Report.806 Linear Quadratic Regulator design
for an unpowered, winged
re-entry vehicle

February 1997 * - Ir. E. Mooij
GAIN
SCHEDULNG
\
| 46, .
LONGITUDINAL
- CONTROLLER 8y -
UC L \
+
TRIM LAW Bhirim I o
"c'Mnav Se trim -
i)
- LATERAL 2?’ - 1 L
) io — CONTROLLER 0 o
ﬁc= 0 — v Lot
\
GAIN MEASUREMENT | a.V
SCHEDULING SYSTEM |

TU De Ift Faculty. of Aerospace Engineering

Delft University of Technology



Linear Quadratic Regulator design

for an unpowered, winged
re-entry vehicle

ir. E. Mooij



Copyright © 1997, by Delft University of Technology, Faculty of Aerospace Engineering, Delft,
The Netherlands.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system

or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or
otherwise, without the prior written permission of the Delft University of Technology, Faculty of
Aerospace Engineering, Delft, The Netherlands.

Publisher:  Delft University of Technology
Faculty of Aerospace Engineering
P.O. Box 5058
2600 GB Delft
The Netherlands.
tel.: 015-2782058
fax: 015-2781822

Date February 1997
Report LR - 806

ISBN: 90-5623-040-9



e R T

Organization: TUD/LR/A2R l : Date: February 1997_ %
Document code: LR-806 Page: i |
Title : Linear Quadratic Regulator design for an unpowered, winged

re-entry vehicle

Aut,hor(s) ‘ : E. Mooij

Abstract : This report describes the design of an attitude controller for an
unpowered, winged re-entry vehicle. The decoupling of the sym-
metric and asymmetric motion makes it possible to design two
separate controllers, one for the pitch motion and one for the
lateral motion. The design of the controller, a Linear Quadratic
Regulator, is based on linearisation of the equations of motion
and feedback of the attitude and angular rates. The gains
appearing in the control laws are computed by defining a quad-
ratic cost criterion and then solving the matrix Riccati equation.
Results of the study include the step and ramp response of the
two separate controllers and the flight along the nominal trajec-
tory with the integrated controiler. The deviations from the
nominal trajectory are acceptable, so this controller can be used
for a detailed sensitivity analysis. '

Keyword(s) : control-system design, linear state feedback, gain scheduling,
‘Riccati equation, re-entry, HORUS-2B

Date February 1997
Prepared E. Mooij 4({
Verified P.Ph. van den Broek o

e
Approved P.Th.L.M. van Woerkom ?

o —
Authorized EB P.G. Bakker p g /WW
"o / ?




Organization: TUD/LR/A2R
Document code: LR-806

Date: February 1997_
Page: ii

CHANGE RECORD

Issue | Rev. [ Date Pages Topics Introduced
No. No. Changed/
Added/
Deleted
01 01 08-03-95 - First version
02 10-01-96 All Comments processed
03 02-04-96 All Final draft
04 14-06-96 All Comments processed
05 20-02-97 All Comments processed




Table of Contents

NOotatioNs . .......i ittt it ittt et antatatesanncnnanannnnns v
Chapter1 -Introduction . ........... 0. ittt ittt iieneerannnns 1
1.1. Background. . .. ... .. e 2
1.2. Attitude control of winged re-entry vehicles. . ... ..... .. ... .. ... ... .... 5
1.3. Attitude-control concepts. . ... ... .. ... 8
1.4. Control-systemdesigncycle. ... ....... ... .. .. .. . . .. 13
Chapter 2 - The Motion of a Vehicle in a Planetary Atmosphere .............. 17
2.1. The general form of the equations of motion. .. .. ... ... ... ... ......... 17
2.2. Linearisation of the equations of motion. . ... ........................ 19
2.3. The state-space form of the equations of motion. . ... .................. 24
Chapter 3 - Open-loop Behaviour of the Re-entry Vehicle ................... 33
3.1, Introduction. . .. ... e 33
3.2. Nominal trajectory. . .. ... ... . . . . . e 34
3.3. Eigenvalues and eigenmotion. . .. ... ... ... . . 43
Chapter 4 - Designofthe Controller . . ....... ... ... . . it iiiirneenn. 65
4.1, Introduction. . .. .. e 65
4.2, The matrix Riccati equation. . ........ ... ... . ... . . .. ... .. ... 67
4.3. Longitudinal controller. . .. ... ... . . ... 71
4.3.1. Reduced system for symmetric motion. . ... .................... 71

4.3.2. Rootlocus of the reduced system. . ......... ... .. ... ......... 72

4.3.3. Selectionof pitchcontrols. . ............. .. .. .. ... ... ....... 75

434. Controllaws. . . ... ... ... .. PR 76

4.3.5. Computation of the feedback gains. ... ....................... 77

4.4. Lateral controller. . .. ... .. ... . 80
4.4.1. Reduced system for asymmetric motion. . ...................... 80

4.4.2. Root locus of the reduced system. . .......................... 82

443. Selectionofthecontrols. . ... ... .. ... .. ... ... .. ... .. ... .. 84

444, Control laws. . . ... . e 84

e feenpiipetieasid




Organization: TUD/LR/A2R : Date: February 1997_

Document code: LR-806 Page: iv
4.45. Computation of the feedback gains. . ............ ... ...... ... 88
Chapter 5 - Verification of the Controller ............. ... . 93
5.1. Introduction. . .. .. L 93
5.2. Root loci of the closed-loop systems. . . ....... ... ... ... . ... . ... ..... 94
5.2.1. Longitudinal controller. ... .......... .. ... . .. . .. ... 94

52.2. Lateralcontroller. . ...... ... .. .. . . .. 94

5.3. Stepresponse. . ... ... 99
5.3.1. Introduction. . ... .. ... ... . 99

5.3.2. Longitudinal controller. . ................... [ 99

5.3.3. Lateralcontroller. . . ... ... ... ... . .. .. ... 100

5.4. Ramp reSpONSe. . . . . ..ttt e 103
5.4.1. Longitudinal controller. . ... ....... ... .. ... ... ... ... ... . . ... 103

5.4.2. Lateralcontroller. . .. ... .. ... .. ... .. 104

5.5. Flight along nominal trajectory with integrated controller. . ... ... .......... 107
Chapter 6 - Conclusions and Recommendations .......................... 119
References ........ ..ot it it it e st et et e 121
Appendix A - Definition of State Variables ............................... 127
Appendix B - Linear Stability Model of HORUS-2B ......................... 131

Appendix C - Selected Controller Gains ............cciiiitiiiinrnnnnnns 139




T X3

Notations

element of state matrix
speed of sound

state or system matrix
element of control matrix
aerodynamic reference length
control input matrix
aerodynamic reference length
output matrix

drag-force coefficient
roll-moment coefficient
lift-force coefficient
pitch-moment coefficient
yaw-moment coefficient
side-force coefficient

drag

direct transmission matrix
acceleration due to gravity in radial direction
acceleration due to gravity in meridional direction
height

identity matrix

moment (product) of inertia
cost criterion

control gain

control-gain matrix

lift

roll moment

mass

Mach number

pitch moment

[unit]

m/s

m/s
m/s

kgm

1/rad

Nm
kg

Nm
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N/ yaw moment Nm
p roll rate rad/s
P period s
P solution of matrix Lyapunov equation
q pitch rate rad/s
Qayn dynamic pressure N/m?
Q control deviation weight matrix
r yaw rate rad/s
R modulus of position vector m
R control effort weight matrix
R, equatorial radius m
S side force N
S square root of R
S, e aerodynamic reference area m?
t time s
T half or doubling time ' s
2
T, roll-thruster moment Nm
Ty pitch-thruster moment Nm
T, yaw-thruster moment Nm
u control vector
u’ independent control vector
14 modulus of velocity vector m/s
4 Lyapunov function
x state vector
y output vector
z modulus of a complex number -
XY Z axes
Greek
o angle of attack rad
B angle of sideslip rad
Y flight-path angle rad
) geocentric latitude rad
S, aileron deflection angle rad
3y body-flap deflection angle rad
g elevator deflection angle rad
3, rudder deflection angle rad
S, wing-flap deflection angle rad
A perturbation -
¢ damping ratio -
0 argument of complex number rad
A eigenvalue -
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T} gravitation parameter m/s2
1] eigenvector

P (atmospheric) density kg/m?3
c bank angle rad
T geocentric longitude rad
X heading rad
Oy rotational rate of the central body rad/s
®, eigenfrequency rad/s
N rotation vector rad/s
Indices

0 nominal state

a aileron

b body flap

B body frame

c commanded value

cb central body

e elevator

f final, finite

P in direction of roll rate

q in direction of pitch rate

r in direction of yaw rate

r rudder

rn R in direction of position vector

v in direction of velocity

w elevon

XV, Z along X-, Y- and Zaxis

o in direction of angle of attack

B in direction of angle of sideslip

Y in direction of flight-path angle

) in direction of latitude

c in direction of bank angle

X in direction of heading

Abbreviations

ACS Aerodynamic Control System

c.o.m. centre of mass

CPU Central Processing Unit

d.of. degree of freedom

FCS Flight Control System

GNC Guidance, Navigation and Control
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LQG Linear Quadratic Gaussian

LQR Linear Quadratic Regutator

MIMO Mutltiple Input, Multipie Output

MRAC Model Reference Adaptive Control

PID ‘ Proportional, Integral and Derivative

RCS Reaction Control System

START Simulation Tool for Atmospheric Re-entry Trajectories

STR Self-Tuning Regulator




Chapter 1

Introduction

During all phases in the design and operations of space vehicles, computer simulation of the
flight performance plays an important role. Models of the vehicle and the environment can be
simple, to get a first impression of the feasibility of a vehicle design or a particular mission, or
can be very detailed when, for instance, the influence of aeroelasticity on the performance of
an attitude-control system has to be studied. Within the framework of an ongoing research at
the Faculty of Aerospace Engineering, Delft University of Technology, the development of a
flight-simulation tool has been initiated (Mooij, 1994) with which, amongst others, the guided
and controlled ascent of air-breathing space planes subjected to disturbances and model
uncentainties can be analysed.

The Simulation Tool for Atmospheric Re-entry Trajectories (START) has been selected to
serve as a basis for further development. The original version of START did not include any
guidance and control models, nor propulsion systems and the related variable mass properties.
For a gradual development of START to a tool, capable of analysing the ascent missions that
we mentioned before, several phases have been defined (Mooij, 1994). Current research
focuses on the guided and controlled flight of unpowered, winged re-entry vehicles. A major
step herein is the development of an attitude-control system.

In this report we describe the design of such an attitude-control system for a selected
unpowered, winged re-entry vehicle. Before we come to a discussion of attitude-control systems
in this chapter, we begin by giving some background information on re-entry missions and how
to increase mission success by incorporating guidance, navigation and control (Section 1.1).
In the succeeding Section 1.2, we will present the attitude control of winged re-entry vehicles.
Section 1.3 introduces several attitude-control concepts and one will be selected to employ as
our design (linear state feedback with gain scheduling). In Section 1.4, finally, the design
process of the selected control system is detailed and an overview of the chapters of this report
is given.
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1.1. Background.

Two important aspects of the entry and descent of space vehicles are the tactical aspect of
having control over the time and location of landing and the severe mechanical and thermal
loading on the vehicle. For manned missions, for instance, the maximum deceleration is usually
limited by an upper bound of 3 g to save the occupants from discomfort or worse. Also in case
of unmanned (scientific) missions a too strong deceleration might be harmful to the on-board
instruments. The thermal load, e.g., the maximum heat flux, the wall temperature in the stag-
nation point and the integrated heat load, define to a large extent the design and therefore also
the mass of the thermal protection system, so obviously we want to have the most favourable
load on the vehicle. However, first of all a winged re-entry vehicle like the American Space
.Shuttle is supposed to land on an air strip, so its trajectory should be targeted to the landing
location right on from entry. And, in case of the parachute descent of the Apollo capsules, it
was important that it would splash down in the ocean near the recovery ships.

During the process of mission analysis and mission design, an optimal trajectory is
computed which usually satisfies trajectory constraints (e.g., a maximum allowable thermal load)
and end conditions (e.g., the landing place in case of a re-entry mission). Once this so-called
nominal trajectory has been defined it must be verified that the vehicle can actually fly this
trajectory, or, in other words, whether the vehicle can execute the required manoeuvres without
violating any constraints. Furthermore, it must be guaranteed that the vehicle will still be able
to fulfil its mission when it encounters (unforeseen) disturbances which make it deviate from its
nominal path. To ensure mission success, the space vehicle is equipped with a so-called Guid-
ance, Navigation and Control system (GNC system).

The task of the guidance system is to generate steering commands, e.g., a commanded
attitude or thrust level, taking a reference state, trajectory constraints and/or a final state into
account. For this task, the system needs input from the outside world, for instance the current
actual state. These data have to be provided by the navigation system, using sensor informa-
tion and predefined theoretical models. The control system has to take care that the steering
commands are carried out, such that, for example, the actual attitude equals the commanded
attitude in a reasonably short time and that this attitude is dynamically stable (trim stability). To
achieve this, the control system may drive aerodynamic control surfaces, reaction-control
wheels and thrusters, etc.

The design of a GNC system is usually centred around a nominal mission that is free from
disturbances. The environment is modelled at a certain level of complexity only and also the
description of the vehicle is of course not infinitely accurate. An important question is whether
the GNC system will be able to steer and control the vehicle in the presence of all kinds of
uncertainties that it is bound to encounter during the actual mission. One way to assure this is
to design a very robust system’. But the next question that arises then is: how robust should

1 Robustness is defined as the particular property that a control system must possess for it to operate
properly in realistic situations (Shahian and Hassul, 1993). Mathematically, it means that the controller must not
only work for the system that it has been designed for, but for a whole family of (similar) systems. If the controller
is stable for a set of systems whose parameters deviate substantially from the nominal system, then the controller
is said to have robust stability.
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our system be? A too robust system might negatively influence the flying qualities and
manoeuvrability and if the system is not robust enough, we can still end up with a severe
control problem. It is therefore very important that already during the design process we study
as many uncertainties as possible to see how our guidance and control system will deal with
them. Usually what one does is, once the GNC system has been developed for the nominal
mission, simulating a number of test cases with different error sources included, and with all
dynamic, vehicle and environment modeis as accurate as possible.

In Mooij (TO BE PUBLISHED) such a sensitivity analysis of a GNC system is described. That
analysis is centred around the HORUS-2B, an unpowered, winged re-entry vebhicle that re-
sembles the Space Shuttle (see also Fig. 1.1). Initially the HORUS was designed as an upper
stage of the Ariane launcher. Later on, the concept was changed and it became the rocket-
powered second stage of the German Sanger Two-Stage-To-Orbit space plane. A brief descrip-
tion of the mission will follow below.

/ A | | - )
(%@M -
L L7027 77,
+
b p—t——t———+——+
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+ ¢
20 m

Fig. 1.1 - The HORUS-2B (MBB, 1988a).

After launch and orbital operations, it re-enters the atmosphere at an altitude of 120 km and
the vehicle will begin its voyage back to its landing site, the European launch base in Kourou,
French Guyana. The re-entry phase ends when HORUS is at a distance of about 80 km from
the runway. It is said that the vehicle has reached the Terminal Area, which marks the begin-
ning of the next mission phase in case of a winged re-entry vehicle. We will not study that
phase, however.
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The re-entry guidance system should track the prescribed trajectory as well as possible,
while responding to disturbances and model errors by performing the appropriate manoeuvres.
But the prescribed trajectory should not be followed at any cost because reaching the landing
area without violating the constraints is the major mission objective. So another design goal is
to limit the demands on the flight control system while being applicable to any reasonable ref-
erence trajectory. Since HORUS is basically an unpowered vehicle, only two steering variables
are available, i.e., the angle of attack o and the bank angle ¢ (the angle of sideslip B is
considered to be a disturbance, and will always be commanded to zero). For an efficient guid-
ance, the nominal trajectory must provide sufficient margins for varying o and o. This is also
true for the path constraints, of course, and especially the thermal loads should remain well
below the critical limits.

A fundamental functional separation in the HORUS guidance is the subdivision of the hor-
izontal and vertical entry guidance, corresponding with the symmetric and asymmetric motion
of the vehicle. The vertical flight path is controlled by adjusting the angle of attack and the
absolute value of the bank angle, while the sign of the bank angle is provided by the horizontal
guidance (MBB, 1988Db).

To begin with the latter, this guidance controller steers the HORUS towards a targeting
point at some 80 km from the runway. As a result from vertical guidance by means of the
absolute bank angle, a lateral (or asymmetric) motion is introduced that needs to be compensat-
ed for, such that the average bank angle is zero and the vehicle will keep on heading towards
the target. The reference parameters for the horizontal guidance logic are the actual heading
of the vehicle and the heading of a direct trajectory towards the targeting point. The difference
between the two is the so-called heading error, which has to be kept sufficiently small. The
controller uses a predefined heading-error dead band to change the sign of the bank angle the
moment the heading error exceeds the dead-band value. The corresponding manoeuvre is
known as a bank reversal, and results in so-called S-turns as is also the case with the Space
Shuttle.

The objectives of the vertical guidance are to:

* arrive at the Terminal-Area interface with a prescribed total energy and altitude (or velocity),
* meet the flight-path constraints during the flight.

To meet these objectives, the vertical guidance is divided into a separate energy and altitude
control. The total energy, the sum of altitude-dependent potential and velocity-dependent kinetic
energy, will be controlled such that only the final value at the Terminal-Area interface will be
met with no direct effect on the constraints during the flight. The internal sharing of potential and
kinetic energy, on the other hand, will affect the constraints through the altitude-velocity relation.

The decrease of total energy is due to the working of the atmosphere on the vehicle, in the
form of the drag force. So to influence the difference between actual and reference energy, the
dissipated energy due to drag can be changed. Since one of the control parameters to change
the drag of the vehicle is the angle of attack, energy control is accomplished by varying this
parameter. Altitude control is realised by variation of the vertical component of the lift force.
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Whereas the angle of attack influences the lift force in absolute sense, by changing the bank
angle this force can be rotated about the velocity vector, thus resulting in two components per-
pendicular to the trajectory, i.e., one vertical and one lateral. The vertical component defines
the descent rate, so by changing the (absolute value of the) bank angle we can control the
variation in altitude. Note that the lateral component of the lift results in a motion in the
horizontal plane and thus a variation in heading. For this reason, bank reversals are required
to keep the vehicle headed at the target without affecting the altitude control.

1.2. Attitude control of winged re-entry vehicles.

Until today, there has only been one winged re-entry vehicle that has actually returned from
orbit to Earth: the American Space Shuttle. Its Russian counterpart, the Buran, only made one
unmanned (atmospheric) test flight before the project was cancelled due to budget problems.
Also in Europe budget cuts were the reason that Hermes, a smaller version of the Space
Shuttle, did not leave the drawing board and was cancelled. But whether the vehicle has
actually been built or not, also the many publications on space vehicles can usually teach us
about applied subsystems, such as the attitude-control system. Unfortunately, we could not lay
hands on any literature concerning either the Buran control system, or the proposed Hermes
attitude controller.

Publicly-available documentation on the Space-Shuttle attitude controller was only sparsely
available to us, and then in principle only for the ascent phase. McHenry et al. (1979) and
Schieich (1982) give quite a detailed discussion on the Space-Shuttle ascent guidance, naviga-
tion and control. McDermott et al. (1982) do a linearised stability analysis for this control sys-
tem, and Schletz (1982) discusses the use of quaternions in the GNC system. The attitude con-
troller for the entry and descent phase is only marginally mentioned in those publications.

The Space Shuttle enters the atmosphere with a large angle of attack of about 40°, in order
to minimise the heat load. Further down the trajectory, the angle of attack is reduced to meet
with the cross- and downrange requirements. Range control throughout the entry is accomp-
lished by control of the bank angle. The Flight Control System (FCS) must guarantee a safe
and stable flight and thereby take into account wide variations in flight conditions and large
model-data tolerances, next to the large attitude changes. To perform its tasks, the FCS can
use a Reaction Control System (RCS) and aerodynamic control surfaces. Hamilton (1982)
states five features of the Space Shuttle that present unique stability problems in combination
with the large velocity range: i) the Shuttle is an unpowered vehicle, ii) the control of the aileron,
rudder and the RCS jets is blended, iii) the gains of the FCS are scheduled, iv) the rigid-body
stability margins are small, with strong bending modes within an octave of the cross-over
frequency, and v) the control system is multi-rate digital.

Klinar et al. (1975) give a general overview of the Space Shuttle Flight Control System.
However, this overview cannot give the final details of the FCS, since the first Space-Shuttle
flight was in 1981 and the FCS design was continuously updated when new data became avail-
able. Since the general idea did not change, we will use this paper (and others) to give the
reader a global impression of the FCS design. The system design goal was to maximise the

v R e
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use of the aerodynamic control surfaces, of course within their power limitations, and to
minimise the RCS propellant consumption while satisfying the handling qualities required for
manual operation.

The longitudinal and lateral controllers of the Space Shuttle are described as follows. The
longitudinal automatic and manual FCS designs are conventional pitch-rate feedback control-
lers, with outer loop closure accomplished by surface-position feedback or by the pilot. Actua-
tors for both trim and control are the symmetric elevons, the body flap and for the low dynamic-
pressure region the pitch jets. Also in case of the lateral automatic and manual FCS, the design
exists of conventional rate-feedback controllers. Operations are depending on the angle of
attack. For the higher angle-of-attack operation, the rudder is ineffective leaving only differential
elevons (ailerons) and the RCS thrusters for control. The rudder is only activated below Mach
numbers of 3.5. The yaw thrusters are used to control banking whereas the ailerons are used
to damp sideslip. At lower angles of attack, there is a conventional aileron/rudder crossfeed for
turn coordination.

A major concern during the design of the FCS was the flexible body interaction. As we can
see in Fig. 1.2, which shows us the simplified entry FCS configuration in the all-aerodynamic
phase, there are several bending filters included in the design. These filters were added
because due to the high loads the Shuttle cannot be treated as a rigid body. The bending mode
stabilisation was considered to be a problem that drove the design of the controller. What we
can also see from this figure, is that the longitudinal and lateral motion are not completely
decoupled, since the longitudinal controller has a feedback compensation of the yaw rate, which
is a lateral-motion component. Note that the commanded attitude that is computed by the guid-
ance logic, is translated into commanded angular rates which are fed to the attitude controller
(attitude-rate control instead of attitude control).

COMPENSATION
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PITCH Y] 134
RATE &1 125+

BENDING ELEVATOR
UMT 50 1 o COMMAND
PHICH 5-ORDER
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m LOOP GAIN
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Fig. 1.2 - Entry FCS configuration for Mach = 3.5 (based on Epple and Altenbach, 1983).
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Fig. 1.3 - The Space-Shuttle lateral entry Flight Control System (based on Hamilton, 1982).
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Hamilton (1982) discusses the flexible body stabilisation for the aerosurface control loops.
In Fig. 1.3, we have included the simplified block diagram that Hamilton used for the discussion
on the lateral FCS. We see that the basic idea is based on rate feedback, with several filters
added to account for elasticity and to improve the response of the system. Furthermore, we find
scheduled gains. The forward-loop gains are inversely proportional to the dynamic pressure,
which raises the gains where aerosurface effectiveness is low. The aileron loop contains a yaw-
rate feedback that is scheduled with the angle of attack. This gain is proportional to COT a.

Analysis of the entry FCS has been described by a number of authors. Stone and Powell
(1976) do an analysis of the entry guidance and control system to determine the sensitivity of
the Shuttle to off-nominal stability and control aerodynamic parameters. Besides, they identified
the boundary values for each of these parameters. The Space Shuttle entry flight control off-
nominal design considerations are also the topic of a paper by Bayie (1984). He presents the
sensitivity of the flight control stability margins to aerodynamics, discusses the flight control
verification process and compares the predicted performance with the flight-test results of the
first Space Shuttle flight, STS-1.

