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 A B S T R A C T

A three-dimensional mesoscopic viscoplasticity model for simulating rate-dependent plasticity and creep 
in unidirectional thermoplastic composites is presented. The constitutive model is a transversely isotropic 
extension of an isotropic finite strain viscoplasticity model for neat polymers. Rate-dependent plasticity 
and creep are described by a non-Newtonian flow rule where the viscosity of the material depends on an 
equivalent stress measure through an Eyring-type relation. In the present formulation, transverse isotropy is 
incorporated by defining the equivalent stress measure and flow rule as functions of transversely isotropic stress 
invariants. In addition, the Eyring-type viscosity function is extended with anisotropic pressure dependence. 
As a result of the formulation, plastic flow in fiber direction is effectively excluded and pressure dependence 
of the polymer matrix is accounted for. The re-orientation of the transversely isotropic plane during plastic 
deformations is incorporated in the constitutive equations, allowing for an accurate large deformation response. 
The formulation is fully implicit and a consistent linearization of the algorithmic constitutive equations is 
performed to derive the consistent tangent modulus. The performance of the mesoscopic constitutive model 
is assessed through a comparison with a micromechanical model for carbon/PEEK, with the original isotropic 
viscoplastic version for the polymer matrix and with hyperelastic fibers. The micromodel is first used to 
determine the material parameters of the mesoscale model with a few stress–strain curves. It is demonstrated 
that the mesoscale model gives a similar response to the micromodel under various loading conditions. Finally, 
the mesoscale model is validated against off-axis experiments on unidirectional thermoplastic composite plies.
. Introduction

Unidirectional fiber reinforced polymer composites are increasingly 
sed in the aerospace and automotive industry because of their ap-
ealing properties. These materials, with superior stiffness and strength 
ompared to more traditional metallic materials, allow for lighter struc-
ural components, resulting in significant weight-savings in airplanes 
nd automobiles and therefore less fuel consumption and environmen-
al impact (Timmis et al., 2015).
In recent years, there has been a growing interest in the use of 

hermoplastics in fiber reinforced polymer composites. Structural ele-
ents made of thermoplastic composites can be fusion bonded, without 
he need of additional materials such as adhesives or bolts, resulting 
n more weight-savings, faster processing cycles and the possibility 
o manufacture composite parts with more complex geometries. How-
ver, the mechanical performance of these fusion bonded thermoplastic 
omposites strongly depends on the processing conditions (Valverde 
t al., 2018, 2020; Akkerman et al., 2020; Neveu et al., 2022). At 
resent, the understanding of processing effects on the mechanical 
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response is not fully matured and the lack of sophisticated performance 
prediction tools forms an obstacle to the wide-spread use of fusion 
bonded thermoplastic composites. To improve the prediction abilities, 
it is essential to develop accurate, efficient and robust constitutive 
models, capable of simulating the material response under short- and 
long-term loadings.

A constitutive model that unifies stain-rate dependent yielding 
and creep in glassy polymers is the Eindhoven Glassy Polymer (EGP) 
model (Tervoort et al., 1996, 1998; Govaert et al., 2000; Klompen 
et al., 2005; Van Breemen et al., 2011; Lenders et al., 2023). This is 
an isotropic viscoplastic model and is part of a family of models for 
polymers without an explicit yield function (Haward and Thackray, 
1968; Boyce et al., 1988, 1992). Instead of a separation in an elastic and 
plastic response, it is assumed that an applied stress always produces 
plastic flow and that the rate of plastic flow depends on the stress level. 
The rate of plastic deformation is then described with a non-Newtonian 
flow rule following an Eyring-type relation (Eyring, 1936).
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The isotropic EGP model has been successfully applied to microme-
chanical analyses of polymer composites with representative volume 
elements (Kovačević et al., 2022; Lenders et al., 2024; Kovačević 
et al., 2024), where fibers and matrix are explicitly modeled. A rep-
resentative volume element is sufficient for studying the composites’ 
behavior under homogeneous deformations at the mesocale level—that 
is, the level at which the composite can be considered a homogeneous 
medium. For more complex structural analyses of composites with 
inhomogeneous deformations, a multiscale approach can be used. This 
requires a coupling between the microscale and mesoscale, where 
two finite element analyses are performed simultaneously and infor-
mation is exchanged in between. However, such approaches remain 
computationally infeasible and are still subject of ongoing research in 
the case of localization (Oliver et al., 2015; Ke and Van Der Meer, 
2022). To overcome the computational burden of multiscale analy-
ses, either surrogate models (Maia et al., 2023, 2025), homogenized 
micromechanics-based models (Larsson et al., 2020; Singh et al., 2023) 
or mesoscopic phenomenological constitutive models are required.

Extensions of the EGP model for simulating anisotropic rate
-dependent plasticity and creep have previously been proposed
(Van Erp et al., 2009; Senden et al., 2013; Amiri-Rad et al., 2019; Amiri-
Rad et al., 2021). The key element in these works is the incorporation of
anisotropy in the (hyper-)elasticity and rate-dependent plasticity rela-
tions. Van Erp et al. (2009) proposed an anisotropic flow rule based on 
the classical Hill yield criterion (Hill, 1948). Senden et al. (2013) used 
this flow rule in the EGP model for predicting anisotropic yielding in 
injection molded polyethylene and Amiri-Rad et al. further developed 
it for short fiber (Amiri-Rad et al., 2019) and long fiber reinforced 
polymer composites (Amiri-Rad et al., 2021). However, a suitable 
version for continuous fiber reinforced polymer composites does not yet 
exist.

In continuous fiber reinforced polymers, fibers behave elastically 
until fracture, while the polymer matrix is responsible for the viscoelas-
tic/viscoplastic response. Combined in a composite, this results in a 
mostly elastic response when loaded in fiber direction and in a vis-
coplastic response under off-axis loads. In a constitutive model, strong 
transverse isotropy can be achieved through the use of transversely 
isotropic stress invariants (Spencer, 1987; Eidel, 2004) for describing 
yield criteria, as previously done with Perzyna-type viscoplastic mod-
els (Koerber et al., 2018; Gerbaud et al., 2019; Rodrigues Lopes et al., 
2022). These models have been successfully applied to the simulation of 
rate-dependent anisotropic plasticity in thermosetting polymer compos-
ites under short term loadings. As opposed to thermosets, thermoplastics
lack primary (chemical) bonds between polymer chains (Brinson and 
Brinson, 2015). When subjected to stress, the polymer response tran-
sitions from solid-like to fluid-like, which is described in the EGP 
model with an Eyring-type non-Newtonian flow rule. With the non-
Newtonian flow rule, creep and rate-dependent plasticity are treated 
in a unified manner. In addition, the effects of temperature can be 
taken into account through the Eyring relation, as well as the effects of 
pressure (Govaert et al., 2000, 2001) and aging (Klompen et al., 2005).

In this manuscript, we combine the use of transversely isotropic 
invariants and non-Newtonian flow, and propose an invariant-based 
mesoscopic extension of the EGP model for simulating rate-dependent 
plasticity and creep in continuous fiber reinforced thermoplastic com-
posites. For assessing the accuracy of the mesoscopic constitutive 
model, a detailed micromodel of a carbon/PEEK composite (Kovačević 
and van der Meer, 2022; Kovačević et al., 2022) is used with fibers 
and matrix explicitly modeled. The micromodel first serves to identify 
the parameters of the mesoscopic constitutive model through numerical 
homogenization (Van Der Meer, 2016; Daghia et al., 2023; Liu et al., 
2020) with a parameter identification procedure based on a few stress–
strain curves. Subsequently, the response of the mesoscale model under 
off-axis constant strain rates and creep loads is assessed. Finally, 
unidirectional plies subjected to off-axis strain rates are simulated and 
compared against experiments.
2 
Fig. 1. Rheological model of the driving stress.

Scalars are represented by italic symbols (e.g. 𝑎), while vectors are 
denoted using italic bold lower case symbols (e.g. 𝒂). Second-order 
tensors are expressed with bold upper case Roman symbols (e.g. 𝐀), and 
fourth-order tensors are indicated by bold blackboard symbols (e.g. A). 
The symmetric and skew-symmetric parts of a second order tensor 𝐀 are 
given by 𝐀sym = 1∕2

(

𝐀 + 𝐀T) and 𝐀skw = 1∕2
(

𝐀 − 𝐀T). The product of 
two second-order tensors 𝐀 and 𝐁 is expressed as 𝐀 ⋅𝐁 = 𝐴𝑖𝑘𝐵𝑘𝑗 , while 
the double contraction is given by 𝐀 ∶ 𝐁 = 𝐴𝑖𝑗𝐵𝑖𝑗 . Finally, the dyadic 
product of two vectors 𝒂 and 𝒃 is written as 𝒂⊗ 𝒃 = 𝑎𝑖𝑏𝑗 .

2. Formulation of the constitutive model

The mesoscopic constitutive model for the composite material is 
based on the EGP model for neat polymers (Tervoort et al., 1996, 1998; 
Van Breemen et al., 2011), which assumes two contributions to the 
stress: a driving stress 𝝈d and a hardening stress 𝝈h

𝝈 = 𝝈d + 𝝈h (1)

The driving stress is described by a spectrum of relaxation times, which 
is incorporated in the model by adding 𝑁 nonlinear spring-dashpots 
(denoted as modes) in parallel. The driving stress is the sum of the 
driving stresses 𝝈d

𝑖  in each mode 𝑖

𝝈d =
𝑁
∑

𝑖
𝝈d
𝑖 (2)

For thermorheologically simple materials, it can be assumed that the 
viscosity of each mode 𝜂𝑖 has the same functional dependence on the
total driving stress 𝝈d (Tervoort et al., 1996). The rheological model of 
the driving stress contribution is shown in Fig.  1.

In this manuscript, the focus is on the driving stress contribution 
for describing anisotropic rate-dependent plasticity in the pre-yield and 
yield regime. Therefore, the hardening contribution is not taken into 
account (𝝈h = 0). To improve readability, the superscript (d) in the 
driving stress is dropped in the remainder of the text.

2.1. Kinematics

In each mode 𝑖, a multiplicative decomposition of the total deforma-
tion gradient 𝐅 into an elastic 𝐅e𝑖 and a plastic 𝐅p𝑖 deformation gradient 
is assumed (Kröner, 1959; Lee, 1969) 

F = Fe𝑖 ⋅ Fp𝑖 (3)

The plastic deformation gradient maps the neighborhood of a meso-
scopic material point from the initial configuration 𝛺0 to a fictitious, 
locally stress-free, intermediate configuration 𝛺̂𝑖. Subsequently, the elas-
tic deformation maps it from the intermediate configuration to the
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 Major symbols
 Variable Type Meaning  
 General
 𝜃0 Scalar Initial off-axis angle  
 𝜃 Scalar Off-axis angle  
 𝜀 Scalar True strain  
 𝜎 Scalar True stress  
 𝜀eng Scalar Engineering strain  
 𝜎eng Scalar Engineering stress  
 S 2nd order tensor 2nd Piola Kirchhoff-stress  
 𝐹 2nd order tensor Deformation gradient  
 𝐂 2nd order tensor Right Cauchy–Green tensor  
 𝐁 2nd order tensor Left Cauchy–Green tensor  
 All modes
 𝑁 Scalar Number of modes  
 𝜇p Scalar Pressure dependency parameter  
 𝜎0 Scalar Nonlinearity parameter  
 𝜂0 Scalar Maximum initial viscosity  
 𝛼2 Scalar Anisotropy parameter  
 𝜎̄ Scalar Total equivalent stress  
 𝑎𝜎 Scalar Stress shift factor  
 𝐼1, 𝐼2, 𝐼3 Scalars Transversely isotropic invariants  
 𝒂0 Vector Fiber vector in initial configuration  
 𝒂 Vector Fiber vector in current configuration  
 𝒂̄ Vector Normalized fiber vector in current configuration  
 𝐴̄ 2nd order tensor Structural tensor in current configuration  
 𝝈 2nd order tensor Cauchy stress  
 𝝈pind 2nd order tensor Plasticity inducing Cauchy stress  
 P 4th order tensor Tensor that maps 𝝈 to 𝝈pind  
 Mode 𝑖
 𝛴̄𝑖 Scalar Equivalent stress  
 𝛾̇p𝑖 Scalar Equivalent rate of plastic deformation  
 𝑚𝑖 Scalar Ratio of elastic constants in relaxation spectrum  
 𝜂𝑖 Scalar Stress-dependent viscosity  
 𝜂0𝑖 Scalar Initial viscosity  
 𝜆𝑖, 𝜇𝑖, 𝛼𝑖, 𝛽𝑖, 𝛾𝑖 Scalars Hyperelastic model parameters  
 𝐼1𝑖, 𝐼2𝑖, 𝐼3𝑖 Scalars Transversely isotropic invariants  
 𝒂̂𝑖 Vector Fiber vector in intermediate configuration  
 𝐅p𝑖 2nd order tensor Plastic deformation gradient  
 𝐅e𝑖 2nd order tensor Elastic deformation gradient  
 𝐴̂𝑖 2nd order tensor Structural tensor in intermediate configuration  
 𝐋̂p𝑖 2nd order tensor Plastic velocity gradient  
 𝐃̂p𝑖 2nd order tensor Rate of plastic deformation  
 𝐖̂p𝑖 2nd order tensor Plastic material spin  
 𝐍̂p𝑖 2nd order tensor Plastic normal  
 𝐁̂e𝑖 2nd order tensor Elastic left Cauchy–Green tensor  
 𝐂̂e𝑖 2nd order tensor Elastic right Cauchy–Green tensor  
 𝝈𝑖 2nd order tensor Cauchy stress tensor  
 𝜮𝑖 2nd order tensor Mandel-like stress tensor  
 𝜮sym

𝑖 2nd order tensor Symmetric part of Mandel-like stress tensor  
 𝜮pind

𝑖 2nd order tensor Plasticity inducing Mandel-like stress tensor  
 P̂𝑖 4th order tensor Tensor that maps 𝜮sym

𝑖  to 𝜮pind
𝑖  
current configuration 𝛺 (see Fig.  2). The plastic velocity gradient in 
the intermediate configuration reads 

L̂p𝑖 = Ḟp𝑖 ⋅ F−1p𝑖 =
(

Ḟp𝑖 ⋅ F−1p𝑖
)

⏟⏞⏞⏞⏟⏞⏞⏞⏟
D̂p𝑖

sym
+
(

Ḟp𝑖 ⋅ F−1p𝑖
)

⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟
Ŵp𝑖

skw
(4)

where D̂p𝑖 is the rate of plastic deformation and Ŵp is the plastic ma-
terial spin (Dafalias, 1998). To overcome the non-uniqueness of the 
multiplicative decomposition with regards to the orientation of the
intermediate configuration, we choose Ŵ = 𝟎 (Boyce et al., 1989, 
p𝑖

3 
1992). Therefore, the evolution of Fp𝑖 is described with the following 
differential equation 

Ḟp𝑖 = D̂p𝑖 ⋅ Fp𝑖 (5)

The transverse isotropy that originates from the microstructure of the 
unidirectional polymer composite is characterized by fiber direction 
vectors 𝒂0, 𝒂̂𝑖 and 𝒂 in the initial, intermediate and current config-
urations, respectively. In the present mesoscopic constitutive model, 
the fiber vector represents continuous fibers in the composite and is 
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Fig. 2. Decomposition of total deformation in elastic and plastic deformation 
for each mode 𝑖, with the corresponding initial 𝛺0, intermediate 𝛺̂𝑖 and current
configuration 𝛺.

assumed to remain affinely attached to the material during deforma-
tion,1 which is described by the following transformations using the 
multiplicative decomposition in Eq. (3): 
𝒂 = 𝐅e𝑖 ⋅ 𝒂̂𝑖 = Fe𝑖 ⋅ Fp𝑖 ⋅ 𝒂0 = F ⋅ 𝒂0 (6)

Furthermore, plastic deformation is assumed to be isochoric: 
det

(

Fp𝑖
)

= 1 (7)

2.2. Viscoplasticity relations

The rate of plastic deformation in the intermediate configuration in 
each mode 𝑖 follows a non-Newtonian flow rule 
D̂p𝑖 = 𝛾̇p𝑖N̂p𝑖 (8)

where 𝛾̇p𝑖 is the (scalar) equivalent plastic strain rate and N̂p𝑖 is the 
direction of plastic flow. The equivalent plastic strain rate is given by 

𝛾̇p𝑖 =
𝛴̄𝑖
𝜂𝑖

(9)

where 𝛴̄𝑖 is the equivalent stress in mode 𝑖. The viscosity 𝜂𝑖 is deter-
mined as 
𝜂𝑖 = 𝜂0𝑖 𝑎𝜎 (10)

where 𝑎𝜎 is the stress shift factor2 and 𝜂0𝑖 is the initial viscosity of mode 
𝑖. The stress shift factor follows an Eyring relation and is a function of 
the total driving stress 𝝈 through a total equivalent stress 𝜎̄ and may 
depend on the temperature, pressure and aging (Govaert et al., 2000, 
2001; Klompen and Govaert, 1999). Neglecting these influences, the
stress shift factor reads 

𝑎𝜎 =
𝜎̄∕𝜎0

sinh (𝜎̄∕𝜎0)
(11)

where 𝜎0 is a parameter that controls the stress-induced exponential 
decrease of the viscosity. Note that the viscosity in each mode is 
different because of the different initial viscosities {𝜂0𝑖}. However, 𝑎𝜎 is 

1 For short fiber composites, this assumption is debatable as pointed out 
by Ref. Dafalias (1998), where short fibers may evolve differently from the 
mesoscopic kinematics.

