
M
Sc

Thesis

MSc Thesis
Multi-Metric Optimization
for Human Walking
S. Kapteijn





Multi-Metric Optimization for Human Walking

MASTER OF SCIENCE THESIS

by

S. Kapteijn

to obtain the degree of Master of Science
at the Delft University of Technology,

to be defended publicly on May 19, 2022.

Student number: 4301242
Thesis committee: Dr. ir. L. Peternel, TU Delft, supervisor,

Dr. ing. L. Marchal Crespo, TU Delft, committee chair and supervisor,
Dr. ir. W. Kim, Hanyang University, Seoul, supervisor,
Dr. ir. A. Seth, TU Delft, external member.

An electronic version of this thesis is available at https://repository.tudelft.nl/.

https://repository.tudelft.nl/




iii

PREFACE

This thesis is the final part of my master Mechanical Engineering, track Biomechanical Design, at the Delft University of
Technology. It has been a long, educational journey and I am glad and proud to finish it.

In this thesis I have analyzed the human gait and created a novel method for gait optimization using multiple metrics. As
part of the project, I performed several experiments. I would like to thank Judith Cueto Fernandez for helping me out with
the optical motion capture experiments and Micah Prendergast for assisting me with the joint fatigue calibration experiments.
Furthermore, I would like to thank my supervisors, Luka Peternel, Laura Marchal Crespo, and Wansoo Kim, not only for their
guidance during the project but also for supporting me in the more difficult moments that are also part of doing your master
thesis. Finally, I would like to thank my family and friends for always supporting me throughout the process.

Stephan Kapteijn
Delft, May 2022





v

CONTENTS

I Introduction 1

II Methods 3
II-A The framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
II-B Motion data acquisition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

II-B1 Hardware / Equipment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
II-B2 Gait variations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

II-C Inverse Kinematics & Inverse Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
II-D Joint fatigue modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
II-E Manipulability analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

II-E1 Manipulability calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
II-E2 Manipulability analysis of the gait . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

II-F Multi-metric optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
II-F1 Optimization problem formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
II-F2 Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
II-F3 Data normalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
II-F4 Brute-force optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

III Results 8
III-A Visualisation of recorded gaits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
III-B Joint angle and joint torque verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
III-C Effect of gait parameters on metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

III-C1 Joint torque . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
III-C2 Joint fatigue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
III-C3 Manipulability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

III-D Multi-metric optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

IV Discussion 13

V Conclusion 13

References 14

Appendix 16
A Motion Capture Experiment: Optical marker locations . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
B Gait parameters recorded gaits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
C Joint fatigue parameter estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
D Manipulability analysis results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
E Elaborate cost table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
F Elaborate discussion: Effect of gait parameters on metrics . . . . . . . . . . . . . . . . . . . . . . . . . 22

F1 Joint torque . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
F2 Joint fatigue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
F3 Manipulability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22





1

Multi-Metric Optimization for Human Walking
Stephan Kapteijn1

Supervised by: Wansoo Kim2, Laura Marchal-Crespo1, and Luka Peternel1

Abstract—Walking is an essential part of almost all activities
of daily living. Depending on the situation, different gait patterns
can be observed, e.g., moving around the house, performing dif-
ferent sports, or even in case of injury. Even though the gait has
been analyzed thoroughly for many decades, there are still some
unexplored aspects that require more insight, especially those
related to the influence of various parameters on the optimality
and diversity of gait patterns. Many gait trajectory optimization
strategies have been proposed in literature, however, most of
them focus merely on optimizing for one metric (e.g., energy
efficiency or joint torque). In this study, a multi-metric gait
optimization framework is proposed, simultaneously accounting
for joint torque, fatigue, and manipulability. To that end, 45 gaits,
varying in stride length, step height, and walking speed, were
recorded in a motion capture experiment, together forming a
solution space of dynamically stable and physiologically feasible
gaits, for the proposed optimization framework. Specific user
needs (gait requirements) can be accounted for by adjusting
the optimization weights, after which brute-force optimization
is applied to either analyze the gait within the collected subspace
or select the optimal gait with respect to desired parameters.
Results are presented for a baseline case (with all optimization
weights set to one), which can be used as a tool for gait analysis,
in particular giving insights into specific aspects of the gait, e.g.,
joint loading, long-term performance, and capacity to sustain
ground reaction forces (GRFs).

Keywords: gait optimization, multi-metric, joint fatigue, ma-
nipulability analysis

———————————————————————–

I. INTRODUCTION

Walking has been the primary form of human locomotion
since immemorial time [1] and one of the primary forms of
human transportation altogether as the versatility and ease of
bipedal walking are hard to beat. Moreover, walking is an
essential part of almost all activities of daily living [2] and each
of these activities has a different goal. Due to our exceptional
motor learning capabilities, humans are able to customize the
gait, making it suitable for different purposes. For example,
walking silently, or walking with reduced labor for the knee
if it is injured. However, how humans perform this tailoring
of the gait remains a partially unknown process.

What could help uncover this process is building an un-
derstanding of why a certain gait is effective in a specific
situation, which could be done by gait analysis. Compared
to where it started, gait analysis as it is known today has
undergone a significant evolution [3]. It has transformed from
a purely academic discipline to a useful tool in the hands
of physicians and therapists [4]. It has become widely used
as a means to understand particular deficits exhibited by a

1Department of Cognitive Robotics, Delft University of Technology, Delft,
The Netherlands.

2Department of Robotics, Hanyang University, Seoul, Korea.

patient, customize treatment, and monitor the effectiveness of
this treatment [5]. For example, it has had a major impact on
the way cerebral palsy is treated nowadays [6].

Typical elements of gait analysis are videotape examination,
measurement of general gait parameters, kinematic analysis,
kinetic analysis and electromyography (EMG) [4].

Kinematic analysis in its early stages consisted of manual
digitization of film images and intensive kinematic computa-
tions to measure the limb positions [7]. Nowadays, we have
motion capture technology to our aid. The gold standard
in motion capture is optical motion capture, being able to
achieve an accuracy of less than a millimeter for small volume
captures [8]. Within optical motion capture, a distinction is
made between passive marker-based, active marker-based, and
markerless systems [9]. A passive system uses markers acting
as reflectors, whereas the markers of an active system act as
a light source. Markerless systems have the advantage that
no markers have to be placed on the subject, however, the
accuracy of these systems is not yet at the level of marker-
based systems and it is still a hot research topic at the moment.

While motion capture can track the body segments’ move-
ments, force plates can measure the interaction of the body
with the ground, or in other words the ground reaction forces
(GRFs). These devices are essential in kinetic analysis. Being
able to quantify kinetic parameters during walking, such as
joint moments and joint power, is important, as these parame-
ters are typically aimed to be modified with treatment of gait
deficits [7].

Another technique applied in gait analysis is the measure-
ment of gait parameters. Roberts et al. [10] have carried out
extensive research into which biomechanical parameters are
most relevant to evaluate during gait analysis of the healthy
adult population. They found that spatio-temporal parameters
such as walking speed, cadence, and step/stride length are the
most often measured ones and they therefore claim that these
parameters appear to be the most relevant ones in healthy
adult gait analysis. However, this could be disputed, as the
relevance depends gravely on the direction of the research. An
advantage of these spatio-temporal parameters is that they are
relatively easy to determine, compared to earlier mentioned
kinetic parameters like joint moments and joint power, for
which more computational procedures are required.

Finally, EMG can be applied in gait analysis to measure
muscle activity during walking. The two main parameters that
can be gained from EMG data are the timing and the relative
increases/decreases of muscle activity during movements [11].
However, even though intense efforts have been done to find
reliable methods to process and correctly interpret the muscle
activation patterns during walking, the actual application in
clinical practice is still limited [12].
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Besides the analysis of already existing gaits, there is also
much interest in the way gaits could be generated [13], [14].
This so-called gait trajectory generation has an important ap-
plication in assistive devices (like exoskeletons for example),
for which there is an increasing interest in the last years,
reflected by the great number of reviews published about
this subject recently [15]–[19]. There are assistive devices
for healthy individuals, often focusing on power augmenta-
tion [20]–[24], as well as for individuals suffering from an
impairment of some kind [25]–[29]. Furthermore, humanoid
robotics is another major application of gait analysis and gait
trajectory generation, since humanoid robots try to emulate
human structure and behavior [30], [31].

To ensure that a certain gait is optimal for the activity
that you plan to perform, some kind of gait optimization
is required. For example, if it is desired to walk a large
distance, you might want to optimize for a minimum energy
consumption of the system. Alternatively, if you are recovering
from an injury to the leg of some kind, you might want to
minimize the loads to be endured by that leg during walking,
or ensure not to exceed a certain joint torque.

