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“dekh zindan se pare rang-e-chaman josh-e-bahar,
rags karna hai to phir paafiv ki zanjir na dekh.”

~ Majrooh Sultanpuri

“Look beyond the bars of your confine,
At the bloom of spring with joy replete,
If you ‘want’, not merely ‘wish’, to dance,
Don't look at the shackles on your feet.”

“shauq-e-didar agar hai to nazar paida kar.”

~ Ameer Minai

(Famously quoted by noted journalist Ravish Kumar as the most important lesson of all
his schooling.)

“If you have the passion to see, then you must birth the right vision.”






SUMMARY

The mixing of two immiscible fluids, often under turbulent conditions, can lead to the
formation of an emulsion, where droplets of one fluid are embedded in another fluid.
The occurrence of emulsions is commonplace across industries, ranging from the oil in-
dustry to food processing and biotechnology. Why emulsions serve diverse applications,
in grossly simple terms, is due to their structural organization, as the two fluids in an
emulsion form exhibit very different physical properties than they do when separated.
The stability of the emulsion structure, hence, is key for its utility. The presence of im-
purities, or surfactants, in the constituent fluids, greatly enhances emulsion stability, by
preventing the coalescence of droplets (which would lead to phase segregation). Emul-
sion research, over the past century, has developed into a thriving field, driven by the
force of detailed experimentation that has significantly informed modeling, control and
design of processes dealing with emulsification.

Despite being predictable to a degree, the true nature of droplet dynamics at the
heart of emulsification remains unknown. It is experimentally exceedingly difficult to
illumine the evolution of interfaces undergoing coalescence and breakup, while simul-
taneously reporting the three-dimensional, turbulent flow features. It is slowly becom-
ing feasible, however, to tackle these problems by using numerical simulations. Such
simulations, too, involve a level of modeling complexity and pose heavy computational
demands, and have hence remained an exception. It is only now becoming feasible to
simulate such complex flows, allowing us to augment experiments with numerical in-
sights. In this thesis, we attempt to unravel emulsification (to a small extent) by using
simulations resolving both flow and interfaces, while considering fluids with impurities.

We begin with a brief investigation into the choice of numerical method applica-
ble for the problem, in Chapter 2. The main requirements were (1) simulating inter-
face resolving multiphase flows, i.e. allowing for coalescence and breakup without mod-
els, (2) simulating impure fluids, i.e. incorporating surfactant effects and (3) simulat-
ing resolved turbulent flows, involving a range of length and time scales. The associ-
ated computational demands mandate that the numerical technique should be suited
to provide reasonable results within reasonable time. We show that different numerical
techniques for simulating multiphase flows are still not very robust. Seemingly minor
differences, between the implementation and modeling of the interface, can lead to dif-
ferent results, even for simple flow problems. Between the volume-of-fluid and lattice-
Boltzmann methods, we chose the latter for the remainder of our study because it allows
simulating surfactants with relative ease, along with the benefit of faster computations
when considering turbulent flows.

We then present a simplification of a surfactant model present in the literature in
Chapter 3, to simulate surfactant-laden droplet flows. We reproduce, qualitatively, sev-
eral features relevant for simulating surfactant effects on droplet dynamics. This in-
cludes preferential seeking of interfaces by the surfactant, a reduction in surface tension
between the two fluids and modification of droplet dynamics. However, the proposed
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model is found to have two shortcomings. The surfactant is found incapable of au-
tonomously inhibiting coalescence, which requires additional numerical mechanisms,
like the multiple-belt interparticle force method (well known in the literature). The other
limitation of the model is the dependence of multiple output system parameters (like
density ratio and surface tension), on the input parameters (like repulsion strength and
density). The pseudopotential lattice-Boltzmann method does not allow an easy sepa-
ration between cause and (multiple) effects of this kind.

Before simulating turbulent emulsions, in Chapter 4, we investigate coherent struc-
tures that arise in turbulent flows. The form of these structures is a crucial (unanswered)
question regarding turbulence, which holds key to turbulence flow organization and dy-
namics, and their effects on Lagrangian objects like droplets that are influenced by tur-
bulence fluctuations. Although the hierarchy of turbulence scales has never been ob-
served, the concept is often invoked in turbulence theory, including the Kolmogorov-
Hinze theory of droplet breakup, which is at the heart of emulsification. We develop
tools to identify and disentangle flow structures that arise in homogeneous, isotropic,
single-phase turbulence. The tools are based upon correlation concepts and Helmholtz
decomposition techniques. We show, for the first time, that high kinetic energy struc-
tures form jet-like streamlines, while (as is known from literature) high enstrophy regions
are consistently associated with swirling-flow. Using the Biot-Savart reconstruction, we
further show that high kinetic energy jets are neither self-generating, nor induced by
strong vorticity. Their coherence is induced dominantly by the non-local, intermedi-
ate vorticity. High enstrophy structures, on the other hand, are a superposition of the
background vorticity induced velocity field and a degree of self-generated strengthen-
ing of swirling flow. Further research on the dynamics and evolution of these structures
will help describe turbulence as an emergent organization of simpler dynamical blocks.
These results hint at an alternative view of turbulence organization, where the flow field
is emergent from the non-local and non-linear interaction of structures dominated by
the background vorticity field. This view casts into doubt the usual “hierarchy of struc-
tures” concept that has been classically adopted.

In Chapter 5, we then investigate turbulent emulsions, for the time being, formed
from two pure fluids. This is because first, we need to understand the dynamics of
a pure system, before introducing the additional complexity of impurities. Secondly,
the surfactant model of Chapter 3 requires modifications before being suitable for in-
hibiting coalescence, specially under turbulent conditions. This chapter presents sev-
eral new physical findings regarding the dynamics of turbulent emulsions and emulsion
morphology. We show that emulsions obtain a morphology determined by the volume
fraction of the dispersed fluid, surface-tension and turbulence intensity, along with the
forcing wavenumber of the turbulence generation in the periodic box of the simulation.
Under the influence of strong turbulence, droplet sizes follow a strong power-law dis-
tribution. The multiphase kinetic energy spectra is shown to bear the marks of coa-
lescence and breakup, at scales smaller than and larger than the Hinze scale, respec-
tively. Droplets are shown to enhance vortex compression and axial strain turbulence
topologies, possibly due to elastic interfaces counter-acting increase in surface area. The
breakup-coalescence ‘equilibrium’ is shown to have a limit-cycle like dynamics. A series
of time-delayed intermittency correlations link fluctuations in power input to fluctua-
tions in energy dissipation, which further link to fluctuations in droplet number density.
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The ‘equilibrium’ is marked by alternating coalescence and breakup dominated dynam-
ics. These findings shed new light on emulsification, which may help in improving the
model formulation for coalescence and breakup kernels. Directions for future research,
which shall improve the fundamental understanding of droplet dynamics in turbulence,
have also been outlined in Chapter 6.

Overall, this thesis shows how several existing numerical methods can be combined
(with small modifications), to simulate complex flow problems like turbulent emulsi-
fication. These simulations, while being limited often in the extent of the parameter
space that can be explored, reveal in unprecedented detail the intricacies of the system
dynamics. The greater challenge, then, becomes interpreting the data and asking the
right questions that will illumine the core phenomena. As simulations such as these
slowly become more commonplace, research into emulsions, droplet-laden flows and
turbulence organization can begin to ask experimentally obscure questions. Notwith-
standing, experimental efforts need to concurrently be made to steer numerical studies
closer to observations. With a strong synergy between the two, numerical simulations
will be a candle in the dark.






SAMENVATTING

Het mengen van twee niet-mengbare vloeistoffen, vaak onder turbulente omstandighe-
den, kan leiden tot het vormen van een emulsie, waarin druppels van de ene vloeistof
in de andere vloeistof zijn ingebed. Emulsies komen in vele vakgebieden voor, variérend
van de olie industrie tot voedselverwerking en biotechnologie. Dat emulsies voor vele
toepassingen worden ingezet, komt simpel gezegd door hun interne structuur, waardoor
een emulsie van twee vloeistoffen heel andere fysieke eigenschappen ten toon spreidt
dan de afzonderlijke vloeistoffen. De stabiliteit van de emulsiestructuur is daarom es-
sentieel voor haar nut. De aanwezigheid van onzuiverheden, of van oppervlakte-actieve
stoffen (“surfactants”), in de twee vloeistoffen bevordert de stabiliteit van emulsies aan-
zienlijk, doordat deze de samensmelting (“coalescentie”) van druppels voorkomt die kan
leiden tot fasescheiding. Het onderzoek aan emulsies heeft zich in de afgelopen eeuw
ontwikkeld tot een bloeiend vakgebied, dankzij de gedetailleerde experimenten die aan-
zienlijk hebben bijgedragen aan het modelleren, beheersen en ontwerpen van processen
waarbij emulsies bij zijn betrokken.

Ondanks het feit dat een zekere mate van voorspelbaarheid is bereikt, blijft de ware
aard van de druppeldynamiek bij de emulsievorming onbekend. Het is nog steeds ont-
zettend moeilijk met experimenten licht te werpen op het ontstaan van grensvlakken
bij het samensmelten en opbreken van druppels en tegelijkertijd de driedimensionale
turbulente stromingseigenschappen te beschrijven. Langzaam maar zeker wordt het
echter haalbaar numerieke simulaties te gebruiken om deze problemen aan te pakken.
Ook zulke simulaties vereisen een zekere mate van complexe modellering en trekken een
zware wissel op computerkracht, waardoor ze tot op heden een uitzondering zijn. Pas nu
wordt het haalbaar zulke complexe stromingen te simuleren, waardoor we experimen-
tele kennis kunnen uitbreiden met inzichten uit simulaties. In dit proefschrift proberen
we emulsievorming (enigszins) te ontrafelen door voor vloeistoffen met onzuiverheden
de stroming en de grensvlakken expliciet op te lossen.

We beginnen in hoofdstuk 2 met een kort onderzoek naar de numerieke methode die
voor dit probleem toepasbaar is. De voornaamste vereisten waren (1) het expliciet op-
lossen van de grensvlakken in de meerfasenstroming zodat samensmelting en opbreken
van druppels niet hoeft te worden gemodelleerd, (2) het simuleren van onzuivere vloei-
stoffen waardoor effecten van surfactants worden meegenomen en (3) het oplossen van
turbulente stromingen op een reeks van lengte- en tijdschalen. De bijbehorende reken-
vereisten moeten het toelaten dat de numerieke techniek binnen redelijke tijd redelijke
resultaten oplevert. We tonen aan dat verschillende numerieke technieken voor het si-
muleren van meerfasenstroming nog steeds niet erg robuust zijn. Ogenschijnlijk kleine
verschillen tussen de implementatie en de modellering van het grensvlak kunnen lei-
den tot verschillende resultaten, zelfs voor simpele stromingsproblemen. We verkiezen
een lattice-Boltzmann methode boven een volume-of-fluid methode, omdat surfactants
daarmee relatief makkelijk kunnen worden gesimuleerd en turbulente stromingen snel-
ler kunnen worden doorgerekend.

xiii
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In hoofdstuk 3 bespreken we een vereenvoudiging van een in de literatuur bestaand
surfactantmodel om stromingen van druppels met surfactants te simuleren. We repro-
duceren kwalitatief verschillende eigenschappen relevant voor het simuleren van surfac-
tanteffecten op druppeldynamica. Zo concentreert de surfactant zich bij voorkeur aan
grensvlakken, verlaagt hij de oppervlaktespanning tussen de twee vloeistoffen en veran-
dert hij de druppeldynamica. Echter, het model heeft op twee vlakken tekortkomingen.
De surfactant blijkt de druppelsamensmelting niet zelf te kunnen beletten zodat daar-
voor verdere numerieke mechanismen nodig zijn, zoals de “multiple-belt interparticle
force” methode (bekend uit de literatuur). De andere beperking van het model is dat
meerdere uitvoersysteemparameters (zoals de dichtheidsverhouding en de oppervlak-
tespanning) afhangen van de invoerparameters (zoals de afstotingskracht en de dicht-
heid). De pseudopotentiaal lattice-Boltzmann methode staat geen gemakkelijke schei-
ding toe van oorzaak en de (verschillende) effecten.

Voordat we turbulente emulsies simuleren, bestuderen we in hoofdstuk 4 coherente
structuren die in turbulente stromingen ontstaan. De vorm van deze structuren is een
cruciale (onbeantwoorde) vraag over turbulentie, die de sleutel is tot begrip van de or-
ganisatie van turbulente stroming, de dynamica, en de effecten van turbulentie op de
Lagrangiaanse objecten zoals druppels die worden beinvloed door turbulente fluctu-
aties. Hoewel de hiérarchie van turbulentieschalen nooit is waargenomen, wordt het
concept vaak gehanteerd in de turbulentietheorie, zo ook in de Kolmogorov-Hinze the-
orie voor het opbreken van druppels, wat zeer belangrijk is voor emulsievorming. We
ontwikkelen gereedschappen om stromingsstructuren te identificeren en te ontwarren
die ontstaan in homogene isotrope éénfase turbulentie. De gereedschappen zijn geba-
seerd op correlatieconcepten en Helmholtz decompositietechnieken. We demonstreren
voor het eerst dat structuren met een hoge kinetische energie jet-achtige stroomlijnen
vormen, terwijl (zoals bekend uit de literatuur) gebieden met hoge enstrofie altijd gere-
lateerd zijn aan een sterke vorticiteit. Met de Biot-Savart reconstructie tonen we voorts
aan dat jets met een hoge kinetische energie niet zelfgenererend zijn en ook niet worden
geinduceerd door een sterke vorticiteit. De coherentie van deze jets wordt voorname-
lijk bepaald door de niet-lokale, meer gematigde vorticiteit. Structuren met een hoge
enstrofie, daarentegen, zijn een superpositie van het snelheidsveld geinduceerd door de
achtergrondsvorticiteit, en een zekere mate van zelf-gegenereerde versterking van wer-
velende stroming. Verder onderzoek naar de dynamica en evolutie van deze structuren
zal het mogelijk maken turbulentie te beschrijven als een zich ontwikkelende organisatie
van simpelere dynamische blokken. Deze resultaten wijzen op een alternatieve kijk op
de organisatie van turbulentie, waarbij het stromingsveld voortkomt uit de niet-lokale en
niet-lineaire interactie van structuren die worden gedomineerd door het achtergronds-
vorticiteitsveld. Deze zienswijze trekt de traditionele kijk op turbulentie als een “hiérar-
chie van structuren” in twijfel.

In hoofdstuk 5 onderzoeken we dan turbulente emulsies, vooralsnog gevormd uit
twee zuivere vloeistoffen. We doen dit omdat we eerst begrip moeten vormen van de dy-
namica van een zuiver systeem, alvorens we de grotere complexiteit van onzuiverheden
introduceren. Voorts behoeft het surfactantmodel uit hoofdstuk 3 aanpassingen voor
het geschikt is coalescentie af te remmen, zeker onder turbulente omstandigheden. In
dit hoofdstuk presenteren we verschillende natuurkundige bevindingen betreffende tur-
bulente emulsies en emulsiemorfologie. We tonen aan dat de morfologie van emulsies
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wordt bepaald door de volumefractie van de gedispergeerde fase, de oppervlaktespan-
ning en, de intensiteit van de turbulentie alsmede het golfgetal waarmee de turbulentie
wordt aangedreven in de periodieke doos van de simulatie. Onder invloed van sterke tur-
bulentie volgt de druppelgrootte een kansverdeling volgens een sterk machtsverband.
De meerfasen kinetische-energiespectra vertonen de kenmerken van coalescentie en
druppelopbreking op schalen respectievelijk kleiner dan en groter dan de Hinze-schaal.
We vinden dat druppels wervelcompressie en turbulentietopologieén van axiale vervor-
ming versterken, misschien doordat elastische grensvlakken de vergroting van het op-
pervlak tegenwerken. Het opbreek-coalescentie “evenwicht” heeft de dynamica van een
limietcyclus. Een reeks in de tijd vertraagde intermitterende correlaties koppelen fluc-
tuaties in vermogenstoevoer aan fluctuaties in energiedissipatie, die weer relateren aan
fluctuaties in druppelaantaldichtheid. Het “evenwicht” wordt gekarakteriseerd door dy-
namica die afwisselend wordt gedomineerd door coalescentie en opbreking. Deze be-
vindingen werpen een nieuw licht op emulsievorming en kunnen helpen bij het opstel-
len van een model voor coalescentie- en opbreekkernels. In hoofdstuk 6 worden ook
richtingen voor toekomstig onderzoek geschetst, die ons fundamentele begrip van drup-
peldynamica onder turbulente condities zullen vergroten.

Dit proefschrift laat zien hoe meerdere bestaande numerieke technieken (met kleine
wijzigingen) kunnen worden gecombineerd om complexe stromingsproblemen, zoals
turbulente emulsievorming, te bestuderen. Hoewel deze simulaties veelal slechts een
beperkte parameterruimte beslaan, tonen ze de complexe details van de systeemdyna-
miek met een tot nu toe ongeévenaarde precisie. De grootste uitdaging wordt nu het
analyseren van de data en het stellen van de juiste vragen om de kernverschijnselen te
doorgronden. Nu zulke simulaties langzaam gebruikelijker worden kan op het gebied
van emulsies, stromingen met druppels en turbulentie-organisatie onderzoek worden
gedaan naar vragen die met experimenten onduidelijk blijven. Desalniettemin moeten
naast simulaties ook experimenten blijven worden uitgevoerd, zodat numeriek onder-
zoek aan waarnemingen kan worden geijkt. Slechts met een sterke synergie tussen de
twee onderzoeksmethoden zullen numerieke simulaties een licht in de duisternis zijn.
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INTRODUCTION

He keywords in the phrase “simulating surfactant-laden turbulent emulsions" tie to-
T gether the work done in this thesis. Before the details involved in realizing this work
(to the small extent that we could in this thesis) are discussed and the outline for the the-
sis laid out, these key concepts have been explained briefly to acquaint the reader with
the general idea behind these individually exhaustive topics.

1.1. EMULSIONS

Emulsions are liquid—liquid dispersions where a dense suspension of droplets of one
fluid, called the dispersed phase, is embedded in another fluid called the continuous (or
carrier) phase, the two fluids being essentially immiscible. Figure 1.1 shows a sketch of
the microstructure of a typical emulsion. The dense packing of polydispersed droplets
and the presence of large interfacial areas separating the two fluids is seen clearly.

The difference between an emulsion and its constituent fluids is primarily struc-
tural, where the dispersed phase being present in the form of densely packed droplets
lends the emulsion physical properties markedly different from its constituent fluids
when they are completely demixed. These properties can be both physically relevant
and quantifiable, like rheology (viscosity), strength and stability; or perceptual and un-
quantifiable, like taste and texture. It is due to these enhanced properties that emulsions
find relevance in various industries. For instance, in food processing, emulsions lend
the characteristic texture and taste to products like butter and mayonnaise [1]. Emul-
sions can be Janus-faced to the oil and gas industry, where on the one hand they can be
detrimental to crude oil production [2], or to the contrary, enable enhanced oil recov-
ery [3]. Emulsions are also being used as miniature laboratories in microfluidic devices,
where living cells can be compartmentalized into individual droplets [4]. They are also
highly relevant to the production of various cosmetic products that are manufactured in
emulsion form. A final example is that of analogue photography—where light sensitive
emulsions [5] have long been used in photographic films to give the characteristic tones,
grain and colours to photographs, another related example being the wet-plate collo-

1
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(a) The dispersed phase in an emulsion, com-
prising a distribution of droplets of different
sizes.

(b) The same dispersion, where the interfaces
have now been highlighted.

Figure 1.1: A sketch of a typical emulsion micro-structure. (Made using a custom circle packing
algorithm in Processing.)

dion process [6]—as it turns out, emulsions have enabled the preservation of memories
by immobilizing light.

The morphology of an emulsion depends upon the physical properties of its con-
stituent fluids (like density, viscosity and surface tension), the ratio in which the fluids
have been mixed, and the mixing conditions during preparation (shear rate, turbulence
intensity, rate of energy dissipation etc.). So even if only the final state of the emulsion is
considered of relevance, the associated parameter space is quite large which makes such
a system difficult to predict. Although, with over a century of experimentation and mod-
eling, emulsification has become well controlled in certain circumstances, even though
the underlying dynamics of emulsification remains obscure.

The common physical mechanism involved in most emulsification processes is the
breakup of droplets of the dispersed phase, which is mediated by shear stresses arising in
flow which can be either laminar' or turbulent. Droplet breakup increases the interfacial
area S, in the dispersion, consequently increasing the surface energy (albeit reversibly).
This excess energy makes emulsions inherently unstable, prone to structural collapse by
droplet coalescence, making the lifetime of an emulsion a problem of stability. Depend-
ing on the application, a long lifetime emulsion may or may not be desired, where in
the latter case special steps must be taken to de-emulsify the fluid mixture to separate
the constituent fluids. An emulsion is stable as long it retains its dispersion morphol-
ogy, which is destroyed when droplets begin to coalesce. Most naturally and artificially
formed emulsions are usually very stable, the reason for which is the presence of addi-

1As is being studied by my collaborators Dr. A. Safdari and Dr. M. Pourtousi together with Dr. O. Shardt and
Prof. dr. H.E.A. Van den Akker in the Bernal Institute, University of Limerick, Ireland. They consider a dense
suspension in Couette flow, where a constant shear rate leads to dispersion formation at high viscosity values.
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O

(b) Coalescence of two droplets after colli-
(a) Droplet breakup due to shear and inter- gjop.

action with an eddy.

Figure 1.2: Sketches showing the processes of breakup and coalescence of droplets. (Hand drawn)

tional species or impurities that inhibit droplet coalescence. These impurities can be
of different kinds, for instance colloidal particles leading to the formation of Pickering
emulsions [7, 8], long chain polymeric hydrocolloids [9], proteins [10], starch nanocrys-
tals [11], or the more commonly encountered molecules called surfactants [12].

1.2. SURFACTANTS: THE SINEWS OF STABILITY

Surfactants are large molecules with a bipolar structure that comprise a long hydrocar-
bon tail which is hydrophobic, and a polar head which is hydrophilic (this is why they
are also referred to as amphiphiles). When present in a liquid-liquid mixture like oil and
water, surfactants selectively seek out interfaces with their tails residing in the oil-phase
and head in the water-phase (hence also attaining a specific orientation with respect to
the interfacial surface). All soaps and detergents are essentially surfactants and work by
exploiting this preferential interfacial residence of surfactant molecules.

Y

Mg
&

)

Figure 1.3: A sketch of surfactant-laden droplets in approach. The finite sized surfactant
molecules are shown to create a steric repulsion between the interfaces, which prevents the thin
film in between from draining, hence shielding droplet coalescence. (Hand drawn)

When surfactants cover interfaces, they also begin to inhibit droplet coalescence.
There are a few reasons for this—the first being the steric-repulsion between surfactant
molecules residing on interfaces in approach. This repulsion prevents film drainage be-
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tween the interfaces, consequently preventing coalescence. Surfactants can also prevent
film drainage by immobilizing the interface. This occurs when the interfacial boundary
condition transitions from free-slip (fully mobile) for a clean droplet, to no-slip (i.e. a
rigid surface) for fully surfactant-loaded interfaces. Repulsion between interfaces can
also occur due to the presence of charges on the interface, since surfactants interact
with the thin electric double layers that are formed around all interfaces. The other
mechanism for coalescence inhibition is related to the fact that the formation of smaller
droplets increases surface energy in the system, which can be quantified as Ey = Sy,
where y is the interfacial tension, and S, is the total interfacial area. Since coalescence of
droplets tries to minimize E,, another route by which surfactants inhibit coalescence is
by reducing the interfacial tension between the fluids, hence reducing the excess surface
energy AE, formed by the breakup of droplets. If y is reduced to zero, droplet breakup
can occur spontaneously, as there is no energetic penalty on the formation of interfaces.

Apart from coalescence inhibition, surfactants also greatly influence the dynamics of
droplets by modifying flow. Variations in surfactant concentration along the interface,
such as may be caused by external convection around a droplet that sweeps surfactants
along the interface causing fore-aft asymmetry in the surfactant distribution, gives rise
to gradients in interfacial tension. This in turn drives Marangoni convection, which gen-
erally opposes the external convection driven circulation inside the droplet. The droplet
devoid of internal convection begins to behave more like a rigid sphere, which experi-
ences a higher drag force than a clean droplet. Marangoni convection can also lead to
local interfacial hardening, if the surfactant concentration becomes saturated. These
phenomena, together, can significantly alter the droplet dynamics, which already for
clean (surfactant-free) systems is a complicated affair when the underlying flow is tur-
bulent.

1.3. TURBULENCE: A PLAYGROUND OF INSTABILITIES

Turbulence can broadly be described as irregular fluid motion across a range of length
and time scales that occurs when instabilities amplify to dominate the flow, a typical
turbulence flow field has been shown in figure 1.4. It is a very ubiquitous physical phe-
nomenon, and has been encountered at lengthscales ranging from Angstroms to light
years - in which it has “no other analogue in all of physics””. That said, turbulence
also eludes precise definition or mathematical description, and has been famously called
the “graveyard of theories” by Liepmann [13]. Before the relevance of turbulence to this
thesis is discussed, the diversity of its associated phenomena can be glimpsed by con-
sidering how researchers have described turbulence at the beginning of their famous
books/articles. This shows the many faces of the problem, and a few such examples
have been cited below.

Batchelor [14] begins by mentioning that at low viscosities, “the velocity [fluctua-
tions] at any time and position...are not found to be the same...when measured under
seemingly identical conditions” while the “average properties are determined uniquely”
- which highlights two important and connected aspects. First is the sensitivity to ini-
tial conditions, and the second is essentially the philosophy of Reynolds decomposition
of a turbulent variable into mean and fluctuating parts (where only the former is repro-

2As described by Prof. K.R. Sreenivasan in the 2018 Chandrashekhar lectures delivered at ICTS, Bangalore,
India.
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Figure 1.4: Snapshot of a typical turbulence flow field. This image shows the turbulent kinetic
energy (at a single plane from a 3D simulation). Structures over various lengthscales can be seen
here. (From one of the simulations done for Chapter 4.)

ducible in an experiment). Pope [15] starts off with the same idea, which has allowed
modeling turbulence in countless engineering circumstances, to varying degrees of de-
tail and accuracy. Ruelle and Takens [16] begin by tying turbulence inextricably to chaos
- “fluid motion [that] becomes very complicated, irregular and chaotic” at “sufficiently
large, steady action”. Tennekes and Lumley [17] begin by describing turbulence in terms
of its properties like “irregularity, diffusivity, three-dimensional vorticity fluctuations and
dissipation”. Frisch [18] highlights at the outset how the phenomenology of turbulence
could not have been divined from the Navier-Stokes equations alone and it is only ex-
plained after looking at experimental facts (essentially pointing at its emergent nature),
just as “life cannot be explained from the equation of quantum mechanics”. Turbulence is
then tied to the fundamental concept of “breaking and restoration of symmetries”. David-
son [19] points to the unresolved (though seemingly simple) question - “How fast does
kinetic energy decay in a cloud of turbulence?”, which is closely tied to the concept of “in-
termittency”. Lastly, Tsinober [13] begins by making the distinction between the “nature
of the phenomenon of turbulence” and the “nature of the problem of turbulence”, the two
not being synonymous as one is the phenomenon itself while the other is the human
description of it. In his characteristic wit, he urges us to develop our “own judgement
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m3

based upon the huge literature” and “separate the ‘essence’ from the ‘the water™”.

Turbulence is perhaps the most natural state of fluid motion dominated by inertia, as
long as there is a constant energy injection mechanism and a source of instabilities. For
fully developed turbulent flow at high Reynolds numbers (i.e. the ratio of inertial forces
to viscous forces), a balance is achieved between the energy injection rate and the rate
of energy dissipation (by viscosity, into heat). These two processes, however, happen at
very different scales - the former is at the largest scales of motion i.e. £, which then
via the dynamics of turbulence, leads to the generation of a range of smaller scales. The
smallest scales 7) are those where inertial and viscous forces locally balance out, and it is
at these scales that the kinetic energy is dissipated. Kolmogorov hypothesized the exis-
tence of a universal range of scales n < | < £ (also called the inertial range) where the
only activity is the transfer of energy from a relatively larger scale to a relatively smaller
scale. For these range of scales, the kinetic energy E(k) is found to scale as k33 where
k is the wavenumber associated with a lengthscale. This range is independent of the
anisotropy of the largest scales (i.e. the energy injection scale), and the extent of the
inertial range of scales is a measure of the turbulence intensity.

In this thesis, we consider emulsification under the influence of turbulence, which
is the physically encountered situation in many real processes that generate emulsions,
for instance, those using homogenizers [20]. We further limit ourselves to droplets in the
inertial range of turbulence (sub-Kolmogorov droplets are also known to break due to
viscous stresses [21]). The main effect of turbulence on droplets of sizes comparable to
the inertial range scales is to cause fragmentation of large droplets into smaller daugh-
ter droplets. This is mediated by shear stresses across the droplet diameter, which cause
droplet deformation. If the droplets exceed a critical size, they tend to break into smaller
droplets. This can be characterized by the critical Weber number (the ratio between in-
ertial forces and surface tension forces) Wei, which Hinze [22] expressed as a function
of the energy dissipation rate € to predict a scaling for the maximum stable droplet di-
ameter dpax, for an inviscid drop. Note that dpax is also frequently referred to as the
“Hinze scale” (which is how we refer to this quantity as well, for clarity, in this thesis),
however, Hinze did not name this scale as such, and it is not known to the author where
this nomenclature first appeared in the literature.

It has been found for the breakup of bubbles that Wei; predicted by the Kolmogorov-
Hinze theory is a factor 10 times larger than the We;; for liquid-liquid dispersions, even
though the breakup mechanism for bubbles and droplets was found to be essentially the
same [23]. Levich [24] proposed a modification of the Kolmogorov-Hinze theory to ac-
count for this difference, bringing Wec;, both for droplet and bubbles, close to unity.
This was done by forming a Weber number as the ratio of the disruptive stress (aris-
ing from internal dynamic pressure fluctuations, as opposed to external in Kolmogorov-
Hinze theory), and cohesive stress acting on a bubble (which takes into account surface
tension and an idealized approximation of bubble deformation), see, for instance Hes-
keth et al. [23], Ko [25]. In our study, since we deal with droplets (and not bubbles), we
refer to the original Kolmogorov-Hinze scaling.

Under the action of turbulence, droplets larger than the Hinze scale break up in a cas-

31t is almost a Delft tradition to introduce turbulence using the ancient Eastern parable of blind men trying
to describe the whole of an elephant, by touching just one part of it. As far as a complete description of
turbulence goes, we have still not addressed the elephant in the room.



1.4. CHALLENGES INVOLVED 7

cading (breakup) process, and it was proposed by Garrett et al. [26] that the droplet dis-
tribution follows a d~1%’3 power law scaling, which was also found by Deane and Stokes
[27] for air bubbles in breaking ocean waves. This process generates a typical droplet
morphology characterizing the emulsion. The major questions involved are

* What are the dominant droplet breakup mechanisms?

* What is the nature of droplet-turbulence interactions?

¢ Is there an equilibrium steady state of coalescence and breakup?
* Can a desired emulsion morphology be achieved?

As mentioned earlier, these processes in the presence of surfactants can be significantly
altered.

1.4. CHALLENGES INVOLVED

Droplet dynamics in turbulence is intrinsically three dimensional, with highly local-
ized surfactant effects that bear consequences for the global properties of the emulsion.
These, coupled with the fact that emulsions are optically opaque (at least to the visible
range of light), makes the physics highly intractable to experiments. Further, intrusive
measurements can effect the phenomenon itself, which can be detrimental to measur-
ing the spatial distribution of velocity required for quantifying velocity gradients, a cru-
cial aspect that governs droplet breakup. So far, our knowledge on emulsions via experi-
ments is limited to statistical or integral quantities (for instance droplet size distribution
or the rate of kinetic energy dissipation), that are more or less well defined but do not
shed light on the dynamics of emulsification. Even for pure fluid systems (i.e. without
surfactants) a debilitating aspect is the range of scales involved in these processes, where
droplets can have sizes in the range 107% < d < 1073 [m], turbulent flow can have length-
scales between 1076 < [ < 10° [m], and industrial scale equipment can be of the size of
~©10' [m] - the entire range varying over 7 -8 orders of magnitude. Surfactants interact
with interfaces at the molecular level, which is a further 2 — 3 orders of magnitude below
the smallest droplet size. This shrouds the optimization of existing emulsification pro-
cesses as well as development of new ones in uncertainty, rendering decision making an
art rather than a science.

Solutions have been sought by conducting idealized physical and numerical experi-
ments of coalescence and breakup. These reveal, in detail, the dynamics for well defined
conditions [28, 29], for example two particles approaching each other in simple shear
flow. Coalescence and breakup in large scale systems are then modeled with the help of
so-called ‘kernels’ derived on the basis of the simplified experiments. There are a few
flaws in this approach, even though from a modeling perspective it has its merits. First is
that there is no easy extrapolation from results found for small, idealized systems to the
multiple droplet, large scale regimes encountered in practice. This makes it difficult to
also validate the breakup and coalescence kernels available in literature against experi-
ments, since they involve assumptions regarding dynamical processes difficult to exper-
imentally observe. For instance, high energy dissipation causes increase in collision fre-
quency but decreases collision efficiency, which can be difficult to measure. Or the effect
of droplet viscosity partially immobilizing the interface but retarding droplet flattening.
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A second shortcoming of kernel formulations is that the high degree of empiricism of-
ten neglects crucial dynamics underlying the system. Lastly, the effect of surfactants is
either completely ignored, or corrected for in an ad-hoc manner in these kernels.

It is these issues that we attempt to address with this thesis - i.e. aiming to reduce
the level of empiricism involved in the modeling of emulsification processes by includ-
ing the dynamical aspects of emulsification. Often, the challenge undertaken in this
task turned out greater than anticipated at the outset. Instead of solving the problem,
the process of studying it revealed its true dimensions, along with the extent of our lack
of understanding. Keeping that in mind, the outline of the thesis is presented below
where we work on three connected issues namely (1) objectively choosing a numerical
method appropriate for simulating liquid-liquid emulsions, (2) simulating surfactant-
laden emulsions and finally (3) simulating emulsions in a fully turbulent regime, allow-
ing for droplet breakup and coalescence to investigate the dynamics. These problems
are interspersed with additional practical issues, all of which are worth noting and shall
hence be touched upon briefly.

1.5. OUTLINE OF THE THESIS

This thesis consists of three studies as mentioned above, along with a study on the iden-
tification of structures in turbulence, each forming a chapter. These chapters being in
the form of papers obscures the wider context and background into which they fit. A
small motivation and history is hence provided, as to the ‘how’ and ‘why’ regarding our
decisions to proceed in a particular direction. More importantly, a few issues are men-
tioned regarding methods that did not work, and possible causes for their failure - these
might even be more interesting for a reader invested in similar studies, than the results
obtained from successful simulations.

1.5.1. CHAPTER 2: CHOICE OF NUMERICAL METHOD

The first major challenge regarding the simulations was a (debated) choice of the nu-
merical method that was to serve as a base for this study. The main requirements of the
technique to be employed were an ability to simulate droplet coalescence and breakup,
including the effects of surfactants and fully resolving turbulent flow, while doing all this
within a ‘reasonable’ amount of time. This meant that Euler-Euler two-fluid approaches
cannot be employed (since they do not resolve interfacial dynamics), and also rely upon
turbulence modeling using the RANS approach, while we intend to perform DNS simu-
lations. We also wanted the technique to be as simple as possible, and to develop it using
open-source software. This cast into conflict the familiar world of finite-volume meth-
ods against the abstract precincts of the lattice-Boltzmann method (where the latter still
holds an ability to knit editorial eyebrows into suspicion). The techniques considered
for this thesis have been described below (while other techniques could also be used).

FINITE VOLUME: VOLUME-OF-FLUID METHOD

Generally in the finite-volume method, the equations for the conservation of mass and
evolution of momentum of a fluid are solved. For an incompressible fluid, conservation
of mass reduces to the continuity equation, which then together with the Navier-Stokes
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equation (momentum evolution) can be written as follows
V-u=0

Oou 1 , F
—+u-Vu=--Vp+vVu+— (1.1)
ot P P
Here u is the fluid velocity, p density, p pressure, v kinematic viscosity and F incorpo-
rates all body forces. Numerically, these equations are solved with an iterative solution
procedure to couple the pressure to the velocity satisfying the continuity equation.

There are several ways to simulate interface resolving multiphase flows with the finite-
volume method, which are broadly classified into ‘interface tracking’ and ‘interface cap-
turing’ methods [30, 31]. Interface tracking methods explicitly define the interface as a
surface, which moves and evolves along with the flow and hence must be tracked. The
flow on both sides of the interface is resolved and coupled with appropriate interfacial
boundary conditions taking into account the effect of surface tension. These include
front-tracking [32, 33] and moving-mesh techniques [34, 35]. Interfaces in these meth-
ods are infinitely sharp, and special procedures are required in some cases to allow for
coalescence and breakup, which involves models for film drainage and additional mesh
cut-and-merge algorithms. Interface capturing methods operate on a fixed computa-
tional grid, and solve for the evolution of an interface function which gives the posi-
tion of the interface. This includes the level-set method [36, 37], volume-of-fluid (VoF)
method [38], free-energy based phase-field methods [39, 40].

In this study we focused on VoE, readily available in OpenFOAM, which offered a few
advantages. First was a straightforward method for capturing evolving interfaces using
a phase indicator (&) transport equation which has the basic form of

oa \Y =0 1.2

ot (ua) = 1.2)
where the value of a (equal to 0 or 1) represents one fluid or the other, and 0 < a < 1
marks the interfaces. Using the « field, surface tension effects are incorporated into
the Navier-Stokes equation, for instance by using the continuum surface force formu-
lation [41]. The two immiscible fluids are modeled with a single fluid formulation, as
the Navier-Stokes equations are solved for a fictitious’ fluid with physical properties like
density and viscosity ¥ € {p, v} taken to be a phase-indicator weighted mean of the prop-
erties of the two constituent fluids.

‘l//=1//1(1+1//2(1—05) (1.3)

This approach makes it easy to simulate two completely immiscible fluids with widely
different density and viscosity ratios (although extremely high and low values do intro-
duce caveats). The second advantage (common to finite-volume based methods) was
the ease of interpretation of parameters, and hence results, in both dimensional and
non-dimensional terms.

VoF also posed several limitations, first of which was the generation of spurious cur-
rents due to inaccuracies in the curvature determination required for the surface tension
force. Despite numerical remedies like artificial interface smoothening [42] to reduce
curvature gradients, spurious currents can be significant and can begin to dominate the
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dynamics of small droplets, influencing droplet coalescence and breakup. It can even be
difficult to simulate a droplet at rest since the convection generated by spurious currents
moves the droplet around in a random walk. Further, VoF involves significant compu-
tational cost exacerbated by the requirement for solving an additional species transport
equation along with the iterative pressure-velocity fluid solver. Simulating droplets in
turbulence with the VoF method could become prohibitively expensive, particularly for
the very long simulations required for collecting turbulence statistics.

The last, and perhaps most significant limitation of VoF (solely from the perspective
of this work), was the requirement for rather complicated modifications to the original
VOF solver to enable simulating surfactants. To hint at the acuteness of this problem,
it suffices to consider how a handful of state-of-the-art studies tried to simulate soluble
surfactants. The surfactant is treated as a passive scalar with its own bulk transport equa-
tion (coupled to the VoF equations). This is mostly a trivial modification, except when
accounting for difference in solubility of the surfactant in the two fluids, in which case
the interfacial concentration jump needs to be accounted for and results were found to
be solver dependent”.

The adsorption of surfactants onto interfaces poses the biggest challenge, since VoF
does not ‘track’ and geometrically define interfaces explicitly, and it is only upon consid-
ering the a—field that the presence of an interface becomes evident. This is overcome by
constructing surface meshes around interfaces [45], onto which the surfactant species
is allowed to adsorb (and desorb from) following a pre-set adsorption (and desorption)
isotherm. To further simulate surfactant redistribution and concentration gradients on
the interface (where the latter gives rise to surface tension gradients crucial for simulat-
ing Marangoni effects), an additional surface transport equation needs to be solved in
conjunction to the volumetric transport. Numerically, this can also introduce mass con-
servation errors. So far, this has mostly been done on a single rising bubble, barely al-
lowed to deform [45-47]. The extension to droplets that can break or coalesce will rapidly
digress into the tedious realm of dynamic surface meshing and mesh topology, which re-
lies heavily on ad-hoc mesh cut and merge algorithms which can be very accurate but
computationally challenging [48]. Given that none of these additional algorithms were
available to begin with, using VoF for this study was eventually discounted as an option.

There was the additional possibility of inventing a new method for simulating sur-
factants with VoE where instead of identifying and constructing meshes around inter-
faces, the a gradient at the interface could be exploited with some form of potential force
functions that would urge the surfactant to seek out interfaces instead of residing in the
bulk. If at all possible, what would have been a new modification to VoE was already well
known within the lattice-Boltzmann (LB) method.

4The continuous species transport (CST) method of Marschall et al. [43] gave accurate results for composite
semi-infinite media with varying diffusivity, in comparison to analytical solutions from Crank et al. [44], when
using the harmonic interpolation for diffusion terms in OpenFOAM. The validation by Marschall et al. [43] is
essentially a comparison of the discretization in OpenFOAM to a high-resolution, 1D MATLAB implementa-
tion of the same discretization scheme - which is not a validation of the CST method itself.
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PSEUDOPOTENTIAL LATTICE-BOLTZMANN METHOD
The lattice-Boltzmann (LB) method is a mesoscopic numerical technique based upon
the Boltzmann equation that can be written compactly as

af

— =0 1.4

ar N (1.4)
where f is the particle distribution function, f(x,¢, #), which can be considered a gener-
alization of density which takes into account the particle velocity ¢ [49]. The total deriva-

tive of f can be written out as

PRI ELANLAL

= 1.
dr \or)dt \oxg) ar "\o&s) ar (15

where the dxg/dt = g is the particle velocity and d{g/dt = Fg/p is the specific body
force. Replacing these gives the Boltzmann equation with a body force Fg as

g+5ﬁﬁ+@ﬁ

ot Ooxg p 0ég =0 (1.0

In LB, the discretized Boltzmann equation is solved on a space-momentum lattice for
the transport of the discrete particle distribution f; (i being the number of velocity di-
rections). The collision operator Q(f) can be simplified in various ways, the most com-
mon being a BGK approximation [50], which links collision frequency to the macro-
scopic fluid viscosity. The idea behind the BGK approximation is to drive the system
to local (Maxwell-Boltzmann) equilibrium at a linear rate, even if the overall system is
far from equilibrium (as would be the case for turbulent flow, for instance). Although
often counted among the ‘particle’ based methods, there are no particles involved in LB
apart from their concept being implicit in the distribution function (hence the method is
meso-scopic). The Navier-Stokes equations can be derived from the Boltzmann equation
using the Chapman-Enskog expansion, which is why LB can be used to simulate fluids
in general, although the method is rooted in kinetic theory generally valid for gases only.
The LB equation can accurately proxy the Navier-Stokes equations, generating flows that
satisfy conservation of mass (continuity) and momentum. However, LB solves for weakly
compressible flow and has a finite speed of sound in the system. The flow velocities be-
ing simulated should hence be in the low Mach number limit to satisfy the incompress-
ibility condition. The LB equation turns out to be much simpler to numerically solve,
where the algorithm comprises of two steps, namely ‘streaming’ and ‘collision’. Further,
all particle interactions are localized, whereby the method is highly conducive for mas-
sive parallelization [49, 51].

LB brings the remarkable advantages of computational speed and the ease of simu-
lating multiphase flows. LB based multiphase solvers are classified under the category
of diffuse interface methods, where the interfaces separating fluids are smeared over a
few grid cells. Like in VoE the interface in LB is not tracked, and it is through the vari-
ation in density of a fluid component (analogous to the variation of the phase indica-
tor function a in VoF), that the interface can be defined. This can be seen in the mid-
dle and right panels of figure 1.5, where the red and blue fluids are separated by thin,
diffuse interfaces. There are fundamentally different multiphase models within the LB
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framework, where in this thesis we have used the “pseudopotential” (PP) method. In PP-
LB, inter-component interactions are modeled using a potential-like, nearest-neighbour
force that acts between components. This force is usually repulsive for inter-component
interactions (between dissimilar fluid parcels), and attractive for intra-component in-
teractions (within the same fluid parcel). This causes spontaneous phase segregation
between two fluids that are initially mixed (also known as coarsening or spinodal de-
composition, figure 1.5 shows such a process), and allows naturally for coalescence and
breakup (albeit with other caveats®).

Figure 1.5: A phase segregation simulation shows how small droplets are formed due to repulsion
between the two constituent fluids (shown in blue and red), which then grow via coalescence (left
to right). (From one of the simulations done for Chapter 3.)

A further point to be noted is the difference between single-component multiphase
LB and multi-component multiphase LB. In the former, a single fluid is modeled using
an equation of state, such that if the fluid is at a sub-critical temperature, there are two
stable density values it can assume (corresponding to the vapor and liquid halves of the
spinodal curve), hence initiating phase segregation. In multi-component multiphase
LB, there are multiple fluid components, where each fluid can be either ideal or non-
ideal, and there are interaction forces (usually repulsive) acting between fluids. Such
systems result in fluid mixtures with A-rich and B-rich regions, with small amounts of A
dissolved in B and vice-versa.

One of the drawbacks of LB is that it has significantly higher memory requirements
than finite volume techniques. The distribution function f usually has components
along 19 directions when discretized on a three dimensional lattice (the number can
be lower or higher depending upon the flow being simulated). This means, that for ev-
ery fluid component, 19 variables need to be stored at each grid point - which makes
the memory requirement scale as N3 x 19 x m x 8 [bits], where m is the number of fluid
components being simulated (in finite-volume methods, the number of variables to be
stored at each grid point is fewer as one needs to only store three velocity components,
pressure and an additional species volume fraction - if density and viscosity are kept
constant). This can soon become prohibitive for increasing grid sizes, although given
the state of present-day processors, memory limitations will not become the first hur-

5These are issues common to diffuse interface methods, namely a preference for coalescence when interfaces
overlap and the dissolution of small droplets which are inherently unstable. In Chapter 5, these issues are
discussed at length.
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dle. A greater challenge PP-LB poses is the interpretation of all parameters in the model
which can be only made to coincide with real-world parameters upon constructing di-
mensionless number groups. Further, some parameters like the liquid-liquid repulsion
coefficient (the so-called G values) gives rise to the interfacial tension y between the
fluids, although y can only be calculated a posteriori from a simulation - making exact
control of physical properties a difficult task. This can be alleviated by parameter space
testing (a taste of which is presented in Chapter 3 for surfactant laden emulsions), to
ascertain the functional form of the dependence between input parameters and out-
put properties. Overcoming this limitation can be cumbersome, and although it is not
a severe problem, it often works against LB by being disagreeable to researchers better
versed the with finite volume framework of problem formulation which is more straight-
forward.

INTER-COMPARISON STUDY

To ascertain the relative strengths and weaknesses of the VoF and single-component PP-
LB methods, an intercomparison study was performed which is presented in Chapter
2. This was a first of study its kind performed on liquid-liquid systems, while a similar
comparison between front-tracking and lattice-Boltzmann has been performed for sim-
ulating rising bubbles [52]. One of the greatest challenges this comparison posed was the
formulation of a problem that could be commonly solved by VoF and single-component
PP-LB alike, where both methods were used in their primitive form with minor modi-
fications. Upon simulating falling droplets, a deceptively simple problem, it was found
that different numerical methods can predict different results, even when they closely
agree over numerical benchmarks (as is shown for VoF simulations using OpenFOAM
and FLUENT). This casts into doubt the usual practice of validating solvers using purely
numerical benchmarks, particularly for multiphase flows where the points of departure
between different simulation techniques are many. For this reason, and from the gen-
eral lessons learned from the inter-comparison study, this thesis does not endorse either
VoF of PP-LB unconditionally. Multiphase numerical solvers, despite being around for
decades, are still in their infancy with regards to robustness. The only viable suggestion is
to assess techniques by pitching them in direct comparison for the designated problem
one intends to solve. For this thesis, the PP-LB method was chosen because of the low
spurious currents at low density ratios, and upon considering the next steps that were to
be taken in this work for simulating surfactant laden turbulent emulsions. PP-LB allowed
a conceptually and practically simple method for simulating surfactants, and provided
an advantage in computational time (by a significant factor), which would facilitate the
demanding 3D simulations of turbulence to be performed within reasonable time.

1.5.2. CHAPTER 3: SIMULATING SURFACTANTS WITH PP-LB

A first difference between surfactant molecules as described earlier in this introduction
and ‘numerically simulated’ surfactants is that the latter must be treated as a species or
fluid in the continuum sense. It is neither feasible, nor necessary to simulate individual
surfactant molecules, so long as surfactant effects can be adequately represented in the
modeling approach. The one aspect that is essential here is the solubility of surfactants
in the two fluids, since clean droplets in passing through an impure fluid will rapidly ac-
cumulate surfactants at the interface. Hence any method that restricts surfactants only
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to interfaces cannot be used for our intended applications, and the surfactant species
must be allowed volumetric transport, as well as transport along the interface. Volu-
metric transport and partial miscibility of surfactants is implicitly present in the PP-LB
method when the surfactant is treated as an additional fluid component.

In Chapter 3, a model for surfactants using PP-LB is presented, which is a simplifi-
cation of the Nekovee et al. [53], Chen et al. [54] model. A three component (all non-
ideal, following the Carnahan-Starling EOS) system is simulated, where two of the com-
ponents form an emulsion (with density and viscosity ratio ~ 1). The third component
is the surfactant, which has a lower concentration®, around @(1073) in comparison to
the two major components. This is done to mimic physical systems where surfactants
are usually present in very small amounts, even a few parts per million. Also, having a
high surfactant density will lead to a ternary system with three immiscible fluids where
the surfactant can form sizable droplets of its own, which was not the objective. Such a
ternary system is considered in Chen et al. [54], where the surfactant density is almost
comparable to the density of the fluids. Non-ideal EOS modeling allows varying the re-
duced temperature of the components to achieve different density ratios as required.

The surfactant is repelled by the two other fluid components, which are also mostly
immiscible. This makes the surfactant accumulate at interfaces (see figure 1.6), and vary-
ing the ratio of the repulsion acting on it from the two component fluids can change its
miscibility in the fluid components. Here we ignore any dipole behaviour of the sur-
factant, electric fields and long range repulsions. These are the simplifications we allow
ourselves in comparison to Nekovee et al. [53], Chen et al. [54], as their model is relatively
complex. Although their model has found application in simulating several exotic fluid
mixtures and configurations (explained in more detail in Chapter 3), it has not been used
to simulate more commonly encountered surfactant laden multiphase flow problems.
We wanted to describe a surfactant in as simple terms as possible - to which additional
complexity can be introduced depending on the requirements of the application.

We perform a parameter space study of our proposed model, and show for the first
time a reduction in surface tension between the two fluid components arising com-
pletely from inter-particle interaction forces. This surface tension reduction resembles
a family of Langmuir isotherms, without any pre-set isotherms being imposed upon the
system (as is usually done in alternative techniques employing LB and FV). The surfac-
tant was shown to influence the dynamics of droplet formation at an aperture.

The main shortcoming of this work was the inability to simulate coalescence inhibi-
tion with the proposed method. Although, by varying the surface tension between the
components as a function of the local surfactant density, droplet coalescence was shown
to be arrested to some degree. Achieving coalescence inhibition more accurately re-
quires additional extensions to the model, the most obvious ones being a long-range re-
pulsion in the constituent fluids as proposed by Falcucci et al. [55], or a similar long range
repulsion in the surfactant such that approaching interfaces are slowed down which will
prevent film drainage, hence preventing coalescence. The latter may be more difficult
to achieve in the current model due to the lower density of the surfactant, which would
generate a weaker repulsion force unable to counteract the attractive forces of coalesc-

6In LB parlance, ‘concentration’ and ‘density’ are often used inter-changeably. What both terms denote is the
total mass of the component, divided by the total volume of the system. Low density of a component means
that, within the region of consideration, it has a lower density in comparison to other components.
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Figure 1.6: Surfactants added to a phase segregation simulation (with blue to red via green repre-
senting low to high concentrations). The surfactant is more miscible in the continuous phase, and
collects strongly around interfaces. (From one of the simulations done for Chapter 3.)
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ing droplets. The other limitation the current model posed was regarding independent
control of all parameters in the system. There are several ‘control’ parameters like the
various inter-component repulsion strengths, initial densities and equation of state vari-
ables - all of which together determine the final system state in terms of the liquid-liquid
density ratio and surface tension. Although there is direct correspondence between the
control parameters and the final system state, significantly more work is required to as-
certain the form of their dependence. It may indeed not be possible to vary individual
system properties with this approach, and instead, varying a single control parameter
may have multiple consequences on the state of the physical system being simulated.

1.5.3. CHAPTER 4: STRUCTURES IN TURBULENCE

The first step towards simulating turbulent emulsions was implementing a turbulence
forcing mechanism in the LB framework, while considering a single-phase fluid. The
adopted method created a low wavenumber spectral force, which had a similar form
to Alvelius [56], Ten Cate et al. [57], although it was constructed in real space following
Biferale et al. [58]. Applying this force to a fluid initially at rest generated statistically sta-
tionary, homogeneous isotropic turbulence, where the energy input is balanced by the
energy dissipation. These simulations were readily validated by testing the correlation
functions, structure functions and the energy spectra.

The classical adage used to explain turbulence is a hierarchy of velocity-field struc-
tures, that in superposition give the flow its various characteristics. These are conceptu-
ally referred to as “vortices” or “eddies”, and often “coherent structures”. This idea dates
back to Richardson’s famous verse summarizing an “eddy breakup” mechanism believed
to drive a turbulence cascade, where large scales generate successively finer scales:

“Big whorls have little whorls, that feed on their velocity,
And little whorls have lesser whorls, and so on to viscosity.”
~ L.E Richardson [59]

So far, such a cascading process has not been shown in the real space where the phe-
nomenon of turbulence occurs, although ample evidence for it has been found in other
representational spaces [60]. There have also been significant efforts to characterize and
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identify the “coherent structures” of turbulence, which has led to a wealth of literature
and tools. The dynamics and the form of turbulence structures is an important aspect
also with regards to our study, since the turbulence cascade has a directional energy flux
from larger to smaller scales. Addition of particles or droplet to turbulence will funda-
mentally modify this process, and possibly introduce newer routes of energy transfer,
including the possibility of inverse fluxes. Droplets, especially, can interact with tur-
bulence across different lengthscales, and hence can potentially influence typical flow
structures. Furthermore, the classical prediction of droplet sizes in a turbulent flow, fol-
lowing the Kolmogorov-Hinze theory, depends on an assumption of a cascade.

Figure 1.7: Typical structures from homogeneous isotropic turbulence simulations, shown as (to-
tal velocity) streamlines generated at the core of the associated correlation kernels. Left: Two in-
stances of high kinetic energy regions that show the jet-like structure. Right: Two instances of high
enstrophy regions that have a strong swirling motion. The colours represent velocity magnitude
|u| in non-dimensional lattice units. (Selected results from Chapter 4.)

In Chapter 4, we focus on a few basic questions regarding turbulence structures,
namely what are the typical forms of the spatial structures that arise in instantaneous
velocity and vorticity field realizations, and their spatial organization. These are nei-
ther statistically emerging structures, nor do they emerge from averaging procedures.
So far, most work done on identifying coherent structures utilize point concepts based
upon the velocity gradient tensor [61-63]. Although these are useful for various applica-
tions, they cannot be used to identify spatially finite, velocity structures. This is because
a finite structure in the velocity field u is generated by the integral contributions of the
global divergence (V -u) and curl (V x u) fields, along with the far-field influence (if any),
according to the Helmholtz decomposition. Point criterion, like Q, R (i.e. the second
and third invariants of the velocity gradient tensor A;; = du;/dx;) for instance, describe
the velocity field within the infinitesimal neighbourhood of each point in the flow field.



1.5. OUTLINE OF THE THESIS 17

Although several of these points may be connected to form a structure with a certain
value of Q everywhere, this may not reflect structure in the velocity field itself, which is
formed by the global integral of the velocity gradients. The Helmholtz decomposition
helps overcome this, and further, it can be used to disentangle the local (or near-field)
and non-local (far-field) velocity gradient contributions to a local velocity structure.