Nguyen et al. (1990) describe the testing methodology that was used for verification of the
Shuttle FCS, using simulation (software: linear stability analysis and off-line non-linear
simulation programs; hardware: MIL engineering and verification simulators) and flight tests (the
first four orbiter missions). Epple and Altenbach (1983) describe the dynamic stability testing
of the Space Shuttie Columbia FCS and flexible-body interaction. Input stimuli were applied to
the Shuttle vehicle controllers to excite bending while the FCS is powered-up, and the measur-
ed responses from the operating FCS were compared with the prediéted responses from the
flex FCS flight model suitably modified to represent the ground-test configuration. Myers et al.
(1982), finally, assess the FCS and the flying qualities of the Space Shuttle during approach
and landing.

1.3. Attitude-control concepts.

A control-system design can be based on a number of underlying theories. The oldest and most
widely used concept is the one of feedback, of either the output or state of a process. A
technique which is being used more and more in industrial control systems is adaptive control.
Modern, robust control techniques that are subject of many studies are based on H_, or p-
synthesis. Of course, there are many variations on the different concepts. Since we do not want
to do an extensive survey of different control techniques, we shall limit ourselves to the three
mentioned concepts that have known flight applications, and then only briefly.

Our selection criteria of a particular technique for the control of an unpowered, winged re-
entry vehicle are quite simple and straightforward.

* We have a need for a control system in order to develop an analysis technique for testing
guided and controlled flight of atmospheric space vehicles. This means, that we should be
able to control the vehicle but that it does not have to be the best possible controlier which
guarantees mission success under all circumstances. In fact, it is no problem if the
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sensitivity analysis will show the limitations of the controller. To put it in other words, not
the performance of the controller is the study objective, but the analysis technique.

* The design should be as simple and transparent as possible, so that we can gain insight
in the related flight dynamics.

*  The controller has to be implemented in an existing flight-simulation software package, so
its implementation should not be the cause of great difficulties.

«  Preferably, but this does not have to be a necessity, we want to apply to HORUS a control
technigue that has not been applied before.

» Last but not least, for an actual flight application the algorithm should be easy to be
embedded in an on-board computer. This is an aspect that we do not consider here,
however.

Feedback control systems have found widespread use in, amongst others, aeronautical
engineering (Bryson, 1985). Simple forms of feedback are (a combination of) Proportional,
Integral and Derivative (PID) feedback of the output of the system or plant that has to be
regulated. Classical control theory of linear systems was based on frequency response and
root-locus techniques, see, for instance the books by Kuo (1987) and D’Souza (1988). A set
of general performance requirements, that were not optimal in a mathematical sense but rather
aimed at a reasonable performance, were commonly used.

Initially, the older concepts were not easy to apply to multi-variable plants. State feedback
systems, however, are particularly suitable for systems with Multiple Inputs and Multiple Out-
puts, so-called MIMO systems. The parameters that define the control-system performance, the
gains, can be obtained by pole placement or, alternatively, based on mathematically defined
optimisation criteria. The Linear Quadratic cost criterion is well known in this respect, resulting
in the so-called Linear Quadratic Regulator (LQR), see, for example, the books by Bryson and
Ho (1975), Lewis (1986) and Gopal (1989). More recent trends in feedback design are given
by Kokotovic (1984), who gives an overview dealing with non-linear feedback, i.e., adaptive and
composite control, and with external linearisation. A recent application of the LQR using the
method of extended linearisation is given by Wang and Sundarajan (1995), who describe a non-
linear longitudinal flight controller for the F-8 aircraft.

An advantage of LQR is that it is a systematic method for designing MIMO systems.
Furthermore, the implementation of the control laws in flight-simulation software is fairly simple,
and the computational load for on-line simulation is low. The problems dealing with pole assign-
ment linked with MIMO systems have been replaced by an optimisation problem, and pole se-
lection is now changed to the selection of the optimisation parameters (weighting matrices).
However, when not all the states of the controlled system are available, then most of the
attractive properties-of the LQR methodology are lost. In that case an estimator is introduced
to estimate the unavailable states, see Shahian and Hassul (1993), which then results in a
Linear Quadratic Gaussian (LQG) controller. However, the LQR seems to be a very appealing
concept for our purposes, i.e., designing- and implementation-wise, so we keep this method in
mind for selection.

When a process is dynamic, i.e., the system parameters vary strongly with time, or in case
there are many disturbances, a controller with constant parameters is not likely to perform well
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over the entire operational range. In that case we want in some way to adapt our controller
parameters to the changing circumstances. Adaptive control, a special type of non-linear feed-
back control, found its way into use in the early fifties, as an autopilot for high performance
aircraft (Astrom and Wittenmark, 1989), later on followed by applications in the F-94, F-101 and
X-15 research aircraft (Boskovich and Kaufmann, 1966). Throughout the succeeding years,
several different adaptive techniques were developed, of which three are more common: Gain
Scheduling, Self-Tuning Regulation and Model Reference Adaptive Control. These forms of
adaptive control are discussed by many authors. We have already mentioned the book by
Astrom and Wittenmark, which gives an excelient treatment with many examples and
applications. We wili add here the survey of adaptive feedback control, given by Astrom (1987).
It focuses on the three mentioned concepts of adaptive control, but gives also a list with more
than 350 references.

In case of gain scheduling, auxiliary variables, that relate well to the characteristics of the
process dynamics, are used to change the controller parameters. However, since there is no
feedback from the performance of the closed-loop system, which compensates for an incorrect
schedule, Astrém and Wittenmark (1 989) do not regard this scheme as truly adaptive. With Self-
Tuning Regulation, the system to be controlied is described by a model with (partially) unknown
parameters. During operation, these parameters are estimated with a recursive estimation
method. The estimated parameters are treated as the best 'guess’ of the system and used to
calculate new controller parameters.

The problem of self adjusting the parameters of a controller in order to stabilise the dy-
namic characteristics of a feedback control system when drift variations in the plant parameters
occur, was the origin of Model Reference Adaptive Control or MRAC (Landau, 1974). With this
technique, a reference model serves as the basis to generate the steering commands for the
(unknown) plant. The parameters of the controller are adjusted in such a way that the difference
between the model output and the plant output are minimised. The performance of the controller
is in this way less sensitive to environmental changes, modelling errors and non-linearities
within the system. A drawback might be, however, that a large control effort is required to make
the plant follow the model (Messer et al, 1994). Furthermore, the mathematical foundation of
the original MRAC is quite large and may withstand a quick design and implementation.

A survey of model reference adaptive techniques, both in theory and applications, is given
by Landau (1974). This survey includes over 250 references. A recent work on direct adaptive
control algorithms, and especially a simplified form of Model Reference Adaptive Control, is
given by Kaufman et al. (1994). This latter methodology seems to be promising with respect
to ease of use and computational requirements, so in principle we will keep this method in
mind. However, due to time constraints and lack of practical applications we will not apply this
concept here, but keep it as a focus point for further research.

ACRI/LAN (1992) discusses guidance and adaptive-control techniques of moderate lift-to-
drag vehicles, and applies them to the problem of atmospheric transfer. The attitude of the
Apollo-like vehicle can be regulated by a pulsating reaction-control system. Three possible
attitude-control concepts are discussed, i.e., gain scheduling, STR and MRAC, in order of
mathematical complexity. Each of the controllers was based on a PID-type of control law and
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gave satisfactory results, although the STR and MRAC increased the fuel consumption because
the required extra signals generated oscillations in the angles of attack and sideslip.

The last of the three control concepts that we discuss here is robust control, or, to be more
specific, application of H_, i.e., the minimisation of the ss-norm? of some transfer function, and

u controller synthesis and analysis. These types of controller designs were developed for multi-
variable feedback systems in the face of uncertainties (Doyle and Stein, 1981), since the per-

formance of feedback systems is then ultimately limited. The name H_ refers to the space of
stable and proper transfer functions. The objective in H_ control is to minimise the -norm of
some transfer function, which will increase the robust stability margin of the system (Shahian
and Hassul, 1993).

As is the case with LQG problems, also H_ uses a state estimator and feeds back the
estimated states. The controller and estimator gains are computed from two Riccati equations.
Differences can be found in the coefficients of the Riccati equations, the weights. In principle,
transfer-function weights are used to shape the various measures of performance in the
frequency domain. In H_-control problems, they are also used to satisfy the so-called rank
conditions, that are frequently violated in case of inappropriate weights. Proper selection of the
weights depends primarily on the experience of the user, and his understanding of the physics
of the problem and other engineering constraints. Because of this, H_ control is a complex
method to apply.

The capturing of both the performance of feedback and uncertainty aspects has been
presented by Doyle et al. (1982). It involves a generalisation of the ordinary Singular Value
Decomposition, and it provides a reliable, non-conservative measure to determine whether both
the performance and robustness requirements of a feedback loop are satisfied. This measure
is called the Structured Singular Value, denoted by the symbol p. Necessary and sufficient
conditions to handle bounded structured uncenrtainty, that result from unmodelled system dy-
namics, are given by Doyle (1985). Since the theory is far too complicated to describe in a
nutshell, we suffice by giving the above references and the book by Doyle et al. (1992), that
gives an excellent introductory treatment of the robust performance problem.

Two applications of H_-control and p-synthesis are of interest. Doyle et al. (1987) apply p-
synthesis to the Space Shuttle lateral axis FCS during re-entry. Their conclusion was that the
use of p is a very promising and powerful tool, if only for analysis. The produced results were
very encouraging, and they yielded important information about the performance and robustness
of the controllers. The second application concerns attitude control of hypersonic space planes.
Since the mid eighties there was an ever-growing interest in guidance and control of space
planes. Because of the large flight regime and the uncertainties in the dynamics, the application
of robust control to this class of vehicles has been studied by several authors. As an example

2 The -norm of a transfer function G(s) is defined by

1Gl. = sup |G(jw)]|

where s is the Laplace variable and o the radial frequency (rad/s). Graphically, the «-norm is simply the peak
in the Bode magnitude plot of the transfer function.
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we mention the work of Gregory et al. (1994). They applied the concepts of H_ and p to a
longitudinal model of a winged cone configuration at Mach 8. Their conclusion was that the
addition of using u provides robust performance, much more than H_ in itself. Although they
restricted to linear analysis, the results are very promising to stimulate further research.

With respect to robust control, we found several references that give comparisons of dif-
ferent control techniques. Grocott et al. (1994) make a comparison between 5 different robust-
control techniques for uncertain structural systems, i.e., Sensitivity Weighted Linear Quadratic
Gaussian, Maximum Entropy, Multiple Model, H__ and p-synthesis. The techniques were evaluat-
ed on computational requirements, the degree to which performance suffers from achieving
robustness, and the maximum performance that can be experimentally achieved. For their low-
order benchmark problem, they found that because of the (very conservative) guarantees of
robustness (H_), a large performance penalty can result. Compensators based on p-synthesis
are much less conservative than H_ designs, but are computationally infeasible for large-order
plants, because the order of the control system increases drastically.

Vincent et al. (1994) compared the Linear Quadratic Regulator with H_, applied to a lateral-
directional control-system design for a Mach = 0.9 flight condition. Both controller designs
demonstrated excellent model-following performance, although each of the controllers had some
individual strong points. The LQR control law was simpler than the H_ one, and could easily be
implemented with in-line computer code. For the H_ design, some numerical points of concern
were identified, i.e., a possible need for increased precision numerical representation (more
memory required and a higher CPU load), and the fact that model-order reduction proved to be
a delicate numerical problem.

In conclusion, we can state that H_ and p-synthesis have promising features, although
there are still practical problems with respect to performance and computational load. Further-
more, the mathematical foundation of both methods is complex and quite some experience is
required to develop controllers. For this reason, we will not pursue these methods.

Summarised, we have introduced three different control techniques, in order of increasing
complexity:

1) Output or state feedback, with the controller parameters (gains) obtained by
¢ pole placement, or
» optimal control theory (LQR).
2) Adaptive control, with three of the more common techniques given by
* Gain scheduling,
* Self-Tuning Regulation, and
* Model Reference Adaptive Control.
3) Robust control, with two different schemes:
* H_-control, and
¢ u-synthesis.

Of these three techniques, for reasons of simplicity while still having a reasonable performance,
we will select state feedback where we will compute the gains by means of the optimal control
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theory. Furthermore, to cope with the large flight regime we will apply gain scheduling. In short,
we will apply the Linear Quadratic Regulator with gain scheduling. Despite its old (but also
proven) concept, and the introduction of many new control theories and techniques, the LQR
is still widely in use, of which many examples can be found in literature (although they do not
always focus on aircraft and space vehicles).

Gawronski (1994), for instance, proposes a linear quadratic design procedure for NASA's
deep space network antennas, thereby dividing the antenna model into tracking and flexible
subsystems and designing controllers for each of these parts separately. (Because of the
separation the controller design showed a significant performance improvement.) Furthermore,
Collins and Richter (1995) applied a Linear Quadratic Gaussian design as a possibility for the
Hubble Space Telescope. The use of this control concept showed that it met all specifications,
and that the precise attitude control required for Hubble was possible. Last but not least, we
already mentioned the application to the F-8 aircraft. One of the disadvantages of linear state
feedback control is its limited robustness in the presence of model uncertainties and non-
linearities. Wang and Sundarajan (1995) used the extended linearisation approach together with
the LQR, thus removing some of the difficulties of gain scheduling, namely, that the scheduling
variable should vary slowly and also that the scheduling variable should capture the plant non-
linearity. Their (preliminary) conclusion was that the non-linear controlier performed much better
than the conventional gain-scheduled controller.

The choice of this control scheme is based on the motivations given at the beginning of this
section. Furthermore, to our knowledge this scheme has not been applied to a vehicle like
HORUS, although the controller is based on similar control laws provided by MBB (1988b).
However, they used pole placement to compute the gains instead of a quadratic cost criterion.
Furthermore, the documentation of their controller was not complete (and not published in open
literature), and there were no numerical values of the gains available. Last but not least, the
design methodology for the LQR will be set up in a general way so that it can also be used for
other vehicles and missions, and possibly also for a refinement of the controller design as to
increase robustness and performance. In this respect we mention that the design methodology
has been applied to a re-entry test vehicle with a triangular cross section, that is controlled only
aerodynamically by three aerodynamic surfaces (Mooij et al., 1995).

1.4. Control-system design cycle.

While studying the flight behaviour of conventional aircraft and designing autopilots for this class
of vehicles, it is common practice, depending on the type of trajectory, to separate the longitu-
dinal and lateral motion. This is usually aliowed, because the two motions are decoupled, i.e.,
a symmetric manoeuvre only has a marginal effect on the asymmetric motion and vice versa.
This decoupling implies a simplification of the autopilot design, and moreover, it gives an
increased understanding of the natural aircraft motions.

For similar reasons, it would be useful to do the same for hypersonic vehicles. However,
for air-breathing space planes the coupling between engine and aerodynamic effects results in
violation of the separability conditions, although aerodynamic effects basically satisfy these

TR
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conditions (Sinai, 1990)3. Since the control-system design in this report is focused on an
unpowered re-entry vehicle, one might expect that separation of the longitudinal and lateral
motion is possible. But, HORUS will fly with a large angle of attack and bank angle, indicating
a strong lateral motion, so the question: Is separation still possible? is worth asking.

The design cycle can be divided into a number of successive steps, which will be briefly
described below. In Fig. 1.4, we have schematically depicted the design process. Once more,
it should be noted that we do not aim at designing the optimal control system for this vehicle
and mission. Therefore, some iteration loops which are indicated in Fig. 1.4 will not be exe-
cuted, although they should be considered when starting from scratch and aiming at the best
possible controller. In order to verify the controller and to set up a more general methodology
of controller design, we take the following steps:

1) We will analyze the full six-degrees-of-freedom (6-d.0.f.) motion of the re-entry vehicle (both
- symmetric and asymmetric flight). The state of the vehicle is defined by three position
variables (modulus of the position vector R, longitude t and latitude 8), three variables for
the velocity (groundspeed V, flight-path angle y and heading x), three angular rates (roll
rate p, the pitch rate g and the yaw rate r) and three aerodynamic angles for the attitude
(the angle of attack a, the angle of sideslip B and the bank angle o). The corresponding
flight-dynamics model consists of 12 first-order differential equations. The related equations

are given in Section 2.1.

2) The 12 coupled differential equations are non-linear and time varying, which makes it im-
possible to design the linear state-feedback control system with classical control theory. To
apply this theory, the equations of motion have to be linearised and to be made time in-
variant. To make this process as easy as possible, some assumptions will be made to sim-
plify the starting equations. The linearisation is discussed in Section 2.2.

3) To study the open-loop behaviour of the vehicle flying its nominal trajectory, or in other
words, the stability of steady flight, the linearised equations of motion have to be written
in a special form, the so-called state-space form. This matrix equation will be presented in
the final section (2.3) of Chapter 2. The nominal trajectory is divided into a number of
discrete points, the so-called time points in which the vehicle is considered to be
equilibrium. Per time point, a so-called Linear Time Invariant (LTI) system can be obtained.
To address the time-varying character of the re-entry mission, each of the LTI systems will
be combined in a series, that serves as the basis for the next step.

4) To study the open-loop behaviour of the vehicle it is sufficient to look at the eigenvalues
of the system. More complete information about the characteristics modes is provided by

3 The performance of the propulsion system is depending on the angle of attack, in the form of pre-com-
pression of the air with increasing angle of attack. This shows as an increment in the net installed thrust. In a
similar manner, flying with a non-zero angle of sideslip will have its effect on the performance, but now in a
negative sense. The in-coming airflow in the inlet of the propulsion system can decrease and shock waves can
originate. Both phenomena decrease the available thrust. Since the thrust force is one of the major external
forces in symmetric motion, the asymmetric angle of sideslip has established a coupling between the symmetric
and asymmetric motion.
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the corresponding eigenvectors. This so-called eigenmotion is studied in Chapter 3.

5) Chapter 4 describes the actual controller design. From the study of the eigenmotion around
the nominal trajectory, it appeared that the symmetric and asymmetric motion are de-
coupled. For this reason, the controller is divided into two parts, i.e., a pitch controller
(Section 4.3) and a lateral controller (Section 4.4). For each controller, the corresponding
reduced system of equations of motion is discussed, as well as the eigenvalues of this
system. Furthermore, the selected control laws and the computation of the feedback gains
are presented. The underlying theory for gain computation, i.e., the application of optimal
control theory, is given in Section 4.2.

6) The verification of the designed controller(s), consisting of three parts, is discussed in
Chapter 5. For both the pitch and lateral controller, the response of the closed-loop system
to both a step and a ramp input will be considered. Also, the flight along the nominal trajec-
tory with the integrated controller is presented. Nota bene: at this place (before testing the
controller in the non-linear flight environment), it would be possible to do a sensitivity
analysis of the linear model. When the conclusion is that the linear model is not robust
enough, a redesign has to be done. This sensitivity analysis is skipped in this report,
because we are not doing an optimal design of an attitude controller.

Step 6 marks the end of the design process, as discussed in this report. Since we know
from MBB (1988b), that a similarly developed controller gives a fair perfformance, not further
improving the performance of the attitude controller seems a reasonable thing to do. However,
the design of a controller is usually not that straightforward. After the feedback-gain computation
and some response tests, one might have to go back one or two steps in the design process,
as can be seen in Fig. 1.4. It is possible that the time points, which have been selected, are
not sufficient to cover the whole trajectory. In that case, more time points need to be selected.
On the other hand, it is quite well possible that for none of the time points the required
behaviour can be achieved. Then, one has to reconsider the choice of the control laws.

When the two separately developed controllers prove to have done what they are supposed
to do, they have to be integrated and cooperate so that the nominal mission for which the
controllers were designed, can be simulated. At this stage, we can check whether the sim-
plifying assumptions, which we made during the design process, were justified. Only after suc-
cessfully completing this test, we can proceed with the next step: a sensitivity analysis, which
should give us insight in the behaviour of the vehicle and the controller under other than the
nominal conditions. Again, it is possible that we have to redesign the controller. The outcome
of the analysis might even imply that a linear state-feedback controller with gain scheduling is
not suitable at all. Whether that is the case, remains an open question within the framework of
this research.
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Fig. 1.4 - The design process of the linear state-feedback controller.



Chapter 2

The Motion of a Vehicle
in a
Planetary Atmosphere

To study the motion of a vehicle in a planetary atmosphere, it is necessary to derive a math-
ematical model of this motion. Starting with the Laws of Newton, the translational and rotational
motion of a vehicle can be described by a system of 12 coupled, first-order differential equa-
tions. These (non-linear) differential equations can be numerically integrated to gives us the
variation of position, velocity, attitude and angular rate with time. The general form of these
equations is introduced in Section 2.1. However, to design a state-feedback control system
while applying classical control theory, it is necessary that the system of differential equations
is linear in all its state variables. This process of linearisation is discussed in Section 2.2. The
matrix form of this linearised system, also called the state-space form, is described in Section
2.3. This form enables us in the first place to study the characteristic motion (or open-loop
behaviour), and in the second place to design our control system. These topics will be
described in Chapters 3 and 4, respectively.

2.1. The general form of the equations of motion.

The control-system design is centred around an unpowered, winged re-entry vehicle. Detailed
discussions on the equations of motion of such a vehicie can be found in Mooij (1994a). We
will summarise these equations in this section. First, however, we will state the underlying
assumptions.

» The Earth is represented as a sphere and is rotating with a constant rotational rate w,,
 The vehicle has a plane of mass symmetry (XgYgplane), which means that

lxy = Iyz =0.

in Appendix A, the definition of the state variables can be found.

The dynamic equations of translational motion:

ottt R i
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V _ FV » 2 \ .
= _Z + o, Rcosd(sinycosd -cosysindcosy) (2.1.1a)
m
. F, , V2
W= +2wy,Vcosdsiny + Wcosy +
m (2.1.2a)
+ coibRcoss(COSSCosy+sinysin6cosx)
. F, , ,
Veosyy = —X + 2w, Visindcosy-cosdsinycosy) +
m
(2.1.3a)
VN . 2 C e
+ Wcos ytandsiny + wg, Acosdsindsiny
with
Fy = -D - mgsiny - mgscosycosy, (2.1.1b)
F, = -Ssinc + Lcosc - mgosy + mgssinycosy, (2.1.2b)
F, = -Scosc - Lsinc + mgssiny (2.1.3b)
The corresponding kinematic equations:
R = Vsiny (2.1.4)
_ Vsinycosy (2.1.5)
Rcosd
§ - Veosxcosy (2.1.6)
R
The dynamic equations of rotational motion:
l22 Iz (/xx"/ +/zz)lxz (/yy_lzz)lzz"lfz
p=22M, + ZM, + 144 pg + qr (2.1.7)
I* " I *
M / l,,-1
G- 2l2p2) o 22 e 2.18)
yy

I,Vy

= hnigaan s
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I / (hx=ly) 12 (~hoe* Ly =11
= szx+ XXMZ+ xxyyl'xx xzpq+ xxlyy lzz qur (2.1.9)
" " * "
with
1* = lylyy - 12,
The corresponding kinematic equations:
dcosp = -pcosasinp +gcosp -rsinasing +
+ sino[)'(cosy—SSinxsiny+(t+mcb)(cosﬁcosxsiny—sinSCosy)] + (2.1.10)
- coso‘[‘y -8cosy, - (t+wgp) cosﬁsinx]
B = psina-rcosa +
+ sinc['y—Scosx—(hmcb) cosSsinx] + 2.1.11)
+ cosc[jgcosy -3sinysiny +(t +®gp) (cosBcosxsiny —sin8cosy)]
6 = -pcosacosp -gsinf -rsinacosf +
(2.1.12)

+ Gsinp -xsiny - 8sinycosy + (t+0 ) (cosScosxcosy +sindsiny)

In these equations, ¥, %. & and © are given by Egs. (2.1.2) through (2.1.6). Note that the
external moment components are expressed in the body-fixed reference frame.

