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Abstract

A machine learning classifier can be tricked us-
ing adversarial attacks, attacks that alter images
slightly to make the target model misclassify the
image. To create adversarial attacks on black-box
classifiers, a substitute model can be created us-
ing model stealing. The research question this re-
port address is the topic of using model stealing
while minimizing the amount of querying the sub-
stitute model needs to train. The solution used
in this report is a variant of the ActiveThief algo-
rithm that makes use of active learning to deter-
mine which data is being queried. The paper exper-
iments with different subset selection strategies to
find the most informative data points. Also, a seed-
ing algorithm based on clustering is explored and
finally, a stopping criterion for the ActiveThief al-
gorithm is proposed. These variations are evaluated
on their accuracy and the number of queries they
take to achieve that accuracy. This paper shows
cluster seeding is an alternative to random seeding
in ActiveThief. This paper also presents different
subset selection strategies that outperform the ran-
dom sampling strategy. Finally, a stopping criterion
based on entropy is introduced that halts the algo-
rithm when an uncertainty threshold is reached.

1 Introduction

In machine learning, some classifiers can receive a certain in-
put and predict to which class it belongs. This is an important
aspect for a lot of self-functioning devices, for example, self-
driving cars. These cars rely on the input images they receive
and have to recognize certain aspects of traffic such as stop
signs and crossroads. If the self-driving car has trouble rec-
ognizing these traffic signs or mistaking them for something
else, it could lead to disastrous consequences.

When an input image is specifically altered to trick the ma-
chine learning classifier it is called an adversarial attack [1].
These adversarial attacks work by adding small perturbations
to the image that should be almost unnoticeable to the human
eye but causes the classifier algorithm to incorrectly classify
it. These perturbations are based on the specific target model

the attacker tries to trick. Since most target models are black-
box models, the attacker has to estimate the target model’s
workings.

This can be done using a substitute model that mimics the
workings of the specific target model [2]. The target model is
the model that is being attacked, while the substitute model
is a model that tries to copy the target model. Because it is
often unknown on which dataset the target model is trained
on, it is difficult to find the right datasets to train the substi-
tute model on. To combat this, model stealing can be used.
Model stealing is the querying of the target model and feed-
ing the results to the substitute model as a training set. This
way the substitute model is trained on the target model’s out-
put, which enables the substitute model to copy the workings
of the target model. A problem with model stealing is that it
requires a lot of querying the target model for each data point
in the dataset. All this querying can be time-consuming and
quite expensive if the model is monetized. Another problem
with model stealing is that it requires real-life example im-
ages which can be difficult to find in large quantities. So it
is important to find a method to reduce the number of queries
needed to train this target model while still having an accurate
substitute model.

The purpose of this paper is to present a variation of a tech-
nique that addresses the question assuming that there is an
unlabeled dataset from real-world examples, how can you use
a subset of that dataset to allow for less target model query-
ing during model stealing while maintaining the accuracy of
the substitution model?. The solution this paper offers is a
variation on the ActiveThief algorithm [3]. The ActiveThief
algorithm is a model stealing method that makes use of ac-
tive learning to find the most informative set of data points
to query to the target model. This paper experiments with
different extensions and improvements on the ActiveThief al-
gorithm inspired by other research.

First, in Section 2 the related work to this problem is ex-
panded on and explained. Following that in Section 3 the
methodology and contributions are explained. After that the
evaluation and results are examined in Section 4. Next the
results are discussed in Section 5. Subsequent, in Section 6
some awareness on responsible research is given. Finally a
conclusion and suggestions for future work are given in Sec-
tion 7.
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Figure 1: The ActiveThief algorithm.
Source: Adapted from [3]

2 Related Work

It is important to examine how to successfully use model
stealing and how to minimize the query costs. This section
examines pieces of literature that relate to model stealing. A
lot of the literature related to model stealing discusses defend-
ing from model stealing. However, the literature studied in
this section achieved successful model stealing. First model
stealing is examined and after that active learning is explored.