For each optimization process, a careful selection of metrics
is required. To modulate the amount of load being exerted on
the body during walking, joint torque can be considered as
metric for optimization. It is important to monitor the temporal
load in order to prevent musculoskeletal injuries in humans or
prevent exceeding the maximum power capacity of the robot’s
actuators. In Zhang et al. [32], optimization of the assistive
torque applied by an ankle exoskeleton was performed, to min-
imize the metabolic energy cost of the subject. Furthermore,
Channon et al. [33] performed gait optimization for a bipedal
robot by minimizing the joint torques experienced during the
single support phase and impact phase of the gait cycle.

Another approach to optimize for a minimum load to be
sustained by the body is by analyzing the velocity and force
manipulability. The manipulability of a mechanical system
(e.g., human or robot) measures its capacity to transfer joint
movements/torques into end-effector movements/forces as a
function of the joint configuration [34]. It gives an indication
of how well an end-effector of the mechanical system can
produce force or velocity in certain directions of Cartesian
space. Considering this metric could therefore help determine
the leg configuration that is optimal for sustaining external
forces, like GRFs, during the gait. An advantage of the
manipulability over joint torque is that it can also be applied
to determine the optimal leg configuration in terms of good
velocity production. However, joint torque estimation is still
important on its own to account for overloading joint torques,
thus these metrics complement each other.

Recent studies on manipulability analysis of human walking
show that the kinematic manipulability of the swing foot can
characterize the selection of strategies at different stages of the
swing phase [35], [36]. Similarly, Fard and Mosadeghzad [37]
proposed utilizing the manipulability in selecting an appro-
priate postural strategy to restore stability when a perturbation
during human walking occurs. Gait trajectory optimization was
performed considering 1. only joint torque and 2. both joint
torque and manipulability as metrics in the cost function and

the results indicate that including the manipulability improves
the capability of rejecting the induced disturbances. Another
example where the leg manipulability is utilized as metric
is in the study done by Kim et al. [38], where gait pattern
generation is performed for a powered robotic exoskeleton for
assisting healthy humans, to improve the energy efficiency of
the integrated system (meaning the human and exoskeleton
together).

When long-term performance of the gait is desired, mini-
mization of fatigue could be performed. Fatigue can be seen
as the decline over time of the ability to generate force.
Monitoring the fatigue could therefore assure that an individual
can maintain a certain gait for a longer period of time. Fatigue
minimization can be accounted for indirectly, by optimizing
for low energy efficiency as done in [39], [40]. However,
these studies do not provide a direct estimation of fatigue. A
more direct way to optimize for fatigue is by using fatigue
models. As fatigue is an integrated effort over time, the
fatigue models available in literature can be distinguished by
how they estimate the effort, e.g. by muscle activity [41]
or by joint torque [42]–[44]. As we can see from the just
mentioned selection of studies, fatigue modeling has been
more commonly applied in studies for arms or the whole body
during analysis and control of ergonomics in manufacturing
processes. However, an example where fatigue is used as
metric in gait optimization is Peasgood et al. [45], where the
fatigue rate is minimized to optimize for the metabolic energy
cost.

While the above-mentioned metrics all optimize for numer-
ical objectives, one could also choose a different approach,
taking the user preference into account for determining the
optimal gait. In their study, Tucker et al. [46] proposed
a personalized gait optimization framework, using the user
preference (in terms of comfort) to determine the optimal
gait. Ingraham et al. [47] investigated the users’ repeatability
in identifying their preferred assistance for bilateral ankle
exoskeletons during walking and concluded that individuals
are able to reliably identify their preferences.

Thus, gait optimization has been performed using different
metrics in numerous studies, however, many focus merely
on one metric. Only a few have done gait optimization
that combined multiple metrics. Furthermore, while applying
fatigue modeling in the field of ergonomics has already been
investigated [41], [44], applying it in gait trajectory optimiza-
tion is still quite unexplored.

To address the gap in literature, we created a modular
framework for gait optimization for human walking, applicable
for different contexts and goals, which combines multiple
metrics: joint torque, fatigue, and manipulability. The joint
torque was selected as metric to allow modulation of the loads
exerted on the joints, which is relevant to prevent overloading
of the musculoskeletal system. We selected manipulability
because it gives an indication of how well the legs can produce
or sustain motion and forces during different phases of the
gait. Finally, to also account for the long-term performance
of the gait, fatigue was selected. Due to the modularity of
the framework, it can be easily adjusted as well as expanded
enabling further development.
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II. METHODS

A. The framework

An overview of the framework that was established in this
thesis can be seen in Figure 1. It is a versatile framework, com-
bining experimental procedures, computational procedures,
and a multi-metric optimization method. Motion data is gath-
ered during an optical motion capture experiment, kinematic
and kinetic analysis are performed in OpenSim, manipulability
analysis and joint fatigue modeling are done in MATLAB, and
finally multi-metric optimization is performed producing an
optimal gait for the specified optimization goal.

In this study, we considered three metrics: joint torque,
fatigue, and manipulability, which will be examined in detail
in the following subsections. We selected joint torque because
it is important to prevent overloading of the musculoskeletal
system. Fatigue was selected because it affects the long-term
performance of the gait. Finally, we selected manipulability
because it gives an indication of how well the legs can
produce or sustain motion and forces during different phases
of the gait. By selecting these metrics, some of the major
aspects of the gait are covered. However, the framework is
general in the sense that if needed, other metrics can be added
to it. Furthermore, we made the framework modular, such
that future studies in this area of research can easily utilize
the framework for their own purposes, adding or replacing
elements of the framework as desired.

The framework we built aims to aid in finding a gait that
matches the needs of a specific user and use case. These
needs can be driven by health requirements, for example
when a particular gait is wanted for a patient recovering from
a knee injury. Alternatively, these needs can be driven by
performance, for example when a gait is desired that can be
sustained for as long as possible. The requirements formed in
this way are what determine the optimization goal. Since there
is a wide variety of optimization goals that can be specified, a
broad data set is desired, containing some degree of variation.
Rather than studying the natural gait of several different
subjects, we decided to study a broad set of gait variations
created by one subject. Furthermore, gait optimization is
typically subject-specific. To obtain the required degree of
variation for a specific subject, the motion data was collected
by performing an optical motion capture experiment. The
reason for choosing to work with experimentally collected data
rather than simulated data is that experimentally collected data
is already subject-specific and conforms with physiological
feasibility and dynamic stability constraints. This approach
is also common in literature [48]. As the human gait is an
extremely complex movement with many possible solutions,
it is difficult to create an optimization that delivers only
feasible gaits in an efficient manner. This is because the search
space for the optimization to be performed is incredibly large,
taking into account that each combination of joint angles and
walking speeds results in a different gait. Many of those gaits
might for example be physiologically unrealistic, or they might
be dynamically unstable. To ensure that the output of the
framework will contain solely feasible gaits, we decided to

create our own search space filled with gaits recorded during
an optical motion capture experiment (see Section II-B).

An extra benefit of incorporating the motion recording
experiment in the framework is that it gravely reduces the
required computational resources, as the search space is re-
duced to only a small set of feasible gaits. In turn, it enlarges
the set of viable optimization methods that can be efficiently
applied to solve the problem. For example, this makes it
possible to employ even brute-force optimization which is
guaranteed to find a global maximum within this limited space
of recorded solutions. Often, this optimization method is not
considered as it is too computationally intensive, however, in
our case, it becomes a viable option and was thus employed
to find specific gaits. Section II-F discusses some possible
optimization methods and further elaborates on the choice for
brute-force optimization.

In order to really take a next step in generating gaits for
various purposes, we tried to combine the knowledge that is
already available from previous works and then expand it.
MATLAB and OpenSim were the main computational tools
used for this. As OpenSim is an established tool for modeling
musculoskeletal processes [49], it was used to perform model-
ing and simulation of the walking motion. Inverse kinematics
(IK) was performed using the marker data, acquired by the
optical motion capture experiment, to determine the exact body
configurations during the gait cycle. Then inverse dynamics
(ID) was performed, using the external loads (i.e. the GRFs)
to find the net forces and torques at each joint responsible for
the movement.