2 The name stress shift factor refers to its effect of reducing the initial 
viscosity with increasing stress, resulting in horizontal shifts at different stress 
levels in creep-compliance curves on logarithmic time scales (Tervoort et al., 
1998).
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the same across all modes, representing a thermorheologically simple 
material (Tervoort et al., 1996).

For describing plastic flow, a Mandel-like stress tensor (Mandel, 
1972) is introduced as 
𝜮𝑖 = FTe𝑖 ⋅ 𝝈𝑖 ⋅ F−Te𝑖 (12)

which is work-conjugate to D̂p𝑖 and is in general not symmetric for 
anisotropic materials (Lubliner, 2008). To ensure a symmetric D̂p𝑖 and 
to remain consistent with the choice of a vanishing Ŵp𝑖 (see Sec-
tion 2.1), it is assumed that only the symmetric part of 𝜮𝑖 determines 
the plastic flow direction (Rodrigues Lopes et al., 2022; Eidel, 2004; 
Dean et al., 2016), i.e. 

N̂p𝑖 =
𝜕𝛴̄𝑖

𝜕𝜮sym
𝑖

(13)

In the (original) isotropic EGP model, the equivalent stress(es) are 
proportional to the Von Mises stress (Tervoort et al., 1996, 1998; 
Govaert et al., 2000; Klompen et al., 2005; Van Breemen et al., 2011). 
For short and long fiber reinforced polymer composites, they can be pro-
portional to the Hill effective stress (Amiri-Rad et al., 2019; Amiri-Rad 
et al., 2021). In this work, strong transverse isotropy of continuous fiber 
reinforced polymer composites is taken into account by defining the 
equivalent stresses 𝜎̄ and 𝛴̄𝑖 as functions of transversely isotropic stress 
invariants. In addition, anisotropic pressure dependency is incorporated 
by modifying the Eyring-type relation Eq. (11). The invariant-based 
formulation is presented in the next section.

2.3. Invariant formulation

Fiber reinforced polymer composites can be considered transversely 
isotropic at the mesoscale. The response of the mesoscopic constitutive 
model should therefore be invariant with respect to the symmetry 
transformations for transverse isotropy (Boehler, 1987). For unidirec-
tional fiber reinforced polymer composites with strong anisotropy, 
additional requirements can be specified: (i) the material should not 
flow in the direction of the fiber, (ii) the plastic deformation should 
be isochoric (as stated in Eq. (7)) and (iii) the pressure dependence of 
the polymer matrix should be taken into account. These requirements 
can be satisfied by using transversely isotropic invariants (Spencer, 
1972; Boehler, 1987) for defining the equivalent stresses 𝜎̄ and 𝛴̄𝑖 and 
by extending the Eyring relation (Eq. (11)) to account for anisotropic 
pressure dependence.

2.3.1. Total equivalent stress
The material symmetries of the fiber reinforced polymer composite 

are represented with fiber direction (unit) vectors 𝒂0 and 𝒂̄ = 𝒂∕‖𝒂‖
in the initial and current configurations, respectively (see Fig.  2). Fur-
thermore, the stress is first split into a plasticity inducing 𝝈pind and a 
remaining (elastic) part (Spencer, 1972, 1987) 
𝝈pind = 𝝈 − (𝑝 𝐈 + 𝜎f Ā) (14)

where 𝑝 is the pressure, 𝜎f  the part of the stress projection onto the 
fiber direction that exceeds the pressure and Ā = 𝒂̄⊗ 𝒂̄. The plasticity 
inducing stress can be determined from the total stress 𝝈 with the 
mapping 
𝝈pind = P ∶ 𝝈 (15)

where P is a fourth order tensor, given as 

P = I − 1
2
I⊗ I − 3

2
Ā⊗ Ā + 1

2
(

Ā⊗ I − I⊗ Ā
)

(16)

with I𝑖𝑗𝑘𝑙 = 𝛿𝑖𝑘𝛿𝑗𝑙. The following three transversely isotropic invariants 
are introduced (Vogler et al., 2013)

𝐼1 =
1
2
tr
[

𝝈pind ⋅ 𝝈pind] − 𝒂̄ ⋅
[

𝝈pind ⋅ 𝝈pind] ⋅ 𝒂̄ (17)

𝐼 = 𝒂̄ ⋅
[

𝝈pind ⋅ 𝝈pind] ⋅ 𝒂̄ (18)
2
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Fig. 3. The transversely isotropic stress invariants are related to transverse 
shear (left), longitudinal shear (middle) and biaxial tension or compression 
(right).

𝐼3 = tr [𝝈] − 𝒂̄ ⋅ 𝝈 ⋅ 𝒂̄ (19)

To inspect the meaning of these invariants, they can be expressed in 
terms of stress components in a local frame, where 𝒆1 is aligned with 
the fiber direction vector 𝒂:
𝐼1 =

1
4
(

𝜎22 − 𝜎33
)2 + 𝜎223 (20)

𝐼2 = 𝜎212 + 𝜎213 (21)

𝐼3 = 𝜎22 + 𝜎33 (22)

From Eq. (20)–(22), it can be seen that 𝐼1 is related to transverse shear, 
𝐼2 to longitudinal shear and 𝐼3 to biaxial tension or compression in 
the transverse plane (see Fig.  3).3 With these invariants, an equivalent 
stress can be constructed that does not induce yielding due to stress 
projections in the fiber direction. The total equivalent stress 𝜎̄ that 
drives the evolution of the viscosity through stress shift factor 𝑎𝜎 is 
proposed as 

𝜎̄ =
√

2
(

𝐼1 + 𝛼2𝐼2
)

(23)

where 𝛼2 is a model parameter. The equivalent stress 𝜎̄ is a measure 
for shear stress in the polymer matrix, reflecting that for continuous 
fiber reinforced polymer composites, transverse shear (invariant 𝐼1) and 
longitudinal shear (invariant 𝐼2) do not lead to the same shear stresses 
in the polymer matrix, hence demanding the coefficient 𝛼2.

The third invariant 𝐼3 is used to describe pressure dependence of 
the polymer matrix, by extending the Eyring relation Eq. (11) as 

𝑎𝜎 =
𝜎̄∕𝜎0

sinh (𝜎̄∕𝜎0)
exp

(

−𝜇p
𝐼3
𝜎0

)

(24)

where 𝜇p is a pressure dependency parameter. This relation is similar 
to previous modifications of the Eyring relation for isotropic poly-
mers (Govaert et al., 2000, 2001; Klompen et al., 2005), where instead 
of 𝐼3, the hydrostatic pressure 𝑝 = −1∕3 tr 𝝈 was used in the argument 
of the exponential function. Note that through 𝐼3 (which is a measure 
for pressure in the polymer matrix), anisotropic pressure dependence 
of the composite is taken into account with Eq. (24).

2.3.2. Equivalent stress of each mode
As mentioned in Section 2.2, the equivalent stress of each mode 

𝛴̄𝑖 is a function of the symmetric part of 𝜮𝑖 and the fiber direction 
vector in the intermediate configuration 𝒂̂𝑖. Replacing in Eqs.  (15) 
and (16) quantities referring to the current configuration {𝝈,𝒂} by 
quantities referring to the intermediate configuration {𝜮sym

𝑖 , 𝒂̂𝑖}, gives 
the plasticity inducing part of 𝜮sym

𝑖

𝜮pind
𝑖 = P̂𝑖 ∶ 𝜮sym

𝑖 (25)

3 Note that these invariants are not the same as in classical plasticity theory 
for {𝐼𝑖}𝑖=1,2,3. Here we follow the definitions from Refs. Eidel (2004), Vogler 
et al. (2013), Dean et al. (2016), Koerber et al. (2018), Gerbaud et al. (2019) 
and Rodrigues Lopes et al. (2022).
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with corresponding fourth order tensor P̂𝑖

P̂𝑖 = I − 1
2
I⊗ I − 3

2
Â𝑖 ⊗ Â𝑖 +

1
2

(

Â𝑖 ⊗ I − I⊗ Â𝑖

)

(26)

and invariants for each mode 𝑖

𝐼1𝑖 =
1
2
tr
[

𝜮pind
𝑖 ⋅𝜮pind

𝑖

]

− 𝒂̂𝑖 ⋅
[

𝜮pind
𝑖 ⋅𝜮pind

𝑖

]

⋅ 𝒂̂𝑖 (27)

𝐼2𝑖 = 𝒂̂𝑖 ⋅
[

𝜮pind
𝑖 ⋅𝜮pind

𝑖

]

⋅ 𝒂̂𝑖 (28)

To prevent plastic flow in fiber direction and account for plastic incom-
pressibility, only invariants 𝐼1𝑖 and 𝐼2𝑖, which are functions of 𝜮pind

𝑖 , are 
used to describe the direction of plastic flow through Eq. (13). Similar 
to the total equivalent stress 𝜎̄, the equivalent stress of mode 𝑖 is defined 
as 

𝛴̄𝑖 =
√

2
(

𝐼1𝑖 + 𝛼2𝐼2𝑖
)

(29)

with plastic normal direction 

𝐍p𝑖 =
𝜕𝛴̄𝑖

𝜕𝜮sym
𝑖

= 1
𝛴̄𝑖

[

𝜕𝐼1𝑖
𝜕𝜮sym

𝑖

+ 𝛼2
𝜕𝐼2𝑖

𝜕𝜮sym
𝑖

]

(30)

where 𝛼2 is the same model parameter as in Eq. (23), to limit the num-
ber of parameters and aid their identification procedure. The deriva-
tives of the invariants read
𝜕𝐼1𝑖

𝜕𝜮sym
𝑖

=
[(

I − Â𝑖

)

⋅𝜮pind
𝑖 −𝜮pind

𝑖 ⋅ Â𝑖

]

∶ P̂𝑖 (31)

𝜕𝐼2𝑖
𝜕𝜮sym

𝑖

=
[

Â𝑖 ⋅𝜮
pind
𝑖 +𝜮pind

𝑖 ⋅ Â𝑖

]

∶ P̂𝑖 (32)

Remark 1.  The total equivalent stress 𝜎̄ is a function of 𝝈 and 𝒂̄, instead 
of 𝜮𝑖 and 𝒂̂𝑖. The reason for this is that the latter quantities refer to an
intermediate configuration, which is different for each mode (see Fig. 
2). Therefore, ‘total versions’ of 𝜮 and 𝒂̂ do not exist.

Remark 2.  In the present contribution, thermorheologically simple 
material behavior is assumed. The model can be extended to sim-
ulate thermorheologically complex behavior with several relaxation 
processes. A multiprocess model can be obtained by adding multiple 
driving stress contributions in parallel, where each contribution obeys 
an Eyring relation with a different parameter 𝜎0 (Klompen and Govaert, 
1999) and a different relaxation spectrum.

Remark 3.  As pointed out by Van Der Meer (2016), the difference 
between stress combinations 𝜎12 − 𝜎22 and 𝜎12 − 𝜎33 is not considered 
in the invariant formulation. Furthermore, the effect on the yielding 
of a stress in fiber direction is removed. Although the material should 
not flow in the fiber direction, the stress in the fiber direction should 
contribute to the yielding of the polymer matrix under combined 
loading, for example longitudinal shear and stress in fiber direction. 
These assumptions remain limitations of the present mesoscale model.

Remark 4.  In the equivalent stress definitions, only 𝛼2 is used as a 
coefficient of invariant 𝐼2. The fact that 𝛼2 is cancelled in a trans-
verse uniaxial tension and compression test simplifies the parameter 
identification procedure as will be shown in Section 3.