Model Stealing

Model stealing is a method to copy the workings of the target
model. The target model is the model that is under attack by
an adversarial attack [1] [4]. With model stealing a substitute
model is created to imitate the target model. To get the sub-
stitute model to behave like the target model it should copy
the outcomes of the target model. This is what the substitute
model is trained on. The target model is queried with data
and returns the predicted labels. Subsequently, the substitute
model is trained on the results of querying the target model.
This way the substitute model with enough training data can
copy the target model.

In [2], Tramér et al. show that model stealing is possi-
ble on black-box targets. These targets include logistic re-
gression, neural networks, and decision trees. For neural net-
works, they achieved a classifying accuracy of 99.16% while
needing 108,200 queries to train the substitute model. This
paper uses the idea of model stealing described in by Tramer
et al. but tries to decrease the number of queries needed to
successfully use model stealing.

Da Silva et al. in [5] display that a substitute model can be
trained using data from the problem domain and non-problem
domain. The problem domain is the domain for which the
classifier is supposed to work, so a classifier that is trained
on numbers would have less trouble classifying numbers than
letters. Their experiment showed that it is possible to train a
substitute model with high accuracy without using data from
the problem domain. While using non-problem domain ex-
amples could be considered in this research, the focus is on
using real-world examples from the problem domain.

In the article of [6], Ilyas et al. did experiments in different
scenarios. The first experiment uses a query limit to control
the maximum amount of queries the substitute model is al-

lowed to use. The second experiment examines the substitute
model when it only receives one label instead of all proba-
bilities. The final experiment uses partial data, for instance
when a query only returns a part of the probabilities. In all
scenarios, model stealing was successfully done.

The biggest problem with model stealing is that it requires
a lot of data [7]. Especially when using real-world examples
as data. In [7] and [8] Kariyappa et al. and Truong et al. pro-
pose a method using Data Free Model Extraction to generate
their own dataset to use for model stealing.

Active Learning

A solution to the problem of needing a lot of data could be
active learning. Active learning is a machine learning tech-
nique to select the most informative data points to train the
model on. Active learning starts with seeding of some sort
[9]. Seeding is the selection of the first batch to initialize the
model on. After the seeding, a subset selection strategy is
used to find the most informative data points in the remain-
ing dataset [10]. This subset is used to train the classifier.
This process is done iteratively until an accuracy or training
threshold is reached.

Active learning is normally performed on one classifier, so
to use it for model stealing offers to be a challenge. However,
in the article of [11], Yu et al. discuss the use of active learn-
ing for model stealing and decreasing the query costs. They
offer multiple algorithms to select the subset that gets queried
to the target model. It is shown that active learning is effec-
tive and can be used to minimize query costs. This research
makes use of a labeled dataset to choose which data points
to use for model stealing, while this research focuses on an
unlabeled dataset.

3 Methodology

To solve the problem of decreasing the amount of querying
while maintaining the accuracy of the machine learning clas-
sifier, active learning can be used. For the solution proposed
in this paper, the ActiveThief algorithm is used. To better get
an understanding of the ActiveThief algorithm, it is going to
be described in the next section. Followed by that is explained
what enhancements are added to the ActiveThief algorithm to
attempt better performance.



ActiveThief

The ActiveThief algorithm is an active learning model that is
used for model stealing. The algorithm uses active learning
to determine which data points are sent to the target model
for querying [3]. The workings of ActiveThief are shown in
Figure 1.

The algorithm starts with an unlabeled dataset. A part of
this dataset is used as an initial seed to query the target model.
The results of this query are used to train the substitute model.
From this initial training of the substitute model, the model is
now capable of giving label approximations of the dataset.
These approximations can be used in a subset selection strat-
egy to find a subset of the most informative data points. This
subset gets queried to the target model to retrieve its labels.
This again is used for training the substitute model. Then
the cycle continues with finding a subset to query the target
model with and train the substitute model with the results.
This process is done for a certain amount of iterations.

There seem to be three aspects of the ActiveThief algo-
rithm that could have an alteration that could improve the al-
gorithm. These three aspects are the seeding of the algorithm,
the subset selection strategy, and the stopping criteria. In the
next sections, these aspects get covered more in-depth.