This study first introduces new mathematical tools to identify spatially coherent flow
regions, and then, utilizing the specific form of the Helmholtz decomposition valid for
incompressible flows—the Biot-Savart law—identifies the vorticity contributions to these
typical structures. By treating ‘coherence’ to mean ‘correlation’ in a spatial sense, cor-
relation pseudo-vectors are generated using various definitions involving the velocity
and vorticity fields, including correlations developed based upon the nature of the Biot-
Savart law itself. Our study shows, for the first time, that high kinetic energy regions are
consistently jet-like, with nearly parallel streamlines at the core of the correlation ker-
nels. High vorticity regions, as was known, are associated with strong swirling flow in
their vicinity. Examples of these flow types are shown in figure 1.7. Interestingly, the
Biot-Savart reconstruction of the velocity field shows that high kinetic energy regions
are generated by non-local, intermediate vorticity contributions, and lack any signifi-
cant vorticity of their own. The swirling regions of high vorticity are a superposition of
background vorticity induced flow and self-generating swirling motion. Strong vorticity
regions remain mostly non-interacting, and their Biot-Savart contribution rapidly de-
cays. High kinetic energy and high vorticity regions are also found to remain mutually
exclusive in space, showing how these dynamically different entities populate the vol-
ume of the flow field.

This study opens a new door into studying spatial turbulence structures from a geo-
metric perspective. The Biot-Savart rule emerges as a very useful tool for disentangling
turbulence structures from their state of superposition. Further extending these ideas
to studying the dynamics and time evolution of structures will reveal their life-cycles,
possibly shedding light on complex phenomena like eddy interactions, breakup and the
inter-scale interactions, all in real-space. These ideas also readily extend to other vec-
tor fields emerging in electromagnetism, magnetohydrodynamics or soft active matter
flows.

1.5.4. CHAPTER 5: SIMULATING TURBULENT EMULSIONS

In Chapter 5, direct numerical simulations (DNS) of turbulent emulsions are performed
for surfactant free fluids using the PP-LB method. The lengthscales resolved in these
simulations range from the turbulence forcing scale £ (large scale energy injection),
a significant inertial range of scales (which follow the E(k) ~ k~%'3 Kolmogorov scaling),
extending down to the dissipation range (~ 7). Droplet diameters d after turbulent emul-
sification (in physical systems) will be typically d «< £, as any large initial volumes of
the dispersed phase will soon fragment to sizes smaller than the large scale turbulence.
Further, since the grid size Ax ~ 1, droplets below roughly 101 will be unstable (due to
diffuse interface effects, as discussed in the chapter) and droplets smaller than 1 cannot
be resolved. The possible droplet sizes in the system hence fall in the range n < d < Z.
For a fixed turbulence intensity, a lengthscale for the maximum stable droplet diame-
ter can be estimated, which is called the “Hinze scale” after Hinze [22] (although valid
for dilute, inviscid suspensions, while ignoring coalescence). This lengthscale typically
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separates the unstable and stable droplet sizes, which are more prone to break up and
coalesce, respectively. The Hinze scale, since it depends on dissipation, is also an inter-
mittent quantity, and hence represents a distribution of droplet sizes in the system, spe-
cially when coalescence is not being inhibited (such that larger droplets are continuously
formed as well, which are prone to break up). In this study, we intend to resolve droplets
in the inertial range of turbulence. Hence d will have a distribution ranging from several
times larger than the Taylor lengthscale A up to several times the Kolmogorov scale 7.
The situation is shown in figure 1.8 with regards to the lengthscales of the system.

Kinetic Energy

— i Dissipation
Range

Large i .
Scales i Inertial Range

Lengthscales of turbulence

Figure 1.8: Schematic of the kind of turbulent emulsion system in consideration. Droplets are sim-
ulated in the inertial range (while Kolmogorov size droplets, or smaller, cannot be simulated). The
Hinze [22] scale differentiates unstable droplet sizes (more prone to breakup) from stable droplet
sizes (more prone to coalesce). (Hand drawn.)

We began with the multicomponent setup developed for Chapter 3, while ignoring
the surfactant component, to start with a pure, two-fluid system. The turbulence forc-
ing scheme, as used in Chapter 4, was adapted for this setup. To simulate turbulence,
a separation of scales is required, which can be achieved by either having a very large
domain (and energy injection scale), or a low viscosity which allows the generation of
small scales. Both work equivalently, as far as turbulence alone is considered, due to the
lack of an inherent lengthscale in the system. Although, since the first approach is com-
putationally unfeasible, the second method is usually adopted. Doing so, it was soon
found that the non-ideal fluid setup of Chapter 3 was incompatible with low viscosity
values. The problem was viscosity dependent phase-segregation between the two flu-
ids, which became weaker at low viscosity values. Due to this, sharp interfaces were not
formed and the two fluid components remained dissolved in one another. This eventu-
ally was found to be a known issue [64], which could be remedied to an extent by using
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a different forcing scheme for the pseudopotential interactions (unrelated to the turbu-
lence forcing scheme which is a volumetric force field generation mechanism and not a
numerical scheme). Since the turbulent emulsions work also exclusively focused on low
density ratio systems, this would have implied keeping the non-ideal fluid components
at above critical temperatures (to prevent intra-component phase separation, required
to ensure a liquid-liquid final composition). This would render the polynomial oper-
ations associated with the CS-EOS redundant. With these considerations in mind, the
setup was changed to two ideal Shan-Chen fluid components, separated by a repulsive
pseudopotential force, which has been used before in literature to simulate turbulent
dispersions [58, 65, 66]. In this setup, viscosity could be reduced to a sufficient degree,
along with ensuring phase-segregation, to have well developed multiphase turbulence.
Note that the proposed setup can also be easily used for various different configurations,
like simulating sub-Kolmogorov droplets.

Figure 1.9: Dispersed phase in a turbulent emulsion. The three snapshots show how a character-
istic morphology is achieved and there is a constant interplay of coalescence and breakup. (From
simulations performed for Chapter 5.)

The dynamics of the dispersion formation process is revealed in great detail with
these simulations, which are possible in certain regions of the turbulent emulsions pa-
rameter space. The most important consideration is having a turbulence intensity that
causes droplet fragmentation without overpowering the pseudopotential repulsion com-
pletely, in which case the two fluids would become miscible (as also happens in the real
world). Through long duration simulations (upto 300 turnover timescales), we report
emulsion formation of different morphologies depending on the volume fraction, inter-
facial tension and turbulence intensity. Analysis of the quasi-equilibrium of coalescence
and breakup is presented, where the state variables (kinetic energy, dissipation, droplet
number density and surface energy) are found to evolve as time delayed limit cycles.
Lastly, modification of turbulence at a spectral level and modification of the small-scale
turbulence flow topology (characterized by the velocity-gradient tensor invariants) is
presented.

So far, this study was limited to clean fluid systems as there is a lack of understand-
ing of droplet dynamics even for pure fluids. Studies on interface resolving turbulent
emulsion simulations (like Chapter 5) have only recently become feasible [21], and there
is yet a lot that remains to be explained regarding these systems. Studying the effect of
surfactants on the dynamics is still a step to be taken in the future, although with this
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thesis we present the necessary tools that need to be combined for such studies. The
only work that had been done on surfactant laden turbulent emulsions until 2019 was
by Skartlien et al. [67, 68], where they show that the surfactant does not influence the
emulsion structure significantly. This although true for their system, cannot be the gen-
eral conclusion as it is known that surfactants effect emulsification significantly. Very
recently, Soligo et al. [69] have shown how coalescence is inhibited for droplets in tur-
bulent channel flow due to surfactants. The challenge remains in simulating stronger
surfactant effects and spanning a wider range of the associated parameter space (Rey)
numerically to directly compare clean and surfactant-laden systems.

1.5.5. CHAPTER 6: CONCLUSIONS AND OUTLOOK

Finally in Chapter 6, the conclusions of this work have been presented. Based upon the
findings, the most interesting and relevant next questions worth investigating have been
discussed. A section devoted to comparing nature and numerics is also presented - to
highlight aspects of this work that find close correspondence in natural phenomena and
those that do not. This is always an important aspect for modeling work, specially nu-
merics and CFD of the kind presented in this thesis. More often than not, it is impossible
to accurately simulate natural phenomena, however, with the right approximations, the
disparity can be reduced to an agreeable minimum. The chapter closes with a brief out-
look on this thesis.
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INTER-COMPARISON OF PP-LB
AND VOF

“What we observe is not nature in itself, but nature exposed to our method of
questioning."

~ Werner Heisenberg

Heisenberg's aphorism highlighting the nature of scientific theories rings doubly true for
numerical modelling. Typically, numerical methods are designed for robustness and ap-
plicability across a tapestry of problems. In practice, the limits of their universality is dif-
ficult to ascertain, specially for computational fluid dynamics of multiphase flows, where
there are numerous models that all differ in principle. This causes two disparate issues.
Often researchers adhere to a preferred method due to reasons simply of legacy, and are
unable to move on to a different approach. On the other hand, new methods are read-
ily developed with the promise of widespread application, although they have not been
amply tested. While there are benefits both in long standing familiarity with a numeri-
cal tool and ready acceptance of newer, improved methods, the two are better reconciled
when pitched in direct comparison to each other. Such comparisons are crucial in im-
proving our understanding of numerics, specially when different techniques agree with
each other sufficiently when applied to well defined numerical benchmarks but begin to
disagree when applied to realistic problems. Such work can be tedious to perform, and
is unfortunately under-appreciated' . In this chapter, a quantitative analysis of the pseu-
dopotential lattice-Boltzmann and volume-of-fluid methods is presented, focusing on low
density ratio fluids (representative of emulsions) to simulate falling liquid droplets at low
Re and Eo numbers.

This chapter has been published in the International Journal of Heat and Fluid Flow, 2018 [1].
lwith the editor of a prominent numerics journal having decreed “the comparison could have been valuable to
the community, but it has been carried out for low Re and low density ratio fluids - which are of little interest”.
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2.1. INTRODUCTION

ith multiphase flow simulations becoming commonplace in describing and de-
Wsigning engineering applications, numerous techniques have been developed to
numerically solve these flows [2, 3]. In addition, this has provided unprecedented insight
into flow physics at the scale of individual droplets and bubbles which in many cases is
relevant at the larger scale of reactors or processes. This has in turn greatly benefited
emulsion research dealing with liquid-liquid flows [4-6], where performing experiments
to obtain high resolution spatio-temporal data is often not feasible. Many food and per-
sonal care products consist of liquid-liquid emulsions with a low density ratio. In the oil
industry, separating water from oil (in particular downhole water/oil separation, leav-
ing the water underground) is a tremendously relevant issue [7], as many oil sources not
just produce oil and gas but also water in increasing amounts. Also the concept of En-
hanced Oil Recovery (EOR) [8] in which steam is injected into oil containing reservoirs
to increase oil production results in large amounts of fine liquid-liquid emulsions which
need treatment. In the polymer industry, quite a few polymers are produced by means
of emulsion polymerization processes [9]. Reliable simulations of these widely different
processes require an accurate description of the flow physics at the droplet scale. The ex-
istence of myriad simulation techniques presents another caveat - which method is most
applicable to a specific problem? This calls for studies that reveal particular strengths
and shortcomings of these simulation techniques when directly compared, however in
the case of interface resolving multiphase flows, such studies are difficult to come by.

To the best of the authors’ knowledge, among the very few other studies comparing
amesoscopic technique to a continuum technique for multiphase flow are the compari-
son between a two fluid free energy LB approach and a volume of fluid method by Takada
et al. [10], between a pseudopotential LB and a front-tracking finite-difference method
for rising bubbles by Sankaranarayanan et al. [11] and between a free energy LB formu-
lation and a phase field method by Scarbolo et al. [12]. We compare two widely used
techniques based on very different principles, namely the finite volume based Volume
of Fluid (VOF) method and the mesoscopic, single-component multiphase pseudopo-
tential lattice-Boltzmann method (PP-LB) and focus on specific challenges faced when
simulating fluids at low density ratio. Generally, multiphase flows can contain single or
multiple fluid components in different phases, for instance a fluid existing simultane-
ously in its liquid and vapour phase, or two immiscible liquids like oil and water. The
most elusive problem here is the accurate representation of the phase separating inter-
face, that essentially emerges from the microscopic interactions at the molecular level,
detached from the continuum regime of hydrodynamics, and which can undergo com-
plex deformations during the evolution of the flow. VOF and PP-LB differ greatly in how
they simulate interface dynamics. Both techniques have particular points of strength,
but they also bring a set of shortcomings that are easily overlooked - we address them
both in the course of our study.

VOF is one of the first techniques developed for multiphase flow simulations based
on the finite volume method (FVM) [13]. Using VOE one solves an additional advection
equation for a boolean valued phase indicator function, marking the two immiscible flu-
ids. In principle, at the interface, this indicator value changes rapidly from 0 to 1 (or
vice-versa) marking the two phase regions. Further, all physical properties are mod-
eled as phase averages, hence working with an effective single-fluid formulation of the
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Navier-Stokes equation. This method has been demonstrated to perform well for a wide
range of multiphase flow problems and can reproduce an appreciably sharp interface
undergoing arbitrarily large deformations [14].

Also over the past two decades, PP-LB has emerged as a versatile alternative to con-
ventional finite volume techniques for simulating multiphase flows [15]. It was first pro-
posed by Shan and Chen [16, 17] and is based on a mesoscopic kinetic equation for par-
ticle distribution functions, and has been used for various fluid mechanics and engi-
neering problems [18, 19]. In this method, particle interactions are modeled by an inter-
particle force which causes a single-component fluid to spontaneously segregate into
two phases of different densities that change smoothly from one bulk value to another.
The interface emerges automatically and is characterized by monitoring the variation
in density, and is therefore no longer a mathematical boundary and no explicit inter-
face tracking/capturing technique is required. Moreover, surface tension effects emerge
automatically from the underlying Boltzmann dynamics. The single-component PP-LB
is the most widely used LB based model due to its simplicity and versatility, remark-
able computational efficiency and clear representation of the underlying microscopic
physics.

Evidently, VOF and PP-LB simulate multiphase flows very differently, the first being
a continuum approach and the latter mesoscopic. The main point of departure is that
in VOE the two (or more) fluids are completely immiscible and interfacial dynamics is
modeled with a specified surface tension force. While in single-component PP-LB, the
two fluids are modeled as the liquid and vapor phases of the same non-ideal compo-
nent [20], which coexist due to phase separation [21]. Immiscibility of the two phases in
PP-LB is ensured by a repulsive interaction parameter, consequently leading to surface
tension effects. Owing to these differences, a direct comparison between the strengths
and weaknesses of the two methods can benefit a user by providing motivation for se-
lecting either technique, for one might be better suited to a specific problem than the
other. Previously [22], the authors attempted such an intercomparison and it was ob-
served that even after a careful formulation of identical test cases, predicted results can
vary between the two methods. In this study, we investigate this discrepancy further to
more conclusively remark on the predictive aspects of VOF vis-a-vis PP-LB.

We begin with a description of PP-LB (our own in-house code implementation using
FORTRAN 90 as well as an implementation in the open source "parallel lattice-Boltzmann
solver" Palabos-v1.5r1), and the VOF method (using the standard OpenFOAM and FLU-
ENT VOF solvers, along with modifications to the OpenFOAM solver). We first address
the so-called spurious velocities that emerge in both methods as numerical artifacts and
can be a limiting constraint on the accuracy of results. We also compare the thickness
of the interface as produced by these methods, and show that sharper interfaces are
achieved at the cost of higher spurious velocities. Next we simulate falling droplets with
a low density ratio (2D and 3D in VOE and 2D in LB) to compare how well the methods
predict the velocity evolution, terminal Reynolds number and droplet shape. This com-
parison is performed in a small region of the phase-space governing falling droplets,
corresponding to the spherical and ellipsoidal regions of the shape regime map of Clift
etal. [23] (henceforth called the Clift map). We then discuss the specific challenges faced
for the two methods and conclude with our main findings.
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2.1.1. SINGLE-COMPONENT PP-LB
The standard lattice-Boltzmann equation with a single relaxation time [24] is written as

fix+eArt+AD-fi(x6) 1

At T

where f; (x, 1) is the density distribution function associated with discrete velocity di-

rection i, 7 is the relaxation time and S; represents a general source term added into

the lattice-Boltzmann equation (which is related to all thermodynamic and hydrody-

namic forces). The discrete velocities e; in the i - direction, for the D2Q9 lattice are

given by ep = 0 and e; = 1;(cosf;,sinf;) with A; =1,0; = (i—1)n/2 fori =1—-4 and

Ai=v?2,0; =(i—5)nm/2+m/4for i =5—8. The order numbers i =1 —4 and i =5-8rep-

resent the rectangular and the diagonal directions of the lattice respectively. In Eq. 2.1,
f;is the equilibrium distribution function and is calculated as

(i - fix0)+S; 2.1)

. . 2 eq.
eq (e;-u®l) (e;-u®l)” (u®d-u®d)
fii=wip |1+ 2 + 2t - 22

(2.2)

where ¢ = 1/3 is the lattice speed of sound, w; are the weighting factors equal to 4/9 for
i=0,1/9 for i =1-4 and 1/36 for i = 5—8, and u®? is the equilibrium velocity. Also,
the local mass density, local velocity and the kinematic viscosity in lattice units for each
component are calculated as p = ¥; fi;, u = (X;e;f;)/p and v = (r — 0.5) /3 respectively
(while the dynamic viscosity p = pv).

The force F acting on a multiphase system includes external body forces, Fyoqdy (€.8.
gravity) and the mean field inter-particle interaction force, Fj,, and is written as F =
Fpody + Fint. Based on the original pseudopotential model [17], the so called f—scheme
[25] has been introduced for the interaction force for a single-component multiphase
system as follows:

Fine=—P |¥ (x 1) G)_ v (x+e;At, 1) e;At
i

+ % [GZ w;i [w (x+e;Ar, 0] e Ar| (2.3)
i

where At =1 is the time interval and G denotes the interaction parameter, with G < 0
representing an attractive force between the particles. Compared to the original pseu-
dopotential interaction force, the f—scheme has more isotropy and by choosing a proper
value for §, the thermodynamic inconsistency and magnitude of spurious velocities can
be greatly reduced [25-27]. It has been shown that by setting 8 = 1.25 the density ratio in
LB matches well with the analytical equation of state (EOS) [26]. Note that by choosing
B =1, the f—scheme reduces to the original pseudopotential model. In Eq. 2.3, v (x, t) is
called the pseudopotential function and is calculated by [21]

2 —pc?
WX 1) = M (2.4)
G
where pgos is the pressure calculated from the desired EOS. Here, the Carnahan-Starling

(C-S) EOS is used [21], which is implemented as

Pros =pPT (2.5)
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The reduced temperature and density are defined as T, = T/ T, and p, = p/ p. where
T. = 0.09432 and p, = 0.11911 are the critical temperature and density, in lattice units,
related to the C-S EOS, these values have been take from Zarghami et al. [26]. In order to
mimic the continuous phase behavior as expressed by the Navier-Stokes equations, usu-
ally, a source term representing the mean field inter-particle interaction force is added to
the lattice-Boltzmann equation (see Eq. 2.1). One of the most stable and common force
implementation schemes is the exact difference method (EDM) which is directly derived
from the Boltzmann equation [28], and is given as

S = (p,u+FAt/p) - 7 (p,u) (2.6)
The equilibrium velocity u®d, and the real fluid velocity U can be calculated as

At
U=u®9=u+ 5F 2.7

In order to incorporate gravitational and buoyancy forces in the model, the body
force can be defined in one of the following ways depending on the specific problem
being simulated and the domain boundary conditions

Foody = 08 (2.8)
Fpody = (0 — Pvap)§ (2.9)
Fpody = (p—P0)g (2.10)

where g is the downward gravitational acceleration, p is the local density, pvap is the
vapor density and p is the averaged density over the whole computational domain. Since
we use a fully periodic domain for the LB simulations, Eq. 2.10 is the most appropriate
implementation of the body force [29-31]. This ensures that the average value of Fyqqy
in the computational domain is zero and no net momentum is added to the system, so
the droplet and surrounding fluid do not keep accelerating downward indefinitely [31].
The recovered macroscopic Navier-Stokes equations from LB are as follows

op At
L ivau=-2tvoF
ot 2
d
§+v-(puu)=—Vp+vv-[p(Vu+(Vu)T)]+F
At OF 1 T
2 e AV |- (uF+Fu) + At FF (2.11)
2 0h 2 o

One can see that an additional nonlinear relaxation-time dependent term is intro-
duced when recovering the NS equations using the EDM scheme and when applying
the Chapman-Enskog expansion. The scheme will be consistent with the macroscopic
equations if the temporal and spatial changes of the force vary only slightly (or the force
term be constant), and if the last term within brackets of Eq. 2.11 be negligible. However,
the last term may have a great influence on the solution due to the velocity gradient. It
has been shown [26, 32] that the term p~'FF is capable of enhancing numerical stability.
This term has a non-zero value only at the phase interface, as a result of the fluid particle
interaction (which in itself does not appear in the NS equations). This enables one to
simulate high density ratios when using the EDM scheme.
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2.1.2. VOF IN OPENFOAM

OpenFOAM (version 2.3.0) [33, 34] which stands for Open Field Operation and Manip-
ulation, is a highly flexible open source C++ library of finite volume based solvers for
differential equations, operating on scalar, vector and tensor fields. It provides a VOF
solver called interFoam - which is employed in this study and has been widely used and
validated [35-39]. It solves the mass conservation and momentum equation for incom-
pressible fluid flow along with the transport of a phase indicator function a which dif-
ferentiates the two phases. This « is ideally a step function such that it goes from 1 to 0
as one moves from one phase to the other. Once a simulation is initialized with a sharp
profile of a, the interface gets diffused over a few cells, which can in principle be con-
fined to an arbitrarily narrow region with mesh refinement, and several methods have
been proposed to limit this effect [40]. The interface between the two fluids is taken to
be the contour of a = 0.5. This approach assumes that each phase moves with the center
of mass velocity such that u = u,, = ug, and is acted upon by one pressure field. The
following equations are solved by interFoam

V-u=0
a(;)—:+v-(puu) =-Vp*+V-2uS) +f, +f; (2.12)
oa
E+V-(ua)+v-(uca(l—a))=0 (2.13)

where f;, denotes body forces (like gravity), f; is surface tension force (explained below),
2uS is the deviatoric stress with S the rate of strain tensor S = 3 (Vu+ Vu’) and p is the
dynamic viscosity. Here p* is the modified pressure found by removing the hydrostatic
component from the pressure, and is calculated as [41]

p*=p-pgx (2.14)

where g and x are the gravity and position vectors respectively. Therefore the term Vp*
expands to
Vp*=Vp-pg-g-xVp (2.15)

The last term of Eq. 2.13 of the phase indicator transport equation V- (u.a(1 — @)) is an
interface compression term used to maintain a sharp interface between the phases. The
calculation of u, follows [42], where the compression velocity is given as

iHi 2.16)
711711871

where 0 < ¢4 < 1 limits the compression velocity to below the maximum face flux veloc-
ity ¢/1S¢| [43], where Sy is the cell face vector. This term is active only in the interface
region due to the a(1 — a) factor (conceptually similar to the extra term appearing in the
LB formulation of the NS equation, see the description following Eq. 2.6). This tech-
nique helps preserve interface sharpness, though it comes at the cost of exaggerating
the parasitic currents [38], which will be discussed shortly. All physical properties y in
this formulation are given as

u, = min (ca

v=vyia+yy(l—-a) where we{p,uct (2.17)
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The surface tension force in the momentum equation, f;, is adopted based upon the
Continuous-Surface-Force (CSF) formulation [44], given as
. Va
f, =0xVa with x=-V.|— (2.18)
IVal
where o is a specified constant surface tension. It is the inaccuracies in determination
of the curvature x that lead to parasitic currents in VOE Lafaurie et al. [45] proposed an
improved calculation of the curvature reducing parasitic currents, where the «a field is
converted to a smoother field @ using a Laplacian filter as follows

Xy arlSyl

ap= (2.19)
SN

where P denotes the cell index and f denotes the face index. This modified formulation
can be used to reduce the parasitic currents by an order of magnitude [38].

DYNAMIC MESH REFINEMENT FOR 3D SIMULATIONS

For 3D VOF simulations, dynamic mesh refinement [46] as available in OpenFOAM was
used to reduce the computational cost. This allows the use of a relatively coarse base
mesh, while grid cells around the interface can be dynamically refined based on the
value of the a-field (a criterion of 0.1 < a < 0.9 has been used in this study). Every octag-
onal cell that satisfies the refinement criterion has each dimension cut in half, resulting
in 8 smaller octagonal cells, the result being a 2 : 1 refinement. This process is repeated
up to two times, resulting in a factor four times finer mesh in the region around the in-
terface.

PRESSURE-VELOCITY COUPLING

OpenFOAM provides two pressure-velocity coupling procedures for the iterative solver.
First is the well known PISO algorithm [47], which corrects iteratively for the pressure
and velocity for the number of times prescribed by the parameter inner corrector. The
second is the PIMPLE algorithm, which is a combination of the SIMPLE [48] algorithm
with PISO. The PIMPLE algorithm has outer correctors along with the inner correctors of
PISO. It solves the entire PISO loop several times, the main difference being that the «
field is also corrected by PIMPLE (unlike with PISO). If the time step size is small enough
(i.e. a small enough maximum cell Courant number Copax = uAt/Ax, where Ax and
At are the grid size and time step size, respectively), then the a field should not change
much within a time step and PISO and PIMPLE are expected to give very similar results.
We have tested both algorithms in this study.

2.1.3. VOF IN FLUENT

The explicit VOF method in FLUENT (version 15.7) is equivalent to the implementation
in OpenFOAM in terms of the momentum; the volume fraction equation differs depend-
ing upon the interface reconstruction approach. The FLUENT default is the geometrical
reconstruction scheme based upon Youngs [49]. For this scheme, the volume fraction
equation simply reads:

oa
—+V-(ua)=0 (2.20)
ot
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and a piecewise-linear interface construction (PLIC) scheme is used to determine the
face fluxes of a. Alternatively, a “Compressive” scheme can be chosen from the available
options (others being “HRIC” and “CICSAM” - which have not been used in this study).
The Compressive scheme has been implemented in FLUENT via the volume fraction
discretization equation

af:ad+ﬁVad (2.21)

with «a f the face value and @, the value in the donor cell, further details can be found
in Ubbink [50]. Prescribing f = 2 amounts to the Compressive scheme, as it increases
the flux of a being accepted from the donor cell. (while § = 0 yields a 15—order upwind
discretization as a y = @4). The momentum equation is discretized using 27d_ order up-
wind and the 3" order MUSCL scheme, which is a blend between second order upwind
and central differencing:

pr=0 %(¢0+(P1)+%(V(Po'ro+v¢o~r1) +

(1-0) [¢po + Vepo - 1o (2.22)
This gives the following FLUENT approaches:

1. 3"-order MUSCL using “Compressive” Scheme

2. 3"_order MUSCL using “Geometrical-Reconstruction” Scheme

For all cases, the SIMPLE scheme for pressure-velocity coupling and a staggered grid
(PRESTO, i.e Pressure Staggering Option scheme [48]) for pressure interpolation was
used. A first order implicit, adaptive time-stepping was used with a Courant criterion
of Comax = 0.25. We also tested results from the 2"4— order upwinding scheme, which
were identical to those from the MUSCL scheme. Hence all forthcoming FLUENT results
shown are those obtained using the MUSCL scheme.

2.2. THEORETICAL DISCUSSION

2.2.1. DIMENSIONAL ANALYSIS

We simulate falling droplets, a relevant multiphase flow problem along with rising bub-
bles, where the dynamics is commonly influenced by buoyancy, drag, gravity, surface
tension and other forces depending on the fluid properties. The interplay of these forces
results in different droplet/bubble behaviours, depending on droplet/bubble size, den-
sity ratio and viscosity ratio of the fluids. Carrying out a dimensional analysis of the
relative (slip) velocity for a falling (rising) droplet (bubble) in another fluid shows that
the problem is completely described by four non-dimensional parameters [51]: the den-
sity ratio (p*), the dynamic viscosity ratio (u*), the E6tvés number (Eo, also called the
Bond number) and the Galilei number (Ga) defined as
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Density Ratio: p* = bi
o
Dynamic Viscosity Ratio: u* = %
0
E6tves Number: Eo = Apngz
Galilei Number: Ga = @ 03
0

where Ap = |p, — pil, the subscripts i, 0 denoting properties inside and outside the
droplet/bubble region respectively. Also, g, d and o are the gravitational acceleration,
the initial diameter of droplet and surface tension. For our discussion and subsequent
formulation of cases based on the Clift map, we also define the Reynolds (Re), Morton
(M) and Weber (We) numbers

d
Reynolds Number: Re = pot:d
Ho
4
A
Morton Number: M = K 02 rg
P50
Po u%d
Weber Number: We = ——— (2.24)
o

where u; is the terminal velocity of the droplet. Note that Ga is similar to Re, but is
defined using the characteristic gravitational velocity (1/(Ap/p,)gd) rather than the ter-
minal velocity [52]. This becomes useful in some flow regimes where a falling droplet
or rising bubble may never display a steady terminal velocity, and even if it does, the
terminal velocity is unknown a priori and depends on several physical quantities; the
gravitational velocity scale then is better defined.

2.2.2. FLOW REGIME MAP

A well-known regime map based on experimental correlations has been presented by
Clift e al. [23], which is used as a common reference for predicting the terminal veloc-
ity and final shape of rising air bubbles in water, also applicable to low density ratio
droplets. Based on this map, the main regimes depending on the final shape of the bub-
ble are the spherical, ellipsoidal and spherical cap regimes. The surface tension and the
viscous forces are dominant in the spherical regime and the bubble size is small (d < 1.3
[mm]), the bubble shape remaining spherical or nearly-spherical. Here, the Hadamard-
Rybzynski [53, 54] solution for flow past viscous spheres applies, which is given as

1+k
2+3k

_gd’Ap

Ur=

(2.25)

6V,

where k =v,/v; (k =1 in this study). In the ellipsoidal regime which ranges from 0.25 <
Eo < 40, surface tension is the dominant parameter and the bubble size is typically 1.3 <
d < 6 [mm]. Here, the terminal velocity can be approximated by correlations suggested
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by Mendelson [55]

2.140 0.5
~ +0.505gd (2.26)

Ur=

o

Finally, the spherical cap regime occurs when the bubble size is large (d > 6 [mm]) and

Eo > 40, and is governed by inertial forces which generate higher deformation by induc-

ing higher pressure on the front and rear of the bubble, and lower pressure at the sides

[29]. The wobbling, skirted or dimpled spherical cap sub-regimes may also emerge in
case of an unsteady rising bubble.

Whether this regime map is also applicable to falling droplets can be ascertained by
comparing the conditions under which bubbles and droplets have the same dynamics
and evolution history, i.e. they rise or fall to a similar relative position over the same time
and acquire the same shape and velocity. As reported in recent literature [51, 56], this is
ensured by the conditions

Gdd = Gab
Ph
* = 2.27
o 207 -1 (2.27)

where the subscripts d, b refer to the droplet and bubble respectively. Further in ac-
cordance to the Boussinesq approximation, the influence of circulation inside the fluid
particle on its surface should be considered [56], which gives the condition p} =2-p
and pj; = wy. Once p; > 2, no exact equivalent of a bubble can be found [51, 57, 58]. Es-
sentially, the dynamics of droplet motion becomes qualitatively different from an equiv-
alent bubble when the density ratio is far from unity. This has been briefly demonstrated
below in Fig. 2.1, where identical cases of rising bubbles and falling droplets have been
shown side by side, comparing the steady state shape and the background vorticity field,
for density ratios p* = 1.2,3 & 20 and with u* = 1. These simulations were performed in
OpenFOAM in 2D at a resolution of 40 grid cells per droplet diameter, and an adaptive
time stepping following the maximum Courant number criterion of Copax = 0.25. It is
seen that the vorticity tends to concentrate more strongly in the lighter density fluid. As
p* deviates further from unity, the equivalent bubble and droplet begin to differ.

2.3. STATIONARY LIQUID DROPLETS IN VAPOR

2.3.1. SIMULATION DETAILS

We first wish to address the well-known spurious (or parasitic) currents that are known to
arise in VOF and PP-LB alike, and which have been detailed before in literature [59, 60].
As a brief reminder, these are unphysical velocity fields that arise due to the continuum
surface force implementation for modeling surface tension effects in Eulerian based
multiphase flow simulations like VOE which do not disappear with grid refinement. This
is a consequence of simulating a curved interface using an orthogonal grid. In PP-LB,
these arise from an insufficient isotropy of the gradient operator. The standard method
of investigating spurious currents is to simulate a stationary droplet suspended in vapor,
without the influence of any body forces. In such a situation, although all initial velocity
fluctuations should eventually settle to zero by the effect of viscosity, very coherent ve-
locity structures are obtained particularly neighbouring the fluid interface. We simulate
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Figure 2.1: Comparison of equivalent bubble-droplet pairs for density ratio p* = 1.2,3 & 20, shown
along with the normalized vorticity field w}‘ = wz/|wzlmax at steady state. In these cases, the bub-
ble is seen to deform more than the droplet, while the droplet generates more intense and longer
trailing vorticity fields. As the density ratio gets farther from unity, the bubble-droplet pair begins
to drastically differ. These results are obtained from simulations performed in OpenFOAM in 2D.

liquid droplets (p;) suspended in vapor (p,), centered in a periodic domain of 150 x 150
uniform orthogonal cells, with a viscosity ratio v* = 1 (as we use single-component LB)
and increase the density ratio p* = p;/p,.
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LB parameters: These simulations are performed using our in-house code. The droplet
diameter is set to 60 lattice units initially, with the density inside and outside the droplet
varying smoothly over 6 lattice units using a hyperbolic tan profile. These densities are
initialized very close to the corresponding liquid and vapor densities found from the co-
existence curve [26]. The density ratio is varied by changing the reduced temperature
T,. Two sets of simulations with =1 (i.e. classical multiphase PP-LB) and 8 = 1.25 (so-
called 8 scheme) are performed (refer Eq. 2.3). The relaxation time 7 = 1, which gives a
LB viscosity of v = 0.16.

OpenFOAM-VOF parameters: In VOE the droplet diameter is initialized with a diam-
eter of d = 2 [mm], at 60 grid cells per diameter, which is a sharp initial profile of @ which
becomes slightly diffused once the simulation begins. Surface tension values have to
be provided in the VOF simulations as a parameter (refer Eq. 2.18). These are obtained
from the corresponding LB simulations using the Laplace law (Ap = 20/R) at steady
state, where Ap is the pressure difference between the center of the droplet and the edge
of the domain. Further, three sets of simulations with OpenFOAM are performed

1. Classical VOE i.e. without interface compression (cq = 0)

2. VOF with interface compression (¢, = 1), which produces a sharp interface but
increases the spurious currents as it steepens the « field gradients at the interface
(Klostermann et al. [61] report ¢, does not influence the magnitude of spurious
currents much, however Hoang et al. [38] demonstrate that a higher ¢, generates
stronger spurious currents)

3. VOF with interface compression (¢, = 1), with an added @ smoothing step dur-
ing calculation of the curvature, which is called VOFsmooth after Hoang et al. [38]
who implemented it in OpenFOAM, based upon Lafaurie et al. [45]. This case is
aimed to specifically demonstrate the utility of the @ smoothing function, despite
a compressive scheme to preserve a sharp interface.

Euler time integration (with adaptive time stepping following the limiting Courant
criteria Comax = 0.25), with Gauss linear interpolation of gradient terms and Gauss van-
Leer interpolation of the advection terms is used. Backward time integration was also
tried, however it did not influence these results much. A single PISO loop was used with
10 corrector steps, and the tolerance criterion for convergence was kept at 1077 for the
pressure term and 1078 for the velocity.

FLUENT-VOF parameters: The FLUENT simulations are performed for two sets of
cases, the first with geometrical-reconstruction and the other with an interface compres-
sion technique similar to OpenFOAM. The residuals of velocity and momentum were
kept to their default values of 10> and it was checked that the average velocity in the
domain was constant at this value within a time step. Time integration performed was
first order implicit (equivalent to the OpenFOAM Euler integration) - other than which is
not allowed for explicit VOF in FLUENT and least squares interpolation for the gradient
terms was used. An adaptive timestepping with a maximum timestep size of 107 [s] was
used along with the same Courant criterion of Copax = 0.25.
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2.3.2. SPURIOUS CURRENTS

Spurious velocity vectors after a long simulation time are shown for the case p* = 3 in
Fig. 2.2 with contours of a = 0.5 for the VOF methods implemented in OpenFOAM (FLU-
ENT results are qualitatively similar) and for LB (8 = 1.25). The normalized vorticity
fields (-1 < w} < 1, red to blue, where w} = w,/|w;|max) have also been shown. Fig. 2.2a
shows classical VOF which has a slightly diffused interface and produces only a small
magnitude of spurious velocities near the interface, velocity vectors distant from the in-
terface being almost of length zero. Fig. 2.2b shows how using interface compression
(cq = 1) steepens the magnitude of spurious velocities, which now appear with longer
vectors. Upon using VOFsmooth (Fig. 2.2c) these vectors again become smaller in mag-
nitude, while the scheme preserves a sharp interface. Lastly, Fig. 2.2d shows the spuri-
ous velocities in LB, which after having attained a steady state do not exhibit fluctuations
(unlike in VOF) and attain a very symmetric profile. Note that the overall shape and mag-
nitude of the spurious velocity field in LB can change depending on the discretization of
the force term into conservative or non-conservative forms, as has been explained by
Connington and Lee [62]. These results are representative of how the velocity fields look
in VOF and LB. In the VOF simulations we observe that for high p* values (i.e. also high
o) the droplet can perform a random walk in the domain driven by large asymmetric
spurious currents, as has also been reported in literature [38].

Since there is no steady state behaviour in the VOF simulations for the global average
spurious velocity or the maximum spurious velocity magnitude, a single value is ascer-
tained for each simulation by time averaging the maximum spurious velocity magnitude
| t|lmax between 0.2 to 1.0 [s] to get {|umax), as shown in Fig. 2.3. It was checked that this
time average is representative, as performing a similar averaging over a 10 times longer
signal between 0.2 to 10.0 [s], for one of the cases, yielded a value within 2 — 4% of the
shorter time average.

Finally to compare the magnitude of these spurious velocities between different tech-
niques, a “Spurious Reynolds number” Res, is defined as follows

_ (ulnadd

Regp Y

(2.28)
where (|u|max) is the time averaged maximum spurious velocity for the VOF simulations
({lulmax) is taken to be the steady state value for LB simulations). Res, over increasing
p* is shown in Fig. 2.4.

LB with § = 1.25 is seen to produce Res, 1-3 orders of magnitude lower than all VOF
formulations, while the classical LB approach (8 = 1.0) becomes comparable to VOF
around p* = 300. Generally among the VOF methods, interface sharpening (¢, = 1) in
OpenFOAM increases Regp by almost an order of magnitude as compared to the classical
VOF (cq = 0). Upon smoothing the interface during curvature calculation, Regp can be
brought down an order of magnitude, and this effect is more prominent at higher density
ratios. The two FLUENT VOF methods produce very similar Resp numbers, which at high
density ratios remain close to the VOFsmooth values. The differences between the FLU-
ENT and OpenFOAM results here cannot be ascribed to the difference in the tolerances
used for the solvers (i.e. 1078 and 107 for velocity in OpenFOAM and FLUENT respec-
tively). This is because the minimum magnitude of the spurious currents (@(107%) is
still 100 times larger than the 107> tolerance. We performed a test with the same solver
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Figure 2.2: Spurious velocity vectors for p*

3 are shown for the three VOF methods implemented

*
z

*

in OpenFOAM (FLUENT results being qualitatively similar to OpenFOAM) and for LB (8 = 1.25).
Z

wz/|wz|lmax) have also been

< 1, red to blue, where w

shown. The classic VOF method in OpenFOAM (cq = 0) has a slightly diffused interface and pro-

duces small spurious velocities near the interface. Using VOF with ¢

1 sharpens the interface

The normalized vorticity fields (-1 < w

while increasing the magnitude of the spurious velocity vectors. VOFsmooth with cq

magnitudes were within 5% of each other, whereby not influencing the results in Fig. 2.4.

a sharp interface. Lastly, in LB these emerge as symmetric, non-fluctuating counter rotating vor-
in OpenFOAM for the two tolerance values of 10~° and 1078, and the spurious velocity

the utility of the a smoothing function which reduces the spurious velocities while maintaining
tices.

Due to the many differences between LB and VOF simulations,
directly comment on why LB produces much lower spurious currents than VOF purely

in terms of tolerances, numerical schemes etc. At low density ratios (o* ~ 3 — 60), where

this difference is stark as Resp

scheme,

classical LB performs as well as the modified f
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Figure 2.3: The averaging performed on the maximum spurious velocity magnitude |u|max (be-
tween times 0.2 and 1.0 [s]) to ascertain a representative spurious velocity magnitude (|u|max) for
VOF simulations is shown for the OpenFOAM simulations for classical VOE

is almost 1000 times lower in LB than in VOE This can partly be ascribed to the thicker
interfaces in LB at low density ratios. Further, the non-dimensional LB units cannot
be mapped to a physical set of units in this case as there are insufficient variables for
a stationary droplet for a mapping. Since LB with = 1.25 produces Res, 1000 times
lower than all VOF methods, it appears better suited for simulating large density ratio
flows (like air-water) at low Re - which would be difficult with VOF as spurious currents
will be of the same order of magnitude or more than the physical velocity scales. Also,
while simulating heat and mass transfer problems, spurious currents will increase scalar
transport across the interface, where having lower spurious velocities can be a decisive
advantage for a simulation technique.

In addition in LB simulations, the density ratio p* and interface thickness (both of
which are determined by the reduced temperature T, used in the EOS) and  influence
the magnitude of Res,, while in VOE it is p* and the value of the surface tension param-
eter . For instance in VOE for the same value of o (8 x 10™% [N/m)]), changing p* from
©(1) to ©(100) only changes Resp, by a factor of ~ 3, while increasing o (from 8 x 107 to
2x 1072 [N/m], in accordance to the LB simulations) increases Regp by a factor ~ 100.
Another aspect is that Regsp can increase up to 2 -5 times in VOF based upon the specific
choice of solvers - specially if using higher order discretization schemes (which is not
shown here but was observed).

It is worthwhile to note that an alternative FVM method with an exact interface rep-
resentation using body-fitted coordinates, as presented in the PROST scheme of Renardy
and Renardy [63], can virtually eliminate these parasitic currents. Though such a formu-
lation comes with its own limitations, namely a higher computational cost of re-meshing
the domain at each time step along with interpolation of values to new cell faces. In PP-
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Figure 2.4: Spurious Reynolds number Resp over density ratio p*, for different solver cases is
shown. LB with § = 1.25 produces Regp 1 -3 orders of magnitude lower than all VOF formula-
tions. Among the VOF methods, using interface compression in OpenFOAM increases Resp by an
order of magnitude as compared to classical VOE which can be remedied by using VOFsmooth
which reduces Regp significantly while maintaining a sharp interface. The FLUENT VOF methods
produce very similar Regp, that are close to the VOFsmooth values for higher p*. Note that all
these simulations were performed in 2D.

LB, upon increasing isotropy by introducing mid-range interactions, spurious velocities
can be made to practically vanish as demonstrated by Sbragaglia et al. [64]. Such a for-
mulation in turn breaks the ease of parallelization of the LB code, as the interactions are
no longer local and successively distant lattice nodes begin to influence an otherwise
compact computational molecule centered at each lattice node.

2.3.3. INTERFACE THICKNESS

Focusing on the sharpest reproducible interface, the phase indicator function a has
been shown in Fig. 2.5 across the droplet interface (see schematic in the figure), for
p* =15 & 1000, for OpenFOAM VOF with ¢, = 1, FLUENT VOF with geometrical recon-
struction and LB with § = 1.25 (in LB the density field has been normalized to a phase
indicator). As a reminder, the VOF simulations are initialized with a sharp «a profile, and
the LB simulations start with a droplet with the interface smoothed over 6 lattice units.
These interfaces then diffuse during the simulation, and the final interface thicknesses
are independent of the initialization.
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Figure 2.5: Comparison of the interface thickness at its sharpest in the stationary droplet simula-
tions, shown as the phase indicator function a across one side of the droplet (refer schematic) for
OpenFOAM VOF with interface compression (¢, = 1), FLUENT with geometrical reconstruction
and LB (B = 1.25). It is seen that FLUENT with geometrical reconstruction produces the sharpest
interface, closely followed by OpenFOAM with interface compression. In LB, the interface be-
comes sharper with an increasing density ratio.

It is seen that FLUENT produces the sharpest interface with the geometrical recon-
struction scheme, an interface of 2 — 3 grid cells, closely followed by OpenFOAM with
interface compression where an interface of 3 — 4 grid cells is obtained, over all p* val-
ues. LB produces thicker interfaces, ranging from 8 — 11 lattice units for low p* to 3—5
for a higher p*. This p* dependence comes from the pseupotential force at the interface
which more strongly repels the lighter phase when p* is high, and is weakly repelling for
lower p* values. Also, it has been shown that the interface thickness in LB is affected by
the choice of the equation of state [65].

2.4. FALLING DROPLETS IN LIQUID-LIQUID SYSTEMS

2.4.1. CASE FORMULATION

Here onward, we focus on a realistic problem of a single liquid droplet, falling through
a column of another immiscible liquid under gravity. We are interested in a compar-
ison for low density ratio systems, which are highly relevant to liquid-liquid emulsion
research. The cases are formulated by fixing the Eo and M numbers, which have been
selected to coincide with a low Re and Eo region of the Clift map. First, a droplet is ini-
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tialized in LB with an initial approximate diameter d = 100 Ax, which is let to relax to an
equilibrium value. Then, by using the Laplace law, o is calculated. Using this value and
Eo, grp is obtained. Finally, using the value of M, vp is estimated which can be con-
trolled by changing 7. Equivalent VOF simulations are formulated by keeping Eo and M
identical to the LB simulations by varying o and d, while keeping p;, p4 and g constant,
values of which have been listed in Table 2.1. Here onward the subscripts /,d denote
the surrounding liquid and droplet liquid respectively. The five cases are listed in Table
2.2. Note that we perform these simulations for the lowest density ratio possible in our
single-component PP-LB implementation, i.e. p* = 3, since droplets at even lower den-
sity ratios begin to dissolve under non-stationary conditions. This is because at very low
density ratios, the interaction force between the phases becomes weaker in LB as phase
separation is fragmented, and consequently the droplet dissolves away if it starts mov-
ing. It is worth mentioning that by choosing a low density ratio the spurious Reynolds
number in VOF ¢(0.1) also remains much smaller in magnitude than the flow Reynolds
number @ (1 —10).

Quantity | pg o1 Vd Vi 8
Units [kg/m3] | [kg/m?®] | [m?/s] [m?/s] (m/s?]
Value 300.0 100.0 5.0x107% [ 5.0x107% | 9.81

Table 2.1: Physical properties used in the VOF simulations.

Case | Eo M Re [23] | d [m] o [N/m]
1 0.98 | 1.75e-04 | 4 4.54e-04 | 4.12e-04
2 1.82 | 3.26e-04 | 8 5.57e-04 | 3.35e-04
3 2.18 | 5.29e-04 | 7 5.63e-04 | 2.85e-04
4 6.27 | 1.47e-03 | 13.5 8.05e-04 | 2.03e-04
5 3.50 | 9.50e-05 | 24 9.49e-04 | 5.05e-04

Table 2.2: Parameters for the five cases of a single liquid droplet falling through an immiscible
liquid (p* = 3), along with the corresponding Re prediction by marking Eo and M on the Clift
map.

2.4.2. SIMULATION DETAILS

The simulation domains with boundary conditions are shown in Fig. 2.6. The horizon-
tal extent of our simulation domains is 8d x 30d where d is the droplet diameter for
the VOF simulations. This is considered sufficiently large such that the walls do not in-
fluence the velocity evolution [29, 66], given that what we wish to study is effectively a
droplet freely falling in an infinite medium, i.e. to look at the droplet from a station-
ary frame of reference. The LB domain is larger at 10d x 40d, for two reasons. First
is to ensure a large enough domain despite droplet expansion during the initialization
phase. Secondly, our current LB implementation works with a fully periodic domain,
while the VOF domains use free-slip horizontal boundaries and no-slip vertical bound-
aries. Since the cases we simulate have a strong left-right symmetry with no unsteady
features in the droplet wake, the free-slip boundary condition should be equivalent to a
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periodic boundary condition in the horizontal direction (as the horizontal extent is large
enough). To minimize the influence of the vertical boundary conditions being different
in VOF compared to LB, the LB domain is kept large enough in the vertical direction such
that the droplet reaches terminal velocity at a sufficient distance from the bottom peri-
odic boundary. This ensures that the droplet does not cross the boundary and its wake
is captured correctly in LB.

In OpenFOAM, the PISO algorithm has been used, while the PIMPLE algorithm with
residual control was also tested. FLUENT uses the SIMPLE algorithm and only the tol-
erances for the final residual values have to be provided, which are kept the same as in
OpenFOAM at a value of 1077 for pressure and 10~ for velocity to consistent. Here we
have changed the tolerance from its default value in FLUENT (i.e. 1072, as was used in
the spurious velocity study) to 1078, as an extra precaution to eliminate any differences
that may arise if these values are different. The VOF simulations use second order time
integration (backward scheme in OpenFOAM), with vanLeer discretization of convective
terms and linear interpolation of gradient terms.

The parameters used in the LB simulations are presented in Table 2.3, and these sim-
ulations are performed using the open source parallel lattice-Boltzmann Solver (Palabos-
v1.5r1). The value of the reduced temperature T, = 0.96, which gives a density ratio of
p* = 3. The droplets are initialized with a diameter of 100 lattice units, with the density
inside and outside set to 0.21 and 0.07, as obtained from the C-S coexistence curve at

+ = 0.96 [26]. This system is first allowed to relax to equilibrium and during this period,
the droplet can expand from its original size where the magnitude of the expansion de-
pends on the total mass in the system which needs to relax to equilibrium. Hence, this
transient phase is dependent on the domain size, and if the droplet expands significantly,
the horizontal and vertical extents that were chosen may be insufficient. Changing the
value of B from B = 1.25 to § = 1.65 can help mitigate the droplet expansion and has
been shown in the Appendix in Fig. 2.17. Thereafter, d, grp and t are calculated and
the body force is added. We perform simulations for both values of §. Note that this is
specifically a problem while simulating low density ratio (or T; close to 1) systems with
single component LB. This does not occur at higher density ratios (7 < 0.8), where the
phase separation is strong.

Case |1 | 2 | 3 4 5
p=125

T 0.9129 [ 0.8503 | 0.8779 | 0.8747 [ 0.7578

glx1077] [ 0.61463 | 1.1383 | 1.3634 | 3.9214 [ 2.1951
p=1.65

T 0.8958 [ 0.8753 | 0.9049 | 0.9014 | 0.74716

g[x1077] [ 0.79861 [ 1.1601 | 1.3896 | 3.9966 | 2.8522

Table 2.3: LB parameters for the falling droplet cases. For these simulations, the reduced tem-
perature Tr = T/ T, = 0.96 and p* = 3. All simulations are performed on a domain Ny x Ny =
1000 x 4000 using the parallel lattice-Boltzmann Solver (Palabos-v1.5r1).
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Figure 2.6: Schematic showing the computational domains and boundary conditions used in the
VOF and LB simulations of a single liquid droplet falling through an immiscible liquid (with a
density ratio p* = 3). Note that d is the droplet diameter in each case.

NOMENCLATURE

OpenFOAM VOF simulations performed in 2D with mesh resolution of N cells per
droplet diameter, N € {20,40,80}, are labeled OF2Ddx20 etc. For these simula-
tions, we use ¢, = 0.5, to prevent interface diffusion in high Re cases, while not
aggravating the spurious currents too strongly. Simulations using the VOFsmooth
solver are suffixed with an ‘S’, Eg. OF2Ddx20S.

OpenFOAM VOF simulations performed in 3D using dynamic mesh refinement
are labeled as OF3D, with a suffix ‘c’ or ‘m’ for coarse or medium respectively, with
5and 7.5 base cells per diameter and a factor 4 refinement at the interface. For our
chosen simulation domain the number of grid cells is above a million for the 7.5
base cells with mesh refinement, which we do not refine further so as not to make
the computational cost

Fluent VOF simulations performed in 2D are named similar to their OpenFOAM
counterparts, as FL2Ddx20 etc.

LB simulations were performed using the open source parallel-Lattice Boltzmann
Simulator (Palabos-v1.5r1) and are labeled LB2D.

When not using a suffix (‘dx20’, ‘m’ etc.), we refer to results from the finest resolu-
tion simulations.

Before we present the results, it is worthwhile to mention that we compare 2D VOF
and LB simulations, along with 3D VOE to 3D experimental results from the Clift map.
The 2D droplets can be thought of as infinite fluid cylinders, without any variation in
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the third direction. By balancing drag force with buoyancy, the terminal velocity can be
expressed as U, = (ApV g/0.5p.Acp)'?, where Ap, V, p, A and cp are the density dif-
ference, volume of the droplet, density of the continuous (outer) fluid, crossectional area
and coefficient of drag respectively. For the Re values in this study, the drag coefficient
cp on a (solid) cylinder and sphere are approximately 4.5 and 7 (for Case 1, Re = 4) and
1.8 and 2.5 (for Case 5, Re = 24) respectively [67]. Using these values, it can be said that
the 2D VOF results will predict a velocity 25% higher than the 3D value, particularly for
Case 1. Apart from this, if the flow does not consist of highly 3D features like unsteady
vortices, we expect the 2D simulations to be comparable to the 3D results. Note that the
internal circulation inside a droplet reduces the drag experienced by it in comparison to
a solid body by almost 30% [23], so the cp values mentioned above do not directly apply
to liquid droplets, and will need a further correction factor.

2.4.3. RESULTS

The steady state Re numbers are shown together on a section of the Clift map in Fig. 2.7,
where the solid black line marks the boundary between the spherical (below) and ellip-
tical (above) shape regimes. Further, analytical solutions for the spherical and elliptical
regimes (refer to Eq. 2.25 and Eq. 2.26) are shown, along with the final shapes from the
OF2Ddx80 simulations for reference. This figure presents an overview of the simulations
performed, also showing the small part of the falling droplet phase space that has been
explored. The same is also shown in Fig. 2.8, where the cases are presented separately
for additional clarity.

All techniques agree well with each other and the Clift map for Cases 4 and 5, while
the spread between predictions is higher at lower Re. For VOE this may be ascribed to a
higher sensitivity of results to spurious velocities, as at low Re spurious currents may be
comparable to the physical velocity. Further, the horizontal extent of the domain has a
higher influence on lower Re droplets, while at higher Re values the domain edges have
little influence.

We look more closely at Case 1 and Case 5, corresponding the smallest and the largest
Re in this study.

CASE 1
This corresponds to the spherical region of the Clift map. The steady state droplet shapes
with the velocity and normalized z-vorticity fields (-1 < w} < 1, from red to blue) are
shown in Fig. 2.9, the OF3D results are plotted on a cross-section at the center of the
domain. Note that these plots show only a small region around the droplet to focus on
the local flow characteristics. It was checked that the velocity further from the droplet,
near the domain edges, is negligible. If the domain is not sufficiently large in the hor-
izontal direction, the velocities near the lateral walls can be significant and should be
taken into account to study the falling droplet from a stationary frame of reference. The
simulations produce a trailing vorticity field at steady state, with the highest concentra-
tions outside the lower droplet region, close to the interface, clearly marking two counter
rotating regions of the flow. The shapes produced are also very similar and the droplets
remain mostly spherical for all solvers.

The vorticity field in LB is less intense than in VOE but its features are similar. Some
spurious vorticity regions can be seen localized near the interface which do not diffuse
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Figure 2.7: Terminal Re numbers for single liquid droplets falling through an immiscible liquid
(p* = 3), calculated from simulations with the finest grid resolution shown with the Eo number
along with the final shape from the OF2Ddx80 simulations. Results for individual cases (i.e. a fixed
Eo and M number from Table 2.2) are connected with a vertical gray line, which also forks to the
droplet shape for Cases 2, 3 and 5 for clarity. Lastly, the solid black curve divides the Re— Eo phase-
space into the spherical (below the line) and ellipsoidal (above) shape regions, and is taken from
Clift et al. [23].

into the bulk. The spurious vorticity produced in Palabos is slightly different from the
spurious vorticity in the LB simulations using our in-house code (Fig. 2.2d). This dif-
ference comes from the exact discretization of the force term in the LB equation, the
effect of which has been detailed in Connington and Lee [62]. What is important here
is that the spurious currents do not influence our results directly or significantly as they
are symmetric and tend to cancel out. They might have an effect on the droplet shape,
suppressing acute deformations, but we do not investigated that in this study.

The evolution of the Reynolds Re number of the droplet has been shown in Fig. 2.10.
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Figure 2.8: Terminal Re numbers from the different simulations shown separately for each Case
listed in Table 2.2 for additional clarity. The spread between the predictions is larger at lower Re
numbers, while at higher Re values all simulations agree well with each other and the Clift map.
There is excellent agreement between VOF and LB results.