2.2. Linearisation of the equations of motion.

The characteristic motion, or the open-loop behaviour, of a vehicle, is can be described by the
eigenvalues and eigenvectors of the equations of motion. However, the eigenvalues and eigen-
vectors can only be obtained when the time derivatives of the states are given as a linear com-
bination of the states. In other words: the equations of motion have to be linearised. As a result,
the motion given by this linearised system should be regarded as an equilibrium trajectory, so
that the characteristic motions are small deviations from this nominal path. To simplify the pro-

cess of linearisation, we will make some assumptions:

* We will consider a non-rotating Earth (v, = 0 rad/s), which is allowed since the rotation
of the vehicle is of a much higher frequency than the rotation of the Earth. As a result,

the Coriolis and centripetal accelerations are zero as well,

e e i
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* The gravity field of the Earth is assumed to be spherical (g5 =0 m/sz). Nota bene:
since there is only one component of the gravitational acceleration left, we will omit the
subscript 'r’

* The vehicle is assumed to be rotationally symmetric (w.r.t. mass) around the X-axis of
the body-fixed reference frame, which means that I, =0.

With the above assumptions, we can neglect the smaller terms. The resulting equations of
motion become:

v--D_ gsiny (2.2.1)
m
y=Y-9 cosy + (Lcoss - Ssina) (2.2.2)
R V mV
X = XcosytanSsinx - (Lsino+Scosc) (2.2.3)
R mVcosy
R = Vsiny (2.2.4)
i = Vcosysiny (2.2.5)
Rcosd
. _V
0 = ﬁcosycosx (2.2.6)
. M
p = l_" +(Ly~lzz)ar (2.2.7)
XX
.M,
q-= - * (2= h)Pr (2.2.8)
yy
. M,
F= _7; + (ha=lyy)PQ (2.2.9)

Since the kinematic attitude equations are very complex, we will introduce another simplifi-
cation. We assume that the vehicle’s attitude is only marginally influenced by an asymmetric
translational motion, or in other words: we assume that the vehicle’s trajectory is parallel to the

equator (8 = 0° and = 90°), and remains that way (& = O rad/s), see also MBB (1988b).

L-mgcosycoso

a = g - (pcoso +rsina)tanfy -
qg-(p + )tanf Voosp

(2.2.10)
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S+mgcosysinc

B = psina - rcosa - (2.2.11)
mV
& - _pcosa+rsina tang L -mgcosycosc | tany Lsinc +Scosc (2.2.12)
cosp mVv mV

As we can see, the equations for i, T and & are not coupled to the rest of the equations, so a
9-d.o.f. linearised model for the state space formed by V, y, R, p, q, . o, B and ¢ can be
derived.

The linearisation is performed as follows. We assume an equilibrium value of each of the
state variables (index 0), and we will look at small deviations from this equilibrium state. Note
that the vehicle is not powered (no fuel consumption), so the mass properties are constant. So:

|74 =V0+AV
Y =Yp+Ay
q =Qqp+Aq
r ro+Ar
o a0+Aa
B =Bp+aB=4AP
6 =0p+Ac '

The nominal position, velocity and corresponding control history follow from the nominal
trajectory, which leaves us with three unknowns p,, q, and r,. However, since we want no
perturbation of the nominal control (o, and 6,5 when we are flying the vehicle, we can compute
the equilibrium angular rates from the condition

or, using Eqgs. (2.2.10-12),

L %
= - CO0SYyCOSO 2.2.14
do vy Vo Yo COSOy ( )
. 9 .
posinay - pCosuy = _‘_/_cosyosmco (2.2.15)
0
1 .
PoCosStyy + fysinog = tany,sinog (2.2.16)
mVq

Solving for p,, g, and r, gives us
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Pg = €8in0g + €080 (2.2.17)
Lo ()
= . - —COSYyCOSC 2.2.18
% v Vo Yo 0 ( )
fy = —€1€0805 + CoSiN0y (2.2.19)
with
D ;
€4 = —-C0SYySincy
Yo
Ly ' )
= any, sing
) mvg Yo 0

Note that since B, =0, also S, = 0.

Substituting expressions Eq. (2.2.13) in Egs. (2.2.1-12), neglecting higher-order terms such

as AVAy, poAa4, etc., and subtracting the nominal state (i.e., VO = ..., etc.) results in the
following 9 first-order differential equations:

AV = _Ab zﬂsinyoAR - goCOoSYpAY (2.2.20)
m Ry

2 2
2V, 2 Vy |cos V sin
AY = {"Yo*‘ HOCOS'Yo}A‘/i‘/ + _g—(l_ 0 J.AR - _i—go YOAY +
0

Ry, Rm2| V R V,
0 0 Ry | "0 0 0 (2.2.21)
COSC sinc
- isincoAc ¥ 0aL - 2__%as
mVy mVy mVy
AR = sinypAV + VycosyyAy (2.2.22)
. AM,
Ap = (2.2.23)
IXX

4 The nominal rotational rates p,, q, and r, are small, and can therefore be freated as perturbations
themselves.
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(2.2.24)

AM,
(2.2.25)

AG = AQ - AL - %cosyosincvo + fo —i(;cosyocosco V+

mYV,
° ° mo Yo (2.2.26)

2
- gf_sinyocoscoAy - %
Vo Ro Vo

COSYyC0SCyAR

AS &cosyocoscoAc + igcosygsincoAV +

AB = sinoAp - COSOGAr -

mV, V;
0 0 Vo
(2.2.27)
29 . 9 . ,
COSYaSINCRAR + —__sinYySiNGo A
* oV Yo 0 v Yo oY
. . Ly 9 Ly .
AG = —COSOUpAp - SINORAr - | —— -~ COSY,COSGC, + SiNGoAY +
GoBP 0 [mv0 Vo oo o AP 7
(2.2.28)

an'YO . Lo .
SinGpAL + cosopLgAc + COSGHAS - —sincpAV
m VO VO

In deriving the above equations, we have used the definition of the gravitational acceleration

A

9=R2

which gives us

or
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Now that we have linearised the equations of motion, we can write them in matrix form,
also called the state-space form. This will be described in the following section.

2.3. The state-space form of the equations of motion.

When equations of motion are written in state-space form, they have the following form in matrix
notation: '

x = Ax + Bu (2.3.1a)

with x an n x 1 state vector, ua g x 7 control vector, and A and B the n x n state (or system)
and n x g control coefficient matrices, respectively. Eq. (2.3.1a) is called the dynamics equation;
to complete the description of the state of the vehicle we also need a so-called output equation:

y=Cx+ Du (2.3.1b)

in the above equation, y is the m x 1 output vector, and C and D are the m x n output and
m x q direct transmission matrices, respectively. For the time being, we will restrict ourselves
to the use of Eq. (2.3.1a).

To write Egs. (2.2.20-28) in state-space form, we must distinguish between state variables
and control variables. The choice of state variables is obvious, if we look at the original
equations of motion with their state variables. We write

X = (AV,AY,AR,Ap,AG,Ar,Ac, AB,Ac)T

The selection of control variables is less clear. The principle of control is obvious: by
changing the magnitude and direction of external forces (and therefore in principle also the
external moments), the trajectory of the vehicle can be changed. As we mentioned in Chapter
1, the guidance system makes sure that the vehicle will follow its nominal trajectory by adjusting
the angle of attack and bank angle, the control variables of the guidance system. These control
variables determine the size and direction of the aerodynamic force vector, the only controllabie
external force acting on the unpowered vehicle. (The other external force is of gravitational
origin,; this force is depending on the position of the vehicle and cannot be controlled actively.)

The attitude controller has to guarantee that the commanded attitude is obtained (and main-
tained) with a certain accuracy in a finite time, which means that eventually there should be
moment equilibrium. Note that the actual angle of attack and bank angle are given by the
kinematic equations, which means that they have defined values depending on the rotation of
the vehicle and thus the size and direction of the external moments. So whereas the forces
acting on the centre of mass (c.o.m.) of the vehicle are the guidance control variables, the
moments around the c.o.m. are the attitude control variables.

inspecting the equations of motion, we find beside the three force components AD, AS and
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AL, three moment components, i.e., AM,, AMy and AM,. Part of the moment components is
determined by the vehicle, depending on its actual attitude. However, the remaining part is
given (and can be changed) by, for instance, aerodynamic control surfaces, reaction control
thrusters and momentum wheels, depending on the vehicle configuration and sub-systems. So
for the selection of the attitude-control effectors, we must have a closer lock at the vehicle, the
HORUS-2B. MBB (1988a) presents this vehicle as winged, without a major propulsion system,
but with 5 aerodynamic control surfaces (two rudders, two wing flaps5 and a body flap). and
a number of reaction control thrusters. The body flap is only used for trim, and does not have
to be considered as a control. The two wing flaps, or elevons, can be deflected symmetrically
(elevator function) and asymmetrically (aileron function). The rudders are outward movable only,
and only one at a time.

It should be noted that by deflecting the control surfaces, an aerodynamic force is
generated that gives a moment around the vehicle’s c.o.m. depending on the moment arm, the
distance to the c.o.m.. The deflection of a surface is in principle an analogous process, of
course with a limited accuracy, which means that the generated moments are a continuous
function of the deflection angle, as well as of flight and similarity parameters, such as the Mach
number.

The reaction control system is only being used when the aerodynamic control surfaces are
not sufficiently effective, e.g., in the upper layers of the atmosphere. The aerodynamic control
surfaces are activated when their effectiveness is more than 10% of that of the corresponding
thrusters and the thrusters are inhibited when their effectiveness is less than 10% of the
corresponding aerodynamic surface®. Whereas the aerodynamic control moments are con-
tinuous functions, this is not the case with the reaction control moments. The principle of a
thruster is that it is either ON or OFF. When it is on, it will generate a constant thrust force that
will also result in a constant moment’. By switching the thrusters on and off repeatedly (so-
called pulsing), the required moment can be approximated. Furthermore, in case there are more
thrusters for generating moments about one particular axis, the magnitude of the moment can
be varied by smartly combining the required thrusters. In this study, however, we will assume
continuous reaction control moments, for reasons of simplicity. Besides, we will directly use the
moments as control variables, instead of the thrust forces.

So, summarised we can write for the control vector u:

5 To be more in line with other literature, we will not use the term wing flaps, but elevons since this control
surface combines the elevator and aileron function.

6 For the defined configuration of HORUS-2B, the maximal torque of the pitch thrusters is 10,400 Nm, the
one of the roll thrusters is 1,600 Nm and the one of the yaw thrusters is 7,600 Nm. This results in activating the
aerodynamic control surfaces at approximately 100 km and switching off the roll thrusters at about 75 km, while
the yaw thrusters remain activated until the end of the descent.

7 The thrust force is in principle depending on the atmospheric conditions, which change significantly during
the flight. Since we do not have extended thruster models at our disposal, we will assume constant thrust forces.
However, it is known from the experience with the Space Shuttle that the operation of the reaction control
thrusters can be significantly influenced by atmospheric conditions. Future models should take this effect into
account so that the influence on attitude control can be studied.
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U = (AB,A8,,48,,AT,,AT,,AT,)T

with
8, = elevator deflection angle (rad)
6, = aileron deflection angle (rad)
8, = rudder deflection angle (rad)
T, = roll-thruster moment (Nm)
Ty = pitch-thruster moment (Nm)
T, = yaw-thruster moment (Nm)

il

These definitions of x and u results in the following state-space matrix equation:

ayy dyw ayp ayp ayg ayr ayy ay ayg

AV AV
Ay avvawavﬁavpavqavramavﬁamAY
AR 4rv 8ry 8RR 4Rp 8Rq 4Ar 8Ra 8RB 9Rs||AR
Ap 8pv 8py Fpr 8pp 8pg dpr 8py pg Aps || Ap
AG|= |8v Qqy 8gR dqp 8qq 8gr 8gu 8¢y 4go ||AQ |+
AF ay ay ap ap a4 a, ay ag ay Ar
A‘?‘ 3V %y 3R qp 3ag 3w B Fap Fuo || ®
A1 apy apy apm app g A Ao A o ig
Ac 8sv 45y @R 8op 8oq 8or 4on Aop oo | 2.32)
bye bys by, byy by, by,
bye by by by by, by AB,
bre bra bpy bpy bg, bg, A5,
bpe bpa bpr bpx bpy by, A8,
+|bge Dbga bgr bgx bgy bg, AT,
b b, b, b, b,y b,
ATy
bye boa bar bux bay by, AT,
bge Bpa Bpr bpx by by,
_boe bsa bsr box bsy bz

Before we derive the 135 matrix elements a;; and bij, one more task remains to be done as
we already indicated above: the evaluation of the force and moment variations in Egs. (2.2.17-
25), i.e,, AD, AS, AL, AM,, AM,, AM,, as a function of state and control variables. Starting with
AD, we must first study the aerodynamic database of the HORUS-2B to find the dependency

of drag D on flight parameters and deflection angles. We find:

i)
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D =f(Ma,h,5,,8,.5,)

with

M = Mach number (-) d
o = angle of attack (rad)
h = height (m)

&, = elevon deflection angle (rad) ki
8, = rudder deflection angle (rad) |
8, = body-flap deflection angle (rad)

ST R S

w

Note that, as we mentioned before, the elevons perform the function of elevator and aileron,
so for our derivations we need to replace §, by 8,and &,

AD can be written as

AD = 9P am + Pno + Pan + s, + s, + a5, + LPns, (233
oM oo dh dd, 0%, a0, 9%
To evaluate the partial derivatives, we write D as
D= CDQdynSref (2.3.4)

with

Cp = drag coefficient = f(M,a,h,3,,6,,,6,)
Qoyn = %p V2 = dynamic pressure (N/m?) = f(h,V)

S = reference area (m2)

ref

The height dependency of the drag coefficient is only apparent for Mach numbers smaller
than 1.5, and is small compared with the dependencies on Mach number and angle of attack.
The body flap is only used for trim, so it has a nominal deflection angle only (AS, = 0). What
remains are the contributions due to the elevators, ailerons and rudder. Since we are looking
at corrective control only (the deflection angles are in principal in the order of a few degrees),
and the contribution to the drag is small compared with the nominal drag, we will neglect these
terms®. Eq. (2.3.3) simplifies to

AD = 90 ap + 90 g (2.3.5)

oM Ja

Evaluating the first term on the right-hand side of Eq. (2.3.5) yields

8 Due to a similar reasoning the contribution of the elevons to the lift force, as compared to the nominal lift
force, can be neglected as well.
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oD _ 9Cp 994
M = a—qu}/n Sref * A;n CpSrer (2.3.6)

Applying the definition of the Mach number,

M=V (2.3.7)
a
with
a = speed of sound (m/s)
we obtain
2
aq 1 9(p M2a? 2 PoVo _ 29dyn
ayn _ 19(p ) - poagMy = ~2-0 - o (2.3.8)
oM 2 oM M, M,
Furthermore,
M,
AM = A(L’] - Lav=-o0y (2.3.9)
a) a Yo

In the above derivation, we have assumed that the variation of the speed of sound, which is a
function of temperature (and thus altitude), is small and can be neglected with respect to other
terms.

The second term on the right-hand side of Eq. (2.3.5) is easily derived as

aD _ aCp
W - qdynosref—aa

Summarising, we get for AD:

D - My oCp 2Cp S AV aCp
- VOW * _V_O qdyno refAV + 70 qdynosrean (2.3.10)

The side force S'is a function of M, a, B, 8, 6, and 8. Again, we neglect the contribution
due to the control surfaces, which results in

- 95 am + S a0 + 9Spp (2.3.11)
oM do ap

AS




Organization: TUD/LR/A2R . Date: February 1997 _
Document code: LR-806 : Page: 29"~

Evaluating all the terms in a similar way as above, we get for AS:

as =255, s ap 2.3.12
- a—ﬁqdyn0 ref » (2.3.12)

Note that Cg = 0 for B = B, = 0°, which is also true for the derivatives w.r.t. M and o evaluated
at B,

For AL we find

_|MpoC,  2C S AV oC, s
AL = _VO_W + —‘70— qdyno refAV + 3 qdy,,o refAQL (2.3.13)

o

The variation of the moments consist of an aerodynamic and a propulsive component, i.e.,

AM, = AL" + AT, (2.3.14a)
AM, = AM' + AT, (2.3.14b)
AM, = AN’ + AT, (2.3.14c)

with

L’ = aerodynamic roll moment (Nm)
M’ = aerodynamic pitch moment (Nm)

N’ = aerodynamic yaw moment (Nm)

Only the aerodynamic contributions have to be expanded to a state-variable and control-variable
contribution, because the thruster moments are already control variables.

We will apply the same way of derivation as for the aerodynamic forces, with one dif-
ference. In this case, the contributions of the control surfaces cannot be neglected, because
of their relative magnitude. Besides, if we did, it would reduce the means of control to reaction
control only. After inspecting the aerodynamic database, we find that the ailerons contribute to
both the roll and yaw moment, the elevators to the pitch moment and the rudder to the yaw
moment. Furthermore, we found that there are no dynamic damping terms included in the defin-
ition of the moments as is usual the case, i.e.,

In case of HORUS, it was mentioned that they had not been computed, but that does not mean
that they are zero, as we know from a similar vehicle, the Space Shuttle (Truijillo, 1986). How-

b ]
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ever, if we want to take the damping terms into account in the derivation, so that the model
does not have to be expanded once these terms become available, or when we want to apply
the model to another vehicle, we will see that in this case the related terms will vanish. In the
previous section it was stated that the rotational rates are small, and can be treated in a similar
manner as the variations AV, AB, etc. This means that when we derive the small variation
around a nominal damping term like

Pobret
/PZ—VO— qdyno Sretbref

the result is a second-order term and can be neglected. Therefore, the damping terms do not
have to included in our derivation. However, when the rotational rates Py qp and r, are not
small and can consequently not be neglected, the damping terms will appear in the model.

As a result, with the aerodynamic moments given by
/
L' = Clqdynsrefbref

/-
M" = CpQqynSrefCrer

N’ = Cn9aynSrerbrer

we get
, 9C oC, ‘
AL" = ——Qgyn, SrefbrerAB + Qayny Srefbrerd0, (2.3.13)
ap 0%,

M, oC aC

am’ = -VETA%n-qdyno SrefCrefAV + aam Qayn, SrefCrefA0 +

(2.3.16)

aC,

L SofCrefAd
35, Qdyn, 2 refCrefROe

aC aC oC
AN ' = —a[andynoSrefbrefAB + 88:’ qdynosrefbreanr + 88:

Gayn Srerbrerds  (2.3.17)

Note that the nominal pitch coefficient C, = 0 for trimmed flight. We will assume that trim is
always guaranteed. This can be verified in the next chapter, when we introduce the nominal
trajectory.

Finally, after substituting Egs. (2.3.10), (2.3.12-13) and (2.3.15-17) in Eqs. (2.2.20-28) and
rearranging terms, we find expressions for each of the coefficients aj; and b,. These express-
ions are given in Appendix B. The obtained stability model, which has the desired form of Eq.
(2.3.1),
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X = Ax + Bu

or, fully written out;

. ayy aVY ayr 0 0 0 ayy 0 0
AV o o0 o AV
Ay &y 8y 4R 4o 2 A Ay
AR apy apy 0 0O 0 0O O o0 o AR
Ap 0 0 0 0 0 0 0 ag 0|,
AGl= |8y 0 0 0 0 0 a, 0 O |lAq
Af 0 0 0 0 0 0 0 ag O |[lar
Ac agv aony auR 0 aotq 0 Aa 0 adc A:
; A
i? v Ay Ar ap O 2 O A dpo||
(o)
_ao.v ao-y 0 ao.p 0 dgr 8gq ao.B acc_ (2318)
‘0 0 0 0 0 O]
0O 0 0 0 0 O AB,
0 0 0 0 0 O
AS,
0 by, O by, 0 0
b,, 0 0 0 b, O 8%
+
qe qy ATX
0 b, by O 0 by
AT,
0 0 0 0 0 O .
0O 0 0 O O O ATz
Lo 0 0 0 0 O]

can now be used to study the open-loop behaviour of the vehicle. This will be described in the
next chapter.
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Chapter 3

Open-loop Behaviour
of the
Re-entry Vehicle

3.1. Introduction.

The system of equations, Eq. (2.3.18), is a time-varying system. In order to apply classical
control theory, we will discretise the nominal trajectory into a number of time intervals. During
each of the intervals, the state of the vehicle and other system parameters are assumed to be
constant. For each of the time points, the system can be investigated. By linearising the
equations of motion and discretising the trajectory, the overall system has been divided into a
sequence of Linear Time-Invariant systems (LT| systems).

The part

x = Ax (3.1.1)
is known as the homogeneous part of the state equation, with which we can study the free
response (also called open-loop behaviour, characteristic motion or eigenmotion) of the system.

The eigenvalues A of state matrix A and the corresponding eigenvectors g can be computed
from the following equation:

AP = Ap (3.1.2)
This equation can be solved by
Ap - Ap ={A-Ap =0 (3.1.3)

The condition for a non-trivial solution is

|A-11] =0 (3.1.4)
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Standard algorithms are available to calculate the eigenvalues and corresponding eigenvectors
of a given matrix A (Press et al., 1990). The mathematical foundation of these algorithms is
considered to be beyond the scope of this report.

With A and p, the eigenmotion x, (t) of the re-entry vehicle follows from (Kuo, 1987):

x(t) = eMp (3.1.5)

Since we are dealing with a linear system of 9 coupled equations, Eq. (3.1.5) gives only one
solution. The general form is, because of the linearity of the system, written as

9
At
x(t) =Y cie"y; (3.1.6)
i=1

The constants ¢; can be computed from specified initial conditions x(0), for instance an initial
perturbation in the nominal angle of attack.

The eigenmotion given by Eq. (3.1.6) will be discussed in Section 3.3. First, in the next
Section 3.2, the nominal trajectory is introduced.

3.2. Nominal trajectory.

The design of the control system is centred around a nominal reference trajectory. Such a refer-
ence trajectory is usually the resuit of an optimisation process, taking mission requirements,
performance criteria and trajectory constraints into account. Unfortunately, we neither have a
reference trajectory nor an optimisation program at hand, so we must generate one ourselves.
MBB (1988b) gives a nominal control history of o and ¢ as a function of time. With this control
history as guidance output and applying ideal control, we can generate the corresponding re-
entry trajectory using the Simulation Tool for Atmospheric Re-entry Trajectories START (Mooij,
TO BE PUBLISHED).

The vehicle data which have been used for the simulation can be found in either MBB
(1988a) or Mooij (1995). The mass of the vehicle is m = 26,029 kg, whereas the (principal)
moments of inertia are

I,y = 119,000 kg m?
I,y = 769,000 kg m?
I,, = 806,000 kg m?

The reference geometry is given by:

S ., =110.0m?

ref
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Crof =230m
b =120 m

ref

The initial conditions for the simulation were:

V =7435.5m/s
y =-1.43°

x =70.75°

h =122 km

7 =-106.58°

d =-22.3°

The vehicle is assumed to be heading towards a runway in Kourou (French Guyana).

The simulation has been executed for a timmed condition (pitch equilibrium only), see also
MBB (1988b). For the Mach range between 1 and 20°, trim is realised with the body flap as
much as possible, and the rest with the elevons (elevator function). (For 0 < M < 1, although
this flight regime is not of interest here, the HORUS-2B is trimmed with the elevators, while
having the body flap maximum up).