Seeding Algorithm

The seeding algorithm in the ActiveThief algorithm is based
on randomly selecting a sample. With bad luck, this can all
be from the same class, which would not be beneficial for the
training of the substitute model. The proposed seeding algo-
rithm makes use of clustering and follows Algorithm 1. It is
inspired by the solutions proposed in [12]. Clustering finds
data points closely related to each other. Using this concept
can be beneficial to create a seed that is not composed of data
points from the same class, which should be more informa-
tive than random seeding. The unlabeled dataset gets queried
to the substitute model which gives a prediction of the esti-
mated class. These predictions are used by a K-Means cluster
algorithm [13] to find NV clusters. The distance between the
cluster centers and the predictions by the substitute model is
calculated by the L2 norm [14]. The distances furthest away
from the cluster centers are used as the initial batch to query
the target model. The batch has a batch size of B.

Algorithm 1 Cluster Seeding

Input dataset, N, B
> dataset: The dataset used for model stealing
> N: The amount of clusters
> B: The batch size

Output a list of data points with size B

predictions < substitute_model(dataset)
clusters < kmeans(predictions, N)
for data in predictions do

distances < distance(data, clusters)
end for
distances < sort(distances)
descending order
return take(distances, B)

> Sorts the distances in

Subset Selection Strategy

The subset selection strategy used in ActiveThief works on
uncertainty sampling. A new subset selection strategy or a
combination of different strategies can be used to improve
the effectiveness of the ActiveThief algorithm. Each time the
algorithm iterates a new subset is selected to query the target
model.

Random Strategy: The random strategy is randomly sam-
pling from the dataset. This strategy is used as a baseline.
Uniform strategy: The uniform strategy takes into account
how many labels there are available [15]. It uses the predicted
labels from the substitute model to evenly fill the batch with
an equal amount of data points from each label. This strategy
is beneficial to even out the batch when one label is predomi-
nantly present in the batch and helps diversify it.
Uncertainty strategy: The uncertainty strategies use uncer-
tainty sampling to find the most informative subset. Uncer-
tainty strategies are based on the probabilities the substitute
models return for each class. The more uncertain the substi-
tute model is on a data point, the higher the chance that it is
used for the next batch of training. To find the most uncertain
data points, the strategy can use one of these three formulas.
The first one is the least confidence formula from [10] where
¢ is the predicted class for data point x. This formula returns
the data points where the probability for the class is the low-
est. The least confidence strategy has the following formula:

x] o = argmax 1 — P(g|z) (1)
The following uncertainty formula is margin sampling [10].
Margin sampling takes the difference between the highest and
the second-highest prediction for a data point. The lowest
difference means the most uncertain and is therefore used for
the next batch. Margin sampling uses the following formula:

Thrs = argmin P(g1[x) — P(g2|x) 2)
The final uncertainty strategy is known as entropy [16]. En-
tropy is an often-used measure in machine learning because
it works well in multi-label classifiers since it looks at all the
received probabilities. Entropy uses the next formula:

wy =Y Plyilz)log P(yi) 3)

K2

Clustering Strategy: The clustering strategy is based on the
one from [17] and looks similar to the one used in the clus-
ter seeding mentioned earlier. Instead of finding clusters and
using them to calculate the distance from the data points, the
earlier queried data points are used to find the centers based
on their probabilistic results. The distance between the center
points and the remaining data points in the data set is calcu-
lated with the L2 norm [14]. The furthest data point from each
center is used in the new batch. Using clustering is beneficial
because it diversifies the data points used in the new batch.
This strategy, however, has higher calculation costs since for
every iteration it needs to calculate the distance between all
the data points again.

Clustering + Entropy Strategy: While the clustering strat-
egy helps with diversifying the new batch, it does not give the
most informative data points. Together with an uncertainty
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Figure 2: Random seeding versus cluster seeding using different number of clusters with different seeding size.

strategy, the combination can give the most informative data
points, while maximizing the diversity. Entropy is chosen for
the uncertainty strategy because it is one of the most used
uncertainty measures and has already proven to work in [3].
In this combination, the entropy strategy is used to create a
subset of the most informative data points. After that, the
clustering strategy is used on the subset to find the most dis-
tant data points to use for the next batch.