2.4. Embedded hyperelastic constitutive relations

A hyperelastic transversely isotropic constitutive model (Bonet and 
Burton, 1998) is used in this work to compute the stress in the com-
posite material. The second Piola Kirchhoff stress S is decomposed in 
an isotropic (iso) and a transversely isotropic part (trn) as 

S = S + S (33)
iso trn
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Without plastic deformations, these contributions are given as 
Siso = 𝜇(I − C−1) + 𝜆𝐽 (𝐽 − 1)C−1

Strn = 2𝛽(𝜉2 − 1)I + 2
[

𝛼 + 𝛽(𝜉1 − 3) + 2𝛾(𝜉2 − 1)
]

𝒂0 ⊗ 𝒂0
− 𝛼

(

C ⋅ 𝒂0 ⊗ 𝒂0 + 𝒂0 ⊗ C ⋅ 𝒂0
)

(34)

where C = FT ⋅ F is the right Cauchy–Green deformation tensor and 
𝐽 = det (F). The parameters 𝜆, 𝜇, 𝛼, 𝛽 and 𝛾 are material constants that 
can be computed from the Young moduli and the Poisson ratios 

𝑛 =
𝐸22
𝐸11

𝑚 = 1 − 𝜈21 − 2𝑛𝜈221

𝜆 = 𝐸22
𝜈21 + 𝑛 𝜈221
𝑚(1 + 𝜈21)

𝜇 =
𝐸22

2(1 + 𝜈21)
𝛼 = 𝜇 − 𝐺12

𝛽 =
𝐸22 𝜈221(1 − 𝑛)
4 𝑚(1 + 𝜈21)

𝛾 =
𝐸11(1 − 𝜈21)

8 𝑚
−

𝜆 + 2𝜇
8

+ 𝛼
2
− 𝛽

(35)

where the Young moduli 𝐸11 and 𝐸22, the shear modulus 𝐺12 and the 
Poisson ratio 𝜈21 refer to a local coordinate frame with 𝒆1 aligned with 
the fiber direction. Furthermore, 𝜉1 and 𝜉2 are defined as
𝜉1 = tr (C) (36)

𝜉2 = 𝒂 ⋅ 𝒂 (37)

In the present contribution, we use this hyperelastic transversely
isotropic constitutive model to compute the stress in each mode 𝑖 when 
the material is mapped from its intermediate configuration to the current
configuration (see Fig.  2). To this end, the following quantities are 
replaced by quantities that refer to the intermediate configurations: 
{S,𝒂0,C, 𝜉1, 𝐽} → {Ŝ𝑖, 𝒂̂𝑖,Ce𝑖, 𝜉1e𝑖, 𝐽e𝑖}. The relations for the hyperelastic 
model of each mode 𝑖 become 
Ŝiso,𝑖 = 𝜇𝑖(I − C−1e𝑖 ) + 𝜆𝑖𝐽e𝑖(𝐽e𝑖 − 1)C−1e𝑖
Ŝtrn,𝑖 = 2𝛽𝑖(𝜉2 − 1)I + 2

[

𝛼𝑖 + 𝛽𝑖(𝜉1e𝑖 − 3) + 2𝛾𝑖(𝜉2 − 1)
]

𝒂̂𝑖 ⊗ 𝒂̂𝑖
− 𝛼𝑖

(

Ce𝑖 ⋅ 𝒂̂𝑖 ⊗ 𝒂̂𝑖 + 𝒂̂𝑖 ⊗ Ce𝑖 ⋅ 𝒂̂𝑖
)

(38)

Note that each mode has a different set of elastic constants. Further-
more, the vector 𝒂̂𝑖 is a unit vector since plastic flow is excluded in 
fiber direction. Pushing forward Eq. (38) from the intermediate to the
current configuration gives the Cauchy stress contributions 

𝝈iso,𝑖 =
𝜇𝑖
𝐽e𝑖

(

Be𝑖 − I
)

+ 𝜆𝑖(𝐽e𝑖 − 1)I

𝐽e𝑖𝝈trn,𝑖 = 2𝛽𝑖(𝜉2 − 1)Be𝑖 + 2
[

𝛼𝑖 + 𝛽𝑖(𝜉1e𝑖 − 3) + 2𝛾𝑖(𝜉2 − 1)
]

𝒂⊗ 𝒂

− 𝛼𝑖
(

Be𝑖 ⋅ 𝒂⊗ 𝒂 + 𝒂⊗ Be𝑖 ⋅ 𝒂
)

(39)

where 𝐁e𝑖 = 𝐅e𝑖 ⋅ 𝐅T
e𝑖 is the elastic right Cauchy–Green deformation 

tensor. Note that the kinematics in Fig.  2, with re-orienting fiber 
direction vector(s) in the intermediate configuration(s), are taken into 
account in the embedded hyperelastic model.

2.5. Multimode model

Direction-, pressure- and rate-dependent yielding can be described 
by a single mode (see Fig.  4), requiring four parameters: 𝛼2, 𝜇p, 𝜎0
and 𝜂0. However, for polymers and polymer composites, a single vis-
cosity is not sufficient to describe the nonlinear response prior to 
yielding (Tervoort et al., 1996; Van Breemen et al., 2011). A more 
accurate representation of the time-dependent pre-yield (and creep) 
response is obtained by including multiple modes (see Fig.  4). With 𝑁
modes, the yield stress is then determined by the mode with the highest 
initial viscosity 𝜂 = max{𝜂 }.
0 0𝑖

6 
Fig. 4. Stress–strain response with a single mode and with multiple modes.

A relaxation spectrum can be determined from a single stress–
strain curve, obtained from a test under a constant strain rate as 
described in Ref. Van Breemen et al. (2011). This procedure was 
originally developed for isotropic polymers and recently extended to 
anisotropic yielding in short - and long -fiber composites (Amiri-Rad 
et al., 2019). The same procedure is applied to the present model for
continuous fiber reinforced polymer composites and is briefly outlined 
here for completeness. For more details, the reader is referred to the 
Refs. Van Breemen et al. (2011) and Amiri-Rad et al. (2019).

The method makes use of a Boltzmann integral with 𝑁 unknown re-
laxation times to fit a 1D equivalent stress–strain curve from a constant 
strain rate test under off-axis angle 𝜃. The result of the procedure is a 
spectrum of moduli {𝐸𝜃𝑖} and initial viscosities {𝜂0𝑖}. It is then assumed 
that the ratio 

𝑚𝑖 =
𝐸𝜃 𝑖

∑𝑁
𝑖 𝐸𝜃 𝑖

(40)

is the same for 𝐸11, 𝐸22 and 𝐺12. With the set of ratios {𝑚𝑖}, the elastic 
constants are obtained for each mode 
𝐸11𝑖 = 𝑚𝑖𝐸11

𝐸22𝑖 = 𝑚𝑖𝐸22

𝐺12𝑖 = 𝑚𝑖𝐺12

𝜈21𝑖 = 𝜈21

(41)

The hyperelastic parameters for each mode are obtained with Eq. (35), 
replacing constants {𝐸11, 𝐸22, 𝐺12} by {𝐸11𝑖, 𝐸22𝑖, 𝐺12𝑖}.

2.6. Integration of the constitutive relations

To compute the stress in each mode from the elastic deformation, 
the plastic deformation must be known, which in turn depends, through 
the non-Newtonian flow rule, on the stress in each mode and on the
total stress through the stress-dependent shift factor. This renders a 
nonlinear relation between the total stress and deformation gradient, 
that must be solved with an iterative scheme.

2.6.1. Nested scheme
Following Ref. Khaleghi et al. (2022), a nested scheme with an

external and internal solution process is used (see Fig.  5). In the external
scheme, the stress shift factor 𝑎𝜎 is iteratively solved with Newton 
iterations. For every external iteration, the viscosities {𝜂𝑖} of the modes 
are known, which allows for computing the stress in each mode 𝝈𝑖
separately with an internal Newton–Raphson scheme.

2.6.2. External Newton–Raphson scheme
For solving the stress shift factor 𝑎𝜎 , Eq. (24) is cast in residual form

𝑅𝑎 = 𝑎𝜎 −
𝜎̄∕𝜎0 exp

(

−𝜇p
𝐼3

)

(42)

𝜎 sinh (𝜎̄∕𝜎0) 𝜎0
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Fig. 5. Nested external–internal solution scheme. At every external iteration (left), 𝑁 internal schemes are solved, one for each mode 𝑖 (right).
The root of this equation is found with Newton iterations 𝑗 = 1…𝑁iter
by updating 𝑎𝜎 as follows 

𝑎(𝑗+1)𝜎 = 𝑎(𝑗)𝜎 −
𝑅(𝑗)
𝑎𝜎

𝜕𝑅𝑎𝜎
𝜕𝑎𝜎

|

|

|

|

(𝑗)

F

(43)

where 𝜕𝑅𝑎𝜎∕𝜕𝑎𝜎
|

|

|F
 is the Jacobian for the external scheme, which is de-

rived in Section 2.7.2. For each external Newton iteration 𝑗, the stress in 
each mode 𝝈𝑖 is found with the internal Newton–Raphson scheme, with 
viscosity 𝜂(𝑗)𝑖 = 𝜂0𝑖𝑎𝜎 (𝑗). Subsequently, the total equivalent stress 𝜎̄ is com-
puted and the residual 𝑅𝑎𝜎  and the Jacobian 𝜕𝑅𝑎𝜎∕𝜕𝑎𝜎

|

|

|F
 are evaluated 

to update the stress shift factor 𝑎(𝑗+1)𝜎  for the next iteration with Eq. (43).

2.6.3. Internal Newton–Raphson scheme
In the internal scheme, the plastic deformation 𝐅p𝑖 is chosen as 

primary unknown. The time integration of Eq. (5) is performed with 
an implicit exponential map (Eterovic and Bathe, 1990; Weber and 
Anand, 1990) to retain plastic incompressibility (Eq. (7)) (Sansour and 
Kollmann, 1998). The plastic deformation at the current time step Fp𝑖
is computed from the rate of plastic deformation at the current time 
step D̂p𝑖 and the plastic deformation at the previous time step F0p𝑖: 

Fp𝑖 = exp
(

D̂p𝑖𝛥𝑡
)

⋅ F0p𝑖 (44)

where the tensor exponential function is replaced by a Padé approxi-
mation (Baaser, 2004) 

exp
(

D̂p𝑖𝛥𝑡
)

≈ 𝜫
(

D̂p𝑖, 𝛥𝑡
)

=
(

I − 𝛥𝑡
2
D̂p𝑖

)−1
⋅
(

I + 𝛥𝑡
2
D̂p𝑖

)

(45)

Casting this equation in residual form yields 
𝐑Fp,𝑖 = Fp𝑖 −𝜫

(

𝛥𝑡, D̂p𝑖

)

⋅ 𝐅0
p𝑖 (46)

The root of this equation is solved by updating the plastic deformation 
for each internal iteration 𝑘 = 1…𝑁iter as follows 

F(𝑘+1)p𝑖 = F(𝑘)p𝑖 −
⎡

⎢

⎢

⎣

𝜕𝐑Fp𝑖
𝜕Fp𝑖

(𝑘)
⎤

⎥

⎥

⎦

−1

∶ 𝐑(𝑘)
Fp𝑖

(47)

where 𝜕𝐑𝐅p𝑖∕𝜕𝐅p𝑖, is the Jacobian for the internal Newton–Raphson 
scheme, which is given in Section 2.7.1. With the plastic deformation 
Fp𝑖, the elastic deformation in each mode Fe𝑖 is computed with Eq. (3) 
and the stress 𝝈𝑖 with Eq. (39). Subsequently, the total equivalent stress 
𝜎̄ is computed with Eq. (23), after which the internal residual 𝐑Fp𝑖  and 
Jacobian 𝜕𝐑𝐅p𝑖∕𝜕𝐅p𝑖, are evaluated to update the plastic deformation 
for the next iteration with Eq. (47).

Remark 5.  The time step dependence from the time integration 
scheme with Padé approximation, Eq. (46), is assessed in Section 5. 
For a better approximation of the exponential map, a higher-order Padé 
approximation (Baaser, 2004) could be used.
7 
2.7. Jacobians

The Jacobians for the internal and external Newton–Raphson
schemes and the consistent tangent modulus for the global implicit 
solution scheme are derived in this section.

2.7.1. Jacobian of the internal scheme
The Jacobian of the internal residual (Eq. (46)) reads 

𝜕𝐑Fp𝑖
𝜕𝐅p𝑖

= I +
𝜕𝐑Fp𝑖
𝜕𝜫 𝑖

∶
𝜕𝜫 𝑖

𝜕𝐃̂p𝑖
∶

[

𝜕𝐃̂p𝑖

𝜕𝜮sym
𝑖

∶
𝜕𝜮sym

𝑖
𝜕𝐅e𝑖

∶
𝜕𝐅e𝑖
𝜕𝐅p𝑖

+
𝜕𝐃̂p𝑖

𝜕𝒂̂𝑖
⋅
𝜕𝒂̂𝑖
𝜕𝐅p𝑖

]

(48)

The derivatives in this expression are given in Appendix  A.

2.7.2. Jacobian of the external scheme
The Jacobian of the external residual (Eq. (42)) reads 

𝜕𝑅𝑎𝜎
𝜕𝑎𝜎

= 1 +
[ 𝜕𝑅𝑎𝜎

𝜕𝜎̄
𝜕𝜎̄
𝜕𝝈

+
𝜕𝑅𝑎𝜎
𝜕𝐼3

𝜕𝐼3
𝜕𝝈

]

∶

[ 𝑁
∑

𝑖=1

𝜕𝝈𝑖
𝜕Fe𝑖

∶
𝜕Fe𝑖
𝜕Fp𝑖

∶
𝜕Fp𝑖
𝜕𝑎𝜎

]

(49)

where 𝜕𝜎̄∕𝜕𝝈 follows from Eq. (30) by replacing intermediate quantities 
{𝛴̄𝑖,𝜮sym, 𝐼1𝑖, 𝐼2𝑖} with current quantities {𝜎̄,𝝈, 𝐼1, 𝐼2}. The first and 
second terms in the sum on the RHS are given by Eqs.  (A.19) and
(A.12), respectively. The other terms are given in Appendix  B. The 
terms {𝜕Fp𝑖∕𝜕𝑎𝜎} are obtained as follows. The internal residual for mode 
𝑖 is a function of independent variables 𝑎𝜎 and 𝐅p𝑖. Therefore, the 
variation of the residual reads 

𝛿𝐑Fp𝑖 =
𝜕𝐑Fp𝑖
𝜕𝑎𝜎

𝛿𝑎𝜎 +
𝜕𝐑Fp𝑖
𝜕𝐅p𝑖

∶ 𝛿𝐅p𝑖 (50)

Since we solve iteratively for the root of 𝐑Fp𝑖  with the internal scheme, 
its variation between external iterations 𝑗 vanishes, i.e. 𝛿𝐑Fp𝑖 = 𝟎. This is 
a consistency condition that can be used for finding 𝜕𝐅p𝑖∕𝜕𝑎𝜎 , similar to 
what is done in deriving consistent tangent moduli in classical plasticity 
models with return mapping schemes.

The consistency condition 𝛿𝐑Fp𝑖 = 𝟎 gives, after rewriting, the sought-
after derivative 𝜕𝐅p𝑖∕𝜕𝑎𝜎

𝛿Fp𝑖 = −

[

𝜕𝐑Fp𝑖
𝜕𝐅p𝑖

]−1

∶
𝜕𝐑Fp𝑖
𝜕𝑎𝜎

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝜕𝐅p𝑖
𝜕𝑎𝜎

𝛿𝑎𝜎 (51)

where the first term on the RHS is the Jacobian for the internal scheme 
(Eq. (48)). The second term on the RHS is given in Appendix  B.
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Fig. 6. Fiber reinforced polymer composite under off-axis tensile loading.
2.7.3. Consistent tangent modulus
The derivative of the Cauchy stress with respect to the deformation 

gradient reads 

𝜕𝝈
𝜕F =

𝑁
∑

𝑖

[

𝜕𝝈𝑖
𝜕Fe𝑖

∶
(

𝜕Fe𝑖
𝜕F +

𝜕Fe𝑖
𝜕Fp𝑖

∶
𝜕Fp𝑖
𝜕F

)

+
𝜕𝝈𝑖
𝜕𝒂

⋅
𝜕𝒂
𝜕F

]

(52)

where 𝜕Fe𝑖∕𝜕Fp𝑖, 𝜕𝝈𝑖∕𝜕Fe and 𝜕𝝈𝑖∕𝜕𝒂 are given by Eq. (A.12), (A.19) 
and (C.3). The derivatives 𝜕Fe𝑖∕𝜕F and 𝜕𝒂∕𝜕F can be found by differ-
entiating Equations (3) and (6). Furthermore, 𝜕Fp𝑖∕𝜕F in Eq. (52) reads 

𝜕Fp𝑖
𝜕F =

𝜕Fp𝑖
𝜕F

|

|

|

|

|𝑎𝜎

+
𝜕Fp𝑖
𝜕𝑎𝜎

⊗
𝜕𝑎𝜎
𝜕F (53)

where 𝜕𝐅p𝑖∕𝜕𝑎𝜎 is already given by Equations (51). Furthermore,
𝜕Fp𝑖∕𝜕F

|

|

|𝑎𝜎
 is derived through an additional consistency condition of the

internal scheme. For every fixed 𝑎𝜎 and varying F, the internal residual 
for mode 𝑖 vanishes between global iterations. Therefore 

𝛿𝐑Fp𝑖 =
𝜕𝐑Fp𝑖
𝜕𝐅p𝑖

∶ 𝛿Fp𝑖 +
𝜕𝐑Fp𝑖
𝜕F ∶ 𝛿F = 0 (54)

The derivative 𝜕Fp𝑖∕𝜕F||
|𝑎𝜎

 can be found by rewriting this expression 

𝛿Fp𝑖 = −

[

𝜕𝐑Fp𝑖
𝜕𝐅p𝑖

]−1

∶
𝜕𝐑Fp𝑖
𝜕F

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝜕Fp𝑖
𝜕F

|

|

|

|𝑎𝜎

∶ 𝛿F = 0 (55)

where the first term on the RHS is again the Jacobian of the internal
residual (see Eq. (48)) and the second term on the RHS is given in 
Appendix  C.