For calculating Re, the average velocity in the droplet region is considered as follows

_Zauy
_—Za

where a = 1 in the droplet region and 0 outside it and u, is the magnitude of the vertical
velocity component. The evolution is shown over dimensionless time t* = ¢/+/d/g and
the gray band marks the value from the Clift map with 5% uncertainty.

The 2D VOF simulations attain very similar terminal Re values, close to the 3D value
extrapolated from the Clift map. The uncertainty in the results, given the magnitude of
spurious Re, is expected to be around 2 — 20% for the coarse to fine mesh resolutions.
Since the magnitude of spurious velocities increases from ¢(0.01) to (1) from dx20 to
dx80, mesh convergence of the results cannot be achieved for this case. This behaviour
of OpenFOAM VOF has been observed before for flows with a low Capillary number [61].
The LB2D results are very close to the Clift map for both values of §, and the spurious
currents in LB have very little influence on the droplet Re evolution. A comparison be-
tween the steady state shape for the two § values is shown in Fig. 2.19 .

OF3D under-predicts the droplet Re almost by ~ 30%. We investigated this further
by performing tests on a smaller domain to reduce computational time for a representa-
tive problem. We find that compared to a uniform 3D mesh (of grid resolution equal to
the finest grid size obtained upon 2 successive dynamic mesh refinements), the dynamic

(2.29)
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Figure 2.9: Steady state droplet shape with the normalized vorticity field w} (-1 < w} < 1, red to
blue, where w} = w;/|wzlmax) is shown for Case 1, corresponding to Re = 4. Note that the region
shown is a small part of the actual computational domain around the droplet.

mesh simulations with a coarse base mesh always under-predict the velocity. This can
be ascribed to a loss in mesh orthogonality in the transition between coarse and refined
mesh regions. The interpolation of values from cell center to cell faces occurs along a
line that is not orthogonal to the face itself. This leads to numerical errors and can cause
a different kind of spurious currents than those arising out of inaccurate curvature calcu-
lation in VOE Further due to refinement near the interface, curvature induced spurious
currents are also aggravated, and it has been reasoned by Magnini et al. [68] that these
can be seen as capillary waves on the interface, which effectively cause a deviation from
a smooth interface profile resembling a kind of surface roughness that increases drag -
something we observe in the consistent underprediction of the velocity. Upon adding
additional refinement criterion, for instance refinement in the droplet wake based upon
a vorticity threshold, the results improve though they still do not coincide with results
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Figure 2.10: Evolution of the Re number for Case 1 for all simulations shown along with the value
from the Clift map with 5% errorbars.

from the uniform 3D mesh.

CASE 5

This case corresponds to the ellipsoidal regime of the Clift map. The final droplet shapes
along with normalized vorticity fields are shown in Fig. 2.11. It is seen that compared
to the 2D VOF cases, the OF3D droplet undergoes lesser deformation, which is a con-
sequence of the under resolved velocity field owing to a coarse base mesh. The droplet
deformation is caused due to the pressure difference between high and low pressure re-
gions around the droplet. A region of strong vorticity corresponds to lower pressure,
creating a larger deforming force. Due to the lower velocity in OF3D, this pressure differ-
ence is lower, resulting in lesser deformation. The LB2D droplet does not flatten as much
as the 2D VOF droplets, and in this case, the droplet shrinks slightly from its initial size.
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Although we achieve a steady state here, for even higher Re numbers, moving droplets in
LB can begin to dissolve away completely due to the diffused interface at low density ra-
tios. Further, it is seen that the vorticity field in LB remains confined in the lighter phase,
whereas in VOE the vorticity field is very close to the interface and also extends to within
a small region inside the droplet.
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Figure 2.11: Steady state droplet shape with the normalized vorticity field w} (-1 <w} <1, red to
blue, where w} = wz/|wz|Imax) is shown for Case 5, corresponding to Re = 24. The FL2D droplets
is seen to deform the most, followed by OF2D. OF3D produces a lower deformation of the droplet,
which is ascribed to an under-resolved velocity leading to a lower pressure difference between
the horizontal and vertical droplet extents which acts towards deforming the droplet. The LB2D
droplet does not flatten as much as the 2D VOF droplets and remains mostly spherical, and its size
shrinks slightly from the initial value.

The evolution of Re numbers has been shown in Fig. 2.12. All simulations predict
similar terminal Re values, though all fall below the prediction of the Clift map. Here
the OF2D results were found to be within 10% of each other, as the spurious velocities
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Figure 2.12: Evolution of Re for Case 5 for all simulations shown along with the Clift map value
with 5% errorbars.

have a lower influence on the results. The terminal Re in LB for both f =1.25 and 1.65 is
smaller than the OF2D value, but comparable to the FL2D values. It was observed (not
shown here) that on smaller periodic domains in LB, the droplet does not reach terminal
velocity as the droplet wake becomes comparable to the domain length. Using a large
enough vertical extent hence is indispensable for accurate predictions. The fact that all
the simulations predict a velocity lower than the Clift map value (Re = 24) also might
indicate that the bubble-droplet equivalence breaks down at higher Re numbers.

There are a few things worth noting regarding the results from the LB simulations.
By increasing the value of § from 1.25 to 1.65, the density ratio obtained in LB deviates
from the analytical solution of the selected EOS (see Fig. 2.16). Since PP-LB follows the
selected EOS, large deviations from the EOS lead to unstable simulations. Therefore, the
maximum value of f is limited due to the stability condition of the model. A stability
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analysis shows that the simulations become unstable when gip is larger than ¢(107°).
This places constraints on the droplet diameter that is required for simulating a partic-
ular Re. Also since the interface width is relatively large at p* = 3 (= 10 lattice units), at
higher Re values it can further diffuse adding to numerical inaccuracy. This can be reme-
died to an extent by using a larger droplet diameter, which in turn makes the domain size
computationally expensive.

Lastly, we compare the deformation of the droplet which can be expressed as the
standard Taylor deformation parameter D = (L—B)/(L+B), where L and B are the lengths
of the major and minor axes of the deformed droplet. Fig. 2.13 shows D at steady state
for the different cases using simulation results from the finest mesh.
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Figure 2.13: Taylor deformation parameter D at steady state for all cases.

For the cases Re € {4,7,8}, the VOF simulations predict a small value of D, i.e. the
droplets deform very little from their initial spherical shapes. OF3D predicts a low D for
all Re numbers, which is ascribed to the under-resolved vorticity field. FL2D and OF2D
predict higher deformations for Re € {15,24}. OF2D predicts the highest deformation for
Case 4 (Re = 15), i.e. the case corresponding to the highest Eo. LB2D consistently pre-
dicts alow D value across all Re values. Though the Re prediction with LB turns out to be
accurate, our implementation seems to be incapable of capturing droplet deformation
more accurately.

2.5. DISCUSSION

It is widely held that no single flow simulation technique is universally applicable, pri-
marily because each technique may have been developed with the view of studying a
particular class of flow problems. However, it is generally also sought that a newly pro-



2.5. DISCUSSION 53

posed model or method be as universal as possible, i.e. to say it should be robust. Upon
comparing VOF and PP-LB, we encountered several challenges unique to each method
in trying to formulate a problem that can be commonly studied. We believe these points
must not be overlooked, so as to better equip users with an understanding of the lim-
itations they might face upon choosing either method. We also indicate flow regimes
where either method may be better suited, along with method specific issues that have
to be dealt with. Note that the following discussion draws from our investigation of low
density ratio flows which are widely encountered in emulsion research, ranging from oil
and gas applications to food processing and biotechnology. The same methods when
applied to high density ratio multiphase flows might be faced with challenges distinct to
a different flow regime, so we exercise caution while extrapolating the possible outcomes
of doing so, and refrain from making overly generalized statements.

REGARDING VOF

The VOF method can be considered quite robust in that it can handle a wide range of
free surface flows, without constraints on the density and viscosity ratio between the
fluids or the flow Reynolds number, though extreme values will pose difficulties. As sur-
face tension is independent of density ratio in VOE very low density ratios like p* ~ 1.1
(and lower) can also be simulated as the phase fraction formulation of two fluids ensures
strong immiscibility.

The computational cost in VOF increases rapidly upon using successively finer grids,
particularly due to the iterative pressure and velocity solution procedure of the finite vol-
ume method, with an added transport equation for the phase indicator. Modifications
like dynamic mesh refinement hence become indispensable when simulating fully three
dimensional flows, but such techniques may also influence the results adversely - for in-
stance the consistent under-prediction of terminal velocity reported in this chapter, and
the additional numerical errors in interpolation of values between coarse and refined
mesh regions.

For high density ratio systems at low Reynolds numbers (like falling rain droplets, or
very small air bubbles in water), spurious currents can become comparable to the phys-
ical velocity scale when using the CSF implementation for the surface tension force, and
classical VOF might fail to predict accurate results. Modifications like smoothing of the
phase indicator field before computation of curvature, the use of body fitted coordinates
or an improved surface tension force implementation will become necessary while sim-
ulating these flow regimes.

Another limitation of VOF is the time stepping method, as fully implicit schemes
might not be available for transient flow solvers, as is the case with the VOF implementa-
tions in FLUENT and OpenFOAM. A crucial aspect to simulation accuracy is the residual
control algorithm. In OpenFOAM, the PISO algorithm iteratively solves for velocity and
pressure (inner correction loops), while the VOF field «a is solved once per time step (at
the beginning of the PISO loop). Contrarily, upon using PIMPLE (with outer and in-
ner correction loops), the a field is corrected with ever outer loop as well. With a small
enough time step and sufficient number of PISO loops, the results from PISO and PIM-
PLE can be similar. However, we found that some falling droplet (or rising bubble) sim-
ulations might not converge at all when using the PIMPLE algorithm, whereby PISO is
the only option, and it is generally more stable and faster than the PIMPLE algorithm.
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The values of the final and relative tolerances of the residuals and under relaxation fac-
tors should be carefully tested and chosen, and these can vary with the problem being
simulated. In commercial software like FLUENT, the user only prescribes a final conver-
gence criteria, which makes it easier to run simulations at the loss of full control over the
solution algorithm.

REGARDING SINGLE COMPONENT PP-LB

LB is remarkably faster than finite volume based solvers (roughly 10 times when running
both on a single processor for an identical problem) mainly because an iterative Poisson
solver is not required, which is time consuming. Further, all computations are highly
localized in classic PP-LB (i.e. when considering only nearest neighbour interactions),
the advantage of this becomes immediately apparent upon parallelization of the code.
The Palabos simulations on 4 million grid cells, for around 1 million iterations, were run
on 24 processors and took approximately 24 hours of wall-clock time, while the finest
resolution VOF simulations on 1.5 million grid cells run on 16 processors took around 10
days.

Density ratio in single component PP-LB is dependent on T, and simulating flows
with T, ~ 1 such that p* = 1 is not possible as the interface width tends to infinity when
T, = 1, which sets a minimum achievable density ratio. For this reason, using single-
component multiphase PP-LB to simulate two immiscible liquids might not always be
suitable. In this formulation, the two liquids are essentially different thermodynamic
phases of the same fluid, co-existing at a prescribed sub-critical temperature (i.e. Ty < 1).
When the density ratio is low (as in this study), the two phases are separated by a rela-
tively thick interface and they remain miscible particularly under dynamic conditions.
Owing to this, phase volumes may change over time - an artifact being small regions of
the low density phase dissolving away when the droplet diameter and interface width
become comparable. Note that the total mass of the fluid is conserved, only its distribu-
tion between the two phases changes. Using a multi-component formulation can help
ensure stronger immiscibility between two fluid components by employing a repulsive
interaction, which can also help tune surface tension more accurately.

The current LB implementation has several other limitations, for instance a mini-
mum bound on the value of the relaxation time, where values below 7 = 0.55 lead to
unphysical droplet expansion and wobbling, which gave inaccurate results. The value of
7 also depends on the droplet size and the density ratio [26]. Increasing surface tension
in the system can enable simulations at higher values of 7, however that increases the
required gip and terminal velocity which should be kept in mind while modeling such
a system. The value of gip is closely tied to the droplet diameter, and it increases for
smaller droplets. With a stability analysis we find that simulations with grg > ¢(107°)
become unstable, which further limits the smallest droplet size achievable - the compu-
tational domain consequently becomes large. The LB method is sensitive to the value of
Re and Eo, and at relatively higher values unphysical droplet expansion or contraction
is observed. With these considerations, our LB implementation was limited to low Re
and low Eo cases, and several modifications like the incorporation of longer range inter-
action forces [64] and choosing advanced collision operators such as multiple relaxation
time (MRT) [69, 70] might be necessary, along with extensive testing of parameters, to
make single-component PP-LB applicable to more complex flow problems, like those
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involving high density and viscosity ratios between the liquids, or high Re problems.

A general concern in LB is the maximum value of the velocity in lattice units, which
should be sufficiently smaller than the lattice speed of sound (i.e. the low Mach number
limit of Ma < 0.2). The speed of sound for the LB-EOS is ¢; = 1/v/3, or more generally
for an arbitrary EOS ¢ = dp/dp. This ensures that the incompressible Navier-Stokes
equations are obeyed. The error due to a non-zero Ma has been shown to be G(Ma®)
[71]. Lastly, it has been shown that the discrete kinetic version of the BGK equation, and
notably LBM, provide semi-quantitative results [72]. Therefore, a percentage of error can
be expected in classical LB modeling, the bounds of which depend upon the flow regime
being simulated.

2.6. CONCLUSIONS

Multiphase flow simulations have become common tools being applied to a wide range
of processes dealing with immiscible fluids. Notwithstanding, comparisons between dif-
ferent simulation techniques are rare and often qualitative. We have presented a quan-
titative comparison between an implementation of the single-component multiphase
pseudopotential lattice Boltzmann method (PP-LB), which is a widely used mesoscopic
technique, and the finite volume based Volume of Fluid (VOF) method. By simulating
stationary and falling droplets, we compare how the methods fare for different aspects
relevant to multiphase flows with a low density ratio - a regime crucial to emulsion re-
search. The main findings are listed below.

1. A modified implementation of the LB method with the so-called f—scheme pro-
duces spurious currents 1 — 3 orders of magnitude lower than all VOF implemen-
tations. This can be relevant when simulating problems involving evaporation
or heat and mass transfer across interfaces, or high density ratio flows at low Re.
Among the VOF methods, interface compression aggravates spurious currents while
artificially smoothing the interface during curvature calculation reduces them. In
VOE spurious currents also increase with mesh refinement, and if the physical ve-
locity and spurious velocity become comparable (for instance in our Re = 4 case),
mesh converged results cannot be obtained.

2. In terms of computational time, LB simulations are faster than their VOF counter-
parts by an order of magnitude (when running comparable problems, i.e. same
Re, Eo, Nx x Ny etc). The iterative Poisson solver inherent to finite volume meth-
ods makes VOF slower in comparison. LB, on the other hand, has more demand-
ing memory requirements as it needs to store more variables per lattice node as
compared to VOF (since the density f; in LB is directional with 9 components for
aD2Q9 lattice, 27 for D3Q27 etc, at every lattice node).

3. In comparing interface thickness, the FLUENT VOF with geometrical reconstruc-
tion produces the sharpest interface of 2 — 3 grid cells, closely followed by Open-
FOAM with interface compression (¢, = 1). The interface width in LB remains dif-
fuse over 5 — 10 lattice units depending on the density ratio (qualitatively varying
inversely).

4. The falling droplet simulations show that despite an identical case setup, the 2D
results from FLUENT and OpenFOAM tend to vary slightly. For the Re = 24 case,
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FLUENT produces a more flattened droplet with higher deformation than Open-
FOAM. The differences in solutions between OpenFOAM and FLUENT derive from
the different treatment of the interface (compressive scheme against an explicit
geometrical reconstruction), the difference in the solution algorithm (PISO against
SIMPLE) and the exact accuracy control methods. What is striking is that upon
simulating a widely studied, purely numerical rising bubble benchmark proposed
by Hysing et al. [73], OpenFOAM and FLUENT VOF results are found to agree well
within 2% (refer to 2.A). These results were also less sensitive to the choice of dis-
cretization schemes. Hence, agreement with a numerical benchmark alone can-
not be considered sufficient proof for the reliability of a solver when applied to
physical problems, which calls for additional realistic benchmark studies.

. The 3D VOF simulations using dynamic mesh refinement in OpenFOAM predict

a lower terminal Re number, particularly for the Re < 10 cases. This is because a
spherical droplet at a low flow rate experiences more drag in comparison to the
2D droplets which can be effectively considered as infinite cylinders which have
a lower drag coefficient. The results are also aggravated by the coarse mesh reso-
lution in 3D (7.5 base cells per diameter), to keep the computation cost modest.
The velocity field is hence under-resolved, which also prevents the droplets from
deforming for the higher Re cases as much as the 2D counterparts. More generally,
results from simulations with dynamic mesh refinement have a degree of inaccu-
racy compared to a uniform orthogonal 3D mesh with the same resolution as the
finest grid refined cell. This is due to two reasons - first the interpolation errors due
to lack of orthogonality in the transition between coarse and refined mesh regions.
Secondly, spurious currents are aggravated in the fine mesh region surrounding
the droplet interface. These can be interpreted as capillary waves that increase the
drag on the droplet by causing deviations from a smooth interface profile.

. In LB, the droplet expands during the transient initialization phase when the den-

sities relax to equilibrium. Several factors contribute to this, including the domain
size (which corresponds to the amount of mass in the domain, refer to Fig. 2.17
in the Appendix), the strength of the pseudopotential force (given by ), and the
system parameters themselves (T, and p*). This is because at lower density ra-
tios (T close to 1) the droplet interface is quite diffused as the phase separation
is weak. This can be remedied to an extent by increasing the strength of the pseu-
dopotential force (refer to 2.B, Fig. 2.19), also the domain size should be large
enough to account for these effects. With these measures, LB is in very good agree-
ment with VOF and the Clift map values in predicting Re. However, LB consis-
tently underpredicts the droplet deformation, even at higher Eo values. This in-
dicates that our current PP-LB implementation is limited to flows of low Eo and
Re numbers, and several modifications to the technique are required to make it
more generic and robust as compared to VOE Lastly, while simulating dynamic
multiphase problems at low density ratios using single component PP-LB, several
precautions should be taken depending on the flow regime, as the two thermody-
namic phases remain miscible.

We observe that formulating a multiphase flow problem that can be commonly stud-

ied by PP-LB and VOF is a non trivial task due to several fundamentally different aspects
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of the two methods. The translation of parameters from one method to the other to keep
the simulations comparable can be meticulous. Also, issues particular to each method
can narrow down the operable phase space of the chosen problem considerably as we
have elaborated in our Discussion section. Despite precautions and careful case formu-
lation, we see that different numerical techniques produce different results - since the
exact numerics between methods is not identical. This urges us to strongly state that
such comparisons are important particularly for the formulation of newer-generation
benchmark studies that detail the strengths and limitations of the increasing number of
novel simulation techniques being proposed in literature.
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APPENDIX

2.A. COMPARISON BETWEEN OPENFOAM AND FLUENT

We saw from our falling droplet comparison that VOF results from OpenFOAM and FLU-
ENT are not identical. The final velocity from both methods for Case 1 (Re = 4) and Case
5 (Re = 24) are within 15%. For Case 5, the velocity evolution profiles have slightly differ-
ent features (for instance an overshoot for FL2D around ¢* = 5, refer Fig. 2.12), and the
final shape in FLUENT is more deformed than in OpenFOAM. The major difference be-
tween the two solvers is the treatment of the interface, where explicit geometrical recon-
struction and an implicit compressive scheme are conceptually and numerically very
different . It should be noted that the solution algorithms SIMPLE and PISO are not
equivalent as well, and may also lead to differences in the solution. To investigate this
further, we simulated a well established numerical benchmark for rising bubbles [73]
where various multiphase techniques are tested for predicting bubble shape and veloc-
ity for two purely numerical 2D test cases. These are namely TC1 and TC2, formulated
using parameters listed in Table 2.4. We performed the simulations for the finest mesh
adopted in the study, i.e. 160 cells per bubble diameter and only show the velocity evo-
lution here (along with the final bubble shape for reference). For comparison, we take
the Hysing et al. [73] results as benchmark solutions, along with the results obtained by
Klostermann et al. [61] who performed the same benchmark study using OpenFOAM to
test the compressive VOF scheme.

The numerical schemes used in OpenFOAM are backward time integration, vanLeer
discretization for velocity and a advection, and linear interpolation of gradient terms.
Other parameters are kept the same as in Klostermann et al. [61]. The FLUENT simula-
tions were performed with the geometrical reconstruction technique, and the schemes
are the same as in Section 2.1.3.

Fig. 2.14 shows the velocity evolution of the bubble over time for TC1, where the FLU-
ENT and OpenFOAM results are very close to each other (also, we are able to reproduce
the points of Klostermann et al. [61] identically). Fig. 2.15 shows the velocity evolution
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P1 P2 | M| M2 | 8 a Re | Eo
TC1 | 1000 | 100 | 10 | 1 0.98 | 245 | 35 | 10
TC2 | 1000 | 1 10 | 0.1 | 0.98 | 1.96 | 35 | 125

Table 2.4: Physical properties of the two test cases formualted by Hysing et al. [73], for other details
we refer the reader to the paper.

for TC2 and again OpenFOAM and FLUENT results are seen to be very close together
until ¢ = 2 [s], whereafter they differ slightly (by = 1.5%).
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Figure 2.14: Velocity evolution for the bubble for TC1 of Hysing et al. [73]. The OpenFOAM and
FLUENT VOF solutions are seen to be very close, and our OpenFOAM points coincide precisely
with Klostermann et al. [61].

It appears that the VOF techniques in OpenFOAM and FLUENT agree quite well
when reproducing this numerical benchmark. However, as shown in this chapter, when
applied to a more generic physical problem (like the falling droplets), the transient as
well as long time behaviour can be different. Though widely used to test multiphase
techniques, the Hysing et al. [73] benchmark employs a very small domain of 2d x 4d,
whereby the walls are very close to the edge of the bubble. This might have an influ-
ence on the bubble rising characteristics, as generally the horizontal domain width for
rising bubbles is taken to be 8d — 12d depending on the Re, whereas the height can be
anywhere between 12d — 30d depending on approach to steady state. This goes on to
show the need for more realistic numerical benchmarks to be able to comment on the
reliability of different simulation techniques - something we have attempted to do in a
small way.

2.B. INFLUENCE OF f ON DROPLET SHAPE IN LB

Fig. 2.16 shows a comparison between the analytical coexistence curves for the C-S EOS
and numerical results obtained with the proposed method with = 1.25 & 1.65. It is
clear that the numerical results agree well with the theoretical data over a wide range of
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Figure 2.15: Velocity evolution for the bubble for TC2 of Hysing et al. [73]. The OpenFOAM and
FLUENT VOF solutions are seen to be very close until # = 2 [s], after which they differ by roughly
1.5%, and again our OpenFOAM data points coincide precisely with Klostermann et al. [61].

reduced temperatures (or density ratios).
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Figure 2.16: Liquid and vapor reduced density variation with reduced temperature for C-S EOS.
The analytical solution is obtained from the Maxwell-rule of equal areas.

However, as discussed in the text, the LB droplets at low density ratio can undergo
unphysical expansion after initialization during a small transient period when the den-
sities relax to equilibrium. In dynamic conditions, there can be further expansion or con-
traction, the reason for this behaviour is that the interaction force between the phases
is weak and does not constrain the initial droplet volume as it begins to falls. Further,
we found the amount of expansion also depends on the total mass in the system, which
depends on the domain size. This has been shown in Fig. 2.17, where a droplet is initial-
ized with a diameter of 100 lattice units with increasing domain sizes (N, = N,), for the
p* =~ 3 system considered in this study. The system is let to relax (up to 20000 iterations),
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after which an equivalent diameter is calculated as d®4, which is seen to increase with
N, significantly. The expansion can be controlled to an extent by increasing the value of
B such that the pseudopotential force is stronger.
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Figure 2.17: Dependence of the droplet expansion on the domain size, shown as the ratio between
an equivalent droplet diameter d®9 calculated after a stationary droplet is let to relax for 20000
iterations, beginning from an initial diameter d% =100 lattice units, for increasing domain size in
lattice units where Nx = Ny.

A comparison of the force magnitude is shown in Fig. 2.18, which shows the interac-
tion force along the centerline of a stationary droplet for simulations with § = 1.25 & 1.65.
It can be seen that for § = 1.65, the interaction force increases slightly near the interface.
Even this slight increase in interaction force influences droplet expansion significantly. It
is also seen in from Fig. 2.18 that the size of the stationary droplet is smaller for § = 1.65
as compared to the case with § =1.25.

Lastly, the final droplet shapes obtained using f = 1.25 & 1.65 for Cases 1 and 5 are
presented below in Fig. 2.19. Here the shapes for both values of § are very similar, but
when a similar comparison was performed on a smaller domain for these two cases, the
B = 1.25 cases showed unphysical expansion and deformation. Further work is required
to understand the exact behaviour depending on 8 and the domain size effect.

REFERENCES

[1] S. Mukherjee, A. Zarghami, C. Haringa, K. van As, S. Kenjere§, and H. E. Van den
Akker, Simulating liquid droplets: A quantitative assessment of lattice boltzmann
and volume of fluid methods, International Journal of Heat and Fluid Flow 70, 59
(2018).



REFERENCES 61

40pe=3

— B=1.25

3.5F J
— [=1.65

3.0F
2.5}
[Fintl 5 ol
1.5+
1.0+

0.5F

0.0

=50 0 50

Figure 2.18: Force distribution over a diametric axis across a droplet centered at X, for § =1.25
and 8 =1.65.

(2]

(3]

(4]

(5]

6]

(7]

(8]

(9]

(10]

(11]

A. Prosperetti and G. Tryggvason, Computational methods for multiphase flow
(Cambridge university press, 2009).

G. Tryggvason, R. Scardovelli, and S. Zaleski, Direct numerical simulations of gas—
liquid multiphase flows (Cambridge University Press, 2011).

M. Loewenberg and E. Hinch, Numerical simulation of a concentrated emulsion in
shear flow, Journal of Fluid Mechanics 321, 395 (1996).

V. Cristini and Y.-C. Tan, Theory and numerical simulation of droplet dynamics in
complex flows—a review, Lab on a Chip 4, 257 (2004).

S. E Roudsari, G. Turcotte, R. Dhib, and E Ein-Mozaffari, Cfd modeling of the mixing
of water in oil emulsions, Computers & Chemical Engineering 45, 124 (2012).

S. Kokal et al., Crude oil emulsions: A state-of-the-art review, in SPE Annual Techni-
cal Conference and Exhibition (Society of Petroleum Engineers, 2002).

L. W. Lake, Enhanced oil recovery, (1989).

R. Arshady, Suspension, emulsion, and dispersion polymerization: A methodological
survey, Colloid & Polymer Science 270, 717 (1992).

N. Takada, M. Misawa, A. Tomiyama, and S. Fujiwara, Numerical simulation of two-
and three-dimensional two-phase fluid motion by lattice boltzmann method, Com-
puter Physics Communications 129, 233 (2000).

K. Sankaranarayanan, I. Kevrekidis, S. Sundaresan, J. Lu, and G. Tryggvason, A com-
parative study of lattice boltzmann and front-tracking finite-difference methods for
bubble simulations, International Journal of Multiphase Flow 29, 109 (2003).




62 REFERENCES

0. OﬁLU 0.0QLU
Bl T A 22 lw v v e PR R A 72 ‘% 2 2 EE
) 2 2 2 G - R T 2 2 2 2 d ™
L 4+ > + & ¥ ¥V ¥V ¥V Vv ¥ ¥ o0 A - R A A A 2 G my
L N 2 20 2 2 LS P S P N A A ™ N
I N 2 2 LS L. g u SR o _
I T B A A A oA A o q y OUOENE . N
R A A A A 2 2 ~ oA
N o - oo DI <R P B | | Ve VSN
F A A 4 SRR R v N A A AA Y v v ~ N
A A » U v v A A L e gt 4
A A~ N\ B 4 N or r & <« . a4 A A4
B N . a4 o A P v & v < B, 2 2 4
L SR RS S 7 a4 2 E v v v <« £ s > 7 7 4
| = = v < S8 B> 7 1 1 4 F v v € €« & ¢ y L N N 3 > 53 7 2
FF Y € <« k¥ Y VN N> 77 o9 4 E v e <2 N T
oY oY o€ & k¥ VoV ¥ A3 > > o7 o1 A R N i
oY < € 4 k kb VvV N A 3 >y o7 04 I
-1.5d +1.5d -1.5d 0 +1.5d
(a)Casel, =125 (b) Case 1, B=1.65
0.01_5)LU 0.01_5)LU
Ao o« VoV v Iw 2 /s - i AR ¥ ‘V v v GOSN
Aa e VoV OV Vv v A Foao- L2 2 2 2 soa
F A a4« Y ov¥ ¥ v vV A A AT A 2 A 2 2 AoA A
A A s N N Ao b A T ¢ ¢ VR aoa Al
A A A2 A 4 A A A MY |V Ve AoAA
T oA A A A2 2 2 2 A A A ~ 1N B . ¢ N . .
. i Vv v g " F . . B . v Aoy
L~ g R Vv g ] s B | | Vs B . 4
L 4 . v 4 A A
s A K 3 4 ), A A . r »~ ~ ~ v / v - El A Bl
» L * . € 4 A R ’r (> L 3 4 < <
I rorov € By v 4 ] L L B R}
* v e > ¥ - F * * - L4 L ’
L -« « ¢ <« ST TR, . . g . o« >
,,,,,,,,,,,,,, « < Emwr et
| = 9 905 o af > o o =
-1.5d 0 +1.5d -1.5d 0 +1.5d
(c) Case 5, f=1.25 (d) Case 5, p=1.65
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MODELING SURFACTANT LADEN
EMULSIONS WITH PP-LB

Simulations of surfactant-laden emulsions remain an exception owing to their complex-
ity. We present, using the pseudopotential lattice Boltzmann method, a technique to simu-
late liquid-liquid systems with a slightly soluble surfactant. All components are modeled
as non-ideal fluids, and the surfactant is repelled by the two liquid components which
makes it concentrate around interfaces. We ignore orientation effects of the surfactant
molecules, long range interactions and electric fields. Investigating the extensive parame-
ter space spanning the various interaction strengths, system temperatures and component
densities, we show equilibrium surface tension reduction for a stationary droplet up to
15% following Langmuir-isotherm like behaviour emerging from simplified pseudopo-
tential interactions. The model is insufficient to simulate coalescence inhibition which
requires an additional mechanism. One proposed method is varying the liquid-liquid in-
teraction strength locally as a function of the surfactant density, which causes arrested
phase segregation along with spontaneous droplet breakup similar to the formation of
microemulsions. Finally, the model is applied to pendent droplet formation, compar-
ing clean and surfactant-laden systems. The addition of the surfactant greatly alters the
probability distribution of droplet radii after formation, and a larger number of smaller
droplets are found - an effect of the reduced surface tension due to surfactants. One of the
major drawbacks of the model is the non-trivial dependence of the output system state on
each input parameter - most of which cannot be varied independently and better control
of the system requires additional testing' .

This chapter has been published in the AIChE Journal, 2019 [1], as a joint first author with Ir. P. Berghout.

1This is being currently performed at the Bernal group in University of Limerick by Dr. A. Safdari and Dr. M.
Pourtousi, where they further elaborate the model behaviour along with testing it for surfactant laden droplet
breakup in simple shear flow.
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3.1. INTRODUCTION

uring the last two decades or so, computer aided process engineering tools have
D started playing an important role in designing, debottlenecking and optimising both
individual process devices and complete process plants. Part of this development is
due to the evolution of Computational Fluid Dynamics (CFD) for both single-phase and
multi-phase systems including various transport processes and chemical reactions. This,
along with computational power rocketing according to Moore,s law [2] has made mas-
sively parallel simulations possible, bridging the gap between detailed flow dynamics
and designing for large-scale equipment.

Despite the diverse advances in the development of flow simulation techniques, con-
ventional Finite Volume (FV) based solvers, introduced as early as the 1970s (see Patankar
and Spalding [3]), still dominate the field to an extent that virtually all commercial CFD
software is rooted in FV. Much to its disadvantage, the chemical engineering community
seems to keep overlooking the promises of the lattice Boltzmann (LB) method, a strong
alternative to FV.

LB is a mesoscopic approach to continuum fluid mechanics, which can be used to
simulate flows obeying the Navier-Stokes equations at a fraction of the computational
cost of FV, particularly for (massively) parallel flow simulations. Eggels [4] and Derk-
sen and Van den Akker [5, 6] introduced the LB technique into the realm of engineering
fluid mechanics. The result was a long series of papers reporting about LB based Large
Eddy Simulations (LESs) in various flow devices. Most of these simulations, as well as
some Direct Numerical Simulations (DNSs) — see [7, 8] — were simply impossible using
the conventional FV technique (on the platforms of the time and under the pertinent
conditions).

Multiphase simulation methods can be broadly classified as Euler-Euler or Euler-
Lagrangian methods. In the Euler-Euler method, fluids and particles are all treated as
continua and are represented by their respective volume fractions at each grid cell of
the simulation. These simulations do not resolve phase interfaces. Euler-Lagrangian
methods, confined to dilute particle systems, track the individual particles which can be
either point particles or finite sized. In the case of RANS-based simulations or LESs, the
flow between these particles is not resolved. DNS simulations, such as Ten Cate et al.
[9] for solid particles in a turbulent liquid flow, and Derksen and Van Den Akker [10]
for a turbulent emulsion, do resolve the flow between the particles. LB also emerges as
a robust technique for simulating multi-phase flows, at par with FV based solvers [11-
13]. While particle laden flows like fluidized beds, suspensions and colloids have their
own dedicated LB models exploiting immersed boundary conditions for reproducing the
detailed interaction of fluid and moving and revolving particles [9, 14-17], we will focus
here on liquid-liquid systems.

3.1.1. EMULSIONS

This chapter aims at simulating the hydrodynamic behaviour of emulsions which are
crucial to various industries, ranging from cosmetics, biotechnology, and food process-
ing to the oil and gas industry. Most (FV) simulations of dense droplet systems in-
corporate Population Balance modeling [18] which relies heavily on empirical relations
drawn from experimental data. Though useful, this method suffers from the strong lim-
itations of experimentally studying emulsions, due to their highly three-dimensional
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spatio-temporal flow characteristics around evolving interfaces; in addition, emulsions
are inherently opaque to optical measurement techniques. Here, the unprecedented de-
tails unraveled by flow resolving simulation techniques can be telling.

Due to their dense droplet population, emulsions have a multitude of interfaces sep-
arating the two liquids, and the stability of these interfaces is crucial to the stability of
the emulsion - i.e., if they rupture leading to droplet coalescence, the two fluids would
entirely separate. Emulsion stability is greatly altered by the presence of surfactants,
which are surface active molecules preferentially adhering to interfaces. For instance, in
enhanced oil recovery, steam is often used to mobilize the oil, which can cause emulsi-
fication facilitated by the presence of naturally occurring [19] or artificially added sur-
factants [20]. Surfactant stabilized emulsions are also used to transport highly viscous
crude oils, whereafter these emulsions need to be destabilized to separate the oil and
water phases [21].

Surfactant induced phenomena include drag enhancement on droplets, inhibition
of coalescence, modification of interfacial boundary conditions, and Marangoni flow
due to (flow induced) surface tension gradients. None of these effects are present in the
commercial multiphase flow solvers, while various academic attempts have been made
to account for these as shall be described below. While it is rare to encounter pure fluids
in real life, it is exceedingly difficult to turn numerical fluids impure. Bridging the divide
between real fluid mixtures and simulations is the main goal of the research described in
this chapter which focuses on LB based detailed simulations of emulsions allowing for
deformation, coalescence and break-up of droplets while accounting for surfactants.

Simulating surfactant dynamics along with hydrodynamics is a complex problem,
aggravated by the fact that the surfactant adsorption and desorption kinetics occurs at
the microscale. Ionic surfactants interact directly with the electric double layer formed
at the interface, also called the Debye layer, the thickness of which is @ (10719-10"" m)
[22]. Surfactants can also form complex aggregates like micelles and lamellae above a
critical concentration. These phenomena at the microscale can influence the dynamics
of droplets and bubbles, which can be of the scale @(107% m) in emulsions, or of larger
scales around @(10~3 — 10~! m) in bubble columns. These scales, when dealing with a
physically relevant flow, are separated by 8 — 10 orders of magnitude. This poses an im-
mense difficulty that has to be overcome when simulating such systems. Prior research
has sought to resolve this by making reductionist assumptions regarding the nature of a
surfactant, limiting its essential features. After all, simulating surfactant molecules ex-
plicitly while resolving flow is not feasible, nor necessary if surfactant behaviour is aptly
modeled when one is solely interested in the macroscopic hydrodynamics. Below we
briefly highlight some work done in this direction.

3.1.2. FV BASED TECHNIQUES

Among the FV based techniques, Stone and Leal [23] and Eggleton et al. [24] used a
boundary integral method to study the breakup of a single surfactant-laden droplet.
Several studies employed the Volume of Fluid (VOF) method with an insoluble surfac-
tant confined to the interface, see e.g. Renardy et al. [25], Drumright-Clarke and Renardy
[26], James and Lowengrub [27], Martin and Blanchette [28]. Xu et al. [29] followed a sim-
ilar approach with the Level-Set (LS) method, also used recently by De Langavant et al.
[30] and applied to sheared droplet breakup. Other methods include the front tracking
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for interfacial and bulk surfactant transport [31], and the arbitrary-Euler-Lagrangian ap-
proach for interface tracking by Dieter-Kissling ez al. [32] applied to droplet formation in
the presence of surfactant mixtures. These techniques are well suited for the particular
problems being studied, and can give very accurate predictions.

The domain of single droplet dynamics, however, is far from the typical systems en-
countered in emulsion research. Further, there is no simple extrapolation from the ide-
alized problems studied here to dynamic multiple droplet flows. The constant interface
tracking and reconstruction used in these methods becomes challenging once multi-
ple bubbles and droplets are simulated, more so when they can undergo coalescence
and breakup, when these techniques become prohibitively expensive and complicated,
if not completely unfeasible. We do not discredit these techniques at all, for they can very
accurately simulate single droplets, even at very high density and viscosity ratios. How-
ever, when looking at realistic emulsions, the capabilities offered by LB far outweigh the
FV state-of-the-art.

3.1.3. LB BASED TECHNIQUES

A few LB techniques have also been introduced, and these seem more aptly suited for
simulating emulsions than the FV techniques as shall become evident. In the Pseudo-
Potential (PP) LB model, introduced by Shan and Chen [33, 34], adding molecular in-
teractions between particle distributions at the meso-scale can simulate spontaneous
phase separation. Many researchers embarked on this concept with the view of describ-
ing two-phase systems [35], also in our research group [36-38]. Since the multiple inter-
faces do not need to be tracked, captured and/or reconstructed, this PP-LB method is
computationally very attractive [13].

Contrary to the bottom-up PP method, there is the top-down free-energy method
for simulating multiphase flows in LB [39, 40]. Simulations using this approach start
with a free-energy functional with the intended thermodynamics, which is then used to
derive other physical quantities, making these methods thermodynamically consistent
by definition [41]. This method has the advantage that certain properties like surface
tension and interface width can be pre-defined. A drawback is that the method has been
found to be almost three times more computationally expensive than other comparable
LB methods [42].

Focusing on emulsion like systems with two immiscible fluid components, Chen
et al. [43], Nekovee et al. [44] introduced a multi-component PP-LB approach where
the surfactant is incorporated as a third additional component, coupled to an idealized
point dipole. The dipole moment and surfactant distribution both follow the LB stream-
ing and collision algorithm. The surfactant concentration, however, is of the same order
as the other fluids, which is not always the case in physical systems. Using this model,
Nekovee et al. [44] go on to confirm arrested phase segregation for high resolution 2D
simulations upon the addition of an active surfactant. They also observe the formation
oflamellae above the critical micellar concentration (CMC), not seen in past simulations,
which they ascribe to the inclusion of the dipole orientation in their model. Skartlien
et al. [45] demonstrated the dynamic surface tension behaviour of this model and show
how the parameters can be tuned to resemble a physical surfactant like Exxsol D80 and
Span 80.

Furtado and Skartlien [46] derived the free energy form of the Chen et al. [43] model
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from underlying kinetic theory principles. Including short and long range interactions,
they also exhibit an inhibition of coalescence. Note that coalescence inhibition alone
can also be simulated without surfactants using alternate techniques (like charge on the
droplets [47] or mid-range repulsive interaction forces [48]), but Marangoni flows can-
not. Skartlien et al. [49] used this model to study surfactant stabilized emulsions in a
quasi-turbulent field which is induced by the conversion of surface energy to kinetic en-
ergy in phase segregation and Skartlien ez al. [50] investigated droplet size distribution in
weakly turbulent surfactant laden emulsions. Free-energy method based models to sim-
ulate surfactant stabilized dispersions have also been proposed. Lamura et al. [51] used
a Ginzburg-Landau based model to show the spontaneous formation of lamellae in sur-
factant laden oil-water systems due to surface tension reduction. A similar approach
was used by Van der Sman and Van der Graaf [52] to show Ward-Tordai like kinetics of
surfactant adsorption. This method was further developed by T6th and Kvamme [53] to
show slowed down phase segregation due to the presence of surfactants, and applied to
oil, water and asphaltene systems [54]. A thorough review of models for ionic surfac-
tants has been presented by van der Sman and Meinders [55], which also gives a model
taxonomy, distinguishing between Eulerian and Lagrangian approaches, with the vari-
ous ways of simulating surfactants with different degrees of complexity that have been
developed so far.

A lot of the studies using the Chen et al. [43], Nekovee et al. [44] model have focused
on the formation of exotic gyroidal structures, complex aggregates and emergent be-
haviour in ternary systems [56—60], which makes the model quite unique. However, the
model has not been used for a wide range of multiphase flow problems where surfactant
laden simulations find application. Its complexity and the wide associated parameter
space perhaps obscure its utility, whereby arises the need for simplification.

In this chapter, we propose the simplest method to incorporate soluble surfactants in
a two fluid mixture by implementing a doubly repelled third surfactant component. We
retain surfactant effects like surface tension reduction, and present an analysis through
the corresponding parameter space. Our approach combines several other PP-LB de-
velopments, making it easy to simulate a wide range of density ratios (1 — 10%), dif-
ferent viscosity ratios between the fluids and the surfactant (which has been recently
demonstrated to be an important parameter [61]), and a possibility of extension to mul-
tiple surfactants and components if required. There are several differences between our
model and those suggested previously in literature [46, 53, 55, 58], apart from that we
use the pseudopotential method while the latter employ the free-energy method. First,
we ignore the dipole orientation of the surfactant (and consequently aggregate-like be-
haviour). Further, we simulate realistic fluids by modeling the components using non-
ideal equations of state. This approach allows for a wider range of density ratios between
components, which shall allow for simulations of surfactant laden droplets and bubbles.
We also propose modifications to our simplified surfactant model that can help simulate
more complex surfactant behaviour like the spontaneous formation of microemulsions
which has not been presented before using LB.
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3.2. NUMERICAL METHOD

3.2.1. THE LATTICE-BOLTZMANN METHOD

In this study we employ the lattice Boltzmann method (LBM), first proposed in their
seminal paper by McNamara and Zanetti [62]. The Boltzmann equation, with a simpli-
fied collision term (BGK [63]), is discretized up to second order in time, space and mo-
mentum, and consequently solved on a lattice that comprises the discretization of space
D and momentum Q in i and j directions respectively, and which is named D;Q;. The
velocity space is reduced to a finite number of discrete values (i.e. Q;), and one must
have sufficient velocity directions to obey the conservation laws. Yet, for a very wide
range of two-dimensional flows, a 9 velocity set is sufficient to recover the macroscopic
hydrodynamics, and 19 velocities in three-dimensions [41].

Since the Boltzmann equation solves for the particle distribution function, it falls
within the mesoscopic compendium of fluid solvers. Consequently, it is well suited to
bridge the gap between the microscopic particle scale and the macroscopic continuum
scale of fluid flow by invoking mesoscopic particle interactions. This makes modeling
multiphase flow phenomena conceptually simple, as with the Pseudopotential method
(described shortly), and phenomena like spontaneous phase segregation, bottom-up
surface tension effects and evolving interfaces are automatically captured. The spatio-
temporal locality of the computations involved makes the method easily parallelizable
over distributed computational units unlike conventional finite volume based solvers
where distant units need to communicate for the pressure and velocity coupling of an it-
erative Navier-Stokes solver. Given these factors, the LB method has gained widespread
popularity over the past decades, for both single phase and multiphase flows [35, 41].

The LB equation reads

1
[P x+ceiAt, t+AD) - f7(x, 1) = ;(fl."’“’(x, 0-f7x0)+87 3.1)

where f7 is the particle (or density) distribution function for some component ¢ in
the discrete velocity direction i. The lattice speed c is defined as ¢ = Ax/At = 1, implying
constant kinetic energy for all equal mass particles and 7 is the lattice relaxation time
towards local equilibrium. S7 is a source term which incorporates body forces. Most
simulations in this chapter were carried out on a D2Q9 lattice, employing the standard
9 lattice velocities in 2 dimensions, e;, as defined below

(Oy 0); i = 0
e; =1 (cos[Y522],sin [0y, i=1,2,3,4 (3.2)
ﬁ(cos[U_Tsm+%],sin[u_Tsm+%])c, i=5,6,7,8
The D3Q19 simulations similarly utilize the standard 19 velocity 3D lattice, which
can be found described in Kriiger et al. [41]. The discretized equilibrium distribution

function follows from a multiscale expansion in the incompressible (low Mach number)
limit of the Maxwellian [64]:

e -u, (e-uy)? l@} 3.3)

g,eq
: = w; 1+ -
Ji ’p"{ RT ' 2(RT)?  2RT
The weight factors are wy =4/9, wi_.4 = 1/9 and ws_g = 1/36. py is the component
density and follows from the zeroth moment of the distribution function:
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po=2 17 (3.4)
1

u, is the bare component velocity [41] and follows from the first moment of the dis-
tribution function:

FiAt

2 (3.5)
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i
where F; is the force term. The lattice viscosity is related to the lattice relaxation time by

v=ci(r-1/2) (3.6)

where the pseudo-sound-speed c; = VRT has the value 1//3 for the D2Q9 lattice.
Details regarding the derivation of these quantities can be found in Succi [65].

3.2.2. MULTICOMPONENT MULTIPHASE (MCMP) MODELING
Various multiphase and multicomponent models have been proposed within the LB
framework [34, 66, 67]. In this chapter, we make use of the Pseudopotential (PP) LB
model. This is a bottom-up approach, where multiphase hydrodynamics emerges from
particle interactions based on a mean field inter-particle force. Characteristic param-
eters of multiphase systems like interfacial tension and the density ratio of coexisting
phases, naturally emerge from the interaction between the respective fluid components.
This obviates the usual requirement of solving additional equations to capture or track
the interface as one has to with traditional finite volume methods like the Volume of
Fluid, Level-Set etc, and the method can be made thermodynamically consistent [68].
In this chapter we simulate three components, which are labeled as a, the high den-
sity liquid, 8 the low density liquid, and s the surfactant. In general, the total force F
on a component ¢ is the sum of the intra-component force F°? (which is based upon
an equation-of-state) and a sum of inter-component repulsion forces F°? that can be
interpreted as the force on o due to o. Together these can be written as

FFx0)=F’x0+ Y Fx1 3.7)

O#0

(for instance F¥ = F*® + F*P + F*S), The inter-component interaction force F7 takes the
classical Shan-Chen form [33]

N
FO7(x, 1) = —Go5¢o (X, )¢5 Y wile;)pz(x+e;At, De; 3.8)

i=0
where we sum over the nearest neighbors (i = 0 — 8). Here ¢ is the pseudopotential
function, and we use the component density as ¢, while other definitions are possible.
Further, c2 = 1/3 is the lattice speed of sound, and G is the interaction strength. This
force is incorporated in the source term in Eq. 3.1. Note that its magnitude should not be
disproportionately large, which can lead to numerical instabilities, as its upper bounds
are set roughly by the magnitude of the component densities which comprise the left

hand side of Eq. 3.1.
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Table 3.1: The 6 intra-component and inter-component interaction strengths coupling the three
components to each other. The exact choice of the intra-component interaction strengths, G4, is
not important as the term cancels out following Eq. 3.10 and 3.11, with the only requirement that
it be negative to keep the argument of the square root positive, hence these is fixed to —1.0. The
inter-component interaction strengths G,z > 0.

Table 3.1 gives the different interaction strengths, where a negative value gives at-
traction between the two components (miscibility), whereas a positive value gives re-
pulsion (immiscibility). The surfactant is repelled by both the fluid components, and
consequently is driven towards the interface. This is a highly simplified picture of the
interaction of a surfactant with the two fluids. In reality, each surfactant molecule has a
finite length, with a hydrophilic head and a hydrophobic tail, and it is this amphiphilic
nature that drives it to seek out fluid interfaces. At a mesoscopic level, surfactants are
treated as point particles, where it would seem that both fluids repel the surfactant. This
approach does allow simulation of surfactants collecting at the interfaces, and reducing
surface tension of the droplets as will be demonstrated. Finite size effects like steric re-
pulsion, or formation of and interaction with electric double layers are not taken into
account in the model yet. We further ignore the orientation of these molecules, also
linked to the finite surfactant molecule sizes, which can lead to charge based repulsion
between approaching surfactant laden interfaces. This simplified model can be used to
successively incorporate features that can simulate more complex effects that are cur-
rently out of scope. We want to emphasize that the different components stream and
collide on their own respective lattices. Such, there is no excluded volume effect, and the
components only interact by means of the interaction force.

We keep the concentration of the surfactant three orders of magnitude lower than
the liquid densities. This is because in real systems, the surfactant volume fraction is
very low compared to the liquid components in the entire domain. Only at the inter-
faces, the surfactant can have high volume fractions, even close to 1 at high surfactant
loading. A higher average surfactant density in the domain can also cause the surfactant
to also form droplets, which is not desired. However, a very low surfactant density in-
troduces another caveat. The liquid-to-surfactant forces (i.e. F**,F*#) which are based
upon the liquid densities become much larger than the counter acting intra-component
hard-sphere like repulsion modeled in the non-ideal EOS. To overcome these instabili-
ties, a factor S is used to scale the liquid-to-surfactant forces, as done by Skartlien et al.
[45], which makes the total force on the surfactant

1
F=F*+ o (FS“ + Fsﬁ) 3.9)

Note that this scaling factor can effect momentum conservation as pair-wise momentum
between the liquids and surfactant is not conserved when S # 1. However, in this chapter
all simulations are performed on fully periodic domains, due to which the sum of all
inter-particle interactions cancels out such that global momentum is conserved, which
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was found to be true for all S values used in this chapter. Alternatives to the scaling factor
would be using a higher surfactant density (while somehow avoiding the formation of
surfactant droplets), or using the surfactant distribution to influence other parameters
of the simulation, as will be discussed in the section on coalescence inhibition under
results.

The intra-component interaction force, F??, is calculated by means of the -scheme
[69].

N
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(3.10)

With the proper choice of the weighting parameter g, the spurious velocities occur-
ring at curved interfaces can be reduced significantly [68]. For this research we set the
weighting factor f to 1.25, as suggested by Zarghami et al. [68].

Phase separation is achieved by implementing the Carnahan-Starling (CS) equation
of state (EOS). The interaction term then becomes

- agp% —pc? (3.11)
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where a, and b, are respectively the repulsion and attraction parameters, charac-
teristic of the different fluid components, and are set to a = 0.4963R?T?/p. and b =
0.18727RT./p., R is the universal gas constant and here set to 1 [68], and T, and p.
are respectively the critical temperature and the critical pressure of the component of
interest. For T > T, only one phase exists, while for T < T;,, two phases coexist with a
density ratio determined by the reduced temperature T, = T/ T, where the correspond-
ing liquid and vapor densities can be calculated by means of the Maxwell construction.
The physical temperature is kept the same for all components by ensuring 7 = T¢ x TZ
has the same value.

The force is implemented in the source term S7 in Eq. 3.1 using the exact differencing
method (EDM) [70], given as follows

FoAt
o _ réq eq
S; _fi (p,u+ )—fl (p,w) (3.12)
The pressure in the system is calculated as a sum of the individual fluid compo-
nent contributions based upon their EOS, and the non ideal contributions due to inter-
component interactions [71].

1 1
P= cfng+§c§ZGw\P§+§c§ Y Gozpobs (3.13)
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Note that all quantities in this study are non-dimensional, though when simulating
flow problems they can be mapped to physical units by keeping some non-dimensional
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numbers (such as a Reynolds number) constant. Such a mapping was presented in
Mukherjee et al. [13] for simulations of falling droplets. Lastly, we have used the mas-
sively parallel, open source lattice-Boltzmann solver Palabos in this study [72].

3.3. RESULTS

3.3.1. VALIDATION

To validate our computer code and numerical model, we perform two sets of simula-
tions. In the first study, we validate the thermodynamic consistency of a single compo-
nent multiphase system when simulated by means of the Carnahan-Starling EOS. Within
a (square) periodic box, a droplet of component « is initialized as a diffused circular re-
gion defined as

pl';pv+pl_Pv

p(x,y) = (3.14)

w
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where W = 6 is the interface thickness, R the droplet radius, p; and p, are the densities of
component « in the liquid and vapor phases respectively. The domain size is Ny = N, =
601 and x; = y; = 301 is the position of the center of the droplet. The respective values
of the initial densities inside and outside the droplet are estimated from the Maxwell
curve. The Maxwell curve dictates the coexisting densities for a component at a given
reduced temperature T,. The EOS parameters are a = 1.0 and b = 4.0, and the weighting
parameter § of the f-scheme is 1.25.

All stationary droplet simulations have been performed for 20,000 iterations, to en-
sure that equilibrium is attained. After the reaching equilibrium, the liquid and vapor
densities corresponding to inside and outside of the droplet are shown in Fig. 3.1 for var-
ious T} values. At high T, where the strength of the phase separation is only moderate,
we find excellent agreement with the Maxwell curve. For lower reduced temperatures,
our numerical results start to deviate from the analytical curve, however only slightly.
The lowest reduced temperature we can obtain is T, = 0.4, with p* = p;/p, = 0(10%).
The thickness of the interface varies from roughly 8-3 lattice units [lu] as T is reduced
from 0.96 to 0.4. These results are identical to recent literature [13, 68].

Next, we add an ideal lighter component § to validate the multicomponent, multi-
phase model with the Laplace law (Eq. 3.15). A stationary droplet of the non-ideal heavy
component &, suspended in a quiescent lighter ideal component § is simulated in a pe-
riodic 2D domain. The initial densities for component « are p; = 0.45, p, = 0.00007, ini-
tialized using Eq. 3.14. Component f is uniformly initialized with density, p = 0.00025.
Further, T¥ = 0.52, f = 1.0, a = 1.0 and b = 4.0. Note that the presence of component
B strongly affects the phase separation of component «a, such that for the same reduced
temperature T, we find a different p;/p, internally within a, as compared to Fig. 3.1.

After the system has come to a steady state, we calculate the pressure difference be-
tween the center of the droplet and the edge of the domain. This is successively done
for five different droplet radii R, plotted in Fig. 3.2. Here R is taken to be the radius of
the contour level defined by p, /2, which is a point that lies inside the diffused interface
at about half the interface width. It could also be defined as the distance between the
center of the droplet and the point where p, = pg. The exact position of R is uncertain
anyhow by about half the interface thickness 0, (while ;¢ for a droplet of radius 50 [lu]
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Figure 3.1: Analysis of thermodynamic consistency of the model by comparing simulation results
to analytical solution of the Maxwell coexistence curve, that gives the two fluid densities existing
together at a given reduced temperature.
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Figure 3.2: Laplace law validation for a multicomponent system is shown where AP is the pressure
difference between the center of the droplet and the edge of the domain. Surface tension is the
slope of the linear fit to AP over 1/R, and is found to be o = 0.028. The inset shows a typical
pressure profile (calculated using Eq. 3.13) across the droplet diameter as indicated.
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could be around 5 —10%). The inset in Fig. 3.2 shows the pressure profile along a dia-
metric line across the droplet. The jumps seen in the pressure profile at the interfaces
are due to the local definition of P in Eq. 3.13, and can be remedied by employing the
extended pressure tensor given by Sbragaglia and Belardinelli [73]. We observe a clear
linear increase in AP with 1/R, where the slope of the line gives the value of surface ten-
sion, and an axis cut-off close to the origin, indicating a convincing agreement with the
Laplace law, Eq. 3.15.