Uniform + Entropy Strategy: Like the clustering strategy,
the uniform strategy also diversifies the batch. Just like the
clustering + entropy strategy, this strategy uses entropy to find
the most informative data points and the uniform strategy to
diversify the new batch by equally distributing the predicted
classes.

Clustering + Entropy + Uniform Strategy: In this strat-
egy, entropy is used to find a subset of the most informative
data points. The clustering strategy is used for diversity and
to find the most distant data points. The uniform strategy is
used to uniformly divide the data points equally on their pre-
dicted class. This strategy maximizes the information gain
of entropy and the diversifying of the clustering and uniform
strategies.

Stopping Criteria

The ActiveThief algorithm currently has no stopping crite-
ria. It iterates over the algorithm a certain amount of times.
This means that the algorithm already converged to a certain
point or has not converged yet at all. When using stopping
criteria the algorithm can use fewer or more queries to reach
convergence. The stopping criterion proposed in this article
is based on [18] [19], where they use confidence measures
to calculate when the algorithm has to stop. The stopping
criterion this paper proposes uses entropy to determine if the
ActiveThief algorithm should halt or not. Since entropy ex-
presses the amount of information gain a certain data point
gives, it can be used to compare the previous iteration with
the current one. If the current iteration’s entropy does not
decrease sufficiently, the algorithm stops. The entropy differ-

ence should drop under a value « to stop the algorithm. The
stopping criterion follows the next equation:

a7, — @il <a )

The parameter « is a hyper parameter that can be tuned to
achieve the best stopping strategy.

4 Experimental Setup and Results

The experiments that are conducted all make use of the Modi-
fied National Institute of Standards and Technology (MNIST)
dataset [20] and the FashionMNIST dataset [21]. The MNIST
dataset consists of handwritten numbers from zero to nine and
the FashionMNIST dataset contains pieces of clothing. They
both contain 60,000 training data points and 10,000 testing
data points. These datasets are used because they are one
of the most accessible and widely used datasets. The training
sets are used for the ActiveThief algorithm, while the test sets
are to verify the accuracy of the substitute model. The sub-
stitute model and the target model are both two-layer Convo-
lutional Neural Networks [22]. The target model is initially
trained with the training sets. For the training of the models,
the RMSProp optimizer [23] is used. The loss function used
to train the models is the cross-entropy loss function [24].
The accuracy mentioned in the experiments is the percent-
age of images that the substitute model classifies correctly.
The accuracy is calculated using the test set and calculated
by dividing the number of images correctly classified by the
substitute model by the size of the test set. The number of
queries mentioned in the experiments is the number of data
points used to query the target model and use the result for
training. When using the whole dataset to train the substitute
model, the accuracy for reaches 98.19% and 62.52% for the
MNIST and FashionMNIST datasets respectively.

Experimenting with Seeding

The experiment with seeding compares the cluster seeding
with the random seeding, where the random seeding is used
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Figure 3: Uncertainty subset selection strategies versus the random sampling strategy.
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Figure 4: Entropy, uniform and clustering strategies versus the random sampling strategy.

as the baseline. It does that by running one iteration. This
experiment is done with different batch sizes ranging from
1k to 5k queries. For cluster seeding, there is also the pos-
sibility to change the initial cluster size. This also uses dif-
ferent cluster sizes with 10, 20, and 50 clusters. These ex-
periments are done five times for each possible combination
on both datasets. The experiment marks down the accuracy
after the seeding process. The experiment gave the results de-
picted in the graphs in Figure 2. Both graphs show the results
of using cluster seeding in comparison with random seeding.
Figure 2a shows the results on the MNIST dataset and Fig-
ure 2b show the result on the FashionMNIST dataset. Both
graphs show that using more cluster centers performs better
than when using fewer clusters. On the MNIST dataset, ran-
dom seeding performs better than cluster seeding, while on
the FashionMNIST dataset the result is the other way around.

