<]
TUDelft

Delft University of Technology

Interactive Static Software Performance Analysis in the IDE

Beigelbeck, Aaron; Aniche, Mauricio; Cito, Jirgen

DOI
10.1109/1CPC52881.2021.00057

Publication date
2021

Document Version
Accepted author manuscript

Published in
Proceedings - 2021 IEEE/ACM 29th International Conference on Program Comprehension, ICPC 2021

Citation (APA)

Beigelbeck, A., Aniche, M., & Cito, J. (2021). Interactive Static Software Performance Analysis in the IDE. In
L. O'Conner (Ed.), Proceedings - 2021 IEEE/ACM 29th International Conference on Program
Comprehension, ICPC 2021 (pp. 490-494). Article 9462992 (IEEE International Conference on Program
Comprehension; Vol. 2021-May). IEEE. https://doi.org/10.1109/ICPC52881.2021.00057

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

https://doi.org/10.1109/ICPC52881.2021.00057
https://doi.org/10.1109/ICPC52881.2021.00057

Interactive Static Software Performance
Analysis 1n the IDE

Aaron Beigelbeck
TU Wien
Vienna, Austria
aaron.beigelbeck @tuwien.ac.at

Abstract—Detecting performance issues due to suboptimal
code during the development process can be a daunting task,
especially when it comes to localizing them after noticing per-
formance degradation after deployment. Static analysis has the
potential to provide early feedback on performance problems
to developers without having to run profilers with expensive
(and often unavailable) performance tests. We develop a VSCode
tool that integrates the static performance analysis results from
Infer via code annotations and decorations (surfacing complexity
analysis results in context) and side panel views showing details
and overviews (enabling explainability of the results). Addition-
ally, we design our system for interactivity to allow for more
responsiveness to code changes as they happen. We evaluate the
efficacy of our tool by measuring the overhead that the static
performance analysis integration introduces in the development
workflow. Further, we report on a case study that illustrates how
our system can be used to reason about software performance
in the context of a real performance bug in the ElasticSearch
open-source project.

Demo video: https://www.youtube.com/watch?v=-GqPb_YZMOs
Repository: https://github.com/ipa-lab/vscode-infer-performance

Index Terms—static analysis, software performance, IDE inte-
gration.

I. INTRODUCTION

Software performance issues are often detected and ana-
lyzed after the code has already been deployed. Understand-
ing software performance in the process of writing code is
challenging, as it is often difficult to reason about the per-
formance ramifications of code changes in an ad-hoc manner.
Performance is often analyzed through profilers, which are
dynamic analysis tools that attach performance measurements
(e.g., latency or CPU utilization) to artifacts in the code.
However, the proper use of profilers for performance analyses
requires executing the code with appropriate workloads, which
are difficult to design and introduce delays that obstruct the
development workflow. Static analysis, on the other hand,
is a more lightweight opportunity to provide early feedback
to developers. A contemporary static performance analysis
approach, implemented within the tool Infer [1]], is based
on an efficient algorithm for parametric worst-case execution
time calculation [2]. It performs a static estimation of the
exact cost of each function (cost being a proxy for underlying
instruction cost in execution runtime), which can be abstracted
into runtime bounds as code complexity metrics in Big-O

Mauricio Aniche
Delft University of Technology
Delft, The Netherlands
M .FinavaroAniche @tudelft.nl

Jiirgen Cito
TU Wien
Vienna, Austria
juergen.cito@tuwien.ac.at

notation. This can provide developers with a notion of software
performance in familiar notation for asymptotic growth known
from complexity analysis attached to their functions (e.g.,
a function being quadratic in its parameter size would be
indicated as (’)(sizeQ)). In its current form, the results reported
from this tooling are fraught with perils that are generally
known from static analysis tooling [3|]. Producing analysis
results requires developers to start a separate process that
involves a full-program build, which then outputs potentially
hundreds of results. This interrupts development workflows
when working inside the IDE, leads to split-attention effects
and cognitive fatigue when attempting to interpret results.