OpenSim modeling is based on solving the dynamics of the
human body. The following equations of motion describe the
simplified internal dynamics model:

τdyn = M(q)q̈ +C(q, q̇)q̇ +G(q), (1)

where M is the system mass matrix, C is the vector of Coriolis
and centrifugal forces, G is the vector of gravitational forces,
and q and its derivatives are the generalized joint positions,
velocities, and accelerations. Since the human body is also
interacting with the ground, we then also need to account for
external forces Fext, where the net joint torques are determined
by

τ = JT (q)Fext + τdyn(q, q̇, q̈). (2)

where J is the Jacobian matrix, responsible for transforming
the external loads Fext to the body. These external loads are
the GRFs that are measured by force plates during the motion
capture experiment. Section II-C will elaborate further on the
IK and ID processes.

The joint torque computed in Equation 2 will be used as one
of the metrics in the optimization process (see Section II-F2).
Furthermore, the joint torque is also used as input for the joint
fatigue model, as can be seen in Figure 1. Fatigue can be seen
as effort integrated over time and the model that is used in this
framework uses the joint torque as an estimation of the effort.
Section II-D will elaborate on the joint fatigue computation
and will go into how the joint fatigue parameters, required for
the model, were determined.
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Fig. 1. Overview of the established framework, containing experiments (green), modeling/computational methods (red) and an optimization step (blue). The
main tools used for computation are OpenSim (dashed yellow box) and MATLAB (dashed purple box).

The Jacobian matrix J from Equation 2, which is used to
map the GRFs to the body, is also an important factor in
the manipulability analysis. As manipulability has not often
been applied in gait analysis yet, we hope to cover some new
ground by incorporating it into our framework. Section II-E
explains how the concept of manipulability is used to analyze
the recorded walking motions and why we decided upon using
the manipulability ellipse shape and orientation as metrics for
the optimization process.

While the dynamic model equations 1 and 2 describe a gen-
eral 3D case, we limited this study to the sagittal plane. This
simplification can be made without too many consequences
as, according to Eng and Winter [50], 74% of the total work
done at the hip was being done in the sagittal plane. Similarly,
for the knee and ankle, 85% and 93% of the work was done
in the sagittal plane, respectively.

B. Motion data acquisition

1) Hardware / Equipment: The gait recordings were per-
formed in the BioMechaMotion Lab of the department of
BioMechanical Engineering at the TU Delft. Marker-based
motion capture was performed, using the marker-tracking
system from Qualisys (Sweden), which included 12 Oqus 700
infrared cameras for tracking the optical markers and two Oqus
210c cameras for recording video footage. The GRFs were
measured using five force plates of KISTLER (Switzerland),
three of type 9260AA6 and two of type 9260AA6, which were
laid down consecutively, creating a path of force plates. These
data streams are acquired and synchronized by the software
application QTM (Qualisys Track Manager). In figure 2 the
setup of the experiment can be seen and in Appendix A we
elaborate on the locations of the optical markers.

2) Gait variations: The data set contains gaits varying
in: 1. stride length, 2. step height, and 3. walking speed. It
was decided that each of these parameters can either have a

Fig. 2. Experiment setup including five force plates, 12 infrared cameras and
two cameras for video footage. 44 optical markers were place on the subject’s
body.

low, medium or high value and a gait was recorded for each
possible combination of these parameters, resulting in 27 gaits.
This set of gaits will be referred to as the basic data set from
now on.

The naming convention used for the recorded gaits in the
remainder of this thesis is based on these parameters. For
example, a gait with a low stride length, high step height, and
a medium walking speed is called LowHighMid. It should be
emphasized that only one of the recorded gaits is a natural
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gait, whereas the other gaits are consciously performed. The
natural gait, indicated by the name MidLowMid, served as the
basis for the data set in the sense that the other recorded gaits
were variations with respect to this natural gait.

Additionally, some extra variations of walking were per-
formed, with bent knees, leaning forward, and leaning back-
ward. By adding these out-of-the-box recordings to the data
set, we enabled the framework to possibly produce an unex-
pected outcome. This part of the data set contains 18 gaits
and will be referred to as the additional data set from now on.
A list of the total data set, comprising 45 gaits, can be seen
in Appendix B. There, the stride length, step height, walking
speed, and cadence are also given for each gait.

C. Inverse Kinematics & Inverse Dynamics

The freely available OpenSim software [49] was used as a
tool for modeling and simulating the gaits that were acquired
with motion capture. The generic gait 2392 OpenSim model
was utilized for this. It is a 23-degree-of-freedom lower ex-
tremity musculoskeletal model, containing 92 musculotendon
actuators, created mainly for gait analysis. The model was first
scaled to the proportions of the subject’s body, using a marker
set created to be identical to the marker set used during the
motion capture experiment, seen in figure 9 in Appendix A.

The marker data collected during the motion capture exper-
iment contain the 3D locations of each marker. To translate
these marker locations to orientations of the leg segments and
thus to the joint angles, inverse kinematics (IK) was applied.
As can be seen in Figure 1, the OpenSim IK tool requires the
scaled musculoskeletal model and the marker locations, and
determines the joint angles throughout the gait cycle.

Then, inverse dynamics (ID) was applied, using Equations 1
and 2, to find the net torques at each joint responsible for the
motion determined by IK. The OpenSim ID tool requires the
GRFs, measured by the force plates, and the joint angle data
following from IK as inputs and produces the joint torques as
output. Since we are analyzing the gaits solely in the sagittal
plane, mainly the hip flexion/extension, knee flexion/extension,
and ankle plantar flexion/dorsiflexion angles and torques were
used in further analysis.

By analyzing several gait cycles of one gait recording and
comparing the joint angle/torque trajectories between these
gait cycles, a measure of the repeatability of the trajectories
could be obtained. This provides an indication of the reliability
of the IK and ID processes. Due to time constraints, it
was decided to perform this verification process for only
a portion of the total data set: MidLowMid, LowLowHigh,
BentLowHighMid, LeaningForwardMidHighMid, and High-
HighLow. With this selection, it was attempted to represent
the total data set as well as possible by selecting gaits that
all differ from each other considerably. For each of these
gait recordings, the heel strikes were determined manually
by analyzing when the force plate that was being stepped on
would give a nonzero value. Two gait cycles were isolated for
comparison, by selecting the data between heel strikes, and
the data were resampled to 300 data points to ensure the data
sets were of equal length.

To account for small timing mismatches between the two
gait cycles, dynamic time warping (DTW) was performed us-
ing the MATLAB built-in dtw function. This method stretches
the two input vectors such that the sum of the euclidean
distances between the data points is the lowest, and this sum
of Euclidean distances is also its output. A more detailed
explanation of the DTW process is given in [51]. The mean
absolute error (MAE) was then computed by dividing the sum
of Euclidean distances by the number of data points (300). To
get a more intuitive sense of how large this error is with respect
to the data that was analyzed, the percentage error (PE) was
then computed by normalizing the MAE with respect to the
range of the trajectories, with the range being the maximum
angle/torque value minus the minimum angle/torque value of
the trajectory during one gait cycle.

In Section III, joint angle trajectories for multiple recorded
gaits are shown, in combination with visualizations of these
gaits, and the percentage errors of the verification process are
given.

D. Joint fatigue modeling

Several models can be found in literature for estimating
fatigue [52]–[55], mostly relying on complex biomechanical
systems. While applying such a model might provide a very
precise fatigue estimation, it also brings some complexity to
the analysis. In essence, fatigue is an integrated effort over
time. Thus, by acquiring an estimation of effort, we could
model fatigue in a more simple manner than in some of the
above-mentioned studies. Some studies that have performed
fatigue modeling through effort estimation are [42]–[44],
which use joint torque as indication of effort. For the fatigue
estimations performed in this thesis, we used the model from
[44], which is described by

dui(t))

dt
=

{
(1− ui(t)) |τi(q,t))|λi

if |τi(t))|≥ τth,i
−ui(t) Rλi

if |τi(t))|< τth,i
, (3)

where ui is the fatigue index for the i-th joint, τi is the joint
torque for the given time t, λi is the parameter that determines
the joint-specific fatigue characteristics, R is the recovery rate,
specifying how fast the joint recovers when it is resting and
τth,i is the torque threshold that determines if the fatigue of
the joint is increasing or decreasing. The model is inspired
by RC circuit dynamics and has a shape similar to that of
an exponential charge/discharge function. It was decided to
rewrite Equation 3 into recursive form as

ui,t+1 =

{
ui,t + (1− ui,t) |τi,t|λi

∆t if |τi,t|≥ τth,i
ui,t − ui,t Rλi

∆t if |τi,t|< τth,i
. (4)

The recovery rate R was set to a conservative value of 0.5,
as was also done in [44] and [41]. Parameter λ was determined
by several calibration experiments, similar to the experiment
proposed in [41]. Two measurements were performed for each
joint, one for flexion and one for extension direction in the
sagittal plane, thus 12 measurements in total. During each
of these measurements, the subject was instructed to produce
maximum torque and try to maintain this torque level for as
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long as possible. The time Tref was measured up to the point
that the subject could not endure this torque level anymore.
Note that this procedure is subject-dependant, as the subject
was instructed to stop when maintaining the torque level
would become uncomfortable. Since the model follows an
exponential charge function that mathematically never reaches
the maximum value of 1, i.e. 100%, we needed to select some
value considered as maximum. In electronics, where expo-
nential charge functions are common, it is typical to assume
that a capacitor is fully charged after five time constants.
Similarly, the maximum value of the joint fatigue parameter
u was assumed to be reached after five time constants, thus
when u = 0.993. Fatigue capacity parameter λ could then be
derived for each joint (in both flexion and extension direction)
by

λ = − |τref |·Tref
ln(1− 0.993)

, (5)

where Tref is the time that the reference torque τref could be
maintained by the subject.