Experimenting with Subset Selection Strategy

For the subset selection strategy, there are a lot of strate-
gies and combinations of strategies to experiment with. For
each strategy the accuracy after a certain amount of queries is
recorded. These query sizes consist of 5k, 10k 15k, and 20k,

which are respectively 8%, 16%, 25%, and 33% of the whole
dataset. The strategies evaluated consist of all mentioned in
Section 3. Each strategy is evaluated five times with a batch
size of 1k which is repeated for each combination. Random
sampling is used as the baseline of the experiment. The ac-
curacy is noted down after the training using the subset se-
lection strategies. The two graphs that are shown in Figure 3
display the results of the uncertainty measures versus the ran-
dom sampling strategy. All the uncertainty measures perform
similarly on both datasets. They all outperform the random
sampling strategy in terms of accuracy. The graphs displayed
in Figure 4 show the comparisons between the entropy, uni-
form, clustering, and random sampling strategies. All the
strategies outperform the random sampling strategy in terms
of accuracy. The cluster strategy slightly outperforms the en-
tropy and the uniform strategies. In Figure 5 the results of
the combination of different strategies are graphed. It shows
that combining strategies can be effective to improve perfor-
mance. The cluster strategy together with entropy performs
the best, after that closely behind is the uniform strategy with
entropy. The strategy that combines clustering, uniform, and
entropy gets outperformed by the other two combinations.



98,00% =o=Clustering + Entropy + Uniform
—e—Clustering + Entropy
97,00% =eo=Uniform + Entropy

55,00% =@=Clustering + Entropy + Uniform
—e—_Clustering + Entropy
—e—Uniform + Entropy

—o—Random

50,00%

45,00%

N
o
o
N
X

)

Accuracy

35,00%

30,00%
5k 10k 15k . 20k
Number of Queries

(b) Results on the FashionMNIST dataset.

Figure 5: Combination of several strategies versus the random sampling strategy.

—e—Random
>. 96,00%
O
o©
S 95,00%
O
[u]
< 94,00%
93,00%
92,00%
5k 10k 15k 20k
Number of Queries
(a) Results on the MNIST dataset.
100,00%
>
Q
o
>
(S}
(8]
<C

: I I I I
90,00% I
1k 2k 3k 4k Sk
Seeding Size

(a) Results on the MNIST dataset.

45,00%

i I I I I I
35,00%
1k 2k 3k 4k 5k

Seeding Size

Accuracy

(b) Results on the FashionMNIST dataset.

Figure 6: The effects of seeding size towards the accuracy.

98,20%

97,70% °

97,20%

Accuracy
o o oo

96,70%
96,20%
20000 22000 24000 26000 28000 30000 32000 34000

Number of Queries

e o =0.005 a=0.01 ea=005 ea=0.1

(a) Results on the MNIST dataset.

63,00%
62,00%

e °
61,00%
>
© 60,00% ° ®
e L )
5 59,00% ° ° -
[S)
2 58,00% .
57,00% o ® ®
56,00% @

55,00%
42000 44000 46000 48000 50000 52000 54000 56000 58000 60000

Number of Queries

e o =0.005 a=001 ea=005 ea=0.1

(b) Results on the FashionMNIST dataset.

Figure 7: The effects of « on the stopping criteria.

Experimenting with Seeding Size Influence

Next to that, an experiment on the influence of the seeding
batch size on the efficacy of the algorithm is conducted. This

experiment only uses one strategy, this is the entropy strategy.
This is done because entropy is one of the most used measures
and has already been shown to work in [3]. This experiment



uses the seeding batch sizes ranging from 1k to S5k queries.
Onwards from that, the entropy strategy continues until the
threshold of 10k queries is met. This is also repeated five
times for each combination of parameters. In Figure 6 the
results of the experiment are depicted. The seeding size in-
creases with every experiment but does not have a significant
effect on the resulting final accuracy. All the seeding sizes
have similar accuracy.

Experimenting with Stopping Criteria

The stopping criterion based on entropy is evaluated on the ef-
fect of the o parameter. In this experiment the entropy-based
strategy is tested using different o and parameters, with val-
ues of 0.005, 0.01, 0.05, and 0.1 for this evaluation. The result
of the experiment is the number of queries until the stopping
criteria ’deems’ the algorithm finished. Each experiment is
run five times. The graphs that are shown in Figure 7 dis-
play the results of the experiment. All the results from the
same « seem to cluster together. The graphs also suggest that
increasing the « value satisfies the stopping criteria at an ear-
lier number of queries. This also results in a slightly lower
accuracy compared to using a higher number of queries.

