.e., software, hardware architecture, circuit, and tech-
nology). One of the famous countermeasures in software is
Montgomery multiplication [31] where both operations of
asymmetric algorithms (e.g., square and multiply in RSA and
double and addition in ECC) are executed in the Montgomery
domain. This results in a similar power behaviour for both
operations. Hence, it is harder for an attacker to distinguish
between them. Another example of a balancing technique at
software level for asymmetric algorithms is multi-bit blind-
ing [32]. This technique always executes the same sequence
of operations regardless of the key bit values, by considering
two bits at a time and re-order their operations. For symmetric
algorithms, a multi-core can be used [33] where two encryp-
tions are executed on different cores simultaneously. One with
original message while the other one with its complementary
message. At the hardware level, the same techniques used in
software can be implemented. A clear example can be seen
in the duplicate design [34], where instead of having two
software encryptions, two actual hardware implementations
are used to run the message and its complementary at the same
time. At circuit level many techniques were proposed such
as power equalizer [35], dual-rail logic [36], and Adiabatic
Logic [37]. In power equalizer [35], the power is balanced
using the on-chip power supply. In dual-rail logic [36], the
power is balanced by redesigning logic cells such that they
take both the input and their complement values as inputs.
In adiabatic logic [37], the power is balanced by designing
CMOS cells in such a way tha they both charge and discharge
at the same time to disguise power irregularities. At technology
level, researchers are exploring emerging technologies such
as Memristor [38] to minimize the power leakage, which
increases the attack difficulty. Note that circuit and technol-
ogy level techniques can be applied to both symmetric and
asymmetric algorithms.

IV. LEAKAGE ASSESSMENT STYLES

There are currently several options to evaluate counter-
measure implementations. They can be grouped into three
categories based on their style: evaluation-style, conformance-
style, and formal style. Each style is briefly explained next.

A. Evaluation Style
In evaluation-style testing, power traces are tested using

actual side channel attack scenarios, such as those described
in Section II. They show whether the implementations are re-
sistant to such attacks or not. The attacks can be performed in
a profiled or unprofiled manner as discussed in Section II. The
attacks can be performed after the chip is manufactured using
off-the-shelf security tools and equipment (e.g., equipment of
Rambus [39] and Riscure [40]) or during the design process
using CAD-based solutions [41].

B. Conformance Style
On the other hand, conformance-style testing examines

whether traces are compliant with specific leakage criteria
without taking actual attacks into account. Test Vector Leakage
Assessment (TVLA) [42] and signal-to-noise ratio (SNR)
analysis [43] are two examples of this form of analysis. Due
to space limitations, we focus only on TVLA.
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Fig. 2. Classification of Countermeasures

TVLA is based on Welch’s t-test, which examines whether
two populations have similar distribution. Welch’s t-test is used
in to identify whether power traces of an encryption/decryption
algorithm execution leak information about the secret key.
The leakage is measured using two sets of power traces,
one with fixed plaintext/ciphertext and the other with random
plaintext/ciphertext. Note that the key value is the same in both
sets. Equation 3 shows the equation used to perform this test.
In the equation, X̄1, S2

1 , and N1 represents the mean, the vari-
ance, and the total number of used fixed plaintext/ciphertext
traces, respectively, while X̄2, S2

2 , and N2 represents the
mean, the variance, and the total number of used random
plaintext/ciphertext traces, respectively.

t =
X̄1 − X̄2√
S2
1

N1
+

S2
2

N2

(3)

C. Formal Style

The aim of formal verification-based testing is to analyze
the leakage of an implementation mathematically. Formal
verification examples can be found in [44, 45]. In [44] the
authors use formal verification to verify hardware masking
countermeasures. In [45], the authors present a satisfiability
modulo theories (SMT) solver to evaluate software masking
countermeasures.

V. DISCUSSION AND CONCLUSION

This paper presented a short survey of on power side chan-
nel attacks, proposed countermeasures and leakage assessment
styles. Based on our study, we conclude the following.
Power attacks: Researches are continuously improving power
side channel attacks and explore ways to enhance the attack
resolution of current attacks. For example, the use of Gener-
ative Adversarial Networks [46] as a method to enhance the
profiling phase by producing more power traces without the
need to measure them is one of the most recent proposed
techniques. Also new developments are proposed for non-
profiled attacks. One example is the employment of deep

learning approaches like using auto-encoders [47] as a pro-
cessing tool to improve accuracy. Note that the development of
attacks is not limited to attack analysis techniques; measuring
and accessing the target device are also being looked at for
more realistic circumstances. For example, the authors in [48]
propose a remote side channel attack by accessing the on-chip
analogue-to-digital converter.
Limitations of countermeasures: Software countermeasures
typically come with a large performance overhead. The ob-
fuscation based randomization methods have a limited impact
and are complex to implement, while it is very difficult
to create balancing based countermeasures. hardware design
countermeasures perform slightly better than software counter-
measures in terms of security and performance. However, they
increase the area of the design which is not always affordable,
as is the case for constraint IoT devices. In addition, they
are difficult to debug in case a vulnerability is found. Circuit
level countermeasures require special skills and experience
for proper implementation. In addition, they typically increase
the area and the power consumption (except for adiabatic
logic which still lacks a proper security analysis). Finally,
technology level countermeasures are not well explored as they
mostly depend on immature emerging technologies. Moreover,
they are costly to implement and require special skills.
Limitations of Leakage assessment: Unfortunately, it is
impossible to evaluate a design against all the existing attacks
using evaluation-style testing; furthermore it is also impossi-
ble to predict future attacks. Performing attacks with post-
manufacturing traces is the most accurate way to do this
and in case the security is not satisfied, the chip has to
be redesigned and re-manufactured, affecting the cost and
the design time considerably. CAD-based solutions, on the
other hand, can solve the post-manufacturing by generating
traces during the design stage already by using simulations
for example. However, this is a time-consuming task and
the traces are not as accurate as real ones. Conformance-
style leakage assessment methods (i.e., TVLA and SNR)
provide a fast and easy way of assessing the power traces.
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Unfortunately, these methods have been proven that they are
not very accurate [49]. Formal style testing is a new way
of performing a pre-manufacturing power leakage assessment.
However, this methods works only for a single countermeasure
technique (i.e., masking). Furthermore, when the number of
mask shares increases, the formal verification’s worst-case
time complexity increase exponentially.
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