The third derivative 𝜕𝑎∕𝜕F on the RHS of Eq. (53), which is the same 
for each mode, is obtained with a single consistency condition of the
external scheme. At every global iteration, the external residual vanishes. 
Therefore 

𝛿𝑅𝑎𝜎 =
𝜕𝑅𝑎𝜎
𝜕F ∶ 𝛿F +

𝜕𝑅𝑎𝜎
𝜕𝑎𝜎

𝛿𝑎𝜎 = 0 (56)

Rewriting this equation yields 

𝛿𝑎𝜎 = −
[ 𝜕𝑅𝑎𝜎
𝜕𝑎𝜎

]−1 𝜕𝑅𝑎𝜎
𝜕F

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝜕𝑎
𝜕F

∶ 𝛿F (57)

where the derivative 𝜕𝑎∕𝜕F is identified. Note that 𝜕𝑅𝑎𝜎∕𝜕𝑎𝜎 is the 
Jacobian of the external scheme (Eq. (49)). The second term is given 
in Appendix  C.

Remark 6.  In total, 2𝑁 +1 consistency conditions are used to derive the 
tangent modulus.

3. Parameter identification

To determine the (single-mode) yield parameters of the mesoscopic 
constitutive model, we consider a material point under uniaxial tension 
8 
and compression with off-axis angle 𝜃0 at constant strain rate 𝜀̇ (see 
Fig.  6). In addition, we assume small deformations at the moment of 
yielding, such that: 𝒂̂ = 𝒂0, 𝝈 = 𝜮 = 𝜮sym, and 𝜎̄ = 𝛴̄. Furthermore, we 
choose an orthonormal basis {𝒆𝑖}𝑖=1,2,3 where unit vector 𝒆1 is aligned 
with the load direction. The flow rule (Eq. (8)) gives the rate of plastic 
deformation in the load direction 
𝐷p

11 =
𝜎0
𝜂0

sinh
(

𝜎̄
𝜎0

)

exp
(

−𝜇p
𝐼3
𝜎0

)

𝜕𝜎̄
𝜕𝜎11

(58)

Plastic and elastic deformations develop simultaneously until the rate 
of plastic deformation is equal to the applied strain rate (𝐷p

11 = 𝜖̇) 
upon which the stress reaches a plateau,4 which marks the moment 
of yielding. When the material yields, 𝜎̄ ≫ 𝜎0 and the hyperbolic sine 
function can be approximated with an exponential function 

𝜖̇ ≈
𝜎0
2𝜂0

exp
( 𝜎̄ − 𝜇p𝐼3

𝜎0

)

𝜕𝜎̄
𝜕𝜎11

(59)

This equation provides an analytical relation between the applied strain 
rate 𝜀̇ and the equivalent stress 𝜎̄ at the moment of yielding.

3.1. Transverse tension and compression

The parameters 𝜇p, 𝜎0 and 𝜂0 can be determined from stress–strain 
curves of uniaxial tension and compression under off-axis angle 𝜃0 =
90◦ at equal strain rates. For this angle, 𝐼2 is zero and 𝛼2 is eliminated 
from the equations. The transversely isotropic stress invariants at the 
moment of yielding read 

𝐼1 =
𝜎2y,90
4

, 𝐼2 = 0, 𝐼3 =

{

𝜎y,90t in tension
−𝜎y,90c in compression (60)

where 𝜎y,90 is the yield stress at 𝜃 = 90◦. Substitution in Eq. (23) and 
(30) and rewriting Eqs. (59) provides the following expressions of the 
yield stresses in tension 𝜎y,90t and compression 𝜎y,90c

𝜎y,90t =
𝜎0

1
√

2
+ 𝜇p

ln
(

2
√

2
𝜂0
𝜎0

𝜖̇
)

(61)

𝜎y,90c =
𝜎0

1
√

2
− 𝜇p

ln
(

2
√

2
𝜂0
𝜎0

|𝜖̇|
)

(62)

When the yield stresses 𝜎y,90t and 𝜎y,90c are known, 𝜇p is solved for, 
which gives the following closed-form relation 

𝜇p =
1
√

2

(𝜎y,90c − 𝜎𝑦,90𝑡
𝜎𝑦,90𝑐 + 𝜎𝑦,90𝑡

)

(63)

With 𝜇p known, 𝜎0 and 𝜂0 are determined from an Eyring plot for 
uniaxial compression. This requires at least two compression curves at 
different strain rates. Eq. (62) is rearranged as 

𝜎y,90c =
𝜎0 ln (10)
1
√

2
− 𝜇p

⏟⏞⏞⏟⏞⏞⏟
slope𝑚

[

log10(|𝜖̇|) + log10

(

2
√

2
𝜂0
𝜎0

)]

(64)

4 Under large deformations, a geometric hardening or softening response 

may occur due to re-orientation of the fibers.
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Table 1
Overview of all model parameters and required tests.
 Parameters Names Tests Identification method  
 𝐸11 , 𝐸22 , 𝐺12 , 𝜈21 Elastic constants Basic tests to identify elastic properties –  
 𝜇p Pressure parameter Transverse tension and compression testsa Eq. (63)  
 𝜂0 , 𝜎0 Eyring parameters Two transverse testsb Eqs. (65) and (66)  
 𝛼2 Anisotropy parameter Single off-axis test under tension or compression Eq. (67)  
 {𝑚𝑖}𝑁𝑖=1 , {𝜂0𝑖}

𝑁
𝑖=1 Relaxation spectrum Single off-axis test under tension or compression Procedure in Section 2.5 

a Same strain rate.
b At least two different strain rates.
where 𝑚 is the slope in a semi-log plot of yield stress 𝜎y,90c vs strain 
rate 𝜀̇. From the slope, 𝜎0 and 𝜂0 are given by

𝜎0 = 𝑚
⎛

⎜

⎜

⎝

1
√

2
− 𝜇p

ln (10)

⎞

⎟

⎟

⎠

(65)

𝜂0 =
𝜎0 10

𝜎y,90𝑐
𝑚

2
√

2 𝜀̇
(66)

3.2. Off-axis loading in tension

Parameter 𝛼2 can be obtained from any other test where 𝐼2 is non-
zero, for example the 𝜃0 = 30◦ case. By following the same steps as 
before, the analytical yield stress for this angle reads 

𝜎y,30t =
4𝜎0

𝜇p +
√

1
2 + 6𝛼2

ln

⎛

⎜

⎜

⎜

⎝

8
√

1
2 + 6𝛼2

𝜂0
𝜎0

𝜖̇

⎞

⎟

⎟

⎟

⎠

(67)

which is a nonlinear equation in its argument 𝛼2 that can be solved 
numerically, given 𝜂0, 𝜎0, 𝜇p, 𝜎y,30t and corresponding strain rate 𝜖̇.

3.3. Summary of model parameters

The parameters of the mesomodel are determined in the next section 
with a micromodel for carbon/PEEK under uniaxial off-axis strain rates. 
Alternatively, experimental off-axis coupon tests with oblique ends may 
be used Sun and Chung (1993). An overview of all model parameters, 
the required tests to obtain their values and the corresponding formulas 
presented in this section, is given in Table  1.

4. Numerical homogenization of a micromodel

The parameters of the mesoscopic material model are determined 
by homogenizing a previously calibrated micromodel, with periodic 
boundary conditions, for carbon/PEEK (Kovačević et al., 2022). The 
micromodel comprises of hyperelastic transversely isotropic fibers and 
viscoplastic polymer matrix, where the latter is modeled with the 
original isotropic EGP model (Tervoort et al., 1996; Van Breemen et al., 
2011). The micromodel and mesomodel are schematically depicted in 
Fig.  7.

4.1. Boundary conditions for off-axis loading

Applying off-axis loads to the micromodel (as shown in Fig.  6) is not 
straightforward. Since periodic boundary conditions are applied, it is 
not possible to vary the fiber angle inside the micromodel, which would 
violate the assumption of continuous fibers as imposed by the period-
icity. Instead, off-axis loading is achieved by aligning the micromodel 
with the fibers, while a global deformation is applied in the local frame 
of the micromodel. Since the local frame changes under off-axis loading 
due to re-orientation of the fibers (see Fig.  6), a special constraint 
equation is used that accounts for these re-orientations (Kovačević and 
van der Meer, 2022; Kovačević et al., 2024).

In contrast, global deformations can straightforwardly be applied 
on a single element with the mesoscopic model. Off-axis loading is then 
9 
Table 2
Elasticity constants.
 𝐸1 [GPa] 𝐸2 [GPa] 𝐺12 [GPa] 𝜈21  
 55.5 7.4 4.8 0.016 

Table 3
Plasticity parameters.
 𝜇p 𝜎0 [MPa] 𝜂0 [MPa s] 𝛼2  
 0.053 1.71 5.90 × 1029 1.147 

Table 4
Relaxation spectrum.
Mode 𝑖 𝑚𝑖 [–] 𝜂0𝑖 [MPa s] Mode 𝑖 𝑚𝑖 [–] 𝜂0𝑖 [MPa s]

1 0.020 1.002 × 106 13 0.014 2.453 × 1024

2 0.033 1.486 × 109 14 0.023 1.131 × 1025

3 0.040 1.025 × 1012 15 0.014 1.654 × 1025

4 0.053 1.963 × 1014 16 0.016 3.367 × 1025

5 0.051 2.726 × 1016 17 0.018 7.969 × 1025

6 0.054 1.089 × 1018 18 0.021 1.920 × 1026

7 0.056 6.664 × 1019 19 0.006 9.983 × 1025

8 0.034 3.867 × 1020 20 0.029 7.309 × 1026

9 0.037 6.447 × 1021 21 0.052 4.257 × 1027

10 0.031 4.479 × 1022 22 0.011 1.396 × 1027

11 0.034 2.799 × 1023 23 0.029 6.464 × 1027

12 0.032 2.048 × 1024 24 0.292 5.920 × 1029

achieved by varying the initial fiber direction vector 𝒂0, while applying 
the load in the 𝒆1-direction. Although the methods to apply boundary 
conditions on the micromodel and the mesomodel are different, the 
resulting (global) deformations are the same.

4.2. Elasticity parameters

The elasticity parameters of the mesoscopic material model are 
determined by subjecting the micromodel to three basic load cases: 
longitudinal tension, longitudinal shear and transverse shear. The trans-
versely isotropic elasticity constants are given in Table  2.

4.3. Plasticity parameters

The mesoscopic yield parameters are obtained with the analytical 
expressions derived in Section 3. To obtain the pressure-dependency 
parameter 𝜇p, the micromodel is subjected to uniaxial transverse com-
pression and tension under true strain rate 𝜀̇ = 10−3 s−1. For finding 
𝜂0 and 𝜎0, the micromodel is subjected to three strain rates under 
transverse compression. The stress–strain curves are shown in Fig.  8. 
Note that these curves do not reach a plateau due to hardening, which 
obscures a clear yield point. In this work, the point at which the stress 
starts to increase almost linearly is chosen as the ‘yield’ stress. The 
resulting mesoscopic parameters are tabulated in Table  3. The fit of 
the Eyring curve (Eq. (64)) with the transverse compression yield data 
is shown in Fig.  9.

The micromodel is subjected to uniaxial tension under off-axis angle 
𝜃0 = 30◦ and true strain rate 𝜀̇ = 10−3 s−1. The parameter 𝛼2 is 
first determined by solving Eq. (67). With all single-mode parameters 
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Fig. 7. Micromodel with hyperelastic fibers and isotropic EGP model for the matrix vs mesomodel with proposed invariant-based EGP model and fiber direction 
vector 𝒂0.
Fig. 8. Input curves generated with micromodel at 𝜃0 = 90◦: (left) transverse tension and compression under strain rate 𝜀̇ = 10−3 s−1 and (right) transverse 
compression under three different strain rates. The yield stresses are indicated with a dot.
Fig. 9. Eyring fit (Eq. (64)) of yield stress versus strain rate for 𝜃0 = 90◦ in 
compression.

known, a multimode relaxation spectrum, with 24 modes is determined 
by following the procedure as outlined in Section 2.5. This number of 
modes follows from the recommendation in Ref. Amiri-Rad et al. (2019) 
and Van Breemen et al. (2011), to include one mode per decade in the 
relaxation spectrum, ensuring an accurate pre-yield and creep response. 
A smaller number of modes may introduce spurious oscillations in the 
stress–strain curve (Van Breemen et al., 2011).

Applying the method by Refs. Van Breemen et al. (2011) and Amiri-
Rad et al. (2019) (as outlined in Section 2.5) to the present mesoscopic 
model, resulted in a slight mismatch between the input and output 
results. Therefore, the input curve is iteratively adjusted such that the 
output curve matched with the original input curve. The relaxation 
spectrum is tabulated in Table  4. With the ratios {𝑚𝑖}, the elasticity 
parameters are obtained for each mode with Eq. (41) and Table  2. The 
resulting stress–strain curve is shown in Fig.  10.
10 
Fig. 10. Multimode calibration with uniaxial tension under 𝜃0 = 30◦ and 𝜀̇ =
10−3 s−1: output curve with mesomodel (meso) vs input curve with micromodel 
(micro).

Remark 7.  Other invariant-based (Perzyna-type) viscoplasticity mod-
els (Koerber et al., 2018; Gerbaud et al., 2019; Rodrigues Lopes et al., 
2022), more suitable for unidirectional thermosetting polymer compos-
ites, require six hardening functions as inputs (obtained from bi-axial 
tension/compression, longitudinal shear, transverse shear and uniaxial 
tension/compression tests) to describe the nonlinear rate-dependent 
plastic response. However, obtaining transverse shear and biaxial test 
data through experiments is not straightforward. Therefore, these hard-
ening functions are usually deduced from other tests, engineering as-
sumptions or micromechanical models (Vogler et al., 2013). With the 
present invariant-based non-Newtonian flow model for thermoplastic
polymer composites, the yield stress is determined by the mode with 
the highest initial viscosity (see Fig.  4), and thus, only four parameters 
are required. These parameters can be determined from a small number 
of off-axis constant strain-rate tests as shown in this section with a 
micromodel, or from off-axis coupon tests with oblique ends under 
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Fig. 11. Stress–strain curves under various initial off-axis angles 𝜃0 and constant strain rate 𝜀̇ = 10−3 s−1 in tension and compression: micromodel (dashed line) vs
mesomodel (solid line).
(almost) uniform stress states (Sun and Chung, 1993). Subsequently, 
the pre-yield nonlinearity is described by a relaxation spectrum, which 
can be determined from a single stress–strain curve under off-axis 
loading. Therefore, a significant reduction in the amount of necessary 
inputs is achieved with the present invariant-based constitutive model.