5 Discussion

In this section, the results of the experiments are more closely
inspected. Explanations of the specific results are given and
compared to other papers. Also, a reflection on the experi-
ments is given to provide improvements for further studies.
The different sections of the ActiveThief algorithm are dis-
cussed in the order of seeding strategy, subset selection strat-
egy, and stopping criteria.

Seeding Strategy

In this subsection, the seeding strategy and its results are dis-
cussed. It starts with the seeding strategy experiment and fol-
lowed by that the seeding size influence gets discussed. The
results in Section 4 seem to suggest that using more clusters
in cluster seeding results in a higher accuracy after seeding.
This seems logical since there are more centers to compare
the data points on, which results in a more representative
subset. This is also something that corresponds with [17],
where more clusters used correspond to more accurate clus-
tering. Next to that, the random strategy outperforms the clus-
ter strategy on the MNIST dataset. On the FashionMNIST
dataset, it is the other way around. Since MNIST achieves a
higher accuracy with less querying, it could be considered an
easier dataset. This means that the data points are not close
to the decision boundaries of the machine learning classifier.
This could mean that K-Means clustering needs more clusters
to effectively outperform the random strategy. The effects
of seeding size on the final accuracy are minimal. This cor-
responds with the findings in [12] where they experimented
with seeding algorithms. They explain that the initial seeding
does not have a significant impact on the final accuracy. This
happens because the subset selection strategies find the most
informative data points to train the machine learning classi-
fier, which gives more information than any seeding strategy.
This is also shown when comparing the seeding strategy with

5k queries in Figure 2 to any of the subset selection strate-
gies with 5k queries in Figures 3, 4, and 5. The subset selec-
tion strategies all outperform the seeding algorithm. However
since some strategies rely on previous queried data points,
the cluster seeding could have a performance impact on those
strategies.

Subset Selection Strategy

In this subsection, the subset selection strategies and their
evaluations are discussed. In Section 4 multiple different sub-
set selection strategies are evaluated. The Figure 3 the un-
certainty strategies are evaluated. They all achieve similar
accuracy, which could be because all the uncertainty mea-
sures try to calculate the same thing, but with a slightly dif-
ferent method. The uncertainty results are similar to the re-
sults posted in [3]. The new strategies of uniform and cluster-
ing outperform the random sampling strategy. Uniform com-
pared to entropy have similar results where entropy is slightly
better. This is because uniform does not look at how informa-
tive a data point is but tries to have a uniform distribution
of expected labels. This gives the classifier enough exam-
ples from each class to train on, but they might not be the
most informative examples. The clustering outperforms both
the entropy and the uniform strategy. The clustering strategy
finds the most distant data points from the previous queried
data points, which helps in finding diverse data points. The
combining of strategies works effectively. The combination
of clustering and entropy and the combination of uniform and
entropy outperform all the other strategies. This comes be-
cause the entropy strategy helps with finding the most infor-
mative data points, while the clustering and uniform strate-
gies help with the diversifying of the data points. This also
explains why clustering, entropy, and uniform underperforms
compared to the other two combinations of strategies. The
clustering and uniform strategies increase the diversity of data
points, but since they both do that in different ways they can-
cel each other out, which results in a worse strategy than the
other combination strategies.

Stopping Criteria

This subsection discusses the effectiveness of the proposed
stopping criterion. The graphs in Figure 7 show a clear clus-
tering of results with the same « value. It also shows that a
higher o value results in earlier convergence and requires less
number of queries. However, this earlier convergence leads to
overall lower accuracy. This trend is also found in [18] where
they use different variations of the uncertainty-based stopping
criterion. The use of the whole dataset results in an accu-
racy of 98.19% and 62.52% for the MNIST and FashionM-
NIST datasets respectively, which all the o values get rather
close to. That suggests that the uncertainty-based stopping
criterion stops the algorithm at the moment when the highest
achievable accuracy is almost met. Since the accuracy of us-
ing the whole dataset is 98.19% and 62.52% for the MNIST
and FashionMNIST datasets respectively, the optimal « value
is suggested to be between 0.01 and 0.05. This seems to be
the case because for those two values the number of queries is
minimized while keeping the accuracy around the same as us-
ing the whole dataset. This stopping criterion works because



the experiments make use of a complete dataset of real-world
examples, however since model stealing is often used when
there are not a lot of real-world examples the stopping crite-
rion could in those cases not even be met.