AP = (3.15)

o
R
3.3.2. ADDITION OF THE SURFACTANT
The surfactant component s is now introduced, which is repelled by both liquid compo-
nents a and S. The values of G4 and Gg; are chosen such that the repulsive force on the
surfactant from both liquids is equal, which is ensured by maintaining Gos/Ggs = pg/pa-
The miscibility of the surfactant in either fluid can be changed by altering this ratio. All
simulations in this section are performed in 2D on a 200 x 200 periodic lattice, which is a
smaller domain facilitating a wide exploration of the parameter space while keeping the
computational cost modest. The following results do not depend on the domain size.

The droplet is initialized at the center with a radius of 30 [lu] and the surfactant is
uniformly distributed throughout the domain. The liquid-liquid density ratio is chosen
to be p;ﬁ ~ 1.44 (where p;ﬁ = pa/pp) while p;ﬁ values from @' (1) to @ (1000) are possible,
and the liquid-surfactant density ratio p}; ~ 1000.

The EOS parameters have been fixed to the values mentioned in Table 3.2. These val-
ues are chosen such that the physical temperature of the system T = T, x T, is constant
for all components, while T} can vary. As we simulate a liquid-liquid system, the values
of a and b for components a and S are rather similar. We did not use exactly the same
values for both as we let component a undergo internal phase segregation in our model-
ing approach while maintaining the same temperature for all components. These values
should also be considered in relation to those for the surfactant component, where a
and b for component s are much larger than for @ and §. This is because a larger value of
b means a larger internal hard sphere like repulsion between surfactant molecules (due
to the EOS). This is required to ensure that the surfactant does not form droplets, and in
the absence of repulsive forces from components a and § the surfactant remains uni-
formly distributed. In the presence of repulsion, the surfactant migrates to the interface
and redistributes uniformly around it. Here there is again an optimum, as a very strong

Component | a b T, | T,

a 0.0068755878 | 0.18727 | 0.8 | 0.01385369
B 0.007343 0.25 1 0.01108295
s 17.62311 600.0 1 0.01108295

Table 3.2: EOS parameters (refer to Eq. 3.11) for the three components that have been fixed for
this parameter study. Gy, the intra-component interaction parameter for each parameter, is set
to —1 and R =1 for all components. The physical temperature T = T x T is the same for each
component i.e. they form an isothermal system.
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internal repulsion (larger b) would result in a very small amount of surfactant to collect
at the interface. So the EOS values were chosen by finding an optimal value for b, while
a is calculated such that the temperature remains the same as for components a and .
The value of = 1.25 in Eq. 3.10, and all fluid relaxation times 7 are set to 1.

Fig. 3.3a shows the steady state density fields of the three components for a qui-
escent droplet, where the surfactant is seen to collect at the interface. The normalized
density fields p = (0 — Pmin)/ (Pmax — Pmin) Where p € {pq, Pp ps} show how the compo-
nent densities vary across the interface and the surfactant collects between the a and
components. The interface is seen to be roughly 10 [lu] here, which is wider than it is
when simulating a pure liquid-liquid droplet (~ 5 [lu]) using the same parameters (i.e. if
we set Gos = Ggs = 0). This is due to the surfactant which accumulates between the two
fluids and pushes on them. The interface region can in principle be made narrower by
changing the surfactant EOS parameters such that it has a lower internal repulsion and
a larger amount of surfactant can collect within a small region. It is useful, also with the
view of the discussion further on, to conceptually define this ratio of internal surfactant
repulsion and external liquid-surfactant repulsion as

Rs ~ Finternal/ F, external (3.16)

So the interface width 6j,; could be proportional to R, though R cannot assume arbi-
trarily large or small values. Also note that LB being a diffused interface method, there
is a minimum interface thickness (roughly 5 — 6 [lu]) below which the droplet becomes
unstable and can dissolve away.

Interface widening is an issue faced by all diffuse interface methods. In the multi-
component PP-LB method, a higher repulsion strength between the liquid components
(Ggp in our case), leads to a stronger phase separation and hence sharper interfaces as
well as to a higher surface tension. It is difficult to manipulate these three effects in-
dependently. Typically, one would want to have a large enough separation between the
droplet radius and the interface width, i.e. the ratio { = R/di,¢ should be as large as pos-
sible, ideally more than 50 or 100. The diffuse interface in such a case can be expected
to have little influence on the results. Such simulations, however, will be very computa-
tionally demanding in practice, as one also reguires a large enough separation between
the droplet radius R and the domain size L. To have both the ratios R/L and ¢ high is
generally not feasible and one has to compromise the resolution on either or both of
these. This is a crucial aspect to be considered when formulating a physical problem to
be simulated with any diffuse interface method. With proper scaling of these ratios, the
shortcoming of a finite interface width can be overcome to meaningfully simulate the
physics. We now use this stationary droplet as a test problem to perform a parameter
space investigation of our model. The results presented in this section deal with equilib-
rium behaviour of the model like interfacial concentrations, surface tension etc., which
should not be expected to be very sensitive to (.

INFLUENCE OF THE LIQUID-SURFACTANT REPULSION PARAMETER G

The parameters G4 s and Gg; determine how strongly the components « and f repel the
surfactant s. They also determine the extent of immiscibility of s in a and 8, and since
we keep these values such that s is equally immiscible (or repelled), we discuss this effect
in terms of G only (while Ggs = Ggs % p; ﬁ)‘ In all simulations, we keep the value of the
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Figure 3.3: Equilibrium component densities from stationary droplet simulations are shown
in: Fig. 3.3a as normalized densities in the domain and across the droplet diameter with p =

(0 — Pmin)/ (Pmax — Pmin) Where p € { Pa: PP s}. Fig. 3.3b shows the surfactant distribution for in-
creasing values of the liquid-surfactant repulsion strength Gg s (Ggs = 2Gqs since p; = 2), where

the peak concentration increases with increasing G4 s as the surfactant is more strongly repelled by
both liquids. Fig. 3.3¢ shows the same for increasing values of the surfactant reduced temperature
TS, where p$Y decreases due to an increased internal surfactant repulsion.
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liquid to surfactant force scaling parameter Sqs = 100 (see Eq. 3.8) to ensure stability.
The equilibrium surfactant concentration across a diametric line through the droplet is
shown in Fig. 3.3b for increasing Gg.

le—3

3.5¢ G, |

0 1000 2000 3000 4000 5000
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Figure 3.4: Surfactant migration to the interface increases for increasing repulsion strengths Ggs,
where Sgs = 100 and G, p = 0.02. It is seen that the maximum surfactant concentration for each
configuration is attained within 200 iterations. The inset shows the normalized density (also from
0 to 5000 Iter), where all cases are seen to follow the same evolution profile.

When starting with the same uniform initial surfactant concentration p?, for increas-
ing G4, the equilibrium density of the surfactant at the droplet interface obtains a higher
peak. The surfactant concentration outside the droplet falls to a successively lower value
showing the conservation of surfactant mass in the system. The final liquid-liquid den-
sity ratio p 5= 1.42 while the ratio between the repulsion strengths Ggs/Gqs = 1.44. This
difference reflects in the surfactant being slightly more miscible in the @ component and
its concentration inside the droplet increases with G,;. For larger repulsion strengths,
the interface becomes slightly wider as the surfactant pushes on the two liquids more
strongly. It should be noted that for each fluid configuration (i.e. liquid EOS parame-
ters, and density ratio between «, § & s), there is a sensitive upper bound to G4, beyond
which the repulsive pseudopotential force becomes too large and simulations are un-
stable. Here, it is seen that around G, ~ 4.5 the simulations become unstable (with
the minimum bounds on the liquid to surfactant force scaling factor being S, = 100 to
ensure stability).

We also look into the migration of the surfactant from the bulk towards the interface
in Fig. 3.4 for increasing G, which is done by monitoring the maximum surfactant con-
centration in the domain (which happens to be at the interface). Upon increasing G,
at early times the amount of surfactant at the interface increases as the simulation pro-
ceeds. However, within around 200 iterations, the maximum concentration for each sim-
ulation is attained and the value oscillates around it until equilibrium is attained. This at
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first seems counter intuitive, as increasing the force acting on the surfactant should re-
sult in its faster migration to the interface. Here two things are worth noting, first is that
increasing G4 reduces R (refer to Eq. 3.16), and hence a larger amount p; will collect
at the interface. Secondly, regarding the rate of migration of p; for a stationary droplet,
there is no physical timescale for interpreting the number of iterations for approach to
equilibrium, and each iteration simply means a single collision and streaming step. An
increasing repulsion force on the surfactant will translate to an increased change in mo-
mentum, but since velocities in LB are fixed, this change can only be achieved by stream-
ing a larger density fraction of the surfactant within a time step. Fig. 3.4 is consistent
with this reasoning, and all the cases attain their individual maximum surfactant densi-
ties after the same number of iterations. Further, the inset shows the density evolution
normalized with the final density, and all the cases collapse to a single evolution curve.
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Figure 3.5: Evolution of the interfacial surfactant concentration p;lin¢ for varying surfactant relax-
ation times 7 (related to the surfactant viscosity v according to Eq. 3.6). Here Gog = 0.02, Ggs =
4.0 and S, = 100.

A last point to note here is the wiggles in the evolution profile. These are caused by
the generation of pressure (sound) waves in the system due to two factors - first the relax-
ation of the droplet from its initialized profile to an equilibrium profile, and second the
sudden addition of the surfactant repulsion forces. These wiggles completely disappear
after 20000 iterations, and are present only during the initialization phase. In simula-
tions of incompressible flow, pressure waves are undesirable, and hence these simula-
tions must be performed over a timescale much longer than any initial transient phe-
nomena that may be present, like approach to local equilibrium in LB. Further, it should
be ensured that the flow Mach number is reasonably small (where typically Ma < 0.1 is
desired). Once the initial phase of relaxation to equilibrium is over, any further changes
in the component density distributions is due to the hydrodynamics, which proceeds
over a longer timescale than the acoustic timescale. Hence our simulations do not suffer
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from pressure waves.

INFLUENCE OF THE REDUCED TEMPERATURE Tl‘f

Increasing the reduced temperature 7} for the surfactant component to values greater
than 1.0 increases the internal molecular repulsion within the component, which is sim-
ilar to the pressure in a gas rising when it is heated as the molecules become more en-
ergetic. At higher T?, the force ratio R; will increase, and the maximum equilibrium
density of the surfactant that can collect at the interface will decrease. This is shown
in Fig. 3.3c where G4p = 0.02,Sqs = 100 and Gqs = 4.0. To ensure that the surfactant is
still at the same temperature as the other two components when 77 > 1 (i.e. the sur-
factant is at a supercritical temperature), the EOS parameter a is scaled with 1/T7 as
T, = 0.3773322a/Rb. Note that T? could also be reduced to values lower than 1.0, but
that could initiate internal phase segregation within the surfactant component is not
desired.

Indeed, at higher T} the surfactant feels a stronger internal repulsion and R; in-
creases, consequently a smaller amount of surfactant collects at the interface. This also
leads to the interface becoming slightly narrower (as was discussed earlier after Fig. 3.3a)
since a lower surfactant density has a lower repulsion strength acting on the two compo-
nents on either side of the interface.

INFLUENCE OF THE SURFACTANT VISCOSITY T

The surfactant viscosity v, which is related to 7 according to Eq. 3.6, has been shown
to strongly influence the dynamics [61]. The surfactant concentration at a point on the
interface is shown in Fig. 3.5 for varying 7. For the quiescent system studied here, only
a slight influence is seen in the approach to equilibrium concentration, where the more
viscous surfactant migrates slower. The surfactant viscosity can be expected to influence
the dynamics when the characteristic time of the flow is comparable to the diffusion
timescale, or for more dynamic problems like falling droplets etc. With the current setup,
the viscosity ratio between components cannot have very high values, which requires
further modifications to the LB method for instance as proposed by Meng and Guo [74].

3.3.3. STRENGTH OF THE SURFACTANT

The strength of a real surfactant varies greatly depending on a number of microscopic
effects like the extent of ionic dissolution, adsorption of ions at the interface, et cetera
[22]. So far in our modeling approach, the strength of the surfactant depends only on the
surfactant density (p;) at the interface and how strongly it repels the liquid components,
which is given by the repulsion strength parameters G, and Ggs. While still keeping the
discussion in terms of G4 only, we define surfactant strength A as

A=Gas) ps (3.17)

int
in which the summation is carried out over the entire interface. Since the interface is
diffused, we take this sum within the region bounded by two radii corresponding to the
lower and upper bounds on the density of component &, given as 1.1 x pg‘in < Pa <0.99x
P, The values 1.1 and 0.99 are somewhat arbitrary, though they accurately capture the
interface width, and slightly changing these numbers does not influence the following
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results. Defining A in this way facilitates comparison between simulations even upon
varying multiple parameters.

We now investigate the equilibrium surface tension of a stationary droplet in a qui-
escent periodic domain for increasing surfactant strength. The surface tension is calcu-
lated using the Laplace law at steady state where AP = o/R, AP being the pressure dif-
ference (where P is calculated according to Eq. 3.13) between the center of the droplet
and edge of the domain and R is the droplet radius. Fig. 3.6 shows the equilibrium sur-
face tension over the strength A, for two cases of the clean droplet surface tension which
was varied by changing the liquid-liquid repulsion strength G,g. Sets of simulations of
varying A are performed by varying 0 < G4 < 4.0 and 100 < S, < 800, of which only the
Sas = 100 cases are shown.
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Figure 3.6: Reduction of the equilibrium surface tension o for two cases of a clean droplet surface
tension which is varied by changing the liquid-liquid repulsion parameter G,g. A is increased by
varying 0 < G5 < 4.0, and S5 = 100 for the cases shown.

The surface tension reduces with increasing A, and the two sets of simulations fol-
low individual o reduction curves. A maximum o reduction of around 15% is observed.
In our parameter space investigation, we varied the various interaction strengths (Gqg,
Ggs, Gas), the inner repulsion of the surfactant (which depends on the surfactant EOS
parameters a and b, c¢f. Eq. 3.11), the reduced temperature 7} of the surfactant com-
ponent and the surfactant viscosity vs. The results obtained from all these simulations
are shown together in Fig. 3.7, where the y-axis shows the relative reduction in surface
tension /0 (Where o is the surface tension of the clean droplet for a particular value
of Gyp), and the x-axis shows A.

A maximum reduction in surface tension of about 15% is achieved, and the largest
value of A we could simulate with this model is around 25. Higher values of A might
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Figure 3.7: Reduction in the equilibrium surface tension o/og for a stationary droplet over the
surfactant strength A shown for all the cases simulated. The legend shows the range each param-
eter was varied over in a simulation set and the solid black line represents a Langmuir equation
of state fit (refer to Eq. 3.18). Surface tension reduction seems to be spread around this curve. A
larger reduction in surface tension also results in a thickening of the interface.

be possible with suitable extensions to this model which stabilize the system for higher
repulsion strengths. Using the multi-range interaction method [73], a different EOS for
the components or another collision operator like the MRT [75] could help achieving
this, although we have not explored those possibilities in this chapter. Generally a higher
reduction in o comes at a cost of a wider interface (which goes from roughly 7.5 to 22.5
[lu]). This is a consequence of a higher concentration of the surfactant repelling the two
components at the interface more strongly. The solid black line indicates a Langmuir
type of fit of the form

o c A

—:1+—RT10g(1——) (3.18)

0o go Amax
where c is a constant fitting factor, and A, is taken to be 40 for this fit. The scatter in
Fig. 3.7 is due to the use of very different model parameters between cases. Upon varying
just one of these parameters while keeping the remaining constant, the pertinent points
follow a single curve. Using this model, a few simplified calibration simulations would be
required to ascertain the particular isotherm behaviour of the parameters under consid-
eration, as surface tension reduction emerges from simplified pseudopotential particle
interactions. In alternate techniques like the free-energy method, the desired isotherm
is pre-set into the model thermodynamics, which is in stark contrast to our approach.

In practice, the surfactant layer at a liquid-liquid interface has a thickness of the or-

der of microns, and a reduction in surface tension of 50% or greater is possible. In LB,
the interface is diffuse and even at its sharpest, it will be smeared over 5— 7 [lu], which
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also determines the minimum thickness of the surfactant layer, and is also observed in
previous work on this problem using the LB method [44, 46, 49, 50]. The interface width
here should however be valued in comparison to the domain size L, and if L > Jjyy, the-
oretically the 5—7 [lu] Jin¢ can be scaled to a small enough physical length scale. This
can of course be limiting as larger domains will begin to have prohibitive computational
costs, particularly in regards to memory considering a three component system.

3.4. SPINODAL DECOMPOSITION

Moving to a dynamic setting, we investigate the influence of the surfactant on spinodal
decomposition [76], or phase segregation of the two fluid components. To briefly re-
view this phenomenon, consider a single fluid component initialized in a metastable
state at a sub critical temperate (or T, < 1.0). Random density fluctuations are added to
this component to initiate internal phase segregation where the fluid separates sponta-
neously into liquid and vapor states with densities determined by its EOS. The fluid ini-
tially forms localized droplet-like structures that coalesce and grow over time until the
two phases are completely separated. This process, which is rather similar to Ostwald
ripening in crystallization, is also denoted by the term “coarsening dynamics”.

Additionally, as in our system, a second fluid component may also be present. This
second component can also undergo internal phase segregation if it is modeled as a non-
ideal component by being placed at a sub critical temperature (i.e. T, < 1.0). Or more
simply, repulsion from the first component can make the second component collect in
liquid-like and vapor-like phases (the liquid and vapor densities here deviate from the
Maxwell construction, as these are now formed due to the repulsive interaction with the
first component, so that the bulk of the second component exists in regions where the
first component exists as vapor). In our work, we model all components as non ideal.
The first component, «, is allowed to undergo internal phase segregation by keeping it
at Ty < 1.0, while the second component § and the surfactant s are kept at T, = 1.0. This
ensures that there are no regions in the domain where both components a and f exist
in vapor phases, and a truly liquid-liquid configuration is achieved. Distinction between
the terms phases and components is crucial, as a single component may exist in two
phases, and yet overall the system is liquid-liquid, due to the presence of another liquid
component.

Due to phase segregation interfaces emerge, and depending on the initial density of
the components, either a symmetric or an asymmetric composition is achieved, the lat-
ter of which may result in nucleation or droplet phase separation based upon the initial
density distribution [77]. Many studies [78-82] have reported scaling laws that give the
temporal evolution of the characteristic domain length of the fluid regions growing due
to coalescence over short and long times, for different binary fluid mixtures in both two
and three dimensional systems. The addition of surfactants is expected to inhibit the
growth rate of this characteristic domain length, which was also observed by [44].

To quantify spinodal decomposition, a commonly studied parameter is the structure
factor S(k, ) which is obtained by performing a Fourier transform on the instantaneous
density correlation function g(x, t), and contains information of the evolution of various
length scales in the system [43]. It is calculated as
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2
Sk, 1) = k Y [gx 1) - G(n)] e™> (3.19)
N\X

where g(x, 1) = po (X, )—p px, 1) denotes the density difference between the two com-
ponents at location x at time £, §(¢) is the spatial average of g at each time step and N
is the number of grid points (i.e. Ny x N)). Here k is a two-dimensional wavenumber,
as the Fourier transform yields a two-dimensional matrix of values. To convert this to
a single spatial wavenumber k, the structure factor is averaged over shells in k space to

yield the spherically averaged quantity S(k, £) as

Stk, 1) = ZiSte ) (3.20)
Nx

where the sum Yy is over circular shells defined by k = | /k% + k7, and Ny is the num-
ber of all k; and k, pairs corresponding to each k shell [43]. The wavenumber cor-
repsonding to any length £ is defined as k = 2n/%. Considering the domain length
to be N, [lu] in each direction, the smallest non-zero wavenumber (largest scale) is
kmin = 27/ Ny, while the largest wavenumber (smallest scale) is given by kyax =27/2 =7
(which is similar to a Nyquist frequency). Further, the domain growth represented by the

characteristic length R(#) can be calculated using the first moment of S(k, 1) as

Sk, t
R(1) =2n(M) 3.21)
2k kS(k, 1)
For asymetric phase fractions of the two fluids, R(#) is expected to follow a /3 power

law [81, 83] in the inertial regime where capillary forces are minor.

In our simulations, all three components are initialized with a uniform density field,
where the density ratios are p;ﬁ ~1.44 and p} ~ 10%, Ggp = 0.02 and Sgs = 100. The
denser component « is at a reduced temperature T/ = 0.8 and random density fluctua-
tions (with zero mean) are added to initiate internal phase segregation, the lighter fluid
and surfactant both are kept at T,ﬁ = T7 = 1. The domain size is 512 x 512 [lu]. The
evolution of the a component and the surfactant is shown in Fig. 3.8, for the case with
Ggs = 4.0. It is seen that small localized regions of the heavy component form within a
short time which then coalesce and grow, while the surfactant adheres to the evolving
interfaces.

Next, the structure factor S(k, t) is presented as a spectral density map in Fig. 3.9 for
Ggas = 0.0,2.0,4.0 from top to bottom. Here S(k, t) has been further normalized by the
maximum value at each time step to highlight the relative growth of different scales over
time.

Two distinct evolution regimes can be seen, first being a region of fast growth where
within 1500 iterations small scale structures are formed and there are several contribut-
ing length scales to S(k, 1), which evolve from around k ~ 0.25 to k ~ 0.12. From iteration
1500 to 10,000, a second regime of slow dynamics is observed and the system proceeds
towards a dominant length scale (as is seen from the spectral density showing strongly
concentrated modes, as the spread over k becomes narrower). Over longer times, it is
seen that the dominant wavenumbers are more or less similar for the clean and surfac-
tant laden cases (k ~ 0.05 —0.025), with only slight variation in the evolution profiles.
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(b) Surfactant

Figure 3.8: Normalized density field of component a and surfactant s (with blue to red represent-
ing minimum to maximum value) at Iterations 100, 500, 1000, 2500, 5000 and 10,000 for phase
segregation, with G4 g = 0.02 and G = 4.0. The final volume fractions of « and f are 0.4 and 0.6.
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Figure 3.9: Spectral density map of the spherically averaged structure function S(k, ¢) (normalized
by the total spectral density at each timestep Y. S(k, 1)), with the spatial wavenumber k on the
y—axis (showing only the first 50 values out of the total 256), and the iteration number on the x—
axis which goes from 1 to 10,000. The cases shown from top to bottom correspond to G5 = 0.0,2.0
and 4.0. Initially the distribution peaks around k ~ 0.25, i.e. small dispersed droplets which then
grow rapidly up to iteration 1500 to k ~ 0.12, after which the evolution is slow. We do not observe
any influence of the surfactant on the evolution of $(k, ).

At steady state, we observe that the volume fractions of component a and S are 0.4
and 0.6 approximately, showing that our initial conditions lead to an asymmetric com-
position. The situation obtained is that of liquid droplets of the heavier fluid forming the
dispersed phase while the lighter fluid forms the continuous medium. Upon changing
the initial densities, the reverse was also observed but this has been excluded from this
chapter.

Lastly, the evolution of the characteristic length R(¢) has been shown in Fig. 3.10
for cases with increasing Gq;. No change in the expected !/% exponent is found for in-
creasing surfactant strength. Even though the highest surfactant strength reduces sur-
face tension by 15% for a stationary droplet, this has little influence on the coalescence
behaviour in a dynamic setting. This is not entirely surprising, as currently our surfac-
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tant model does not contain a mechanism for explicitly shielding coalescence, which we
shall shortly discuss.
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Figure 3.10: Growth of the characteristic length scale R(¢) for increasing G5 is shown. No influ-
ence of an increasing surfactant strength is observed on the growth rate of R(#), which follows a
roughly 113 scaling as reported in literature [81, 83].

One of the benefits of the LB method and our modeling approach is the ease of ex-
tension to 3D, with efficient parallelization. We extend our multi component approach
to a D3Q19 lattice to simulate spinodal decomposition in a 256° three dimensional pe-
riodic domain. The same parameters as in the 2D case are taken. Fig 3.11 shows the
density evolution of component a as the white contours in the column g, along with the
surfactant density field thresholded at 75% of the maximum value in column b. These
results correspond to the Ggs = 2.0 case, while G,p = 0.04. The rows correspond to it-
erations 600, 1000 and 2000 from top to bottom. The surfactant adapts very well to the
three dimensional evolving interfaces, in a decaying quasi-turbulent field which is gen-
erated by the conversion of the large initial surface energy (driven by interfacial tension)
to kinetic energy (upon droplet coalescence). It is worthwhile to note the computational
cost of such a simulation. The domain consists of more than 16 million lattice nodes,
and the three component modeling approach with 19 velocity directions in 3D requires
one to store 19 x 3 density distribution values ( fl.”) at each lattice unit which in double
precision amounts to around 8 Gigabytes of memory. Simulating 10,000 iterations took
approximately 10 hours of wall-clock time on 24 processors. A further resolution dou-
bling would make the memory requirements 8 times and computation time 16 times
larger, soon becoming prohibitively expensive.

Fig. 3.11 column ¢ shows composite density fields, with contours of component «
over half the domain and the surfactant density thresholded at 75% of the maximum
value at iteration 1000, for G,s = 2.0 (above) and G, = 4.0 (below). Some qualitative
difference can be seen between the two figures, particularly that the local concentra-
tions of the surfactant are higher (a larger predominance of yellow-green regions). The
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Figure 3.11: Spinodal decomposition in three dimensions is shown, with the contours of compo-
nent a in column a and surfactant density thresholded at 75% of the maximum value in column b.
The three rows correspond to iterations 600, 1000 and 2000. The third column, ¢, shows composite
density fields: the bulk surfactant density (again thresholded at 75% of the maximum value) in the
entire domain along with contours of component a (in white) in only half of the domain - all at
iteration 1000. The value of G4 = 2.0 (above) and G4 = 4.0 (below).

a contours, however, are rather similar between the two cases.

3.4.1. COALESCENCE INHIBITION

Previous research on surfactant laden emulsions has included an additional aspect ca-
pable of abetting inhibition of coalescence. Chen et al. [43], Furtado and Skartlien [46]
and Skartlien et al. [45] consider a dipole orientation of the surfactant that responds to
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a mean field generated by surrounding dipole distributions. This might make it ener-
getically favourable for dipoles to orient in certain manners that prevent droplet coales-
cence. In addition, a long range intra-component repulsive interaction force, in addition
to the short range attraction has been demonstrated to shield droplets in approach from
coalescing without the need of a surfactant component [48, 84, 85]. However, such a
method does not truly represent surfactant dynamics, as it cannot give rise to Marangoni
effects or modify interfacial boundary conditions.

As was seen from the spinodal decomposition studies, increasing surfactant strength
did not prevent coalescence of droplets in our model. This is because despite the accu-
mulation of the surfactant at the interface, there is no mechanism for preventing coa-
lescence from taking place, the components a and g still repel each other to the same
degree as in the absence of the surfactant, such that the resulting film drainage between
approaching droplets still causes them to coalesce. Following this reasoning, we pro-
pose an extension of the current model, i.e. to make Gap a function of the local sur-
factant density. When the surfactant now collects at the interface, it can now alter how
strongly a repels f3, in turn influencing the drainage of component § when two droplets
of a approach each other.

We implement this in our model as

P
Gaﬁngﬁ(l—c[ f;;x] ) (3.22)
Os
where Ggap now varies over the domain, Ggﬁ is the maximum repulsion value (corre-
sponding to the case when no surfactant is present), p; is the surfactant density at a
local lattice node which is normalized by the instantaneous maximum surfactant den-
sity anywhere in the domain p{"®*. Alternatively, the surfactant density could also be
normalized by a pre-fixed value that is large enough to yield a fraction between 0 and 1,
though if the chosen value is too large, the dynamics would not be significantly altered,
which we observed in some unreported simulations. The exponent p = 1 creates a lin-
ear variation in the Ggg profile, which might not be optimal, as immiscibility between
a and B is desired to reduce more rapidly when p approaches p® than when p; as-
sumes smaller values. We set p = 3 after some preliminary testing. Further, ¢ sets the
minimum bounds on the reduction in G,g, and a few values were tested whereafter we
set it to ¢ = 0.5. A similar treatment is done to G4 with p = 3 and ¢ = 0.1, so as not to
drastically alter the intra-component attraction in a to an extent that droplets of a begin
to dissolve away. To demonstrate the influence of this technique, we redo the 2D spin-
odal decomposition cases presented earlier on a 512 x 512 domain, with G, = 2.0, and
the evolution of R(#) is shown in Fig. 3.12.

The cases with varying G, and G, show a flattening of R(z) at a lower value within
5000 iterations with a clear deviation from the t'/3 scaling, as compared to the case
with constant parameters. This shows that inhibition of coalescence can be achieved,
though it should be noted that varying G,p and G, also influences the surfactant den-
sity through the inter-component interactions - the dynamics is hence rather compli-
cated. It was observed (not included in this chapter) that using larger values of ¢ (for
instance ¢ = 2) can result in a change in the sign of G, whereby droplets of a can spon-
taneouly rip apart into smaller droplets. The growth of R(#) in such simulations is also
arrested in a similar way as for the case shown in Fig. 3.12. These simulations did not
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Figure 3.12: Growth of the characteristic length scale R(¢) for two cases of variable and constant
Ggp and Ggq values is shown. The case with varying parameters shows a clear deviation from the

(13 scaling, with R(¢) flattening at a lower value within 5000 iterations.

exhibit an approach to steady state, and the spontaneous generation of small droplets is
qualitatively similar to the formation of microemulsions. Also with this modification, the
force scaling factor in Eq. 3.8 is not required. The surfactant density, despite being low
and interacting weakly with the other components, is sufficient information as a scalar
field that is used to influence other model parameters governing miscibility. This would
ensure momentum conservation in non-periodic domains as well.

3.5. DROPLET FORMATION

Finally, we apply our model to a well known multiphase flow problem, the formation of
a pendent droplet, a phenomena ubiquitous in nature and many industrial processes. It
involves the formation of a droplet at an aperture driven by a pressure difference (here
due to the action of gravity), whereby the droplet grows under the pull of its own weight,
eventually pinching off and falling away - reminiscent of a leaky faucet. This is a complex
dynamical process, the crucial moment being the pinch-off, when the droplet breaks
away from the reservoir fluid jet, and the process repeats until the reservoir is depleted.
We simulate this for clean and surfactant laden cases, mainly focused on illustrating how
the surfactant dynamics is captured by our model. Note that we do not investigate the
physics here in detail - which can form a study of its own, and use this section as a pre-
liminary demonstration.

We simulate this problem in 2D, where a pocket of a high density fluid consisting of
component « in its liquid phase is initialized above an aperture. The surrounding do-
main is occupied by a lower density fluid B, also in its liquid phase. The density ratio
between the components is PZ 5~ 1.4, while p; pupto ©(100) is possible. The surfactant

component is initialized uniformly throughout the entire domain, with p}, ~ 1000. All
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components are non-ideal and modeled by means of the CS EOS, the relevant EOS pa-
rameters being presented in Table 3.3. Because we simulate three components, we are
increasingly restricted by memory limitations, and to keep computational cost modest
the size of the domain is kept to Ny x Ny, = 400 x 900 [lu], with the aperture placed at a
height of 600 [lu] at the center of the horizontal axis, and has a size of 30 [lu ] x 40 [lu]
(width x height).

Once the system achieves equilibrium in a stationary configuration, a gravitational
force is applied to components a and § as F = gp, with |g| = 6 x 107% [lu] to initiate
droplet formation in the dripping regime in the absence of an imposed velocity. This
strategy resembles the production of droplets by a push-mode piezoelectric Droplet-on-
Demand ink jet print head. Dong et al. [86] describe such a drop formation process in
terms of three stages: a first stage, in which the droplet gradually grows while pending,
followed by a second stage of stretching and necking, after which the droplet is released
and the elongated neck contracts and forms the start of a new droplet.. The domain is
periodic in all directions, which ensures a continuous production of droplets, and the
simulations are run for 2 million iterations, while collecting droplet statistics every 200
iterations. These simulations take roughly 48 hours of wall-clock time when run in par-
allel on 15 processors.

The cases simulated are presented in Table 3.4. For the “Clean” case DF1, there
is no interaction between the surfactant component and the two liquid components,
such that this is effectively a two component system. For the surfactant-laden cases, we
turn on interaction between the surfactant and the fluid components, the strengths of
which are presented in Table 3.4. The cases DF2 and DF3 are formulated such that the
surfactant is slightly more soluble in component @ and S respectively. This is to first
demonstrate how such a miscibility can be achieved, as it is often found in real systems.
Secondly, this alters the modification of surface tension by changing the pressure drop
across the droplet interface, due to the presence of the surfactant. To the best of the au-
thors’ knowledge, this is also the first study to simulate the formation of a droplet for a
multicomponent multiphase system with non-ideal fluids and a non-unity density ratio.

Fig. 3.13 shows the droplet formation process, with component « (in red) suspended
in component S (in blue), for the clean case (DF1) in the top row. We observe the forma-
tion of a stretching neck that pinches off droplets which eventually fall off. The periodic
boundaries of our domain in the direction of the body force causes the exiting droplets
to re-enter the domain above the aperture (not shown here) and merge with the heavy
fluid reservoir. The middle panel shows the same for case DF2, while the bottom panel

a B N
a 0.006875 | 0.0073429 | 17.623
b 0.18727 0.25 600.0
T, | 0.8 1 1
pr | 77 5.3 0.002
py | 0.05 0.05 0.002

Table 3.3: Equation of state parameters used for the droplet formation simulations. Here p; and
pv represent the component densities in the individual liquid and vapor phases respectively, and
are values used to initialize the simulation.
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shows the surfactant density field normalized with the maximum value for DF2.

Several features here are worth noting. Qualitatively, we can see that at iteration
18,000 while the droplet is still attached to the jet for the Clean case, for the DF2 case
the droplet already breaks off, which may be attributed to the reduced surface tension
in DF2. Further, in the surfactant density evolution, vacuous blue regions with very little
surfactant density are formed when the droplet breaks off, forming temporary surfactant
depletion regions. Transport from the bulk and the internal surfactant repulsion replen-
ishes these regions over time. Also, the surfactant density is higher at the trailing edge of
the droplet interface, as the surfactant is swept backwards by the flow.

Around 1200 droplet formation instances have been identified during the entire sim-
ulation, which are then used to calculate the probability distribution of the equivalent
droplet radii R, (found by equating the droplet area to a circle with equal area), droplet
major axis L, duration between successive droplet formation instances Alt and the droplet
center of mass position in the lateral direction X, (which shows how much the droplet
oscillates from the central vertical line, where it was produced). The PDFs of these quan-
tities are shown in the first four panels of Fig. 3.14. The PDF of req shows that the clean
case (black curve) has a strong peak at Req = 29. The DF2 case does not drastically alter
the PDE though the peak shifts to around Req = 32 which could be due to a slight thicken-
ing of the interface with the presence of the surfactant (as was also encountered in previ-
ous sections). For DF3, where the surfactant is slightly more soluble in the surrounding
fluid, the peak drops significantly, and a larger number of droplets with Req < 30 are
formed. This trend is similar for the droplet major axis L, which is the lateral extent of
the droplet when it is not perfectly circular. Note that with the interface width being
around 6-7 [lu], statistics below R.q = 15 and L = 15 would not be meaningful.

The PDF of the interval between droplet formation shows a few interesting features
of the dynamics governing the problem. For the clean case, a strong peak is seen around
Alt = 3500, and a slightly smaller peak around AIt = 1750. The first one corresponds to
a primary droplet break-off event, following which the depleted fluid jet retracts slightly
towards the aperture due to surface tension, and it slowly begins to grow again as more
fluid flows through the aperture. After some of the droplet pinch-off events following
this dominant mode, there is a secondary pinch-off of a smaller droplet, which is also
reflected in the PDF of Req. For the DF3 case, the PDF appears flattened as droplet for-
mation becomes more irregular due to the intermittent presence of the surfactant (as
seen in Fig. 3.13), resulting in the smaller droplets pinching off over a shorter timescale,
and larger dropelts taking longer to do so.

The PDF of Xy, — X normalized by the domain width W, (with Xj the center of the
domain in the horizontal direction), is very similar for all three cases, with some qual-
itative differences. Generally, we expect droplets to fall along the central axis without

DF1 DF2 DF3
Ggp | 0.0085 | 0.0085 | 0.0085

Gas | 0.0 4.2 4.0
Gps | 0.0 75 5.6
Sas | - 100.0 | 100.0

Table 3.4: Interaction strengths for the various cases.



96 3. MODELING SURFACTANT LADEN EMULSIONS WITH PP-LB

O
It =9000 It = 18000 =40000 It = 100000

A

v

max

p/oM — T ——
0.0 0.5 1.0

Figure 3.13: Density fields from droplet formation simulations at various time steps show the lig-
uid a in red (B in blue) for a clean case (top row), liquid « for a surfactant laden case (middle row)
and the surfactant density s (bottom row). The black bands represent the aperture. It can be seen
that the surfactant laden case accelerates droplet breakup in the initial period (due to a reduction
in surface tension). The surfactant is seen to closely follow the evolving interfaces, with a higher
concentration at the trailing edge of the droplet.
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Figure 3.14: Probability distribution of the droplet equivalent radius P(req), droplet major axis
length L, duration between successive droplet formation events Alt and the droplet center of mass
in the lateral direction X¢py, is shown for the clean (DF1) and two surfactant laden (DF2,DF3) cases
for the droplet formation problem in the first four panels. The bottom two panels show the critical
Reynolds and Capillary number just after droplet pinch-off for DF1 and DF3, where the presence
of the surfactant is seen to significantly alter the dynamics.

oscillations in the lateral direction as there is perfect symmetry across the central axis.
This is true for the initial stages of the simulation (upto the formation of = 150 droplets
and ¢ < 200000 A¢). As we use vertical periodicity to ensure a continuous and steady sup-
ply of the droplet fluid, the droplets coalesce with the small reservoir above the aperture
after re-entering the domain. This in turn generates some long wavelength oscillations
in the free surface, which are sustained due to frequent droplet coalescence. The vertical
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extent of the reservoir is not sufficiently large to completely damp these perturbations
out and they later begin to weakly interact with the fluid jet at the aperture. As these free
surface oscillations are not perfectly symmetrical across the central axis at longer times
t > 200000 At (where even machine level inaccuracies might amplify over time due to
the inherent non-linearity of the process), the liquid jet begins to swing with a low fre-
quency and low amplitude oscillation which causes a slight spread in the center of mass
location of the newly formed droplets. This could be remedied by having a much larger
reservoir above the aperture, and the behaviour may be less prominent at higher density
ratios where the gravitational pull will dominate any lateral lift forces. Notwithstanding,
this effect is minor in our simulations, and even the maximum lateral shift (= 9% of W)
is slightly larger than the aperture width i.e. 7.5% of W.

A critical Capillary and Reynolds number can be ascribed to the droplet just after
pinch off as

L
ReCl‘ = &
U
Can =¥ (3.23)
o

where L is the lateral droplet extent, o is the surface tension, and p and u are the
density and dynamic viscosity of component  (the surrounding fluid). Here v is taken
to be the characteristic droplet velocity calculated as the mean vertical velocity inside
the droplet as

(3.24)

where i goes over all the N points comprising the interior of the droplet region. From
the Fig. 3.14, it was seen that in case DF3, the droplet characteristics change more sig-
nificantly as compared to the clean case. We show the PDFs of the critical Re and Ca
numbers for the clean and DF3 case in the last two panels of Fig. 3.14. The surfactant
significantly alters Re, and the distribution shifts to a wider range of lower Re, values,
between 6 to 10 for the DF3 case. The surfactant also shifts the peak of the Ca., PDF
from a value of Cag; = 0.4 to Cac; = 0.2. The presence of the surfactant reduces surface
tension, but also causes the formation of smaller droplets which typically have a lower
fall velocity. These changes together influence Cacr, which is found to reduce here. If
p and v are kept constant, surfactant induced surface tension reduction would increase
Ca. Controlling these effects individually, however, requires much more precise prob-
lem formulation and further investigation. In future work, we intend to test the model
for realistic flow problems, along with validation and comparison to existing literature -
which was not yet done during this developmental period and parameter space investi-
gation we present in this chapter, as that can comprise a work unto itself.

3.6. CONCLUSIONS

We have presented a pseudopotential lattice-Boltzmann method to simulate liquid-liquid
emulsions with a slightly soluble surfactant component. This is a step towards simulat-
ing realistic fluid mixtures, that are inevitably surfactant laden, while numerical simu-
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lations of multiphase flows have traditionally dealt with pure fluids owing to the com-
plexity involved in simulating surfactant dynamics while resolving fluid motion. The
novelty of our work is that we use a simplified model for the surfactant in comparison
to previous papers. More specifically, our approach is a simplification of the Chen et al.
[43], Nekovee et al. [44] model, as we ignored orientational effects of the surfactant - an
assumption we allowed ourselves to make as we did not intend to study complex ag-
gregate behaviour attributed to dipole dynamics. We think that a simplification is also
welcome as the original model is quite complex - and has hence not found widespread
application. Further, we wish to see how well a simplified model compares to existing
methods and what kind of physics it can simulate.

First, a single component pseudopotential LB model was validated for a non-ideal
fluid component against the Maxwell reconstruction of coexisting phases. After adding
a second fluid component to the system, the model was validated against the Laplace
law for surface tension of a stationary droplet. While simplifying the model for the sur-
factant, we indeed used a slightly more complicated model for the fluids. Using non-
ideal equations of state to model the fluids is a continuation of our previous work where
we intend to simulate realistic fluids. Additionally, this method allows for simulating
flows with a wide range of density ratios, which is not feasible with the classic Shan-Chen
based models, and neither has it been reported in other work cited in this chapter.

Thereafter, a third surfactant component was added to the system in such a way that
it is repelled by the two fluid components, hence aggregating at the interfaces. A pa-
rameter study was performed on a stationary, surfactant laden droplet in 2D to demon-
strate the influence of varying the model parameters like the various repulsion strengths,
the surfactant viscosity, EOS parameters and the reduced temperature of the surfactant.
Upon defining a surfactant strength parameter A, surface tension reductions with re-
spect to a clean interface up to 15% were found to vary with A according to, roughly, a
Langmuir type of isotherm. To the best of our knowledge, we are the first to demonstrate
surface tension reduction for a surfactant laden droplet following roughly Langmuir-like
kinetics from purely pseudopotential particle interactions. All other models addressing
this problem work with pre-set thermodynamics (where an isotherm is fixed), whereby
in our approach this emerges from more fundamental interactions.

This simplistic surfactant model, despite the surface tension reduction, was found
incapable of arresting phase segregation in 2D and 3D spinodal decomposition, achiev-
ing which requires an additional mechanism. We proposed varying the liquid-liquid re-
pulsion parameter depending on the local surfactant density, which achieved this effect
to some extent. Additional mechanisms like longer-range interaction forces have also
been proposed in existing literature to achieve a similar effect. We also performed 3D
spinodal decomposition, where the surfactant was shown to closely follow the dynamic,
complex interfaces, making the model viable for future applications to more realistic
droplet laden systems in 3D.

Finally, the model was demonstrated for a well-known physical problem - the forma-
tion of a pendant droplet in a liquid-liquid system for both clean and surfactant laden
cases, in 2D. The density ratio simulated was p* = 1.4, as we focus on emulsion-like sys-
tems. The surfactant was capable of greatly altering the droplet distribution, abetting
the formation of more numerous smaller droplets, which we ascribe to the reduced sur-
face tension in the surfactant laden system. The critical Capillary and Reynolds number
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distributions were also significantly altered. We have also found local differences in the
surfactant density between the nose and rear side of pendant and falling droplets.

Our model could also be applied to simulate liquid-gas systems in the presence of a
surfactant, and is one of the first studies to simulate three non-ideal fluid components.
In future work, we shall investigate the currently observed surfactant effects more closely
to see whether the model can simulate Marangoni flows, which remains to be ascer-
tained. Further, we intend to more quantitatively compare our model to flow problems,
like shear induced breakup of surfactant laden droplets and droplets in turbulent flows.
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A STRUCTURAL VIEW OF
TURBULENCE

“Big whorls are streams, potential,
surrounding mild curls generate them.
Small whorls are lonely whirlwinds,
yet, experts tend to venerate them.”

The concept of flow ‘structures, though ill defined, has fed the imagination of turbulence
researchers for almost a century. Referred variously to as ‘eddies’ and ‘vortices, these en-
tities have remained elusive to definition and characterization, and yet been at the core
of many theories, for instance the famous ‘turbulence cascade’ of Richardson [1]. Intrigu-
ingly, ample evidence has been gathered for the existence of these structures, their dynam-
ics and interactions in different representational spaces and flow decompositions (for in-
stance Fourier/Wavelet domains, POD etc.). Yet, in the real physical space where these
structures were originally envisioned, they have not been amenable to characterization.
Most studies, further, employ techniques based upon the velocity gradient tensor, all of
which being point criteria, may not reflect spatially finite, non-point structures in the ve-
locity field. The lack of tools to identify instantaneous, spatial structures in turbulence
fields, coupled with the confounding superposition of scales that obfuscate coherent flow
regions, aggravates the situation. In this study we propose new coherence measures, in-
spired by a generalization of the correlation tensor, which suitably identify distinct regions
of high kinetic energy and high enstrophy. By further utilizing the Helmholtz decompo-
sition of the velocity field, these coherent structures are disentangled from their state of
superposition. This paradigm allows us to identify the regions of the vorticity field which
generate, in a Biot-Savart sense, two distinct flow types (as summarized in the epigraph).
This study sheds new light on the organization of turbulence fields, hinting perhaps at
a more ‘emergent’ picture of turbulent flows, where the permeating intermediate back-
ground vorticity generates most of the flow field, rather than a strict ‘hierarchy’ of large
scales generating smaller scales.

This chapter is to be submitted to the Journal of Fluid Mechanics, 2019.
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4.1. INTRODUCTION

“Structure” in a field can be defined as a certain distribution of the properties of the
field in a region, characterized by a small number of parameters, which can be described
(deterministically) in a “simple way”. For instance, in a velocity field, swirling motion can
be considered as a kind of structure, which brings to mind examples such as a tornado,
cyclone or a simple bathtub vortex. The concept of structure in flow fields immediately
also invokes the notion of “coherent motion”, one interpretation of which is: regions of
the flow that have a certain spatial pattern (for instance a swirling motion). This idea of
structure can also be understood by considering its opposite, i.e. a structure-less field,
which mathematically may be defined as random.

The structure in a general field, and in particular in a velocity field, can be the result
of (arbitrary) choices in constructing the field and of the (intrinsic) dynamics of the field.
For example, the addition of a translation or a rotation generate a “coherent motion” that
is not related with the intrinsic dynamics of the velocity field. The pattern of the field at
infinity can be seen as the result of arbitrary choices, and it can be “removed”, in order to
obtain patterns associated with the (intrinsic) dynamics of the field. In classical Newto-
nian mechanics, this is equivalent to observing motion with respect to the “distant stars”.
The use of correlation and Helmholtz decomposition concepts allows the generalization
of these ideas. The spatial correlation of the field over a sphere with an infinite radius can
be made zero by performing an opposite transformation in the field (eg. a translation or
a rotation). From a Helmholtz decomposition perspective, this is equivalent to making
the generalized Biot-Savart contribution of the infinity-field (far-field contribution from
“large distances”) equal to zero.

Turbulent flows have been found to be very rich in structure across different repre-
sentational spaces, so much so that turbulence has been held synonymous to structure
[2]. Moreover, turbulent flow fields are intriguing due to the superposition of structure
and randomness across scales; its uncovering and characterizing has garnered profound
interest over the past decades. In describing velocity field structures in turbulence, a key
idea often used, albeit ill-defined, is that of the “eddy”, which also refers to coherent re-
gions of swirling motion. The superposition of eddies (or coherent motion across all
scales) has served as the conceptual background upon which most of turbulence the-
ory has been built [3, 4]. How these coherent structures arise across all scales, and what
they look like, however, is not fully known. In this paper, we are interested in finding out
whether the finite-sized spatial structures comprising turbulent flow fields can be identi-
fied and isolated in the vector spaces where they arise. Further, we are interested in con-
sidering instantaneous structures which are continuously produced and destroyed, and
are not the result of averaging ensembles of the flow field. These structures may range
from the largest, energy containing scales on one end, which according to a conven-
tional “cascade” perspective, drive the turbulence dynamics, to structures at the small
scales associated with the dissipation of kinetic energy. In this framework, it should be
noted that the smallest scales are merely a consequence of the turbulence dynamics, and
are hence not dynamically significant in determining the overall flow [2].

There have been various approaches aimed at identifying coherent structures in dif-
ferent contexts that are prevalent in the turbulence literature. Most widely used are tech-
niques based upon the velocity gradient tensor A;; = 0u;/0x; and its symmetric (S;;)
and skew-symemitric (Q;;) parts. For instance [5] define a criterion (called 1) based on
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the eigenvalues of the local pressure Hessian which is related to S;; and Q;;. [6] used the
second and third invariants (Q and R) of A;}, originally used to characterize the topol-
ogy of point flow patterns [7], and [8] used the strain acceleration tensor along fluid tra-
jectories. [9] use a wavelet decomposition to identify coherent and incoherent vortic-
ity structures, [10, 11] studied statistically emerging lower dimensional attractors, while
others have extensively studied Lagrangian structures crucial for material transport [12—
14]. Non-linear equilibrium solutions have also been classified as exact coherent struc-
tures [15-17]. [18] studied spatio-temporally coherent vortical structures, while [19] and
[20] investigated the structure of strong vorticity (worms) in homogeneous, isotropic tur-
bulence and [21] showed their large-scale spatial organization.

These (and many other) studies and techniques have greatly informed our under-
standing of coherent structures in turbulence. However, the basic concepts of a hierar-
chy of coherent structures (as invoked for instance in the [1] cascade), or the energetic
interaction of eddies [22] and eddy breakup, have remained intractable in the physical
spaces where these ideas were first envisioned. Some of these, to the contrary, have been
well described in the wavelet and spectral decomposition of turbulence fields [23, 24].
Part of this disconnect is due to the lack of tools designed to identify instantaneous spa-
tial structures which may be driving these processes. The other issue is extracting these
structures from their obfuscating scale superposition to study their form and dynamics.
In order to address these issues we use correlation concepts and Helmholtz decomposi-
tion concepts. These concepts allow us to remove artificial velocity patterns associated
with the arbitrary choices in constructing the velocity field (eg. frame of reference) and to
identify and extract flow structures from the turbulence field. We deal with incompress-
ible, homogeneous, isotropic turbulence, with a zero mean velocity, hence the removal
of a velocity pattern associated with an “artificial frame of reference” is not an issue. We
approach the concept of coherent structures arising in incompressible, homogeneous,
isotropic turbulence with a focus on the following key aspects:

1. Finite structure size - We consider a “coherent motion” or an “eddy” to be a fi-
nite, spatial structure, that represents a unit of coherent motion. It must hence
have a spatial form, that is to say, it cannot be completely irregular. Coherence,
in this context, becomes almost synonymous to correlation, as an ordered spa-
tial structure must comprise of a neighbourhood of vectors that are strongly cor-
related (either positively or negatively). Here it becomes important to highlight
the distinction from point-criterion used for educing structures, which are based
on the velocity gradient tensor (or derivatives thereof, like Q, R etc.). These tech-
niques describe point structures, reasoning from the Taylor expansion perspective
of the velocity field in the infinitesimal neighbourhood of each point in the flow
field. Structures in the flow field, however, are finite regions of spatio-temporal or-
der, and may not necessarily be related to velocity gradients at individual points
within the field. In this study, we identify coherent structures in velocity and vor-
ticity spaces, by developing “correlation” measures that are designed to seek out
their particular spatial forms.

2. Instantaneity - Spatial structures in turbulence vector fields exist instantaneously,
and are not consequences of statistical or averaging procedures. In fact, a struc-
ture will have an entire lifecycle, from generation until destruction (driven by the
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dynamics of the Navier-Stokes equations). While ignoring the temporal evolution
of the structures, in this work we limit ourselves to identifying structures in instan-
taneous realizations of turbulence fields, hence considering only the geometry of
structures and not their kinematics or dynamics.

3. Disentanglement of structures - The complexity of turbulence fields is due to the
superposition of structures, which makes it difficult to extract and study an indi-
vidual structure. According to the generalized Biot-Savart rule, which follows from
the Helmholtz decomposition of the velocity field, a localized velocity region is
generated by the integrals of quantities associated with the gradients of the ve-
locity. This includes both the near-field and the far-field contributions. The Biot-
Savart rule provides a paradigm for disentangling structures, where the gradient
field can be conditionally sampled based upon suitable criteria, and the contri-
bution of these regions to a local, finite velocity structure can be isolated. We use
this method to identify regions of the velocity gradient field which ‘generate’—in a
Biot-Savart sense—a particular velocity structure.

The tools developed in this study, namely a set of generalized correlation measures,
along with velocity reconstruction using the Biot-Savart law, allow us to look at turbu-
lence fields from a different perspective. They enable us to identify the structure of high
kinetic energy and high enstrophy regions. The Biot-Savart reconstruction, further, re-
veals the distribution of the vorticity contributions in the generation of the velocity field.
This paves the way for studying the interplay between the different components of tur-
bulence, when considered as a dynamical system comprised of interacting structures.
Our results point towards a novel description of turbulence, in particular, regarding the
emergence of flow organization.

The layout of the paper is as follows. We begin by proposing different instantaneous
coherence measures in section 4.2, which are designed to identify simple structures,
based upon a generalization of the correlation tensor, along with correlations associated
with the Biot-Savart law in section 4.3. These correlations are first applied to canonical
flows in section 4.4, where some of their features are highlighted. In section 4.5, the cor-
relations are applied to homogeneous, isotropic turbulence flow fields, where the par-
ticular flow structure of the large (energy containing) and small (enstrophy containing)
scales are identified. These results are shown to be essentially similar to those obtained
upon using a reference dataset in appendix 4.A. In section 4.5.6 we perform the Biot-
Savart decomposition of the flow structures to show that the vorticity composition of
the velocity field structures, following which we end with the conclusions of this study.

4.2, GENERALIZED CORRELATION

Correlation, in its most general form, can be interpreted as the relation between one re-
gion of phase-space with another, the two regions and their relation (most often taken
to be, but not limited to, linear) being defined based upon certain rules when viewed
from another fixed region of observation. This can be expressed as the relation between
R1(A,91) and £, (S,T>) as viewed from Z,(F, T ), as illustrated in figure 4.1. Here
& denotes a bounded region in phase-space (which could, for instance, be the velocity
or momentum when considering fluid flow, or could comprise other phase-space vari-
ables) and 9 denotes a set of time slices in the entire world-line of the system’s evolution
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Figure 4.1: Correlation between generalized regions %, and %> as observed from 2, (where each
region is defined by a surface . in phase-space over individual time-sets J). Using a function ¥,
these regions are mapped onto a correlation space producing a region shown here as €.

(which in most simple cases is a single instance of time for each region, as used in the
usual two-time correlation). Based upon a set of rules given by any function ¥, defined
over A, 5, %, 91,92,9,; the phase-space can be mapped to a correlation space ¥,
with appropriate dimensions, based upon the definition of .

The usual two-point correlation tensor defined for turbulent flows can be seen as a
simplification of this generalized definition. We first explain this via analogy, and then
re-define the two-point correlation at a higher level, to contain more information, start-
ing with its usual definition, which is given as

Rijx, 1) =(uiX, Dujx+r,1)) .1

where £;; is an instantaneous measure of the spatial correlation between velocity com-
ponents, and {-) denotes ensemble averaging. This is done by sampling %; ;, at different
positions x and times ¢, for different values of the spatial separation r. For homogeneous,
isotropic turbulence, ensemble averaging is equivalent to spatial averaging, and this pro-
cedure gives an average measure of the correlation as a function of the radial distance
r = |r| alone, regardless of the orientation of the r vector. As the choice of r itself is arbi-
trary and spans all directions of space, the velocity components u; are considered along
three orthogonal directions which can be given as e; || r, e2 Lr and e3_L (r, e,). This yields
the three correlation functions f(r) (longitudinal), g)(r) and g»(r) (transverse) respec-
tively, which can be integrated over r to get integral lengths, after normalizing % (r, 1)
with (u; (x, £)u;j(x, 1)).

Now, first, in comparison to the general correlation defined earlier, each instantiation
of the correlation %;; is defined between two points separated by r, hence the regions
& are reduced to points. Secondly, the point of observation .#, coincides with the first
region .41, and it is related to the second region (i.e. also a point) .5, which is separated
from A by r. This is done at time #, hence the regions are also defined at the same
time instance and the time-set 9 also reduces to a single instant. The function ¥ is
defined over the velocity phase-space (u;, uj, ux) as the product u; (x, t) uj (x+r, t), hence,
it produces a tensor with 9 components. Note that if the velocities u; and u; are further
considered at different times, one would arrive at the two-point two-time correlation
(and 9 would be different time instances).