The nominal controls are shown in Fig. 3.1 and 3.2, for reasons of convenience at the end
of this section. In Fig. 3.1, the nominal angle of attack is given as a function of flight time. As
can be seen, HORUS enters the atmosphere with the high angle of attack of 40°. Because of
this high angle, the maximum occurring heat flux can be kept sufficiently small. Further down
the trajectory, the angle of attack is decreased in order to meet with the cross- and downrange
requirements. The bank-angle profile is plotted in Fig. 3.2. The nominal history provided by MBB
consists of absolute values only, guaranteeing a certain descent rate. The corresponding sign
is determined by flying towards the targeting point near Kourou, while keeping the heading error
within dead-band limits. Whenever the heading error exceeds the dead band, the sign of the
bank angle is inverted. This manoeuvre, a so-called bank reversal, usually takes between 10
and 20 s. Since ideal control is applied, i.e., the actual attitude is equated to the commanded
attitude, the reversals show as vertical lines. We see four reversals at t =724 s, t= 1076 s, t=
1184 s and t= 1240 s. The simulation is finished when the Terminal Area, 0.75° (= 83 km) from
the runway, has been reached. This is about 1250 s after re-entry.

Studying the coefficients of A and B, we find that we need the following parameters of the
nominal trajectory as a function of time:

%5 S0 Vo Yo Ao 9ayny: Mo 90 Do Lo

The control history provides a, and o, (B, = 0°), which we already discussed. The other
relevant parameters are given in Figs. 3.3-10. For a detailed discussion of the trajectory we

9 The upper Mach boundary was in our case changed to a dynamic pressure boundary Ggyn 2 100 N/m2,
to prevent pitch instability and to be more in line with the body-flap activation of the Space Shuttle.
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refer to Mooij (TO BE PUBLISHED). It should be noted that in the curves for the drag and the lift,
the trim drag and lift are included. In Figs. 3.11 and 3.12, finally, the nominal body-flap and
elevator defiection for trim stability are shown. We see that only at the end of the flight the
body-flap deflection is saturated, and the elevons are required to provide the remaining trim
moment. The deflections of the aerosurfaces take place with an infinite rate (zero time).

From coefficient a,, we see that we need the value of ;. This variable can be easily
computed by substituting the related nominal values in Eq. (2.2.2),

V, LnCOSO,
Yo = 0 % cosyy + 20 (3.2.1)
Ry V% mV,

Finally, we need the values of some aerodynamic coefficients and derivatives,

aCp 9C, d9Cg 9C, aC, IC, oC

’ ¥

" with contributions of the base vehicle only

oM’ oa aﬁ'am' do.  op op
9C, C, - .
S 5o with contributions of the base vehicle, the body flap and the elevons
o
dC, oC oC
! , m " with contributions of the elevons only
00, 30, 09,
oC,

with contributions of the rudder only
r

With M, o, and the trimmed deflection angles of body flap and elevator at hand, these deriv-
atives can be computed off-line. The aerodynamic properties are given in tabular form, for which
linear interpolation is used to extract the information for a particular flight situation. A derivative
is computed by simply taking the derivative of the connecting line, when the flight situation is
located in between two tabular values. At a boundary tabular value, either the left or right deriv-
ative is used; in case the flight condition is located at a tabular value somewhere in the table,
the connecting line of the two neighbouring values is used.
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Fig. 3.1 - The nominal angle of attack as a function of flight time.
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Fig. 3.2 - The nominal bank angle as a function of flight time.
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Fig. 3.3 - The nominal height as a function of flight time.
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Fig. 3.4 - The nominal velocity as a function of flight time.
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Fig. 3.5 - The nominal flight-path angle as a function of flight time.
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Fig. 3.6 - The nominal Mach number as a function of flight time.
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Fig. 3.7 - The nominal dynamic pressure as a function of flight time.
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Fig. 3.8 - The nominal drag as a function of flight time (including trim drag).

1400




Organization: TUD/LR/A2R

Document code: LR-806

Date: February 1997__

Page: 41

lift (kN)

height (km)

450

400

350

300

250

200

150

100

50

140

200 400 600 800 1000 1200 1400

time (sec)

Fig. 3.9 - The nominal lift as a function of flight time (including trim lift).
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Fig. 3.10 - The nominal gravitational acceleration related to the height.
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Fig. 3.11 - The nominal trimmed deflection of the body flap as a function of flight time.
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Fig. 3.12 - The nominal trimmed deflection of the elevators a function of flight time.
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3.3. Eigenvalues and eigenmotion.

Before we start the discussion on the eigenvalues and eigenmotions of HORUS, we must note
that it is not our intention to give a complete analysis of the open-loop behaviour of HORUS.
We will restrict ourselves to a more general discussion, starting with a brief introduction on the
relation between eigenvalues and eigenmotion. Then, we will introduce the characteristic
motions which we find with subsonic, conventional aircraft. As we will see, the HORUS has
similar motions in certain speed regimes. These characteristic motions will be discussed for a
number of time points. To illustrate the eigenmotion, we will conclude this section by showing
the results of a 6-dof open-loop re-entry simulation.

Having computed the eigenvalues and corresponding eigenvectors, how can we relate them
to the actual motion of a vehicle? Based on the eigenvalues, we can see whether a component
of the motion is (un)stable and (a)periodic, see also Fig. 3.13. An eigenvalue can be real or
complex. Complex eigenvalues appear in (conjugated) pairs and indicate a periodic eigen-
motion, whereas real eigenvalues imply an aperiodic eigenmotion. The sign of the real part of
the eigenvalue shows whether the eigenmotion will be converging (negative real part) or
diverging (positive real part). When the real pant is zero, the oscillations have a constant
amplitude. A more detailed discussion can, amongst others, be found in the books by Kuo
(1987) and D’'Souza (1988).

Im(2)}
X X .

Re(1)
a3 X 3 '3 o >
Fig. 3.13 -  Impulse responses for various eigenvalue locations in the complex plane (based

on D'Souza, 1988), where the conjugate eigenvalues are omitted.

To characterise the eigenmotion we compute some specific coefficients, i.e., the period P,
when a pair of complex conjugate eigenvalues represents a periodic motion, defined as

p__2n (3.3.1)
Im(r)
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An aperiodic motion does not have a period, which also follows from the fact that the imaginary
part of the eigenvalue is zero.

Next, we define the halving time T , indicating the time interval when the amplitude of the
2

motion has become half its original value,

Inl
2

T% ) Re(A) : (3.3.2)

However, when the real par of the eigenvalue is positive, the halving time becomes negative.
In that case it is better to speak of the doubling time of the (diverging) eigenmotion:

In2
> =

Re())
The damping ratio € for periodic eigenmotion (complex eigenvalues) can be computed with

¢ Re(A)

- (3.3.3)
\/Re(x)z + Im(\)?

In the case of damped eigenmotion, { is positive (a negative damping ratio is in principle an
amplification ratio). For aperiodic motion, { is not defined.

Finally, the natural frequency w,, for periodic eigenmotion is defined to be

©, = VRe(W)? + Im(\)? (3.3.4)

The natural frequency is the theoretical frequency of the eigenmotion when the energy of the
system is constant during that motion, which means that the amplitude is constant. Again, for
aperiodic motion w, is not defined. It should be noted that the natural frequency is more a
mathematical notion rather than a physical one.

Using the above definitions, we can write a relation between the period on the one hand,
and the damping ratio and the natural frequency on the other:

p-__ 2% (3.3.5)

0,1 —(;2

Sofar, we have only discussed the stability characteristics of the eigenmotion, but we do
not know yet in which of the state variables we can trace this motion. Studying the eigenvectors
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will help us to answer this question. Suppose we compute the modulus of each of the (complex)
components of an eigenvector {4, then we can easily spot the components which are involved.
Furthermore, computing the argument of the complex corriponent, we get an impression of the
phase difference between the related components.

In mathematical terms, see also Fig. 3.14, the modulus z of a complex number A is defined
to be

z= \/ Re(\)? + Im(M)? (3.3.6)

and the argument 6 is

_ Im(A)
6 arctan[ Re(x)) (3.3.7)

Note that the argument of a real nhumber is always O or n (A < 0).

Fig. 3.14 - The modulus z and argument 6 of a complex number.

Each component of the eigenvector can in principle be plotted as a time vector using zand

8, which will give us a visual aid to inspect the eigenmotion in the sense that the relative
magnitude and phase difference of the related components can be distinguished, e.g., see Etkin

(1972). Here, we will not do that but restrict to a numerical inspection of the more important
components of the state vector.

Before we look at the eigenmotion of HORUS, we will briefly discuss the eigenmotion of
conventional subsonic aircraft in steady flight, because we expect at least partly similar modes
(a component of the eigenmotion) for HORUS. Etkin (1972) and Brandt and Van den Broek
(1984) distinguish 5 different modes, two longitudinal and three lateral modes. The longitudinal
modes are called the short-period and the phugoid mode, whereas the lateral modes are called
the lateral oscillation (or Dutch roll), the rolling divergence and the spiral mode. Furthermore,
the longitudinal and lateral modes are decoupled, which means that a symmetric motion (e.g.,
a disturbance) will not affect the asymmetric motion and vice versa.

fe




Organization: TUD/LR/A2R : Date: February 1997_
Document code: LR-806 Page: 46

The short-period oscillation is a fast, periodic aircraft motion, which is usually well damped.
Because of the fast pitch rate, the aerodynamic forces acting on the vehicle are large. The flight
path is nearly a straight line, and there is a negligible speed variation. The phugoid is a very
slow oscillation which is poorly damped. The slowly oscillating speed results in small variations
in the dynamic pressure and therefore the aerodynamic forces. Basically, the motion consists
of translations in the aircraft plane of symmetry, while the rotation about the pitch axis is
negligible. Since only the height and velocity are changing, the phugoid can be interpreted as
a continuous exchange of potential and kinetic energy.

The lateral oscillation resembles the short-period oscillation, in that sense that it is usually
a fast, well-damped aircraft motion (sometimes moderately damped). The large aerodynamic
forces are in principal due to a rotation about the top axis (yaw). There is also a strong roll rate,
but this does not influence the lateral oscillation that much. The flight path and the velocity
almost have constant values. The roll divergence is a strongly damped, aperiodic eigenmotion,
during which the aircraft rotates purely about the X-axis (roll). The roll divergence is aperiodic,
because the roll angle does not have any influence on the external moments and thus the
motion. The spiral mode, finally, is seen to consist mainly of yawing at nearly zero sideslip with
some roll. The aerodynamic forces are very small, resulting in a large time constant. The spiral
mode can be either a stable or unstable, aperiodic eigenmotion.

We will now have a look at the eigenmotion of HORUS. As we saw in Section 2.3, the sys-
tem matrix A is a 9x9 matrix, which means that there are 9 eigenvalues and corresponding
eigenvectors. Inspecting A will also tell us that there are some cross couplings between so-
called symmetric (V, v, R, g, a) and asymmetric variables (p, r, B, &), indicating that the
symmetric and asymmetric motion will not be completely decoupled. However, when these
coupling terms are sufficiently small, decoupling will be possible. But this we will see later.

In Fig. 3.15 through 3.18, the 9 eigenvalues of HORUS along the nominal trajectory are
plotted. The first two figures show the eigenvalues in the complex plane, whereas the latter two
give the imaginary and real parts of the eigenvalues as a function of flight time. Since it is not
easy to see which modes the curves represent, we will only draw some general conclusions
from these figures.

Fig. 3.15 shows a mixture of complex and real eigenvalues, indicating that we can expect
both periodic and aperiodic eigenmotions. The maximum imaginary parts of about 1.5 mean
quite short periods. The real parts are between -1 and 1, which means that the modes can be
either converging or diverging. Looking at Fig. 3.17, we see in principle two major periodic
eigenmotions emerge, which are, as we will find out later, the lateral oscillation (the two outer
curves) and the short-period oscillation (the two inner curves). The discontinuous jumps in the
inner curves are due to the linearisation of the aerodynamic coefficients and the linear table
interpolation: when we go from one table range to another, the aerodynamic derivatives
sometimes change discontinuously. Fig. 3.18, finally, indicates that most of the time the
eigenmotions are very lightly damped or undamped. Only towards the end of the flight strong
divergencies and convergencies appear.

To study the eigenmotion of HORUS in more detail, we have selected several time points

ST R T
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for which we will compute the characteristic values (according to Egs. (3.3.1) through (3.3.4)),
and for which we will try to identify the modes by studying the eigenvectors. The selected time
points are 1 (t=0 s), 50 (t= 196 s), 100 (t= 396 s), 150 (t =596 s), 200 (t= 796 s), 250
(t =996 s), 300 (t = 1196 s)and 314 (t = 1252 s). The numerical results are presented in Table
3.1 through 3.8 at the end of this section.

In principle, we can trace the 5 motions which we discussed before for conventional aircratt.
However, due to the larger speed regime and due to the distinct nature of the nominal trajectory
(large bank angles as compared with the steady cruise flight of subsonic aircraft), we find some
differences. Starting with time point 1, we find six eigenmodes. The first mode we have desig-
nated the shont-period oscillation, because of the large-amplitude oscillations found in the angle
of attack and pitch rate (note that the most important components of the eigenmotion have been
printed bold).

Whereas in the aircraft case the height and velocity remained constant, it seems that here
this is not the case, basically because of the much slower character of the re-entry short-period
mode. However, it should be noted that despite the fact that the height component is the
largest, only the relative difference is important. An amplitude of 0.0226 rad for the angle of
attack means a 1-m amplitude for the height (or: Aa = 10° gives AR = 6.7 m). Besides, we do
not have such a rapid oscillation here: the period is about 850 s, whereas for conventional
aircraft this is in the order of seconds. Also the motion is hardly damped, because of the
absence of aerodynamic forces in the upper layers of the atmosphere. If it had not been for the
angle of attack, we might also call this a phugoid-kind of motion. However, we have reserved
that name for the second mode'°.

The dominating components of the phugoid mode are the height and velocity, with the
angle of attack more or less constant. Furthermore, looking at the period, we find that this
eigenmotion is indeed much slower than the short-period oscillation (P = 5,183 s). A difference
with the aircraft phugoid is that this mode is unstable, although the doubling time is more than
17,000 s. The next mode, the lateral oscillation, compares well with its aircraft counterpart. Main
components are the angle of sideslip and the bank angle, together with the corresponding angu-
lar rates. Initially, this mode is unstable, but as we will see later the oscillation changes into a
damped one. The three remaining modes are all aperiodic. The first two have been given the
common name aperiodic roll mode for obvious reasons: the bank angle is by far the largest
component. Surprising is to see that in one mode the influence of the angle of sideslip is many
orders Iarger”. This means that the first aperiodic roll mode can be compared with the roll
divergence of conventional aircraft. Both modes are stable. The last aperiodic mode has been
given the name height mode. This mode represents a lightly damped aperiodic motion, which
has also been found by Sachs (1993), while studying the stability and control problems in
hypersonic flight.

10 As we already find out, at this altitude it is not altogether useful to compare the characteristic modes of
re-entry vehicles with those of aircraft, because of the completely different flight regime. However, we will stick
to it because it is our only comparison method.

L principle, the eigenvalue of the second aperiodic roll mode is so small that for practical reasons it can
be considered to be zero.

i i ek ik
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Now that we have established the basic modes of the eigenmotion, we can focus on the
time history of these modes. The short period oscillation changes its nature and comes closer
to the aircraft mode. Because at lower altitudes the aerodynamic forces are higher, the damping
of this mode increases (although the damping remains low). The period decreases from P =
850satt=0s,downto P=40satt=96 sdownto P=9 s att= 996 s. Then, at time point
300 the periodic mode breaks into two aperiodic modes, of which one is strongly damped (T4

2
= 1.4 s) and the other one is strongly diverging (7, = 1.9 s). The half and doubling time
decrease further for the last time point. Last but not least, the influence of the bank angle
becomes stronger towards the end of the flight, a phenomenon which we will also see with the
next mode, the phugoid (for the re-entry flight; not for conventional aircraft).

The phugoid damping ratio increases in time (apart from a small decrement at time point
150). It becomes a very well damped motion, with, for instance, a half time of 254 s at time
point 200. The period of the phugoid decreases from over 5000 s (f=0s)t0 430 s (t = 1252 s).
One remark remains to be made and that is that at time point 100 the influence of the bank
angle has changed a couple of orders of magnitude. This can be explained by the fact that
initially the nominal trajectory is flown with zero bank angle, whereas later large bank angles
are applied for lateral direction control. Because of this the influence of the bank angle in the
phugoid becomes apparent, and a coupling (although small) exists between the symmetrical
and asymmetrical motion).

As we mentioned before, the lateral oscillation is an unstable, periodic motion and this
continues to be during the whole trajectory. But, some characteristics of the motion change.
Towards time point 150, the negative damping coefficient gets smaller, which means that the
motion becomes less unstable. From that point, the damping coefficient becomes more negative
again. The period changes drastically during the first 100 s of flight (P changes from 373 s
down to 19.3 s). It continues to decrease till time point 250 (P = 4.2 s), after which it varies only
slightly. At t = 396 s, we see that the contribution of Aa has changed many orders of
magnitude, indicating that due to a large bank angle a small coupling exists between the sym-
metrical and asymmetrical motion. Besides, the ratio between Ac and Ap changes from 1.39
to 1.36 indicating a slightly weaker coupling between the bank angle and the angle of sideslip
at higher bank angles. Ahbecomes the major component, although when we see this in propor-
tion to the attitude angles it does not seem that major (for time point 100, an amplitude of 17.3°
in the bank angle corresponds with an amplitude of 1 m in the height). The relative difference
between the height and the attitude angles, however, becomes larger towards the end of the
flight.

The aperiodic roll modes changes into a single unstable periodic roll mode with a small
coupling to the angle of attack (an amplitude of Ac = 10° gives Aa = 0.33°) at time point 100.
Besides, the height becomes the major component. Again, this begins at the moment the
vehicle starts banking. It should be noted that a small oscillation in the bank angle will result
in a large amplitude in the height (Ac = 0.1° gives Ah = 3,300 m). However, at the next time
point this mode changes again into two aperiodic modes, which are similar to the aperiodic
height mode. For time points 200 and 250, a (very) stable periodic roll mode is back, while at
time point 300 we have again two aperiodic modes. In this case, the stable mode is similar to
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the height mode, whereas the unstable one shows a coupling between the bank angle and the
angle of attack, with the angle of attack the larger one.

The height mode already entered the discussion when we were focusing on the several roll
modes. We will briefly finalise the discussion on characteristic modes. Initially, the height mode
is stable. For time point 50, it has become unstable with an amplification ratio which is as large
as the prior damping ratio. When the banking begins (time point 100}, the eigenvalue related
to the height mode modes very small, and stays very smail during the rest of the flight, being
alternately positive and negative. For this reason, the height mode is not interesting to discuss
any further, because for the short time of the flight this mode is practically indifferent. However,
as we discussed before, for some time points the height mode consists of more than one
aperiodic component. These additional modes have much larger eigenvalues and become the
dominating modes for the height mode, although the damping and/or amplification remains very
small.

The free response according to Eq. (3.1.6) is in itself not that interesting. It will confirm what
we have already seen in the tables with numerical results. Basically, the graphs will show us
both periodic and aperiodic motions, either diverging or converging. Due to the sometimes long
periods, the curves will not give us real insight in the eigenmotion at one particular moment in
time. Only when the motion is, for instance, reasonably damped (or unstable, for that matter)
and has a sufficiently short period, the resulting eigencurve can be quite informative. As an
example, the curves for the angle of sideslip and the bank angle (the major variables for the
lateral oscillation) have been plotted as a function of time for time point 300, see also Fig. 3.19.

There is another more important reason for not looking into more detail at the curves repre-
senting the eigenmotion. The eigenvalues are computed for a certain point in time. When we
compute the eigenmotion for a certain time interval (100 s in Fig. 3.19), we assume that the
dynamics of the vehicle are not changing (given by a constant system matrix and therefore
constant eigenvalues). For a subsonic aircraft in steady (cruise) flight this can be a reasonable
approximation, but for a re-entry vehicle this is most of the time not the case.

However, we thought it to be illustrative of the eigenmotion to simulate the descent of the
HORUS-2B in the so-called open-loop 6-d.o.f. mode, i.e., a free-fall re-entry including attitude
dynamics but without attitude control. For the same initial conditions as given in Section 3212,
the results (plots of the angle of attack, the angle of sideslip, the bank angle and the height as
a function of flight time) are shown in Figs. 3.20 through 3.23.

We see that right from the beginning the angle of attack is rapidly diverging, reaching a
kind of stable oscillation after t = 500 s, however with an initial amplitude of +5°. After t=
1,400 s, the vehicle is in a state of severe unstable oscillations (with a pitch rate of a few
hundred degrees per second). The angle of sideslip and the bank angle show only small oscilla-
tions, mainly induced by the angle-of-attack oscillations. Also these angles reach large values

12 Next to initial conditions for position and velocity, we need initial values for the attitude and angular
rotation of the vehicle. The nominal attitude angles at t= 0 are a = 40°, B = 0° and ¢ = 0°, whereas the nominal
pitch rate is 0.072663 °/s (the nominal roll and yaw rate are considered to be zero).

i A
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when t> 1,400 s. In Fig. 3.23, we see that the vehicle is in fact doing a damped skipping flight,
because of the strong variation in the aerodynamic forces. Finally, after more than 1,600 s the
vehicle crashes on the Earth’s surface.

A second simulation, now with zero initial attitude and angular rates, shows even worse
results (Figs. 3.24 through 3.26). Beside large-amplitude oscillations in all three attitude angles,
very unstable oscillations are reached after only 500 s (not plotted). it might not come as a
surprise that also this time the vehicle crashes, even further off from the target.

The conclusion from the above discussion is, that it is necessary to control the vehicle if
we want it to have a stable flight and reach the landing area safely. In the next chapter, we
discuss the design of an attitude control system which must be able to execute these tasks. As
is the case for conventional aircraft, we can decouple the symmetric and asymmetric motion.
By doing so, we will introduce a small error since there exist a small coupling, as mentioned
in the above discussion. However, we expect that this coupling effect will not influence the
performance of the controller.
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Fig. 3.15-  Variation of the eigenvalues along the nominal trajectory; the variation with time

of both the real and imaginary parts can be more clearly seen in Figs. 3.17 and
3.18, respectively.
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Fig. 3.16 - Detail of the eigenvaiue plot centred around the origin.
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Fig. 3.17 - The imaginary parts of the eigenvalues as a function of flight time.
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Fig. 3.18 - The real parts of the eigenvalues as a function of flight time.
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Fig. 3.19 -  The variation of the angle of sideslip and the bank angle with time (unstable
lateral oscillation) for t = 1196 (time point 300). The period of this mode is 5.6
s, whereas the doubling time is 30.3 s.
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Fig. 3.20 - The angle of attack as a function of time (open-loop simulation).
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Fig. 3.21 - The angle of sideslip as a function of time (open-loop simulation).
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Fig. 3.22 - The bank angle as a function of time (open-loop simulation).
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Fig. 3.23 - The height as a function of time (open-ioop simulation).
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Fig. 3.24 - The angle of attack as a function of time (open-loop simulation, zero initial attitude).
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Fig. 3.25 - The angle of sideslip as a function of time (open-loop simulation, zero initial attitude).

bank angle (deg)

100 150

200

250
time (sec)

Fig. 3.26 - The bank angle as a function of time (open-loop simulation, zero initial attitude).
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Chapter 4

Design of the Controlier

4.1. Introduction.

The conclusion, which can be drawn from the results obtained in Section 3.3, is that when the
HORUS-2B will be uncontrolied, it will end up in unstable oscillations after a small perturbation.
For this reason, and because of the fact that we need to guide the vehicle along a specified
(reference) trajectory, we must have an attitude control system. As we saw in the previous
chapter, an oscillation in pitch will in principle not result in lateral oscillations. Also the opposite
is true: lateral oscillations will not induce a pitch oscillation. In other words, the pitch and lateral
motion are said to be decoupled.