We present a system we developed in VSCode for static
performance analysis with Infe that enables interactive rea-
soning about static performance properties in the code that
is integrated into the development workflow [4]. We hook
our process into the editing process of the IDE and use
heuristics to determine whether to display analysis results
based on incremental analysis or indicate to the developer to
re-execute due to the higher probability that the introduced
change has affected performance outcomes. We then apply
lightweight program analysis to attach analysis results to
function declarations (shown in Figure |1} left), but also show
how performance properties evolve through code changes
(shown in Figure [I] right). To evaluate the efficacy of our tool,
we perform two analyses. We perform experiments on open-
source Java projects of varying sizes to provide quantitative
insights into the overhead that the static performance analysis
integration introduces in the development workflow, showing
that our integration and analysis steps are negligible compared
to dominating build times. Further, we report on a case study
that illustrates how our system can be used to reason about
software performance in the context of a real performance bug
in the ElasticSearch open-source project.

II. INTEGRATED AND INTERACTIVE STATIC
PERFORMANCE ANALYSIS

We describe our system structured by our high-level goals
workflow integration, enabling interactivity, and traceability
and explainability, while interleaving design considerations
with implementations for brevity.

Uhttps://github.com/ipa-lab/vscode-infer-performance

© 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in

other works

https://www.youtube.com/watch?v=-GqPb_YZMOs
https://github.com/ipa-lab/vscode-infer-performance
https://github.com/ipa-lab/vscode-infer-performance

public boolean matchesIndices|(
String currentIndex,
String[] indices,
String[1[] indicesSplit
) A

public boolean matchesIndices(

String currentIndex,
String[] indices,
String[][] indicesSplit
) O(indices.length x indicesSplit[*].length) -> O(indices.length) {

int i = 0;
for (String index: indices) {
if (simpleMatch(indicesSplit[i], currentIndex)) {
return true;
}
i++;
} ¥
return false;

} ¥

int i = 0;
for (String index: indices) {
if (simpleMatch(index, currentIndex)) {

return true;

i++;

return false;

Fig. 1. Code Annotations in VSCode show performance information as Big-O as part of the function declaration and appropriate color-coging. Left: A
detected performance bug in ElasticSearch from our case study. Right: After introducing the bug-fixing change, we update the analysis result, but also enable

traceability by showing how performance properties evolved (in green).

Workflow Integration. The way in which static analysis
tools present their results is often suboptimal for consumption
by software developers [3]]. Split-attention effects can occur
when obtaining analysis results requires initiating a separate
program, which is then shown in a separate window from the
development environment. This requires the user to context-
switch between different interfaces. We propose to integrate
this information by directly attaching to the software artifact
responsible (i.e., ideally right next to the pieces of code that
the analysis output refers to).

To enable this code annotation, we parse the performance
result (a larger JSON file containing semi-structured informa-
tion about the analysis) into an internal structure that maps
fully-qualified method names to their particular performance
costs. We then incrementally perform the mapping from func-
tion declarations in the source code by applying lightweight
program analysis to match function declaration in source
code files to their corresponding performance result from our
internal map.

To visualize the performance result with the declaration, we
make use of VSCode’s CODELENSES. They provide a way
of inserting interactive text above a given line of code (see
Figure [TI). Two CODELENSES are used for each function to
provide an increasingly more detailed perspective of the result:
one that shows the cost in Big-O notation and provides a
more detailed view when clicked, and another one that leads
to an overview of all the functions in the current file and their
respective costs. Color coding is used on the function name,
reflecting the severity of the analysis result. The function is
seen in green background color if it has a constant cost (O(1)),
yellow if linear (O(n)), and red if quadratic or worse (O(n*)).
Hovering over the function name also shows the exact cost
without having to open the detail view.

To avoid the potential problem of cognitive overload, we
only display the most relevant information directly where the
code is located, and a more detailed view can be opened
manually. The detail view complements the Big-O information
by also showing its exact cost, as computed by parametric
worst-case execution time in Infer [2]. It further includes an

evolutionary perspective of how changes within the file have
affected performance, which we explain in more detail below.

Enabling Interactivity. Another major goal was to make
our system as interactive as possible. Since function per-
formance can easily change on the basis of one seemingly
simple code change, it would be optimal to always have up-to-
date performance information by re-analyzing the code with
every change. However, this is not effectively possible due
to limitations that do not enable us to only perform partial
or incremental analysis. The underlying tool, Infer, has to
capture information from the compilation process itself, on
which it can then perform the analysis. Having to re-compile
all necessary files for every code change would introduce
too much of an interruption in the development process for
projects that go beyond just a couple of files, rendering the
option of continuous re-execution unviable.