To make %;; more general, instead of employing the ensemble or spatial averaging
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mentioned above, an individual correlation function can be calculated at each point x.
Further, instead of looking at spatial separation r alone (i.e. averaging %;;(r) over dif-
ferent realizations of r), it can be defined as a function of the direction while looking
around from a point. In 3D space, this direction can be specified by two angles (and with
only one angle in 2D) i.e. the azimuthal angle a and an elevation angle , which gives
the direction vector ryg (i.e. a vector r which points along the direction specified by a
and B, looking around from a point x). Hence, the more generalized form of the correla-
tion tensor can be written as %; (X, rqp, 1), which is a function of seven scalar variables,
namely, x, y,z, t,r,a and f, where x, y and z are the Cartesian components of x and r is
the length of ryg. It can be expanded to the matrix form, omitting time dependence ¢, to
yield

uiXuiX+rgap) UiXujX+rep) Ui X upX+rep)
@,’j(x,l‘ap) = ujx u,'(x+raﬁ) UjX)uj(x+rep) uj(x)uk(x+raﬁ) (4.2)

uk(x)u,-(x+raﬁ) uk(x)uj(x+raﬁ) uk(x)uk(x+raﬁ)

This contains a lot of information, which needs to be reduced for practical reasons.
So, instead of considering the entire % matrix, we work with one of its invariants, the
trace, which is written as

tr (R j(X,¥ap)) = Ui (X) 1 X+ Tap) + Uj(X)Uj (X+Tap) + Up(X) U (X+Fap) 4.3)

This is also the dot product between the velocities at points x and x +rqg, if we retain
afixed i, j, k basis, independent of the vector r,, 8

tr(2;j(x,1ep)) = uX) - X +rqp) (4.4)

A further reduction can be performed by integrating this quantity along directions
specified by r, g to associate an integral length L,g(A) along each direction as

A
Lap(x,N) :f u(x)-u(x+ra,5)dr (4.5)
0

The generalized correlation is hence reduced to a two-dimensional manifold around
each spatial location x, as illustrated in Fig. 4.2, the shape of which is a function of the
integration length A. The size of this surface is a measure of the extent of correlation, or
coherence, across the central point in every direction around it over a distance A.

These manifolds can be calculated for any velocity field, by binning the angles «
and f into discrete increments. However, given that we shall utilize numerical datasets,
the resolution of these angles will depend significantly upon the resolution of the data,
where high resolution simulations will be required to accurately describe even a smaller
subset of angles. The complexity of calculating this for the entire velocity field over a
domain of N® will be N® (i.e. roughly N3 dot products for each point, for each value
of A). For further simplicity, and with the view to identify structures in the flow, we in-
stead consider Lap(x,A) along three orthogonal i, j, k axes (where i, j, k themselves are
arbitrary, but orthonormal, bases), to reduce the manifold Log(x, A) to a pseudo-vector
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Figure 4.2: A correlation surface around point x, defined by a length Lyg found by integrating
R; i (x,1rg /3) upto distance A along a direction specified by the angles a (azimuth) and S (elevation).

L(x, A), which can be summarized as

LX(X)A) A
Lx,A) =] LyxA) |, where Li(x,A):f uX) -ux+r;)dr (4.6)
-A
LZ(XyA)

where i € {x,y,z} varies along the three spatial directions. This quantity is a pseudo-
vector, since it does not change sign if the coordinate axes is reversed. This follows natu-
rally from the fact that the original quantity Lqg(x, A) was a function of the direction, as
well as the integration length, whereas L only depends on the limits of integration along
a particular axis. This correlation can be expected to yield large values when (i) the local
flow streamlines are parallel to each other, i.e. well-aligned (such that u(x) and u(x+r;)
are similar) and (ii) when the local magnitude of the field is high. This above definition
of L does not include an implicit normalization which, for instance, could be achieved
by dividing L;(x, A) by the integral of the kinetic energy along the i direction, within the
limits —A < x; < A. The current definition is expected to identify regions of the flow
which contain both structural organization (in the manner of parallel streamlines), and
a large field magnitude. Normalizing the correlation can allow identifying regions with
structural organization alone, while disregarding the field magnitude. Different forms of
the correlation can hence be defined, to educe different aspects of structural organiza-
tion. For the present study, we do not normalize the correlation definitions. A slightly
different way of constructing the L correlation can be

Ly.(x,A) A
LSx,A) = L;(x,A) , where L}(x,A) =f ux-r;)-ux+r;)dr 4.7
0
LS(x,A)
with the main difference being that in the definition of LS, the correlation function
along an axis is constructed by the dot product between velocity pairs equidistant from

x, symmetrically, along a given axis (hence the notation L’ for L-symmetric). This cor-
relation is also expected to yield high values when the flow streamlines are parallel (or
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(b) In the LS correlations, velocity pairs equidistant from the point x are correlated, between 0 <
Ir;| < A. These pairs are marked by the same symbol.
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Figure 4.3: Schematic of the L and LS correlations shown along the x direction.

anti-parallel) in the A—neighbourhood, although, this definition can be expected to be
more sensitive to the symmetries in the field. These two definitions are illustrated in
figure 4.3.

The idea above can be applied to any vector field. In particular, correlation pseudo-
vectors G(x, A) and G5(x, A) can be calculated for the vorticity field, which are then given
as

A
Gx,A) where Gi(x,A):f wX) - wx+r;)dr (4.8)
-A

and

A
G%(x,A) where Gf(x,A):f wXx-r;) - wx+r;)dr 4.9)
0

The G correlation is expected to yield high values in regions where (i) the vorticity
streamlines are parallel to each other (well-aligned) and (ii) where the value of the vor-
ticity (or enstrophy, which is w?) is high. These regions of high vorticity magnitude are
related to the smaller scales of turbulence, and correspond to the long intermittency
tails of the vorticity distribution (i.e. & > o' where o’ = (w?)"'%). The G* correlation is
the vorticity field equivalent of LS, and is expected to be more sensitive to the symme-
tries in the vorticity field. It has been shown that strong vorticity forms clusters of the
size of the inertial range [21]. These structures are highly intermittent and significantly
influence particle dispersion and scalar mixing due to the high acceleration generated
around them [25, 26]. Although, it is not usually emphasized that these structures are a
consequence of the turbulence dynamics, and are not responsible for driving the turbu-
lence dynamics, which is governed by the larger scales [2].

The correlations defined so far consider the velocity and vorticity fields separately,
however, other correlations can be defined which use both these fields, exploiting the
relation between the velocity and vorticity. By definition, the vorticity w is defined as
w =V xu. The velocity field, in turn, can be reconstructed from the vorticity field using
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the Biot-Savart law. This serves as an important tool to identify as well as disentangle
structures, and is briefly reviewed below.

4.3. BIOT-SAVART RECONSTRUCTION AND ASSOCIATED CORRE-

LATIONS
We start with the Helmholtz decomposition which states that a twice continuously dif-
ferentiable vector field, which for an infinite region is regular at infinity, can be expressed
as the sum of an irrotational and a solenoidal vector field. Applied to the velocity field u,
this can be written as
u=Vp+Vxy (4.10)

The scalar (¢p) and vector () potentials relate to the divergence (V-u) and curl (w = Vxu),
satisfying the conditions

V2p=V-u (4.11)
Vi =-w (4.12)

Eq. 4.10 can be written as the generalized Biot-Savart formula (for details refer to, for
example, [27]), by writing out the form of the scalar and vector potentials as

1 V-wr ., 1 n-wr
Vo =— -— ds 4.13
¢ an Jy P 4nJs IrP @13
1 wXr 1 (mxu) xr
=— av' - — | ———ds’ 4.14
e 4an ] anls” P @19

where r is the position vector from a particular point in the volume V (or the surface
S), to the point where the Biot-Savart integral is being evaluated. In both eq. 4.13 and
eq. 4.14, the first term represents the contribution from the potential in the volume V
(i.e. the near-field contribution), while the second term represents a surface integral over
the bounding region S (which includes the far-field contributions, from the surface up
to infinity). The surface integrals, for large V' (or periodic domains) converge to a con-
stant: this constant can be made equal to zero by adding a constant to the velocity field;
i.e. by choosing the “appropriate frame of reference” (the frame of reference eliminates
the contribution from the infinity-field). Further, the first term in eq. 4.13 is also zero
when considering incompressible flows (as we do in this study), since V-u = 0 due to the
continuity condition. This reduces the generalized Biot-Savart relation to that valid for
incompressible flows, which is given simply as

wxr

1
ux) = 4— (4.15)

v I
The above integral allows a way to disentangle flow structures by isolating the contri-
butions from different vorticity regions to a local velocity structure. For instance, local
and non-local vorticity contributions can be separated using this paradigm, or the vor-
ticity field can be conditionally sampled to identify the contribution of different vorticity
levels in generating a local structure.

Note that even though far-field vorticity contributions (the surface integrals in eq.
4.13 and eq. 4.14) may be absent, the volumetric region can also be split into an isolated
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VnL

Figure 4.4: Schematic of a Biot-Savart reconstruction of the velocity field in a region V1, from three
isolated non-local regions V7, V» and V3. When the region V;, has negligible vorticity of its own, the
flow generated the region by the non-local vorticity contributions is a potential flow which can be
given by the gradient of a potential V.

local region (V1), surrounded by the non-local region (V1) which essentially behaves as
a far-field. This leads to the consequence that if the local region has negligible vorticity
within V;, while the non-local region Wi, induces a flow within 17, then it must be a
potential flow. This means that the local flow in V7, can be described by the gradient of a
harmonic function ¥ as u;, = —V¥, while V- V¥ = 0. The non-local contributions from
VN1 cannot generate vorticity within the local region 14, (as illustrated in figure 4.4). A last
feature to note regarding the Biot-Savart law is the rapid decay (of 1/r? over a distance r)
of the vorticity contribution, which means that a small, isolated vorticity region cannot
extend its influence over a large distance beyond its immediate neighbourhood.

4.3.1. CORRELATIONS RELATED TO THE BIOT-SAVART LAW

Ideas associated with the Biot-Savart law can be used to define different correlations in
order to identify, extract and disentangle structures associated with the relation between
the velocity and vorticity fields. In regions of strong vorticity associated with swirling-
flow, the Lamb vector i.e. w x u yields high values. Although, this is again a local quan-
tity. We propose a correlation which utilizes this idea and extends it to a non-local form,
where the vorticity at a point x, is correlated with the velocity at point x+r;, leading to a
pseudo-vector H(x, A) which can be written as follows

Hx,A) where Hi(x,A):f

A (w(x) X I;
-A

)~u(x+ri)dr (4.16)
[r;]

The above correlation has a flavour of the Biot-Savart law, and it allows correlating
the contribution of the local vorticity to its neighbouring velocity field with the global
vorticity contribution to the same, since the velocity u(x +r;) can be seen as an integral
result of the global vorticity field. Note that with the above definition, H(x, A) will tend
to be orthogonal to w, as H, (i.e. H along the x—direction) will have a high magnitude
when the vorticity is large and orthogonal to the x—direction.
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Since the vorticity at a point generates flow, in a Biot-Savart sense, in the plane or-
thogonal to the vorticity vector, a more natural correlation definition is proposed which
takes into account this fact. This is done by correlating the vorticity along a particular
direction, say x, to the flow in the orthogonal plane, i.e. yz. At each point, a velocity field
is generated using the x—vorticity (i.e. wy) in the orthogonal yz—plane, along perimeters
of circles of radius 0 < r < A. These velocity vectors are calculated with a simplification of
the Biot-Savart construction, i.e. by taking the cross product of vorticity with unit vectors
in the orthogonal plane (ry;/|ry.|) as done for the previous H correlation. This is illus-
trated in figure 4.5 where the w, vorticity component generates the velocity field shown
in blue (solid lines), while the real velocity field generated from the global vorticity con-
tributions is shown in red (dashed lines). To correlate these two velocity fields, only the
direction of the velocity vectors is important (while their magnitudes only change the
amplitude of the final correlation). The HP correlation (for H—planar) is calculated as
the integral of the dot product between the vorticity generated velocity vectors (blue)
and the real velocity (red), over the lengths £ (r) of rings of radius 0 < r < A. Since the
length of the rings increases proportionally with the radius r, the integral over each ring
is further divided by r (i.e. |ry.|) to give an average correlation at a distance r, though
other definitions can be used without loss of generality. This correlation is given by

Al we(X) xT
HP(x,A) where H’(x,A) = f (u

)-u(x+ ry;) dldr (4.17)
0 |ryzlJem

|ryz|
while H)) and HY are similar. Evidently, this correlation is more computationally expen-
sive to calculate, as three planar regions need to be considered for each point in space.

This requirement can be relaxed by sampling the rings 0 < r < A with a chosen frequency,
i.e. using every n-thring as r € {n,2n,3n,...}.

4.4. CORRELATIONS APPLIED TO SIMPLIFIED CANONICAL FLOWS

4.4.1. ONE-DIMENSIONAL FIELDS
We begin by testing these correlations on simplified flows, starting with Oseen vortices,
which can be defined by a tangential velocity field and a vorticity field, given as

r r?

ug(r) = T 1-exp (—m) (4.18)
r r?

w,(r) = mexp (—m) (4.19)

where r is the radial distance from the vortex core, I is the circulation, v is the fluid
viscosity, ¢ is a certain time instance. The Oseen vortex comprises a small core region
in solid body rotation, within which the velocity increases radially as ug o r to its maxi-
mum value. Beyond this is a potential flow region (where w, is nearly zero) and uy o< 1/r.
Wen add a noise ¥ to the velocity field given by eq. 4.18, this additional noise term is su-
perposed on the velocity field to generate a “structure immersed in noise”. The vortex
has a certain ‘reach’, which depends on the amplitude of v, and is defined as the dis-
tance beyond which v > uy. The vorticity of the Oseen vortex is calculated in Cartesian
coordinates as w, = Vxu=0v/dx—0u/dy, due to the addition of the noise to the velocity
field.
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High Correlation Low Correlation

Figure 4.5: A schematic of the HP correlation. The wy vorticity is used to generate a velocity field in
the yz—plane (shown in solid-blue lines), which is correlated with the real velocity field (dashed-
red lines) within a circular region of radius A. The correlation is integrated around rings (d! el-
ements) and then along the radial direction (dr). The correlation will be strong when the local
vorticity dominates in producing the velocity field in its neighbourhood (left), and low when the
local velocity field is not associated with the central vorticity (right).

We generate two Oseen vortices, with centers separated by a distance greater than
the typical reach of either vortex and larger than the size of the vortex sub-structure. We
further consider only the one-dimensional velocity field along the line connecting the
centers of the two vortices. This field, hence, consists of a large periodic structure, with
two smaller structures (which are two counter-rotating Oseen vortices). This creates a
pattern of symmetries and anti-symmetries in the velocity and vorticity fields.

The parameters used to generate the velocity field, which is assumed to be periodic
over a length of Ny =500, are I' = 10, v = 2.0 and ¢ = 2.0; all quantities being presented in
arbitrary units. The vortices are placed with their centres at 150 and 350, with a core re-
gion extending over 5 units on either side of the centres. Uniformly distributed random
noise (-1 < < 1), scaled to an amplitude of 1% of the maximum velocity magnitude has
also been added to the velocity, which makes the velocity of the vortices in the potential
flow region reduce to within 2.5% of the maximum value within 100 units outside of the
‘larger structure’. The region in between the two ‘sub-structures’ has a velocity which is
~ 10% of the maximum value, due to the interaction between the two vortices, which
can be seen in the top panel of figure 4.6. The middle and bottom panels of figure 4.6
show L and LS respectively (which here have only a x—component), with the integration
length spanning the entire length of the velocity field, i.e. A = N, /2. A few features of the
correlation profiles point at the nature of the current definitions, as well as the impor-
tance of the choice of A. First, L is found to have a shape similar to the function itself,
with a sign change. If we consider the definition of L, it is the correlation (here “prod-
uct”) between the value of the function at a point and its integral over a length, hence
if either of the two is zero, the correlation becomes zero. Therefore, the correlation will
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Figure 4.6: (a) A one-dimensional velocity field comprising a larger structure composed of two
smaller sub-structures (i.e. two Oseen vortices, with their centers marked with circles). Correla-
tions calculated for this field are shown in panels (b) L and (c) LS, obtained by integrating over
A = Ny /2, which spans the entire length of the signal.

have significant or large values, where the function itself has significant or large values,
and the structure of the function (i.e. its symmetries and/or anti-symmetries) does not
make its integral small. When the function is the sum of several “basis functions” (in
this case two “pure” Oseen vortices and a “noise function”), the correlation also involves
the “product” between a “basis function” and the integral of another “basis function”, so,
even if the structure of each of the “basis functions” has a small integral (i.e. if L of each
basis function is small), L of the total function is not necessarily small. In the particular
case presented here, the integral of the “pure” function is finite due to the interaction
between the velocity fields of the two vortices, forming the larger structure, along with
the integral of the “noise”, which is itself a “noise”. Hence, the L correlation has the same




120 4. A STRUCTURAL VIEW OF TURBULENCE

shape as the velocity field itself. Mathematically, this can be essentially seen as

A
szA[u(X)‘H//(X)]‘[U(X"‘l'i)"‘l//(x"‘l'i)]dl'i (4.20)

A

= [uX +y®)] -fA[u(XH‘i) +y(x+r;)]dr;

A A
= [u(x)Hl/(X)]-(f u(X+ri)dri+f 1//(X+ri)dri)
-A -A

where v is the additional “noise” term. If either [ u or [ are non-zero, L will retain a
similar form as u. Interestingly, even for a velocity profile which leads to [ u =0 (i.e. the
integral of the “pure” basis function), the additional noise term breaks the overall sym-
metries and anti-symmetries, such that L becomes non-zero, and shape of the velocity
field u can be extracted. If the noise is removed from the velocity field, and the vortices
are placed sufficiently far from each other such that [ u = 0, L, indeed, goes to zero for
A = N, /2 (not shown here).

LS, in figure 4.6(c), shows different features, starting with a central peak around x =
250, which is exactly between the two counter-rotating vortices. Although the velocity
around this position is small, L® attains a large value since the velocity field is essentially
mirrored around this point, hence being perfectly correlated (with only the noise values
being different between the mirrored halves). At the core of the two vortices (x = 150 and
x = 250), LS shows a large negative peak, since the velocity field on the left and right of
these points is anti-correlated up to the reach of each vortex. The part of L® in the region
outside of the larger structure (i.e. approximately x < 100 and x > 400), is a repetition of
the LS profile in the center (i.e. 150 < x < 350) due to the periodicity of the velocity field
and the integration length spanning the entire signal length (A = N/2).

Figure 4.7 shows the correlations for a similar velocity field, now integrated over a
length of A = 35, which corresponds approximately to the size of the sub-structures (i.e.
the individual vortices). This is because within a distance of 35 units from the center
of each vortex, the velocity reduces to roughly 10% of its maximum value (note that a
slightly lower or higher A does not change the results significantly). The L and LS profiles
show a few similarities and differences. First, the general shape of the two correlations
is similar. While L goes to zero at the vortex cores, where the velocity is close to zero, L®
yields strong negative peaks because the velocity is strongly anti-correlated across the
core region. In the potential flow regions of the two vortices, both L and LS yield posi-
tive correlation values, reflecting that the flow vectors are well aligned in these regions,
in the manner of parallel streamlines. L does not identify the ‘larger structure’ in this
case, since the larger structure has a lengthscale larger than the integration length of the
correlation. This shows the important of the choice of A in identifying larger or smaller
symmetries and asymmetries of the vector fields. When these correlations are applied to
the vector fields of turbulence in a later section, we shall discuss the choice of A atlength
to ascertain its influence on identifying coherent regions.

Note that it is not only the length of integration A, but also the lower and upper lim-
its of integration which determine the symmetries and structures being identified. For
instance, eq. 4.7 can be changed to instead find non-local structures between lengths
A; <r; < A2, while looking around from point x, as follows
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Figure 4.7: Correlations (b) L and (c) LS calculated for an integration length of A = 35, which spans
the approximate size of the individual ‘sub-structures’, i.e the two counter-rotating Oseen vortices.
Here, L and LS have a similar shape overall, while LS yields strong negative values in the vortex core
region across which the flow is strongly anti-correlated. Both the correlations yield positive values
in the potential flow regions of the two vortices, showing that the flow vectors in these regions are
well aligned.

A
Li(x, A1, A2) :fA 2u(x—r,')-u(x+ r;)dr 4.21)
1

Recalling the generalized correlation definition, this change in the limits of A is es-
sentially defining .#1 and .% as finite regions going from x € [xo + A1, xp + A2] and x €
[xo — A2, xo — A1] respectively, while the region of observation %, is xo. One example
of this is shown in figure 4.8, with A; = 75 and Az = 125. These integration limits are
such that, when .%, corresponds to the middle of the larger structure in the velocity field
(i.e. at x = 250), A; and A, span across most of the vortex regions. The LS profile, conse-
quently, shows a strong peak in between the two vortices, resulting from the larger struc-
ture comprising the two counter-rotating vortices. These particular limits of integration
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Figure 4.8: LS correlation integrated from Aj = 75 to Ay = 125 shows how non-local symmetries
can be identified by varying the limits of integration.

do not identify any significant larger symmetries, as observed from other x locations.
Figure 4.9 shows correlations G and G%, which are the vorticity field equivalents of L
and LS, integrated over A = N,./2, to span the entire length of the periodic velocity field.
The G correlation remains mostly zero throughout, with small, noisy fluctuations. This is
because, unlike the velocity field, which yields a finite value for [ u when integrated over
A = N, /2 due to the interaction between the two vortices and the non-zero contribution
from the integral of the noise term [, [ remains nearly zero since the vorticity is
localized at the core of the two vortices, and has the same magnitude but opposite sign,
the only contribution here is from the non-zero integral of the noise term which breaks
the uniformity of the vorticity field. The G® correlation has a very similar behaviour to
LS, yielding a large negative peak at the middle of the larger structure (x = 250), since the
vorticity field at the core of the two structures is anti-correlated. It also shows smaller,
positive peaks at the core of the vortices (x = 150 and x = 250), where the vorticity vectors
are aligned in the same direction. The G® profile is also repeated due to the periodicity
of the signal and the large integration length, similarly to the L® profile in figure 4.6.
Figure 4.10 shows the G and G® correlations for an integration length of A = 35. Again,
like the L and LS correlations in figure 4.7, both G and G® show a very similar overall
shape. Both yield a sharp positive peak at the core of the vortex regions, where the vor-
ticity is concentrated and well aligned. The G correlation decays with some noise, in the
potential flow regions corresponding to the two vortices. The G® correlation, here, gives
a sharper and less noisy profile. This is because, at the vortex core, the vorticity values
to the left and right are perfectly symmetric (apart from the noise values), which gives a
large correlation G® value at the vortex core. Slightly moving away from the core in either
direction strongly disturbs this symmetry, due to which the amplitude of G* decays at
a faster rate than G. The G and G® correlations, being fully analogous to L and L, help
in identifying high vorticity regions, where the vorticity streamlines are parallel to each
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Figure 4.9: G and G® correlations (integrated up to A = N/2) are shown for the Oseen vortex pair.
The G correlation remains close to zero (since [ w ~ 0 over the integration length), while G shows
a profile similar to LS in figure 4.6.

other, albeit the structure sizes are smaller than the velocity field, since vorticity remains
concentrated in small spatial regions.

Finally, figure 4.11 shows the H correlation for the Oseen vortex pair, integrated over
lengths of A = N,/2 (panel b) and A = 35 (panel ¢). The form of the H correlation is
found to be almost insensitive to the choice of A, while a higher A increases the ampli-
tude of the correlation. This can be understood from the construction of this correlation
which, in a Biot-Savart sense, is designed to identify self-induced regions of the velocity
field. In this example, H yields large, positive values in the core region of the two vor-
tices, since the flow around the vortex core is generated by the vorticity at the core. The
independence of the choice of A is because the influence of the local vorticity at a point
xp rapidly decays in space, such that at larger A values, the velocity field u(xy = A) does
not depend on w(xp). The larger structure in this example is induced by the sum of the
two individual vortices, and is hence ‘externally generated’, which is why H remains zero
in the middle of the two structures. The results are identical for the HP correlation (and
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Figure 4.10: G and G® correlations (integrated up to A = 35) are shown for the Oseen vortices pair.
Both correlations are similar and show a strong peak at the vortex cores, while G® has decays at a
faster rate since it is more dependent on the symmetry of the vorticity field.

have hence not been additionally shown here).

4.4.2. THREE-DIMENSIONAL BURGERS VORTICES

As a final example of the correlations applied to canonical flows, we now consider a
three-dimensional velocity field generated by superposing two Burgers vortices, which
again generates a ‘large-scale’ structure comprising two smaller sub-structures. The
Burgers vortex is an exact solution of the Navier-Stokes equation, consisting of a radial
velocity component along with a tangential velocity, and can be constructed as

Kr r
Uz =Kz, Ur=——7, U§J=_—

2
> - 1-exp (__v” (4.22)

where x represents the rate of strain, I the circulation and v the kinematic viscosity. Here
Uz, ur and uy give velocity components in the axial, radial and tangential directions,
which are converted from cylindrical to Cartesian coordinates. To isolate the vortex in
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Figure 4.11: H correlation, integrated up to (b) A = Ny/2 and (c) A = 35, is shown for the Oseen
vortex pair. The correlation yields strong positive peaks at the vortex cores, and this correlation
definition is found to be independent of the choice of A (except a change in the magnitude of the

correlation).
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space, we multiply the velocity fields with a three-dimensional Gaussian function ¢ to
contain the Burgers vortex within a spherical region,

2+ 2+ 2
u) (4.23)

o2

94 (x,y,2) =exp

where x, y and z are measured with the origin placed at the center of the vortex. The
value of o is chosen such that it creates a spherical region circumscribing the axial length
of the vortex. This suppresses the strain regions generated by each vortex, such that the
velocity field comprises primarily of two swirling-flow regions. The swirling-flow of the
Burgers vortex resembles the one-dimensional Oseen vortex (as was described in Sec-
tion 4.4.1), with a core in solid-body rotation where uy « r, followed by a potential flow
region with uy o« 1/r. A low amplitude uniform noise, v, is added to the final velocity
field, over which the correlations subsequently calculated. Lastly, the vortices are also ro-
tated at arbitrary angles with respect to the three coordinate axes, at angles (1, B2, B3).
This is done to change the orientation of the velocity field symmetries with respect to
the orthogonal bases along which the correlations are calculated, to test the applicabil-
ity of the correlation definitions for arbitrarily aligned structures, as will be encountered
in turbulence vector fields.

We generate two vortices, on a grid of 1003, with @ = 0.1, v = 0.025, T = 15 and
v = 0.002 (i.e. ~0.5% of the maximum velocity magnitude), all quantities being pre-
sented in arbitrary units. The actual values being used here are not of importance, as
we simply intend to generate a velocity field with a Burgers vortex structure. The result-
ing vortex has a core region with solid body rotation up to 5 units (grid cells), and the
velocity magnitude in the potential flow region (with swirling motion) decays to approx-
imately 40% and 10% of the maximum velocity magnitude within 15 and 30 grid cells.
Both vortices are multiplied with the Gaussian function ¢ generated with o = 5. The
vortices are rotated at angles (0.6,0.0,0.25) and (-0.45,0.0,—0.3), measured in radians,
around the (x, y,z) axes. These vortices are then superposed by adding their velocity
fields, with their centres placed at (40,40,40 and (70,70,70). The resulting velocity field
has been shown in figure 4.12. Since the vortices are placed close to each other, their ve-
locity fields begin to entangle and interact. However, the larger structure of the Burgers
vortex pair, is distinct from the Oseen vortex pair in Section 4.4.1, and it does not have
the same kind of symmetries and anti-symmetries.

Figure 4.13 shows the amplitude of all the correlations, integrated over a length of
A =12 for the Burgers vortex pair (while the results were found to remain qualitatively
unchanged for A = 15 and 20, which only causes a change in the magnitude of the cor-
relations). The features of the correlation fields strongly reflect the behaviour of their
one-dimensional analogues as was presented for the Oseen vortex pair. First, panels (a)
and (b) show the L and L correlations. The correlation regions are well aligned with the
axes of the vortices, and have a size comparable to the extent of the swirling-flow re-
gion. The L correlation goes to zero at the vortex core where the velocity is also zero. The
LS correlation yields a large correlation value at the vortex core, across which the flow
is highly anti-correlated, surrounding which is a thin region of zero correlation, and an
outer region of finite correlation corresponding to the potential flow region of the vor-
tex. Both these correlations identify the swirling-flow region where the streamlines are
well aligned, and locally parallel to each other. Panels (c) and (d) show the G and G® cor-
relations, both of which yield thin, elongated correlation profiles aligned with the axes
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(a) View 1 (b) View 2

Figure 4.12: Two arbitrarily aligned Burgers vortices are shown, with isolated swirling-flow re-
gions. The velocity streamlines show that the two vortices begin to ‘interact’ (where the velocity
magnitude has been normalized to between 0 and 1). The edges of the cubes shown here run from
{x,y,2} €[10,90].

of the vortices, while the G® correlation is sharper. This again reflects that, at the core
of the vortices, the vorticity vectors are well aligned. Panels (e) and (f) show H and HP,
which also yield strong correlation profiles at the cores of the vortices, aligned with the
vortex axes. This is because the swirling velocity field is associated with the vorticity at
the vortex core region.

All these features of the different correlations coincide with their one-dimensional
analogues, showing that the correlation definitions are adept at identifying typical ve-
locity and vorticity field patterns, also when arbitrarily aligned with respect to axes along
which the correlations are calculated. Note that for higher integration lengths, i.e. A ~
N, /2, the correlations also begin to recognize non-local symmetries (as for instance in
figure 4.6 and figure 4.9), which has not been additionally shown here since we choose
to focus only on local structures in the turbulence vector fields.

4.5. CORRELATIONS APPLIED TO HOMOGENEOUS, ISOTROPIC
TURBULENCE

After applying the correlations to canonical flows, we now study how these ideas fare for
real, turbulence vector fields. A turbulence velocity field is considered, typically, to have
structure across multiple scales, while the vorticity field mainly comprises smaller scale
structures. These fields, further, are highly complex and irregular. Applying the correla-
tions to instantaneous field snapshots, as obtained from direct numerical simulations of
homogeneous, isotropic turbulence, reveals their potential and possibilities, along with
limitations, in educing structures. In this section, we begin with a brief description of the
simulation method used to generate the turbulence data. Since the correlations yield
“pseudo-vector” fields containing information about the structure of the flow, we first
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Figure 4.13: Amplitude of all correlations calculated for the two Burgers vortices are shown for
view 1, which gives a simultaneous look at the axis of one vortex and the core region of the other.

The edges of the cubes shown here run from {x, y, z} € [10,90].
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describe how the correlation fields look qualitatively in comparison to the vector fields
they are based on, i.e. the velocity and the vorticity field. We also describe the statistics
of the correlation fields, like the PDFs, CDFs, spectral characteristics and their spatial
organization.

4.5.1. SIMULATION DETAILS AND DATASET

For this study, we use a dataset from DNS simulations of homogeneous, isotropic tur-
bulence, for which the Navier-Stokes equations with a body force F (as given below) are
solved numerically

ou Vp , F
—+@-Vyu=——+vVu+— (4.24)
ot p p

V-u=0 (4.25)

Turbulence is generated in a periodic box by means of low wavenumber forcing,
which is divergence-free by construction and is concentrated over a range of Fourier
modes. It is of the form given by [28], and has properties similar to that devised by [29]
and [30]; which can be written as

F, = Z]]z’;ka PA(k) [sin(any +¢y(k)) +sinrkz + </)Z(k))]
F, = lezika PA(k) [sin(Zﬂkx + (k) +sin@nkz + ¢)Z(k))]
F, = Z’Zl’:ka pA(k) [sin(Zﬂkx + (k) +sin(rky + </)y(k))] (4.26)

The forcing is stochastic (white noise) in time, which is achieved by varying each ¢(k)
randomly, and the force is distributed over a small range of wavenumers, given by k, <
k < kj, (for this study we fix k,; = 1,k; = 8), and the amplitude A(k) of each of these
wavenumbers is a Gaussian distribution in Fourier space, centered around a central forc-
ing wavenumber kg, given as

k—kr)?
mmzAap—L—Jl) 4.27)

[

where c sets the width of the distribution (¢ = 1.25 here), and A is the forcing amplitude.
We solve equations 4.24 and 4.25 with a standard lattice-Boltzmann (LB) solver, incor-
porating the turbulence forcing as per equation 4.26. This method has been used before
for simulating homogeneous, isotropic turbulent flows of various kinds [28, 30-33].

The simulation is performed in a periodic box of size (27)° resolved over N® grid
points along each direction, all units being dimensionless, hence resolving a range of
wavenumbers from k = 27/ N (i.e. largest scale of length N [lu]) to k =27/2 = 7 (i.e. the
smallest scale of length 2 [/u]). Since we simulate homogeneous, isotropic turbulence,
by definition all physical quantities are fluctuating and do not have a mean value, i.e.
u=1u’and w = @'. The Kolmogorov scale is defined as n ~ (vg/ €) % \Where v and ¢ are the
kinematic viscosity and energy dissipation rate respectively. We adhere to the criterion
for a DNS, as given by [34], i.e. kmaxn > 1. The Taylor microscale is calculated as

15vu2)'?
A= (4.28)
( € )
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N3 kg v u' o' (Eg) (€) A Rey n Tk
2565 2 0.0047 0.034 0.0103 1.8x1073 5.0x1077 13 95 0.67 97

Table 4.1: Simulation details, with all quantities presented in dimensionless lattice units [[u], av-
erage kinetic energy per unit mass (E.) = (L E(k)) /N, and the average rate of energy dissipation
per unit mass (€) = (3 2vk2E(k))/ N.

where u' is the root-mean-square velocity. The average rate of energy dissipation (¢} is
calculated as (€) = v{w?) = ¥ x 2vk*E(k)/ N3, where (w?) is the average enstrophy and
E(k) is the kinetic energy spectrum. Note that the enstrophy ©? = - @ is analogous to
the turbulence kinetic energy Ey = u-u/2. For homogeneous, isotropic turbulence, since
u' =v = w', we have E; = 3u/*/2 or ' = \/2E;/3. The root-mean-square vorticity, o',
is obtained as (w - w)'/2. In general, E; and e (apart from v) are average measures of 1/
and o', respectively. The large eddy turnover timescale is given as T* = £ /u’, where £
is the forcing lengthscale given as £ = N/ky. Using A, the Taylor Reynolds number is
calculated as

u'A
Rey = — (4.29)
v
and the Kolmogorov timescale is given as
e\—1/2
7=(<) (4.30)
v

The turbulence simulation (parameters given in 4.1) is performed for a fluid initially
at rest, to which the turbulence force is applied. After a brief transient duration, turbu-
lence becomes well developed and attains a statistical steady-state, i.e. the balance of
power input and energy dissipation. The simulation is then run for several additional
large eddy timescales (~ 20 —30T*), during which around ~ 20 field snapshots are re-
tained for analysis, all separated by 507, to give converged statistical results.

Figure 4.14 shows the evolution of (E;) and <w2> for the simulation T1. Both quan-
tities attain their steady-state values within a short transient phase, ~ 1007, after which
they continue to oscillate around their temporal mean values. Beyond 1007, turbulence
is well developed, with a separation of scales. The temporal intermittency of (Ey) further
manifests in the temporal intermittency of (w?), which has been attributed to some form
of a turbulence cascading dynamics [28, 35].

Figure 4.15 shows a snapshot of the turbulence kinetic energy E; and enstrophy w?
fields, as 3D volume renderings and planar cross-sections, from simulation T1 at 5007 .
Typical features of the kinetic energy and enstrophy can be seen, where the kinetic en-
ergy is distributed over a range of length scales (which correspond to the inertial range),
and shows a general large-scale organization (which also relates to the energy injection
scale) with irregular structures across multiple scales. Enstrophy (and vorticity in gen-
eral) is concentrated at the smaller scales, in spatially intermittent tube-like structures,
also called “worms”.

Figure 4.16 shows the probability and cumulative distribution functions (PDFs and
CDFs, respectively), of the three velocity and vorticity components. These profiles have
been obtained using 20 field snapshots, all separated by 507 . Figure 4.16(a) shows that
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Figure 4.14: Evolution of the averaged turbulence kinetic energy (Ey) and averaged enstrophy
<a)2 ). Both quantities attain a steady-state value, reflecting a developed turbulence state.

the velocity components follow a Gaussian distribution (shown as the dashed line), and
that the velocity fluctuations are not extreme (here they range from —4 < u;/u < 4).
Figure 4.16(b) shows the CDFs of the velocity components, where 65% and 97% of the
velocity has a magnitude below u; and 2u;, respectively. Extreme values of the velocity,
around |u;| > 3u} occupy a very small fraction of the total velocity field. Similarly, figure
4.16(c) and figure 4.16(d) show the PDFs and CDFs of the vorticity components. The
PDFs show the typical long-tail distribution of vorticity, which is highly non-Gaussian.
The extent of these tails gives a measure of the intermittency in the vorticity field, where
increasingly extreme values can occur with a low probability. The CDFs of the vorticity
show that most of the vorticity field has a low value, with 70% and 95% of the field below
) and 2. In this regard, the vorticity field has a similar composition as the velocity
field, the difference being that the vorticity can also assume much more extreme values
(even ~ 18w/, in this case).

Itis important to note here that the vorticity field can be classified into a few “ranges”,
which can be done in different contexts. The first classification, which is usually adopted,
is based on the amplitude and structure of the vorticity field, where the vorticity is di-
vided into “low-vorticity”, “moderate-vorticity” and “high-vorticity” ranges, as proposed
by She et al. [19, 36]. According to their classification, “high-vorticity” (o > w'), which
occupies a very small fraction of the volume, forms vorticity streamlines that are well-
aligned, while the velocity field in the vicinity of these structures has a spiral, swirling
motion. “Moderate-vorticity” (w > w'), on the other hand, was found to be less orga-
nized, whose structure was described as “sheet-like” and “ribbon-like”. “Low-vorticity”,
at the level of the root-mean-square value (v ~ 0’ and w < '), which occupies most of
the volume, was found to form random vortex lines with no apparent structure. Another
way to classify the vorticity field, which is more relevant for our work, is to consider the
organization of the vorticity field, along with its Biot-Savart contribution in generating
the velocity field. In this classification, there is a “strong-vorticity” range which is or-
ganized as parallel vorticity streamlines with swirling-flow in the vicinity, similar to the
“high-vorticity” range of She et al. [19]. This range forms the skirts of the vorticity PDE
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Figure 4.15: Snapshots of turbulence fields, when the flow is fully developed (at ¢ = 5007 ), show
qualitative features of the kinetic energy Ej and the enstrophy w?. Panel (a) shows a 3D volume
rendering (at a resolution of 2563) of the Ey field, which contains large-scale, irregular structures
that permeate a part of the volume. Panel (b) shows a 2D cross-section of the Ej. field (at a res-
olution of 2562) at an arbitrary plane of the 3D simulation domain. Panel (c) shows a volume
rendering of the w? field, which is markedly different from the Ey field, as enstrophy is concen-
trated at the smaller scales, forming tube-like structures (also called “worms”). Panel (d) shows a
planar cross-section of w2, which shows that most of the field has low values, interspersed with
small regions of concentrated enstrophy. Both the fields have been normalized with their respec-
tive volume averaged quantity, i.e. (Ex) and {w?).
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and appears most dominantly in the field due to its large amplitude (while occupying a
very small fraction of the volume). We classify the rest of the vorticity field, which has a
weaker organization, as the “background-vorticity”. This range occupies the bulk of the
volume, and can hence have a significant contribution in the Biot-Savart generation of
the velocity field. The “background-vorticity”, further, is divided into an “intermediate”
and a “weak” range, based upon the level of Biot-Savart contribution. The range of vor-
ticity that significantly contributes to the Biot-Savart generation of the velocity field is
termed “intermediate”, while the “weak” vorticity has a negligible contribution.
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Figure 4.16: Probability and Cumulative distribution functions (PDF and CDF), shown for the
three velocity and vorticity components. The dashed line in panels (a) and (c) show a typical Gaus-
sian distribution.

The spectra of kinetic energy and enstrophy are calculated using the three-dimensional
Fourier transform ¢y of the velocity and vorticity fields, respectively. The three-dimensional
spectra are spherically averaged over wavenumber shells k € [k —1/2, k+1/2] where k =
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Figure 4.17: Time-averaged, one-dimensional power spectra are shown for the kinetic energy and
enstrophy fields. The spectra is further normalized as E(k) = E(k)/ X E(k).

vk-k to give one-dimensional spectra over the scalar wavenumber k as follows

Ak i lpil?

k)=
o Yl

(4.31)

These one-dimensional spectra are further time averaged over 20 samples separated by
507 to give time-averaged spectral characteristics. Lastly, the spectrum ¢(k) is nor-
malized as ¢(k) = pr/ ¥ p(k) to facilitate comparison of different quantities, as we are
mainly interested in the relative distribution of energy over wavenumber. Figure 4.17
shows the Ej and w? spectra, where Ej. exhibits a well developed inertial range, which
follows the k~=>'3 spectral scaling, while the enstrophy spectra has a small, positive slope,
with a broad peak at higher wavenumbers.

4.5.2. QUA[,I'I‘A'I‘IVH AND STATISTICAL FEATURES OF THE CORRELATION FIELDS
The correlations are calculated for the snapshot of the data presented in figure 4.15, for
an integration length of A = A. Each correlation vector field ¥ is normalized by its re-
spective root mean square (rms) value ¢’ which is calculated as ' = (y - 1[1)1/2, where (.)
denotes ensemble averaging (which here is performed over space, to normalize the field
snapshot with root-mean-square value at the same instance of time). The amplitude of
a correlation field || is simply referred to as ¥ (for instance H? for |HP|). Each of the
correlation fields have been shown separately to highlight their qualitative features, at a
an arbitrary cross-sectional slice and as a three-dimensional volume rendering. The PDF
and CDF of the three components of each correlation have been shown as well, which
have been averaged over 18 field realizations, each separated by 507 .

Figure 4.18 shows the L correlation. The cross-sectional slice in panel (a) shows that
the correlation has features across various lengthscales, which are very similar to the
features in the kinetic energy field (as seen in figure 4.15). Large, diffused regions of the
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correlation are found to yield high values in regions of high kinetic energy. The three-
dimensional rendering in panel (b) shows the spatial organization of L, which is also
similar to Ej. The PDF of the components of L, in panel (c), shows that the correlation is
positively skewed. This hints that, according to the definition of L, both the local veloc-
ity u(x), and the velocity integral in the neighbourhood —A < x; < A, have the same sign,
in regions of high kinetic energy. This reflects that high kinetic energy regions comprise
parallel flow streamlines, since they yield large values of L with a strong spatial corre-
spondence (which shall be quantified with the subsequent analysis). The PDFs of L; are
also non-Gaussian, and do not extend over a very large range of values. Panel (d) shows
the CDFs of L;, where approximately 70% and 93% of the L; fields are below L} and 2L,
respectively.

Figure 4.19 shows the L® correlation, which is found to have a more diffused struc-
ture than L, while its qualitative features are similar to L and Ej with a high spatial cor-
respondence. The PDFs of L}, in panel (c), show that this correlation is also positively
skewed, where high values of the correlation are positive. This further hints that high
kinetic energy structures are parallel streamlines, which are aligned along the same di-
rection. This is because the LS correlation, by definition, yields large positive values for
aligned streamlines, and large negative values for anti-parallel streamlines. The CDFs in
panel (d) show that approximately 70% and 93% of the L; fields are below Lf’ and 2L§',
respectively.

Figure 4.20 shows the G correlation, which is the L equivalent of the vorticity field.
The planar (panel (b)) and volumetric (panel (c)) profiles of G are found to closely re-
semble the enstrophy field (as shown in figure 4.15b). The G field at high magnitudes
also forms worm-like structures. This shows that high enstrophy regions are also com-
posed of parallel vorticity streamlines, albeit the size of these structures is significantly
smaller than regions of high E;. The PDFs of the G; components show that the corre-
lation yields a long-tailed, positively-skewed distribution, similar to the positive half of
the vorticity PDF (figure 4.16¢). This again reflects that the vorticity streamlines are well
aligned in the core of high enstrophy regions, since the product of w(x) and the integral
of the vorticity in the neighbourhood —A < x; < A, yields positive values, reflecting that
the two quantities have the same sign. The CDFs, in panel (d), show that approximately
84% and 94% of the G; fields are below G; and ZG;., respectively.

Figure 4.21 shows the G® correlation, which is the vorticity field equivalent of LS. The
planar and volumetric profiles show a more ‘patchy’ structure in comparison to G. This
is possibly because the G® correlation is sensitive to the symmetry of the vorticity field
along each direction x;, as viewed from each point of calculation x. The PDFs in panel (c)
shows that the components G; have a positively-skewed distribution, although negative
values of G; are also relatively more prevalent than negative values of G;. The positive-
skew of the high magnitude G; shows that the stronger vorticity regions have vorticity
streamlines that are well aligned. The CDFs in panel (d) show that approximately 80%
and 96% of G; is under G!" and 2G?’, respectively.

Figure 4.22 shows the H correlation, which relates the local vorticity w(x) to the ve-
locity field along directions x;. The planar and volumetric H fields, in panels (a) and (b)
respectively, closely resemble the enstrophy field in figure 4.16(b). The PDFs of the H;
components are highly positively-skewed, and have a long-tailed distribution. Together,
these results show that the strong vorticity regions are associated with swirling-flow in
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Figure 4.18: The L correlation is shown for a single field snapshot, at 5007;. Panel (a) shows
the cross-sectional view of L = vL-L at an arbitrary plane, while panel (b) shows the three-
dimensional field as a volume rendering. Panels (c) and (d) show the time-averaged PDFs and

CDFs of the three components of L.

their vicinity. This is because (i) there is a strong spatial correspondence between the oc-
currence of strong enstrophy regions and high magnitude H, and (ii) the distributions of
H; show large positive values, which means that the local flow, in the A—neighbourhood,
is well correlated with the vorticity induced flow. The CDFs of H; in panel (d) show that
approximately 82%, 94% and 99% of the H; fields are below H}, 2H; and 3 H., respec-
tively.

Lastly, figure 4.23 shows the HP correlation, which has a very similar profile to the
H correlation. This is expected, since the HP correlation is conceptually similar to the
H correlation. The PDFs of Hf’ ,, in panel (c), are found to be highly positively-skewed,
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Figure 4.19: The LS correlation is shown for a single field snapshot, at 5007. Panel (a) shows
the cross-sectional view of LS = vLS-LS at an arbitrary plane, while panel (b) shows the three-
dimensional field as a volume rendering. Panels (c) and (d) show the time-averaged PDFs and
CDFs of the three components of LS.

and yield values larger than the H correlation. The form of the PDFs of H lp , however, is
almost identical to the Hj, the difference being that, due to the nature of the definitions,
HY is similar to H, (which is because HP is designed to align parallel to the local vorticity
vector, while H aligns orthogonal to it). Most of the high enstrophy structures (w? >
5{w?)) in figure 4.15(b) coinciding with regions of high HP (H” <5HP") in figure 4.23(a),
hints that strong enstrophy (or vorticity) regions are invariably associated with swirling
motion in the orthogonal plane. The CDFs of H ip show that roughly 86%, 94% and 97%

of the fields are within 1 H' f "ol l.p "and 3Hf ' respectively.
We also applied these correlations to a reference dataset of homogeneous, isotropic
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Figure 4.20: The G correlation is shown for a single field snapshot, at 5007;. Panel (a) shows
the cross-sectional view of G = VGG at an arbitrary plane, while panel (b) shows the three-
dimensional field as a volume rendering. Panels (c) and (d) show the time-averaged PDFs and
CDFs of the three components of G.

turbulence obtained from the Johns Hopkins Turbulence Databases (JHTD) [37, 38],
which was generated using a pseudo-spectral method on a grid of 10243 at Re, = 433.
The results are shown in Appendix 4.A; which are found to be essentially similar to those
presented here, from our in-house code. We use our own numerical datasets for the
remainder of this study, for our ease of accessibility and control over the data.

4.5.3. INFLUENCE OF THE CHOICE OF A

Before proceeding with further analysis of the correlation fields, it is important to con-
sider the influence of A on the results. The obvious values of A that can be disregarded
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Figure 4.21: The G® correlation is shown for a single field snapshot, at 5007. Panel (a) shows
the cross-sectional view of G* = v/G3-G® at an arbitrary plane, while panel (b) shows the three-
dimensional field as a volume rendering. Panels (c) and (d) show the time-averaged PDFs and
CDFs of the three components of GS.

are those extremely small or large. Too small a A is somewhat meaningless since we
intend to capture non-local structures which have a finite physical size. On the other
hand, very large values of A (~ N,/2) will introduce periodicity induced artifacts in the
correlation fields which should be avoided. However, there is a wide range of values of
A in 0 < A < N, which are viable, and yet the results should not depend strongly on the
choice of A.

We begin by considering the L correlation, which has the form

A
Ll-(x,A)zf uX) -ux+r;)dr (4.32)
-A
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Figure 4.22: The H correlation is shown for a single field snapshot, at 5007}. Panel (a) shows
the cross-sectional view of H = vH-H at an arbitrary plane, while panel (b) shows the three-
dimensional field as a volume rendering. Panels (c) and (d) show the time-averaged PDFs and

CDFs of the three components of H.

Since u(x) does not vary, it can be placed outside the integral as

A
Lix,A) =u(x)-f ux+r;)dr
-A

Li(x,A) =2A (u(x) - u;)

where

u; = —
2A J-p

A

ux+r;)dr

(4.33)

(4.34)

The L correlation is essentially a convolution of the velocity field u with the u field
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Figure 4.23: The HP correlation is shown for a single field snapshot, at 5007. Panel (a) shows
the cross-sectional view of HP = vHP - HP at an arbitrary plane, while panel (b) shows the three-
dimensional field as a volume rendering. Panels (c) and (d) show the time-averaged PDFs and
CDFs of the three components of HP.

(which is a function of A). Hence, if the 1 field varies significantly with A, so will L. In
figure 4.24, snapshots of the i, = [1,]| field are shown for a wide range of A/A values, at
a planar crossection from simulation T1 (at the same time instance as has been shown
in figure 4.15). At very small values, A/A < 1, the L field looks very similar to the Ej field,
which is since the limit A — 0 reduces u-tui to u-u. The i, field does not appear to change
significantly for 1 < A/A < 7, which is also true for A/A = 7, although those values of A
begin to approach the size of the simulation domain and should be disregarded.

It is interesting that the # field appears to vary slowly for A/A > 1. This can be quan-
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Figure 4.24: Crossectional slices of the ii, field for varying A/A.

tified by calculating

dig; 18} -a}

an AA
where |.| is the amplitude of the difference between the two fields. This is shown in figure
4.25 for uiy, iy and U, where (.) denotes spatial averaging over the entire volumetric do-
main, and temporal averaging over two independent realizations for #; at t = 5007 and
10007 . The change in dii/dA is large for A/A < 1. This reflects the fact that most of the
fine structures in the flow are smaller than the Taylor microscale A, and they get averaged
over in the # fields for increasing A. Next, the rate of change seems to decay exponen-
tially for A/A > 1 (with a slope of approximately —1/5), which reaffirms that the # field
varies slowly. This change of behaviour occurs via a sharp transition around A/A = 1.
The Taylor microscale, hence, is a good measure for the integration length of the corre-
lations, since the results for L and L® are not expected to vary significantly in the range
1 < A/A < 4. Moreover, the G and G® correlations which identify the fine scale vorticity
structures, and the H and HP correlations which identify regions of swirling motion gen-
erated by local vorticity values, are all less dependent on the choice of A (provided A is

(4.35)
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Figure 4.25: Rate of change in the u field with increasing A. Here (.) denotes spati-temporal aver-
aging and #; = [a;].

large enough to identify the small-scale features). For the remainder of this study, we use
A = A for calculating the correlations.

4.5.4. SPECTRAL CHARACTERISTICS OF THE CORRELATION FIELDS
The spectral characteristics of the three-dimensional correlation pseudo-vector fields
are discussed in comparison to the kinetic energy (Ex) and enstrophy (w?) spectra. The
correlation spectra are calculated in the same way as the Ejy spectra, where the three-
dimensional Fourier transforms of the correlation fields are squared and spherically av-
eraged over wavenumber shells. The spectra have also been time-averaged over 18 re-
alizations, each separated by 507. In figure 4.26, (a) L and (b) LS spectra are found to
resemble the kinetic energy spectrum, where the correlation energy is concentrated at
lower wavenumbers with a peak at roughly twice the highest kinetic energy contain-
ing wavenumber. The spectral shift is explained by the definitions of these correlations,
which involve a product of the velocity field with an integral of itself (i.e. u(x)- f uXx+r;),
in the case of L) or an integral of velocity products (i.e. [u(x+r;)-u(x—r;), in the case of
L®). This product causes a shift in the wavenumber, in comparison to the kinetic energy
spectra, which involves the square of the Fourier transform of the velocity components.

The spectra of correlations G and G® in panels (c) and (d) of figure 4.26, respectively,
are found to closely resemble the enstrophy spectrum. There is a clear shift in the spec-
tral peak to a higher wavenumber for both cases, which is more pronounced for G®. This
is a feature that can be related to the one-dimensional Oseen vortex pair example (see
figure 4.9), where the G® correlation produces a sharper profile than vorticity, since it
decays at a faster rate than G. This is because the definition of G® is more sensitive to
changes in the symmetry of the vorticity field. The sharper G® profile, hence, leads to the
formation of a peak at a higher wavenumber in the G® spectrum in comparison to the
enstrophy spectrum.

H and HP correlation spectra in panels (e) and (f) of figure 4.26, respectively, are
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Figure 4.26: Time averaged spectra of correlation fields (a) L, (b) LS, (c) G, (d) G5, (e) H and (f) HP

shown together with the kinetic energy (Ej.) and enstrophy (w?) spectra.
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found to almost exactly follow the enstrophy spectrum. Since the enstrophy field is spa-
tially highly intermittent, small spatial regions with high field intensities contribute most
to the spectra, which gives the high wavenumber spectral peak. Since HP almost coin-
cides with the enstrophy/dissipation spectra, it reaffirms that high vorticity regions have
a swirling motion (and not shear), according to what was indicated by [19]. Note that
these spectra are presented for the correlation fields integrated over a length of A = 1.
Changing the integration length to different values can possibly influence the spectral
characteristics of the correlations.

Overall, the L and LS correlations are found to be very similar for the turbulence fields
(unlike in the canonical flows example). This shows that there are no larger symme-
tries/asymmetries in the velocity field, for within the integration length of A = A. Fur-
ther, G and G® are found to be similar as well, and they have a similar spatial form to HP,
although the definition of HP is very different. For the remainder of this study, we shall
focus on the L and HP correlations, without loss of generality, since a similar analysis
could be performed using the other correlations as well.

4.5.5. SPATIAL DISTRIBUTION OF CORRELATION FIELDS

The different correlation measures highlight different aspects of the flow. For instance,
the L and LS correlations, designed to identify parallel streamlines, resemble the larger
scales of flow. Similarly, the G and G® correlations identify parallel vorticity stream-
lines, and coincide with the smaller scales. The HP correlation, also concentrated at
the smaller scales, identifies regions of local swirling motion. The spatial distribution of
these correlations sheds light on the distribution of coherent flow structures in physical
space. In this section, we discuss the spatial distribution statistics of two of the correla-
tions, namely L and HP, in relation to the kinetic energy and vorticity fields.

First, figure 4.27(a) shows iso-surface of E; = 2(Ej) (shown in blue), together with
iso-surfaces of L = 2L’ (shown in red). At the chosen threshold levels, the L regions are
consistently contained within the Ej regions, reflecting the fact that increasingly higher
values of the L field occupy successively smaller regions of space. This also shows that
relatively higher kinetic energy Ey = 2 (Ej) yield relatively higher L values, in the range
L=2L'. This also suggests that higher kinetic energy regions must all have parallel flow
streamlines (due to the high L values they yield).

Figure 4.27(b) shows iso-surfaces of vorticity at w = 3w’ (in blue) together with iso-
surfaces of H? at 8HP' (inred). The H” iso-surfaces are shown at a high value to demon-
strate that only a fraction of the intermediate vorticity ‘worms’ yield very high H? values
in their core regions. For instance, in panel (d), HP = 5HP "iso-surfaces shown, which
have a comparable size to the 3w’ iso-contours in panel (b). It is found that H” occu-
pies equivalent or more volume than w at low thresholds, while at increasingly higher
thresholds, the HP field occupies successively smaller fractions of the volume, as shall
be quantified with the spatial statistics.