5. Results

The material parameters of the mesomodel are determined in the 
previous section through calibration against a micromodel for car-
bon/PEEK (Kovačević et al., 2022). For this purpose, no more than 
five stress–strain curves were used. The performance of the mesoscopic 
constitutive model in simulating rate-dependent plasticity and creep is 
studied in this section. First, its capability in representing a material 
point of a composite under various off-axis angles, strain-rates and 
creep loads is assessed with a single element, under the assumption of 
a uniform deformation (see Fig.  6). Subsequently, the model is applied 
to the simulation of ply-level off-axis specimens and compared against 
experiments (Sundararajan, 2024).

5.1. Constant strain rate

The microscale and mesoscale model are subjected to constant true 
strain rates 𝜀̇ (s−1) ∈ {10−5, 10−4, 10−3} under off-axis angles 𝜃 (◦) ∈
{90, 45, 30, 15, 0} in tension and compression.
 Direction-dependence Fig.  11 shows the stress–strain curves with 
𝜀̇ = 10−3 s−1 and various off-axis angles 𝜃0. It is observed that the 
strongly anisotropic response of the micromodel is well represented 
with the mesoscale model: under 𝜃0 = 0◦, the response is elastic, 
whereas under off-axis loading, it is viscoplastic. It is worth noting 
that the rather simple approach, as described in Section 2.5, of finding 
a relaxation spectrum with a single stress–strain curve, gives a good 
pre-yield response for all off-axis angles and strain rates.

With both the micromodel and the mesomodel under off-axis angle 
𝜃0 = 15◦ in tension, an increasing stiffness (hardening) is observed in 
the post-yield regime, whereas under compression, a softening response 
is obtained. When off-axis tensile loads are applied to the composite 
material, the fibers progressively align with the load direction (see Fig. 
6). This re-orientation of the fibers is captured by the mesoscale model 
and is numerically depicted in Fig.  12. In contrast, under compression, 
the opposite effect takes place where the off-axis angle increases, 
leading to a softening response. The agreement between the two models 
indicates that the re-orientation of the fibers is captured just as well 
in the mesoscopic constitutive model as in the micromodel where the 
fibers are explicitly modeled.
11 
Fig. 12. Evolution of the off-axis angle 𝜃 with the mesoscale model for two
initial off-axis angles 𝜃0 (◦) ∈ {15, 30}.

 Rate-dependence The stress–strain curves with off-axis angles 
𝜃0 (◦) ∈ {15, 30, 45, 90} and constant strain rates 𝜀̇

(

s−1
)

∈
{10−5, 10−4, 10−3} in tension are shown in Fig.  13. It can be observed 
that the rate-dependence, which describes an increasing yield stress 
with increasing strain rate, is accurately reflected by the mesoscale 
model. The yield stresses from the mesoscale model are indicated in Fig. 
13 and plotted against strain rates 𝜀̇ on a double logarithmic scale for 
each off-axis angle 𝜃0 in Fig.  14. In line with experimental observations 
for unidirectional polymer composites (Erartsin et al., 2022), the curves 
are parallel, indicating a factorizable dependence of yield stress on 
strain rate 𝜀̇ and off-axis angle 𝜃0.
 Pressure-dependence The stress–strain curves of the micromodel 
and the mesomodel under transverse tension and compression with 
𝜀̇ = 10−3 s−1 are shown in Fig.  15. It can be observed that the response 
is accurate until the yield point. However, after yielding, a hardening 
response is observed with the micromodel. In the isotropic EGP for the 
matrix material of the micromodel, an (elastic) hardening contribution 
is present (Kovačević et al., 2024), representing polymer chain re-
orientation, which is currently not included in the mesoscale model. 
In contrast, under off-axis loading, the post-yield hardening response is 
captured by the mesoscale model (see Fig.  13). This type of hardening 
is due to re-orientation of fibers and is of geometric nature (see Figs. 
6 and 12). Under pure transverse loading, re-orientation of the fibers 
does not occur while polymer chain re-orientation of the matrix does 
take place.

Under transverse tensile loading, Carbon/PEEK fractures before a 
fully developed plastic response is reached due to large hydrostatic 
stresses in the polymer matrix. The post-yield hardening response is 
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Fig. 13. Rate-dependence under uniaxial tension with various initial off-axis angles 𝜃0 and strain rates 𝜀̇: micromodel (dashed line) vs. mesomodel (solid line). 
The yield stresses are indicated with a dot.
Fig. 14. Yield stress as function of strain rate for various off-axis angles 𝜃0 with mesoscale model. The figure on the left contains the curves of all off-axis angles, 
whereas the figure on the right omits the curve for 𝜃0 = 15◦ to show the rate-dependence on a smaller range of 𝑦-axis values.
Fig. 15. Transverse tension and compression under off-axis angle 𝜃0 = 90◦: 
micromodel (dashed line) with yield stresses (indicated with a dot) vs. meso-
model (solid line).

therefore less relevant under tensile loading. However, for a more accu-
rate post-yield response under transverse compression, an (anisotropic) 
hardening contribution can be included to account for this effect.
 Time-step dependence The time-step dependence of the time in-
tegration scheme, with the Padé approximation (Eq. (45)), is assessed 
by comparing the response obtained with adaptive stepping based on 
global iterations (Hofman et al., 2024), to the response with fixed time 
increments. For this purpose, simulations with off-axis constant strain 
rates 𝜀̇ = 10−3 s−1 under 𝜃0 = 15◦ and 90◦ are used for the comparison. 
The simulations with fixed time steps are performed with 𝛥𝑡 = 1.0 s
and 0.25 s, resulting in strain increments 𝛥𝜀 = 10−3 and 2.5 × 10−4, 
respectively. Fig.  16 shows the stress–strain curves, from which it is 
concluded that time-step dependence of the time integration scheme is 
negligible. In combination with the fully consistent tangent stiffness, 
adaptive stepping based on global iterations is possible for efficient 
simulations with high accuracy.
12 
Fig. 16. Time-step dependence: stress–strain curves with two different fixed 
time-steps and adaptive steps. The markers denote the time-steps.

5.2. Creep

An important feature of the EGP model is the capability to simulate 
not only rate-dependent plasticity but also creep in polymers. This 
also holds for the present mesoscopic version for polymer composites. 
To assess the performance under creep, the micro- and meso-scale 
models are subjected to a constant tensile engineering stress rate until a 
specified stress level is reached in 10 s. After this phase, the engineering 
stress is kept constant.

The engineering strain as a function of time is shown in Fig.  17 
for four off-axis angles 𝜃 (◦) ∈ {90, 45, 30, 15}. For each angle, three 
different engineering stress levels are applied, as indicated in the 
figures. It can be observed that for all off-axis angles, the strains 
of the mesomodel during the ramp-up to the maximum engineering 
stress are in close agreement with those of the micromodel. This is 
expected since the mesoscale model parameters were determined with 
(short-term) constant-strain rate data (Section 4). After reaching the 
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Fig. 17. Creep response under various off-axis angles 𝜃0 and engineering stress levels 𝜎eng: micromodel (dashed line) vs. mesomodel (solid line).
Fig. 18. Ply simulation: mesh and initial off-axis angle 𝜃0 of the fiber with respect to the load.
maximum applied stress level, the creep response with 𝜃0 = 45◦ is very 
similar to that of the micromodel. However, for the other angles, the 
match is adequate but not as good as with 𝜃0 = 45◦. It is somewhat 
surprising that, although the 𝜃0 = 30◦ off-axis angle has been used 
for determining the multi-mode relaxation spectrum (see Fig.  10), the 
match in creep is worse than with the other off-axis angles. A parameter 
identification procedure which includes creep data, e.g. through a 
compliance-time master curve from a series of creep tests at different 
stress levels (Tervoort et al., 1996), may improve the creep response.

5.3. Unidirectional ply under off-axis tensile loading

So far, material point analyses have been carried out with the 
mesoscale model. In this section, the mesoscale model is used for the 
simulation of a unidirectional ply with dimensions 120×15×1.8mm. The 
three-dimensional mesh, consisting of 240 trilinear finite elements, is 
shown in Fig.  18. On each end of the specimen, the displacements in the 
𝒆2- and 𝒆3-direction are fixed, mimicking the constraining effect of the 
grips in the experimental test (Sundararajan, 2024). In the 𝒆1-direction, 
a constant engineering strain rate of 𝜀̇eng = 10−4 s−1 is enforced. This 
is achieved by applying a displacement rate 𝑢̇ = 120 𝜀̇eng at one end, 
while at the other end, the displacement is fixed. The engineering stress 
𝜎eng is computed from the resulting force in 𝒆1-direction, divided by the 
undeformed area of the surface at the end. Simulations are performed 
with four initial off-axis angles 𝜃0 (◦) ∈ {15, 30, 45, 90}.

The engineering stress–strain curves are shown in Fig.  19. The ply 
simulations give an excellent match with the experiments for 𝜃 = 30◦, 
0
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45◦ and 90◦. For 𝜃0 = 15◦, although the pre-yield stiffness is slightly 
over-predicted and the post-yield hardening response is slightly under-
predicted, the overall agreement is satisfactory. It has been observed in 
Section 5.1 that the mesomodel and micromodel under uniform tension 
with 𝜃0 = 15◦ showed a pronounced upswing of the stress after yielding 
(see Fig.  11), due to an increasing alignment of the fibers with the load 
direction. The same type of re-orientation is prevented by the grips in 
the coupon test and this constraining effect is captured by simulating 
the ply with the mesomodel. This can be illustrated by plotting the 
evolution of off-axis angle (𝜃) and plastic deformation component in 
𝒆1-direction (𝐹 p

11), for the mode with the highest initial viscosity (mode 
24 in Table  4), at three different time-steps (see Fig.  20). As the fibers 
tend to align with the load direction near the ends (𝜃 < 𝜃0), the off-
axis angles increase in the middle of the specimen (𝜃 > 𝜃0), which 
is opposite to the direction of re-orientation as was previously seen 
with the single element test under tension (see Fig.  12). This increase 
of matrix-dominated loading, combined with the presence of stress 
concentrations in the ply specimen, results in an earlier development 
of plasticity with respect to the single element and a better match with 
the experiments (see Fig.  20, top).

The deformations in the coupon test are inhomogeneous and cannot 
be used directly as material input. To obtain a more homogeneous de-
formation state, off-axis specimens with oblique tabs may be used (Sun 
and Chung, 1993). The analytical parameter identification procedure 
outlined in Section 3 may then be directly applied to experimental 
data of off-axis constant strain rates, without requiring a pre-calibrated 
micromodel to generate inputs for the mesoscopic constitutive model.
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Fig. 19. Ply simulations vs. experiments with 𝜃0 (◦) = {15, 30, 45, 90}. The 
experiment with 𝜃0 = 90◦ fractured (indicated with ∗) before plasticity fully 
developed.

6. Conclusion

A mesoscopic constitutive model for simulating rate-dependent plas-
ticity and creep in unidirectional thermoplastic composites has been 
presented. The model is an extension of a viscoplastic material model 
for isotropic polymers with an Eyring-type non-Newtonian flow rule. 
Strong anisotropy is incorporated through the use of three transversely 
isotropic stress invariants in the flow rule. As a result, plastic flow 
in fiber direction is removed and pressure-dependency of the polymer 
matrix is taken into account by extending the Eyring relation with 
anisotropic pressure dependence. An important feature of the present 
invariant-based anisotropic viscoplasticity model is that it can describe 
both rate-dependent plasticity and creep in thermoplastic polymer 
composites with non-Newtonian flow.

The constitutive equations are implicitly integrated, which allows 
for the use of relatively large time steps. Furthermore, a consistent 
tangent stiffness modulus has been derived by linearizing the stress 
update algorithm. The model requires four viscoplasticity-related in-
put parameters to describe direction-, rate- and pressure-dependent 
plasticity and creep, obtained from a few stress–strain curves under 
off-axis loading. For an accurate pre-yield and creep response, multiple 
modes can be used with a relaxation spectrum determined from a single
stress–strain curve. In this manuscript, a micromodel for unidirectional 
carbon/PEEK is used to determine the mesocale model parameters. 
However, off-axis coupon tests with oblique ends may also be used.

The mesoscopic constitutive model has been compared to a pre-
viously developed micromodel for unidirectional carbon/PEEK. It has 
been shown that the mesoscale model gives a response similar to 
the micromodel under various strain rates and off-axis angles. How-
ever, under transverse compression, a hardening contribution can be 
included for an improved post-yield response. The model gives satisfac-
tory results under creep, although not as good as under constant strain 
rates. This may indicate that the parameter identification procedure, 
solely based on (short-term) constant strain rate data, requires further 
improvements.

Finally, the mesoscale model has been applied to the simulation of 
unidirectional composite coupon tests under off-axis strain rates and 
shows a good agreement with experiments. The development of the 
mesoscopic constitutive model, with a few model parameters, while 
retaining a high degree of the accuracy of a detailed micromodel, is 
an important step towards virtual testing of thermoplastic composite 
laminates. Further extensions can be made to cover multiple relaxation 
processes and to include temperature dependence.
 Summary of contributions The EGP model has been extended for 
unidirectional thermoplastic composites. Compared to other anisotropic
versions of the EGP model for short and long fiber composites (Amiri-
Rad et al., 2019; Amiri-Rad et al., 2021), new features of the present 
model are:
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• Strong anisotropy is described by transversely isotropic stress 
invariants

• Plastic flow in fiber direction is removed
• The Eyring-type viscosity function is extended with anisotropic 
pressure dependence

• The constitutive equations are implicitly integrated and consis-
tently linearized

• The model is formulated in global frame and does not require 
rotations to local frame

Compared to previous invariant-based Perzyna-type viscoplasticity
models for unidirectional composites (Koerber et al., 2018; Gerbaud 
et al., 2019; Rodrigues Lopes et al., 2022):

• An Eyring-type non-Newtonian flow rule, suitable for thermoplas-
tic composites, is used to describe both rate-dependent plasticity 
and creep

• Only four parameters and a relaxation spectrum are required, 
which can be obtained from a small number of off-axis tests 
(either with a micromodel or with off-axis coupon tests with 
oblique ends)

• The present anisotropic model allows for future extensions re-
garding the effects of aging (Klompen et al., 2005), temperature 
dependence (Tervoort et al., 1998) and to cover multiple relax-
ation processes (Klompen and Govaert, 1999) through the Eyring 
relation
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Appendix A. Jacobian internal Newton–Raphson scheme

The Jacobian for solving the plastic deformation gradient 𝐅p𝑖 with 
the internal scheme of each mode 𝑖 is determined in this appendix. To 
improve readability, subscript 𝑖 is dropped and index notation is used. 
The residual for each mode reads 
𝑅
Fp𝑖
𝑖𝑗 = 𝐹 p

𝑖𝑗 − 𝑓𝑖𝑗 (A.1)

where 
𝑓𝑖𝑗 = 𝛱𝑖𝑘𝐹

p,0
𝑘𝑗 (A.2)

with 

𝛱𝑖𝑘 =
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𝛿𝑙𝑘 +
𝛥𝑡
2
𝐷̂p

𝑙𝑘
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(A.3)
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Fig. 20. Ply simulation with 𝜃0 = 15◦: evolution of fiber angle 𝜃 (left) and plastic deformation 𝐹 p
11 in load direction for the mode with highest initial viscosity 