6 Responsible Research

The use of adversarial attacks sounds in essence unethical
since the goal is to trick a classifier into misclassifying im-
ages. However, the findings in this research about model
stealing could help future studies in preventing these attacks
on machine learning classifiers. This research could also be
used to have advances in the defense against model stealing.

Since the method we created is based on the ActiveThief
algorithm, it is presumed to be easily reproducible. The ex-
periment follows the parameters as closely as possible as
mentioned in [3] to obtain similar, matching results. Al-
though there might be some minor differences in results be-
cause training the classifier is based on some randomness for
example when using random seeding.

The datasets used for the experiment are the MNIST and
FashionMNIST datasets. These datasets are experimented on
since they are easily accessible and widely used datasets in
the field of machine learning. Therefore this should not re-
sult in ethical implications. The datasets have 70,000 entries,
for which 60,000 entries are split into a training set and the
remaining 10,000 entries are split into a testing set.

7 Conclusions and Future Work

In this paper, extensions to the ActiveThief algorithm are pre-
sented. The ActiveThief algorithm shows how to reduce the
number of queries required to train a substitute model during
model stealing using unlabeled real-world examples. The ex-
tensions proposed in this paper include a seeding algorithm
using clustering, different types of subset selection strate-
gies, and a stopping criterion. The cluster seeding algorithm
performs better than random seeding on the FashionMNIST
dataset. The subset selection strategies that combine entropy
with either a uniform or clustering strategy perform the best
on both datasets. The stopping criterion halts the algorithm
when the uncertainty inequality is reached. This paper shows
that the ActiveThief algorithm and its extensions on it can
decrease the number of queries needed while remaining the
accuracy of using a whole dataset.

In future work on this topic, the effectiveness of cluster
seeding can be researched on different datasets. Since in this
research only two datasets are examined that both reacted
differently to cluster seeding, more datasets can give more
insights into the effectiveness of cluster seeding on differ-
ent numbers of clusters. Next to that the influence of cluster
seeding on subset selection strategies that require previously
selected data points can be part of future research. In this re-
search, the effectiveness of seeding size is only evaluated with
the entropy strategy and random seeding. This effectiveness
can be different when using cluster seeding together with a
clustering strategy and could be explored in future research.
In future work new or a new combination of subset selec-
tion strategies can also be introduced and evaluated. Finally,

the stopping criterion using entropy can be further researched
by using different uncertainty measures or even changing the
method of using the uncertainty measure.

References

[1] N. Papernot, P. D. McDaniel, I. J. Goodfellow, S. Jha,
Z. B. Celik, and A. Swami, “Practical black-box attacks
against deep learning systems using adversarial exam-
ples,” CoRR, vol. abs/1602.02697, 2016.

[2] F. Tramer, F. Zhang, A. Juels, M. K. Reiter, and T. Ris-
tenpart, “Stealing machine learning models via predic-
tion apis,” CoRR, vol. abs/1609.02943, 2016.

[3] S. Pal, Y. Gupta, A. Shukla, A. Kanade, S. Shevade,
and V. Ganapathy, “Activethief: Model extraction using
active learning and unannotated public data,” vol. 34,
pp- 865-872, Apr. 2020.

[4] X. Gong, Q. Wang, Y. Chen, W. Yang, and X. Jiang,
“Model extraction attacks and defenses on cloud-
based machine learning models,” IEEE Communica-
tions Magazine, vol. 58, no. 12, pp. 83-89, 2020.