The estimated λ parameters slightly differed for the left
and the right leg. Bilateral symmetry was assumed, thus the λ
value of the weakest leg was selected and the corresponding
joint of the other leg was assigned with the same value. The
weakest leg was selected to stay on the conservative side
with our assumption. This resulted in the set of λ parameters
seen in Table I. Further details of the calibration experiments
are provided in Appendix C, together with visuals of the
experiment setup.

TABLE I
JOINT SPECIFIC FATIGUE PARAMETERS λ AND τth .

Hip
flexion

Knee
flexion

Ankle
dorsi-
flexion

Hip
exten-
sion

Knee
exten-
sion

Ankle
plantar-
flexion

λ (Nms) 444 282 75.8 754 550 2.15e+3
τth (Nm) 0.177 0.133 0.046 -0.234 -0.184 -0.295

Finally, the torque thresholds τth, determining whether the
joints are increasing or decreasing their fatigue levels, had to
be determined. During each of the fatigue calibration experi-
ments, the subject was instructed to produce maximum torque
with that specific joint. Therefore, these reference torques
can be interpreted as an indication of the general strength
of the joints with respect to each other. Consequently, the
torque thresholds were scaled to one another according to
the ratio between these reference torques. Therefore, only one
torque threshold had to be selected and the other thresholds
could be computed through this interdependency. For each
joint, the torque threshold of the weakest leg was selected
and the corresponding joint of the other leg was assigned
with the same value, similar to the computation of the λ
parameters. Table VIII in Appendix C gives an overview
of all the reference torques τref , fatigue parameters λ and
torque thresholds τth that were determined in the calibration
experiments.

To find a somewhat realistic set of torque thresholds, an
assumption was required for a reasonable fatigue index after a
certain time. Since no literature specifically defines a realistic

fatigue index after a certain time, we made the following
assumption: after half an hour of regular walking, an average
fatigue index of 20% is expected. This assumption will be
further discussed in Section IV. An initial guess was made for
the set of torque thresholds and the average fatigue index was
calculated. Then, depending on this value, the set of torque
thresholds was adjusted. This process was iterated until the
average fatigue level of 20% was achieved, resulting in the
set of thresholds seen in Table I.

E. Manipulability analysis

In robotics, manipulability is a measure of how well the
end-effector can produce force and/or motion in all directions
and is often used to visualize how close a robot is to being in
a singular configuration [34]. In the case of a 3D environment,
it can be visualized as an ellipsoid, and for a 2D environment
as an ellipse. The length of the vector from the center of the
ellipsoid/ellipse to the surface indicates how well the limb can
produce motion/forces in that specific direction of Cartesian
space.

1) Manipulability calculation: Multiple manipulability
measures have been defined in previous works. The classical
one is the scalar manipulability, defined by Yoshikawa [34] as

w =
√

det(J(q)J(q)T ), (6)

where J is the Jacobian matrix at joint configuration q. The
scalar manipulability is proportional to the volume of the
manipulability ellipsoid [56] and is especially interesting in a
case where both motion and force are to be optimized together.

However, in this research, we are applying manipulability
analysis on walking, in which several phases can be identified
where the capability to produce motion is more relevant, and
several phases where the propulsion or absorption of force
is more relevant. Using singular value decomposition, the
manipulability can be analyzed on a more detailed level. Then,
if it is desired to focus on the capability to produce motion,
we can derive the velocity manipulability by

UΣV T = J(q)J(q)T , (7)

where U and V are matrices containing the left and right
singular vectors respectively and Σ is a diagonal matrix
containing the singular values. Since velocity and force manip-
ulability are orthogonal, the force manipulability is obtained
by the inverse of (7).

The orthogonality of the force and velocity manipulability
can be seen in Figure 3, where both ellipses are schematically
visualized during toe-off, with the toe as end-effector. The
singular vectors present in matrix U represent the direction of
the velocity/force ellipsoids axes (indicated by v in Figure 3),
or in other words the orientation of the ellipsoid. The singular
values indicate the magnitude of the axes (indicated by

√
µ in

Figure 3) and therefore represent the shape of the ellipsoid.
2) Manipulability analysis of the gait: The gait cycle can

be separated into two main phases: the stance and swing phase
[57]. The stance phase is initiated by initial contact (IC) (also
called heel strike), where the heel touches the ground. The leg
touching the ground is then called the dominant leg in this
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Fig. 3. Schematic drawing of foot with the velocity ellipse in red (dashed
line) and force ellipse in blue (solid line) during toe-off. Note that v and µ
are drawn only in the velocity ellipse, but can be drawn in the force ellipse
in a similar fashion.

cycle. The stance phase can be further divided into loading
response, mid-stance, terminal stance, and pre-swing. During
loading response, the impact of the foot on the ground is
absorbed and the bodyweight is transferred onto the dominant
leg. The mid-stance and terminal stance phases together form
the single-limb support phase, starting and ending when the
non-dominant leg leaves the ground (opposite toe-off (OTO))
and touches the ground again (opposite initial contact (OIC)),
respectively. During those phases, the body weight is carried
solely by the dominant leg. The body is then propelled by
the dominant leg during pre-swing. As each of these first four
gait phases revolves around absorbing, carrying, or generating
force, the focus of the manipulability analysis for these phases
is on the force ellipse, as seen in Table II. The swing phase
can be divided into initial swing, mid-swing, and terminal
swing. During the swing phase, the limb is advanced, going
through three phases, lifting itself (initial swing), advancing
(mid-swing), and preparing for the next stance phase (terminal
swing). As these phases focus on the advancement of the limb,
the velocity ellipse is analyzed.

TABLE II
OVERVIEW OF THE SELECTED LEG ENDPOINT AND ELLIPSE TYPE

ANALYZED FOR EACH GAIT PHASE DURING THE GAIT CYCLE.

Gait phase Leg endpoint Ellipse type

Stance phase

Loading response Heel Force
Mid-stance Heel Force
Terminal stance Toe Force
Pre-swing Toe Force

Swing phase
Initial swing Toe Velocity
Mid-swing Toe Velocity
Terminal swing Toe Velocity

During loading response the contact with the ground of
the dominant leg is provided only by the heel, so the heel
is chosen as endpoint for generating the force ellipse during
that phase. For mid-stance, where the body weight is slowly
transferred from the heel towards the toe of the dominant leg,
the heel was chosen as endpoint as well. For all the other
phases, the velocity and force ellipses were generated with
the toe as endpoint.

F. Multi-metric optimization

1) Optimization problem formulation: The aim of opti-
mization in this framework is to find an optimal gait for a
certain optimization goal using joint torque, joint fatigue, and
manipulability as main parameters in the optimization process.
The optimization problem can be formulated by

(8)

H = arg min
q,q̇,q̈

 n∑
i=1

(wt,i · Ti) +

n∑
i=1

(wu,i · Ui)

−
m∑
j=1

(ws,j · Sj) +

m∑
j=1

(wo,j ·Oj)

 ,

where q, q̇ and q̈ are the generalized joint positions, velocities
and accelerations, Ti and Ui are metrics representing the joint
torque and joint fatigue for the i-th joint, respectively, Sj and
Oj are metrics representing the manipulability ellipse shape
and manipulability ellipse orientation for gait phase j, respec-
tively, and wt,i, wu,i, ws,j and wo,j are weights corresponding
to these metrics. Finally, n is the number of joints taken into
account in the optimization process, in our case six (hips,
knees, and ankles), and m is the number of gait phases, in
our case seven (see Table II).