(right) at indicated time instances on the stress–strain plot (top). For comparison, the response of a single element test with 𝜀̇eng = 10−4 s−1 and the experimental 
curve are added to the stress–strain diagram. Deformed mesh is magnified (×5).
Taking the derivative of Eq. (A.1) with respect to the plastic deforma-
tion gradient gives the Jacobian 

𝜕𝑅
Fp𝑖
𝑖𝑗

𝜕𝐹 p
𝑚𝑛

= 𝛿𝑖𝑚𝛿𝑗𝑛 −
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The other derivatives read
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The derivative of the Cauchy stress with respect to the elastic deforma-
tion in Eq. (A.15) is given as
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The other terms in Eq. (A.16)–(A.18) can be expanded as
𝜕𝐼1
𝜕𝑎̂𝑚

= 𝛴pind
𝑟𝑠

𝜕𝛴pind
𝑟𝑠

𝜕𝑎̂𝑚
−

𝜕𝐼2
𝜕𝑎̂𝑚

(A.26)

𝜕𝐼2
𝜕𝑎̂𝑚

= 𝛴pind
𝑚𝑗 𝛴pind

𝑗𝑘 𝑎̂𝑘 + 𝑎̂𝑞𝛴
pind
𝑞𝑝 𝛴pind

𝑝𝑚 +
𝜕𝐼2

𝜕𝛴pind
𝑟𝑠

𝜕𝛴pind
𝑟𝑠

𝜕𝑎̂𝑚
(A.27)

𝜕2𝐼1
𝜕𝛴sym

𝑟𝑠 𝜕𝛴sym
𝑘𝑙

=
⎛

⎜

⎜

⎝

P̂𝑖𝑗𝑟𝑠 −
𝜕2𝐼2

𝜕𝛴sym
𝑟𝑠 𝜕𝛴pind

𝑖𝑗

⎞

⎟

⎟

⎠

P̂𝑖𝑗𝑘𝑙 (A.28)

𝜕2𝐼2
𝜕𝛴sym

𝑟𝑠 𝜕𝛴sym
𝑘𝑙

=
𝜕2𝐼2

𝜕𝛴sym
𝑟𝑠 𝜕𝛴pind

𝑖𝑗

P̂𝑖𝑗𝑘𝑙 (A.29)

𝜕2𝐼1
𝜕𝑎̂𝑚𝜕𝛴

sym
𝑘𝑙

=
𝜕𝐼1

𝜕𝛴pind
𝑖𝑗

𝜕P̂𝑖𝑗𝑘𝑙

𝜕𝑎̂𝑚
+
⎛

⎜

⎜

⎝

𝜕𝛴pind
𝑖𝑗

𝜕𝑎̂𝑚
−

𝜕2𝐼2
𝜕𝑎̂𝑚𝜕𝛴

pind
𝑖𝑗

⎞

⎟

⎟

⎠

P̂𝑖𝑗𝑘𝑙 (A.30)

𝜕2𝐼2
𝜕𝑎̂𝑚𝜕𝛴

sym
𝑘𝑙

=
𝜕𝐼2

𝜕𝛴pind
𝑖𝑗

𝜕P̂𝑖𝑗𝑘𝑙

𝜕𝑎̂𝑚
+

𝜕2𝐼2
𝜕𝑎̂𝑚𝜕𝛴

pind
𝑖𝑗

P̂𝑖𝑗𝑘𝑙 (A.31)

where

𝜕𝛴pind
𝑟𝑠

𝜕𝑎̂𝑚
=

𝜕𝛴pind
𝑟𝑠

𝜕P̂𝑖𝑗𝑘𝑙

𝜕P̂𝑖𝑗𝑘𝑙

𝜕𝑎̂𝑚
(A.32)

𝜕P̂𝑖𝑗𝑘𝑙

𝜕𝑎̂𝑚
=

𝜕P̂𝑖𝑗𝑘𝑙

𝜕𝐴̂𝑟𝑠

𝜕𝐴̂𝑟𝑠
𝜕𝑎̂𝑚

(A.33)

𝜕2𝐼2
𝜕𝑎̂𝑚𝜕𝛴

pind
𝑖𝑗

=
⎛

⎜

⎜

⎝

𝜕𝐴̂𝑖𝑟
𝜕𝑎̂𝑚

𝛴pind
𝑟𝑗 + 𝐴̂𝑖𝑟

𝜕𝛴pind
𝑟𝑗

𝜕𝑎̂𝑚
+

𝜕𝛴pind
𝑖𝑟

𝜕𝑎̂𝑚
𝐴̂𝑟𝑗 + 𝛴pind

𝑖𝑟

𝜕𝐴̂𝑟𝑗

𝜕𝑎̂𝑚

⎞

⎟

⎟

⎠

(A.34)

The remaining derivatives can be computed at each internal iteration
𝜕2𝐼2

𝜕𝛴sym
𝑟𝑠 𝜕𝛴pind

𝑖𝑗

=
(

𝐴̂𝑖𝑚P̂𝑚𝑗𝑟𝑠 + P̂𝑖𝑚𝑟𝑠𝐴̂𝑚𝑗
)

(A.35)

𝜕𝐼1
𝜕𝛴pind

𝑟𝑠

= 2𝛴pind
𝑟𝑠 (A.36)

𝜕𝐼2
𝜕𝛴pind

𝑟𝑠

= 𝐴̂𝑟𝑘 𝛴
pind
𝑘𝑠 + 𝛴pind

𝑟𝑗 𝐴̂𝑗𝑠 (A.37)

𝜕𝛴pind
𝑟𝑠

𝜕P̂𝑖𝑗𝑘𝑙
= 𝛿𝑖𝑟𝛿𝑗𝑠𝛴𝑘𝑙 (A.38)

𝜕P̂𝑖𝑗𝑘𝑙

𝜕𝐴̂𝑟𝑠
= −3

2
(

𝛿𝑖𝑟𝛿𝑗𝑠𝐴̂𝑘𝑙 + 𝐴̂𝑖𝑗𝛿𝑘𝑟𝛿𝑙𝑠
)

+ 1
2
(

𝛿𝑘𝑙𝛿𝑖𝑟𝛿𝑗𝑠 + 𝛿𝑖𝑗𝛿𝑘𝑟𝛿𝑙𝑠
)

(A.39)
𝜕𝐴̂𝑟𝑠
𝜕𝑎̂𝑚

= 𝛿𝑟𝑚𝑎̂𝑠 + 𝑎̂𝑟𝛿𝑠𝑚 (A.40)

Appendix B. Derivatives external scheme

∙ The derivatives in Eq. (46) are given as 
𝜕𝑅𝑎𝜎
𝜕𝜎̄

= − 1
𝜎0

[

sinh−1 (𝜎̄∕𝜎0) −
𝜎̄
𝜎0

cosh (𝜎̄∕𝜎0)
sinh2 (𝜎̄∕𝜎0)

]

exp
(

−𝜇
𝐼3
𝜎0

)

(B.1)

𝜕𝑅𝑎𝜎
𝜕𝐼3

=
𝜎̄∕𝜎0

sinh (𝜎̄∕𝜎0)
exp

(

−𝜇
𝐼3
𝜎0

)

𝜇
𝜎0

(B.2)

𝜕𝐼3
𝜕𝝈

=
(

𝐈 − 𝐀̄
)

(B.3)

∙ Applying the chain rule to the second term on the RHS of Eq. (51) 
yields 
𝜕𝐑Fp𝑖
𝜕𝑎𝜎

= −
𝜕𝒇 𝑖
𝜕𝜫 𝑖

∶
𝜕𝜫 𝑖

𝜕𝐃̂p𝑖
∶
𝜕𝐃̂p𝑖

𝜕𝑎𝜎
(B.4)

where 𝜕𝐃̂p,𝑖∕𝜕𝑎𝜎 = −𝜎̄∕
(

𝜂0𝑖𝑎2𝜎
)

𝐍̂p,𝑖 = −1∕𝑎𝜎𝐃̂p,𝑖 The expressions for 
𝜕𝒇 ∕𝜕𝜫  and 𝜕𝜫 ∕𝜕𝐃̂  are given by Eq. (A.5) and (A.6), respectively.
𝑖 𝑖 𝑖 p𝑖
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Appendix C. Derivatives for consistent tangent modulus

∙ The derivative 𝜕𝐑Fp𝑖∕𝜕F in Eq. (55) reads 
𝜕𝐑Fp𝑖
𝜕F = −

𝜕𝒇
𝜕𝜫

∶ 𝜕𝜫
𝜕𝐃̂p𝑖

∶
𝜕𝐃̂p𝑖

𝜕𝜮sym
𝑖

∶
𝜕𝜮sym

𝑖
𝜕𝜮𝑖

∶

[

𝜕𝜮𝑖
𝜕Fe𝑖

∶
𝜕Fe𝑖
𝜕F +

𝜕𝜮𝑖
𝜕𝝈𝑖

∶
𝜕𝝈𝑖
𝜕𝒂

⋅
𝜕𝒂
𝜕F

]

(C.1)

The derivatives 𝜕𝒇∕𝜕𝜫 , 𝜕𝜫∕𝜕𝐃̂p𝑖, 𝜕𝜮𝑖∕𝜕Fe𝑖 and 𝜕𝝈𝑖∕𝜕𝒂, are given by 
Eq. (A.5), (A.6), (A.15) and (C.3), respectively. The other terms can 
be derived by differentiating Equations (3), (6) and (12). Applying the 
chain rule to 𝜕𝐃̂p𝑖∕𝜕𝜮sym gives 
𝜕𝐃̂p𝑖

𝜕𝜮sym = 1
𝜂𝑖

[

𝐍̂p𝑖 ⊗
𝜕𝛴̄𝑖

𝜕𝜮sym
𝑖

+ 𝛴̄𝑖
𝜕𝐍̂p𝑖

𝜕𝜮sym
𝑖

]

(C.2)

where 𝜕𝛴̄𝑖∕𝜕𝜮
sym
𝑖 = 𝐍̂p𝑖 and 𝜕𝐍̂p𝑖∕𝜕𝜮

sym
𝑖  is given by Eq. (A.16). The 

derivative 𝜕𝝈𝑖∕𝜕𝒂 in Eq. (C.1) reads
𝜕𝝈𝑖
𝜕𝒂

= 1
𝐽e𝑖

[

𝜦1 +𝜦2 +𝜦3 +𝜦4
]

(C.3)

𝜦1 = 4𝛽𝑖
(

𝐁e𝑖 ⊗ 𝒂
)

(C.4)

𝜦2 = 2
[

𝛼𝑖 + 𝛽𝑖
(

𝜉1𝑖 − 3
)

+ 2𝛾
(

𝜉2𝑖 − 1
)] 𝜕𝐀

𝜕𝒂
(C.5)

𝜦3 = 8𝛾𝑖 (𝐀⊗ 𝒂) (C.6)

𝜦4 = −𝛼𝑖
(

𝐁e𝑖 ⋅
𝜕𝐀
𝜕𝒂

+ 𝜕𝐀
𝜕𝒂

⋅ 𝐁e𝑖

)

(C.7)

where derivative 𝜕𝐀∕𝜕𝒂 is given in Eq. (A.40), by replacing 𝐀̂ and 𝒂̂
with 𝐀 and 𝒂.
∙ The derivative 𝜕𝑅𝑎𝜎∕𝜕F in equation Eq. (57) reads 

𝜕𝑅𝑎𝜎
𝜕F =

[ 𝜕𝑅𝑎𝜎
𝜕𝜎̄

𝜕𝜎̄
𝜕𝝈

+
𝜕𝑅𝜎
𝜕𝐼3

𝜕𝐼3
𝜕𝝈

]

∶
𝑁
∑

𝑖

𝜕𝝈𝑖
𝜕F +

[

𝜕𝑅𝜎
𝜕𝜎̄

𝜕𝜎̄
𝜕𝒂̄

+
𝜕𝑅𝑎𝜎
𝜕𝐼3

𝜕𝐼3
𝜕𝒂̄

]

⋅
𝜕𝒂̄
𝜕F

(C.8)

where the 𝜕𝑅𝑎𝜎∕𝜕𝜎̄, 𝜕𝑅𝑎𝜎∕𝜕𝐼3, 𝜕𝐼3∕𝜕𝝈 are given by Eq. (B.1)–(B.3), 
respectively. Derivative 𝜕𝒂̄∕𝜕𝐅 is given by Eq. (A.14), replacing 𝒂̂ by 
𝒂. The other derivatives read
𝜕𝐼3
𝜕𝒂̄

= −2𝝈 ⋅ 𝒂̄ (C.9)

𝜕𝜎̄
𝜕𝒂̄

= 1
𝜎̄

(

𝜕𝐼1
𝜕𝒂̄

+ 𝛼2
𝜕𝐼2
𝜕𝒂̄

)

(C.10)

𝜕𝜎̄
𝜕𝝈

= 1
𝜎̄

(

𝜕𝐼1
𝜕𝝈

+ 𝛼2
𝜕𝐼2
𝜕𝝈

)

(C.11)

𝜕𝝈𝑖
𝜕F =

𝜕𝝈𝑖
𝜕Fe𝑖

∶
[

𝜕Fe𝑖
𝜕F +

𝜕Fe𝑖
𝜕Fp𝑖

∶
𝜕Fp𝑖
𝜕F

]

+
𝜕𝝈𝑖
𝜕𝒂

⋅
𝜕𝒂
𝜕F (C.12)

where {𝜕𝐼𝑗∕𝜕𝒂̄}𝑗=1,2 and {𝜕𝐼𝑗∕𝜕𝝈}𝑗=1,2 are derived in Section 2.3.2 and 
can be found by replacing intermediate configuration quantities 𝜮pind

𝑖
and 𝒂̂𝑖 for each mode 𝑖 by total current configuration quantities 𝝈 and 
𝒂. The derivative 𝜕Fp𝑖∕𝜕F in Eq. (C.12) is found by solving the first 
consistency condition (see Eq. (55)).

Data availability

Data presented in this article are available at the 4TU.ResearchData 
repository through https://doi.org/10.4121/31233fa5-228f-448d-a415
-e6a7b6f8e6b4.