To still enable interactive performance analysis, we imple-
mented a heuristic that computes a significance score of a code
change with respect to the probability of a change introducing
a performance shift. We perform source code differencing on
every edit to determine performance-sensitive changes, such
as added, removed, or changed loops or function invocations
in the function body. The developer then gets informed via
the CODELENSES that the performance might have changed,
and a re-execution of the analysis could make sense to receive
performance data that reflects the current code structure. When
possible, we only trigger an incremental build to speed up the
entire process.

Traceability and Explainability. We want developers to
be able to trace the evolutionary impact of code changes
on performance. Therefore, whenever the performance of a
function has significantly changed between code changes,
the change in Big-O cost is shown on the right side of
the parameters as an evolution step (O(indices.length X
indicesSplit[«].length) — O(indices.length) in Figure [1]
right). This is complemented with color-coding to make it
immediately visible whether the performance got better or
worse. Another problem that static analysis tools often face
is that they operate more or less like black boxes. They

receive code pieces as input, perform internal operations that
are not always fully comprehensible for the developer, and
give results that could be better understood if some of the
information from the analysis’ internal workings would be
made accessible to the developer [3]]. And even if not extracted
from the analysis process itself, heuristic approaches that try
to reason about the analysis output after the fact could lead to
more comprehensive explanations of the underlying problem.
We provide further traces in our detailed view that explains
where the calculated cost comes from, i.e., loops and method
calls, including their parameters. This gives developers the
opportunity to understand why a function has a particular
cost, enabling them to reason about potential performance
issues and fixes more effectively. Furthermore, instead of just
presenting the reasoning behind one specific cost calculation,
we try to heuristically detect the code changes that might have
led to a change in cost, as explained earlier. These are also
shown in the detail view, both for cost changes that have
already occurred as for code changes that might lead to a
significant cost change when the analysis gets re-executed
again, enabling early feedback.

III. SYSTEM OVERHEAD ANALYSIS

We measured the time it takes to run Infer on several
projects and load the performance data into VSCode with
our system to provide quantitative insights into overhead
such an integrative process into the development workflow.
Experiment Setup. Measurements were taken on six different
projects with varying size: a tiny one (<100 LOC) to see
whether there is significant overhead even when there is
a negligible amount of code to analyze, four medium to
large-sized projects (about 20.000-150.000 LOC) to check
the viability of the extension for regular day-to-day projects,
and a very large project (~450.000 LOC) to stress test the
performance of the system on loading the data into VSCode
and performing program analysis for matching and displaying.
We conducted the experiments on a laptop running Manjaro
Linux with an 8-core Intel i7 processor and 8 GB of RAM.
The results show that the compilation plus the capturing phases
of Infer take by far the longest time. The analysis is usually
much faster, and loading the data into the system only took
roughly half a second, even on the largest project.

Full-Build Experiment Results. Table |l| shows an overview
(median over five runs) of the quantitative results. More con-
cretely, compilation plus capturing on the tiny project still took
5 seconds, probably due to the overhead of using a build tool
(Gradle, in this case) for such a small code base, whereas the
other steps combined took less than 100 ms. The compilation
plus capturing times for the larger projects were somewhere
between 20 to 90 seconds, linearly depending on the size.
Interestingly, the analysis phase also took a larger portion of
time for the larger projects than for the smaller ones. On the
project with ~50.000 LOC, the analysis took about 1/10 of
the time for compilation plus capturing, and on the project,
with ~150.000 LOC it was around 1/4. Since running Infer

TABLE I
THE MEDIAN VALUES OF 5 RUNS EACH, MEASURING THE RUNTIMES OF
THE INDIVIDUAL STEPS ON DIFFERENTLY SIZED PROJECTS.

GitHub Project LOC Compilation Analysis Loading into
+ Capturing Extension

hello-world 64 5s 46 ms 10 ms

biojava (core) ~20k 8s 2s 42 ms
Netflix/Hystrix ~50k 29's 3s 61 ms
OpenRefine ~60k 21s 5s 87 ms

biojava (full) ~150k 87 s 21's 238 ms
elasticsearch ~450k 127 s 39 s 524 ms

on very large projects takes a significant amount of time (~170
seconds for compilation, capturing, and analysis combined on
the project with ~450.000 LOC), the system might not be
suitable for re-running the analysis multiple times to see the
changes in performance. However, if the performance data
from Infer is already available and the developer just wants to
have their code annotated with it, then loading the data into
the extension comes at negligible overhead.