To simplify the design of the controller, we will use this fact of decoupling by separating the
controller into two parts: a longitudinal and a lateral controller. The longitudinal controiler con-
sists of an inner and an outer loop. The inner loop takes care of stability augmentation while
the outer loop provides the corrective control, i.e., to make the actual aftitude approach the
commanded one in a finite time. The stability augmentation, or longitudinal trim, is executed by
aerodynamic means only, i.e., in the first instance the body flap is used, and in case the max-
imum deflection has been reached, the elevators (symmetric deflection of the elevons), are
used for additional control. For corrective longitudinal control, the elevators and pitch jets will
be used. Lateral control consists of only the outer, corrective loop, because only small moments
are required to maintain stability. This control is achieved by using the ailerons (asymmetric
deflection of the elevons), the rudders, and the roll and yaw jets. The state of the vehicle is fed
back into the two controllers. In order to react to the strongly varying dynamics, varying gains
are used in both corrective control loops. In Fig. 4.1, the layout of the controller has been
schematically depicted. In this respect, we mention that there are in principle three controllers
discussed in this report: a longitudinal and a lateral controller, that are designed independently
from each other, and an integrated controller, combining the longitudinal and lateral controllers.



Organization: TUD/LR/A2R : Date: February 1997 _

Document code: LR-806 Page: 66
GAIN
SCHEDULING
Y
- % —e -«
LONGITUDINAL / \
_ CONTROLLER T
o - - By o * > 4
L 2
TRIM LAW Sprim | I =
% Mgy et TS )
| A4
———— LATERAL 2?’ —e > q
% éﬂ_—» CONTROLLER X ol
+ ATZ - | it
ﬂc‘_‘ T—
GAN MEASUREMENT o,V

SCHEDULING SYSTEM

Fig. 4.1 - Schematic layout of the HORUS-2B attitude controller.

In this chapter, we will discuss the linear state-feedback controller with gain scheduling, the
control laws of which are based on a design proposed by MBB (1988b). In Chapter 1, we moti-
vated the choice for this type of controller, being easy to understand and implement, and not
yet applied to a winged re-entry vehicle before. Whereas MBB derived the values for the gains
by means of pole placement, in principle a technique that can easily be applied to Singe-Input
Single-Output systems, we will apply linear-quadratic optimal control theory, particularly suitable
for Multiple-Input Multiple-Output systems.

The layout of the chapter is as follows. First, in Section 4.2, we give a synopsis of the
derivation of the reduced matrix Riccati equation, which we will use in successive sections to
compute the gains of the pitch and the lateral controller. Then, in Section 4.3, the design of the
pitch corrective-controller will be discussed. The section begins with a description of the
reduced state-space model, including the corresponding eigenvalues (the plot showing the
eigenvalues is called the root locus). After introducing the state-feedback control law, the
feedback gains for the longitudinal controller are computed. In Section 4.4, the design of the
lateral corrective-controller is given, following the same line of thought as for the longitudinal
controller.
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4.2. The matrix Riccati equation.

Suppose, we have a state-space system given by

o
1]

Ax + Bu (4.2.1a)

y = Cx + Du (4.2.1b)

In case of state-feedback, the control law is given by

u=-Kx (4.2.2)

where Kis a time independent feedback or gain matrix. Eq. (4.2.2) substituted into Eq. (4.2.1a)
yields

x = (A-BK)x (4.2.3)

The characteristic equation of Eq. (4.2.3), which gives us the eigenvalues and corresponding
eigenmotion of the closed-loop system is given by

det|/A-BK-A1] =0 (4.2.4)

As becomes obvious while studying the above equation, we can change the eigenvalues of the
closed-loop system by varying the gain matrix K. Whether the system will be controllable,
however, is not only depending on the values of these gains. The system in itself should at
least be controllable, and it is not necessarily true that this is always the case. Controllability
is in this case defined as follows (Kuo, 1987):

Given a linear time-invariant system as described by Eqgs. (4.2.1), the state x(t) is said
to be controllable at t = t, if there exists a piece-wise continuous (and finite) input u(t)
that will drive the state to any final state x(t,) for a finite time t,> t,, If every state x(t;)
of the system is controllable in a finite time interval, the system is said to be complete-
ly state controllable or simply state controllable.

The condition of controllability depends on the coefficient matrices A and B.

To determine whether the system is unstable or not, it is also necessary that (at least the
unstable) motions of the system are observable. Observability is defined by Kuo (1987) as:

Given a linear time-invariant system as described by Eqgs. (4.2.1), the state x(t) is said
to be observable if given any input u(t), there exist a finite time ;> t, such that the
knowledge of i) u(t) for t, < t < tii) the matrices A, B, C and D and iii) the output y(t)
for t, < t < t,, are sufficient to determine x(t,). If every state of the system is observable
for a finite time t, we say that the system is completely observable, or simply observ-
able.
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To check whether a system is controliable and observable, it is necessary and sufficient that
the controllability matrix

B AB A%2B .. A" 'B (4.2.5)

and observability matrix

cT ATcT (aT2eT .. a0y 'cT (4.2.6)

have a rank n, i.e., the dimension of the state vector x. When not all of the eigenmotions are
part of the observable and controllable state space, then only those eigenmotions that are part
of it can be influenced by state feedback'3.

The feedback matrix can be computed in a mathematically closed form. An indirect method
is Quadratic Optimal Control, in which a mathematically defined cost criterion is minimised. A
direct method is the so-called pole placement, in which K is solved on basis of the specified
poles of the closed-loop system. In our study we will continue with the indirect method, where
we will use the following quadratic cost criterion (Gopal, 1989):

J = [(xTax+uTRu)dt (4.2.7)
0

where the term x TQx represents the control deviation and the term u T Ru the control effort.
Qs a real positive semi-definite matrix, whereas R is a real symmetric positive definite matrix,
so any x, u# 0 cannot give a negative contribution to J. By varying Q and R more weight can
be given to the control deviation, resulting in a faster response, or the control effort, giving
smaller control signals. By varying each of the elements of Q and R, each of the corresponding
elements of x and u can be addressed. Brandt and Van den Broek (1984) state that defining
Q and R is usually done in an iterative manner, and that a good first choice is given by
‘Bryson’s Rule’:

(4.2.8)

with Ax,-max the maximum allowable amplitude of the th element of the state vector, and

13 We assume that our system is fully observable. The output vector is equated to the state vector, which
means that C is equal to the identity matrix.
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R - diagl_ 2‘ 2‘ (4.2.9)
u u. u
1max 2max mmax

with u the maximum allowable value of the j-th control.

Response tests must prove that these weighting matrices have been correctly selected. [f
not, the values of the diagonal elements should be adjusted. Frangos and Yavin (1992) propose
a synthesis procedure that automatically varies the weighting matrices and computes the gains
in an iterative manner, based on minimisation of the quadratic cost criterion J. Luo and Lan
(1995), finally, describe a systematic method to determine the weighting matrices, so as to pro-
duce specified closed-loop eigenvalues. implementation of either algorithm, however, is con-
sidered to be beyond the scope of the current study.

To find an expression for K, we substitute Eq. (4.2.2) into the cost criterion Eq. (4.2.7),
yielding '

J = fx T(@+KTRK )xdt (4.2.10)
0

To solve the optimisation problem, we will use the stability analysis according to Lyapunov. The
integrand of the above integral equation is considered to be the negative time derivative of the
Lyapunov function V(x):

Vix) = x TPx (4.2.11)

which attaches a mathematically formulated fictitious energy to the system as a function of the
state vector (Gopal, 1989). This makes the minimisation of J to be a minimisation of the inte-
grated fictitious power. P is a positive definite matrix, so every deviation of the state from the
equilibrium state is treated as a positive energy. Based on the above, we may write

xT(@+KTRK)x - -%(x TPx) (4.2.12)

Differentiating results in

xT(@+K"TRK)x = -xTPx - xTPx
(4.2.13)

xT [(A—BK)TP+P(A -BK)|x

Since the above expression should be valid for all x, the following expression holds:
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(A-BK)'P + P(A-BK) = -(Q+KTRK) (4.2.14)
or

AP+ PA=-G (4.2.15)
with

A=A-BK

Q@-a+KT'RK

Eq. (4.2.15) is called the Lyapunov Equation. Gopal (1989) states that the linear system

X = Ax

is globally asymptotically stable'* at the origin if and only if for any symmetric positive definite

matrix Q, there exists a symmetric positive definite matrix P that satisfies the Lyapunov
Equation. This gives us the possibility to check whether our system can be stabilised or not.

Continuing with Egs. (4.2.10) and (4.2.12), the cost criterion can be written as:

J = -xTPx[5 = x(0)TPx(0) (4.2.16)
assuming that our system is asymptotically stable, or in mathematical terms

limx(t) =0

e

Minimising J is now the same as minimising the right-hand term of Eq. (4.2.16) by means of
K. Because R is positive definite, we may decompose it as

R-8Ts (4.2.17)
Substituting this into the Lyapunov Equation Eq. (4.2.14) yields
(AT-k"BT)P + P(A-BK) + @ + KTSTSK =0 (4.2.18)

which can be further expanded to

14 Kuo (1987) defines asymptotic stability as follows: ’If the zero-input response x(t), subject to the finite
initial state x(t,), returns to the equilibrium state x(t) = 0 as t approaches infinity, the system is said to be stable;
otherwise, the system is unstable. This type of stability is also known as the asymptotic stability.’
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.
AP+ PA-PBR'BP +Q +|SK-(ST)'B TP] [sx-(sT)“B Tp| -0 (4.2.19)

The last term on the left-hand side can be treated as a function of K, so J is minimised when

xT SK—(sT)"BTP]T[SK-(ST)“BTP] X (4.2.20)

is minimised w.r.t. K. Since Eq. (4.2.20) is either zero or greater than zero, the minimum is
found when Eq. (4.2.20) is zero, or

SsK=(8s"'B7P (4.2.21)

so that the optimal feedback matrix K can be expressed as a function of P.

K=s'Y%sH'B'P-R'BTP (4.2.22)

Substituting Eq. (4.2.22) into Eq. (4.2.19) gives us P as a function of the system matrices A and
B, and the weight matrices Q and R:

ATP+PA-PBR'BP+Q =0 (4.2.23)

Eq. (4.2.23) is also known as the matrix Riccali equation.

4.3. Longitudinal controller.
4.3.1. Reduced system for symmetric motion.

In order to decouple the pitch motion from the lateral motion, we put A and Ac to zero.
Furthermore, we will only consider rotational dynamics, so we neglect any contribution due to
AV, Ayand AR. We can do this since the dynamics of the translational motion have much lower
frequencies than the high-frequency rotational dynamics. As an approximation, the following
system follows from Eqs. (2.2.17) through (2.2.25):

3Cpm aC,,

—_ S/ofCrofAlt +
QdynrefCref 3%,

Ag =
q oo

1
T qdynsrefcreane + ATy (4.3.1)
Yy
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. 1 9C;
A = Aq - qudynsre,Aa (4.3.2)

In state-space form, the above system can be wrilten as

0 oM G Srere aC
. T Hdyn“ref“ref 1 1
Aq lyy oo Aq I——a'a—quynsrefcref T Ad,
1= + | lyy 00¢ vy (4.3.3)
Al 1 9C; S Aa 0 AT,
m—vo—aa—qdyn ref 0
so the matrices A and B are equal to
1 9C
0 l—a—quynsrefcref
yy o
A= (4.3.4)
1 9C G S
m_vo'&F dyn“ref
1 oCp, 1
— ——G4unSrefCrof —
B - /yy 889 dyn<ret“ref Iyy (4.3.5)
0 0

4.3.2. Root locus of the reduced system.

Looking back at Chapter 3, where we computed the eigenvalues of the homogeneous part of
the state equation, we will do the same here for the simplified equation, Eq. (4.3.3), flying along
the same nominal trajectory as discussed in Section 3.2. The results are shown in Fig. 4.2
through 4.5. Comparing the results with the corresponding graphs in Section 3.3 shows a sim-
ilar behaviour of the related eigenvalues, which indicates that the choice of decoupling the two
types of motion was justified. Note that the eigenmotion shown in Fig. 4.2 corresponds with the
short-period oscillation. Neglecting the translational motion has indeed not influenced this
motion, so our assumption of frequency separation has been correct.




Organization: TUD/LR/A2R

Date: February 1997__
Document code: LR-806

Page: 73

Im(lambda)

-1.5 -1 -0.5 0 0.5 1

Re(lambda)

Fig. 4.2 - Variation of the eigenvalues of symmetric motion along the nominal trajectory.

Im(lambda)

2 i A i i i i i i
-0.01 -0.008 -0.006 -0.004 -0.002 0 0.002 0.004 0.006 0.008 0.01

Re(lambda)

Fig. 4.3 - Detail of the eigenvalue plot centred around the origin for the symmetric motion.
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Fig. 4.4 - The imaginary parts of the eigenvalues as a function of flight time for the symmetric motion.
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Fig. 4.5 - The real parts of the eigenvalues as a function of flight time for the symmetric motion.
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4.3.3. Selection of pitch controls.

The aerodynamic control surfaces can only be efficiently used when the dynamic pressure is
sufficiently high, otherwise large deflections will result in only small control moments. This
means that for the upper layers of the atmosphere only the Reaction Control System will be
used, whereas at low altitudes full control can be achieved with the control surfaces. The
following criterion have been used by MBB (1988).

As long as

M5

35, Oemas <01T, (4.3.6a)

then the aerodynamic gains (K, and K,, as we will see later) are put to zero. If

oM

—39¢ > 09T,
ase max

. (4.3.6b)

then the reaction-control gains (K, = Kz) are equal to zero. When both actuators are operating

then |K;| = |Ky| and |K,| = |K, |. The maximum elevator deflection angle and the maximum
thrust of the pitch jet are

8, =40°

max

T, =10,400 Nm
max

The basic idea behind this is to select one of the two controls when its effectiveness is more
than 10% of the other.

In case the above switch criterion is used, there are some points of interest. In the first
place, the assumption that the contribution of the elevator to the pitch moment is linear over the
full range of elevator deflection is (of course) not correct. This fact can be overlooked if the
difference in the resulting pitch moment is not that large. In our case, for the larger part of the
trajectory we compute the derivative for a nominal deflection of 0°. Because the maximum
deflection is 40°, we found an overestimate of the maximum pitch control moment of more than
200 percent. Of course, this is only of importance when the control system actually commands
such large deflections. In the second place, the absolute pitch moment for a deflection of -40°
differs significantly from its positive counterpart (between -50 and +50%), see MBB (1988a).

To avoid any possible problems, we will just base the selection of the controls on a scheme
used for the Space Shuttle (Cooke, 1982). In Fig. 4.7, this scheme is plotted. For pitch control,
we see that the elevators are activated at a dynamic pressure of 100 N/m? (= 2 psf). The pitch
jets will start working at the entry interface (in principle a dynamic pressure of 0 N/m2) and will
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continue to do so until a dynamic pressure of 1000 N/m? (= 20 psf) has been reached.

ENTRY END OF
INTERFACE MISSION
ROLL JETS q = 10 PSF
PITCH JETS | q=20PsF
YAW JETS | MACH =1

MACH = 3.5 | RUDDER

q = 2 PSF | ELEVATORS
q = 2 PSF | AILERONS

MACH = 10 | SPEED BRAKE

q = 2 PSF | BODY FLAP

Fig. 4.7 - Entry control modes for the Space Shuttle (based on Cook (1982)).

Since we compute the gain matrix by solving the reduced matrix Riccati equation, we will
not predefine that the gains for reaction and aerodynamic control are equal when both control
modes are operational, as is the case with MBB. If one of the control modes is not active, then
the corresponding gains are put to zero.

4.3.4. Control laws.

The state feedback law is chosen to be a simple P-law (MBB, 1988b), see also Fig. 4.6 for a
schematic representation:

A = -K,AqQ - K>A
= -KyAq - KyAo (4.3.7)
€max
ATy _ kg - Roa 438
149 - KA« (4.3.8)
Ymax
where

Ao =0 - 0y= 0 -0y

o, = commanded angle of attack from the guidance system (rad)
Two assumptions were made: in the first place, the rate of change of the angle of attack is
equal to the pitch rate, which seems logical when we look at our simplified system of equations,
Eq. (4.3.2), and in the second place we approximate the nominal angle of attack with the
commanded one. The latter seems logical too, since we want to fly a nominal profile.
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SWITCHING
CONDITION

i SR

SWITCHING
’R‘ CONDITION

_TY max *— Ty

Fig. 4.6 - The longitudinal controller.

The above equations can be written in matrix form:

A6e 86max Ki aemax K2 AqQ (4.3.9)
ATy T.Vmax K1 TYmax KZ Ao -

or, in symbolic notation,

u - -Kx (4.3.10)

Substituting Eq. (4.3.10) into Eq. (4.2.1a) gives us

X = Ax + Bu = Ax - BKx = (A-BK)x (4.3.11)

which enables us to study the behaviour (i.e., eigenvalues) of the feedback system, once the
gains have been selected. Or, as we mentioned before, we can influence the behaviour of the
system by intelligently choosing the gains. '

4.3.5. Computation of the feedback gains.

MBB computed the gains by pole placement, with as a starting point that the short period
oscillation is well damped ({ = 0.7) and that a good tracking behaviour in pitch control is
achieved. However, we will use an indirect method to find the proper gains of Eq. (4.3.9), with
the following quadratic cost criterion:
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J=[(xTax+uTRu)dt (4.3.12)

o3

where the term x TQx represents the control deviation and the term u TRu the control effort.
The optimal gain matrix for this cost criterion is discussed in Section 4.2, Eq. (4.2.22),

K=R1'BTp (4.3.13)
with the positive matrix P following from the reduced matrix Riccati equation:
AP+ PA-PBR'BP+Q=0 (4.3.14)

The matrices Q and R are in this case given by

1
> 0
AGmax
Q = ; (4.3.15)
0 2
i ACmay |
- -
0
2
A8‘9max
R = 1 (4.3.16)
0 2
L AT.Vmax_

Numerical values, which we will use, are:

AQmax = °° (which means that the pitch rate is not used as a weighting factor)

A0y = 2°

ASemax = 40°

ATy = 10,400 Nm
max

The value of Aa,,,, has been chosen such, that, since the nominal angle of attack is close to

the limit value, there is a small margin left. After calculating the gains, we will check in Chapter
5 what the damping factor and the tracking behaviour will be.

Basically, defining the weighting matrices is an iterative procedure, as we already
mentioned in Section 4.2. An important aspect in this respect is, that we apply constant Q and
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R. However, it is quite well possible that in some flight phases we must change the weighting
matrices so that the response of the vehicle will improve. As an example we refer to the paper
by Hamilton (1982), who describes how the gains of the lateral aerosurface control loops had
to be adjusted to give the correct performance. In this study, we will work with only one set of
weighting matrices, but recognising the fact that this is not final. The references mentioned in
Section 4.2 serve as a good basis, to improve the response of the controller if further study is
going to be conducted.

The resulting gains can be found in Figs. 4.8 and 4.9. The three operational regimes, i.e.,
only reaction control, only aerodynamic control and the transition region where both reaction
and aerodynamic control are used, can clearly be distinguished. Switching from one region to
the other shows as discrete jumps in the gain values. The gains have been computed every
four seconds (a total of 314 points). It is not necessary, however, to use all these gains since
along some parts of the trajectory the gains do not vary that abruptly.

70
)
= IFO U N SO0 OSSOt N SOOI SN i
3y
el e S PP STOPTOTUPDIPIPUPTN -
&
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]
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S 20F e e e e s e e s e _
=
) E— LER— — A S— — S 1
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Fig. 4.8 - Pitch-jet gains K, and K, along the nominal trajectory.
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elevator gains K1 and K2 (1/rad)

0 200 400 600 800 1000 1200 1400

time (sec)

Fig. 4.9 - Elevator gains K7 and K, along the nominal trajectory.

The gains, which have been selected to be used for flying along the trajectory, can be
found in Tables C.1 and C.2 of Appendix C. They are given as a function of both the nominal
flight time (for which they have been computed) and the dynamic pressure, which will be used
to compute the gains for actual flight conditions. The actual implementation in the flight-
dynamics software is as follows. The selected gains are stored in reference tables, as a
function of the dynamic pressure. Taking the actual dynamic pressure, provided by the naviga-

tion system, as input, a scheduler extracts the appropriate gain from the table using simple
linear interpolation.

4.4. Lateral controller.

4.4.1. Reduced system for asymmetric motion.

If we want to study the lateral rotational dynamics, i.e., the variation of B and ¢ with time, then
it is possible to exclude the symmetric motion (x as a function of time) by putting Ac to zero
and neglecting the translational motion. The result is

. _ 1]9C . 9C
Ap = E a_BAB +?8.;A83 qdynsrefbref + ATX (441)
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. 1 19C, oC,, aC,
AF = A+ Ad, + Ad S,ofbrer + AT 442
’zz[ aﬁ B 883 a 35, r qdyn ref“ref 'z ( )
: . 9%
AB = sinagAp ~ CosoAr - _v_cosyocoscoAcs (4.4.3)
A .
AG = -COSOyAP - SINCAr + | —-COSYHCOSC[ — e + coscy LyAc 444
apAp 0 (Vo Yo COSTg mVO}AB mv; olo (4.4.4)
In state-space form, the above equations are written as
Ap Ap 8%,

Y g Y 4.45
. = + N
AB AB AT, ( )

AG Ac AT,
with
_ | ¢, 5
0 0 -/; a—ﬁ' qdyn Sref b ref 0
1 9C,
Y —/;z_ aB qdynSrefbref 0
A= (4.4.6)
L 9
sinc  -Coso, 0 -Vcosyocosco
0
. % L tany
-COSty -SiN0g —-COSYyCOSCQ =~ —rm COSG,
0 s YoC€0SCq mv Vg olo
—lﬁq S,usb 0 Ay
lxx a5a dyn*’ref" ref | Ixx
oC aoC
B - 1 %%n (4.4.7)

n
- S,otbrof — S, b 0
Izz 853 qdyn ref¥ref ] 85, c7dyn ref“ref

0 0 0

I 0 0 0
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4.4.2. Root locus of the reduced system.

Since we have decoupled the equations, it would be interesting to see whether we recognise
the time history of the eigenvalues, as we did in Section 4.3.2 for the longitudinal controller. The
eigenvalues of the reduced system for lateral motion are plotted in Figs. 4.10 through 4.13.
Comparing these root loci with the ones depicted in Figs. 3.15-3.18 shows a strong resemb-
lance, which confirms the choice that we could decouple the symmetric and asymmetric motion.
The differences between the corresponding eigenplots should be found in an absence of the
symmetric motion and the neglected terms of the translational motion.

Im(lambda)

2

-0.04 -0.03 -0.02 -0.01 0 0.0t 0.02 0.03 0.04

Re(lambda)

Fig. 4.10 - Variation of the eigenvalues of asymmetric motion along the nominal trajectory.
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Fig. 4.11 - Detail of the eigenvalue plot centred around the origin for the asymmetric motion.
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Fig. 4.12 - The imaginary parts of the eigenvalues as a function of flight time for the asymmetric motion.
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Fig. 4.13 - The real parts of the eigenvalues as a function of flight time for the asymmetric motion.