To clarify, arg min finds the argument to the function
that results in the minimum output. Therefore, Equation 8
determines the motion (defined by q, q̇ and q̈), that results
in the lowest total cost, where the total cost consists of terms
associated with joint torque, joint fatigue, and manipulability.

The weights wt,i, wu,i, ws,j and wo,j can be used to specify
a certain optimization goal. For example, increasing weights
wt,1 and wt,2 will increase the importance of minimizing the
joint torque metrics of the first and the second joint in the
cost function. Or if one searches a gait where the occurrence
of joint fatigue is not relevant, weights wu,i can be put to zero.
However, as the emphasis of this research is on presenting this
new framework rather than applying it to study cases, for now,
a general weighting of 1 was applied to all the weights.

Note that the ellipse shape S has a minus sign in the cost
function, while the other metrics T , U , and O have a plus
sign. This is the case as maximizing S feels more intuitively
correct, in contrast with the other metrics. However, in the case
that S is to be minimized, or in the case that the other metrics
T , U and O are to be maximized, their respective plus/minus
sign can simply be changed by assigning negative values to
their respective weights (ws,j , wt,i, wu,i and wo,j).

2) Metrics: The joint torque metric T for a joint i is
specified as

Ti = |τi(t)|, (9)

where τi is the i-th joint torque trajectory throughout one
gait cycle. So the mean value is computed over the absolute
torque trajectory. In this way, we can get a general sense of
the magnitude of the load exerted on the specific joint.

The joint fatigue metric U for a joint i is described by

Fi = ui,tend
(10)

with ui,tend
representing the i-th joint fatigue index following

from Equation 4, at the last instant of the gait cycle. By picking
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the fatigue index at this instant, we get an impression of how
much fatigue has built up in the joint during one gait cycle,
which indicates how exhausting the gait was for the specific
joint i.

The manipulability ellipse shape S for gait phase j can be
described by

Sj = r(t), with r(t) =

√
µ1(t)

µ2(t)
, (11)

where µ1(t) and µ2(t) are the singular values at time instant t
following from Equation 7. Ellipse shape S is then determined
by averaging the ratio r(t) over the specific gait phase. The
minimum value that S can reach is 1, which occurs when
the ellipse axes are of equal magnitude, making the ellipse a
circle. When the velocity/force ellipse is more flat, S will have
a higher value and vice versa. A higher value of S will mean
that, in the direction of the major axis, more velocity/force
(depending on the ellipse type) can be produced.

Finally, the manipulability ellipse orientation O for gait
phase j is represented by

Oj = |θ(t)|, with θ(t) = tan−1
(
v1,y(t)

v1,x(t)

)
− θref (12)

where v1,x(t) and v1,y(t) are the x and y components of
singular vector v1 at time instant t found from Equation 7,
corresponding to the major axis of the velocity/force ellipse.
θref is a reference angle, defined to enable the designation of a
baseline orientation that is desired for the ellipse. Finally, θ(t)
is called the deviation angle and it is the angle between the
major axis of the ellipse and the reference angle θref . Ellipse
orientation O is then computed by taking the mean value of
the absolute deviation angle θ(t).

For gait phases where the velocity ellipse was selected
for analysis, it was decided to choose θref parallel to the
ground. In this way, velocity in the forward direction, i.e. the
walking direction, is rewarded positively in the cost function.
For gait phases where the force ellipse is analyzed, θref should
ideally be aligned with the direction of the GRF, as is done
in [38]. Then, during heel strike the interaction forces could be
absorbed optimally and during toe-off, the foot could propel
the body most efficiently. However, to simplify computational
matters and since visual inspection of the recorded motion
data showed that the GRF often points towards (or nearby) the
pelvis, we defined θref to be the angle between the selected
endpoint (see Table II) and the pelvis.

3) Data normalization: The cost function (Equation 8) is
basically a weighted sum of the above-described metrics. To
prevent one metric from having a larger influence on the total
cost than another, normalization of the metrics was performed,
using the z-score normalization method. MATLAB’s built-
in zscore-function was used for this, where the z-score is
computed by

z =
(x− ν)

σ
(13)

where ν and σ are the mean and standard deviation of the
dataset and x is the data point for which the z-score is being
computed. After z-score normalization, the data set typically

has a mean of zero and a standard deviation of one. Therefore,
the costs we will eventually compute could be negative, which
might seem odd, but a negative cost should just be interpreted
as a low cost.

We would like to emphasize again that the above-mentioned
torque trajectories, fatigue indices, and manipulability mea-
sures are all computed in 2D, in the sagittal plane, since 3D
analysis falls outside of the scope of this research.

Thus, to summarize how this all comes together in the cost
function, an example is provided: the torque metric for the
right hip Thipr was computed for all 45 recorded gaits, then
normalized to T ∗hipr using Equation 13. Finally, T ∗total was
computed by a weighted sum over all the joints. This T ∗total
can be seen as the cost term associated with the joint torque,
presented as

∑n
i=1(wt,i · Ti) in the cost function. Note that

S∗total and O∗total are computed by averaging over the gait
phases, whereas T ∗total and U∗total are computed by averaging
over the joints.

4) Brute-force optimization: There are numerous strategies
available in literature that have been applied in gait optimiza-
tion, each having its pros and cons. Evolutionary approaches
have been explored [58]–[61], which are inspired by biological
evolution. Also, function optimization methods have been
applied [62], [63], that aim to find the input to a given function
that results in the minimum or maximum output from the
function. However, many approaches share the drawback of
being plagued by local optima. To ensure finding a global
minimum, we apply brute-force optimization. In contrast with
other optimization methods, that have a strategy to determine
which point in the solution space will be evaluated next, brute-
force optimization evaluates all points in the solution space.
Normally, the big drawback of this method is the lengthy
computation time. However, as mentioned in Section II-A, the
volume of the search space for the optimization problem at
hand is gravely reduced as it is only filled with our own, by
motion capture acquired, gaits. In practice, this means that
total cost H from Equation 8 is computed for each recorded
gait and the gait with the lowest cost is selected as the optimal
gait.

III. RESULTS

A set of seven gaits was chosen from the recorded motion
data to display the effects of the gait parameters (stride length,
step height, and walking speed) on the metrics (joint torque
T , joint fatigue U , and manipulability ellipse shape S and
orientation O). These gaits are: LowLowMid, MidLowMid,
HighLowMid, MidMidMid, MidHighMid, MidLowLow, and
MidLowHigh. These were selected since this set enables us to
isolate the effect of altering one of the gait parameters, while
keeping the other two gait parameters constant, like this:
• Stride length: LowLowMid, MidLowMid, HighLowMid
• Step height: MidLowMid, MidMidMid, MidHighMid
• Walking speed: MidLowLow, MidLowMid, MidLowHigh

Note that the natural gait (defined by a medium stride length,
low step height, and medium walking speed, so MidLowMid)
is present in each row in the above overview, so the observed
results can always be compared to the natural gait.
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As the manipulability is only dependent on the leg config-
urations the gaits MidLowMid, LowLowMid, HighLowMid,
LowHighMid, and HighHighMid are analyzed for the ma-
nipulability, as these are the most extreme in terms of leg
configurations. Since varying just the walking speed will not
affect the manipulability, the selected gaits all have a medium
walking speed. Furthermore, as the manipulability analysis
on walking as performed in this research includes analyzing
each gait event, it might be a bit too extensive to analyze all
five above-mentioned gaits. Therefore, only the natural gait
is thoroughly analyzed here, whereas the full analysis can be
found in Appendix D.

A. Visualisation of recorded gaits

Figure 4 shows the joint angles for the hip, knee, and ankle
of the dominant leg for one gait cycle, resulting from the
IK process in OpenSim. In each column the natural gait is
depicted (together with two other gaits), making it possible to
compare each analyzed gait to the natural gait. Furthermore,
in Figure 5, the leg configurations during relevant gait events
are visualized.

A higher stride length seems to result in a larger range of
motion (ROM) for the hip, knee and ankle during the swing
phase (TO-IC2) and in a larger ROM for the ankle during the
stance phase (IC-TO). Increasing the step height has the same
effect on the hip and the knee joints but an opposite effect on
the ankle during the swing phase. During the stance phase,
no difference in ROM is noticed for all the joints. Altering
the walking speed does not seem to have a clear effect on the
joint angle trajectories.