Incremental Analysis Result. Aside from performance
measurements related directly to Infer, we also measured the
time for the extension to check for potentially significant code
changes after a file gets saved and displaying this information
to the developer. Since this process is only done incrementally
(for one active file at a time), project size is not a variable of
interest to our experiment, but rather file size and the number
of code chunks as part of the edit operation. After some
experimentation, it was clear that this feedback is generated
almost instantly in any case, since even on a file with ~5.000
LOC it took about 10 ms on average to detect one potentially
significant code change at the end of the file.

It is also noteworthy that Infer supports build tools with
incremental compilation. Depending on the build tool, project,
and how granular the incremental compilation is in any
specific instance, this can potentially speed up the time for
compilation plus capturing plus analysis significantly after the
first execution. However, we opted to be conservative in our
reporting and only present results on full builds.

IV. CASE STUDY

To illustrate the efficacy of our system in the context of
reasoning about software performance in the development
workflow, we report on a case study on a performance bug
in the search engine ElasticSeaIchE] We first briefly explain
the context of this performance bug before we showcase how
our system can help fix it.

Case Context. Elasticsearch stores indices separated by
dashes (—) as tokens, shardl-shard2-shard3-...
(@ concrete example could take this form
tweets-01-01-2020). The method under analysis
takes two arguments: currentIndex and indices, with
the latter containing patterns that are used to filter for all

2The performance bug is present in ElasticSearch’s commit 4a01879 and
was inspired by a post in the blog “Accidentally Quadratic”

the concrete indices from our stored ones that correspond to
these patterns, and the former being used as the pattern for
our final search result. Further on, we refer to the filtered
concrete indices simply as indices, not meaning the initial
patterns used as the filters. For the sake of simplicity in
this demonstration, we sliced out the part of the code that
represents the cause and effect of the performance bug. This
replication happens without loss of generality, as we carefully
extract the parts of the functionality that fully represents
the challenges inherent for reasoning about this performance
issue. Our re-implementation of the matchesIndices
function has three arguments, with the third one simply being
the indices array where each entry has been split at the
dashes, which gives us the individual shards of each index.
The problem now becomes that we are looping through all
the indices, which could in the worst case be all the
stored indices, and for each one of these indices, we match
the currentIndex with every shard, which can also be
arbitrarily many, leading to quadratic cost.

Integrated Performance Reasoning. Our system was able
to detect this issue in the development process and provide an
early warning for the developer by properly color-coding the
function and warning about the performance cost (as can be
seen in the left part of Figure[T). With the trace provided in the
detail view, the developer can immediately learn that looping
through the indices and calling the matching function
within the loop leads to the problematic performance cost.

The developer then fixes this issue by matching
currentIndex with the complete indices respectively,
instead of with each individual shard. This leads to linear
instead of quadratic cost since the matching now happens in
constant time. This change in cost was also illustrated by the
system, now color-coding the function name yellow (for linear
cost), and showing the evolution in performance cost next to
the parameters of the function with green coloring, since the
cost improved (see right part of Figure [T). If interested in
comparing the new detailed cost traces to the previous one,
this can be done in the detailed view that includes the cost
history of the function.

With this case study, we wanted to illustrate that our system
provides an integrated way for developers to get valuable infor-
mation about the performance of their code in an unobtrusive
and intuitive way.

V. DISCUSSION

We briefly discuss issues we encountered in the design of
our system with respect to uncertainty in static analysis and
the overhead of requiring build and compilation steps.

Analysis Uncertainty. One major problem that occurs
whenever Infer is unable to analyze some parts of the code is
that the cost of all functions in the call chain depending on
this code cannot be computed. This means that one line of
code that has an unknown cost, regardless of its significance,
would be enough to render the whole function incomputable
with respect to performance cost, which then also transitively

propagates to all other functions in the call chain. This design
choice, albeit conservative, is understandable to avoid com-
pounding errors. If the analysis would ignore the incomputable
parts of the code and just output the cost of the computable
parts, the result could potentially be inaccurate, which would
again propagate to all the dependent functions. However, some
heuristic for dealing with certain incomputable constructs, to-
gether with the ability for the developer to opt for a more risky
configuration (e.g., assuming constant cost for uncomputable
entities, for instance), may represent a reasonable trade-off
here.