4.4.3. Selection of the controls.

For lateral control, HORUS is equipped with ailerons, rudders, and roll and yaw jets. To select
the different control modes, we refer again to Fig. 4.7, the control modes for the Space Shuttle.
In this figure, we find that the roll jets operate from the entry interface up to a dynamic pressure
of about 500 N/m? (10 psf). The ailerons are activated at the same dynamic pressure as the
elevators (qdyn =100 N/mz), since in both cases the elevons are concerned.

The yaw jets are working from the entry interface down to a Mach number of M = 1, which
is also mentioned by MBB. However, different is the activation of the rudder (M = 3.5 in case
of the Space Shuttle, and Qayn = 140 N/m? in case of HORUS). We will deviate from the Shuttle
scheme to come closer to the original HORUS design. Although rudder control is quite weak,
the rudder will be switched on at a dynamic pressure of Qayn = 150 N/m?2.

4.4.4. Control laws.

The control laws are chosen in the form of

AT, Ad .
- X =2 = [K36 + Ks(o-0)|cosa - [KS(B +_\g7sino') + Keﬁ}ina (4.4.8)
Xmax amax
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AT Ad .
Z - -2 < [Ky6 + Kglo-og)]sina - [KQ(B +Tg/sino) + Kwﬁ]cosa (4.4.9)
zmax rmax

The lateral controller, which is represented by these equations, is schematically shown in Fig.
4.14.

+/'\ Py
; CoSQ |—
—60m0x 1 60
SN +— K4
\ SWITCHING CONDITION
+
SWTCHING CONDITION
r cosat ok K5 L
N T)(mu)( — TX
R SNy —
SN — K 6
K7
; SN
-6' max [ 6r
g s
0c \ SWITCHING CONDITION
+
SWTCHING CONDITION
TZm(])( —— TZ
jL-— coso
+
¥ K10

S9ng
v

Fig. 4.14 - The lateral controller.
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In order to determine the gains, we bring the control laws in the form
u-=-Kx (4.4.10)
In the on-coming derivation, we will assume that

AB=B-By=P-B.=B
AG=G'GO-’=G'GC
Ap=p-py=p-p,
Af=f-f0=f-fc

which will give a small error in the bank angle only. The commanded rotational rates are equal
to the nominal ones, controlling the vehicle towards a zero rate of change of the angle of
sideslip and the bank angle, see Section 2.2.

Starting with the first control law, by linearising and neglecting the smaller Ap- and Ac-terms
we can write the Kyterm in Eq. (4.4.8) as:

Kz&cosa = Kg|-cos?agAp -sinog cosagAr (4.4.11)

Note that since Aa is assumed to be zero, a is equal to o, The Ks-term in Eq. (4.4.8) is ap-
proximated by

KS[B +-\g/sinc)sina = Kg sinaoAp—cosaOAr+%sin(co +AG) [sinoy
0

(4.4.12)

. . ¢/ .
= Ks smzaOAp—cosaosmaoAH_VﬂcoscosmaoAc
0

In the above equation, the constant term

9 . .
Vsmoo sinay

0

has been neglected, because otherwise we will not be able to bring the control laws in the form
of Eq. (4.4.10). Neglecting this term will introduce a constant control error. Although the bank
angle is large, the velocity is much larger, so the control error is not expected to be that large.
Furthermore, it is assumed that the error can be kept small by the control system15.
Compensation of this constant term can be interpreted as a part of the lateral trim.

Substituting the derived expressions for K; and K into Eq. (4.4.8), the control law changes

15 In Chapter 5, Fig. 5.23, we will see that the control error is indeed sufficiently small.
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into
AT, A3, . . . .
T = - = _K3 Ap - K4Af - KsAB - K6 AG (4.4.13)
Xmax amax .
with
K, = -cos?ogKy + sinag Ky
K, = -sinogcosag Ky - sinogcosog Ky (4.4.14)
Ky = sinogKg
* go .
Kg = cosagK, + .V_coscosmao Ks
0
In matrix notation this can be written as
K* = HK (4.4.15)
with
[ ~cos?0q 0 sino 0
-sinogcosa, O -sinagcosog 0
H = 0 0 0 sinoy (4.4.16)
0 Cos0, &cosoosinao 0
Yo
The gains K; (~=3,6) can be computed from Eq. (4.4.15) with
K=-H'K" (4.4.17)
For the second control law we can derive in a similar manner:
AT, Ad, . . N .
= - = -K;Ap - KB Ar - KgAB - KgAc (4.4.18)
Zmax rmax

with
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K [-sinogcoso, O sinag cosoy, 0 ] p
7
2 2
* -sin“ay 0 -Cos 0
Kg %0 Ks
= 0 0 0 cosay (4.4.19)
Ky Kq
. 0 sinay gﬂcoscocosao 0 ||Kio
Kio) | Vo |

Returning to Eq. (4.4.10), the matrix expression for the control laws, we can now write

AS - 8"’max K3 - 8amax K4 N 8‘amax K5 - 8amax K6
a * * * * Ap
A8, O o Ke 8 Ko -8 Kio||ar
u-= AT = - _ _ _ ' _ A = -K*'x (4.4.20)
x Txmax K3 Txmax K4 Txmax K5 TXmax KG
A TZ ~ % ~ % ~ % ~ % Ao
X szax K7 szax KB szax K9 szax K1 0]

In the above equation, K,- (=8,10) are the gains for reaction control. In the original design of
MBB, each of the reaction-control gains is equal to its aerodynamic counterpart. As we
discussed in Section 4.2, we will not determine the gains independently by pole placement but
simultaneously by solving the Riccati equation. For this reason, we have defined the gains for
reaction control to be different from the ones for aerodynamic control.

4.4.5. Computation of the feedback gains.

The idea behind computing the controller gains for control law Eq. (4.4.8) is, that the bank
reversals must be performed with an angular bank velocity, demanded by the guidance system.
This prescribed angular bank velocity is an increasing, piece-wise linear function of the dynamic
pressure. MBB ensures this by choosing a damping factor of about 0.7-0.8 and such a natural
frequency of the closed-loop system that the control error is limited to |6 -6,| = 10°. For the
second control law Eq. (4.4.9), the demands cannot be that stringent, since the yaw effectors
are weak and it is therefore not possible to exert much influence on the dynamics of the lateral
oscillation. As a result, the damping factor is chosen to be 0.3-0.4 to provide minimal damping.
Based on these specifications, pole placement is used to find the values of the gains.

As was the case for the design of the longitudinal controller, we compute the gains by
solving the reduced matrix Riccati equation. The weight matrices Q and R are in this case given

by
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1 0 0 0
2
Apmax
0 1 0 0
2
Armax
a- 1 (4.4.21)
0 0 0
AB2
max
0 0 0 1
2
_ G |
; 0 0 0
0 12 0 0
Aarmax
A - (4.4.22)
0 0 12 0
AT
0 0 0 12
_ a7z |

Numerical values, which we will use, are:

APmax =
Alpay =
ABmax =2°
AGmay = 5°
AS,  =40°
AS, ~ =40°

AT = 1,600 Nm
Xmax

AT, = 7,600 Nm
Zmax

The maximum nominal bank angle is 80°, so a maximum control error of 10° is thought to be
too large (in fact, as specified by the guidance system, the maximum allowable bank angle is
87°). For this reason, we have decided on a maximum overshoot of 5°, so that the vertical lift
component will never be completely zero.
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The computed reaction-control gains can be found in Figs. 4.15 and 4.16, whereas the
aerodynamic-control gains are plotted in Figs. 4.17 and 4.18. The selected gains for implement-
ation in the actual controller can be found in Tables C.3 through C.10 of Appendix C. Again,
they are given as a function of both the nominal flight time (for which they have been computed)
and the dynamic pressure, which will be used to compute the gains for actual flight conditions.
The three control regimes, reaction, aerodyna'mic and hybrid control, show again as discrete
jumps in the curves for the gains.
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Fig. 4.15 - Roll-jet gains K, K,, K and K, along the nominal trajectory.
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Fig. 4.16 - Yaw-jet gains K, Ky, K and K,y along the nominal trajectory.

aileron gains K3 to K6 (1/rad)

0 200 400 600 800 1000 1200 1400

time (sec)

Fig. 4.17 - Aileron gains K, K,, K5 and K, along the nominal trajectory.
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rudder gains K7 to K10 (1/rad)
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Fig. 4.18 - Rudder gains K, K, Ky and K/, along the nominal trajectory.




Chapter 5

Verification
of the
Controller

5.1. Introduction.

The verification of an aftitude controller is usually done in several steps, as we already
discussed in the introduction, Chapter 1. A good starting point is to have a look at the location
of the eigenvalues and the damping ratios of the closed-loop system. In that way we already
get an impression whether (and where) we might run into trouble and whether our system
needs a redesign. This we will do in the next section, Section 5.2. Since we designed two
separate controllers for both the symmetric and asymmetric motion, we have two check two root
loci. In Section 5.3, the response of the two controllers will be calculated. For our re-entry flight,
two type of responses are of importance, i.e., the step response and the ramp response.
Besides, we are interested in how the control system deals with deviations from the nominal
state, for instance, an angle of sideslip which differs from zero.

The next step, of course only when the previous steps have given satisfying results, can
be a sensitivity analysis of the linear closed-loop systems. This we will not do, since we want
to develop an analysis technique based on a non-linear flight-dynamics model (Mooij, TO BE
PUBLISHED). So in this case we will integrate the pitch and lateral controller, and verify whether
we can fly the nominal trajectory in a full 6-dof guided and controlled simulation (Section 5.4).
The final step will be a sensitivity analysis to see whether the control system can cope with all
kind of disturbances. We already mentioned that the study presented in this repon, is part of
a guidance and control analysis of a winged re-entry vehicle. In the report covering that study,
the sensitivity analysis will be discussed.
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5.2. Root loci of the closed-loop systems.
5.2.1. Longitudinal controller.

In Chapter 4, we discussed the computation of the feedback-gain matrix K. The closed loop
system is in that case represented by

x=(A-BK)x=Ax (5.2.1)

where the matrices A and B are given by the simplified expressions Eq. (4.3.4) and Eq. (4.3.5).
The eigenvalues of the closed-loop system can be computed by determining the eigenvalues
of the new system matrix A analogous to Section 3.1. The result of that computation is shown
in Figs. 5.1 through 5.3.

The conclusion which can be drawn from those figures is that all eigenvalues have negative
real parts, indicating a damped system all along the trajectory. This is confirmed by Fig. 5.4,
where the damping ratio is plotted as a function of flight time. We see that basically the
damping ratio is about 0.7. The Reaction Control System (pitch jets) exhibit a somewhat better
control effectiveness than the aerodynamic control surfaces when they are just activated. This
is due to the relatively low dynamic pressure. Going to lower altitudes, the aerodynamic control
surfaces are getting slightly more effective. Over all, the system is well damped which will
usually give a fair response. These results increase our confidence in a well-behaving control
system, but more attention will be given in Section 5.3.1. It should be noted that the discrete
jumps in the damping ratio is due to the discrete jumps in the aerodynamic derivatives as a
result of the linearisation process.

We conclude this brief discussion by pointing out that towards the end of the flight, the
eigenvalues show a discrete jump, see, for instance, Fig. 5.2. This is due to the fact that at the
end of the flight the body-flap has reached its maximum deflection and the elevators are
suddenly activated to provide the additional trim moments. Because of the ideal control, the
system dynamics change discretely resulting in a change of eigenvalues.

5.2.2. Lateral controller.

The eigenvalues of the closed-loop system for asymmetric motion, with the matrices A and B
given by Eq. (4.4.6) and (4.4.7), are depicted in Figs. 5.5 through 5.7. Two series of complex
conjugated eigenvalues can be distinguished. Both pairs of eigenvalues have negative real
parts, so also the lateral system is stable. These real parts become larger (i.e., more negative)
at lower altitudes, which means an even better damped system (although one should also con-
sider the imaginary parts). In Fig. 5.7 the damping ratios as a function of time are plotted. in
the early flight phase, the damping ratio for both asymmetric motions is about the same ({
0.7), but these values depart significantly from one another towards the end of the flight ({,
0.82 and {, = 0.68). But, both motions are well damped.
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Fig. 5.1 - Variation of the eigenvalues of symmetric motion along the nominal trajectory for

the closed-loop system. The smaller values of the eigenvalues appear at t = t,,
whereas they increase towards the end of the flight.
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The imaginary part of the eigenvalues of symmetric motion as a function of flight
time for the closed-loop system.
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Fig. 5.3 - The real part of the eigenvalues of symmetric motion as a function of flight time

for the closed-loop system.
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Fig. 5.4 - The damping ratio of the closed-loop system for symmetric motion.
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Fig. 5.5 - Variation of the eigenvalues of asymmetric motion along the nominal trajectory
for the closed-loop system. The smaller values of the eigenvalues appear at t
= Iy, whereas they increase towards the end of the flight

5 — T T T ! T
= :
= .
sl :
= ;
= :
E ;
5 ; i ; i H H
0 200 400 600 800 1000 1200 1400
time (sec)
Fig. 5.6 - The imaginary part of the eigenvalues of asymmetric motion as a function of

flight time for the closed-loop system.
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5.3. Step response.
5.3.1. Introduction.

In order to determine the response of the closed-loop system, we have to set up a new system
of state equations. In principle, the closed-loop system is described by

x=(A-BKx=A"x : (5.3.1)

However, we want the system to be in the form

x=A'x+B*u* (5.3.2a)

y=C*'x+D*u’ (5.3.2b)

When we define u’ to be

u* =0 aay’ (5.3.3a)

for the longitudinal controller, and
u*=(0 00 Aoy’ (5.3.3b)

for the lateral controller, then we can simulate a step function in the commanded angles and
compute the response of the corresponding actual angles by defining B to be

B* - -A* (5.3.4)

C and D’ are the identity and zero matrix, respectively. In the remainder of this Section, we will
compute the step response of both the pitch and lateral controller using standard libraries of the
simulation tool Matlab (Mathworks Inc.).

5.3.2. Longitudinal controller.

To simulate the step response of the longitudinal controller, we have selected two time points,
one for reaction control (pitch jets) and one for aerodynamic control (elevators). These time
points are 13 (t= 48 s) and 250 (t= 996 s), respectively. In Fig. 5.9, the two response functions
are plotted. It can be noticed that reaction control is much slower than aerodynamic control.
However, in both cases the response is fairly quick and the overshoot is small, which indicates
a reasonable good response.

The question is now: is this an acceptable response? We tried to find comparable data of
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the Space Shuttle - a vehicle which can serve as a reference for HORUS - but did not succeed.
The references we did find only discussed the flying qualities during the (piloted) approach and
landing (Myers et al., 1987 and McRuer et al., 1992). Both references state, by paraphrasing
an astronaut/pilot, that the importance of flying qualities in the Shuttle is inversely proportional
to altitude. Following that reasoning, the response can be considered to be good, aithough it
remains an unsatisfactory answer. A further study of the so-called MIL standards (particularly
'Flying qualities of piloted vehicles’, MIL-STD-1797, USAF, March 1987) might be able to give
a better answer. For the time being, we leave it at that.

5.3.3. Lateral controller.

Next, we will compute the step response of the lateral controller for two time points. In principle,
there are two variables available on which we can put a step signal, i.e., the angle of sideslip
and the bank angle. The angle of sideslip, however, is supposed to be kept zero throughout the
flight and can better be treated as a disturbance rather then a control variable. For this reason,
we will only put a step function on the bank angle and will furthermore check how the system
will react to an initial value of the angle of sideslip which differs from zero. Since both attitude
angles are coupled to each other, we will show the time histories of both of them while doing
the related computations.

Beginning with the step response, in Figs. 5.10 and 5.11 we have piotted the results for
time points 13 (t = 48 s) and 250 (t = 996 s). We see a similar kind of behaviour as we did with
the longitudinal controller. When we have only reaction control, the response is much slower
(At = 20 s) than which is the case with only aerodynamic control (At= 7 s). However, since the
overshoot is small in both cases, the response time is much shorter when we consider the time
needed to cross the 1°-level for the first time (At=9 s and At = 3.5 s, respectively). The relative
difference is still more or less the same, but the absolute response time is more than 50%
smaller. Furthermore, the induced angle of sideslip is small in both cases, and they both go
back to 0°. In the denser layers of the atmosphere the angle of sideslip gets larger, because
of larger aerodynamic moments.

In case of time point 250, we see something strange happening. The induced B is initially
positive, and after less than 1 second it changes sign. This sign reversal delays the response
of the bank angle, which shows as an almost constant value during the first second. This
phenomenon is related to the aerodynamic properties of the ailerons. They are such that aileron

deflections initially result in conflicting rotations. Since the gains related to p and B are larger

than the corresponding gains for ¢ and &, a rotation about the top axis (yaw) is dominating at
first, but is damped quite well so that the rotation about the X-axis (roll) can become the larger
one.

The response to an initial angle of sideslip of 1° gives similar results (Figs. 5.12 and 5.13).
The response is faster when aerodynamic control is used. The induced bank angle is
significant, for time point 250 the maximum bank angle even exceeds 1°. It shows that with a

combination of a larger B and a large B, a larger o is induced.
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Fig. 5.9 - The step response of the angle of attack for time points 13 (t = 48 s), upper
graph, and 250 (t = 996 s) in the lower graph.
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Fig. 5.10 -  The step response of the bank angle for time point 13 (t = 48 s), upper graph,
with the induced angle of sideslip in the lower graph.



Organization: TUD/LR/A2R . Date: February 1997 __
Document code: LR-806 Page: 102~

1.5 , : : : :

bank angle (deg)

0 5 10 15 20 25 30
time (sec)

-0.04

-0.06

angle of sideslip (deg)

-0.08 ‘ i i ; E
0 5 10 15 20 25 30

time (sec)

Fig. 5.11 - The step response of the bank angle for time point 250 (t= 996 s), upper graph,
with the induced angle of sideslip in the lower graph.
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Fig. 5.12 -  The response of the angle of sideslip to an initial condition of AB = 1° for time
point 13 (t = 48 s), upper graph, with the induced bank angle in the lower graph.
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Fig. 5.13-  The response of the angle of sideslip to an initial condition of AR = 1° for time
point 250 (¢ = 996 s), upper graph, with the induced bank angle in the lower
graph.

5.4. Ramp response.
5.4.1. Longitudinal controller.

The ramp response of a controller must indicate how well the controller responds to a linearly
increasing or decreasing input signal,

dut

= (5.4.1)

u=u°+

As we know from Section 3.2 (Fig. 3.1), the angle of attack starts decreasing linearly from ¢t =
924 s. To see whether the longitudinal controller can handie this, we have examined the ramp
response for time point 250 (t = 996 s). To be as complete as in Section 5.3.2, we have also
looked at time point 13 (reaction control only).

The ramp function which we have defined is based on the following, prescribed notions:

»  for the nominal trajectory, the initial angle of attack is o, = 40° at ¢, = 923.58 s,
* the final angle of attack is a,=115%att, =1,3194s.

This means that the slope of the ramp is
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The results of simulating this ramp input are shown in Fig. 5.14. In the upper graph, the
response with reaction control is shown. After an initial delay (about 2.5 s), the actual angle of
attack follows the commanded angle of attack very well. The difference between the command-
ed and actual angle of attack is Ao = 0.15°, which is well below the design overshoot of 2°. The
response with aerodynamic control is much better (lower graph), because of the higher dynamic
pressure. The delay time is very short (about 0.15 s), with hardly any difference between the
commanded and actual angle of attack. These results indicate that the longitudinal controller
is not likely to encounter any problems with the nominal angle-of-attack profile.

5.4.2. Lateral controller.

In case of the lateral controller we are interested in the fact whether it can handle the bank
reversals. However, the nominal trajectory assumes an infinite bank rate for these reversals so
we do not have information at hand, what the commanded bank angle will be during the
reversal. What we do know is how fast the first, pre-defined bank manoeuvre is performed (see
also Fig. 3.2). The ramp function can therefore be defined as follows:

e for the nominal trajectory, the initial bank angle is o, = 0° at t, = 263.88 s,
* the final bank angle is 6, = 80.0° at t, = 290.268 s.

The slope of the ramp function is then

do _ %27%1 _ 503195
a Lot

We have selected time point 67 (t = 264 s), where the above mentioned manoeuvre starts,
and time point 250 (t = 996), where a bank reversal could be executed (assuming a similar
bank rate, although we can expect a higher one because of the increased dynamic pressure).
The results are presented in Figs. 5.15 through 5.17. Again, the induced angle of sideslip is
plotted as well.

In Fig. 5.15 we see that the ramp response is similar to the angle-of-attack response as
discussed in Section 5.4.1. The delay time is about 3.7 s and the difference between the
commanded and actual bank angle is 10°. The latter value is considered to be too large if we
take a design overshoot of 5° into account. We have to verify later, when we are flying along
the nominal trajectory, whether this is acceptable or not. One way to solve this problem is to
increase the gains, and thus the response, for the initial part of the trajectory. For the time being
we accept the results as they are. in the lower graph we see the induced angle of sideslip. The
equilibrium value is over -1°, because of a continuous control action for the bank angle. This
angle of sideslip should not be a problem to control once the command input for the bank angle
has disappeared, considering our experience with the response to an initial value (Section 5.3.3).
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However, to be on the safe side we will check this. We take the same ramp function for the
bank angle as input signal, and in addition we simulate a constant bank angle after 27 s (¢ =
80°). The result of this simulation is shown in Fig. 5.16. We see a well-damped behaviour of
the angle of sideslip as well as for the bank angle.

Fig. 5.17, finally, shows the ramp response for time point 250. A similar behaviour as
before is found.
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Fig. 5.14 -  The ramp response of the angle of attack for time point 13 (t = 48 s), upper

graph, and time point 250 (t =996 s), lower graph. The nominal input signal is
given by the solid line, and the response by the dashed line.
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The ramp response of Fig. 5.15, combined with a constant bank angle after 27
s (time point 63).
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Fig. 5.17 -  The ramp response of the bank angle for time point 250 (t = 996 s), upper
graph, and the induced angle of sideslip, lower graph. in the upper graph, o is
given by the solid line, and the response (o) by the dashed line.

5.5. Flight along nominal trajectory with integrated controller.

The outcome of the previous section is, that both the pitch and lateral controller show good
tracking behaviour while simulating the step and ramp responses. However, we have to keep
in mind that these response tests were done with simplified models. It is now the time to
integrate the two controllers and simulate a 6-dof controlled re-entry flight, with all dynamics as
introduced in Section 2.1 included. The initial conditions and the reference trajectory are the
same as for the design of the controller.

However, before we start discussing the results of this simulation we must note that the
integrated control system is also not a fully realistic model in that sense that we assume control
surfaces to move instantaneously. In other words, when the attitude control system commands
an aileron deflection, then the ailerons achieve that setting at that very instant. There are no
delays due to hydraulic actuators. (On the other hand, the motion of the control surfaces is
much faster than the fastest eigenmotion, and on this ground control-effector delays can be
neglected.) Also the measurement system is assumed to be ideal, implying that the measured
state is the same as the actual state. Last but not least, the applied guidance system is also
a closed-loop system, as is the attitude control system. This means that any deviations from
the reference trajectory will be compensated for by the guidance system, also those deviations
resulting from attitude control and finite rigid-body motion. We must realise that our flight along
the nominal trajectory will prove how well the attitude control system can execute the
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commands generated by the guidance system.