B. Joint angle and joint torque verification

To get a sense of the reliability of the inverse kinematics
(IK) and inverse dynamics (ID) processes, the percentage
errors (PEs) of the joint angle and joint torque trajectories
of the hips, knees, and ankles of five gaits (MidLowMid,
LowLowHigh, BentLowHighMid, LeaningForwardMidHigh-
Mid, and HighHighLow) were computed, as explained in
Section II-C. Table III gives the average PEs for each gait
(so averaged over the six joints). It can be seen that all the
PEs, for the joint angles as well as for the joint torques, stay
below 4%.

TABLE III
PERCENTAGE ERRORS (PES) FOR THE JOINT ANGLES AND JOINT

TORQUES.

Gait Average PE (%)
Joint angles

Average PE (%)
Joint torques

MidLowMid 1.54 1.28
LowLowHigh 1.42 3.24
BentLowHighMid 3.77 2.24
LeaningForwardMidHighMid 1.35 2.17
HighHighLow 0.80 1.79

C. Effect of gait parameters on metrics

1) Joint torque: The joint torque trajectories, obtained from
ID in OpenSim, are shown in Figure 6. First of all, it stands

out that in all plots of the knee and hip, a spike can be seen at
initial contact of the dominant leg. For the ankle, this spike is
present as well but very small. A medium stride length seems
to induce the largest hip torque during OIC, followed by a
high and then a low stride length. The same holds for the ankle
torque. During terminal swing, a medium stride length induces
the most negative torque in the hip and knee, whereas a high
and low stride length have a less negative torque. The high
stride length even induces a small positive torque for the hip.
For the ankle, the medium and high stride length gaits have
quite similar trajectories, while the low stride length stands
out with a much smaller torque around OIC.

When the step height decreases, a higher hip torque is
observed around OIC. The same holds for the knee, but this
effect is less prominent. During terminal swing, a high step
height results in a positive torque in the hip, a low one in a
negative torque, and a medium one in a torque close to zero.
For the knee, a lower step height induces a more negative
torque during terminal swing. Moreover, in initial swing, the
knee and hip torque trajectories seem to give a larger negative
torque than the medium and low step heights. Around OTO a
low and medium step height result in positive knee torques,
whereas the high step height results in a negative one. The
torque at the ankle joint does not seem to be affected much by
changes in the step height. Finally, the peaks at initial contact
of the dominant leg seem to be larger for smaller step heights
for the knee and hip joints.

Increasing the walking speed results in larger hip torques
for the hip and knee during loading response and mid-stance.
For the hip, around OIC a high and medium speed result in
higher torques compared to the lower speed. The same effect
is seen for the hip and knee during terminal swing. During
initial swing, the medium and high speeds result in positive
torques, whereas the low speed results in a negative torque.
Finally, The ankle trajectory seems quite unaffected by the
speed, except during mid-stance, where the low speed has the
lowest torque, the medium speed has the highest torque, and
the high speed remains in between the other two trajectories.

In Table IV T ∗total (i.e. the cost associated with the torque)
is presented for the seven displayed gaits. Note that, due to
the normalization process, negative cost values can occur (as
explained in Section II-F3). These can simply be interpreted
as low costs. We see a clear trend that increasing the stride
length (LowLowMid→MidLowMid→ HighLowMid) results
in a higher torque cost. When increasing the step height
(MidLowMid → MidMidMid → MidHighMid), we see a
similar trend. For an increasing walking speed (MidLowLow
→ MidLowMid → MidLowHigh) no such trend is seen.

2) Joint fatigue: Figure 7 displays the fatigue index u
computed using Equation 4. It can be seen that when the
torque trajectories from Figure 6 exceed their thresholds τthr
(depicted as horizontal dashed lines in Figure 6), the fatigue
index u increases. Moreover, when these torque trajectories
stay under their thresholds, u seems to stay nearly constant.
Table IV shows the U∗total (i.e. the cost associated with the
fatigue) for each of the seven analyzed gaits. For an increasing
stride length (LowLowMid → MidLowMid → HighLowMid)
an increase in U∗total is seen. Especially LowLowMid stands
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Fig. 4. The effect of the stride length (left column), step height (middle column), and walking speed (right column) on the joint angles during walking. To
clarify: in the left column, LowLowMid, MidLowMid, and HighLowMid are depicted, in the middle column, MidLowMid, MidMidMid, and MidHighMid,
and in the right column, MidLowLow, MidLowMid, and MidLowHigh. Relevant gait events are indicated by the red dashed lines. Note that these can slightly
differ per gait, however only the gait events of the natural gait are shown to keep the figure organized.
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Fig. 5. Visualization of the leg configurations at the relevant gait events during one gait cycle, starting and ending with initial contact. The gaits visualizing
the effect of different (a) stride lengths are LowLowMid (lightest color), MidLowMid (medium-dark color), and HighLowMid (darkest color), only differing
in stride length, having similar walking speed and step height. Different (b) step heights are visualized by MidLowMid (lightest color), MidMidMid (medium-
dark color), and MidHighMid (darkest color), only differing in step height, having similar walking speed and stride length. Different (c) walking speeds are
visualized by MidLowLow (lightest color), MidLowMid (medium-dark color), and MidLowHigh (darkest color), only differing in walking speed, keeping the
stride length and step height the same. The dominant leg is indicated by green shades and the supporting leg by gray shades.
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Fig. 6. The effect of the stride length (left column), step height (middle column), and walking speed (right column) on the joint torque trajectories. To clarify:
in the left column, LowLowMid, MidLowMid, and HighLowMid are depicted, in the middle column, MidLowMid, MidMidMid, and MidHighMid, and in the
right column, MidLowLow, MidLowMid, and MidLowHigh. Torque thresholds τth (see Table I), relevant for the joint fatigue, are indicated by blue dashed
lines. Gait events are indicated by the red dashed lines. Note that these can slightly differ per gait, however only the gait events of the natural gait are shown
to keep the figure organized.
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Fig. 8. The force ellipse (blue solid line) and velocity ellipse (red dashed line) for the relevant gait events of the natural gait MidLowMid are visualized. For
the stance phase, i.e. IC until TO, the force ellipse is drawn, while for the swing phase, i.e. TO until IC2, the velocity ellipse is drawn. The dominant leg is
indicated by green and the supporting leg by gray. Furthermore, the ellipse drawn for the gait events IC and OTO is centered on the heel, whereas the others
are centered on the toe, as explained in Table II.

TABLE IV
TOTAL COSTS PER METRIC, TOGETHER WITH OVERALL TOTAL COST H ,

GIVEN FOR THE SEVEN GAITS TREATED IN THIS SECTION.

Gait T ∗
total U∗

total S∗
total O∗

total Total cost (H)

MidLowMid -0.418 -0.459 0.18 -0.188 -0.885
MidLowLow -0.215 -0.289 0.624 -0.34 -0.220
MidLowHigh 0.391 -0.280 0.0854 0.106 0.303
MidMidMid -0.393 -0.508 -0.0587 -0.135 -1.09
MidHighMid -0.268 -0.492 -0.28 -0.366 -1.41
LowLowMid -1.16 -1.24 0.182 -0.499 -2.72
HighLowMid -0.0759 -0.316 0.318 0.0263 -0.048

out with a fatigue cost much lower than the others. Changing
the step height does not seem to have a clear effect on the
fatigue cost. Increasing and decreasing the walking speed
(MidLowMid→MidLowHigh, MidLowMid→MidLowLow)
both seem to increase the fatigue cost.

3) Manipulability: In Figure 8, the force/velocity ellipses
are visualized for each gait event during the gait cycle of
the natural gait (MidLowMid). Only the analysis of this
natural gait is shown to provide a general impression of what
the proposed manipulability analysis on walking looks like.
Appendix D contains similar figures for the gaits LowLowMid,
HighLowMid, HighHighMid, and LowHighMid, might the
reader be interested in seeing the effect of different walking
motions on the force/velocity ellipses.

It can be seen in Figure 8 that the force ellipses, drawn for
IC, OTO, heel rise (HR) and OIC, point very closely towards
the pelvis, which is the reference point for the force ellipse
orientation O during stance phase (explained in Section II-F).
For the velocity ellipses, drawn for TO, feet adjacent (FA),
tibia vertical (TV) and IC2, the reference direction for el-
lipse orientation O is parallel to the ground (explained in
Section II-F). It can be seen that the velocity ellipse for FA
points closely in this direction. For TO, TV and IC the velocity
ellipses have a larger deviation from this reference direction.