References

Akkerman, R., Bouwman, M., Wijskamp, S., 2020. Analysis of the thermoplastic 
composite overmolding process: Interface Strength. Front. Mater. 7, 27. http:
//dx.doi.org/10.3389/fmats.2020.00027.

https://doi.org/10.4121/31233fa5-228f-448d-a415-e6a7b6f8e6b4
https://doi.org/10.4121/31233fa5-228f-448d-a415-e6a7b6f8e6b4
https://doi.org/10.4121/31233fa5-228f-448d-a415-e6a7b6f8e6b4
https://doi.org/10.4121/31233fa5-228f-448d-a415-e6a7b6f8e6b4
https://doi.org/10.4121/31233fa5-228f-448d-a415-e6a7b6f8e6b4
https://doi.org/10.4121/31233fa5-228f-448d-a415-e6a7b6f8e6b4
https://doi.org/10.4121/31233fa5-228f-448d-a415-e6a7b6f8e6b4
https://doi.org/10.4121/31233fa5-228f-448d-a415-e6a7b6f8e6b4
https://doi.org/10.4121/31233fa5-228f-448d-a415-e6a7b6f8e6b4
https://doi.org/10.4121/31233fa5-228f-448d-a415-e6a7b6f8e6b4
https://doi.org/10.4121/31233fa5-228f-448d-a415-e6a7b6f8e6b4
https://doi.org/10.4121/31233fa5-228f-448d-a415-e6a7b6f8e6b4
https://doi.org/10.4121/31233fa5-228f-448d-a415-e6a7b6f8e6b4
https://doi.org/10.4121/31233fa5-228f-448d-a415-e6a7b6f8e6b4
https://doi.org/10.4121/31233fa5-228f-448d-a415-e6a7b6f8e6b4
https://doi.org/10.4121/31233fa5-228f-448d-a415-e6a7b6f8e6b4
https://doi.org/10.4121/31233fa5-228f-448d-a415-e6a7b6f8e6b4
https://doi.org/10.4121/31233fa5-228f-448d-a415-e6a7b6f8e6b4
https://doi.org/10.4121/31233fa5-228f-448d-a415-e6a7b6f8e6b4
https://doi.org/10.4121/31233fa5-228f-448d-a415-e6a7b6f8e6b4
https://doi.org/10.4121/31233fa5-228f-448d-a415-e6a7b6f8e6b4
https://doi.org/10.4121/31233fa5-228f-448d-a415-e6a7b6f8e6b4
https://doi.org/10.4121/31233fa5-228f-448d-a415-e6a7b6f8e6b4
https://doi.org/10.4121/31233fa5-228f-448d-a415-e6a7b6f8e6b4
https://doi.org/10.4121/31233fa5-228f-448d-a415-e6a7b6f8e6b4
https://doi.org/10.4121/31233fa5-228f-448d-a415-e6a7b6f8e6b4
https://doi.org/10.4121/31233fa5-228f-448d-a415-e6a7b6f8e6b4
https://doi.org/10.4121/31233fa5-228f-448d-a415-e6a7b6f8e6b4
https://doi.org/10.4121/31233fa5-228f-448d-a415-e6a7b6f8e6b4
https://doi.org/10.4121/31233fa5-228f-448d-a415-e6a7b6f8e6b4
https://doi.org/10.4121/31233fa5-228f-448d-a415-e6a7b6f8e6b4
https://doi.org/10.4121/31233fa5-228f-448d-a415-e6a7b6f8e6b4
https://doi.org/10.4121/31233fa5-228f-448d-a415-e6a7b6f8e6b4
https://doi.org/10.4121/31233fa5-228f-448d-a415-e6a7b6f8e6b4
https://doi.org/10.4121/31233fa5-228f-448d-a415-e6a7b6f8e6b4
https://doi.org/10.4121/31233fa5-228f-448d-a415-e6a7b6f8e6b4
https://doi.org/10.4121/31233fa5-228f-448d-a415-e6a7b6f8e6b4
https://doi.org/10.4121/31233fa5-228f-448d-a415-e6a7b6f8e6b4
https://doi.org/10.4121/31233fa5-228f-448d-a415-e6a7b6f8e6b4
https://doi.org/10.4121/31233fa5-228f-448d-a415-e6a7b6f8e6b4
https://doi.org/10.4121/31233fa5-228f-448d-a415-e6a7b6f8e6b4
https://doi.org/10.4121/31233fa5-228f-448d-a415-e6a7b6f8e6b4
https://doi.org/10.4121/31233fa5-228f-448d-a415-e6a7b6f8e6b4
https://doi.org/10.4121/31233fa5-228f-448d-a415-e6a7b6f8e6b4
https://doi.org/10.4121/31233fa5-228f-448d-a415-e6a7b6f8e6b4
https://doi.org/10.4121/31233fa5-228f-448d-a415-e6a7b6f8e6b4
https://doi.org/10.4121/31233fa5-228f-448d-a415-e6a7b6f8e6b4
https://doi.org/10.4121/31233fa5-228f-448d-a415-e6a7b6f8e6b4
https://doi.org/10.4121/31233fa5-228f-448d-a415-e6a7b6f8e6b4
https://doi.org/10.4121/31233fa5-228f-448d-a415-e6a7b6f8e6b4
https://doi.org/10.4121/31233fa5-228f-448d-a415-e6a7b6f8e6b4
https://doi.org/10.4121/31233fa5-228f-448d-a415-e6a7b6f8e6b4
https://doi.org/10.4121/31233fa5-228f-448d-a415-e6a7b6f8e6b4
https://doi.org/10.4121/31233fa5-228f-448d-a415-e6a7b6f8e6b4
https://doi.org/10.4121/31233fa5-228f-448d-a415-e6a7b6f8e6b4
https://doi.org/10.4121/31233fa5-228f-448d-a415-e6a7b6f8e6b4
https://doi.org/10.4121/31233fa5-228f-448d-a415-e6a7b6f8e6b4
https://doi.org/10.4121/31233fa5-228f-448d-a415-e6a7b6f8e6b4
https://doi.org/10.4121/31233fa5-228f-448d-a415-e6a7b6f8e6b4
https://doi.org/10.4121/31233fa5-228f-448d-a415-e6a7b6f8e6b4
http://dx.doi.org/10.3389/fmats.2020.00027
http://dx.doi.org/10.3389/fmats.2020.00027
http://dx.doi.org/10.3389/fmats.2020.00027


P. Hofman et al. Mechanics of Materials 211 (2025) 105507 
Amiri-Rad, A., Hütter, M., Govaert, L., Van Dommelen, J., 2021. Improved associated 
flow rule for anisotropic viscoplasticity in thermoplastic polymer systems. Mech. 
Mater. 163, 104087. http://dx.doi.org/10.1016/j.mechmat.2021.104087.

Amiri-Rad, A., Pastukhov, L., Govaert, L., Van Dommelen, J., 2019. An anisotropic 
viscoelastic-viscoplastic model for short-fiber composites. Mech. Mater. 137, 
103141. http://dx.doi.org/10.1016/j.mechmat.2019.103141.

Baaser, H., 2004. The padé-approximation for matrix exponentials applied to an 
integration algorithm preserving plastic incompressibility. Comput. Mech. 34 (3), 
http://dx.doi.org/10.1007/s00466-004-0568-y.

Boehler, J.P. (Ed.), 1987. Applications of Tensor Functions in Solid Mechanics. Springer 
Vienna, Vienna, http://dx.doi.org/10.1007/978-3-7091-2810-7.

Bonet, J., Burton, A., 1998. A simple orthotropic, transversely isotropic hyperelastic 
constitutive equation for large strain computations. Comput. Methods Appl. Mech. 
Engrg. 162 (1–4), 151–164. http://dx.doi.org/10.1016/S0045-7825(97)00339-3.

Boyce, M.C., Montagut, E.L., Argon, A.S., 1992. The effects of thermomechanical 
coupling on the cold drawing process of glassy polymers. Polym. Eng. Sci. 32 (16), 
1073–1085. http://dx.doi.org/10.1002/pen.760321605.

Boyce, M.C., Parks, D.M., Argon, A.S., 1988. Large inelastic deformation of glassy 
polymers. Part I: Rate dependent constitutive model. Mech. Mater. 7 (1), 15–33. 
http://dx.doi.org/10.1016/0167-6636(88)90003-8.

Boyce, M., Weber, G., Parks, D., 1989. On the kinematics of finite strain plasticity. 
J. Mech. Phys. Solids 37 (5), 647–665. http://dx.doi.org/10.1016/0022-5096(89)
90033-1.

Brinson, H.F., Brinson, L.C., 2015. Polymer Engineering Science and Viscoelasticity: 
An Introduction. Springer US, Boston, MA, http://dx.doi.org/10.1007/978-1-4899-
7485-3.

Dafalias, Y.F., 1998. Plastic spin: Necessity or redundancy? Int. J. Plast. 14 (9), 
909–931. http://dx.doi.org/10.1016/S0749-6419(98)00036-9.

Daghia, F., Lagache, A., Di Gennaro, L., 2023. Validation of a new viscoelastic 
model for unidirectional polymer matrix composites by analytical and numerical 
homogenisation. Eur. J. Mech. A Solids 100, 104975. http://dx.doi.org/10.1016/j.
euromechsol.2023.104975.

Dean, A., Sahraee, S., Reinoso, J., Rolfes, R., 2016. Finite deformation model for short 
fiber reinforced composites: Application to hybrid metal-composite clinching joints. 
Compos. Struct. 151, 162–171. http://dx.doi.org/10.1016/j.compstruct.2016.02.
045.

Eidel, B., 2004. Anisotropic Inelasticity Modelling, Simulation, Validation (Ph.D. thesis). 
Technical University Darmstadt.

Erartsin, O., Amiri-Rad, A., Van Drongelen, M., Govaert, L.E., 2022. Time-dependent 
failure of off-axis loaded unidirectional glass/ iPP composites. J. Appl. Polym. Sci. 
139 (23), 52293. http://dx.doi.org/10.1002/app.52293.

Eterovic, A.L., Bathe, K.-J., 1990. A hyperelastic-based large strain elasto-plastic 
constitutive formulation with combined isotropic-kinematic hardening using the 
logarithmic stress and strain measures. Internat. J. Numer. Methods Engrg. 30 (6), 
1099–1114. http://dx.doi.org/10.1002/nme.1620300602.

Eyring, H., 1936. Viscosity, plasticity, and diffusion as examples of absolute reaction 
rates. J. Chem. Phys. 4 (4), 283–291. http://dx.doi.org/10.1063/1.1749836.

Gerbaud, P.-W., Otero, F., Bussetta, P., Camanho, P., 2019. An invariant based 
transversely-isotropic constitutive model for unidirectional fibre reinforced com-
posites considering the matrix viscous effects. Mech. Mater. 138, 103146. http:
//dx.doi.org/10.1016/j.mechmat.2019.103146.

Govaert, L., Schellens, H., Thomassen, H., Smit, R., Terzoli, L., Peijs, T., 2001. A 
micromechanical approach to time-dependent failure in off-axis loaded polymer 
composites. Compos. Part A: Appl. Sci. Manuf. 32 (12), 1697–1711. http://dx.doi.
org/10.1016/S1359-835X(01)00028-8.

Govaert, L.E., Timmermans, P.H.M., Brekelmans, W.A.M., 2000. The influence of 
intrinsic strain softening on strain localization in polycarbonate: Modeling and 
experimental validation. J. Eng. Mater. Technol. 122 (2), 177–185. http://dx.doi.
org/10.1115/1.482784.

Haward, R.N., Thackray, G., 1968. The use of a mathematical model to describe 
isothermal stress-strain curves in glassy thermoplastics. Proc. R. Soc. Lond. Ser. A. 
Math. Phys. Sci. 302 (1471), 453–472. http://dx.doi.org/10.1098/rspa.1968.0029.

Hill, R., 1948. A theory of the yielding and plastic flow of anisotropic metals. Proc. 
R. Soc. Lond. Ser. A. Math. Phys. Sci. 193 (1033), 281–297. http://dx.doi.org/10.
1098/rspa.1948.0045.

Hofman, P., Van Der Meer, F., Sluys, L., 2024. A numerical framework for simulating 
progressive failure in composite laminates under high-cycle fatigue loading. Eng. 
Fract. Mech. 295, 109786. http://dx.doi.org/10.1016/j.engfracmech.2023.109786.

Ke, L., Van Der Meer, F., 2022. A computational homogenization framework with 
enhanced localization criterion for macroscopic cohesive failure in heterogeneous 
materials. J. Theor. Comput. Appl. Mech. 7707. http://dx.doi.org/10.46298/jtcam.
7707.

Khaleghi, H., Amiri-Rad, A., Mashayekhi, M., 2022. A thermodynamically consistent 
continuum damage model for time-dependent failure of thermoplastic polymers. 
Int. J. Plast. 154, 103278. http://dx.doi.org/10.1016/j.ijplas.2022.103278.

Klompen, E.T.J., Engels, T.A.P., Govaert, L.E., Meijer, H.E.H., 2005. Modeling of the 
postyield response of glassy polymers: Influence of thermomechanical history. 
Macromolecules 38 (16), 6997–7008. http://dx.doi.org/10.1021/ma050498v.

Klompen, E.T.J., Govaert, L.E., 1999. Nonlinear viscoelastic behaviour of thermorheo-
logically complex materials. Mech. Time-Dependent Mater. 3, 49–69.
17 
Koerber, H., Kuhn, P., Ploeckl, M., Otero, F., Gerbaud, P.-W., Rolfes, R., Camanho, P.P., 
2018. Experimental characterization and constitutive modeling of the non-linear 
stress–strain behavior of unidirectional carbon–epoxy under high strain rate load-
ing. Adv. Model. Simul. Eng. Sci. 5 (1), 17. http://dx.doi.org/10.1186/s40323-018-
0111-x.

Kovačević, D., Sundararajan, B.K., van der Meer, F.P., 2022. Microscale modeling of 
rate-dependent failure in thermoplastic composites under off-axis loading. Eng. 
Fract. Mech. preprint, http://dx.doi.org/10.1016/j.engfracmech.2022.108884.

Kovačević, D., Sundararajan, B.K., Van Der Meer, F.P., 2024. Micromechanical model 
for off-axis creep rupture in unidirectional composites undergoing finite strains. 
Compos. Part A: Appl. Sci. Manuf. 176, 107860. http://dx.doi.org/10.1016/j.
compositesa.2023.107860.

Kovačević, D., van der Meer, F.P., 2022. Strain-rate based arclength model for nonlinear 
microscale analysis of unidirectional composites under off-axis loading. Int. J. Solids 
Struct. 250 (December 2021), 111697. http://dx.doi.org/10.1016/j.ijsolstr.2022.
111697.

Kröner, E., 1959. Allgemeine kontinuumstheorie der versetzungen und eigenspan-
nungen. Arch. Ration. Mech. Anal. 4 (1), 273–334. http://dx.doi.org/10.1007/
BF00281393.

Larsson, R., Singh, V., Olsson, R., Marklund, E., 2020. A micromechanically based model 
for strain rate effects in unidirectional composites. Mech. Mater. 148, 103491. 
http://dx.doi.org/10.1016/j.mechmat.2020.103491.

Lee, E.H., 1969. Elastic-plastic deformation at finite strains. ASMEJ. Appl. Mech. March 
36 (1), 1–6.

Lenders, T., Remmers, J.J.C., Pini, T., Veenstra, P., Govaert, L.E., Geers, M.G.D., 
2023. An elasto-viscoplastic constitutive model for the rate-dependent behavior of 
polyvinylidene fluoride. J. Polym. Sci. 61 (14), 1439–1456. http://dx.doi.org/10.
1002/pol.20220729.

Lenders, T., Remmers, J.J., Pini, T., Veenstra, P., Govaert, L.E., Geers, M.G., 2024. 
A periodic micromechanical model for the rate- and temperature-dependent be-
havior of unidirectional carbon fiber-reinforced PVDF. J. Reinf. Plast. Compos. 
07316844241266012. http://dx.doi.org/10.1177/07316844241266012.

Liu, Y., Van Der Meer, F., Sluys, L., Fan, J., 2020. A numerical homogenization 
scheme used for derivation of a homogenized viscoelastic-viscoplastic model for 
the transverse response of fiber-reinforced polymer composites. Compos. Struct. 
252, 112690. http://dx.doi.org/10.1016/j.compstruct.2020.112690.

Lubliner, J., 2008. Plasticity Theory. Courier Corporation.
Maia, M., Rocha, I., Kerfriden, P., Van Der Meer, F., 2023. Physically recurrent neural 

networks for path-dependent heterogeneous materials: Embedding constitutive 
models in a data-driven surrogate. Comput. Methods Appl. Mech. Engrg. 407, 
115934. http://dx.doi.org/10.1016/j.cma.2023.115934.

Maia, M.A., Rocha, I.B.C.M., Kovačević, D., van der Meer, F.P., 2025. Surrogate-
based multiscale analysis of experiments on thermoplastic composites under off-axis 
loading. http://dx.doi.org/10.48550/arXiv.2501.10193, arXiv:2501.10193.