Figure 4.27(c) shows contours of E at 2(Ej) (in blue) shown together with contours
of vorticity at w = 3w’. It appears that high kinetic energy regions and high vorticity are
spatially exclusive to a large extent. This spatial distribution of the two quantities may
also hint at the dynamical separation between the large and small-scales of turbulence,
where the larger scales lead the cascading dynamics, while the smaller scales are merely
a consequence of the dynamics, as expounded by [2]. The two fields, invariably, begin to




146 4. A STRUCTURAL VIEW OF TURBULENCE

(a) Contours of the turbulent kinetic energy F;. = (b) Contours of vorticity at @ = 3w’ (in blue)
2{E}) (in blue) together with contours of L=2L" shown together with contours of H? = 8 HP' (in
(inred). red).

(¢) Contours of E;. = 2(E}.) (blue) along withw = (d) Contours of L = 2L (blue) along with HP =
3w’ (red) shows that these fields are spatially ex- 5HP’ (red) shows that these correlation fields are
clusive. spatially exclusive.

Figure 4.27: Spatial distribution of correlations L and H” in comparison to turbulent kinetic en-
ergy Ej and vorticity w.

also overlap when the thresholds are lowered, and become more exclusive and distanced
at higher thresholds. Lastly, panel (d) shows the distribution of correlations L and H?,
where contours of L = 2L’ (in blue) are shown together with contours of H? = 5H"’.
Since these correlations closely resemble Ej and w, respectively, they also remain spa-
tially exclusive, at the chosen threshold levels.

The spatial distribution of the correlations, relative to each other and turbulence
quantities like E and w (as shown in figure 4.27), is quantified by the joint-PDFs of pairs
of variables. The statistics are further averaged over 18 field realizations, each separated
by 507. Figure 4.28(a) shows the joint-PDF of L and Ej. Since the two fields coincide
strongly, they are highly correlated. Large values of Ej also yield large values of L. This
happens because, to recall, L identifies flow regions that are comprised of velocity vec-
tors that are (i) well-aligned and (ii) have a high magnitude. It so turns out, that regions of
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high Ej are all well-aligned, and there are no regions of high Ej with disordered vectors.
The slight asymmetry of the PDF towards L shows that L attains higher values, relative
to L', than Ej. does relative to (E). This asymmetry hints that an increase in Ej leads to
stronger alignment of the velocity vectors, which yields higher L values. Figure 4.28(b)
shows the joint-PDF of HP and w. The two fields are again strongly correlated, while the
probability of occurrence of large-valued w is higher than large-valued H”. Higher val-
ues of w are invariably associated with high H? values, which shows that the flow around
high w regions has a swirling motion.

The relative spatial organization of Ex and w is shown in figure 4.28(c). The two quan-
tities reflect large-scale, inertial structures and small-scale, swirling structures, respec-
tively. The joint-PDF shows that high values of the two quantities are mutually exclusive
in space, i.e. the fields are anti-correlated. For instance, the probability of finding a high
L region, which also has a high w value, is negligible. A similar anti-correlated distribu-
tion is found for H? and L, in figure 4.28(d). High values of H? coincide with regions
of low L, showing that swirling-flow regions do not correspond with high kinetic energy
structures (as measured by L), and vice-versa.

To quantify the volume fraction and degree of spatial overlap between different fields,
we construct the joint-CDFs, which are functions of the integration limits a;, @, 1 and
B2, on the fields f; and f> comprising a particular joint-PDE This is calculated as

az
f PDF(f1, fL)dfi|df (4.36)

1

B2
CDF(fl,ﬁ;al,az,ﬁl,ﬁz)=fﬁ

1

The CDF can directly be interpreted as the volume fraction of the region defined by the
integration limits, as follows

V{lm s isax)n(f1=fo<p2)}
Vi

CDF (fi, fo; a1, a2, b1, B2) = 4.37)

where V is the intersection volume where the condition a; < fiy < a2 and 1 < fo < B2
are both met, while V; is the total volume. The volume fraction of a single field, within
prescribed threshold limits, can also be quantified with the CDF as follows

14 < <
CDF(fi, fo; @1, @2,0,00) = M (4.38)
t

This is because the region 0 < f, < oo corresponds to the total volume V;, hence
V{(a1 Sfl Saz)ﬂVt}E V(al Sfl Saz) (4.39)

The CDF can be used to evaluate the degree of spatial inclusivity between fields, R(fl R fg),
which can be calculated as

CDF(fi, fo; a1, a2, 1, B2)

R, f2) =
(fl f‘Z) CDF(fl!fZ;alvaZyOroo)

(4.40)

where fl and fg are conditionally sampled f; and f; fields, i.e. the region fl =) <
fi = az and the region f; = f; < f> < . The numerator on the right hand side gives
the volume fraction of the intersection region f; N f,, while the denominator gives the
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Figure 4.28: Joint-PDFs of L, Ej, HP and w. The colors show logarithmically spaced values.

volume fraction of f;. Hence, the fraction denotes the degree of f inclusivity of the region
f> in the region f;. Conversely, R(f2, f1) gives the inclusivity of f; in f>.

In figure 4.29(a) shows the intersection of the fields L and Ey, i.e. R(L, Ek) and R(Efc, D).
The regions L = L' < L < oo and Ej. = E!. < Ej < oo, where the thresholds L' and E! are
multiples of L' and (Ey). The L field is found to remain completely enclosed within the
corresponding Ej. regions, since R(L, E) = 1, showing that higher L values occur inside
regions of high Ey, and occupy a smaller fraction of the volume. Conversely, R(Eg,L)
becomes successively smaller at higher threshold values, showing that high Ej. regions
occupy larger spatial regions than high L. This is also reflected in the volume fractions
Vy of Land Ej, calculated as CDF (L, Eg; L, 00,0,00) and CDF (L, Ey; 0,00, E,i,oo), respec-
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tively, as shown in figure 4.29(c). At values higher than increasing threshold levels, the L
field occupies smaller volume fractions in comparison to Ej. Lastly, the kinetic energy
content of the thresholded L and Ej regions is shown in figure 4.29(e). Regions corre-
sponding to Ey = (Ey), Ex = 2(Ey), Ex = 3(Ey) occupy 40%, 10% and 2.5% of the total
volume (panel (c)), respectively, and contain 70%, 30% and 9% of the total kinetic en-
ergy. Similarly, regions corresponding to L= L', L>2L' and L = 3L’ occupy 30%, 5% and
0.7% of the total volume, while containing 55%, 15% and 3% of the total kinetic energy.

Figure 4.29(b) shows the intersection of the fields H” and w, i.e. R(H?,®) and R(@, HP),
where the regions HP = HP' < H” < 0o and @ = w' < » < co. The fraction of the H” field
contained inside w regions increases at higher threshold values. This shows, first, that
the H” field occupies successively smaller spatial regions at higher thresholds. Secondly,
high HP values are invariably found inside high w regions, reaffirming that strong vortic-
ity regions contain swirling motion. This can also be seen from figure 4.28(b), where the
lower bound on the value of H? increases with w. At low threshold values, R(HP, @) is
low, which shows that the H” field at low values occupies more space in comparison to
low w. This reflected in R(@, HP), which has high values at low w. It is further confirmed
in figure 4.29(d), which shows that H? = HP' occupies 26% of the volume, while w = o’
occupies 17% of the volume. Further, the volume fraction occupied by the H” field de-
cays much faster than w, when thresholded at successively higher values. Lastly, panel
(f) shows that regions of H? > HP', HP > 3HP' and H? = 5HP' contain 85%, 22% and 3%
of the total enstrophy.

Finally, figure 4.30(a) shows the intersection of regions of high vorticity (@ = v’ <
w < oo) with regions of low H” (HP =0 < HP < HP'), i.e. R(@,HP). For all instances
of w' = ', the intersection volume of @ with HP goes to zero. This confirms that there
are no high o regions in the flow field that are not associated with swirling motion in
their vicinity. Figure 4.30(b) shows the intersection of H? = HP' < HP <cowith L= L’ <
L = oo, for increasing threshold values. The two fields are found to become increasingly
spatially exclusive at higher threshold values, which can also be seen from the joint-PDFs
in figure 4.28(d). This implies that high kinetic energy and strong vorticity regions are
spatially isolated, which could be a consequence of the dynamical separation between
high kinetic energy and strong vorticity structures.

4.5.6. FLOW STRUCTURES IN HOMOGENEOUS, ISOTROPIC TURBULENCE

In this section, we focus on answering two questions regarding flow structures that com-
prise a (homogeneous, isotropic) turbulent flow field. The first question is, simply put,
“What is the structure of the flow associated with (i) high kinetic energy and (ii) high en-
strophy regions?”, as both these quantities pertain to different scales of the flow. High
kinetic energy is concentrated at the low wavenumbers, i.e. the largest scales, while
high enstrophy (or vorticity) is concentrated at the high wavenumbers, i.e. the small-
est scales. It is now well known that strong vorticity regions are associated with strong
swirling-flow in their vicinity [19, 20], however, the structure of the flow in high kientic
energy regions is not well known and these regions are usually referred to as “large ed-
dies” or “energy containing eddies”. The tools presented in the previous sections allow us
to identify and quantify the flow structures in a systematic way, and to disentangle them
from the surrounding flow. This allows to determine to what extent are the structures
“self-contained” (i.e. are self-generating, in a Biot-Savart sense), and to what extent they
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Figure 4.29: Statistics of intersection volumes between (a) L and Ey, and (b) HP and @ regions,
where each region ¥ = 1 < ¥ < w». Panels (c) and (d) show the volume fractions of different
thresholded regions of the fields, and panels (e) and (f) show the kinetic energy and enstrophy
contents of the thresholded regions, respectively.
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gions with high L regions.

are a result of the “surrounding flow” (i.e. they are not self-generating, in a Biot-Savart
sense). Closely related to this is our second question, “What range of vorticity generates
these structures in a Biot-Savart sense?”. This will reveal the vorticity composition of the
different structures, possibly shedding light into the organization of the flow structures,
with hints perhaps regarding the dynamics of the turbulence process.

First, we will focus on the individual flow structures, then we look at the Biot-Savart
contributions from a statistical perspective. Finally, we summarize the picture that emerges
from these two perspectives.

We first look at high kinetic energy (Ey) regions. Figure 4.31, panel (a) shows three
individual, isolated contours of L = 2.5L', which marks regions of relatively high kinetic
energy. The local flow streamlines have also been shown, which have been generated
from points distributed within a small region around the core of the correlation kernels.
Panel (b) shows the flow streamlines alone, which clearly shows that the high kinetic en-
ergy regions comprise well aligned streamlines, with a jet-like structure, i.e. the local
streamlines become parallel to each other. The streamlines diverge into more chaotic
patterns away from the high Ej. regions, showing that the coherence of the inertia con-
taining structures is localized.

To unravel the vorticity contributions that generate high Ej structures, we first re-
construct the self-generated velocity field of these structures. This is done by applying
the Biot-Savart law to the vorticity contained inside the L = 2.5L' kernels. In this cal-
culation, any regions overlapping with H? > 5HP' are excluded, to generate the velocity
streamlines using only the vorticity contained in regions of high kinetic energy (while the
overlap between 2.5’ and 5H”' regions is very small, see figure 4.28d). Panel (c) shows
that the self-generated velocity field of the high Ej regions, where the streamlines have
been generated using the same points and parameters as in panel (b). The self-generated
flow in Ej regions is found, first, to be very weak (the self-generated velocity amplitude
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(d) Externally induced flow streamlines.

Figure 4.31: The flow structure of high kinetic energy regions is shown to be jet-like. (a) High Ej.
regions as identified by contours of L have been isolated, and shown together with the local flow
streamlines, which have also been shown separately in panel (b). (c) The self-generated flow in
high Ej. regions, computed using the vorticity inside the 2.5L' contours (while excluding regions
with HP > 5HP’). (d) The externally-induced flow field, computed using the rest of the vorticity
field. The colours show the velocity magnitude |u] in lattice units, i.e. Ax/Az.



4.5. CORRELATIONS APPLIED TO HOMOGENEOUS, ISOTROPIC TURBULENCE 153

is roughly 10 times smaller than the total velocity). Secondly, the structure of the self-
generated velocity field is very different from the total velocity streamlines. These two
aspects show that the self-generated velocity field in regions of high Ej contribute little
to the total velocity field. Panel (d) shows the externally induced velocity field, which is
calculated by applying the Biot-Savart law to the remainder of the vorticity field, i.e. all
regions where L < 2.5L' (while also including regions with H? > 5HP"). The externally in-
duced velocity streamlines coincide very well with the total velocity streamlines, which
shows clearly that high kinetic energy regions are externally induced structures (in the
Biot-Savart sense), with highest contribution from the non-local vorticity. Note that the
results are similar for slightly different levels of the L threshold used to determine the
correlation kernels, i.e. 2.0 < L < 3.0. At much lower or higher L, differences will begin to
appear, which shall be subsequently discussed.

It remains to be ascertained which range of vorticity contributes most to the gen-
eration of high Ej regions. From the outset, possible contributions can come from the
strong vorticity, i.e. w = 2w’, which forms the skirts of the vorticity PDF but occupies only
asmall fraction of the volume, and from the background vorticity, i.e. w < 2w', which has
a lower magnitude but permeates most of the volume. It can be argued that the weak
vorticity (which is part of the background vorticity field), cannot contribute significantly
to the generation of high Ej regions, since their non-local Biot-Savart contribution will
be negligible. This leaves the intermediate background vorticity and the strong vorticity.

We first test the strong vorticity contribution to the generation of Ey regions. To illus-
trate, a single high Ej. structure is shown in figure 4.32(a). The Biot-Savart velocity field
is then reconstructed using multiple vorticity thresholds o’ € {2w’,3.50',5w'}. Panel (b)
and (c) show the velocity field generated by w < w! and w > o' regions, respectively. As
o' increases, the flow generated by the w > w' becomes weaker in magnitude. It hence
becomes evident that very strong vorticity, i.e. w > 3.5w’, also has a negligible contribu-
tion to the generation of the high Ej structure. The flow field in panel (a) appears to be
generated mostly by the intermediate background vorticity, since the flow generated by
the range w < 2w’ recovers most of the flow features and velocity magnitude.

This result also hints at the dynamical separation between the large-scale energy
containing eddies and the small-scale swirling-flow regions. Since the small-scales arise
from the decay of the larger scales, there is a temporal delay in their generation, such
that the large-scales at any time will lead to strong enstrophy after a time delay of ap-
proximately At = T*, where T* is the large-eddy timescale. This is reflected in the fact
that contemporary strong vorticity regions do not generate (in a Biot-Savart sense) the
larger scales of a given time instant, as the they have a dynamical origin in the past (i.e.
the large-scales at —AT*). Hence the Biot-Svart generation of high E} regions, and the
spatial distribution of Ej and high w, bear imprints of the turbulence dynamics. This
also supports the findings of spatial exclusivity of high kinetic energy and strong vortic-
ity regions, see figures 4.27(c) and 4.30(b). Note that this reconstruction was performed
for several different E regions, and the results were found to be very similar.

Similarly to the analysis of high Ej regions, we now test high vorticity (or equiva-
lently, enstrophy) regions to ascertain the vorticity contributions in generating small-
scale swirling-flow structures. Figure 4.33, panel (a) shows three instances of H” =5HP !
regions with the local flow streamlines (which have been initiated from a collection of
points distributed near the core of each correlation kernel), while panel (b) shows the
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(c) Flow reconstructed using the vorticity in the range w > w’, where w' €

{20',3.50',50'}, from left to right.

Figure 4.32: A single high Ej region has been shown in panel (a). Panels (b) and (c) show the
local flow streamlines as generated by the velocity field reconstructed with the Biot-Savart law, by
thresholding the vorticity as w < ' and @ > ', respectively, where w! is a threshold value. The
colours show the velocity magnitude |ul in lattice units, i.e. Ax/At.

streamlines alone. The first thing to note is that the velocity of these structures is mostly
in the intermediate and low Ej range (since u is in an intermediate range). The core of
these structures comprise a strongly swirling motion (as indicated by the high HP value),
while the flow decays into more disordered streamlines away from the core regions.
Panel (c) shows the self-generated velocity field, which is generated using the Biot-
Savart law applied to all H” > 5H"’ regions. As expected, the self-generated streamlines
show a swirling-flow, including an instance of two vortices interacting in a figure-eight
velocity pattern (in panel (c), left). The self-generated velocity, distant from the core
region, has a low magnitude. This shows that the strongly swirling regions influence the
velocity field only within a small region of influence (due to the rapid decay of the Biot-
Savart contribution). The externally induced velocity streamlines in panel (d) are at an
intermediate Ej range, and closely resemble the total velocity field streamlines outside
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of the core regions. This also indicates that the cutoff H? = 5HP' is high for swirling
flow regions (occupying less than 1% of the volume, see figure 4.23d). The vorticity field
in the regions marked by H” < 5HP’ also contributes to the swirling-flow structures. We
test this by thresholding the vorticity field at different levels, and reconstructing the Biot-
Savart velocity field. This also gives a more natural indication of the vorticity range which
generates swirling motion, instead of thresholding based upon the H? field.

Figure 4.34 shows one instance of a high H” region, with the local flow streamlines
in panel (a), which have a strong swirling motion in the vicinity of the correlation kernel.
We then show the Biot-Savart velocity field reconstructions obtained using w < o’ and
w > ', in panels (b) and (c), respectively, where 0’ € {2¢’,3.50',5w'}. Interestingly, it is
found that the flow generated by w < 5w’ almost completely resembles the original flow
structure, showing that the contribution from w > 5w’ is very weak and limited to a very
small region near the core of the swirling structure. Further, the flow generated by w >
2w', seems to resemble the swirling flow region to a large extent, while the contribution
from w < 20’ is not insignificant either. This seems to suggest that the swirling flow
regions are a superposition of self-generating swirls on top of a background vorticity
induced velocity field, which we now quantify.

These results give a clear picture of the flow structures that together comprise turbu-
lence fields. In summary, the high Ej regions are localized jet-like flows, which them-
selves contain very low levels of vorticity, and are hence externally induced structures,
with dominant contributions of the intermediate vorticity field. The strong enstrophy
regions are interspersed in a more or less random manner through the flow field, as they
only strongly influence the flow in their immediate neighbourhood, and do not add up
together, in a Biot-Savart sense, to give rise to larger structures, or those with high Ej. We
also verify in Appendix 4.A that jet-like and swirling flow structures correspond to high L
and high HP regions, respectively, in the JHTD dataset.

4.6. CONCLUSIONS

In this paper, we developed mathematical tools for identifying instantaneous, spatial
structures in vector fields associated with turbulent flows. We focused on structures that
have a finite spatial extent, and can be found in snapshots of the vector fields (i.e. they
are instantaneous). By taking coherence to mean correlation, in the context of vector
fields, we began with a generalization of the correlation tensor, and introduced new cor-
relation measures based upon certain flow types. For instance, high amplitude regions
in the velocity field with parallel/anti-parallel streamlines (L and L), high amplitude re-
gions in the vorticity field with parallel/anti-parallel streamlines (G and G®) and swirling-
flow in the vicinity of strong vorticity regions (HP). All these measures yield a pseudo-
vector field, with three values at each point, one for each spatial direction. We tested
these correlation measures against canonical flows like Oseen and Burgers vortices, and
then applied them to datasets from simulations of homogeneous, isotropic turbulence.
Further, reconstructing the flow field using the Biot-Savart law revealed interesting as-
pects regarding the vorticity contributions to the generation of velocity field structures.
The main findings are summarized below:

1. We find that the velocity field has two distinct coherent flow types which char-
acterize the high turbulence kinetic energy large-scales and the high enstrophy
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(d) Externally induced flow streamlines.

Figure 4.33: The flow around high H” regions, which also coincide with high w, is shown to be
swirling-motion. (a) High HP regions as identified by contours of 5HP’ have been isolated, and
shown together with the local flow streamlines. (b) The local flow streamlines are shown sepa-
rately. (c) The self-generated flow, computed using the vorticity inside the 5HP’ contours. (d) The
externally-induced flow field, computed from the rest of the vorticity field. The colours show the
velocity magnitude |ul in lattice units, i.e. Ax/At.
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(c) Flow reconstructed using w > !, where w’ € {20',3.50',50'}, left to right).

Figure 4.34: A single high enstrophy region has been shown in panel (a). Panels (b) and (c) show
the local flow streamlines as generated by the velocity field reconstructed with the Biot-Savart law,
by thresholding the vorticity at values lower than and higher than increasing threshold values,
respectively. The colours show the velocity magnitude |u] in lattice units, i.e. Ax/At.

small-scales.

2. Regions of high kinetic energy (Ey) are found to be locally jez-like. These regions
yield large values for the L and L® correlations, reflecting that (a) the flow stream-
lines in these regions are well aligned and (b) the velocity has a large amplitude
in these regions. The joint distribution of L and Ej further shows that increasing
levels of Ey lead to an increase in the flow organization as well.

3. Regions of high enstrophy (w?) are found to coincide with swirling motion in their
neighbourhood, which has been shown before [19, 20, 36], while locally yielding
large values for the HP correlation. High w? and H” regions are both worm-like
and small-scaled. The joint distribution of H” and w shows that there are no strong
vorticity regions that are not associated with swirling motion in their vicinity, for
the case of homogeneous, isotropic turbulence, considered in this study.

4. The statistics of the spatial organization of the correlations, viz-a-vis kinetic en-
ergy and vorticity, show that the jet-like and swirling-flow regions are spatially ex-
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clusive. This hints at the dynamical separation between the high kinetic energy
large scales and the high enstrophy small scales. This dynamical separation is the
process of generation of high enstrophy structures from the reorganization and
non-local, non-linear interactions of high kinetic energy structures. How this pro-
cess is mediated is left for future work. The high enstrophy structures, in turn, are
dynamically insignificant in determining the overall flow, as has also been argued
in Tsinober [2].

5. The Biot-Savart reconstruction of the velocity field shows that the high E} regions
are not self-generating, as their own vorticity content is negligible. This shows that
these structures are generated by non-local vorticity contributions. Conditionally
sampling the vorticity field further reveals that strong-vorticity has a negligible
contribution in the generation of large-scale inertial structures. This is a further
hint regarding the dynamical separation between the large-scales and the small-
scales. Strong-vorticity regions are spatially organized in such a manner that they
remain mostly non-interacting with the remainder of the velocity field, such that
they do not combine their influences to generate a large-scale structure. It is found
that the background vorticity generates the high kinetic energy structures, almost
entirely.

6. The structure of strong enstrophy, swirling-flow regions is found to be the result
of a combination of background vorticity induced flow field and the self-induced
swirling-flow. The influence of the strong vorticity regions does not extend far due
to the rapid decay of the Biot-Savart contribution.

7. We find that the turbulence velocity field, including regions both of high kinetic
energy and high enstrophy; is significantly generated, in a Biot-Savart sense, by
the “background vorticity field” which permeates the volume, and occupies more
than 90% of it. This range of vorticity corresponds to the narrow, (almost) Gaussian
peak of the vorticity PDFs, while completely ignoring the long intermittency tails
which correspond to extreme vorticity events. Usually, most research has focused
on extreme vorticity, due to its influence on flow irreversibility, mixing and parti-
cle dispersion. It turns out that the bulk of the flow, and in particular, the kinetic
energy containing regions, are completely impervious to extreme vorticity. The
background vorticity can further be classified into an “intermediate” and a “weak”
range, where the weak range of vorticity remains dynamically insignificant, and
does not contribute much to the generation of the different flow structures.

The structural view of turbulence fields, as evident from our results, is illustrated
in figure 4.35. Although our study does not explore the dynamics of structures, it seems
likely that the overall organization of turbulence, along with its statistical features, emerges
from the combined contribution of the permeating background vorticity. The coherence
of the large, kinetic energy containing jet-like structures, is found to be a consequence of
the background vorticity induced flow organization, which shows that the large inertial
structures are not self-determining. Similarly, strong enstrophy structures are an out-
come of the superposition of the background vorticity induced flow organization and
the self-induced swirling-flow organization. In our work we did not investigate an in-
termediate range of coherent velocity structures (corresponding to the inertial range),
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Figure 4.35: Schematic of the organization of turbulence structures along with the Biot-Savart
contributions that generate them. The vorticity ranges are colour coded with strong vorticity (or-
ange), intermediate background vorticity (blue) and weak vorticity (off white). The large-scale
kinetic energy structures are jet-like, and do not have a significant self-generation due to their low
vorticity. Their coherence is induced (in a Biot-Savart sense), almost entirely, by non-local, inter-
mediate background vorticity contributions (shown in blue), while the contribution from strong
vorticity to their generation is negligible. Strong vorticity regions have a local swirling motion in
the velocity field. These structures are a superposition of an intermediate background vorticity
generated flow and a self-induced accentuation of the swirling flow.

clearly establishing the organization of which is left for future work. The turbulence ve-
locity field, hence, emerges (in the Biot-Savart sense) from the global vorticity field.

The traditional “cascade” perspective of turbulence dynamics explains the phenom-
ena as being dominated by the high kinetic energy, large-scale structures, which in-turn
determine the structure and generation of successively smaller scales via some eddy
break-up mechanism, which goes back to the idea of Richardson [1]. Within the limits
of our work, we show that turbulence can also be considered as an alternative paradigm.
Instead of large scales dominating the dynamics, we find that, in a Biot-Savart sense, the
large scales are themselves induced by non-local vorticity contributions. Similarly, most
of the velocity field, which contains a range of “scales” (which yield the k=°'% spectral
scaling), are also generated in a Biot-Savart sense by a permeating, intermediate range
background vorticity. This view suggests that the organization of turbulence flow fields
need not necessarily be a strict hierarchy, and may in-fact be a consequence of the non-
local and non-linear interactions between structures dominated by the intermediate
vorticity. Further investigation of the lifecycle of these velocity and vorticity structures,
along with identification of the typical force-field structures that drive the dynamics (i.e.
structures associated with the pressure gradient and viscous stress fields), will help illu-
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minate or dispel notions regarding the existence of hierarchical coherent structures that
has been expounded in different representational spaces, while having been elusive in
the physical space where the phenomenon of turbulence occurs.

The tools presented in this paper (or modified versions of them) can be readily ap-
plied to identifying structures in any scalar or vector fields (not just turbulence) like pres-
sure, strain or eigenvector distributions, electromagnetic fields, to different dimensional
data-sets, or be recast as time-correlations to study the temporal nature of coherence.
We believe these tools, combined with the Biot-Savart construction, open a new door
into studying the dynamics of turbulence from the perspective of its constituent struc-
tures, and may pave the way towards a new structural description of turbulence organi-
zation.
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APPENDIX

4.A. VALIDATION AGAINST JHTD DATASET

In this section, we apply the correlations to a reference dataset of homogeneous, isotropic
turbulence from the Johns Hopkins Turbulence Databases (JHTD) [37, 38], to show that,
qualitatively, the results we presented using our in-house code are similar to a different
turbulence dataset. We use the forced isotropic turbulence dataset, which is a pseudo-
spectral simulation performed on 10243 nodes, with a Taylor Reynolds number of Rej ~
433 (note that our intention is not to study the effect of the different Re) in the reference
dataset). The correlations are calculated by integrating over A = A, which was shown to
be a reasonable choice in section 4.5.3.

Figure 4.36 shows the kinetic energy Ey. field (normalized by the mean (Ey)) in panel
(a) and the amplitude of the L correlation field (normalized by L) in panel (b). The two
fields look very similar, although the L field appears more smooth with fewer fine scale
structures, as was also found in our own simulations. Panel (c) shows contours of the
vorticity field, and panel (d) shows contours of the H” field, which are again very simi-
lar to our results, with the difference that the JHTD simulation is performed at a much
higher Re, value, due to which the fine scale vorticity structures appear smaller than in
our simulations.

We also verify that the structure of high kinetic energy regions and strong vorticity are
similar in the JHTD dataset. Figure 4.37, panel (a) shows a single region of high kinetic
energy, marked by the contour of L = 2.5L" along with the local streamlines (coloured
by Ex/(E)), which have also been shown separately in panel (b). The streamlines are
initialized from a spherical region of radius A at the core of the correlation kernel, and
integrated upto 10A. The local flow structure is found to be jet-like, as the streamlines
align parallel to each other in the core of the correlation contour, where Ej also assumes
its maximum value. The streamlines lose their kinetic energy over distance, where they
begin to become more disorganized.

Figure 4.38 shows local the flow structure in the vicinity of a H? = 5HP' region in
panel (a), along with the streamlines shown separately in panel (b). As expected, the
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Figure 4.36: Flow field snapshots from the JHTD isotropic turbulence dataset have been shown
along with correlations L and HP. Kinetic energy Ej. (a) and L (b) have very similar profiles, where
L appears more smooth. The vorticity contours (c) and HP contours (d) appear to be similar as
well.

high HP regions have a swirling motion in their vicinity and coincide with regions of
high enstrophy. The streamlines show moderate to low kinetic energy values for these
structures.
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TURBULENT EMULSION DYNAMICS

A detailed dynamical description of the underlying processes of turbulent emulsification
is still lacking. Despite the widespread application of emulsions, so far our understand-
ing of its formation has been driven by empiricism as dynamics revealing experiments
remain intractable. The work of Hinze [2] and Deane and Stokes [3] still hold definitive
in describing the fate of droplets in turbulence. Although much progress has been made
recently in simulating turbulent multiphase flows, interface resolving turbulence simula-
tions remain an exception to the point that only a handful of them have been performed
so far [4]. In this chapter we demonstrate how existing numerical techniques (namely a
pseudopotential lattice-Boltzmann scheme and a turbulence forcing mechanism) can be
correctly combined to perform hitherto unreported, long and stable, fully resolved numer-
ical simulations (in certain regions of the turbulent emulsion parameter space). We report
on characteristics of dispersion formation - namely droplet size distributions, modifica-
tion of turbulence due to droplets globally (i.e. kinetic energy spectra) and locally (i.e. flow
topology), and the effect of turbulence intensity on the emulsion morphology. Further,
we initiate discussion and exploration of the dynamics of coalescence and breakup that
forms an interesting quasi-equilibrium system, which has so far never been reported. In-
termittent peaks in kinetic energy were found to consistently manifest in the enstrophy
and droplet number density evolution with characteristic delays in a cascade of cause
and effect. These state space variables evolve into time delayed limit-cycles, with alter-
nating coalescence and breakup dominated dynamics. Similarly, surface energy peaks
were found to precede droplet breakup which gives new evidence that tip streaming and
filament stretching are dominant breakup mechanisms. As simulations such as those pre-
sented here (and a few existing studies) slowly become commonplace, the burden will shift
to lie on interpretation, validation and prediction. Ours is an attempt to begin pointing
towards these aspects of physics resolving simulations.

This chapter has been published in the Journal of Fluid Mechanics, 2019 [1].
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5.1. INTRODUCTION

N emulsion consists of a dense suspension of droplets of one fluid (the dispersed
Aphase) suspended in another fluid (the continuous phase), and is often formed due
to turbulent mixing of these two immiscible fluids. Emulsions are found (both desir-
ably and undesirably) in a wide range of industries. For instance, in food processing,
diverse products depend on the stability and texture of emulsions [5]. In biotechnology,
emulsions can serve as miniature laboratories where living cells can be compartmental-
ized into individual droplets [6]. They are also known to cause various losses in crude
oil production [7], or to the contrary, enable enhanced oil recovery [8]. Emulsification,
i.e. the formation of an emulsion, requires shearing of droplets which can occur both
in laminar and turbulent flow conditions, although the latter may be a more common
occurrence. Turbulent emulsions can be said to form a particular class of droplet laden
turbulent flows where there is close interplay between turbulence and the dynamics of
the dispersed phase. Accurately describing these systems hence involves an account of
the dynamics of deforming interfaces, while allowing for coalescence and breakup of
droplets, resolution of a range of length and time scales of turbulent flow and the possi-
ble presence of surface active agents (surfactants) that can alter the interfacial dynamics.
We ignore surfactants in the present study, and focus only on emulsions formed by pure
fluids.

The primary effect of turbulence on droplets during emulsification is to cause frag-
mentation, where an initially large connected volume of the dispersed phase is broken
into smaller droplets. Under sustained turbulence, there is a supposed equilibrium be-
tween coalescence and breakup which leads to a droplet distribution around a theoret-
ical maximum stable diameter, known as the Hinze scale [2]. This droplet distribution
can be expected to follow a d~1%/3 slope (where d is the droplet diameter), which was
first postulated and shown by Garrett et al. [9] for a different system, i.e. air bubbles in
breaking ocean waves, later also confirmed by Deane and Stokes [3]. Although the emul-
sification process is different from the bubble dynamics in a breaking wave, both can
proceed via a cascading breakup process governing the dispersed phase, which might
only depend on the inertia at a given scale (which in turn may be estimated from the
rate of energy dissipation in some cases). The dispersed phase influences turbulence
by drawing turbulent kinetic energy (TKE) from the flow, which partially goes into the
difference between the surface energy of parent and daughter droplets, while the rest
is stored in the deformation of interfaces. This reduces the effective turbulent kinetic
energy (TKE), which has consequences on the turbulence cascade and spectrum, no-
ticeably at scales comparable to droplet sizes. Coalescing droplets in turn set finer flow
structures into motion, where interfacial tension releases the energy stored in droplet
deformations back as TKE into the flow at scales smaller than the droplet sizes [10].

LITERATURE REVIEW

In this chapter, we are interested in studying the dynamics of emulsions under continu-
ously forced, homogeneous, isotropic turbulence. So far, most studies on emulsification
have been experimental, which is because numerically simulating emulsions while re-
solving interfacial dynamics and turbulence has only recently become feasible. Most
of these experimental results have been phenomenological and statistical, which has
greatly informed our understanding of emulsification mainly regarding the formation of
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droplet size distributions and emulsion stability, and has in turn aided modeling. The
dynamics of emulsification, however, has remained intractable to experiments due to
the difficulty of performing measurements during the emulsification process, further ag-
gravated by emulsions being optically opaque, and interfacial dynamics being inherently
three-dimensional. To fully paint the dynamical picture, one would require to measure
the position of interfaces and the spatial distribution of velocity (to quantify velocity gra-
dients), along with their time evolution. Simulations here are key, as they can reveal all
these quantities in telling detail. There have been only a handful of numerical studies
devoted to turbulent emulsions, some of which have been detailed in the recent review
by Elghobashi [4] on DNS simulations of turbulent flows laden with droplets or bubbles.
We refer interested readers to it for a general overview, while we shall discuss the cur-
rent state of simulating turbulent emulsions, highlighting those aspects that we intend
to address with our work.

In one of the first studies, Derksen and Van den Akker [11] simulated a turbulent
liquid-liquid dispersion using a free-energy based lattice-Boltzmann (LB) method. They
modeled a fluid packet as it passes by the impeller in a stirred vessel, hence experienc-
ing a burst of turbulence, before entering a quiescent zone. They show evolution of
the droplet distribution in the dispersion under first constant, and then decaying turbu-
lence, also reporting the modification to the kinetic energy spectra at a crossover scale.

Perlekar et al. [12] simulated droplet breakup in homogeneous, isotropic turbulence
using a pseudopotential (PP) LB method, showing that the distribution of droplet diam-
eters has a finite width around the Hinze scale. Since Hinze’s criterion does not account
for droplet coalescence or coagulation, deviation from it was found at higher volume
fractions. Further, droplet breakup was attributed to peaks in the local energy dissi-
pation rate. The study reported on the method being originally incapable of attaining
steady state simulations due to droplet dissolution, which was remedied by a mass cor-
rection scheme to artificially re-inflate droplets which helped maintain a steady volume
fraction [13]. Later, Perlekar ef al. [14] simulated turbulent spinodal decomposition to
show coarsening arrest in a symmetric binary fluid mixture (which is compositionally
similar to an emulsion, although the morphology is distinctly different). Turbulence was
shown to inhibit the coarsening dynamics at droplet sizes larger than the Hinze scale.

Skartlien et al. [15] simulated a surfactant laden emulsion under weak turbulence
(Rey < 20) using a free-energy LB method, and reproduced a d~'%'3 droplet distribution.
They did not find any influence of the surfactant in altering the coalescence rates in the
considered range of surfactant activities and turbulence intensities. Also using a free-
energy LB method, Komrakova et al. [16] simulated turbulent liquid-liquid dispersions at
varying volume fractions, focusing on the resolution of droplets with respect to the Kol-
mogorov scale. They found that droplet dissolution was a significant issue, which made
it impossible to obtain a steady state droplet distribution at low phase fractions, while at
higher phase fractions (¢ > 0.2), despite breakup, most droplets coalesce to form a sin-
gle connected region with multiple smaller satellite droplets. Increasing the resolution
of the Kolmogorov scale remedied droplet dissolution to some extent, and a log-normal
droplet distribution was shown from transient simulations, as has been experimentally
found for turbulent liquid-liquid dispersions [17, 18]. The multiphase energy spectra
could not be reproduced due to spurious currents which caused unphysical energy gain
at high wavenumbers, whose magnitude was found to be close to the turbulent velocity
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scale u'.

In their detailed study on droplet-turbulence interaction, Dodd and Ferrante [10]
simulated a large number of initially spherical droplets (¢ = 0.05) in decaying homo-
geneous, isotropic turbulence using a mass conserving volume-of-fluid method. They
considered a wide range of density and viscosity ratios between the droplet and carrier
fluids, and showed an enhanced rate of energy dissipation for increasing droplet Weber
number (We). Introducing the TKE equations, they show that breakup and coalescence
act as source and sink terms of TKE. Roccon et al. [19] studied the influence of viscosity
on breakup and coalescence in a swarm of droplets (¢ = 0.18) in wall bounded turbulent
flow using a coupled Cahn-Hillard Navier-Stokes solver. They report a slight drag reduc-
tion in the flow due to the presence of droplets, and show that a higher interfacial tension
or droplet viscosity favours coalescence, and the number of droplets rapidly decreases
to 1 —10% of its initial value. At low viscosity, where breakup dominates, around 50% of
the droplets remain separated and their sizes follow Hinze’s (D) We3/5 criterion.

Recently, using a mass conserving level-set method, Shao et al. [20] studied interface-
turbulence interactions in droplet breakup simulations. They showed that vortical struc-
tures tend to align with large scale interfaces before breakup. They also show that there
is a slight increase in axial straining and vortex compression upon mapping the flow
topology in the presence of droplets, in comparison to single-phase turbulence.

OUR STUDY

In this study, we resolve several of the issues faced in previous work, and report new
findings from direct numerical simulations of turbulent emulsions. We use the PP-LB
method for a multicomponent fluid system without phase change to simulate the forma-
tion of a dispersion. PP-LB is well suited for simulating multiphase flows comprising de-
formable droplets due to the spontaneous formation of interfaces (emerging from sim-
plified inter-particle repulsion forces) and naturally occurring coalescence and breakup
all without the need for interface tracking or models for film drainage [21-23]. In gen-
eral, different multiphase LB models have been used and validated successfully for sim-
ulating droplets and bubbles in various flow conditions of varying complexity. A few
examples are simulations of binary droplet collisions and coalescence at different den-
sity ratios [24], inertial droplet collision dynamics [25-28], and droplet breakup in Stokes
[29] and inertial [30] shear flows. Some examples of the PP-LB method in particular are
simulations of multiple bubble dynamics [31], droplet deformation and breakup in shear
flow [13, 32], droplet collision [33] and impact [34] at high Weber numbers, and droplet
formation and breakup [35, 36] and gas-liquid flow [37] in micro-channels. Chen et al.
[38] gives an extensive review of the application of PP-LB to various physical problems
involving droplets or bubbles. PP-LB has been used before for simulating droplets in
turbulence as well [12, 14, 39], along with the free-energy LB method [16].

However, LB comes with a caveat that due to interfaces being diffuse, coalescence
is favourable when interfaces overlap. This makes the resolution of the interface width
relative to droplet sizes, i.e. the Cahn number, an important criterion [40]. The diffuse
interface also leads to dissolution of small droplets as has been noted before [12, 16, 41].
We show that droplet dissolution can be limited to a minor effect in certain parameter
regimes, and that a mass correction scheme as used in Perlekar et al. [12], Biferale et al.
[13] is not requisite for simulating droplets in turbulence while using the original PP-LB
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method.

Additionally, multiphase LB simulations suffer from spurious currents (z5P) which
are velocities arising from anisotropy in the discretization of inter-particle forces. While
it has been shown that u°P can be kept small in the pseudopotential LB method [37, 42],
also lower than in comparison to conventional finite volume techniques like the volume-
of-fluid method [43], in the free-energy LB method they were found strong enough to
dominate the multiphase kinetic energy spectra at high wavenumbers [16]. Further,
in LB, the characteristic fluid velocity (here the large scale velocity %) should be kept
smaller than the lattice speed of sound c;, such that the flow Mach number Ma = %/ c;
is low (where traditionally Ma < 0.3 is considered incompressible) and hence the flow
being simulated obeys the incompressible Navier-Stokes equations. Hence, the veloci-
ties should scale as ¢ > % > u’P, which we maintain in our work.

We simulate a dispersion in a periodic box, employing a forcing scheme to generate
homogeneous, isotropic turbulence. The system we consider in our numerical setup can
be expected to form a small portion (assumed to be isotropic) of a larger process (usually
anisotropic). One reason to consider isotropic turbulence is that it is the simplest form
of turbulence, and is widely used as the flow condition to study the more complicated
dynamics of Lagrangian objects like droplets or particles. It further allows us to compare
our results with the classical scaling laws of Hinze [2], Garrett ef al. [9], Kolmogorov [44]
and Deane and Stokes [3]. The largest (i.e. energy injection) scale in our simulations
is significantly smaller than the largest flow scales in an experiment. Conceptually, we
expect that the energy cascade extends to much smaller wavenumbers (than present in
our simulations), and what we are able to capture is the tail-end of the energy cascade
- which has a small part of the inertial range transitioning into the dissipation range.
Hence we have droplets at the end of the inertial range. In real physical systems, droplet
dynamics will also occur in a similar range of scales (and extend into the deep dissipation
range), while much larger droplet phase regions (at significantly lower wavenumbers)
will not occur. The effect of droplets on the flow will then be namely extracting kinetic
energy into deformations, generation of smaller scale motions via coalescence (both also
corroborated by Dodd and Ferrante [10]), and the modification of local flow topology -
and these aspects are what we capture in our simulations.

We particularly study the influence of varying the dispersed phase volume fraction
(¢p) and turbulence intensity (Rey) on the characteristics of the emulsification process
and the dispersion so formed. We show the influence of the dispersed phase on the mul-
tiphase kinetic energy spectra which has not been systematically presented before, or
was not possible due to the limitations of the numerical method [16]. We show that ¢,
Re) and the interfacial tension y together determine the dispersion morphology, and
that droplets of a particular characteristic length can be generated by varying these pa-
rameters. Investigating local flow topology, we show that the effect of the dispersed
phase is significant and more pronounced than previously stated [20], with a sharp in-
crease in vortex compression and axial straining in the droplet regions. We also present,
for the first time, an analysis of the equilibrium dynamics of a droplet laden isotropic
turbulent flow, showing that the system evolution in its state-space is akin to time de-
layed limit-cycles with alternating dominance of coalescence and breakup as the system
oscillates between different dispersion morphologies.
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LENGTH SCALES

Through this study we highlight a few considerations that have not been discussed in
previous work and are crucial to simulating droplets in turbulence. First is numerically
resolving to a sufficient degree the several length scales that govern different aspects of
these simulations. Of these, a length scale central to emulsification is the maximum
stable droplet diameter for a constant turbulence intensity. This was first given by Hinze
[2], who expressed the critical Weber number for droplet breakup (i.e. the ratio between
inertial stresses across a droplet and restoring surface tension forces) in terms of the
energy dissipation rate €, and is since called the Hinze scale

Amax = 0.725(p° ) "33 2/5 (5.1)

where p¢ and y are the carrier fluid density and interfacial tension, respectively, and
0.725 is a fitting constant. Since the dissipation field is far from uniform and is highly
intermittent, it is now accepted that the local variations in € also set local Hinze scales,
and an entire spectrum of droplets centered around d,ax tends to arise. Further, devi-
ations from the Hinze scale occur due to droplet coalescence in dense suspensions, as
the original scaling was derived for dilute systems with negligible coalescence. A closely
associated length scale is the interface width ¢, which in physical systems can be of the
order of nanometers for micron to millimeter size droplets. However, as a limitation
of our simulation technique (and every other diffuse interface method), the interface
width extends over a few computational grid cells. The ratio between { and the droplet
diameter d is termed the Cahn number Ch = {/d [30], and extreme values of Ch are un-
desirable. While we require Ch « 1, coalescence is expected to be fully suppressed in
the limit Ch — 0 [40, 45], and therefore the value of Ch should also be finite. Hence the
relative separation between d and { needs to be considered.

Next, the two length scales characterizing turbulence are the energy injection scale
% which is determined by the forcing scheme, and the smallest (or Kolmogorov) scale
1 which is determined by the viscosity v and the dissipation rate €. A wide separa-
tion between £ and n means a higher Reynolds number Re, which can be expressed

as Re =~ (£ 7])4/3. A final length scale of importance in simulations is the size of the
simulation domain, which along one spatial direction can be considered to be N, and
this is generally chosen to be close to Z. As droplets will break up due to extension un-
der turbulent stresses, the domain size N, should be sufficiently larger than the max-
imum droplet elongation before breakup to yield meaningful results (particularly for
simulations on periodic domains, where large droplets would begin to interact with im-
ages of themselves). Here a particular caveat is also the simplistic description of highly
deformed droplets, where an equivalent droplet diameter d = (6V/m)'/3 gives the im-
pression of Ny > d, whereas in the form of long, slender filaments, droplets can extend
across the entire domain. This can give rise to elongated droplets that remain connected
due to periodicity, and this is more prone to occur at high volume fractions under weak
turbulence, as for instance can be seen in Skartlien et al. [15].

Comparing these length scales, the required spatial separation between them for
simulating droplets in the inertial range, at least from a stance of reasoning, would follow
as

Ny>»>ZL>d>»n>( (5.2)

while N, > £ may also be sufficient, and most studies currently are limited to N, = £.
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Also, d can vary over a range of values, extending upto d ~ 7 if the Kolmogorov scale is
over-resolved. Upon conceding to limitations of modeling, current simulations can at
best reproduce

Ny>Z>»>d>»n=( (5.3)

We try to maintain such a separation of scales, except that we have { > . This is
a limitation of the current study, as physically the interface thickness is much smaller
than any turbulence length scale. This issue is further discussed in section 5.4. Lastly,
having n > d would mean sub-Kolmogorov droplets. These droplets can also deform
and breakup due to the action of viscous stresses instead of inertial stresses [4].

We begin with a description of the numerical method in section 5.2, followed by a
brief validation of the turbulence forcing scheme. We then present results from turbulent
emulsions in section 5.4, where first the effect of varying the volume fraction is shown in
section 5.4.2, followed by a generalization of the Hinze scale in section 5.4.3. The effect
of varying the turbulence intensity is shown in section 5.4.4, along with a demonstration
of controlling droplet dissolution by reducing the Cahn number. Section 5.4.5 discusses
the importance of sufficient resolution of the largest scales and section 5.4.6 shows the
influence of the turbulence forcing wavenumber on the dispersion morphology. Finally,
in section 5.5 we discuss some general results regarding emulsion dynamics, with the
quasi-equilibrium limit-cycle presented in section 5.5.1, droplet-vorticity alignment in
section 5.5.2 and influence of droplets on local flow topology in section 5.5.3, after which
we end with the conclusions.

5.2. NUMERICAL METHOD

5.2.1. LATTICE-BOLTZMANN METHOD

Each component o € {a, f} obeys the standard LBGK equation with a single relaxation
time which can be written as [46]

7 (%, 1) — £247 (%,
o= mn

ff&x+ciAt,t+A) = ffx 1) - pr-

(5.4)

where f7 is the distribution function of component o along the discrete velocity di-
rection c¢;. Here 77 is the lattice relaxation time towards local equilibrium which re-
lates to the macroscopic component viscosity v* = ¢2(7% — 1/2) where c; = 1/V/3 is the
lattice speed of sound (the mixture viscosity is a more complex expression when the
components have different 7). The equilibrium distribution fieq’a is given by the local
Maxwellian as

ed.¢; (ueq-c,-)2 utd. el

eq,0 u
) =w;ip|l+ + — (5.5)
Ji iP c? 2ct 2c2

where w; are the LB weights in each direction i, and u®? is the equilibrium velocity which
is given as
T°F°
p(T
The density of a component p? = ¥; f, and F’ incorporates all the forces (here the
inter-component interactions and the turbulence forcing), into the common fluid veloc-

w=u+ (5.6)
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ity u’ between the two components which is given as

w=—T17 5.7)

where u? is the bare component velocity. This is calculated in its usual form

1
u’=—3% fc (5.8)
P
For details see Kriiger et al. [46], Succi [47]. The inter-component interaction force, F5¢,
is modeled using the method of Shan and Doolen [23], which can be written as
9% @) = ~Gopw® 0 Y. w° (x+¢;AL)c;wiAt (5.9)

o#0

where 17 is the pseudopotential function for component ¢ and in this study we have
chosen 17 = p? (while other definitions are possible). This force between the compo-
nents is kept to be repulsive, hence the interaction strength parameter G,z should have
a positive value. It should be noted that the fluids remain partially miscible, and essen-
tially the final composition consists of ¢—rich and f—rich regions, while a small amount
of one component remains dissolved in the other. A higher magnitude of G, results
in lower solubility and gives rise to a higher interfacial tension. The total density of the
fluid is the sum of the two fluid densities, p*°* =Y, p?, and the hydrodynamic velocity is
given asu = (1/p"°Y ¥, (u”p? + (1/2)F? At). The equation of state for this multicompo-
nent system is [46]

c2nr?

2

p=ciyp’+ Y Goayy? (5.10)
o 0,0
Lastly, the interfacial tension y can be calculated using the Laplace law Ap = 2y/r, where
Ap is the pressure difference across the interface of a spherical droplet.
The simulations here have been performed on a D3Q19 lattice, i.e. a three-dimensional
lattice with a set of 19 discrete velocity directions. Further, the lattice spacing Ax and
time step At are both set equal to 1, and consequently all quantities are expressed in

dimensionless lattice units [lu].

5.2.2. TURBULENCE FORCING

To generate and sustain turbulence in the fluid, a constant source of energy is required,
which is constantly being dissipated by viscosity at the smallest scales (i.e. the Kol-
mogorov scales). This is done by setting the largest scales of flow into motion, and if
the fluid viscosity is low enough, these large structures become unstable and give rise
to successively smaller scales. One of the ways to achieve this numerically is by em-
ploying a low wavenumber spectral forcing, as given by Alvelius [48], while alternative
techniques could also be used [49, 50]. This forcing was also implemented by Ten Cate
et al. [51] in LB to simulate the response of clouds of spherical solid particles to homo-
geneous isotropic turbulence. A very similar form of the forcing is used by Perlekar et al.
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[12], which is constructed directly in real space but could be made to have a similar ef-
fective spectral form as [51, 52], albeit with less control over output parameters, as we do
in this study. The forcing is divergence free by construction and can be written as

Fo=xk ;’mt A(K) [sin@rky + ¢y (1) +sin@rkz + ¢ (k)]
Fo=xl, %A(k) [sin@rkx+¢x(0) +sin@rkz + . (k)]
F = Zfika pﬂm A(k) [sin@rkx + ¢ (k) +sin@rky + ¢y (k)] (5.11)

Here each ¢;(k) is a unique random phase. Alternatively, ¢;(k) can be evolved as a
stochastic process, as done in Perlekar et al. [12], but in our approach ¢; (k) (and hence
the forcing) varies as white noise in time. This ensures that the force is not related to any
timescale of turbulent motion, and is a choice also made in Ten Cate et al. [52]. The force
is distributed over a small range of wavenumbers k, < k < kj,, while the contribution of
each of these wavenumbers is determined by A(k) which centers the Gaussian around
k r in Fourier space, given as

k—kr)?
A(k) = Aexp —M) (5.12)

c

where ks is the central forcing wavenumber, c¢ is a width over which to distribute the
force amplitude and is set to ¢ = 1.25, and A is a forcing magnitude. This method en-
sures that there is a dominant central wavenumber k¢ (which can also be a fraction) in
the forcing scheme, while neighbouring wavenumbers also contain some energy, which
makes the scheme more stable [52]. Lastly, the total power input to the fluid can be writ-
ten as the sum of two terms as follows

11—
P=P+P= Efkkal'+ U fr (5.13)

where the two terms are the force-force and force-velocity correlations respectively, and
ug, fr refer to the volumetric velocity and force fields. The force-velocity correlation, Py,
should be 0 to avoid an uncontrolled growth of energy in the fluid [48], and it is achieved
by varying the force term at each time step. This is computationally expensive, hence
some studies [51, 52] vary the force by choosing randomly from a pre-computed set of
force fields at each time step. This was found to introduce a non-zero contribution from
the P, term, where the steady state kinetic energy was roughly 10 times larger than with
a unique random force at each time step - hence in this study we adhere to the latter
approach.

In the continuum (long-wavelength) limit, the PP-LB model solves the Navier-Stokes
equations for the two fluid mixture with a body force (see Scarbolo et al. [53])

0

pmt(a—l;+u-Vu)=—Vp+V-(uVu+/,NuT)+ZF” (5.14)
g

where p is the pressure (refer eq. 5.10), =Y, p?v? is the dynamic viscosity, and F? is

the total force acting on component o, which here is given as F? = FJ, + F7 | (i.e. the
urb
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sum of the pseudopotential contribution as given by eq. 5.9 and the turbulence contri-
bution given by eq. 5.11). The per component continuity equation includes an addi-
tional term, i.e. the divergence of the diffusive current J° (as given in Scarbolo et al. [53])
which causes phase-segregation between the two components, and has the form

0p°

—_— . o = . o
FYR (p°u)=V-J (5.15)

@ph 1\(Vp® Vph F¢ FP
]a:ptp C?(T——) L_i 7| — - =
ptot 2)\ p*  ph p*  pP
It can be seen that the turbulence force contribution to J° cancels out since F®

turb
Ftﬁurb/ pP. Further, the flux of each component is negligible away from interfaces where

gradients of density and the pseudopotential force vanish. The global continuity equa-
tion, obtained by adding individual component continuity equations, is not influenced
by the diffusive current term (since J* = —J#). For more details on the continuum form of
the equations, refer to Shan and Doolen [23], Scarbolo et al. [53] and chapter 4 of Kriiger
et al. [46].

where

=P (5.16)

1p% =

TURBULENCE QUANTITIES

The largest scale in the system is given by the domain size Ny, which sets the minimum
wavenumber kmnin = 27/ Ny. All other wavenumbers are integer multiples of kpin, with
the maximum wavenumber being kmax = kmin Nx/2 = 7. The smallest scale of turbulence
(Kolmogorov scale) is calculated as n ~ (v3/ 6)1/4 where v and € are the kinematic viscos-
ity and energy dissipation rate respectively. The criterion for a resolved DNS simulation
is that kmaxn > 1 [54], and the Kolmogorov scale should obey 77 > 0.318 [lu] [52]. We shall
mention the forcing wavenumber k¢ and the wavenumber bounds as multiples of kmin
in this study. For a central forcing wavenumber k¢, the associated large scale length then
becomes

2 Ny
P~ =X (5.17)
kfkmin  kf
Further, the Taylor microscale is calculated as
1/2
15vu’®
A= ( v ) (5.18)
€

where u' is the root mean square velocity along one direction, and u} = u, = u in
isotropic turbulence. The rate of energy dissipation (¢) can be found in two ways, as
e~ v{w?) = Y 2vk®E(k)/ N3 where (w?) is the average enstrophy and E(k) is the kinetic

energy spectrum. Using A, the Taylor Reynolds number is calculated as

u'A
Rey= — (5.19)
v
Lastly, the Kolmogorov timescale is given as
e\—1/2
Tr= (—) (5.20)
v
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For eddies in the inertial range with a size [, the velocity u(/) and timescale 7(!) are de-
termined uniquely by € and [ alone as u(l) = (e)'/® ~ % (1/£)"3 and T(I) = (I*/e)'® ~
T (11£)?"3, where £, 9 and % are the characteristic length, time and velocity of the
largest eddies (with 9~ = £/%). We consider % = (E;)'/? as the largest eddies contain
most of the kinetic energy, and generally u’ < %. The characteristic velocity at a partic-
ular length scale can also be found from the kinetic energy spectrum as u(l) = v/ E(k;)
where k; =2n/1.

5.3. SINGLE-PHASE TURBULENCE

We begin with a single-phase turbulence simulation to show that the forcing scheme is
able to maintain a statistically stationary turbulent flow (simulation “SP” in table 5.1)
and to compare it with results available in literature. A domain of 2562 lattice nodes
representing a length (27)? is initialized with a uniform initial density of p% = 4.0 [lu].
The relaxation time is set to 7 = 0.5141 which gives a viscosity of v = 0.0047 [lu] (Perlekar
et al. [12] use a similar value with 7 = 0.515), which is a low enough viscosity to sustain
turbulence while still being numerically stable. The forcing is concentrated around k¢ =
2kmin and is distributed in the range of k = ki, to 8kmin, and is applied from ¢ = 0 to
a fluid initially at rest i.e. with zero velocity. Further, A = 0.0005, which generates a
turbulent flow with a Taylor microscale of A = 13 [lu], Rey = 95, T =97 [lu], n = 0.7 [lu]
(kmaxn = 2.2) and (€) = 5 x 1077 [lu], which are calculated a posteriori. The simulation is
performed for 10° At, which corresponds to 10007 .