The ellipse shape S is quite comparable for all the gait
events, except for IC and OTO, where the ellipse is very
stretched. In Table V the computed metrics S and O are given
for the natural gait, quantifying what is shown in Figure 8.
Note that the information in the figure and the table can not
be compared directly with each other as the figure shows the
gait events, whereas the table shows the average values of the
metrics for the gait phases, which are the periods between the

gait events. Most notable in Table V is that, during loading
response and mid-stance, very high values for S and very low
values for O can be seen. Moreover, O seems to increase quite
drastically throughout the gait cycle, especially during swing
phase, whereas S stays quite constant during swing phase.

TABLE V
METRICS T AND U , GIVEN FOR EACH JOINT AND METRICS S AND O,
GIVEN FOR EACH GAIT PHASE OF THE NATURAL GAIT (MIDLOWMID).

Joint T (Nm) U (%)

Hip right 0.320 0.0614
Hip left 0.309 0.0589
Knee right 0.113 0.0149
Knee left 0.0957 0.0140
Ankle right 0.332 0.0443
Ankle left 0.249 0.0374

Gait phase S (-) O (◦)

Loading response 59.4 0.528
Mid-stance 148 0.313
Terminal stance 4.38 2.76
Pre-swing 5.28 1.37
Initial swing 5.18 11.0
Mid-swing 6.02 19.0
Terminal swing 5.32 36.0

D. Multi-metric optimization

In Table V an overview is given of the metrics T , U , S
and O computed for the natural gait. Table VI gives a similar
overview, but with the normalized metric values (T ∗, U∗, S∗

and O∗) and a weighted sum for each metric is provided,
representing the total cost of that metric for the natural gait.
Then in Table IV, the total costs of each metric (T ∗total, U

∗
total,

S∗total and O∗total) are presented for the seven gaits treated in
this section and the overall total cost H is provided for each
gait. Note that all the weights used for computing the values
presented in Table IV are set to one in this case (as explained
in Section II-F1).

TABLE VI
NORMALIZED METRICS T ∗ , U∗ , S∗ AND O∗ , GIVEN FOR THE NATURAL

GAIT (MIDLOWMID).

Joint T ∗ U∗

Hip right 0.0734 -0.221
Hip left 0.0589 -0.268
Knee right -0.811 -0.821
Knee left -0.957 -0.795
Ankle right -0.132 -0.301
Ankle left -0.742 -0.346

Weighted sum -0.418 -0.459

Gait phase S∗ O∗

Loading response -0.172 -0.767
Mid-stance 0.0903 -0.734
Terminal stance -0.0909 1.29
Pre-swing 0.358 0.116
Initial swing 1.43 0.608
Mid-swing 1.85 -1.13
Terminal swing -1.39 -0.692

Weighted sum 0.180 -0.188
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From Table IV it can be seen that LowLowMid has the
lowest cost, followed by MidHighMid. The highest cost is seen
for MidLowHigh, followed by HighLowMid. LowLowmid
seems to score especially well on torque and fatigue, which
are the largest costs seen in the table. In Appendix E a table
similar to Table IV is shown, but for all 45 recorded gaits.

IV. DISCUSSION

A new framework for multi-metric gait optimization is pro-
posed, applicable for different contexts and goals, accounting
for joint torque, fatigue, and manipulability. To ensure that
the framework would always select a physiological and stable
gait, a database of motion capture recorded gaits was formed,
serving as a solution space for the optimization process.

By combining several metrics in the optimization, this
framework facilitates preventing the joints to be overloaded,
ensuring that motion and force can be produced/sustained well
during different phases of the gait, and taking into account the
long-term performance of the gait, simultaneously.

The database of recorded motions should contain substantial
variation in terms of the gait parameters (stride length, step
height, and walking speed), to form a good representation
of the search space for optimization. Figures 4 and 5 verify
that variations in terms of stride length and step height are
represented well in the data set. Variation in walking speed is
not visible in these figures as they are presented with respect
to phase rather than time. However, Table VII in Appendix B
does verify the presence of variation in walking speed and
also confirms the presence of stride length and step height
variations.

Moreover, the results showed that different gaits result in
different costs for the individual metrics, as well as for the
overall cost H (see Table IV). Since the costs, presented in
this table, are computed with all the optimization weights
set to one, the result functions as a baseline for tuning the
framework. It can be used to analyze the gait patterns, in
particular getting some insight into which aspect of the gait
is responsible for a good or bad overall performance. For
example, LowLowMid performs best in the baseline case,
especially due to very low torque and fatigue costs, indicating
that the joints are not loaded heavily and that this gait can
be sustained for a long time. As LowLowMid is the gait with
the least extreme leg configurations of the seven presented
gaits (low stride length and low step height), this makes
sense. When we look at MidHighMid, a good performance in
terms of manipulability is noticed, which indicates that the leg
configurations are quite optimal for sustaining external loads
during the stance phase and for advancing the limb during the
swing phase. A more thorough discussion on the effect of the
gait parameters on the metrics, can be found in Appendix F.

While the optimization weights are intentionally set to one
in this study to function as a baseline for analysis, eventually,
the purpose of these weights is to provide a tool for the
user to translate their requirements for a desired gait pattern
into an optimization goal for the framework. However, further
research into details of how to tune the weights for specific
user requirements is needed.

Our proposed framework provides a new method to analyze
and optimize the gait for multiple metrics at the same time, as
opposed to many previous studies that only optimize for one
metric [32], [33], [35], [38], [39]. Moreover, while fatigue
has been included in gait optimization indirectly through
minimizing energy efficiency [39], [40], we accounted for
fatigue directly by applying a fatigue model. While fatigue
modeling has been studied for applications in the field of
ergonomics and manufacturing (with focus on the legs or
the whole body) [41], [44], our framework applies it in gait
optimization, focusing on the legs.

In this study, we limited our gait analysis to the sagit-
tal plane, which is a common approach in literature [64],
[65]. However, such an approach gives us no insight into
the performance of the gait in the other planes, possibly
excluding valuable information. For example, the hip joints
play a critical role in maintaining balance of the trunk in
the frontal plane [66], which can not be analyzed by sagittal
plane analysis. Furthermore, this 2D assumption results in a
less accurate motion description, as the number of degrees
of freedom is reduced, thus a less complete reflection of the
motion is presented. Therefore, future research could improve
the framework by incorporating 3D analysis.

In the computation of the torque thresholds and λ values for
the fatigue model, bilateral symmetry of the legs was assumed,
equalling both legs to the weakest one. Although bilateral
symmetry might be a decent assumption in healthy individuals,
there is typically a much larger difference in leg functionality
for individuals with a leg injury. In such a case, we want
to minimize the risk of worsening the injury, therefore the
conservative assumption of basing the fatigue characteristics
of both legs on the capability of the weakest leg still seems
like the best option.

Furthermore, for determining the torque threshold values,
a fatigue index of 20% was assumed after half an hour of
regular walking. Since no research has been performed that
suggests a reasonable estimate of fatigue index after a specified
time of walking, an additional study is recommended to better
calibrate the fatigue model.

In the current method, joint torque metric T is computed
by the mean of the absolute joint torque trajectory. Therefore,
a gait pattern with a low torque cost could still contain some
high peak torque values in the torque trajectories. To improve
this, the addition of another set of torque thresholds is advised,
specifying a maximum allowed torque and filtering out gaits
when this value is exceeded at any moment.

Finally, like in many other studies, the issue of model
accuracy is a bottleneck in the proposed framework. However,
due to the modularity of the framework, it is possible for better
models to be incorporated, allowing the framework to keep
improving.

V. CONCLUSION

We successfully created a gait optimization framework,
taking into account joint torque, fatigue, and manipulability.
A baseline case was presented that can be used to analyze
the performance of gait patterns, which enables gathering
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insights into specific aspects of the gait. Future research into
properly tuning the weights for specific user requirements is
recommended to improve the framework’s potential to select
well-fitting gaits for users with specific needs.
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APPENDIX

A. Motion Capture Experiment: Optical marker locations

The experiment was performed using a full-body marker set of 44 markers, as seen in Figure 9, based on [67]. Eventually,
32 markers were used for the IK process in OpenSim, since the markers that were added to the arms were eventually not used
in the remainder of the project.

Fig. 9. Schematic image of the locations of the 44 reflective optical markers during the recordings. The 12 markers placed on the arms (indicated in blue)
were eventually not used in the remainder of this research, in contrast to the 32 markers on the rest of the body (indicated in green). The generic gait 2392
OpenSim model was used to create this image.
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B. Gait parameters recorded gaits

Here an overview is given of the data set, containing all 45 recorded gaits, together with the computed values for stride
length, step height, walking speed, and cadence. The gaits MidLowMid until HighHighHigh form the basic data set, whereas
the gaits BentMidLowMid until LeaningForwardHighHighMid form the additional data set, as explained in Section II-B2.