Mandel, J., 1972. Plasticite Classique et Viscoplasticite. In: CISM International Centre 
for Mechanical Sciences, Springer.

Neveu, F., Cornu, C., Olivier, P., Castanié, B., 2022. Manufacturing and im-
pact behaviour of aeronautic overmolded grid-stiffened thermoplastic carbon 
plates. Compos. Struct. 284, 115228. http://dx.doi.org/10.1016/j.compstruct.2022.
115228.

Oliver, J., Caicedo, M., Roubin, E., Huespe, A., Hernández, J., 2015. Continuum 
approach to computational multiscale modeling of propagating fracture. Comput. 
Methods Appl. Mech. Engrg. 294, 384–427. http://dx.doi.org/10.1016/j.cma.2015.
05.012.

Rodrigues Lopes, I.A., Camanho, P.P., Andrade Pires, F.M., Arteiro, A., 2022. An 
invariant-based elasto-visco-plastic model for unidirectional polymer composites at 
finite strains. Int. J. Solids Struct. 236–237, 111292. http://dx.doi.org/10.1016/j.
ijsolstr.2021.111292.

Sansour, C., Kollmann, F.G., 1998. Large viscoplastic deformations of shells. Theory and 
finite element formulation. Comput. Mech. 21 (6), 512–525. http://dx.doi.org/10.
1007/s004660050329.

Senden, D., Peters, G., Govaert, L., Van Dommelen, J., 2013. Anisotropic yielding 
of injection molded polyethylene: Experiments and modeling. Polymer 54 (21), 
5899–5908. http://dx.doi.org/10.1016/j.polymer.2013.08.047.

Singh, V., Larsson, R., Olsson, R., Marklund, E., 2023. A micromechanics based model 
for rate dependent compression loaded unidirectional composites. Compos. Sci. 
Technol. 232, 109821. http://dx.doi.org/10.1016/j.compscitech.2022.109821.

Spencer, A., 1972. Deformations of Fibre-Reinforced Materials. In: Oxford Science 
Research Papers, Clarendon Press.

Spencer, A.J.M., 1987. Kinematic constraints, constitutive equations and failure rules 
for anisotropic materials. In: Boehler, J.P. (Ed.), Applications of Tensor Functions 
in Solid Mechanics. Springer, Vienna, pp. 187–201. http://dx.doi.org/10.1007/978-
3-7091-2810-7_10.

Sun, C., Chung, I., 1993. An oblique end-tab design for testing off-axis composite 
specimens. Composites 24 (8), 619–623. http://dx.doi.org/10.1016/0010-4361(93)
90124-Q.

Sundararajan, B.K., 2024. Matrix Dominated Failure in Continuous Carbon Fibre 
Reinforced Poly(Ether Ether Ketone) (Ph.D. thesis). University of Twente, Enschede, 
The Netherlands, http://dx.doi.org/10.3990/1.9789036560405.

http://dx.doi.org/10.1016/j.mechmat.2021.104087
http://dx.doi.org/10.1016/j.mechmat.2019.103141
http://dx.doi.org/10.1007/s00466-004-0568-y
http://dx.doi.org/10.1007/978-3-7091-2810-7
http://dx.doi.org/10.1016/S0045-7825(97)00339-3
http://dx.doi.org/10.1002/pen.760321605
http://dx.doi.org/10.1016/0167-6636(88)90003-8
http://dx.doi.org/10.1016/0022-5096(89)90033-1
http://dx.doi.org/10.1016/0022-5096(89)90033-1
http://dx.doi.org/10.1016/0022-5096(89)90033-1
http://dx.doi.org/10.1007/978-1-4899-7485-3
http://dx.doi.org/10.1007/978-1-4899-7485-3
http://dx.doi.org/10.1007/978-1-4899-7485-3
http://dx.doi.org/10.1016/S0749-6419(98)00036-9
http://dx.doi.org/10.1016/j.euromechsol.2023.104975
http://dx.doi.org/10.1016/j.euromechsol.2023.104975
http://dx.doi.org/10.1016/j.euromechsol.2023.104975
http://dx.doi.org/10.1016/j.compstruct.2016.02.045
http://dx.doi.org/10.1016/j.compstruct.2016.02.045
http://dx.doi.org/10.1016/j.compstruct.2016.02.045
http://refhub.elsevier.com/S0167-6636(25)00269-8/sb14
http://refhub.elsevier.com/S0167-6636(25)00269-8/sb14
http://refhub.elsevier.com/S0167-6636(25)00269-8/sb14
http://dx.doi.org/10.1002/app.52293
http://dx.doi.org/10.1002/nme.1620300602
http://dx.doi.org/10.1063/1.1749836
http://dx.doi.org/10.1016/j.mechmat.2019.103146
http://dx.doi.org/10.1016/j.mechmat.2019.103146
http://dx.doi.org/10.1016/j.mechmat.2019.103146
http://dx.doi.org/10.1016/S1359-835X(01)00028-8
http://dx.doi.org/10.1016/S1359-835X(01)00028-8
http://dx.doi.org/10.1016/S1359-835X(01)00028-8
http://dx.doi.org/10.1115/1.482784
http://dx.doi.org/10.1115/1.482784
http://dx.doi.org/10.1115/1.482784
http://dx.doi.org/10.1098/rspa.1968.0029
http://dx.doi.org/10.1098/rspa.1948.0045
http://dx.doi.org/10.1098/rspa.1948.0045
http://dx.doi.org/10.1098/rspa.1948.0045
http://dx.doi.org/10.1016/j.engfracmech.2023.109786
http://dx.doi.org/10.46298/jtcam.7707
http://dx.doi.org/10.46298/jtcam.7707
http://dx.doi.org/10.46298/jtcam.7707
http://dx.doi.org/10.1016/j.ijplas.2022.103278
http://dx.doi.org/10.1021/ma050498v
http://refhub.elsevier.com/S0167-6636(25)00269-8/sb27
http://refhub.elsevier.com/S0167-6636(25)00269-8/sb27
http://refhub.elsevier.com/S0167-6636(25)00269-8/sb27
http://dx.doi.org/10.1186/s40323-018-0111-x
http://dx.doi.org/10.1186/s40323-018-0111-x
http://dx.doi.org/10.1186/s40323-018-0111-x
http://dx.doi.org/10.1016/j.engfracmech.2022.108884
http://dx.doi.org/10.1016/j.compositesa.2023.107860
http://dx.doi.org/10.1016/j.compositesa.2023.107860
http://dx.doi.org/10.1016/j.compositesa.2023.107860
http://dx.doi.org/10.1016/j.ijsolstr.2022.111697
http://dx.doi.org/10.1016/j.ijsolstr.2022.111697
http://dx.doi.org/10.1016/j.ijsolstr.2022.111697
http://dx.doi.org/10.1007/BF00281393
http://dx.doi.org/10.1007/BF00281393
http://dx.doi.org/10.1007/BF00281393
http://dx.doi.org/10.1016/j.mechmat.2020.103491
http://refhub.elsevier.com/S0167-6636(25)00269-8/sb34
http://refhub.elsevier.com/S0167-6636(25)00269-8/sb34
http://refhub.elsevier.com/S0167-6636(25)00269-8/sb34
http://dx.doi.org/10.1002/pol.20220729
http://dx.doi.org/10.1002/pol.20220729
http://dx.doi.org/10.1002/pol.20220729
http://dx.doi.org/10.1177/07316844241266012
http://dx.doi.org/10.1016/j.compstruct.2020.112690
http://refhub.elsevier.com/S0167-6636(25)00269-8/sb38
http://dx.doi.org/10.1016/j.cma.2023.115934
http://dx.doi.org/10.48550/arXiv.2501.10193
http://arxiv.org/abs/2501.10193
http://refhub.elsevier.com/S0167-6636(25)00269-8/sb41
http://refhub.elsevier.com/S0167-6636(25)00269-8/sb41
http://refhub.elsevier.com/S0167-6636(25)00269-8/sb41
http://dx.doi.org/10.1016/j.compstruct.2022.115228
http://dx.doi.org/10.1016/j.compstruct.2022.115228
http://dx.doi.org/10.1016/j.compstruct.2022.115228
http://dx.doi.org/10.1016/j.cma.2015.05.012
http://dx.doi.org/10.1016/j.cma.2015.05.012
http://dx.doi.org/10.1016/j.cma.2015.05.012
http://dx.doi.org/10.1016/j.ijsolstr.2021.111292
http://dx.doi.org/10.1016/j.ijsolstr.2021.111292
http://dx.doi.org/10.1016/j.ijsolstr.2021.111292
http://dx.doi.org/10.1007/s004660050329
http://dx.doi.org/10.1007/s004660050329
http://dx.doi.org/10.1007/s004660050329
http://dx.doi.org/10.1016/j.polymer.2013.08.047
http://dx.doi.org/10.1016/j.compscitech.2022.109821
http://refhub.elsevier.com/S0167-6636(25)00269-8/sb48
http://refhub.elsevier.com/S0167-6636(25)00269-8/sb48
http://refhub.elsevier.com/S0167-6636(25)00269-8/sb48
http://dx.doi.org/10.1007/978-3-7091-2810-7_10
http://dx.doi.org/10.1007/978-3-7091-2810-7_10
http://dx.doi.org/10.1007/978-3-7091-2810-7_10
http://dx.doi.org/10.1016/0010-4361(93)90124-Q
http://dx.doi.org/10.1016/0010-4361(93)90124-Q
http://dx.doi.org/10.1016/0010-4361(93)90124-Q
http://dx.doi.org/10.3990/1.9789036560405


P. Hofman et al. Mechanics of Materials 211 (2025) 105507 
Tervoort, T.A., Klompen, E.T.J., Govaert, L.E., 1996. A multi-mode approach to finite, 
three-dimensional, nonlinear viscoelastic behavior of polymer glasses. J. Rheol. 40 
(5), 779–797. http://dx.doi.org/10.1122/1.550755.

Tervoort, T.A., Smit, R.J.M., Brekelmans, W.A.M., Govaert, L.E., 1998. A constitutive 
equation for the elasto-viscoplastic deformation of glassy polymers. Mech. Time-
Dependent Mater. 1: 269–291, 1998 1, 269–291. http://dx.doi.org/10.1023/A:
1009720708029.

Timmis, A.J., Hodzic, A., Koh, L., Bonner, M., Soutis, C., Schäfer, A.W., Dray, L., 
2015. Environmental impact assessment of aviation emission reduction through the 
implementation of composite materials. Int. J. Life Cycle Assess. 20 (2), 233–243. 
http://dx.doi.org/10.1007/s11367-014-0824-0.

Valverde, M.A., Kupfer, R., Kawashita, L.F., Gude, M., Hallett, S.R., 2018. Effect of 
processing parameters on quality and strength in thermoplastic composite injection 
overmoulded components. In: 18th European Conference on Composite Materials. 
Applied Mechanics Laboratory.

Valverde, M., Kupfer, R., Wollmann, T., Kawashita, L., Gude, M., Hallett, S., 2020. 
Influence of component design on features and properties in thermoplastic over-
moulded composites. Compos. Part A: Appl. Sci. Manuf. 132, 105823. http://dx.
doi.org/10.1016/j.compositesa.2020.105823.
18 
Van Breemen, L., Klompen, E., Govaert, L., Meijer, H., 2011. Extending the EGP 
constitutive model for polymer glasses to multiple relaxation times. J. Mech. Phys. 
Solids 59 (10), 2191–2207. http://dx.doi.org/10.1016/j.jmps.2011.05.001.

Van Der Meer, F.P., 2016. Micromechanical validation of a mesomodel for plasticity 
in composites. Eur. J. Mech. A Solids 60, 58–69. http://dx.doi.org/10.1016/j.
euromechsol.2016.06.008.

Van Erp, T.B., Reynolds, C.T., Peijs, T., Van Dommelen, J.A.W., Govaert, L.E., 2009. 
Prediction of yield and long-term failure of oriented polypropylene: Kinetics and 
anisotropy. J. Polym. Sci. Part B: Polym. Phys. 47 (20), 2026–2035. http://dx.doi.
org/10.1002/polb.21801.

Vogler, M., Rolfes, R., Camanho, P., 2013. Modeling the inelastic deformation and 
fracture of polymer composites – Part I: Plasticity model. Mech. Mater. 59, 50–64. 
http://dx.doi.org/10.1016/j.mechmat.2012.12.002.

Weber, G., Anand, L., 1990. Finite deformation constitutive equations and a time 
integration procedure for isotropic, hyperelastic-viscoplastic solids. Comput. Meth-
ods Appl. Mech. Engrg. 79 (2), 173–202. http://dx.doi.org/10.1016/0045-7825(90)
90131-5.

http://dx.doi.org/10.1122/1.550755
http://dx.doi.org/10.1023/A:1009720708029
http://dx.doi.org/10.1023/A:1009720708029
http://dx.doi.org/10.1023/A:1009720708029
http://dx.doi.org/10.1007/s11367-014-0824-0
http://refhub.elsevier.com/S0167-6636(25)00269-8/sb55
http://refhub.elsevier.com/S0167-6636(25)00269-8/sb55
http://refhub.elsevier.com/S0167-6636(25)00269-8/sb55
http://refhub.elsevier.com/S0167-6636(25)00269-8/sb55
http://refhub.elsevier.com/S0167-6636(25)00269-8/sb55
http://refhub.elsevier.com/S0167-6636(25)00269-8/sb55
http://refhub.elsevier.com/S0167-6636(25)00269-8/sb55
http://dx.doi.org/10.1016/j.compositesa.2020.105823
http://dx.doi.org/10.1016/j.compositesa.2020.105823
http://dx.doi.org/10.1016/j.compositesa.2020.105823
http://dx.doi.org/10.1016/j.jmps.2011.05.001
http://dx.doi.org/10.1016/j.euromechsol.2016.06.008
http://dx.doi.org/10.1016/j.euromechsol.2016.06.008
http://dx.doi.org/10.1016/j.euromechsol.2016.06.008
http://dx.doi.org/10.1002/polb.21801
http://dx.doi.org/10.1002/polb.21801
http://dx.doi.org/10.1002/polb.21801
http://dx.doi.org/10.1016/j.mechmat.2012.12.002
http://dx.doi.org/10.1016/0045-7825(90)90131-5
http://dx.doi.org/10.1016/0045-7825(90)90131-5
http://dx.doi.org/10.1016/0045-7825(90)90131-5

	A viscoplasticity model with an invariant-based non-Newtonian flow rule for unidirectional thermoplastic composites
	Introduction
	Formulation of the constitutive model
	Kinematics
	Viscoplasticity relations
	Invariant formulation
	Total equivalent stress
	Equivalent stress of each mode

	Embedded hyperelastic constitutive relations
	Multimode model
	Integration of the constitutive relations
	Nested scheme
	External Newton–Raphson scheme
	Internal Newton–Raphson scheme

	Jacobians
	Jacobian of the internal scheme
	Jacobian of the external scheme
	Consistent tangent modulus


	Parameter identification
	Transverse tension and compression
	Off-axis loading in tension
	Summary of model parameters

	Numerical homogenization of a micromodel
	Boundary conditions for off-axis loading
	Elasticity parameters
	Plasticity parameters

	Results
	Constant strain rate
	Creep
	Unidirectional ply under off-axis tensile loading

	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgment
	Appendix A. Jacobian internal Newton–Raphson scheme
	Appendix B. Derivatives external scheme
	Appendix C. Derivatives for consistent tangent modulus
	Data availability
	References