Figure 5.1 shows the evolution of (Ex) and (w?) which attain their steady state val-
ues around 757 and continue to oscillate around this value. Note that the turbulence
forcing scheme is steady in the sense that it leads to the balance of energy injection and
dissipation. The large scale instability itself is not steady, and the force variation in time
leads to intermittency of the power input which is a standard feature of continuously
forced turbulence [48, 50]. Further in figure 5.1 (see inset), the crests and troughs of the
(Ex) evolution show up in the (w?) evolution with a slight delay, where the quantities
have been normalized with their time averaged values over the latter 3/4th of the sim-
ulation duration). This has been observed before, and ascribed to the energy cascading
mechanism [13, 55] while Tsinober [56] acknowledges this feature without invoking a
cascade.

Figure 5.2 shows typical velocity and enstrophy field snapshots from a planar cross-
section in the center of the domain at 5007. The velocity field shows motions across
various scales, while the enstrophy field (which is the square of the vorticity) shows typ-
ical small scale localized structures. Also note that w? assumes values as much as 10
times the average <w2> (while at higher Re), more extreme values are found), showing
that intermittency is well reproduced in the simulations. This patchy structure of en-
strophy is an important factor to consider in simulations of turbulent dispersions, as
it leads to varying degrees of droplet-vorticity interactions which can in turn lead to
droplet breakup.

The kinetic energy spectrum is shown in figure 5.3, along with a benchmark spec-
trum from the Johns Hopkins Turbulence Database [57] for a homogeneous isotropic
turbulence simulation with Re; = 433 (on a grid of 10243, generated with a spectral
solver). The energy E (k) has been normalized by the total energy Y, E(k), and the wavenum-
ber is normalized to show multiples of knin, which is done to compare the two spectra.
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Figure 5.1: Evolution of average kinetic energy ( E;.) and enstrophy (w?) in the single-phase tur-
bulence simulation with Re, = 95. Both { E;.) and {»?) reach steady state confirming the balance
between the energy dissipation and power input. In the inset, both profiles have been normalized
by their time averaged value over the latter 3/4th of the simulation duration.
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Figure 5.2: Cross-sections (at z = Ny/2) show snapshots of the velocity magnitude |u| (left) and
enstrophy w? (right) at time ¢ = 5007 ;.. Features typical of turbulent flow can be seen, where the
velocity field shows features across several length scales while enstrophy remains localized in small
scale structures.

A well developed inertial range is seen to exist, following the k~>'3 spectral slope, which

falls off around k = 30kp,, in our simulation. Lastly, in this simulation &’ = 0.034 [lu],
and since the speed of sound is ¢; = 1/ v/3 [lu], the flow Mach number is Ma = 0.06 which
is well within the incompressibility limit.
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Figure 5.3: Kinetic energy spectrum for the single-phase simulation shown together with a sam-
ple spectrum from the Johns Hopkins Turbulence Database (JHTD, with Rej = 433). The chosen
normalization is only to compare the shape of the two spectra along with a k~3/3 inertial range
scaling. The spectrum is further averaged over 20 realizations separated by 507 .

5.4. TURBULENT EMULSIONS

5.4.1. SIMULATION SETUP

The turbulent emulsion simulations are initialized with two fluids, which we denote by
« (the carrier fluid) and § (the droplet fluid), with a liquid-liquid density ratio pg/pq = 1,
which well represents many oil in water emulsions. For a chosen volume fraction ¢ of
fluid B, a single spherical droplet (a S-rich region) is initialized in the center of the do-
main which is otherwise a-rich. The droplet density is denoted by pi;, i.e the density of

p in the B-rich region, while p%“t denotes the dissolved amount of component § in the

a-rich region (i.e. the continuous phase), and likewise for component a. Further, pzvg
is used to refer to the average density of component § in the entire domain. During the
simulation, these density values can change to some extent depending on the Gup pa-
rameter, though due to the symmetry of the model we have pg‘ /o =1and p%“t/ pout=1.
We also keep vg/vy =1 (with v4 = vg = 0.0047 [lu]). Spurious velocities (¢°P) in these
simulations have been limited to values sufficiently smaller than the physical velocity,
so that their influence on the results is negligible. This was checked by performing ad-
ditional quiescent simulations i.e. a droplet suspended in the continuous phase with-
out any turbulence forcing, for both liquid-liquid repulsion strengths considered in this
study (i.e. G4, which leads to the interfacial tension y). The maximum spurious current
magnitude u;>,. (found only at the interface) was less than the physical velocity scale
(1) by more than a factor 10, and the spurious currents decay to 10% of this maximum
magnitude within 5 grid cells, while the average spurious current magnitude uf}Jg is less
than u’ by a factor more than 100. Given that the speed of sound in these simulations
¢s = 1/v/3, we maintain that usP <« % <« c,, which is in line with our recent findings for
emulsion droplets simulated with PP-LB [41-43].

We carried out three sets of simulations, the details of which are mentioned in ta-
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ble 5.1. In all these simulations, the turbulence force is applied starting at ¢ = 0. The tur-
bulence energy density (Ey) in an emulsion, for the same forcing amplitude, can be an
order of magnitude lower than in single-phase turbulence. The Kolmogorov scale values
have been calculated using the scaling = (v3/(e))'/* where (¢} is the spatio-temporally
averaged dissipation rate (with (.) denoting time averaging after the first quarter of the
simulation time, during which the flow is well developed). We report 7 upto two decimal
places that follow from this scaling. The three sets are divided as follows

e Set 1 (P1-P5): In these simulations, only the dispersed phase volume fraction has
been changed (from ¢ = 0.01 to ¢ = 0.45). Here 7 is found to increase in simu-
lations P1-P5, which is because the turbulence forcing scale £ remains the same
while Re) decreases, hence reducing the separation between the largest and small-
est scales.

e Set 2 (T1-T5): In these simulations, the turbulence force amplitude is varied to
change Re) (at a fixed volume fraction ¢ = 0.10). For case T5, the interfacial ten-
sion has also been increased. Due to increasing Re, in these simulations, since
% is kept constant, 7 is found (as expected) to decrease. An additional simulation
T3R has been performed, which is equivalent to T3, but has a larger domain size
(N = 384%). The energy density is the same in T3 and T3R (while the other turbu-
lence statistics turn out slightly different). This is to demonstrate the effect of the
Cahn number on droplet dissolution.

* Set 3 (D1-D5): In these simulations, the domain size is increased while keeping
the forcing lengthscale £, amplitude and volume fraction (¢ = 0.15) fixed, which
keeps the turbulence energy density (or Re,) fixed. An additional simulation, D5,
has been performed where the turbulence intensity and volume fraction have been
increased for comparison with case D4. For all cases,  remains almost constant
as Re) is kept constant by varying Z (so that the ratio Z£/7 is constant). In sim-
ulation D5, Re) is increased fourfold in comparison to D1-D4, yet 7 is the same
as the increase in Re, is achieved by the added scale separation due to a fourfold
decrease in the forcing wavenumber in D5 (kr = 1.5) as opposed to D4 (kf = 6.0).

To study the droplet characteristics in these simulations, we segment the droplets in
space (also known as clustering) by thresholding the droplet density field at a cutoff value
¢/ pg‘ = 0.57 (which is effectively the density along the interface where p° = pq = pg)
based on the algorithm used in Siebesma and Jonker [58]. This allows us to identify
and mark all lattice points within individual droplets, which gives the droplet volume V,
which in turn is used to calculate an effective diameter d = (6V/m)'/3. Estimating the
surface area of these droplets, which are in voxel form, requires more care. Often, the
‘GNU triangulation surface’ (GTS) library [59] is used in studies due to its efficient surface
splitting operations (without the need for volumetric droplet segmentation). However,
it was not used in this study as it did not provide a straightforward way of identifying
droplets cut-off at domain edges due to periodicity (an issue implicitly resolved by our
segmentation algorithm). Also, the GTS library was found to underpredict the surface
area of a sphere by around 10%. Instead, we use the method proposed by Windreich
et al. [60] (originally developed for medical MRI data) to calculate surface area directly
from voxels using a look-up table which divides surface voxels into 9 classes, and each
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class has a weighted contribution to the surface area. Using only the first 4 of these 9
classes, the area estimation error for a sphere was found to decrease to 1%, which was
sufficiently accurate for our study.

5.4.2. EFFECT OF VOLUME FRACTION

We now show results from simulations with varying dispersed phase volume fractions
¢ €1{0.01,0.06,0.15,0.2,0.45} under identical turbulence forcing conditions (correspond-
ing to P1-P5 in table 5.1). These simulations are performed for 10° time steps. Figure
5.4 shows the dispersion formation process at various time instances starting from the
initial spherical droplet of component § shown as the iso-surfaces representing pg = pq.
The droplet begins to deform under the turbulent stresses, eventually breaking up to
form a dispersion with a characteristic distribution.

Of the various volume fractions considered, ¢ = 0.06 and 0.15 are most emulsion-
like, i.e. they have a profusion of small droplets with a few large connected filaments. At
¢ = 0.01, the dispersed phase is too dilute to be considered an emulsion, although the
droplet dynamics is interesting as the number of droplets N; and their characteristic di-
ameters d is small, and hence most of the droplets remain dispersed with relatively few
coalescence events, and when droplets do coalesce, they break up soon after. At ¢ = 0.2,
most of the fluid volume remains connected, which is aggravated by the enhanced coa-
lescence inherent to diffuse interface methods [16, 19]. This in turn is due to insufficient
resolution of the interface with respect to the droplet sizes [40], an effect we discuss more
in depth in section 5.4.5. At higher turbulence intensity, the large connected regions can
be expected to break into smaller droplets, and any coalescence will generate droplets of
sizes larger than the maximum stable diameter, which will again breakup.

Before discussing further results, we first show a quantitative sample of the typical
data from these simulations. In figure 5.5, the dispersed phase density pg, a single ve-
locity component u, and a single vorticity component w, are shown along an arbitrary
line passing through a droplet in the P4 dataset, along the x—axis, at time ¢ = 1907. At
this time, the flow is well within the fully developed turbulent regime, along with the
typical dispersion morphology having been attained. The first thing to note is that the
velocity and vorticity fields are sufficiently well resolved and vary uniformly; i.e. there are
no severe jumps due to spurious currents near the interfaces (only a small subtle spike),
which shows that the physical velocity scales dominate over the spurious velocities.

The velocity field in figure 5.5 gradually varies through the interface. This is reason-
able due to the continuity of tangential stress across the interface and, we again empha-
size, is inevitable due to the condition { > 7. Physically, this situation will not occur since
the interface width is typically of the size O(10~°) [m], and the smallest turbulent fluctua-
tions, for micrometer sized droplets, may extend up to roughly 0(1076-1077) [m] (while
they depend on Re,). The finite interface width is a limitation which will be encountered
in any diffuse interface method, and which may be alleviated by adaptive mesh refine-
ment near the interface as presented by Yu and Fan [61], or by increasing the droplet
resolution while keeping the interface thickness fixed (i.e. decreasing the Cahn number
Ch). The latter is done by adopting a larger simulation domain, as shown by Komrakova
et al. [16], and it also remedies other diffuse interface artifacts, as will be subsequently
discussed.
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Figure 5.4: Dispersion formation under turbulence, for increasing volume fractions ¢ €
{0.01,0.06,0.15,0.2,0.45} corresponding to simulation P1-P5 in table 5.1 (top to bottom). The time
instances are ¢/7j = 0,10,40,100 (left to right), and the dispersions are subjected to identical tur-
bulence forcing.
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Figure 5.5: A sample of the dispersed phase density (pg, scaled by a factor of 1/200), x—velocity
(ux) and x—vorticity (wx) are shown along an arbitrary line passing through the P4 dataset along
the x—axis, at time ¢ = 1907 when the turbulence and dispersion are fully developed.

PHASE FRACTION EVOLUTION
Figure 5.6 shows the evolution of the dispersed phase volume fraction ¢ normalized by
the initial volume fraction ¢¢. There is a clear decrease over time (upto around 1007)
in the relative volume fraction, beyond which the value plateaus to a level around which
it continues to oscillate (this will be confirmed subsequently from simulations T1-T5 in
section 5.4.4 which were performed for a five times longer duration). This relative re-
duction in ¢ is more pronounced at lower ¢ values (up to around 30%) than at higher
¢ (around 2 — 5%). Note that this is not a mass conservation issue, as the total compo-
nent mass is perfectly conserved in the system, and only the amount of component
present as the dispersed phase reduces, which gets dissolved in the a-rich (continuous
phase) region. This is also why the relative decrease in ¢ is strongest for ¢» = 0.01, as the
dissolution of § into the continuous phase is provided by a very low number of droplets.

The reason for the reduction in ¢ is twofold. First is the dissolution of small droplets
due to a finite interface width, which is an issue inherent to most diffuse interface meth-
ods. Yue et al. [62] showed that there is a slow drift in the droplet density due to diffusion,
which also leads to droplet shrinkage. They also show that a small droplet in a large do-
main is more prone to dissolution, which is reflected in figure 5.6 where the lowest ¢ sim-
ulation suffers most from droplet dissolution. This effect is also tied to the Cahn number
Ch. If Ch ~ O(1) (or greater), the droplet becomes unstable and is prone to dissolution.
On the other hand, Shardt et al. [40] showed for droplet collision in shear flow that co-
alescence is inhibited with decreasing Ch number. In the limit of Ch — 0, coalescence
would cease to occur, while increasing Ch leads to coalescence at higher capillary num-
bers. These considerations mandate having a finite Ch number in the range 0 < Ch <« 1
(for all droplet sizes in the system) for achieving steady state simulations while allowing
for both coalescence and breakup. The effect of Cahn number on droplet dissolution is
analyzed subsequently in section 5.4.4.

The second reason for the reduction in ¢ is its sensitivity to the segmentation thresh-
old. In appendix 5.A we demonstrate that only this result, i.e. the evolution of the vol-
ume fraction, depends on the choice of the segmentation threshold. Part of the droplet
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Figure 5.6: Evolution of volume fraction ¢ normalized by the initial volume fraction ¢, for the
same turbulence intensity across simulations. There is more droplet dissolution for lower ¢ values,
while the decrease is not monotonic as new smaller droplets can be formed as well.

phase fraction goes into constituting the increased interfacial region (i.e. roughly the to-
tal surface area of all droplets S4 multiplied by the interface width ¢). Slightly varying the

segmentation threshold to lower values (so that it is closer to p%‘“), the apparent volume

fraction loss is reduced (which may indicate that p€ # (p°"t + p?”*)/2), although the exact
choice of p¢ does not change our results. Further, the reduction in ¢ is also not mono-
tonic, as mass of component § dissolved in the a-rich region can eventually accumulate
inside other droplets.

Droplet dissolution can be a debilitating numerical issue, where for instance Per-
lekar et al. [12], Biferale et al. [13] had to resort to artificially inflating droplets to main-
tain a constant phase fraction and Komrakova et al. [16] reported that they could not
attain steady state simulations with the free-energy LB method at low volume fractions
as all droplets dissolved away into the continuous phase. In our PP-LB simulations, this
issue is due to an interplay of three main factors - (i) the liquid-liquid repulsion Ggg
which keeps the two components demixed, (ii) the turbulence intensity which breaks
large droplets into smaller ones and (iii) the phase fraction which at low values makes
Ut ~ pzvg (i.e. at low ¢, phase segregation can become weaker). Despite being present,
droplet dissolution is limited to a minor effect in our simulations. More precisely, the PP-
LB method employed in this study can be used to reasonably simulate certain regions of
the turbulent emulsions parameter space where droplet dissolution is not significant.
Namely, for a given turbulence intensity (Re,), there will be a critical lower bound on
the interfacial tension y, such that droplets with y >y, can be simulated. For increasing
Re,, v, would increase as well, and its exact dependence on Re; could be investigated
by numerically mapping the phase space which is out of the scope of the current study.
Similarly, there will be a lower bound on the value of ¢, below which all droplets will dis-

solve due to weak phase segregation when pg* ~ paﬁvg. Considering these related effects,
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Figure 5.7: Evolution of the number of droplets (N;) in the system, which attains its characteristic
value around 757 and oscillates around a temporal mean. The ¢ = 0.06 case produces the highest
number of droplets (around 250), which is seen on the right panel where Ny is N averaged from
757 to 2007, and the error bars show the standard deviation.

we restrict ourselves to a parameter range where we can attain long, stable simulations
to collect meaningful statistics pertaining to the droplet coalescence and breakup equi-
librium.

DROPLET NUMBER DENSITY EVOLUTION

Figure 5.7 shows the evolution of the number of droplets (V) in the system for varying ¢.
N, begins to increase following the first breakup events around 257 and rises steadily to
its characteristic value around 757, around which it continues to oscillate. The oscilla-
tions in Ny are indicative of competing coalescence and breakup dynamics. The falls in
the N, evolution profiles are due to coalescence events, which generate droplets of large
sizes that are unstable. These droplets then break up under turbulent stresses and Ny
increases again. Breakup is delayed for ¢ = 0.01 as compared to the other cases and N,
only begins to increase around 507. This is because the size of initial droplet is much
smaller (~ 64 [lu]) than the forcing wavelength (~ 128 [lu]), and the droplet starts to ad-
vect initially, as seen from figure 5.4. When smaller scales are generated (around 507,
as can be seen from the enstrophy evolution in figure 5.1), the droplet begins to shear
and break. The evolution of N; does not show large fluctuations for ¢ = 0.01 due to rel-
atively fewer coalescence and breakup events in this case, which is because the droplets
are smaller and more distant from each other than in higher ¢ cases.

Although ¢ = 0.15 and 0.2 simulations have a larger volume of fluid 8, the number of
droplets generated is lower than ¢ = 0.06. This is because of a higher propensity for co-
alescence in these systems which generates large connected regions and smaller satel-
lite droplets. This is most prominently seen for ¢ = 0.45, where Ny is even lower than
¢ =0.01, as most of the fluid forms extended filaments that remain connected across the
periodic boundaries. Increasing the turbulence intensity can be expected to generate
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more droplets at higher ¢, and hence for a given Re), there will be a specific ¢ that max-
imizes the number of droplets formed and hence produce a more emulsion-like droplet
size distribution.

Once the turbulent emulsion achieves its ‘steady-state’ (albeit fluctuating), it holds
no memory of the initial conditions of the dispersed phase. To demonstrate this, sim-
ulation P3 (with ¢ = 0.15) is repeated, where instead of a single droplet, 216 smaller
droplets (together also comprising ¢ = 0.15), equally spaced on a regular lattice, are ini-
tialized. Figure 5.8 shows the droplet number density and volume fraction evolution for
the two initial conditions for P3. The multiple droplet system proceeds with dominant
coalescence up to ¢ = 307, after which breakup and coalescence begin to occur simulta-
neously. N; soon reaches its typical value, similar to the single droplet initialization, and
the time averaged droplet number density N, (between 757 — 2007, shown in the inset
of the left panel) is very similar for both cases. Although not equal within the duration
of these simulations, N, can be expected to converge to the same value when averaged
over a longer duration. The relative volume fraction evolution is also very similar for
both initial conditions, in particular for ¢ > 1507.

‘ 1.1
300f| ¢=0.15
{ Single
250} X Multiple
200}
N4 %
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100’ 2407 1 1 077
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Figure 5.8: Evolution of the droplet number density N; and the relative volume fraction ¢/¢y is
compared for different dispersed phase initial conditions for simulation P3 with ¢ = 0.15. The ‘sin-
gle’ case starts with one droplet of ¢ = 0.15 while the ‘multiple’ case distributes the same droplet
volume over 216 smaller droplets, all equally spaced. Both cases proceed to the same final state,
with almost the same average morphology, and the coincidence is expected to increase over a
longer simulation duration.

DROPLET SIZE DISTRIBUTION

Figure 5.9 shows the distribution of the equivalent droplet diameter d = (6V /7)'/3 (where
V is the droplet volume) for varying ¢ (calculated with 25000 — 35000 droplets identified
between times 757 to 2007, sampled at each 7). Case (a) ¢ = 0.01 shows a peak around
d/n = 10, beyond which the distribution rapidly falls off due to the dispersion being di-
lute (see 4th panel in the top row of figure 5.4). Due to infrequent coalescence, large
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droplets are not formed very often. This was also reflected in the N; evolution (figure
5.7) which does not fluctuate as much as higher ¢ simulations. Cases (c) and (d) with
¢ =0.15 (and to a small extent case (b)) show two power-law regimes in the droplet dis-
tribution. The occurrence of droplets of sizes d > dmax (Where dmax is the Hinze [2] scale)
falls off with a d~1%’3 slope, while droplets of sizes d < dinax show a weak d~3/2 slope (the
latter is more prominent for case (d)).

The d~'%/3 scaling was originally postulated and shown for air bubbles in breaking
ocean waves by Garrett et al. [9]. The scaling was derived from dimensional and mecha-
nistic arguments (that bubble lifetimes depended on bubble sizes), with assumptions of
a purely inertial breakup process that depends only on the turbulence intensity (deter-
mined by €), and the rate of supply of the dispersed phase (i.e. volume of air entrained
per volume of water per second). This led to a d~'%/3 scaling for the droplet spectrum
P(d), which was again verified by Deane and Stokes [3] for air bubbles above the Hinze
scale in breaking waves. Deane and Stokes [3] further showed that bubble sizes below the
Hinze scale follow a d—3/2 distribution, which was also dimensionally motivated (while
including surface tension effects for smaller droplets). They found the scalings to hold
for a brief period before the turbulence decayed. Skartlien et al. [15] showed that the
droplet distribution in their turbulent emulsion simulations also follows a d '3 scaling,
which can be expected since the power law of Garrett et al. [9] is valid for homogeneous
and isotropic turbulence. Our results also verify that the conditions for purely inertial
breakup of the dispersed phase are met in these simulations. The d~%'2 scaling is seen
upto only a few droplet sizes in the range d < dmax for most simulations. This is because
as droplet sizes get smaller, the Ch — 1 limit is reached and the droplets become unsta-
ble and prone to dissolution, which is why the distribution begins to fall off to the left of
d/n=5.

Also, for ¢ = 0.15, a secondary peak appears at high d/n, which is due to a few
large connected regions forming due to coalescence, which remain connected despite
occasional satellite droplets breaking off. Such large connected regions of the droplet
fluid (for instance see bottom right panel of figure 5.4) are also identified as ‘droplets’
in the segmentation step which considers all contiguous droplet fluid regions as indi-
vidual droplets and ascribes an equivalent diameter to them. Due to the presence of
these large regions, droplets in an intermediate range are less frequent, as upon forma-
tion they would soon coalesce with the larger connected region. This is first a conse-
quence of having a high volume fraction at a lower turbulence intensity. At higher Re,,
the large region would be unstable and hence break apart forming droplets with a range
of diameters. Secondly, the formation of this larger connected region also depends on
Ch. If a simulation is performed on a much larger domain for the same volume fraction
¢ = 0.20 and turbulence intensity Re, = 45, due to an increased separation between d
and ¢ (lower Ch), coalescence would be inhibited. We estimate that that the uncertainty
in determination of d is around 10%.

Further, n = 1.5 [lu] here and given that the interface width { = 5—6 [lu], the Ch
for these droplets is approximately in the range 0.03 < Ch < 1.5. The smallest droplets
that are meaningfully resolved are of the size d = 12 — 15 [lu]. In physical systems, small
droplets are stable and can only be destroyed by coalescence. Resolving droplets in this
range of diameters (where d/n ~ O(1)) will require over-resolving the Kolmogorov scale
(to decrease the relative Ch), as was done by Komrakova et al. [16]. Lastly, the length
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Figure 5.9: Droplet size distributions for varying volume fractions (on a 2563 domain). Case (a)
¢ = 0.01 shows a peak around d/n = 10, which rapidly falls off at higher d/n. Cases (b) ¢ = 0.06
and (c) ¢ = 0.15 have a wider range of droplet sizes, and the distribution follows a d~10/3 scaling in
the range d > dmax. The distributions also weakly show a d~3/2 scaling over some droplet sizes in
the range d < dmax (most prominently case (d)). For ¢p = 0.20, a significant secondary peak at high
d/n indicates the few large connected regions that form in the periodic simulation domain, along
with multiple smaller satellite droplets. The vertical dashed line shows the Hinze scale and the
vertical dotted line marks the limit to the left of which the Cahn number Ch ~ O(1) and droplets
become unstable.

scales are ordered as N, > £ > d > { > n for cases P1-P3 while Ny > £ >d > (>1n
for cases P4 and P5 (where due to higher ¢, the long droplet filaments can be of length
~2).

MULTIPHASE KINETIC ENERGY SPECTRA

In this section, we study the wavenumber spectra of the multiphase flow field. For com-
puting the spectra using the Fourier transform, the entire volumetric flow field includ-
ing both fluid components is considered, as we intend to study the velocity variations
in both the continuous and dispersed phases. This is important since there is consider-
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able amount of flow inside the droplets as well, especially for large droplets with sizes in
the inertial range. Using the entire volumetric flow field in our case is acceptable since
the viscosity and density ratios between the fluids are exactly 1. In case of a non-unity
viscosity ratio (and specially at large values), the velocity profile across a sharp interface
is not smooth, as it has to satisfy the tangential stress continuity condition. The sharp
change in the velocity gradient across the interface adversely affects the spectra (in the
manner of a Dirac pulse added on top of a smooth field). In any diffuse interface method,
the velocity profile across the interface will be smooth by definition, even when uq # ug,
and the velocity gradient will also vary smoothly within the width of the interface. This
alleviates the situation slightly, although without remedying it. In these cases, one might
have to resort to using the wavelet spectra instead [63], or use the frequency spectra from
Lagrangian trajectories in the continuous phase which has been shown to improve the
spectral velocity representation for turbulence with solid particles [64].

Figure 5.10 shows the kinetic energy spectra in panel (a) for the droplet laden sim-
ulations, in comparison to the single-phase turbulence simulation with identical forc-
ing. The first effect to note is the suppression of the inertial range (i.e. deviation from
the k~%'3 law) which is seen more clearly in the compensated spectra shown in panel
(b), which is an effect that has also been found previously [14]. For increasing ¢, the
spectra between 1 < k/ky < 10 shift away from the inertial range scaling and the single-
phase spectrum, which shows that the cascading mechanism becomes weaker. This
happens due to frequent coalescence at higher ¢, which leads to the formation of larger
droplets which can interact directly with larger inertial range scales, redirecting the ki-
netic energy from its cascading process into droplet deformations and breakup. Inter-
estingly, the spectra pass through a single point, which is marked by the vertical line
in panel (b). This point is very close to the inverse of the Hinze length scale given by
dmax = 0.725(p/y)~3'%¢72/5. Since € varies slightly between cases P1-P5, so does diax
(within 5%), which is why we indicate the length as ~ dpax in figure 5.10b.

Beyond the inverse Hinze scale, the higher ¢ simulations contain higher energy at
the smaller scales (large wavenumbers). This is due to coalescence, which generates
small scale eddies, and is more frequent at higher ¢. Two or more droplets coalescing
add kinetic energy to the flow by loss of surface energy due to a reduction in overall
surface area. The ¢ = 0.01 simulation has the lowest energy at high wavenumbers, as
coalescence events are rare, and the droplet sizes are smaller, which in turn derive energy
from eddies corresponding to slightly higher wavenumbers. While the spectra reflect
these effects, they do not give any insight into the direction of the energy cascade. It
would be interesting to study the effect of droplets on spectral energy transfer across
scales, using the approach given by for instance Alexakis and Biferale [65], which would
allow one to quantify the scale dependent cascade direction, which we leave for future
work. The crossover of the multiphase spectra (for ¢p = 0.15 cases) with the single-phase
spectrum shows that the dissipation range has higher energy in the presence of droplets,
as was also reported by Perlekar et al. [14]. Interestingly, Ten Cate et al. [51] also found
such a spectral crossover at increasing volume fractions for solid spherical particles in
turbulence.

Lastly, a small jump in the spectra at k/ ky ~ 50 is consistently seen for all cases, which
corresponds precisely with the interface width in our simulations (i.e 5—6 [lu]). The extra
energy there is due to the spurious currents present in the system, which are found to
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Figure 5.10: Kinetic energy spectra are shown in panel (a), which are obtained from varying ¢
simulations i.e. P1-P5 (averaged between 757 and 1007, sampled every 27;), where E(k) =
E(k)! X E(k). Athigher ¢ values, the turbulence cascade is suppressed at intermediate wavenum-
bers (seen as deviations from Kolmogorov’s k>3 scaling). Panel (b) shows the compensated spec-
tra, where the trends can be seen more clearly. At higher wavenumbers, droplet coalescence adds
kinetic energy to the smaller scales, which is stronger at higher ¢ values due a higher chance of
coalescence in a dense dispersion. The vertical line in panel (b) corresponds approximately to the
inverse of the Hinze scale.
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be much weaker than the physical velocity scales. Komrakova et al. [16] reported that
spurious currents completely dominated the higher wavenumbers of the kinetic energy
spectra in their turbulent dispersion simulations, due to which the spectra could not be
well represented. Our work does not suffer from this problem, and although spurious
currents are present, they do not adversely influence our results.

5.4.3. GENERALIZED HINZE SCALE AND WEBER NUMBER SPECTRA

The derivation of the Hinze scale is under the assumption of a developed inertial
range, and is taken to hold for dilute suspensions without coalescence. The inertial range
scaling can be found for a small range of wavenumbers for simulations P1 and P2 (¢ =
0.01,0.06) which are relatively dilute, have infrequent coalescence, and contain droplets
that are smaller than the largest inertial range scales. For these cases, the assumptions
of Hinze [2] are reasonably well approximated.

If a large amount of the dispersed phase is present, and turbulent shear cannot over-
come surface tension to cause large droplets to fragment into (on an average) smaller
droplets, the droplet lengthscale can be large. At larger ¢, coalescence becomes signifi-
cant as well. In these cases, there is a deviation from the k~=°/3 inertial scaling (simula-
tions P3-P5). This is because the large droplets can directly extract kinetic energy from
the larger inertial range scales of flow into deformation and breakup energy, which in
turn hinders the cascading mechanism. Whether this happens depends on the ratio of
inertial to surface tension forces, i.e. the Weber number. For instance, the k=3/3 scaling
is found again for simulation T5, where ¢ = 0.10, Rejy =91 and y = 0.04. In this case, the
largest droplet sizes correspond to scales in the middle of the inertial range, such that a
small range of wavenumbers exhibit the k=53 scaling, similar to simulation P1, which is
shown in figure 5.11.

Generally, at higher volume fractions, the Hinze scale is not expected to be valid due
to frequent coalescence. Even without coalescence, droplet-eddy interactions become
hindered due to the presence of multiple droplets. Another lengthscale becomes impor-
tant in such cases, which is the inter-droplet spacing which scales at Ax < ¢~/3d. Even
at seemingly low volume fractions, say ¢ = 0.10, the inter droplet spacing is of the or-
der of two droplet radii, due to which the dilute suspension assumption breaks down.
One can, however, still consider a critical Weber number at a lengthscale dax, such that
on average, at larger lengthscales breakup dynamics will dominate, and at lower length-
scales coalescence will dominate. This was also the original idea of Hinze, where the
critical Weber number was described using the velocity scale at length d arising from
Kolmogorov’s theory as ug ~ €13 a3 as

2
pusd
Wegrit = 4

(5.21)

The use of (e) is merely to express the velocity at a given scale, under the condi-
tion that power input is balanced by the energy dissipation, and the inertial scales only
transfer energy without dissipating it (basically the theory of Kolmogorov [44]). Since the
power input is generally known, this allows estimating the typical droplet sizes that will
arise in a dispersion. Since in high volume fraction simulations (P3-P5) the Kolmogorov
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Figure 5.11: Compensated spectra for cases P1 and T5 showing the presence of an inertial range.

[44] scaling does not hold, only {¢) and d alone cannot be used to determine u;. The
power input now is balanced in part by dissipation, and in part by the changes in in-
terfacial energy, while the dynamics of the ‘intermediate’ (that would usually be called
‘inertial’) range of scales is more complex. We propose an alternate scaling to determine

ug, using the multiphase kinetic energy spectra E(k), which implicitly takes into account

the average velocity dynamics at lengthscale d.

The volume averaged energy spectra (E(k)) (with units L3 T~2) and the droplet wavenum-

ber k; = 27/ d (with units L™!) can be used to determine a velocity as

uZ ~ kg (E(ka)) (5.22)

while other combinations of k; and E(k;) are also possible. This velocity scale can be
replaced in eq. 5.21 to calculate a Weber number spectra for all k as follows

Wel(k) = M (5.23)

If the critical Weber number can be found, for instance using Lagrangian tracking as
done by Perlekar et al. [12], a generalized Hinze scale can be approximated for any form
of the energy spectrum E(k) that may arise in a multiphase system which does not obey
the k%3 scaling, and whose form may not be known a priori. Even if the critical Weber
number is not quantifiable directly, an indication of the scale k; at which We = 1 can be
found, such that droplets at scales k < k; will be more prone to breakup, while droplets
at scales k > k; will mostly coalesce. If in eq. 5.23 we plug-in the Kolmogorov energy
spectrum E(k) ~ €23 k~>/3, we get the term ke?’3k~%3d, which gives us €?3k=2/3d ~
e*3@2n/d)=?"3d ~ €*'3d>’? (to within multiplicative constants). Solving this equation for
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d, for a known critical Weber number, yields the classical Hinze scale d ~ (y/p)3/°¢ /5.
Hence eq 5.23 can be treated as a generalization of the Hinze scale, applicable to dense
and dilute suspensions alike.

In figure 5.12, the Weber number spectra as given by eq. 5.23 are shown for cases P3-
P5, which were sufficiently dense suspensions for the chosen Re,, such that the inertial
range scaling is affected by the dispersed phase. A range of wavenumbers gives We > 1,
which should correspond to breakup dominated scales. Case P3 is shown in the inset,
where we have We = 1 at k/kf = 2.51.e. k=5. This corresponds to a droplet scale of
around d = 50 [lu]. From figure 5.9, panel (c), we see that the droplet distribution begins
to fall off with the d~1%’3 slope around d/n = 30, which gives d = 45 [lu]. These two values
are of the same order, which shows that the unstable scale prediction from the Weber
spectrum well approximates the cutoff droplet scale k4, such that in the range k > kg,
droplets can be expected to predominantly undergo breakup (the d~'%/3 regime), while
in the k < k4 range droplets are stable (the d -3/2 regime). Deane and Stokes [3] also refer
to the scale at which they observed this transition between the two scaling regimes to be
the critical (Hinze) scale.
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Figure 5.12: Weber spectrum We(k) for cases P3-P5, along with a close look (inset) at case P3 near
We = 1, which occurs at k/ky = 2.5, which closely corresponds to the scale at which there is a
transition in the droplet distribution power law slopes (panel (c) and (d) of figure 5.9).

5.4.4. EFFECT OF TURBULENCE INTENSITY

As mentioned earlier, the idea behind applying turbulence is to cause fragmentation of
the dispersed phase, and the number of droplets thus formed depends upon the inten-
sity of turbulence. We now keep the volume fraction fixed at ¢ = 0.1 and increase the
turbulence intensity by increasing the forcing amplitude. These are simulations T1-T5 in
table 5.1, and are run for ¢ = 0.5 million time steps each, though the simulations will have
different 7. Figure 5.13 shows the evolution of the normalized phase fraction over time,
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Figure 5.13: Evolution of the relative volume fraction ¢/¢q for varying turbulence intensity sim-
ulations (cases T1-T5 in table 5.1). Increasing Re) causes greater droplet dissolution leading to a
lower settling value of ¢»/¢g. This effect limits the parameter space that can be simulated with the
original PP-LB method, as shown by cases T4 and T5.

and as expected, at higher turbulence intensities (which leads to a higher Re;), ¢/ ¢y re-
duces over time to an individual stable value. In case T4, all the droplets dissolve within
6007 , which shows that for this combination of parameters (refer to table 5.1), turbu-
lence forcing undesirably outclasses the PP-LB phase segregation. The small droplets
formed in this system are subsequently unstable (due to Ch ~ O(1)), which causes com-
plete dissolution of the dispersed phase. Upon increasing the liquid-liquid repulsion
parameter Gy g (hence also changing the fluid composition and dimensionless numbers
that include interfacial tension, like the Weber or Ohnesorge number) in case T5, we see
that for the same turbulence intensity as case T4, ¢/¢¢ remains stable. This reaffirms
that with the original PP-LB method certain regions of the turbulent emulsions param-
eter space can be simulated on a given mesh size, while in other cases (case T4 and to
some degree also case T3) simulations may require additional numerical remedies like
the mass correction scheme of Perlekar et al. [12], Biferale et al. [13] or an enhanced Kol-
mogorov scale resolution (to achieve higher Cahn numbers) as done by Komrakova et al.
[16]. We now briefly demonstrate the latter method.

DECREASING THE CAHN NUMBER TO CONTROL DROPLET DISSOLUTION

The Cahn number for a simulation can be decreased by increasing the domain size
Ny, while the turbulence intensity and energy injection scale (forcing wavenumber) are
kept the same. In this case, the Kolmogorov scale 7 increases because the separation
between the energy injection scale £ and the dissipation scale ) remains fixed, while
< increases. Since the interface width ¢ remains unchanged, and the droplet sizes d
increase, {/d decreases. The shrinkage and dissolution of droplets occurs due to the slow
diffusion process, which has a timescale 74 o N)%. Hence decreasing the Cahn number
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has two effects which together reduce droplet dissolution. First is that a larger domain
size leads to a higher 74, which can be made sufficiently larger than the flow timescale
9 such that the slow mass diffusion does not influence the results. Secondly, since on
average the droplets are larger, there will be fewer small droplets that are unstable and
prone to dissolution.
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(a) Evolution of volume averaged kinetic energy (b) Evolution of normalized volume fraction for
and enstrophy for simulations T3 and T3R. simulations T3 and T3R.

Figure 5.14: Decreasing the Cahn number is shown to reduce droplet dissolution. Simulation T3
is performed again on a larger domain (i.e. simulation T3R), while keeping the energy density the
same, as shown in panel (a). Panel (b) shows the volume fraction evolution for the two simulations.
The droplet dissolution effect is lower in T3R, and the stable ¢ value is a factor 2 higher than T3.
Upon scaling time with the square of the domain size, the two curves collapse for the initial droplet
dissolution phase until steady state is reached. Lower droplet dissolution is an effect of increased
separation between the flow timescale and component diffusion timescale (as shown in the inset
of panel (b), where ¢ reduces at a slower rate for T3R).

Simulations T3 and T4 suffer most strongly from droplet dissolution, so we test how
increasing the resolution of these simulations can reduce this effect. Figure 5.14 shows
a comparison between simulation T3 and T3R. Panel (a) shows that the two simulations
have very similar average kinetic energy (E\) and enstrophy {?), although (w?) is found
to be slightly lower in T3R which leads to slightly higher Re; in T3R than in T3. This is
because with the current formulation of the turbulence forcing mechanism it is not pos-
sible to exactly set the Re; of the simulation, and it depends on the forcing amplitude
A. Despite this difference, the higher resolution of T3R leads to less droplet dissolu-
tion as seen from panel (b). Upon non-dimensionalizing time with the domain size Ny,
the initial reduction in ¢ for T3 and T3R overlap, which shows that the diffusive mass
redistribution occurs over a longer timescale proportional to N2. In non-dimensional
units, these physically long duration simulations over 10007 are well within 1072 dif-
fusive time units, showing that the timescale of flow is much faster. Further, T3R has a
higher ¢ value at steady state, where droplet dissolution is reduced from 80% to 50%.
This is an indication that fewer droplets with Ch ~ O(1) are formed. The inset in panel
(b) shows the evolution of ¢ over time non-dimensionalized with 7. The steady state
¢ is found to be achieved sooner, and at the limit of much higher resolution, diffusional
mass transfer will not influence the flow. The same effect was found upon performing a
refined version of simulation T4 (T4R, not shown here), where increasing the resolution
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Figure 5.15: Evolution of the number of droplets (N;) for increasing turbulence intensity, indi-
cated by Re;. Increasing Re) leads to a larger number of droplets in the system, also widening
the droplet distributions as seen from the fluctuations in the N,; evolution. N(d) is obtained by
averaging N(d) after steady-state conditions are reached.

from 256° to 3843 reduced droplet dissolution from 100% to about 80%. We omit cases
T3 and T4 from further analysis due to severe droplet dissolution.

DROPLET NUMBER DENSITY EVOLUTION

Figure 5.15 shows the evolution of the number of droplets for cases T1, T2 and T5. In-
creasing Re, increases the average number of droplets in the system (obtained by av-
eraging N, after steady-state conditions are reached for each simulation) from around
N, =50 for Rey = 44 to N, = 600 for Re; = 90. Further, two interesting features in the
evolution of N; can be noted. First is that the variation in N; increases with Rey, which
results in a larger standard deviation of N;. This also makes it possible to generate a
wider distribution of droplet diameters in the system, due to higher intermittency [9].
The second striking feature is the quasi-periodic rise and fall in the droplet number con-
centration (with a period of around 8 — 1097), most distinctly seen for the Re; = 90 sim-
ulation (case T5). There seems to be an upper limit to the number of droplets that can
be formed, which apart from constraints of resolution and maximum sphere-packing of
the domain while keeping the diffuse interfaces apart, indicates also at the underlying
physical mechanisms. At its peak, N; = 900 here, a state corresponding to most droplets
being rather small that cannot undergo additional breakup as they would all be well be-
low the Hinze scale. These droplets are advected around by the flow, and they begin
to coalesce when they collide, causing N; to drop to its lower limit, where a significant
number of droplets will again be larger than the Hinze scale, and they begin to break and
this cycle continues. We shall revisit this feature in detail in section 5.5.1.

DISPERSION MORPHOLOGY

The dispersion morphology can be quantified with the concentration spectrum k?S(k, t),
a quantity commonly used to describe coarsening dynamics (or spinodal decomposi-
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Figure 5.16: Concentration spectrum and characteristic length characterizing the dispersion mor-
phology for increasing turbulence intensity simulations, corresponding to cases T1, T2 and T5 in
table 5.1. The structure factor S(k, t) was time averaged over 10 realizations separated by = 507,
and further normalized by Y ;. S(k, t) to compare the relative difference in concentration at each
wavelength. Increasing Re; generates smaller droplets which is seen in the reduction of the char-
acteristic length.

tion) [14, 66]. Here S(k, t) is the shell-averaged structure factor which is obtained using
the Fourier transform ¢y of the density-density correlation function ¢ — ¢, where ¢ =
(pa—pp) and ¢ is the mean value of ¢. The quantity ¢y is shell-averaged in wavenumber
space to obtain S(k, t) as follows

i lpl?
2l
Here Y} denotes summation over wavenumber shells k € [k —1/2,k + 1/2] where k =

vk-k. Further, a characteristic length L(¢) can be calculated using the first moment of
S(k, t) as follows

S(k,t) = (5.24)

2k Sk, 1)

L(t) = ZnZk S D) (5.25)
Figure 5.16 shows the concentration spectrum for cases T1, T2 and T5. As Re, is
increased, smaller droplets begin to dominate the system which is seen from the shift
towards higher wavenumbers in k2S(k, r). This is also reflected in the time averaged
characteristic length L which decreases from 100 to around 40 [lu]. Note, however, that
T5 has a higher surface tension than T1 and T2, and it is together that y and Re; deter-

mine the morphology of the emulsion for a given dispersed phase volume fraction.

5.4.5. EFFECT OF DOMAIN SIZE

In simulations corresponding to D1-D4 in table 5.1, we successively increase the domain
size N, while keeping the turbulent energy density the same. This essentially creates a
separation between the domain size N, and the forcing scale £, and allows for a better
resolution of the largest droplet extension before breakup. So far, studies on turbulent
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dispersions have focused on maximizing the turbulence intensity which is reflected in
the general proclivity for achieving higher Re; in DNS simulations with Lagrangian ob-
jects like particles or droplets [67]. This finds implicit justification in that Re, in real sys-
tems where droplets and turbulence interact is typically very high, (where Re) = v 15Re
for homogeneous, isotropic turbulence). For instance, emulsification in a valve homog-
enizer or colloid mill can occur at Re ~ 30000 [68, 69], and emulsification in stirred ves-
sels has been studied at Re ~ 15000 [70] - for all these situations Re, > 500, which is
several times larger than the range considered in the current study. In periodic domain
DNSs, a high Re, is achieved by minimally resolving the Kolmogorov scale (the kpaxn > 1
condition [54]), while forcing turbulence at the largest possible scales i.e. £ = N, or
kf ~1—2kmin. This wide separation of scales manifests a high Re,. There are a few con-
nected issues regarding the relative resolution of the various length scales, which is the
focus of this section.

The first issue, emphasized by Komrakova et al. [16], is the utility of over-resolving
the Kolmogorov scale ( = 10 as opposed to 1 [lu]), which helped remedy the rapid dis-
solution of droplets in their simulations. The increased resolution of  and d can also be
seen as a reduction in the size of the interface {, i.e. an decrease in the Cahn number C#h,
since the interface thickness (in terms of the number of lattice spacings) remains con-
stant while smaller droplets and turbulent length scales become better resolved (i.e. they
become larger relative to {). Droplet dissolution also depends on the relative strengths
of turbulence and phase segregation (effectively the interfacial tension), as was demon-
strated in section 5.4.4.

The other issue is that weak large scale forcing introduces a caveat that droplets tend
to deform into long, slender filaments that stay connected across the periodic domain.
The length scale of the largest droplet extension before breakup d*' can become compa-
rable to Ny, which means that breakup cannot be resolved. The dispersion then forms a
complex tangled structure, which does not morphologically resemble an emulsion. This
issue is aggravated by high volume fractions of the dispersed phase.

In simulations D1-D4, we increase the forcing wavenumber k¢ by the same factor as
the domain size N, (while keeping the forcing amplitude A the same). The upper and
lower wavenumber bounds (k,, k;,) are also suitably adjusted to distribute the forcing
over a reasonable wavenumber range (and all integer values in the range k € [k, k] are
considered). This ensures that the energy density remains the same in these simula-
tions, while larger droplet deformations (d®) can be resolved accurately. Successively
increasing the domain size in this way allows separating N, from £. Note that doing this
does not decrease Ch for droplets, as that would entail scaling £ proportionally with N,
while weakening the forcing amplitude such that Re; remains constant and 7 is over-
resolved (the approach of Komrakova et al. [16]). We do not additionally pursue this as
droplet dissolution is not significant in most of the parameter range considered in this
study.

Figure 5.17 shows the droplets in the system (volume rendered) at 4007 for increas-
ing domain sizes. It can be seen that the largest structures in the 128 domain span a
significant fraction of the domain, whereas for increasing domain sizes the typical large
scale structure becomes better resolved in relation to the domain size. The volume aver-
aged droplet number density for these simulations was found to be almost identical.

The domain size limitation becomes apparent when considering the droplet distri-
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Figure 5.17: Volumetric droplet distribution for increasing domain sizes while maintaining the
same energy density (power input) for cases D1, D2 and D3 with Ny = 128%,256% and 3843 respec-
tively. The resolution of large droplet extensions becomes feasible at higher domain sizes. Here
dark blue to orange goes from the droplet interior to the matrix phase.
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bution, as shown in figure 5.18. For the case of N, = 1283 (D1), the distribution is limited
to a small region around the peak, clearly being cut off at a secondary peak emerging at
higher d/n due to a lack of resolution of larger structures. This case is under-resolved,
the issue made acute with the small domain size, significant ¢ and moderate Re; = 30.
We include this case to emphasize that the same issue might arise in simulations with
higher Re)y and N, of high volume fraction dispersions. Upon increasing Ny, the dis-
tribution successively assumes a longer tail which closely follows the d~'%/3 scaling for
droplets larger than the Hinze scale.
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Figure 5.18: Droplet size distributions for cases D1-D4, all with ¢ = 0.15 and Re; = 30. The total
number of droplets considered between times 150 — 600 7 are = 5000,40000,54000, 133000 for
Ny =128,256,384,512 respectively. The dashed vertical line shows the Hinze scale and the dotted
vertical line marks the limit Ch ~ O(1).

Figure 5.19a shows the concentration spectrum for cases D1-D4, which first reflects
the proper scaling as the spectra coincide for k/ky = 1. The importance of resolving the
dominant length scales characterizing the dispersion morphology vis-a-vis the domain
size Ny becomes apparent. The smallest wavenumber (largest length scale) that can
be represented depends on Ny as kmin = 27/ Nx. For case D1, knip is very close to the
wavenumber corresponding to the peak in the concentration spectrum, i.e. the dom-
inant wavenumber k,; (or length scale Ny/kg). If knin = kg, two issues would tend to
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Figure 5.19: Dispersion morphology characterized with the (a) concentration spectrum k?S(k, t)
and (b) characteristic length L(¢) for cases D1-D4. The concentration spectrum is averaged be-
tween times 150 — 6007, sampled every 47 ;. The importance of separation between the domain
size Ny or kpjn and the dominant length scales characterizing the dispersion i.e. k; or L(f) is
evident from the fact that these two length scales can become comparable.

arise. First is that the dominant length scale of the emulsion morphology is compara-
ble to the domain size making its dynamics under-resolved. Secondly, this structure will
strongly interact with an image of itself due to periodicity of the domain, which is unde-
sirable. For successively larger domains, the dominant length scale does not change (due
to the same energy density across simulations). Further, the separation of ki and kg is
increased, which confirms that the largest structures (~ Nx/k;) are well resolved, while
even larger structures (in the range of k < k;) are formed but not sustained as the peak
of S(k) resides at k;. The characteristic length evolution in figure 5.19b also shows that
the morphology obtained for D1-D4 is similar, and that the typical length scale L(t) = 80
becomes better resolved in relation to the grid size upon increasing N,.

5.4.6. EFFECT OF FORCING WAVENUMBER

To highlight the consequences of forcing turbulence at the largest possible scale i.e. hav-
ing £ comparable to Ny (hence maximizing Re,), we performed an additional simula-
tion D5 with k¢ = 1.5kmin and ¢ = 0.2 to compare with D4 (k¢ = 6kmin, ¢ = 0.15), while
keeping the forcing amplitude the same, which results in Rey = 118 for case D5 (while
Rej =30 for D4). Figure 5.20 shows the typical morphology of the droplets (at a random
time instance), where visibly the D4 case seems to have smaller, more spherical droplets,
while D5 shows more elongated filaments. Despite the higher Re,, the dispersion does
not comprise smaller droplets as droplet sizes depend on {€) which remains mostly un-
changed. The presence of elongated filaments in D5 reflects the nature of the turbulence
forcing. For a long cylindrical filament, a higher wavenumber forcing will generate more
curvature variations. This would increase the possibility of filament breakup driven by
Rayleigh-Plateau instabilities. A lower wavenumber forcing would generate weaker cur-
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vature differences in a long filament, and the timescale of breakup of these filaments
might be comparable to the timescale of the large eddies, in which case the filaments
will only break when the direction of the large scale shear changes.

We further quantify the differences by calculating the droplet distribution for D4 and
D5 (which have slightly different ¢b), while also comparing simulations D2 (with k7 = 3.0
and Rej = 30) and P3 (ky = 2.0 and Re, = 47) which have the same ¢, shown in figure
5.21. Indeed, the D5 case deviates from the d~'%3 distribution above the Hinze scale
reflecting the infrequent breakup of the long filaments that would lead to droplets in this
range of sizes. This deficit of droplets shows up in a secondary peak at high d/n, which
corresponds to the fewer, larger structures being sustained instead. A similar difference
is seen between cases D2 and P3, where the P3 case shows a small peak at high d/n,
again attributed to a lower wavenumber forcing. The same behaviour is reflected in the
concentration spectrum as well between the cases (not shown here), where there is a
relative increase in concentration at low wavenumbers for cases D5 and P3, although
the characteristic length remains similar.

It is worthwhile to summarize the results from the domain size comparison and to
draw conclusions. At modest Re; (< 120 in this study), the turbulence forcing wave-
length and domain size influence the morphology. Having N, > £ > d (as in case
D4) ensures sufficient resolution of the droplet breakup dynamics. While having N, =
Z > d (case D5) causes the formation of longer filaments of the droplet fluid. Spatially,
this causes the formation of larger droplets d/n > 100 at the cost of some intermediate
droplets 20 < d/n < 100, for d/n above the Hinze scale.

5.5. TURBULENT EMULSION DYNAMICS

5.5.1. A QUASI-EQUILIBRIUM (LIMIT) CYCLE

Droplet number density plots such as figure 5.15 show oscillations of N; around a typical
mean value which characterizes the dispersion morphology. So far, studies on droplets
in turbulence refer to this state as a “steady state” where coalescence and breakup equi-
librate. Since these oscillations can be significant (with its extreme values remaining
bounded, similar to kinetic energy and dissipation), the dynamics should more accu-
rately be called as a quasi-equilibrium (limit) cycle in the system state space comprising
(1) kinetic energy (Ey), (2) enstrophy (w?), which is defined as (w?) = (w-w) (where
w = V x u is the vorticity), (3) interfacial energy (Ey) = (Say) (i.e. the product of the
total interfacial area S, and the interfacial tension y) and (4) the droplet number den-
sity N;. Here (.) denotes volume averaging of the quantities. Coalescence and breakup
equilibrate in a statistical sense only, while the instantaneous dynamics is governed by
temporal branches of alternating dominance of coalescence and breakup. Note that the
term “limit cycle” is used loosely to illustrate the dynamics, since truly closed trajecto-
ries in phase space were not found, perhaps primarily due to intermittency and non-
periodicity of the numerical solutions.

A dominant mediator of droplet breakup is intense enstrophy (or dissipation €). Since
dissipation destroys turbulent kinetic energy, it is interesting to note that its interac-
tion with the dispersed phase is associated with interfacial wrinkling, deformation and
breakup - all mechanisms that increase the amount of surface energy in the system at
the cost of kinetic energy. This excess energy, however, is still available in the flow field,
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Figure 5.20: Volumetric droplet distribution for cases D4 and D5, where the forcing wavenumber is
changed from ky =6 to ky = 1.5, shown at 4007 ;.. The D4 case shows a preponderance of smaller,
more spherical droplets while D5 has more elongated filaments, possibly sustained due to the long
wavelength of the forcing.

and true destruction of it (i.e. into heat) must be mediated via kinetic energy dissipa-
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Figure 5.21: Droplet size distributions comparing (a) Cases D4 (kf = 6.0,¢ = 0.15, Rej = 30) and
D5 (kf =1.5,¢p=0.20,Rey = 118), and (b) Cases D2 (kf =3.0,Rej =30) and P3 (kf =2.0,Rey =47).

tion, which occurs by the generation of smaller scales in the flow due to coalescence
or damped oscillations of deformed droplet interfaces. A higher globally averaged {(w?)
can be expected to increase the chance of droplet breakup (as it also reduces the effective
Hinze scale), and vice-versa. Hence the trends seen in the N, evolution should reflect
those in the evolution of (w?), which in turn should follow the peaks and valleys of the
kinetic energy (Ey) evolution.

This hypothesis is found to be true, and is shown in figure 5.22 in the evolution of
(Ex), (®?), Ng and (E,) for case T5.Here each variable has been normalized by its time
average (between 507 and 10007), such that it oscillates around a mean value of 1,
which is done merely to facilitate comparison between the different curves. The peaks
in (Ex) (panel (a)) are found to consistently manifest in {®?) (panel (b)) with a small
time delay, which are again found with a further time delay in the evolution of N, (panel
(c)). Two such instances have been marked by the three successive vertical lines than
connect panels (a), (b) and (c), coinciding approximately with the local peaks of the dif-
ferent curves. Similarly, peaks in the evolution of (Ey) (panel (d)) are found to precede
peaks in Ny (panel (c)), two instances of which have also been similarly marked by ver-
tical lines spanning the two panels of figure 5.22. This shows clearly that the droplet
surface area (since here Ey o< S4) is at its maximum before breakup, which hints that the
droplet breakup mechanism is mainly the extension of filaments. Since droplet breakup
leads to an increase in surface area - for example a spherical droplet breaking into n
equal volume daughter droplets leads to an increase in surface area by a factor of n'/3,
the peak in surface area prior to breakup signifies that the droplet before breakup must
be significantly elongated to have a larger surface area than the subsequently formed
daughter droplets. This also shows that a single droplet does not break into too many
daughter droplets at once, and the process is cascading, since otherwise a large num-
ber of daughter droplets will lead to higher surface areas after breakup, not before it. A
correlation between the evolution of different variables can be calculated as
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E 2(1+06
Corr(60) = W)@t +60) (5.26)

Ep) (0?)

where 6t is a time lag and the overbar is a temporal average. This has been done
for the different signal pairs and is shown in figure 5.23. Here {(w?) is found to corre-
late strongly with (Ej) with a time delay of ~ 0.39". N; shows a very strong correlation
with {(w?) at a time delay of ~ 0.69". Consequently, a significant correlation between
N, and (Ey) is found at ~ 0.99 . The converse effect of droplets on turbulence can also
be hinted at with this figure, where the valleys of the N, evolution often coincide with
peaks in the (Ey) evolution. This shows that when the droplet number density reduces
due to coalescence, the excess surface energy is released into the flow as kinetic energy,
which has been expounded by Dodd and Ferrante [10]. Since turbulence in our simula-
tions is constantly forced (as opposed to Dodd and Ferrante [10] who simulate droplets
in decaying turbulence) - the variation in (Ej) in our simulations comes from a more
complex confluence of the power input as well as the droplet dynamics. The correlation
of surface energy (E,) and Ny is shown in panel (c) of figure 5.23, where a weaker but
certain correlation between (E, ) and Ny is found with a time lag of 0.89".