In Fig. 5.18, the height as a function of flight time has been plotted, both for the controlled
and the nominal trajectory. As we can see, the two curves match well, apart from two visible
differences at t= 750 s and t= 1,100 s. The explanation for these two differences can be found
in the time history of the bank angle (Fig. 5.22). As we already stated in Section 3.2, where we
introduced the nominal trajectory, the nominal bank reversals are executed in zero time, assum-
ing ideal control. Of course, in a realistic simulation the inertia of the vehicle will result in a finite
time required for the reversals. The duration is, amongst others, depending on the control
effectiveness (for aerodynamic control, this is basically determined by the dynamic pressure).
The duration of a bank reversal can be in the order of 20 seconds. During that time, the bank
angle has a smaller value than it should have, implying a larger vertical lift coefficient
(C, coso). A larger vertical lift means that the descent rate gets smaller, or in other words, the
vehicle flies at higher altitudes than it should. The height difference, however, is compensated
for by the guidance system, since after the deviation the vehicle comes back to the nominal
height.

In principle, a similar reasoning applies to the deviation from the nominal groundtrack
(shown in Fig. 5.19). A bank reversal is initiated by an overshoot of the maximum allowable
heading error. In case of ideal control, the heading error will decrease immediately after
execution of a bank reversal. However, when a time delay due to the inertia of the vehicle has
to be taken into account, it can easily be understood that the maximum allowable heading error
will be exceeded before it starts decreasing again (see also Fig. 5.25). Far away from the
target, this does not make much of a difference, but the closer the vehicle is to the target, the
more rapidly it will deviate from its nominal groundtrack. For this reason, the two curves show
more of a difference towards the end of the flight (when also the difference between the
commanded and nominal bank angle is largest, see again Fig. 5.22).

Fig. 5.20 shows the first of the three attitude angles which are controlled by the attitude
control system, i.e., the angle of attack. In this figure we see more of a difference between the
controlled value and the nominal value. At the beginning of the trajectory we see a diverging
angle of attack, caused by the fact that the trim law is not active. As we discussed earlier, trim
is basically guaranteed by deflecting the body flap which is only activated when the dynamic
pressure is higher than 100 N/m?. The moment the body flap is activated (t= 194 s), the angle
of attack is stabilised at the nominal value. The diverging angle of attack is only partly
compensated for by the pitch jets (Fig. 5.28) and later on by the elevators (Fig. 5.29), but
apparently due to the design assumptions and simplifications, this offset is not properly control-
led. On the other hand, it should be noted that the gain computation has been performed
allowing a 2° overshoot of the angle of attack, so the offset is within range (see also the next
figure, Fig. 5.21, where the difference between the commanded and the actual angle of attack
is plotted). A revision of the trim law (trim with pitch jets, when the body fiap is not active), a
gain computation for the first 200 s with a smaller allowable overshoot can solve this problem.
Another solution can be the following. When the body flap is set to a fixed deflection angle other
than 0°, a pitch moment is generated that increases with the dynamic pressure. So when we
put the body flap in the position that it will more or less acquire once the control of this control
surface is activated, the oscillation in the angle of attack is greatly reduced.
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Due to an angle of attack which is larger than the nominal one, the slightly higher lift results
in an altitude error, which the guidance system wants to compensate by banking the vehicle.
However, any altitude error will not be controlled in the upper layer of the atmosphere but only
at lower altitudes'®. This means, that the altitude error can grow, but of course only slowly
due to the small lift force. When altitude control is activated by the guidance system, it is
suddenly faced by an aititude error of some 250 m, which results in a suddenly commanded
bank angle of almost 20° (see Fig. 5.22).

Returning to the time history of the angle of attack, we see that up to t = 480 s the
controlled a is virtually equal to the nominal one. Then, we see noticeable differences. How-
ever, we should not panic before we have asked ourselves what the cause of these deviations
is: the guidance controller or the attitude controller? Fig. 5.21 helps us in finding the answer.
In this figure, the difference between the commanded and the actual angle of attack is plotted,
which indicates how well the attitude controlier performs. As we see, the differences are small
at all times, from which we can conclude that the 'problem’ is not related to the attitude
controller but is a result of guiding the vehicle towards the target along the nominal trajectory.

In the same figure, three peaks in the right half of the graph need more explanation. During
bank reversals, the guidance system keeps the commanded variation in the angle of attack at
a constant value, which means that during the reversal no correction other than a change in the
nominal value takes place. We already discussed above, that the bank angle is smaller than
it should be during a reversal, resulting in a higher vertical lift. Any resulting errors can only be .
compensated after the reversal has been completed. This appears in an abrupt change in the
commanded angle of attack, that can be found at t= 730 s, t= 1,080 s and t= 1',200 S.

Fig. 5.22 shows us the time history of the bank angle, that we have already partly explained
during the course of this Section. We will restrict ourselves to some comments (nota bene: in
Fig. 5.23, the difference between the commanded and the actual bank angle has been plotted,
again indicating how well the attitude controller performs). The first difference between the
actual and the nominal bank angle shows itself just before t = 200 s. We already explained that
this is due to a sudden activation of the guidance system. However, we also find that we have
a peak difference of over 15°, whereas the gains were calculated for an overshoot of 5°. This
shows clearly the limitations of the attitude control system, that it cannot handle changes that
are sudden and relatively large. The same is true for the second peak, when the first ramp func-
tion of the nominal bank angle is executed (t = 270 s). Since the altitude guidance is still com-

pensating the altitude difference with the bank angle (although o is getting smaller, so ¢ <
0 °/s), the attitude control system is suddenly faced with a linearly increasing function of the

bank angle (& > 0 °/s). However, before it can fulfil that demand, it has to change the sign of

&, which introduces a certain time delay. Since the nominal bank angle is rapidly increasing
it takes a while before the control system has made the difference between the commanded
and actual bank angle equal to zero.

16 Altitude control has been divided into three regions. In the first region, no altitude control is performed
because of the low dynamic pressure and therefore small aerodynamic forces. The second region is a transition
region to the third one, in which full aftitude control is being done. More information on the guidance system can
be found in MBB (1988b) and Mooij (TO BE PUBLISHED).
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The three remaining peaks are all related to the bank reversals. We can suffice by saying
that the change in the commanded bank angle, generated by the guidance system based on
a predicted bank rate, is too large for the attitude control system to achieve. As we know, the
bank reversals are executed in a finite time, during which the vertical lift component is too large,
resulting in a positive height error. For this reason, in order to compensate for this we see each
time an overshoot of the bank angle. The oscillation, that shows at t = 1080 s, is probably
induced because of a sudden change in the commanded (and therefore also the actual) angle
of attack, right after finishing the bank reversal. Revising the guidance algorithm can solve this
problem.

The last attitude angle to be discussed is the angle of sideslip (Fig. 5.24). We saw in the
previous Sections, that there is a coupling between the angle of sideslip and the bank angle.
Therefore, we might expect a deviation from the nominal 0° when we have a sudden change
in the bank angle or when a bank reversal is being executed. indeed, we see a number of
peaks which damp out relatively quick at those moments. At t = 1,000 s, however, the angle
of sideslip diverges slowly, without coming back to zero again. We think that this diversion is
due to the simplifications made during the control-system design, for instance neglecting terms
due the rotation of the local horizontal plane and the Earth’s rotation.

Figs. 5.26 through 5.31, finally, show the control variables: the moments due to the roll,
pitch and yaw jets, and the deflections of the ailerons, elevators and the rudders. A general
remark, which has to be made before we give some brief comments on these Figures, is that
these curves show the computed values. We have assumed that the exact reaction-control
moments can be generated by the thrusters (for instance, by means of pulse modulation) and
that the deflections of the control surfaces take place in zero time and are 100% accurate.
Since these assumptions are very important for the performance of the attitude control system,
we will study this in more detail in Mooij (TO BE PUBLISHED).

Most activity takes place when a bank reversal has to be initiated, or when a sudden
change in the commanded attitude arises. The sudden change in bank angle for altitude control
(t = 200 s) shows as sharp peaks in the roll moment and the aileron deflection, the latter only
5° away from the maximum allowable deflection. The yaw jets have to produce the maximum
moment, amongst others to compensate for the induced angle of sideslip (the rudders are not
yet active). Large control signals can be seen for the yaw jets and rudders when bank reversals
are being executed. The peaks in the elevator deflection are also due to the bank reversals,
although only indirectly. As we already said, during the bank reversal the commanded variation
of the angle of attack is kept constant, which results in a sudden change in the commanded
angle of attack right after completing the reversal.

It has to be noted that the strong oscillation in the aileron deflection must be studied in
more detail. We already stated that the oscillation might be induced by the sudden change in
commanded angle of attack. Furthermore, it is possible that the linearisation is another cause.
The wing-flap deflection is the linear summation of the aileron and elevator deflection. However,
for a negative deflection the aerodynamic forces and moments are not the same (in absolute
sense) as for a positive deflection. Furthermore, the aerodynamics are such that for some flight
conditions the commands for bank-angle control and angie-of-sideslip control are conflicting.
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Last but not least, it is reasonable to expect that a real-life aileron cannot move so fast,
therefore some kind of filtering might have to be included in the model.
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Fig. 5.18 - The height as a function of time for the controlled (solid line) and the nominal
trajectory (dashed line).
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Fig. 5.21 -  The difference between the commanded and the actual angle of attack, as a
function of time.
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Fig. 5.22 - The bank angle as a function of time for the controlled (solid line) and the
nominal trajectory (dashed line).
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Fig. 5.23 -  The difference between the commanded and the actual bank angle, as a func-
tion of time.
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Fig. 5.24 -  The angle of sideslip as a function of time for the controlled (solid line) and the
nominal trajectory (dashed line).
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Fig. 5.25 -  The heading error as a function of the distance to the target for the controlled
(solid line) and the nominal trajectory (dashed line). The heading-error dead
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Fig. 5.26 -  The roll moment due to reaction controf as a function of time for the controlled
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Fig. 5.28 -  The pitch moment due to reaction control as a function of time for the controlled
trajectory.
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Fig. 5.29 -  The control history of the elevator for the controlled trajectory.
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Fig. 5.30 - The yaw moment due to reaction control as a function of time for the controlled
trajectory.
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Fig. 5.31 -  The control history of the rudder for the controlled trajectory.




Chapter 6

Conclusions
and |
Recommendations

The HORUS-2B is an unpowered, winged re-entry vehicle, that has to be guided along a
nominal trajectory in order to reach the target landing area. To enable a stable flight and to
perform manoeuvres, an attitude controller must guarantee that the nominal control variables
can be achieved and that perturbations will not force the vehicle too far away from its reference.

This report describes the design of a linear state feedback controller with gain scheduling.
The design process has been divided into a number of successive steps. The starting point for
the design is a system of 12 first-order differential equations, which enables the study of full 6-
d.o.f. motion. After linearisation and introducing some simplifying assumptions, a state-space
form of 9 state variables was left. Analysis of the eigenvalues and open-loop behaviour of this
system showed that the vehicle exhibited diverging oscillations, but also that the eigenmotions
could be decoupled into symmetric and asymmaetric motions. For this reason, a pitch controller
could be designed separately from a lateral controller. The gains which appeared in the control
laws were solved simultaneously using the matrix Riccati equation.

The verification of the designed controllers has been divided into two steps. In the first step,
the response of the closed-loop system to both a step and a ramp input for both the pitch and
lateral controlier has been considered. Both controllers showed a well-damped behaviour, which
was sufficient for carrying out the second step. There, the two controllers were integrated and
for the non-simplified equations of motion, the flight along the nominal trajectory was simulated.
The results showed that HORUS can fly its nominal trajectory without major problems.

During the first 200 seconds of the trajectory, the angle of attack showed a moderately
diverging behaviour, due to the absence of a trim law. A maximum deviation of about 1° was
reached, which is within range of the overshoot boundary of 2°, and that can even be made
smaller by revising the trim law. Other peak deviations of less than 1° arose due to the bank
reversals, during which the commanded variation of the angle of attack was kept constant by
the guidance system. After ending the reversal this resulted in sudden elevator deflections.
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These deflections can be avoided by revising the guidance system.

The known coupling between the angle of sideslip and the bank angle was noticeable
present during bank manoeuvres, when peak values in the angle of sideslip of about +4° occur-
red. These deviations are well controlled. Some large differences between the commanded and
actual bank angle were found, because the guidance system generated commanded bank
angles by assuming a too large bank rate. A simple redefinition of the theoretical bank rate
would solve this problem.

The only recommendation which can be made here is that a sensitivity analysis must give
the final answer to whether the designed control system can fly the HORUS along a reference
trajectory taking all kinds of perturbations into account. With this respect, one can think of,
amongst others, atmospheric-density variations, uncertainties in the aerodynamic coefficients,
mass deviations, the influence of wind, errors in the navigation system and delays in activating
control surfaces. Such a sensitivity analysis, however, will be covered in another study (Mooij,
TO BE PUBLISHED).




1)

References

ACRI/LAN;

Guidance and contro! for moderate lift/drag reentry - Final report;
ESA Contract no. 9359/91/NL/JG (SC);

ACRI, Valbonne, 1992.

Astrom, K.J.;
Adaptive feedback control;
Proceedings of the IEEE, Vol. 75, No. 2, February 1987, pp. 185-217.

Astrom, K.J. and Wittenmark, B.;
Adaptive control;
Addison-Wesley Publishing Company, 1989.

Bayle, G.P.;
Space Shuttle entry flight control off-nominal design considerations;
Journal of Guidance, Navigation and Control, vol. 7, no. 1, pp. 9-14, Jan.-Feb. 1984.

Boskovich, B. and Kaufmann, R.E.;

Evolution of the Honeywell first-generation adaptive autopilot and its applications to F-94,
F-101, X-15, and X-20 vehicles;

Journal of Aircraft, Vol. 3, no. 4, pp. 296-304, Jul.-Aug. 1966.

Brandt, A.P. and Van den Broek, P.Ph;

VIiegeigensChappen I (lecture notes in dutch);

D-34;

Delft University of Technology, Faculty of Aerospace Engineering, 1984.

Bryson Jr., A.E;
New concepts in control theory, 1959-1984;
Journal of Guidance, Navigation and Control, vol. 8, no. 4, pp. 417-425, Jul.-Aug. 1985.

Bryson Jr., A.E. and Ho, Y.C.;
Applied optimal control;



Organization: TUD/LR/A2R . Date: February 1997 _
Document code: LR-806 Page: 122

John Wiley & Sons, 1975.

9) Collins, E.G. and Richter, S,;
Linear-Quadratic-Gaussian-based controller design for Hubble Space Telescope;
Journal of Guidance, Control and Dynamics, vol. 18, no. 2, pp. 208-213, Mar.-Apr. 1995.

10) Cooke, D.R,;
Space Shuttle stability and control test pian;
AlAA-82-1315;
From: AIAA 9" Atmospheric Flight Mechanics Conference, August 9-11, 1982, San Diego
(CA).

11) Doyle, J.C,;
Structured uncertainty in control system design,;
Proceedings of the 24" |[EEE Conference on Decision and Control, Volume 1, 1985, pp.
260-265.

12) Doyle, J.C., Francis, B.A. and Tannenbaum, A.R.;
Feedback control theory;
Macmillan Publishing Company, New York, 1992.

13) Doyle, J., Lenz, K. and Packard, A.;
Design examples using p-synthesis: Space Shuttle lateral axis FCS during re-entry;
NATO ASI Series, Vol. F34, 'Modelling, robustness and sensitivity reductions in control
systems’, pp. 128-154;
Springer Verlag, Berlin Heidelberg, 1987.

14) Doyle, J.C. and Stein, G.;
Multivariable feedback design: concepts for a classical/modern synthesis;
IEEE Transactions on Automatic Control, Volume AC-26, no. 1, pp. 4-16, February 1981.

15) Doyle, J.C., Wall, J.E. and Stein, G.;
Performance and robustness analysis for structured uncertainty;
Proceedings of the 218! |EEE Conference on Decision and Control, Volume 2, 1982, pp.
629-636.

16) D'Souza, A.F,;

Design of control systems;

Prentice Hall, Inc., Englewood Cliffs, New Jersey, 1988.

~—

17) Epple, R.G.E. and Altenbach, R.E.;
Dynamic stability testing of the orbiter flight control system/flexible body interaction;
Journal of Guidance, Navigation and Control, vol. 6, no. 6, pp. 456-460, Nov.-Dec. 1983.

18) Etkin, B.;
Dynamics of atmospheric flight;




Organization: TUD/LR/A2R . Date: February 1997 _
Document code: LR-806 Page: 123"

John Wiley and Sons, New York, 1972.

19) Frangos, C. and Yavin, Y.;
Design methodology for linear optimal control systems;
Journal of Guidance, Control and Dynamics, vol. 15, no. 5, pp. 1302-1304, Sep.-Oct. 1992.

20) Gawronski, W.;
Linear quadratic controller design for the deep space network antennas;
Journal of Guidance, Control and Dynamics, vol. 17, no. 4, pp. 655-660, Jul.-Aug. 1994.

21) Gockel, W.;

Angular control of a reentry vehicle in hypersonic flight regime;
AlAA-93-5090;

From: AIAA/DGLR Fifth International Aerospace Planes and Hypersonics technologies
Conference, 30 November - 3 December 1993, Munich, Germany.

22) Gopal, M,;
Modern control system theory;
Wiley Eastern Ltd., New Delhi, Second Reprint, June 1989.

23) Gregory, .M., Chowdhry, R.S., McMinn, J.D. and Shaughnessy, J.D.;
Hypersonic vehicle model and control law development using H_ and p synthesis;
NASA Technical Memorandum 4562.
NASA, 1994.

24) Grocott, S.C.O., How, J.P. and Miller, D.W_;

A comparison of robust control techniques for uncertain structural systems;
AlAA-94-3571;
From: AIAA Guidance and Control Conference, 1994.

25) Hamilton, P.N.;

Flexible body stabilization for Space Shuttle aerosurface control loops;
AlAA-82-1532;

From: AIAA Guidance and Control Conference, San Diego, CA, August 9-11, 1982.

26) Kaufman, H., Bar-Kana, I. and Sobel, K.;
Direct adaptive control algorithms;
Springer-Verlag, New York, 1994,

27) Klinar, W.J., Saldana, R.L., Kubiak, E.T., Smith, Jr., E.E., Peters, W.H. and Stegall, HW_;
Space Shulttle flight control system;
Volume 4, paper 6.2;
From: proceedings of the IFAC 6" World Congress, Boston/Cambridge, MS, August 24-30,
1975.

28) Kokotovic, P.V.;



Organization: TUD/LR/A2R . Date: February 1997 _
Document code: LR-806 Page: 124~

Recent trends in feedback design: an overview;
Automatica, Vol. 21, No. 3, pp. 225-236.

29) Kuo, B.C;;
Automatic control systems;
Prentice Hall, Inc., Englewood Cliffs, New Jersey, 1987.

30) Lee, J.F.L. and Barrett, M.F;
Nonlinear analysis of Shuttle entry RCS coupling with bending modes;
AlAA-82-1533;
From: AIAA Guidance and Control Conference, San Diego, CA, August 9-11, 1982,

31) Lewis, F.L,;
Optimal control;
John Wiley & Sons, 1986.

32) Luo, J. and Lan, C.E;
Determination of weighting matrices of a Linear Quadratic Reguiator;
Journal of Guidance, Navigation and Control, vol. 18, no. 6, pp. 1462-1463, Nov.-Dec.
1995.

33) MBB Space Communication and Propulsion Systems Division;
Study on re-entry guidance and control. Final report - Volume 2: Reference vehicle
definition and orbital constraints. ESA report reference: ESA CR (P) 2652;
MBB, Munich, 1988a.

34) MBB Space Communication and Propulsion Systems Division;
Study on re-entry guidance and control. Final report - Volume 4: FCS and guidance
concepts. ESA report reference: ESA CR (P) 2652;
MBB, Munich, 1988b.

35) McDermott, A.M. and Makowski, K;
Space Shuttle linearized guidance, navigation and control stability analysis;
AlAA-82-1555;
From: AIAA Guidance and Control Conference, San Diego, CA, August 9-11, 1982.

36) McHenry, R.L., Brand, T.J., Long, A.D., Cockrell, B.F. and Thibodeau lll, J.R;
Space Shuttle ascent guidance, navigation, and control;
The Journal of the Astronautical Sciences, Vol. XXVII, No. 1, pp. 1-38, January-March,
1979.

37) McRuer, D.T., Myers, T.T. Hoh, R.H. and Johnston, D.E.;
Assessment of flying-quality criteria for air-breathing aerospacecraft;
NASA Contractor Report 4442;

NASA, Washington, D.C., 1992.




Organization: TUD/LR/A2R . ' Date: February 1997 _
Document code: LR-806 Page: 125~

38) Messer, R.S., Haftka, R.T. and Cudney, H.H.;
Cost of Model Reference Adaptive Control: analysis, experiments, and optimization;
Journal of Guidance, Control and Dynamics, vol. 17, no. 5, pp. 975-982, Sep.-Oct. 1994,

39) Mooij, E.;
Flight simulation for advanced launchers;
Report LR-747;
Delft University of Technology, Faculty of Aerospace Engineering, 1994.

40) Mooij, E;
The motion of a vehicle in a planetary atmosphere;
Report LR-768;
Delft University of Technology, Faculty of Aerospace Engineering, 1994.

41) Mooij, E.;
The HORUS-2B reference vehicle;
Memorandum M-692;
Delft University of Technology, Faculty of Aerospace Engineering, 1995.

42) Mooij, E;
Guidance and contro! of an unpowered, winged re-entry vehicle;
Delft University of Technology, Faculty of Aerospace Engineering, TO BE PUBLISHED.

43) Mooij, E., Marée, A.G.M. and Sudmeijer, K.J.;
Aerodynamic controllability of a selected re-entry test vehicle;
1AF-95-V.4.04;
From: 46™ International Astronautical Congress (October 2-6, 1995/Oslo, Norway).

44) Myers, T.T., Johnston, D.E. and McRuer, D.T;
Space Shuttle flying qualities and criteria assessment;
NASA Contractor Report 4049;
NASA, Washington, D.C., 1987.

45) Nguyen, V.H., Hishimi, J.T., Payne, T.H. and Woosley, EW.;
Space Shuttle descent flight verification by simulation: a challenge in implementing flight
control system robustness;
AGARD-CP-489;
From: Space Vehicle Flight Mechanics Conference (paper 9);
Neuilly sur Seine, France, 1990.

46) Paradiso, J.A;
Adaptable method of managing jets and aerosurfaces for aerospace vehicle control;
Journal of Guidance, Control and Dynamics, vol. 14, no. 1, pp. 44-50, Jan.-Feb. 1991,

47) Sachs, G.;
Stability and control problems in hypersonic flight;



Organization: TUD/LR/A2R . Date: February 1997 _
Document code: LR-806 Page: 126

Paper 35;
From: Space Course Munich, 1993.

48) Schleich, W.T ;
The Space Shuttle ascent guidance and control;
AlAA-82-1497;
From: AIAA Guidance and Control Conference, San Diego, CA, August 9-11, 1982.

49) Schletz, B.;
Use of quaternions in Shuttle guidance, navigation, and control;
AlAA-82-1557;
From: AIAA Guidance and Control Conference, San Diego, CA, August 9-11, 1982.

50) Shahian, B. and Hassul, M_;
Control system design using MATLAB®;
Prentice Hall, Englewood Cliffs, New Jersey, 1993.

51) Sinai, M.;
Decentralized integrated control of hypersonic vehicles;
AIAA-90-5211;
From: AIAA Second International Aerospace Planes Conference (Orlando, FL, 29-31
October 1990).

52) Stone, H.W. and Powell, RW.;
Space Shuttle orbiter entry guidance and control system sensitivity analysis;
AlAA CP-76-03, pp. 169-175;
From: AIAA 3 Atmospheric Flight Mechanics Conference (Arlington, TX, June-7-9, 1976).