Interactivity Bottleneck: Build Times. A major obstacle
to enabling truly interactive performance analysis is the need
for rebuilding the code. Seamless integration of static analysis
tools into the regular workflow of developers is crucial for their
adoption [4]. To enable this kind of smooth integration, we
envision designing and partial builds with the distinct purpose
of building the base for incremental program analysis in mind
to reduce build times. There is already some related work,
specifically for taint analysis, that heavily invests in seamless
static analysis techniques to avoid disrupting the developers’
workflow [5]].

VI. RELATED WORK

The work most related to our tool is PerformanceHat,
which collects runtime traces in production environments
and integrats them as part of the development workflow as
into source code artifacts in the Eclipse IDE [6]. Work on
scalability of static analysis approaches and their real-world
adoption by developers is another popular concern. Distefano
et al. describe how advanced static analysis techniques are
able to deal with very large industrial code bases and catch
important defects [[I]. Cheetah wants to make static analysis
more interactive by performing incremental analysis ranging
from less to more complex computations [5]. MagpieBridge is
a generalized approach for static analysis integration into the
IDE with the goal of reducing the complexity of the integration
process [7]].

VII. CONCLUSION

We presented a system implemented in VSCode that inte-
grates static performance analysis results into the development
workflow. It contextually matches performance properties ob-
tained from the static performance analysis in Infer to code
artifacts (function declarations) through lightweight program
analysis. It enables interactivity by performing source code
differencing on edits to heuristically determine whether re-
execution of the analysis is necessary. We illustrate the efficacy
of our system in a case study about a performance bug in the
search engine ElasticSearch. Our system makes it possible to
reason about performance issues effectively in the code much
earlier and supports performance fixes in the development
workflow. We also show through quantitative experiments that
the integration and analysis steps of our system are negligible
compared to the build times required for the analysis and
discuss potential ways forward to improve interactivity.

(1]

(2]

(3]

(4]

(5]

(6]

(71

REFERENCES

D. Distefano, M. Fihndrich, F. Logozzo, and P. W. O’Hearn, “Scaling
static analyses at facebook,” Communications of the ACM, vol. 62, no. 8,
pp. 62-70, 2019.

S. Bygde, A. Ermedahl, and B. Lisper, “An efficient algorithm for
parametric wcet calculation,” Journal of Systems Architecture, vol. 57,
no. 6, pp. 614 — 624, 2011.

T. Barik, “How should static analysis tools explain anomalies to devel-
opers?” in Proceedings of the 2016 24th ACM SIGSOFT International
Symposium on Foundations of Software Engineering, ser. FSE 2016.
New York, NY, USA: Association for Computing Machinery, 2016, p.
1118-1120.

C. Sadowski, E. Aftandilian, A. Eagle, L. Miller-Cushon, and C. Jaspan,
“Lessons from building static analysis tools at google,” Communications
of the ACM, vol. 61, no. 4, pp. 58-66, 2018.

L. N. Q. Do, K. Ali, B. Livshits, E. Bodden, J. Smith, and E. Murphy-
Hill, “Cheetah: Just-in-time taint analysis for android apps,” in 2017
IEEE/ACM 39th International Conference on Software Engineering Com-
panion (ICSE-C), 2017, pp. 39-42.

J. Cito, P. Leitner, M. Rinard, and H. C. Gall, “Interactive production
performance feedback in the ide,” in 2019 IEEE/ACM 41st International
Conference on Software Engineering (ICSE). 1EEE, 2019, pp. 971-981.
L. Luo, J. Dolby, and E. Bodden, “Magpiebridge: A general approach
to integrating static analyses into ides and editors,” in 33rd European
Conference on Object-Oriented Programming (ECOOP 2019), ser. Leib-
niz International Proceedings in Informatics (LIPIcs), vol. 134. Schloss
Dagstuhl-Leibniz-Zentrum fuer Informatik, 2019, pp. 21:1-21:25.

	Introduction
	Integrated and Interactive Static Performance Analysis
	System Overhead Analysis
	Case Study
	Discussion
	Related Work
	Conclusion
	References