[51 1. R. C. da Silva, R. F. Berriel, C. Badue, A. F.
de Souza, and T. Oliveira-Santos, “Copycat CNN: steal-
ing knowledge by persuading confession with random
non-labeled data,” CoRR, vol. abs/1806.05476, 2018.

[6] A.Ilyas, L. Engstrom, A. Athalye, and J. Lin, “Black-
box adversarial attacks with limited queries and infor-
mation,” CoRR, vol. abs/1804.08598, 2018.

[7] S. Kariyappa, A. Prakash, and M. Qureshi, “Maze:
Data-free model stealing attack using zeroth-order gra-
dient estimation,” 2020.

[8] J. Truong, P. Maini, R. J. Walls, and N. Papernot, “Data-
free model extraction,” CoRR, vol. abs/2011.14779,
2020.

[9] D. Dligach and M. Palmer, “Good seed makes a good
crop: Accelerating active learning using language mod-
eling,” in Proceedings of the 49th Annual Meeting of
the Association for Computational Linguistics: Hu-
man Language Technologies, (Portland, Oregon, USA),
pp. 6-10, Association for Computational Linguistics,
June 2011.

[10] B. Settles, “Active learning literature survey,” Com-
puter Sciences Technical Report 1648, University of
Wisconsin—Madison, 2009.

[11] H. Yu, K. Yang, T. Zhang, Y.-Y. Tsai, T.-Y. Ho, and
Y. Jin, “Cloudleak: Large-scale deep learning models
stealing through adversarial examples.,” 2020.

[12] C. J. Mahoney, N. Huber-Fliflet, H. Zhao, J. Zhang,
P. Gronvall, and S. Ye, “Evaluation of seed set selection
approaches and active learning strategies in predictive
coding,” CoRR, vol. abs/1906.04367, 2019.

[13] Y. Li and H. Wu, “A clustering method based on k-
means algorithm,” Physics Procedia, vol. 25, pp. 1104—
1109, 12 2012.



[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

L. Chanzi, Q. Chen, B. Zhou, and H. Li, “1 1 - and 1
2 -norm joint regularization based sparse signal recon-
struction scheme,” Mathematical Problems in Engineer-
ing, vol. 2016, pp. 1-11, 01 2016.

R. Willett, R. Nowak, and R. Castro, “Faster rates in
regression via active learning,” vol. 18, 2005.

A. Holub, P. Perona, and M. C. Burl, “Entropy-based
active learning for object recognition,” pp. 1-8, 2008.

Z. Bodé, Z. Minier, and L. Csatd, “Active learning with
clustering,” vol. 16, pp. 127-139, 16 May 2011.

J. Zhu, H. Wang, E. Hovy, and M. Ma, “Confidence-
based stopping criteria for active learning for data anno-
tation,” vol. 6, apr 2010.

7. Pullar-Strecker, K. Dost, E. Frank, and J. Wicker,
“Hitting the target: Stopping active learning at the cost-
based optimum,” CoRR, vol. abs/2110.03802, 2021.

L. Deng, “The mnist database of handwritten digit im-
ages for machine learning research [best of the web],”
Signal Processing Magazine, IEEE, vol. 29, pp. 141-
142, 11 2012.

H. Xiao, K. Rasul, and R. Vollgraf, “Fashion-mnist: a
novel image dataset for benchmarking machine learning
algorithms,” CoRR, vol. abs/1708.07747, 2017.

S. Albawi, T. A. Mohammed, and S. Al-Zawi, “Under-
standing of a convolutional neural network,” in 2017 In-
ternational Conference on Engineering and Technology

(ICET), pp. 1-6, 2017.

F. Zou, L. Shen, Z. Jie, W. Zhang, and W. Liu, “A
sufficient condition for convergences of adam and rm-
sprop,” in Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), June
2019.

M. Martinez and R. Stiefelhagen, “Taming the cross en-
tropy loss,” in Pattern Recognition (T. Brox, A. Bruhn,
and M. Fritz, eds.), (Cham), pp. 628-637, Springer In-
ternational Publishing, 2019.



	Introduction
	Related Work
	Methodology
	Experimental Setup and Results
	Discussion
	Responsible Research
	Conclusions and Future Work