583) Truijillo, B.M.;
Determination of lift and drag characteristics of Space Shuttle Orbiter using maximum
likelyhood estimation technique;
AlAA-86-2225;
From: AIAA Atmospheric Flight Mechanics Conference (Williamsburg, Virginia, August 18-
20, 1986).

54) Vincent, J.H., Emami-Naeini, A. and Khraishi, N.M.;
Case study comparison of Linear Quadratic Regulator and H_ control synthesis;
Journal of Guidance, Control and Dynamics, vol. 17, no. 5, pp. 958-965, Sep.-Oct. 1994.




Appendix A

Definition
of
State Variables

The position and velocity of the vehicle are expressed in spherical components w.r.t. the rotat-
ing frame with the origin in the centre of mass (c.0.m.) of the Earth (the so-called R-frame), see
also Fig. A.1.

Position: distance R, longitude t and latitude
Velocity: groundspeed V, flight-path angle y and heading

The longitude is measured positively to the east (0° < 1 < 360°). The latitude is measured
along the appropriate meridian starting at the equator, positive in north direction (0° < 8 < 90°)
and negative to the south. The distance R, finally, is the distance from the CoM of the central
body to the c.o.m. of the vehicle. The relative velocity V (i.e., the modulus of the velocity vector
V) is expressed with respect to the rotating planetocentric frame. v is the angle between V and
the local horizontal plane; it ranges from -90° to +90° and is negative when V is below the local
horizon. % defines the direction of the projection of V in the local horizontal plane with respect
to the local north and ranges from -180° to +180°. When y = +90°, the vehicle is moving parallel
to the equator to the east.
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Fig. A.1 - Definition of the six spherical flight parameters, the position (R,1,8) and velocity
(V.v.x). Here, both 1,8 y and y are positive. The indicated frame is the rotating
planetocentric frame (index R), with its origin in the c.o.m. of the Earth and the
Zgraxis aligned with the Earth’s rotation vector.
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Fig. A.2 - Definition of the aerodynamic attitude angles o,  and o, and the angular rates
p, q and r. Here, all states are positive. The four related reference frames are
the inertial frame (index /), the body frame (index B), the aerodynamic frame (i-
ndex A) and the trajectory frame (index T). The /frame has its origin in the
c.o.m. of the Earth. The origin of the other frames is located in the c.o.m. of the
vehicle. The B- frame is fixed to the body.
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The attitude of a vehicle, or in more mathematical terms, the orientation of a body-fixed
reference frame with respect to another, is expressed by the so-called aerodynamic angles, i.e.,
the angle of attack a (-180° < o < 180°, for a 'nose-up’ attitude o > 0°), the angle of sideslip
B (-180° < B < 180° B is positive for a 'nose-left’ attitude) and the bank angle ¢ (-180° <
o < 180°, o is positive for when banking to the right), see also Fig. A.2. Nota bene: in the
equations of motion, these angles are related to the groundspeed, but since wind is not
considered here, the groundspeed equals the airspeed.

The angular rate of the body is here defined as the rotation of the body frame with respect

to the inertial frame, expressed in components along the body axes. The rotation vector o is
defined by the roll rate p, the pitch rate g and the yaw rate r (see again Fig. A.2).
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Appendix B

Linear Stability Model
of HORUS-2B

The local stability model is a linearised model giving the flight dynamics of a vehicle. It
describes small deviations from an equilibrium state. In this appendix we will state the
assumptions under which the local stability model has been derived, and we give the
mathematical formulation of this model. To start with, the non-linear equations of motion are
derived for an unpowered vehicle of constant mass, with a plane of mass symmetry (XgYg
plane). Aerodynamic control effectors are a body flap, two elevons and two rudders;
furthermore, there are roll, pitch and yaw reaction-control jets.

The linearisation is done under the assumptions that:

e the Earth is not rotating,

» the gravity field is spherical,

» the vehicle is rotationally symmetric in mass,

» the asymmetric translational motion has no effect on the attitude kinematics, i.e., the
trajectory is directed along the equator,

¢ the rotational rate of the vehicle is treated as a perturbation,

» pitch stability is guaranteed throughout the flight,

» the nominal angle of sideslip is zero, and

» higher-order terms are neglected.

The outcome, nine coupled, linear differential equations, can be written in matrix form:
Ax = AAx + BAu (B.1)

with
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AX = (AV,AY,AR,Ap,Aq,Ar,Aa, AB,Ac)T
AU = (ABg,A8,,48,AT,, AT, AT,)7

dyy ay ayp ayp ayg ayr ayy ap Ay
By Ay AR ap Ay A Ay 2p A
4py 4ry 8RR 4Rp aRq 4Rr 4Ro 4Rp 9Rs
ap,
A =8y aqy 8gr 8gp A8gq g Agy gy dgs
&y 4ay ap ap ag a, ay ag ag

8py 8py 8pp 8pp Apg

ayy aay awR aap aaq yr Qoo aaB 4o
v %y %R 4p g Fr a p Ipo

asv ao‘y asr aop aoq 8sr 4sa aoB acc_

The used notations are:

V= modulus of relative velocity vector (m/s)
y = flight-path angle (rad)

R = modulus of position vector (m)

p = roll rate (rad/s)

g = pitch rate (rad/s)

r =yaw rate (rad/s)

o = angle of attack (rad)

B = angle of sideslip (rad)

o = bank angle (rad)

&, = elevator deflection angle (rad)

e

8, = aileron deflection angle (rad)

8, =rudder deflection angle (rad)
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T, = roll-thrustef moment (Nm)
Ty = pitch-thruster moment (Nm)
T, = yaw-thruster moment (Nm)
The elements of matrix A are given by:
dCp
ayy = —Tn_T/— Mo—— W qdynOSref 2D, (B.2)
avY = —QOCOSYO (83)
ayg = 2 siny, (B.4)
Ro
1 9Cp
Ay = ™ o0 qdynosref (B.5)
avp = avq =ay = aVB = ays = 0 (B.6)
11 . 2y , 959 M aC, .o (B.7)
= + cos .
Qv v Yo o Yo mV 057 qdyno ref + 2L
Vo %
= -|—-— [siny, (B.8)
2gy Vo |cosyp
%R = { v _qu R (B.9)
0 0 } 0
. coscg 9C;
= mV, 90 cfdynosref (B.10)
_sincp dCg
ap = mV B dynosref (B.11)
Ly _
= - sing, (B.12)
% mVg
ap = 2q = = 0 (8.19)
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apy = Sin'Yo (814)
apy = Vpcosy, (B.15)
app = aRp = aRq =agp, = apy = aRB =dpg < 0 (816)

1 9C
ag = /—a—qdynosrefbref (B.17)
x 9B
apy =8, = app =ap, =8p; = Ap = Apg = Apg = 0 (B.18)
_ My dCp,
aqV - m-glw'c’dyn0 Srefcrel (B~19)
1 oCpy
Qg = Ty;—aquyno SrefCret (B.20)
8qy =8gr = 8gp = 8gg = Ag = Agp = g = 0 (B.21)
1 9C,
ap = ————ayn, SrefPrer (B.22)
l,, of
8y =8y =8p=2ap=3a43=a, =8y = a5 =0 (B.23)
% 1 oC;
aav = -—ECOS'Y()COSGO - 5 MOa—quynosref + LO . (825)
Vo mV,
Quy = —.?ﬂsinyocosco (B.26)
Vo
ayp = - 29 C0SY,C0Say (B.27)
Ro Vo
ayq = 1 » (B.28)
JC
1 o (B.29)

a,, = ~——— G gn S
oo mv, oa dyng ref




Organization: TUD/LR/A2R

Date: February 1997 _

Document code: LR-806 Page: 135~
9 ;
8,5 = ———CO0S8YySiNG (B.30)
Vo
8yp = 8yr = 8qp =0 (B.31)
9 .
gy = —5C0SYpsincy (B.32)
0
Jo . .
ag, = —-Siny,sinc B.33
AT YoSINGo (B.33)
29y .
app = COSYySIinG, B.34
BR ~ BV YoSincy (B.34)
apgp = sinog (B.35)
ag, = —COsuy (B.36)
_ 1 BCS s B
apg = _-,—n-vo—aﬁ—qdyno ref (B.37)
9
aps = —-—-COSYyCOSTy (B.38)
Yo
an = aBa =0 (839)
tanygsinog oC,
a5y = > [MO Y] qdynOSref *+ Lo (B.40)
mV,
L
a,, = sinc B.41
Y mv,  ° (B.41)
agp = —COSay (B.42)
agr = -Sinog (B.43)
tanyysincg 0C;
go T Qayn, Sref (B.44)

mVy,  da
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tanyycoscgy 0Cg Ly 9
a.g = S, - —— + —__C0SYpCOS0, B.45
a5, = tanyycosoy (B.46)
fe]s) mvo
asr = 8gq = 0 (B.47)
The elements of matrix B are:
bye = bys = by, = byy = by, = by, =0 (B.48)
bye =by=b,=by=by,=b,=0 (B.49)
bre = bra = bp, = bpy = bRy =bp; =0 (B.50)
b, - 1% s b B.51
pa = Ea—aaqdyno refOref | (B.51)
b, =] B.52
px = T (B.52)
boe = bpr = bpy =bp, =0 (B.53)
1 oC
bge = I—'aqudyn0 SrefCref (B.54)
yy 90e
b, = _— (B.55)
qy Iyy
bga = bgr = bgy = bgz = 0 (B.56)
1 oC
ra E-a—aa,lqdynosrefbref (B.57)
1%, s b (B.58)
= T, Qayng ©refPref .
1
b, = — (B.59)

I22
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bre = by = by =0 (B.60)
bye = bya = byr = box = by = bey = 0 (B.61)
bge = bgs = by, = bpy = by = by, =0 (B.62)
bse = bsa = bgr = bgy = bcy =bs; =0 (B.63)

When we substitute the zero-coefficients in Eq. (B.1), the matrix equation gets the following
structure:

. ayy a4 ayg 0 0 0 a4, 0 O
AV o o o AV
AY. a4y ay 4R aga ap g Ay
AR aRV aRY 0] 0 0 0 0 0 AR
A 0 0 0 0 0 0 0 ag O |ls
AGl= lagy © 0 0 0 0 a, 0O 0 ||aq
AF 0 0 0 0 0 0 0 ag 0 ||4r
Aa 8qv acw ayR 0 aqu 0 Auat 0 uo A(;
; A
AN Nagy apy @ A O &y 0 Ay A
AG
|8V 8oy 0 a5 0 a; a5, as 850 | (B.64)
‘0 0 0 0 0 O]
0 0 0 0 0 O|(s5
0
0 0 0 0 O s3,
0 by, 0 b, 0 0
b, 0 0 0O b, O A%
+
qe qy ATX
0 by b, 0O 0 b,
AT,
0 0 0 0 0 O -
0O 0 0 0 0 O Als
0 0 0 0 0 O]
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Appendix C

Selected Controller Gains

In the attitude-controller design, the controller gains are computed every four seconds of the
nominal trajectory. This results in 314 values for each of the 20 gains. To limit the number of
data to be implemented in the flight-dynamics software, a selection of the controller gains has
been made that is representative for the variation in gains. These gains are stored in the refer-
ence tables of the implemented attitude controller. They can be found in Tables C.1 through
C.10, as a function of both flight time and dynamic pressure. Tables C.1 and C.2 give the gains
for the pitch jets and elevators. Tables C.3 - C.6 present the gains for the roll and yaw jets,
whereas Tables C.7 - C.10 show the gains for the ailerons and rudders.
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0.0
104.0
108.0
116.0
124.0
132.0
140.0
148.0
156.0
164.0
172.0
180.0
184.0

1250.0

04
9.0
10.2
13.3
17.3
22.3
28.7
37.0
47.2
60.3
77.0
98.0
110.3
8681.2

132.0
152.0
164.0
168.0
172.0
176.0
180.0
184.0
1250.0

222
41.8
60.3
68.1
77.0
86.9
98.0
110.3
8681.2

Table C.1 - Selected pitch-jet gains I'(1 and I?z as a function of t and Doy
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0.0 04 0.0 0.0 04 0.0
104.0 9.0 0.0 104.0 9.0 0.0
108.0 10.2 -5.3 108.0 10.2 -2.3
116.0 13.3 -6.8 128.0 19.6 -4.4
124.0 17.3 -8.8 148.0 37.0 -8.0
132.0 22.2 -11.2 164.0 60.3 -12.2
144.0 32.6 -16.0 176.0 86.9 -15.9
168.0 68.1 -28.8 180.0 98.0 -17.2
180.0 98.0 -35.1 184.0 110.3 -27.2
184.0 110.3 -67.6 924.0 | 3408.4 -27.2
188.0 123.9 -63.8 972.0 | 39711 -27.0
236.0 397.6 -35.6 992.0 | 4289.1 -27.0
240.0 428.8 -34.3 996.0 | 4357.7 -27.5
248.0 492.9 -32.0 || 1060.0 | 5457.1 -27.4
280.0 719.0 -26.5 || 1064.0 | 5512.8 -27.8
320.0 900.9 -23.6 || 1200.0 | 7947.7 -28.6
360.0 | 1054.3 -21.9 | 1204.0 | 8021.0 -29.2
400.0 | 1152.2 -20.9 || 1236.0 | 8463.4 -29.5
440.0 | 1183.7 -20.6 || 1240.0 | 8518.5 -29.5
480.0 | 1166.1 -20.8 || 1244.0 | 85745 -29.3
5440 | 1129.9 -21.1 || 1250.0 | 8681.2 -29.8
612.0 | 1239.6 -20.2
656.0 | 1520.0 -18.2
728.0 | 2408.1 -14.4
776.0 | 2901.3 -13.0
876.0 | 3059.9 -12.5
9440 | 3614.3 -11.5

1028.0 | 4927.6 -10.5
1096.0 | 5880.4 -10.0
1200.0 | 7947.7 -9.7
1204.0 | 8021.0 -9.8
1224.0 | 8306.4 -9.9
1244.0 | 8574.5 -9.7
1250.0 | 8681.2 -10.8
Table C.2

- Selected elevator gains K, and K as a function of t and Qo
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0. 0.4 -41.2 0.0 0.4 -11.5
84.0 5.0 ~41.0 104.0 9.0 -11.5
100.0 8.0 -40.8 136.0 25.3 -10.2
112.0 11.6 -38.9 148.0 37.0 -9.2
128.0 19.6 -35.9 160.0 53.4 -7.9
140.0 28.7 -32.0 172.0 77.0 -6.6
152.0 41.8 -27.0 188.0 123.9 -5.1
168.0 68.1 -20.1 204.0 192.4 -4.1
188.0 123.9 -13.9 224.0 310.4 -3.5
192.0 138.9 -13.1 240.0 428.8 -3.2
196.0 155.3 -12.4 2440 460.7 0.0
200.0 173.2 -11.8 || 1250.0 | 8681.2 0.0
220.0 283.9 -9.9
240.0 428.8 -8.6
244.0 460.7 0.0
1250.0 | 8681.2 0.0

Table C.3 - Selected roll-jet gains I'Q and I?4 as a function of t and Jayn




Organization: TUD/LR/A2R
Document code: LR-806

Date: February 1997 _

Page: 143~

0.

80.0
104.0
108.0
152.0
160.0
164.0
176.0
184.0
188.0
192.0
196.0
212.0
220.0
232.0
240.0
2440
1250.0

0.4
4.4
9.0
10.2
41.8
53.4
60.3
86.9
110.3
123.9
138.9
155.3
235.2
283.9
367.4
428.8
460.7
8681.2

47.2
110.3
235.2
338.2
428.8
460.7

8681.2

Table C.4 - Selected roll-jet gains ks and f(s as a function of t and Qayn

| i

e
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0.0
52.0
100.0
128.0
184.0
216.0
248.0
300.0
324.0
400.0
440.0
5440
572.0
600.0
720.0
740.0
760.0
780.0
800.0
860.0
900.0
1000.0
1052.0
1100.0
1152.0
1200.0
1250.0

04

1.9

8.0
19.6
110.3
258.9
492.9
812.5
918.0
1152.2
1183.7
1129.9
1143.2
1197.7
2297.6
25651
2782.5
2922.7
2984.7
3010.2
3201.7
4427 1
5338.0
5923.5
6808.5
7947.7
8681.2

-49.4 116.0 13.3 -11.4
-49.8 144.0 32.6 -11.7
-51.4 164.0 60.3 -12.3
-58.2 200.0 173.2 -14.0
-60.8 248.0 492.9 -16.5
-57.2 352.0 | 1027.3 -13.9
-44.1 4440 | 11836 -12.9
-40.0 544.0 | 1129.9 -13.2
-32.4 600.0 | 1197.7 -12.8
-31.5 636.0 | 1365.8 -11.8

-33.0 720.0 | 2297.6 7.7
-32.6 760.0 | 27825 -6.3
-31.1 800.0 | 2984.7 -5.7
-13.6 900.0 | 3201.7 -5.0
-11.5 || 1000.0 | 44271 -3.7
-10.1 || 1100.0 | 5923.5 -3.5
-9.2 || 1200.0 | 7947.7 -3.2
-8.8 || 1250.0 | 8681.2 -2.7
-8.2
-7.2
-4.5
-3.8
-3.7
-3.5
-3.2
-3.0

Table C.5 - Selected yaw-jet gains K; and Kj as a function of tand g,
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0 0.4 -49.3 0.0 0.4 -11.5

100.0 8.0 -49.2 136.0 25.3 -11.8
164.0 60.3 -47.0 164.0 60.3 -12.5
212.0 235.2 -49.0 184.0 110.3 -13.7
300.0 812.5 -35.5 252.0 525.1 -19.2
352.0 | 1027.3 -29.1 440.0 | 1183.7 -15.4
400.0 | 1152.2 -26.0 5440 | 11299 -15.8
440.0 | 1183.7 -25.3 584.0 | 1160.0 -15.6
544.0 | 1129.9 -26.5 624.0 | 1295.2 -14.6

600.0 | 11977 | -250| 7440 26138 -8.1
7000 | 20202 | -132 || 748.0| 2660.1 -8.0
752.0 | 2703.8 85| 768.0| 2848.6 7.4
780.0 | 2922.7 7.4 | 7880 | 2955.9 -7.0
800.0 | 2984.7 70| 816.0| 29948 -6.8
848.0 | 2993.8 6.7 || 900.0 | 3201.7 6.0
900.0 | 3201.7 57 | 1000.0 | 4427.1 -4.5
948.0 | 3659.7 -47 || 1052.0 | 5338.0 4.2

1000.0 | 4427.1 3.7 || 1104.0 | 5967.7 4.2

1048.0 | 5274.4 3.2 | 1120.0 | 6166.2 4.2

1100.0 | 59235 3.0 || 1160.0 | 7013.1 3.9

1148.0 | 6710.1 28| 1212.0 | 81477 3.5

1200.0 | 7947.7 2.4 || 1250.0 | 8681.2 27

1250.0 | 8681.2 2.1 ’

Table C.6 - Selected yaw-jet gains f(g and I?w as a function of t and Qayrr
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0.0
104.0
108.0
148.0
156.0
164.0
268.0
308.0
328.0
364.0
440.0
544.0
624.0
648.0
748.0
788.0
828.0
872.0
924.0
992.0

1100.0
1244.0
1250.0

0.4

9.0
10.2
37.0
47.2
60.3
646.2
848.4
934.7
1067.0
1183.7
1129.9
1295.2
1452.7
2660.1
2955.9
2992.1
3044.2
3408.4
4289.1
5923.5
8574.5
8681.2

7.5
17.3
17.8
17.4

-25.4
-30.2
-31.3
-32.3
-32.7
-32.6
-32.8
-32.6
-27.1
-25.4
-24.7
-24.0
-22.1
-13.6
-7.9
-1.1
0.3

qdyn K4
(N/m?) | (1/rad)
0.4 0.0
9.0 0.0
10.2 2.3
68.1 8.0
110.3 8.4
173.2 8.0
672.6 -0.2
900.9 2.9
1183.7 -5.0
1129.9 47
2817.2 -8.2
3408.4 7.6
4357.7 2.5
8574.5 6.9
8681.2 8.4

Table C.7 - Selected aileron gains K and K, as a function of tand q
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0.0
104.0
108.0
168.0
188.0
276.0
316.0
352.0
440.0
544.0
600.0
632.0
660.0
756.0
776.0
800.0
860.0
920.0
924.0
992.0

1140.0
1220.0
1244.0
1250.0

0.4

9.0
10.2
68.1
123.9
696.8
883.6
1027.3
1183.7
1129.9
1197.7
1340.5
1556.5
27447
2901.3
2984.7
3010.2
3371.2
3408.4
4289.1
6525.6
8254.6
8574.5
8681.2

0.0

0.0
-12.2
-30.7
-30.3
-50.1
-52.2
-52.6
-52.2
-52.4
-62.2
-51.4
-49.9
-40.0
-38.7
-37.8
-36.6
-33.7
-33.5
-32.2
-40.2
-40.0
-35.5
-28.2

-11.2
-20.1
-27.6
-30.1
-33.1
-34.1
-34.5
-33.9
-34.6
-40.0
-39.9
-39.1
-40.1
-40.6
-57.3
-57.2
-56.7
-45.9
-31.5

Table C.8 - Selected aileron gains K and K as a function of t and Doyn
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0.0
180.0
184.0
272.0
304.0
384.0
600.0
632.0
660.0
752.0
780.0
800.0
852.0
924.0
996.0

1036.0
1076.0
1140.0
1244.0
1250.0

0.4
98.0
110.3
672.6
830.5
1121.0
1197.7
1340.5
1556.5
2703.8
2922.7
2984.7
2997.6
3408.4
4357.7
5070.6
5663.0
6525.6
8574.5
8681.2

0.0
0.0
-4.5
-23.3
-25.0
-25.9
-25.9
-25.6
-25.0
-21.6
-21.1
-21.0
-21.1
-20.2
-23.7
-23.9
-256.0
-27.6
-32.3
-30.3

-10.0
-10.5
-10.6
-10.4
-10.7
-12.5
-13.3
-13.8
-14.6
-19.2
-31.4
-31.2
-27.7

Table C.9 - Selected rudder gains K and K as a function of tand g,
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0.0 0.4 0.0

180.0 98.0 0.0 180.0 98.0 0.0

184.0 110.3 -3.6 184.0 110.3 -1.0
272.0 6726 | -18.7 200.0 173.2 -1.8
300.0 812.5 -20.0 236.0 397.6 -5.1
324.0 918.0 -20.5 272.0 672.6 -8.8

384.0 | 1121.0 -20.8 328.0 934.7 -11.2
600.0 | 1197.7 -20.8 400.0 | 1152.2 -12.5
632.0 | 1340.5 -20.6 440.0 | 1183.7 -12.7
664.0 | 1594.9 -20.0 5440 | 1129.9 -12.4
760.0 | 2782.5 -17.1 600.0 | 11977 -12.7
804.0 | 2989.7 -16.8 712.0 | 21856 -156.3
848.0 | 2993.8 -16.9 744.0 | 2613.8 -15.9
924.0 | 34084 -16.1 800.0 | 2984.7 -16.5
996.0 | 4357.7 -19.3 924.0 | 3408.4 -17.5
1032.0 | 4999.5 -18.5 || 1000.0 | 44271 -23.3
1068.0 | 5565.6 -20.1 || 1152.0 | 6808.5 -32.1
1148.0 | 6710.1 -22.3 || 1180.0 | 7519.8 -32.9
1172.0 | 7322.7 -22.4 || 1220.0 | 8254.6 -33.3
1200.0 | 7947.7 -22.4 || 1244.0 | 8574.5 -30.2
1220.0 | 8254.6 -22.5 || 1250.0 | 8681.2 -27.6
1250.0 | 8681.2 -21.9

Table C.10 - Selected rudder gains K, and K|, as a function of t and Doy

N 111
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