We also observed this time delayed dynamics of (Ex) and N, for cases with differ-
ent parameters like turbulence forcing amplitude and interfacial tension, although for
some cases the effect was less explicit. Particularly, for weaker y or lower Re,, the N; os-
cillations were not as extreme as for case T5 (where turbulence intensity and interfacial
tension are both relatively stronger forces), although the (Ey) and N; correlation was
found to be strong. Generally, the dynamics can be described as follows. First the large
scale structures generate higher velocity gradients at the dissipation scale (which may be
due to the energy cascade if such exists) with an initial time lag. This larger dissipation
rate is felt by the droplets, which respond by breaking up with a further time delay, in-
creasing the number of droplets in the system. This process (from peaks in (Ej) to peaks
in N;) was consistently found to take place with a delay of around ~ 0.99 across differ-
ent cases, which is roughly the lifetime of the large eddies. This finding can be important
for droplet dynamics models like population balance equations, where breakup kernels
rely upon the instantaneous local value of €. If the temporal aspect to droplet popula-
tions is important, a relaxation time should separate cause and effect which is not done
currently as seen in the various models reviewed by Sajjadi et al. [71].

In summary, the turbulent emulsion dynamics can also be interpreted as a quasi-
periodic evolution in a state space comprising (Ey), (®?), Ny and (Ey). Essentially, there
are two bounded extrema in the droplet number density at a given turbulent intensity for
a certain set of fluid properties. These correspond to a state of low N, which is marked
by fewer, relatively large droplets. When dissipation attains a subsequent peak, several
of these droplets must be larger than the instantaneous Hinze scale - which leads to ac-
celerated droplet breakup with takes the system to its other extremum - a state marked
with high N;. Most of the droplets in this state are stable and cannot undergo further
breakup. As dissipation reduces, these droplets are advected around, and due to a higher
chance of droplet-droplet collisions, coalescence dominates the next part of the state-
space evolution. These two states also exhibit slightly different dispersion morphologies,
asillustrated in figure 5.24. The fluctuations in N, are caused by these two phases, where
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Figure 5.22: Evolution of state-space variables Ny, (), (w?) and (Ey ) (from case T5). The y—axis
is in arbitrary units [a.u.] for each quantity since they have been normalized by their time aver-
aged values between 507 and 10007, to scale the fluctuations to around a mean value of 1 (to
facilitate visual comparison between the different curves). In panels (a) to (c), peaks in (E k> are
shown to manifest in the {w?) evolution with a small time delay, which are then found in the N,
evolution with a further time delay, in a cascade of cause and effect. Two such instances have been
shown using the vertical lines extending from panel (a) to panel (c), which approximately indicate
individual sequences of cascading events. Similarly, peaks in <EY> are found to precede peaks in
Ny, of which also two instances have been shown using the vertical lines between panels (c) and
(d).

breakup and coalescence alternate in their dominance. In the Ej — E, phase space, this
can be viewed as (a somewhat erratic) evolution within a bounded region of finite Ej
and Ey. We do find signatures of this behaviour, although to more accurately describe
the Ey — E, phase space requires further work where the contribution from breakup and
coalescence are separately accounted for and the surface area is better resolved by sim-
ulating larger droplets in weaker turbulence. It should be noted, though, that the dy-
namics we report would correspond to local dynamics in larger droplet laden systems
like stirred vessels or in clouds. When considering these systems as a whole, the equilib-
rium properties may not fluctuate as much as reported here, as the local fluctuations in
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Figure 5.23: Correlation between N, (E;) and (w?) for case T5. N, consistently correlates
strongly with ( Ej.) with a temporal delay of 0.997, while (Ey ) is found to attain its maximum value
before N4, hinting that breakup occurs via extension of droplets into long filaments.

different regions of the system would cancel out.

5.5.2. VORTICITY AND INTERFACE ALIGNMENT

Figure 5.25 shows snapshots of enstrophy from a vertical cross-section of the varying ¢
simulations (P1-P4), with the droplet contours shown in black. Strong vortical regions
are often found in the vicinity of the droplet interface and in the droplet wakes. There is
strong interplay between the interfacial dynamics and dissipation, as strong vortical re-
gions align with the interface [20] and cause wrinkling, and high local dissipative events
can lead to droplet breakup [12].

The interplay between the vorticity vector and the interface normal can be quantified
by using the distribution of the cosine of the angle between these two vectors. First, the
density field pg is converted to a phase indicator field w = (pg - p%‘“)/ (piﬁn - p%‘“), such
that ¥ = 1 in the droplet region, ¥ = 0 in the carrier fluid region, and 0 < ¢ < 1 at the in-
terface. The typical phase indicator gradient then becomes Vi = 1/{, and the cosine of
the orientation angle is calculated where Vy > 0.01¢ (where 0.01 ensures all the interfa-
cial region is considered while ignoring the bulk regions where Vi = 0 by construction)
as follows

cos(@)=n-® (5.27)

where 0 = Vy//|Vy| gives the unit normal vector at the interface and ® = w/|w| is the
normalized vorticity vector.

Using this measure, Shao et al. [20] showed that vorticity tends to align tangentially
to droplet interfaces in turbulent flow. Here we extend their result in figure 5.26 which
shows the joint probability distribution of the cosine of the orientation angle 8 and the
normalized vorticity vector w/{w?)!/?. The joint PDFs have been generated with statis-
tics collected from 6 different field snapshots, evenly spaced between roughly 100 — 200
7. The black dashed lines mark w = 0.5(w?)'""?. Stronger vorticity (@ > 0.5(w?)"'?) is
found to be more prone to align tangentially to the interface. In this range, vorticity is
associated with strong swirling motion in the plane orthogonal to the vorticity vector,
which causes droplet accretion and subsequent tangential alignment of vorticity with
interfaces, yielding cos(0) = 0. Weaker vorticity (v < O.S(wz)m, i.e. below the black
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Figure 5.24: Quasi-periodic evolution of droplet morphology, cyclically visiting a typical state ‘a’
marked by low N (and hence low (Ey)) and high (E}.) and state ‘¢’ marked by large N; (and (Ey))
and low { Ey.). The transition from ‘@’ to ‘¢’ happens via a dominance of breakup shown in state ‘b’,
while the return from ‘¢’ to ‘a’ via state ‘d’ happens due to dominant coalescence. These snapshots
are from case T5.

dashed line) is incapable of exerting this influence on droplets, and hence exhibits a
uniform random distribution of orientation angles with respect to the interfaces (as all 6
values seem to occur with equal probability at a given w).

Another explanation for this effect could be that most droplets are elongated. It is
a known phenomenon that oblate objects align with the vorticity parallel to their axis,
as has been shown for sub-Kolmogorov oblate particles [72] and inertial spheroids [73].
Since the elongated interfacial regions influence the joint PDF more strongly (by being
more prevalent), and since there is a significant peak at cos(f) = 0, the axial alignment
mechanism seems plausible. On the other hand, spherical sub-Kolmogorov droplets
would tend to spin in local shear of the deep dissipation range, and if deformed, may
also tend to have orientation statistics similar to rods in turbulence [72]. This hypothesis
would need to be further tested. Our orientation statistics are valid for droplets in the
inertial range, and a simple extrapolation to sub-Kolmogorov droplets cannot be done.
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Figure 5.25: Planar cross-sections (at z = Ny /2) of the enstrophy field w? normalized by the aver-
age enstrophy (w2> along with droplet contours for varying ¢ values (cases P1-P4). These snap-
shots show the typical dissipation profiles with localized, intense dissipation events often concen-
trated around droplet interfaces or leading to droplet accretion.

5.5.3. EFFECT OF DROPLETS ON FLOW TOPOLOGY
Local flow topology is described in terms of the three invariants (P, Q and R) of the veloc-
ity gradient tensor A;j = du;/0x;, which form the coefficients of its characteristic equa-
tion

A +PA2+QA+R=0 (5.28)
where P =—A;;, Q=—A;jAj;/2 and R = —A;j A Ai/3. For incompressible flow, P =0

(i.e. the sum of the eigenvalues). In the P = 0 plane (or the QR-plane), turbulent flow
of diverse kinds produces a teardrop-like profile for the joint probability distribution
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Figure 5.26: (a) Schematic of the orientation angle 6. Here 1 is the normal unit vector to the inter-
face and @ is the vorticity unit vector at that point; (b) Alignment between vorticity and the local
interface normal is shown as the joint pdf of the cosine of the angle between them and the magni-
tude of vorticity, for the two extreme cases of ¢ = 0.01 (simulation P1) and ¢ = 0.45 (simulation P5),
the intermediate cases being in between these two. The contour levels have been logarithmically
spaced. Stronger vorticity (w > 0.5 (wz)l/z, above the black dashed lines) tends to align orthog-
onal to the interface while weaker vorticity remains randomly aligned with the interface with a
more uniform distribution.

of Q and R with four distinct flow topologies that have been illustrated in figure 5.27
(adapted from Ooi et al. [74]). The curve D = 27R?/4 + Q3 = 0 (derivation can be found
in Chong et al. [75]) divides the region with three real eigenvalues of A;; (below, where
D < 0) from the region with one real and a pair of complex conjugate eigenvalues (above,
where D > 0). The most dominant flow features are stable focus stretching ‘SES’ (i.e.
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vortex stretching) and unstable-node/saddle/saddle ‘UN/S/S’ i.e. bi-axial straining [76].
‘UFC’ corresponds to unstable focus compression (or vortex compression) and ‘SN/S/S’
is stable-node/saddle/saddle (or axial straining).

A
SFS Q UFC

SN/S/S v UN/S/S

Figure 5.27: The four distinct flow topologies of turbulent flow shown in the plane of Q and R i.e.
the second and third invariants of the velocity gradient tensor A;;. ‘SFS’ is stable focus stretch-
ing, ‘UFC’ is unstable focus compression, ‘SN/S/S’ is stable-node/saddle/saddle and ‘UN/S/S’ is
unstable-node/saddle/saddle. This figure is an adaptation from the classification in Ooi et al. [74].

The presence of droplets or particles which interact with the flow can modify the dis-
tribution of flow topologies, which is a modification of turbulence structure at a more
local and fundamental level than for instance modifications to the kinetic energy spec-
trum. This has been well investigated for particle laden turbulence [77, 78] and recently
shown for elastic polymers in turbulence by Perlekar et al. [79]. Although polymer addi-
tives are fundamentally very different from droplets, both are elastic objects, and hence
they may have some similar turbulence modification effects. Recently, Shao et al. [20]
showed a mild suppression of bi-axial straining in droplet laden turbulence upon chang-
ing the Weber number.

How droplets modify flow topology has not fully been investigated so far. Here, we
first show the influence of increasing dispersed phase volume fraction on the QR pro-
files calculated using simulations P1-P5. Since Re, for these cases varies (and is almost
a factor 2 lower than the corresponding single-phase turbulence simulation, see table
5.1), the normalization factor (Q,,) = (w?)/4 [74] is calculated for each case separately.
This allows us to focus on the modification of flow features alone, without comparing
the magnitude of these extreme QR events. Figure 5.28 shows the QR field sampled over
the entire multiphase velocity field. For case (b) ¢ = 0.01, the profile is narrower than
for single-phase turbulence, case (a), although the overall shape is similar. This might
be due to the ¢ = 0.01 dispersion being dilute, which makes coalescence infrequent.
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Overall, in this case, the flow field is similar to that in single-phase turbulence, and co-
alescence generated smaller scale features are rare. This seems likely, as at successively
higher volume fractions, cases (c) through (f), the QR profile is influenced more signif-
icantly and it tends to become more symmetric across the R = 0 line. This follows from
an increase in the axial straining part of the flow, along with an extension of the profile
into the D > 0 and R > 0 region which shows a relative increase in vortex compression as
opposed to vortex stretching (D > 0 and R < 0).

Modification of the QR profile due to an increase in ¢ hints that it is a consequence
of turbulence being constrained by the dispersed phase. To validate this claim, in fig-
ure 5.29 the QR profiles are shown while being sampled inside and outside the droplet
regions (marked as “d” for droplet-phase and “c” for continuous-phase). This has been
done for simulations D4 and D5 (which have the highest resolution, and significantly
different Rejy = 30 and 118 respectively). The QR profiles have been sampled at 5 time
instances separated by 1007,. The difference between the flow topology in the droplet
and continuous phase is striking, where within the droplet region QR profile seems to
almost have flipped across the R = 0 axis.

There is a small increase in axial straining and a significant increase in vortex com-
pression inside the droplets. A possible explanation for this effect could be the pres-
ence of interfaces surrounding droplets which behave like elastic surfaces. Vortices be-
ing stretched inside the droplets will try to elongate the droplet along the stretching
axis, and this will be counteracted by interfacial tension which would instead tend to
compress vortices. Since vortex compression contributes to energy dissipation [56], an
enhancement of energy dissipation might also be expected inside droplets from these
results (further investigation of this is left for future work). With a similar reasoning,
increase in axial straining may also be an effect of surface tension. Axial strain tends
to stretch droplets into prolate ellipsoids (cigar-like objects), while bi-axial strain would
shape them into oblate ellipsoids (flat, pancake like objects). For equivalent strain in-
tensity, bi-axial strain would lead to a more rapid increase in surface energy than axial
strain. The increase in axial strain may hence be another consequence of droplets trying
to minimize surface energy. More work is required to pinpoint the reason behind the
droplet effects on flow topology. These effects, along with the alignment of elongated
droplets parallel to local vorticity, can be viewed as complementary phenomena. The
continuous phase QR profile remains mostly tear-drop like, with minor increase in axial
straining and vortex compression.

We did not directly investigate the effect of surface tension on the QR profiles, but
it can be argued that an increase in surface tension will further amplify vortex compres-
sion and axial strain (if our hypothesis of the mechanism is correct). This is because a
higher y will lead to a stronger surface tension force which will counteract any increase
in surface area due to deformation or breakup. At the limit of zero surface tension both
fluids will perfectly mix, and one will recover the usual tear-drop like QR profile found
for single phase turbulence. This can also be related to the effect of the average droplet
size, where a higher surface tension will lead to larger droplets on average, which will
influence turbulence topology more than small droplets. Hints of this effect are visible
in results from the increasing volume fraction simulations, where on average the droplet
sizes increase, which results in greater turbulence modification. A direct comparison,
however, has not been performed in this study, and it would require larger droplet sizes
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Figure 5.28: Joint PDFs of the second and third invariants (Q and R) of the velocity gradient tensor
shows the typical teardrop profile characteristic of single-phase turbulence being modified into a
more symmetric profile with an increase in axial straining and vortex compression. Here (Qy,) =
(w?)/4 and the quantities are calculated over the entire multiphase velocity field, sampled at 5
time instances separated by 207. The solid lines mark Q =0, R=0and D = 27R%/4 + Q3 =0, and
the contour levels have been logarithmically spaced.
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while keeping the volume fraction and turbulence intensity the same.
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Figure 5.29: Joint PDFs of QR sampled in the droplet phase (“d”) and continuous phase (“c”) for
cases D4 and D5. The QR profile appears to flip on the R = 0 axis for the droplet phase, with
a striking increase in vortex compression and axial straining. The continuous phase QR profile
remains mostly tear-drop like with minor increase in axial straining.

5.6. CONCLUSIONS

We perform direct numerical simulations of emulsions under homogeneous, isotropic
turbulence conditions performed by using the pseudopotential lattice-Boltzmann method.
New findings on droplet size distributions, multiphase kinetic energy spectra, coupled
kinetic energy and droplet number density dynamics, interface-dissipation interactions
and modification of turbulence flow topology in emulsions are reported.

The process of dispersion formation is investigated for varying volume fractions of
the dispersed phase and varying turbulence intensities for an emulsion with a density
and viscosity ratio of 1. Using an appropriate set of parameters (such that the pseudopo-
tential repulsive force between components dominates the local turbulence force), the
effect of droplet dissolution is mitigated, an issue that was found limiting in previous
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work [12, 16]. While further maintaining spurious currents to well below the physical
velocity scales, the multiphase kinetic energy spectra were shown to exhibit signatures
of breakup and coalescence at wavenumbers smaller and larger than the inverse Hinze
scale respectively.

At small wavenumbers, energy is primarily extracted from the flow, where a higher
dispersed phase volume fraction ¢ extracts more energy due to the profusion of inter-
faces. At large wavenumbers, for successively higher ¢, the energy content of the dissi-
pation range increases due to more frequent coalescence which generates smaller scale
motions. The droplet distribution is shown to follow the d~'%/3 scaling that has been
previously found for purely inertial breakup of the dispersed phase [3, 9]. High volume
fraction dispersions under moderate turbulence intensities do not exhibit the k=>/3 in-
ertial range scaling, and in these cases coalescence cannot be ignored either, in which
case the classical Hinze [2] scale becomes invalid. We propose a generalization of the
Hinze scale for these situations, where instead of using the dissipation rate (¢) to de-
termine the characteristic velocity at the droplet scale d, we use the multiphase kinetic
energy spectra (E(k)) (which reflects the average energetics including coalescence and
breakup at each scale) and the droplet wavenumber k;. This gives a Weber number
spectrum We(k), which in turn can be used as an indication for the lengthscale at which
inertia and surface tension become comparable (i.e. We(k) = 1, or We(k) = Weg; if the
critical Weber number is known). This criterion was found to predict the lengthscale at
which the droplet distribution transitions into the d~'%/3 scaling reasonably well, which
is known to hold in the breakup dominated range of scales [3]. Our criterion also reduces
to the classical Hinze scale when E(k) is of the Kolomogorov formi.e. E(k) ~ 23513,

The importance of the relative resolution between the various length scales that gov-
ern turbulence droplet simulations is emphasized. We show that it is important to re-
solve N, > Z to correctly capture droplet deformation and breakup at relatively weaker
turbulence intensities and high volume fractions, where otherwise the droplet fluid can
form a complex tangle of elongated filaments as the maximum droplet deformation be-
comes unresolved. We also maintain that £ > d > 7, such that the droplets interact
mainly with the inertial range of turbulence.

In line with recent results [20], vorticity is shown to strongly align tangentially to
droplet interfaces. This effect was shown to be stronger for higher vorticity magnitudes.
The presence of dispersed phase is also shown to significantly alter the flow topology
represented by the joint pdf of QR, i.e. the second and third invariants of the velocity
gradient tensor, much more acutely than recognized [20]. The well known tear-drop like
profile becomes almost flipped across the R = 0 axis when sampled inside the droplet in
comparison to sampling in the carrier phase. An striking increase in axial straining and
vortex compression is found in the droplets, which hints at an interplay of interfacial ten-
sion with turbulence, where droplets try to minimize any increase in surface energy by
suppressing flow types that cause more deformation - namely bi-axial straining and vor-
tex stretching. This result hints that droplets might cause enhanced dissipation in their
interior. The carrier fluid topology retains features of the well known tear-drop profile
[76] with only minor increase in axial straining and vortex compression.

Last but not the least, we show for the first time the dynamics of the quasi-equilibrium
between coalescence and breakup under constant energy input to the system which
leads to sustained turbulence over very long simulation times (around 1009"). This state
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is often called a “steady state”, although the dynamics more closely resembles a limit-
cycle in the state-space of kinetic energy (Ey), enstrophy (w?), droplet number density
Ny and surface energy (E,). The extreme values of (Ex) manifest in the (w?) evolu-
tion with a certain time delay, which then again show up in the N; evolution leading
to a time-delayed dynamics. The dispersion oscillates between two morphologies, the
journey between them being mediated by alternating bouts of dominant breakup and
coalescence. Surface energy was found to peak prior to droplet breakup, reflecting the
underlying breakup mechanism which involves the stretching of droplet fluid filaments,
which have a higher surface area than the subsequently formed daughter droplets.

We believe that this time delayed dynamics will be found in localized regions of much
larger droplet laden systems, where the overall system may not exhibit significant fluc-
tuations in state-space variables, as the localized fluctuations would cancel each other.
However, in smaller, finite systems (as prevalent in turbulence resolving droplet laden
simulations [4]), this can be an important consideration, as the “steady state” can have
its own interesting dynamics. These considerations of delayed temporal dynamics may
also be relevant to developing more realistic breakup and coalescence kernels which cur-
rently correlate state-space variables instantaneously [71], which we have not explored
given the limits of the current work.

Further investigation of the system evolution in the (Ej) — (E,) phase space would
help describe the exact exchange of energy, where the effects of coalescence and breakup
would need to be isolated. This may be done by simulating larger droplets in weak tur-
bulence, which would correspond to a detailed view on individual droplets near the dis-
sipation range, and it is something we wish to investigate in the future.

We hope that this chapter brings to attention the avenue of considering the details
of resolved simulations from different perspectives (as we have attempted, while con-
sidering the limitations of our work). This helps reinforce our understanding of the phe-
nomena at different levels. A statistical perspective (looking at spectra, time averaged
quantities etc) helps with an overall description, while a dynamical systems perspec-
tive on the state-space helps pave the way for deciphering the true mediation of cause
and effect like droplet-dissipation interactions and the modification of turbulence due
to droplets, which we are only beginning to now understand.

APPENDIX

5.A. CLUSTERING THRESHOLD

In this section we briefly discuss the segmentation of droplets. The simulations output a
continuous density field for both components a and . As mentioned, the density varia-
tion of a component indicates the presence of droplets, where the density of component
B inside the droplet piﬁn =~ 4.4 and that outside the droplet p%‘“ = 0.4 [lu] when the flow is
fully developed. The droplet identification is done by fixing a threshold density value p€.
Every contiguous droplet fluid region, i.e. a cluster of neighbouring lattice cells with val-
ues above the chosen threshold (pg > o), is identified as a droplet. For a point (i, j, k),
only the 6 neighbours (i £1, j + 1, k + 1) are considered in our spatial segmentation (or
clustering) algorithm, which was originally developed by Siebesma and Jonker [58]. This
is a post-processing step with a single parameter p., which gives the total number of
droplets in the system N, the individual droplet volumes V (and equivalent diameters
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Figure 5.30: Normalized phase fraction evolution for varying p€ used to segment droplets. Here

o€ is reported as a fraction of pg‘, while p%ut/pg‘ = 0.1, therefore the useful range of pc/,oiﬁn is 0.1
to 1.0, and p¢/p'2 = 0.55 is halfway.

d = (6V/m)'/3), the droplet surface area S, and the droplet center of mass. These results
should not significantly depend on the choice of p€.
As the dispersed phase density values within the interface vary between 0.1 pgl <ppg<

piﬁn, the useful range of thresholding values p°¢/ piﬁn € [0.1,1.0], as p€ should lie within the
interface. Figure 5.30 shows the relative evolution of the volume fraction over time for
the case ¢ = 0.06, for different threshold values around the middle of the usable range.
Lower values of p¢ account for more of the dispersed phase as droplets, which is why the
total volume fraction increases as p¢ decreases. Note that this is not a physical increase
in volume fraction (as the density field is determined by the dynamics alone) and is only
a post-processing estimate - as p¢ merely differentiates whether a point is inside the
droplet region or not. So the choice of p¢ also determines when a dissolving droplet
stops being counted as part of the dispersed phase (though the mass of each fluid is
conserved). This is why in figure 5.30, a higher p° gives a lower ¢, as more small droplets
are not counted as part of the dispersed phase.

So although a lower p€ gives a higher estimate of ¢, it may not be the most appro-
priate choice. This is because the interface is considered to be roughly in the middle of

out

[p 8 ,p}?], which is approximately 0.55pgl. The clustering threshold value used in this

study, i.e. p€ = 0.57pil;1, is very close to the mid-way value. The minor difference between
the two values has virtually no influence on the results, and is due to the slight change in
the equilibrium density values of the dispersed phase which is difficult to exactly ascer-
tain a priori.

Notwithstanding, we verify that our specific choice of p€ has little influence on re-
sults other than the evolution of ¢. Figure 5.31 shows the evolution of the number of
droplets N, in the system for different threshold magnitudes, which is seen to have min-
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Figure 5.31: Evolution of droplet number density N, for varying p¢ shows that the number of
droplets identified is almost independent of p°.

imal influence on N,;. Similarly, the droplet distribution was also found to be virtually
unaffected by the choice of p© as long as it lies within the droplet interface.
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CONCLUSIONS AND OUTLOOK

6.1. CONCLUSIONS

Mulsification is a physical process, which over a century of research, investigation
E and experiments, has become reasonably controllable in some settings, and yet we
have only begun to unravel the underlying processes behind it. Part of this dissonance
comes from the difficulty of probing emulsions experimentally to study the dynamics,
which is inherently three dimensional, and is an outcome of strong interactions be-
tween the dispersed and continuous phases. Most experimental studies hence inform
empirical modelling of averaged quantities, like droplet size distributions, coalescence
and breakup rates modeled in the form of kernels and modification of mean turbulence
quantities - all without explaining the mechanisms. This has led to a wealth of mod-
els that populate the literature, and are used without any deeper understanding of the
system.

Of course, it poses the question whether a deeper understanding would greatly im-
prove industrial processes. Why do we need to model this system from the bottom-up?
I shall quote three of the sixteen reasons suggested by Epstein [1] in favour of modelling
beyond its first obvious goal of prediction - (1) to “explain”, (2) “illuminate core dynam-
ics” and (3) “discover new questions”. With the work presented in this thesis, it is these
three aspects that have been highlighted most prominently. While the first two of these
is what one begins to probe with their inquiry, the third erupts serendipitously.

We began with an intercomparison of the volume-of-fluid (VoE as available in Open-
FOAM and FLUENT) and pseudopotential lattice-Boltzmann method (using Palabos) to
ascertain and quantify the relative strengths and weaknesses of the two methods. One of
the main findings was that different numerical methods can give disparate results when
simulating physical problems (an issue not evident if one only applies them to numer-
ical benchmarks). Both methods had strong points in favour, and few points against
them. Briefly, these were the freedom to independently vary density/viscosity ratio and
interfacial tension in VoF as opposed to computational speed, spontaneous phase segre-
gation and low spurious currents in PP-LB. For a new practitioner, depending very much
on the problem they wish to simulate, it would be useful to first try to apply the VoF
method to their problem, for its conceptual simplicity, ease of use and ready availability
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in commercial codes and open-source CFD packages. It is relatively easy to implement
different boundary conditions, initial conditions, and freely vary surface tension, den-
sity ratio and viscosity ratio in this method, which make it very valuable, particularly
when applied to relatively simple flows and pure fluid mixtures, in parameter ranges
not dominated with spurious currents. It may also be worthwhile to consider the Level-
Set method for multiphase flows. For more complex multiphase flow situations, like
those involving turbulence, the computational cost of finite volume methods increases
tremendously, in which case LB simulations are an attractive alternative.

For the purpose of this study, we chose PP-LB, since it was better suited for our needs,
namely (1) simulation of surfactants via relatively easy extensions to the model, and
(2) the possibility of simulating coalescence and breakup in turbulence at significantly
lower computational cost than finite-volume methods. We then modeled surfactant
laden emulsions by considering a three component PP-LB system. The surfactant was
shown to reduce surface tension following a Langmuir-like isotherm. This behaviour
arose naturally from fundamental particle interactions, without any such form of sur-
face tension reduction being pre-set in the model. However, the model lacked a mech-
anism for coalescence inhibition, though similar effects could be simulated by varying
the liquid-liquid repulsion strength by utilizing the information on local surfactant den-
sity. Further improvements to the model will be required before surfactant effects can
be simulated to a degree that coincides strongly with observed surfactant induced ef-
fects in real emulsions. More accurate calculations of the surfactant diffusion to the in-
terface can be performed by simulating a clean pendant droplet formed and hanging on
a capillary tip in a surfactant laden matrix phase. Changes in the droplet shape due to
surfactant diffusion to the interface will allow estimating the diffusion coefficient using
the Ward Tordai equation.

Next, we incorporated alow-wavenumber turbulence forcing scheme in our LB frame-
work for a single-phase fluid. Since turbulence forcing schemes have been well studied
and validated over time, we instead focused on a more fundamental, important aspect,
namely the emergence of structures in turbulence, which are essential to its composi-
tion. We focused on spatial structures arising in the velocity and vorticity fields, which
are hard to define but are often invoked in describing turbulence as a superposition of
‘eddies’. We introduced new mathematical tools (correlation pseudo-vectors) for iden-
tifying particular flow patterns, namely regions of parallel flow streamlines associated
with high local field values and regions with swirling flow streamlines associated with
high vorticity in the core of these regions. Using the specific form of the Helmholtz de-
composition applicable for divergence-free flows—the Biot-Savart law—we were able
to disentangle the local and non-local vorticity contributions, in a Biot-Savart sense, in
generating these structures. High kinetic energy regions were found to be consistently
jet-like. It was found that, due to their low vorticity content, these structures are not
self-generating. Strong vorticity regions also contribute negligibly to the generation of
high kinetic energy regions, and their coherence was found to be almost entirely in-
duced by non-local intermediate vorticity contributions. Regions of high vorticity, which
form vorticity ‘worms’, on the other hand, were found to be associated with swirling-
flow structures (as has been found before [2]). The Biot-Savart reconstruction shows
that swirling flow regions are a superposition of intermediate background vorticity in-
duced flow and a degree of self-generating swirl. These results reveal the structure of
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turbulence in a new light, showing the spatial organization of high kinetic energy and
high vorticity regions. Upon the addition of particles, or droplets, to turbulent flows,
these structures may be modified due to inhibition/enhancement of certain inter-scale
interactions, which remains to be studied.

We finally simulate turbulent emulsions, reverting back to two pure fluids (ignor-
ing the surfactant). The PP-LB method is shown, for the first time, to be capable of
simulating turbulent emulsions over long durations in certain regions of the parame-
ter space governing the problem (for a chosen numerical resolution of the simulation
grid). In these regions of the parameter space, droplet dissolution is a minimal effect
which does not influence the results or dynamics, and this numerical artifact can be fur-
ther alleviated by increasing the resolution of the droplets with respect to the interface
width. Several new findings regarding the emulsification process are presented. These
include the droplet distribution with its associated power laws for purely inertial droplet
breakup, coalescence and breakup effects on the energy spectra, modification of tur-
bulence topology, and state-space dynamics of the turbulent emulsion when it attains
a quasi-equilibrium state. The evolution of state-space variables as time delayed limit
cycles casts into doubt the usual practice of modelling the droplet number density and
distribution as instantaneous functions of flow quantities like the turbulent kinetic en-
ergy and energy dissipation rate. A generalization of the classical Hinze scale is also pro-
posed, which is valid for dense and dilute suspensions alike, and it does not ignore the
effect of coalescence. It is used to predict the critical lengthscale separating breakup and
coalescence dominated droplet scales. These findings also show that a lot of modelling
assumptions, that are believed to be obvious, might require reassessment.

6.2. NATURE VIS-A-VIS NUMERICS

A crucial aspect, that should not go unattended, is the discord between natural phe-
nomena and our attempts to model them (in this case numerically). While one is the
truth, the other grapples to be in its vicinity. This section serves as a brief reflection on
whether, and if so then under which circumstances, the results presented in this thesis
can be considered representative of the physical reality.

The most important phenomena, at the heart of our work, are the breakup and co-
alescence of droplets. Droplet breakup poses a first great challenge that the moment of
breakup is a singular event [3, 4], as the collapsing fluid bridge eventually passes through
aradius of zero. This event also has associated aspects that are quite non-trivial. First is
that near breakup, there is usually a strong asymmetry across the collapsing fluid bridge,
which goes against any naive assumption of a symmetric (hourglass-like) interfacial pro-
file before breakup [5]. The collapsing fluid bridge, via an eventual change in topology,
leads to two separate, receding interfaces, which is the instant of droplet breakup (or bi-
furcation). Further, the interfacial shape (the cross-section of the collapsing fluid bridge
and its neighbourhood) has been conjectured to be self similar [4-7]. Since the local
length and timescales involved are of decreasing magnitude before breakup, the process
can hold no memory of any initial conditions - which means that droplet bifurcation is a
universal phenomena no matter the original causes for a droplet breaking apart. In coa-
lescence, the reverse happens when the thin liquid film between approaching interfaces
drains out, and there is a first point of contact between the two interfaces. This happens
at a lengthscale where even the thermal fluctuations of the film begin to play a role in
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determining film drainage times [8].

The main difference between nature and numerics (or theory) here is one that brings
to mind Tsinober’s observation regarding turbulence [9] - “It is of importance to make at
the outset a clear distinction between the phenomenon and the problem of turbulence
- just like between the observations and the theories attempting to explain them, which
are far from being synonymous”. In nature, there are no distinctions like a continuum
description or a particle description. Continuum behaviour ‘emerges’ from more fun-
damental molecular interactions, which in turn emerge from even more fundamental
field-particle interactions - the entire edifice being a hierarchy of emergence. Natu-
ral phenomena, hence, can appear to pass through different levels of description quite
smoothly. Our tools of analysis, theories and equations are sufficiently well suited to
describe phenomenon at different levels of detail, but are not conducive for traversing
across different descriptive levels. An example to the point is the Laplace law for pres-
sure across a static droplet which holds for finite droplet radii (a continuum description),
although during breakup, the radius passes through zero which is a point of singular-
ity (where clearly the continuum description breaks down). Another example would be
molecular dynamics simulations where individual molecules and their interactions are
resolved, and these can be used to simulate, for instance, nano-droplets. It is inconceiv-
able to use such simulations for the situations described in this thesis, primarily due to
the number of molecules required for representing a macroscopic system.

The fact that none of the current multiphase CFD models will accurately reproduce
physical phenomena like droplet breakup across different levels of detail is a trivial point
at best. The real question is whether accurately resolving the entire breakup process,
across all levels, is necessary to say anything meaningful about droplet breakup at all
through simulations. And there the answer is, of course, that one can make reasonable
estimates for approximate breakup times, very close to the real values observed in ex-
periments. The self similarity of the breakup process works in favour of this, since near
breakup, the length and timescales get successively smaller, and these contribute to the
‘overall’ description only infinitesimally. The resolution of this level of detail is beyond
the scope of flow resolving simulations, and also unnecessary.

Coalescence is more difficult to address, and is tied to a more glaring difference be-
tween reality and simulations, i.e interfaces are very thin surfaces in real systems, while
in diffuse interface simulations (like in PP-LB, or VoF), they extend over a few grid cells.
The ratio of the droplet diameter d to interface width { in real systems is of the order
©(10%) (for a millimeter sized droplet with an interface extending over a nanometer).
In simulations, this ratio can vary depending on the detail to which coalescence is be-
ing resolved. In simulations of binary droplet collision, where focus is on an individual
coalescence event, d/{ may be of the order @ (10?) or more. For turbulent emulsion sim-
ulations, such a high grid resolution is not possible at the individual droplet scale, due to
the proliferation of multiple droplets, and there this ratio can be anywhere in the range
of ©(10°) — ©(10%), depending on the droplet size. Here, the difference with physical
systems is irreconcilable, and reality is grossly under-represented.

Further, whether droplets coalescence also depends on the relative resolution of the
droplet size to the interface width [10], such that in the limit of infinite resolution d/{ —
oo, coalescence would cease to occur as there will always be a thin liquid film separat-
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ing the interfaces'. Droplets in diffuse interface methods coalesce when the grid res-
olution is not large enough to resolve the fluid film between interfaces, in which case
the interfaces overlap. Hence, having a finite value of d/( is important in these simula-
tions. To be able to simulate coalescence at much finer resolutions, additional numeri-
cal procedures will be required. These may be models developed using detailed studies
of interfacial rupture phenomena, accounting for molecular or physiochemical proper-
ties, to cause spontaneous interfacial rupture in the simulations based upon a critical
separation distance between droplets. Doing so, traditionally, would require simulating
the droplet phase as a separate numerical mesh where surfaces can be cut and merged,
which comes at a high computational cost and additional issues regarding the genera-
tion of acceptable mesh topologies and conservation of mass. However, in simulations
with a finite d/(, statistical or integral quantities like droplet size distributions, kinetic
energy spectra and dissipation rates may be expected to more closely resemble real sys-
tems, since successively smaller which will be resolved as d/{ — oo, should only have a
small effect on the overall statistics.

6.3. FUTURE WORK

So far, very few studies have looked into the details of emulsification with numerical
simulations that resolve both turbulence and interfacial dynamics. This is because only
recently (over the past decade or so), it has become feasible to perform these computa-
tionally demanding simulations. Part of the reason is, of course, the increase in compu-
tational power, but the more empowering factor is the combination and development of
the relevant numerical tools that enable resolved simulations. The algorithmic simplic-
ity and computational speedup of the lattice-Boltzmann method gives it the upper hand
for turbulent emulsion simulations as far as the current state of numerical methods is
concerned, with the main drawback of interfaces being diffuse and its associated issues
like droplet dissolution and enhanced coalescence.

The most interesting questions worth studying next that follow from this thesis have
been discussed below, and have been characterized into two categories. First are a few
fundamental issues regarding droplet-laden turbulence, while the second aims at its
more applied aspects, relevant from the point of view of modelling turbulent emulsions
for general industrial applications. The two are related issues, however, where the first
informs the second.

6.3.1. FUNDAMENTAL ISSUES REGARDING DROPLET-LADEN TURBULENCE

As simulations begin to reveal droplet-turbulence interactions in a new degree of detail,
it shall become possible to study the following phenomena, leading to new fundamental
insights about droplet-laden turbulence.

IThis is in a way reminiscent of Zeno’s paradox of measure, for instance see [11]. Paraphrased, one of its
statements is that “to arrive at her destination, a traveler must first cover half the distance, then another half
of the remainder i.e. 1/2, then 1/4th, then 1/8th, ad infinitum”. Similarly, each time in a diffused interface
method, when interfaces are about to overlap leading to coalescence, an increase in the grid resolution will
lead to an additional thin layer of fluid that will separate the interfaces, preventing coalescence.
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ORIENTATION OF DROPLETS

Our study showed a time delayed limit-cycle dynamics of the state-space variables. This
is an interesting finding, although how the observed effects are mediated, needs to be
further investigated. One question that has come to the fore is how enstrophy interacts
with droplets, since strong vortical motion has been shown to align parallel to the in-
terfaces (as shown in Chapter 5 of this thesis, and originally shown by Shao et al. [12]).
Enstrophy then causes interfacial wrinkling and breakup. The increase in axial straining
and vortex compression also indicates that vorticity inside droplets possibly aligns with
the droplet axis (considering a sheared droplet to be like an elongated ellipsoid). In this
configuration, surface tension would tend to compress the droplet along its axis, hence
causing vortex compression. It has been shown that sub-Kolmogorov ellipsoidal objects
indeed align with the local vorticity vector [13, 14]. This is due to the preference of rigid,
oblate objects to spin along their major axis instead of tumbling in turbulent flow.

For simulations with low volume fractions of the dispersed phase, droplets remain
spatially separated with fewer coalescence events and can more or less be approximated
as deformed ellipsoids. How they align with the background strain and vorticity fields
will reveal the dynamics of deformation in more detail.

INTERFACES SAMPLING THE STRAIN FIELD

How droplets modify the flow was also shown in Chapter 5. There is an increase in vor-
tex compression inside droplets, as well as a predominance of axial strain as opposed
to bi-axial strain. Since droplets are deformable elastic objects, their interfaces can os-
cillate (further depending on the presence of surfactants [15]), which in turn generates
smaller scale flow motions. A further question worth investigating is what is the prob-
ability distribution of the three strain eigenvalues at the droplet interfaces, along with
in the droplet interiors and the continuous fluid region, and how this depends on the
Weber and Reynolds numbers. This has been shown already to an extent with the QR
joint probability distribution plots presented in Chapter 5 since Q and R can be calcu-
lated from the strain eigenvalues. Additional questions to be studied are how the QR
distributions vary with distance from interfaces and what their distributions are in the
immediate vicinity of the interfaces. This will show how elastic material surfaces sample
and influence the strain field, which is closely tied to the generation of excess surface
energy due to droplet deformation. A first step in this direction has already been taken,
with the recent work of Dodd and Jofre [16], albeit for the case of decaying homogeneous
isotropic turbulence.

DROPLETS AND INTERMITTENCY

A related fundamental question is also regarding the effect of droplets on intermittency.
For two simulations with the same amount of energy dissipation (e), where one is single-
phase and the second droplet laden, it is worth looking into the differences in the prob-
ability distribution of vorticity and dissipation. This will quantify the effect of droplets
on spatial intermittency. Since droplet coalescence generates smaller scales, there is an
increase in the dissipation range energy content, which contributes to global energy dis-
sipation. However, these vortical motions have dynamical origins vastly different from
the small-scale intermittent vorticity generated by the dynamics of single-phase turbu-
lence. Hence, despite the same amount of energy dissipation, the spatial dissipation and
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vorticity fields can be expected to differ for single-phase and droplet laden turbulence.
The additional question would be how this depends on the Weber number and volume
fraction.

DROPLETS IN THE DISSIPATION RANGE

The current study focused on the breakup of droplets in the inertial range, where the
smallest droplets in the system were still sufficiently larger than the Kolmogorov scale
1. In most DNS, 7 is comparable to the grid size, which generates the maximum sepa-
ration of scales and the highest possible Re). There are a few reasons for considering a
different system, where the droplet sizes d ~ 1. This in principle can be be easily done by
weakening the turbulence forcing intensity, which will generate a flow with a lower Re,
which has a higher i and a relatively larger Hinze scale.

Apart from the benefit that this will eliminate dissolution of small droplets in the
system (as was shown by Komrakova et al. [17]), this system can be used to better inves-
tigate the interplay of kinetic energy, surface energy and dissipation. At sufficiently weak
turbulence intensities, the droplet diameter may be comparable to or smaller than the
Hinze scale, with only deformation and fluctuations of the interface. Since this droplet
does not undergo breakup, the additional complexity due to coalescence and breakup
to the changes in surface energy is excluded. Pal et al. [18] showed that droplet deforma-
tions follow multifractal dynamics for droplets in 2D turbulence. This can be studied for
realistic droplets in 3D, and the dynamics of the interface can be directly compared to
the kinetic energy and dissipation dynamics and fluctuations.

With this established, a simpler system with a few large droplets can be studied to
gradually introduce coalescence and breakup effects, which will be resolved in greater
detail than in the dense suspensions considered in this thesis.

INCLUDING SURFACTANTS IN TURBULENT EMULSIONS

This was the original aim of this thesis, but unfortunately it was not possible to per-
form these simulations for a few reasons. First was that the turbulent emulsions nu-
merical setup took time to develop. It was found that the multiphase fluid models used
for the surfactant-laden emulsions study (Chapter 3), which were based on non-ideal
fluids, attained weak phase-segregation with decreasing viscosity (while a low viscos-
ity was required to generate turbulence). This could in principle be remedied by using
much larger domains with higher viscosity values, or by changing the collision opera-
tor. A more feasible alternative was to use simpler fluid models, which maintained strict
phase-segregation at low viscosity values, while using the BGK collision operator.

It is conceptually easy to introduce a third surfactant component to the turbulent
emulsions numerical framework, although, it would require detailed testing to ascertain
the model behaviour like surface tension reduction. Secondly, the original surfactant
model was shown to be incapable of simulating coalescence inhibition. Before adding
surfactants to turbulent emulsions, this would be an important intermediate step. Lastly,
droplet dynamics in clean systems posed enough new questions - proceeding with a
much more complicated physics with surfactants would be naive before we improve our
understanding of clean systems to a higher degree.

Chapter 5 is a step in the direction of improving what we know about emulsification.
After a closer look at the system energetics and dispersion formation, now one can begin
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to include surfactants. With a mechanism for surfactant induced coalescence inhibi-
tion, significant changes to the evolution of surface energy and droplet number density
can be expected. This will also have consequences for dissipation of kinetic energy, as
once a characteristic morphology is formed with a typical distribution around the Hinze
scale, further breakup and coalescence may not be possible due to the shielding of coa-
lescence. This will be in contrast to the surfactant free dispersions considered in Chapter
5 - where coalescence and breakup dominated dynamics ensue cyclically.

EXPLORING A WIDER RANGE OF FLUID PROPERTIES

A further important extension to this study would be simulations that span a wider range
of the parameter space of fluid properties, since the investigation in Chapter 5 was lim-
ited to a density and viscosity ratio of unity. Emulsions encountered in practice are very
often composed of fluids with a large density and viscosity ratio. A change in viscos-
ity ratio between the droplet fluid and continuous fluid will also influence several as-
pects of the dynamics, at times significantly. For instance, viscous damping of the flow
in the droplet interior will cause an additional viscous resistance to droplet breakup, as
opposed to a purely surface tension driven resistance to breakup for inviscid droplets.
There will be a change in the droplet response to deformations, an interplay between
surface tension and viscosity effects, and consequently, the droplet breakup mechanism
that is at play can be modified. It is known that increasing dispersed phase viscosity
leads to a broadening of the droplet size distribution, with an increase in the number of
smaller satellite droplets, and a decrease in the number of large droplets whose size in-
creases as well [19], which reflects a change in the underlying breakup mechanism [20].

The definition of the Hinze scale, i.e. the maximum stable droplet diameter, as-
sumes a inviscid droplet phase and a dilute suspension (i.e. ignoring coalescence ef-
fects). In Chapter 5, the generalization of the Hinze scale to a Weber number spectrum
was done to include the average effect of coalescence in determining the approximate,
stable droplet scale. With droplets of a higher viscosity, a further modification of the
Hinze scale is required to account for the influence of a dimensionless viscosity group
on the dynamics [19]. Calculation of the multiphase kinetic energy spectra, to generate a
Weber number spectra, will also need to be done while considering a sharp change in the
velocity profile across the interface at high viscosity ratios. It might be more suitable to
use the wavelet spectra in such a case, which allows for sharp changes in the field values
without adversely effecting the spectra.

Hints regarding the changes in the breakup mechanism may be found from a similar,
or extended analysis, to the one presented in Chapter 5. For instance, for the same tur-
bulence intensity, at high viscosity ratios, when the droplet distribution broadens, the
generation of a higher number of satellite droplets will be reflected in the evolution of
the droplet number density N, and surface energy Ey. The breakup dominated arm of
the breakup-coalescence dynamic equilibrium will begin to yield higher values of Nj.
The time-delayed intermittency correlation between Ny and Ey may also change when
extreme droplet deformation is resisted by viscous droplets, which instead form more
satellite droplets, which are smaller and usually spherical. In this case, peaks in the evo-
lution of Ey will begin to coincide with peaks in the evolution of Ny, rather than preced-
ing them. Changes will also be found in the turbulence flow topology inside the droplets,
where the flow will become more quiescent at higher viscosities. This may lead to a sup-
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pression of extreme velocity gradients, hence shrinking the distribution of the velocity
gradient invariants to a smaller region centered around low values.

To describe breakup mechanisms more explicitly (and more accurately), an exten-
sion of the droplet segmentation (clustering) algorithm is required, which can track droplets
over their life-cycles. This will allow studying the droplet “history”, comprising the evo-
lution of the typical scale of velocity fluctuations acting over the droplet, and the change
in distribution of surface and inertial forces around the droplet, which can then be linked
to the event of droplet breakup to reveal details of the mechanisms at work.

From an implementation perspective, the viscosity ratio between the droplet and
continuous fluid can be varied, for instance, by using the model of Porter et al. [21],
which also considers a multicomponent LB system. The current model used in Chap-
ter 5 does not allow varying the viscosity and density ratio much. The method of Porter
etal. [21] ensures viscosity-independent equilibrium densities (which will help in main-
taining a low viscosity in the continuous phase, important for sustaining turbulence),
while also maintaining low spurious currents using a higher isotropy inter-fluid interac-
tion term. These modification, together with the turbulence forcing mechanism, can be
used to study turbulent emulsions of varying viscosity ratios.

EXPERIMENTAL MEASUREMENT OF DROPLET DISTRIBUTIONS AND VELOC-
ITY FIELDS

Lastly, many of these simulation results still need to be experimentally verified, which
is still a distant hope as emulsions remain elusive to the experimental eye. Bridging ex-
periments and simulations will soon be the major hurdle, as highly resolved numerical
simulations are slowly becoming the norm. Although most of the qualitative features
reproduced in simulations can be expected to be found in experiments, true prediction
relies on quantitative agreement between the two. Only in tandem can experiments and
simulations benefit each other.

Experimentally, a major challenge is to characterize droplet sizes during emulsifi-
cation, including the dynamical aspect to droplet distributions. Typically, a sample of
the emulsion after its formation is collected and then analyzed ex sifu, although optical
techniques have been applied to measure these distributions in-situ [22, 23]. Deane and
Stokes [24] had similarly reported the dynamical bubble size distribution for breaking
waves. The greater challenge is to measure velocity components and gradients (to quan-
tify the strain fields and dissipation) locally. These may be the most elusive to measure
currently, but will be the most important for a fuller synthesis of simulation and experi-
ment.

6.3.2. PRACTICAL APPLICATIONS

The essence of all the detailed understanding of coalescence and breakup eventually
should be distilled in well informed ‘kernels’ Kernels are simply models for coalescence
and breakup applied in large scale flow simulations which cannot resolve droplet level
dynamics and can only incorporate dispersed phase effects via population balance mod-
elling. Simulations on larger systems often cannot even resolve the flow due to the sep-
aration of scales involved, and in turn rely on turbulence modelling (for instance the
k —e model prevalent in RANS simulations). This makes the overall modelling a twofold
problem, where inaccuracies of one model will amplify inaccuracies in the other. As it
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goes, there are a plethora of droplet dynamics models (see the review by Sajjadi et al.
[25]) drawn from various simplified experiments.

The extrapolation from small scales to large scales is not straightforward, since droplet
dynamics inherently differs across scales. Within smaller regions of droplet laden tur-
bulent flow, coalescence and breakup compete and there is significant fluctuation of
state-space variables, while larger fluid parcels are convected around in swarms. Simpli-
fied kernels may not be accurate in bridging these different aspects. Detailed informa-
tion regarding the evolution of droplet size distributions and droplet-turbulence inter-
actions is needed for improving current kernel formulations. For instance, the finding
that state-space variables evolve as time delayed limit cycles (Chapter 5), implies that
using instantaneous variables like E; and € to predict droplet number densities (virtu-
ally all the models presented in Sajjadi et al. [25]) and morphology is not accurate. This
particular example may not significantly influence the outcome of kernel modelling as
the fluctuations in quantities are local phenomena which on an average cancel out for
larger systems, but it shows that many implicit assumptions in the general modelling
approach may not be correct. This is only aggravated by the fact that these models are
not robust and depend upon the type of flow.

One of the aims would be to improve the formulation of these kernels by incorporat-
ing as much of the dynamics as required. The findings from droplet orientation in flow
and their response to the background strain field can greatly benefit modelling droplet
deformations. For a typical Re) of the flow, typical strain rate distributions can be found,
which in turn can translate into deformation distributions. Studying turbulence medi-
ated droplet breakup more closely, better predictions can be made regarding the prob-
ability of droplets breaking apart when experiencing a typical turbulent shear. Simi-
larly, the probability for droplet collisions and associated changes to the droplet size dis-
tribution can be better understood via resolved simulations. These simulations would
greatly benefit if coupled with a Lagrangian tracking algorithm for droplets, which can
be used to track droplets over their lifecycles in turbulence - this is required to pin point
droplet breakup and coalescence events - which is essential to accurately determine the
frequency and efficiency of these events.

Lastly, incorporating surfactant effects into these kernels is another additional step.
These effects first need to be identified via resolved simulations, and the surfactant ‘strength’
needs to be quantified in a robust sense (as having surfactant specific results will add an-
other parameter to the modelling approach, which has no dearth of parameters to begin
with). Surfactant effects will most likely translate into reduced coalescence efficiency, in
turn manifesting as a shift in the droplet size distribution. This in turn can be expected
to also alter the energetics, as small stable droplets deform less, hence extracting less
energy from the flow for the excess surface energy of deformations. Reduced coales-
cence will reflect in a weaker enhancement of the dissipation range. Since the droplet
interface becomes more rigid due to the surfactants, the free-slip boundary condition
turning into a no-slip boundary condition will cause increased energy dissipation due
to additional gradients being generated. Overall, the modification of the energy spec-
tra may more closely resemble turbulence laden with solid spheres, while the modifica-
tion to flow topology will reflect the presence of elastic interfaces, as vortex stretching
and bi-axial strain will still be counteracted by the elastic interfaces, although the over-
all velocity gradients inside the droplet will also be damped due to a reduced internal
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circulation.

6.4. OUTLOOK

This thesis shows how numerical simulations can be a powerful tool for unravelling com-
plex flows, and highly non-linear physical systems in general. Simulations also allow
greater control over the ‘numerical experiments’, which are repeatable, and are not sen-
sitive to external factors like experiments tend to be. The caveats here are that typically
a smaller region of the associated phase-space can be spanned (with current computa-
tional abilities) and numerics can introduce its own uncertainties. The major challenge
such work must deal with is using models that closely approximate physical phenom-
ena, often involving painstaking code validation and benchmarking. The reward, how-
ever, is access to complex fields in unparalleled detail, resolved both in space and time.
Such a view into the heart of a physical process, even under limitations, can shed new
light on the mediation of causes and effects, reveal new aspects of the problem that were
unknown, and open new channels for questioning our understanding.

The topic of turbulent emulsions has only been briefly breached upon with this work,
and a lot remains to be done. As detailed simulations, like those presented in this work,
become the norm, and additional complexities are included in the modelling, the do-
main of numerical research will begin to approach realistic multiphase flow scenarios. A
similar effort will be required on the part of experimental research, to test the many new
findings from simulations. Eventually, when the two proceed in tandem, it will become
feasible to develop more accurate models for the complex processes that underlie the
dynamics of larger systems involving droplets in turbulence. Even so, most of our under-
standing shall remain mostly ‘phenomenological’, since none of the examined phenom-
ena can be divined from the equations of fluid dynamics, and only upon observing them
are relations drawn, if at all, to the underlying conservation laws. Perhaps in the future,
with newer theories, we will be able to fashion our understanding of dynamical systems
after more abstract, yet ‘conceivable’, notions, like sets of ‘structures’ that emerge in these
systems, their ‘interactions’ and ‘life-cycles’. This would require understanding the sys-
tem beyond the equations alone, which perhaps are so fundamental that their essence
is divorced from our everyday experience of reality. Building such a different perspective
will also first require breaking the ‘artificial compartmentalization’ of the sciences, and
to instead consider a natural process for just what it actually is—a symphony of natural
order.
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PROPOSITIONS

. Multiphase flow solvers are a democratic lot. (Chapter 1, this thesis)

. “Big whorls are streams, potential / surrounding, mild curls generate them.

Small whorls are lonely whirlwinds / yet, experts tend to venerate them.”
(Chapter 4, this thesis)

. The Weber number spectrum is a suitable generalization of the Hinze scale.

(Chapter 5, this thesis)

. Describing the equilibrium behaviour of a dynamical system as “statistically steady”

is a euphemism for “ignoring the dynamics”. (Chapter 5, this thesis)

. Turbulence is best studied in a “box”, when you can think out of the box.
. What happens in Fourier space, stays in Fourier space.
. Experimentalists do whatever they can, while numericists do whatever they want.

. Science is a lot like photography in that one can only be taught how to look, but

not where to look.

. Keywords surrounding research have gone from “informing” in the manner of road-

signs to “buzzing” in the manner of flies.

The Graduate School’s penchant for the taxonomy of people’s personalities is the
art of classifying multiple outliers into a handful of boxes.

A limit on the cumulative output of a researcher will immensely improve the qual-
ity of scientific papers.

The collective intelligence of large populations is due to non-additive emergence,
and can equally well appear or disappear.

Awards in the sciences and the arts say more about the jury than about the win-
ners.

Past struggles were mostly to obtain freedom from, future struggles shall be for
freedom to.

These propositions are regarded as opposable and defendable, and have been approved

as such by the promotor prof. dr. ir. H.E.A. Van den Akker.
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