TABLE VII
GAIT PARAMETERS, COMPUTED FOR ALL 45 GAITS RECORDED DURING THE MOTION CAPTURE EXPERIMENT.

Gait Stride length (m) Step height (m) Walking speed (m/s) Cadence (s−1)

MidLowMid 0,585 0,366 1,09 106
MidLowLow 0,575 0,399 0,554 55,8
MidLowHigh 0,661 0,388 1,42 115
MidMidMid 0,59 0,442 0,877 82,2
MidMidLow 0,573 0,465 0,57 59,1
MidMidHigh 0,543 0,526 0,893 104
MidHighMid 0,547 0,663 0,679 70,6
MidHighLow 0,63 0,617 0,489 47,8
MidHighHigh 0,58 0,703 0,862 93,7
LowLowMid 0,298 0,325 0,54 98,4
LowLowLow 0,305 0,441 0,305 57,7
LowLowHigh 0,328 0,379 0,638 112
LowMidMid 0,365 0,541 0,411 78,4
LowMidLow 0,334 0,66 0,336 55
LowMidHigh 0,292 0,597 0,56 106
LowHighMid 0,311 0,683 0,335 63,5
LowHighLow 0,298 0,663 0,246 46,5
LowHighHigh 0,297 0,689 0,469 91,6
HighLowMid 0,711 0,442 1,01 79,5
HighLowLow 0,707 0,355 0,721 55,3
HighLowHigh 0,759 0,372 1,44 100
HighMidMid 0,718 0,493 0,937 72,7
HighMidLow 0,694 0,444 0,679 55,3
HighMidHigh 0,762 0,531 1,14 94,5
HighHighMid 0,733 0,58 0,872 67,4
HighHighLow 0,737 0,617 0,794 60,3
HighHighHigh 0,74 0,658 1,17 86,3
BentMidLowMid 0,55 0,345 0,893 86,3
BentMidHighMid 0,587 0,523 0,82 80
BentLowLowMid 0,289 0,313 0,419 78,9
BentLowHighMid 0,289 0,522 0,395 75,9
BentHighLowMid 0,73 0,457 1,09 77,9
BentHighHighMid 0,743 0,534 1,01 73,2
LeaningBackMidLowMid 0,583 0,355 0,794 76,9
LeaningBackMidMidMid 0,594 0,466 0,743 75,5
LeaningBackMidHighMid 0,561 0,601 0,746 74,1
LeaningBackLowLowMid 0,356 0,343 0,377 72,7
LeaningBackLowMidMid 0,378 0,48 0,347 69,8
LeaningBackLowHighMid 0,321 0,663 0,365 66,7
LeaningForwardMidLowMid 0,632 0,399 0,98 85,1
LeaningForwardMidHighMid 0,585 0,6 0,773 75
LeaningForwardLowLowMid 0,274 0,308 0,414 83,9
LeaningForwardLowHighMid 0,282 0,544 0,419 82,2
LeaningForwardHighLowMid 0,643 0,361 1,02 86,3
LeaningForwardHighHighMid 0,676 0,586 0,993 74,5
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C. Joint fatigue parameter estimation

In total, 12 calibration experiments were performed, determining fatigue parameter λ for each joint (hip, knee, and ankle
of both legs), in flexion and extension direction. In Figure C the experimental setup of each of the calibration experiments is
shown. In each measurement, the subject was instructed to push his/her limb into a force sensor (model: FTS-Delta SI-330-30,
manufacturer: Schunk GmbH & Co. KG, Germany). Only in the measurement where calibration of the ankle in plantar flexion
was performed, a different procedure was followed, which will be explained later in this section. The relation between joint
torque τ and measured force Fmeas is given by

τ = Fmeas · d, (14)

where d is the distance between the center of the concerned joint and the point of contact with the force sensor. Right before
each measurement, d was measured.

The subject was instructed to produce maximum torque and maintain this torque level for as long as possible. Real-time
visual feedback of the measured force was provided to the subject on a computer monitor. By keeping the measured force
constant, the subject was able to maintain a constant torque level. The time Tref was measured until the subject could not
endure this torque level anymore. Note that this procedure is subject-dependant since the subject was instructed to stop when
maintaining the torque level would become uncomfortable. Reference torque τref could be computed by

τref = Fref · d, (15)

where Fref is the average measured force during time Tref . Finally, fatigue parameter λ could be computed using Equation 5,
given in Section II-D. Table VIII gives an overview of all estimated λ values and reference torques τref . This table also
presents the torque thresholds τth that are included in the fatigue model. Section II-D explains how those were computed.

To achieve the most realistic estimation of λ, the contribution of the concerned joint to the measured force Fmeas should
be completely isolated. Fully isolating the contribution of one joint during a task is very difficult, however, we attempted to
isolate the joints as much as possible with the body configurations shown in Figure C.

Ankle plantar flexion calibration: Since we expected the plantar flexion moment, produced by the ankle, to induce a force
larger than the force sensor could handle, this measurement was performed without a force sensor. Instead, the subject was
instructed to carry a known mass, a barbell, while standing on a wooden step. In this case, distance d was the distance between
the center of the ankle joint and the contact point of the foot with the wooden step. The maximum barbell mass that could be
carried by the subject was 90 kg. A slightly larger mass might have been possible as well, however for safety reasons we did
not exceed 90 kg. Reference force Fref was determined by

Fref =
ms +mb

2 · g
, (16)

where ms and mb are the mass of the subject and the barbell, respectively, and g is the gravitational constant. As the subject
is carrying the mass with both legs in this experiment, the reference torque is produced by both ankles. Since we want to
compute λ for each ankle separately, division by 2 can be seen in Equation 16. Similar as in the other experiments, time Tref
was measured until the subject could not endure the load anymore and Equations 15 and 5 were used to determine the λ
values.

TABLE VIII
REFERENCE TORQUES PRODUCED BY THE SUBJECT DURING THE CALIBRATION EXPERIMENTS.

Hip flexion Knee flexion Ankle dorsiflexion Hip extension Knee extension Ankle plantar flexion

τref (Nm) Right leg 67.81 53.77 17.68 109.48 76.76 111.25
Left leg 66.82 50.05 17.42 88.02 69.38 111.25

λ (Nms) Right leg 444 282 92.6 88.2 57.8 2.15e+3
Left leg 552 282 75.8 75.3 55.0 2.15e+3

τth (Nm) Right leg 0.180 0.142 0.047 -0.291 -0.204 -0.295
Left leg 0.177 0.133 0.046 -0.234 -0.184 -0.295
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Fig. 10. Schematic visualization of the experimental setup during the calibration experiments, to determine joint-specific fatigue parameter λ for (a) hip
extension, (b) hip flexion, (c) knee extension, (d) knee flexion, (e) ankle plantar flexion, and (f) ankle dorsiflexion.

D. Manipulability analysis results

In Figure 11 the force/velocity ellipses are visualised for each gait event during the gait cycle, for five gaits. The natural gait
(MidLowMid) is depicted, as well as gaits with a low/high stride length and a low/high step height. This selection was made
as the variations in leg configuration between those gaits are the largest, when considering the basic data set. Considering that
the manipulability is only configuration dependent, no variations in walking speed are shown in Figure 11, since varying the
walking speed is not expected to have a significant effect on the leg configurations during walking.

First of all it stands out that the majority of the ellipses are quite stretched, indicating a high ellipse shape S, especially
during IC and OTO. Moreover, the ellipse shapes of IC, OTO, HR and OIC seem very similar for each of the five gaits. During
swing phase, the velocity ellipse shape shows more variability, especially in FA, where it is less stretched for HighLowMid
(c), LowHighMid (d), and HighHighMid (e).

During stance phase, a very similar ellipse orientation O is seen for the five presented gaits. The most significant difference
can be spotted in OIC, where the orientation for LowLowMid (b) and LowHighMid (d) seems shifted counterclockwise slightly.
During swing phase, more variation in ellipse orientation is seen. For all the gait events during swing phase, the ellipses drawn
for LowLowMid (b) and LowHighMid (d) seem to be oriented more towards the reference angle (parallel to the ground),
especially for TO and IC2.
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Fig. 11. The force ellipse (blue solid line) and velocity ellipse (red dashed line) for the relevant gait events of several gaits are visualised. The gaits depicted
are: The natural gait MidLowMid (a), LowLowMid (b), HighLowMid (c), LowHighMid (d) and HighHighMid (e). For the stance phase, i.e. initial contact
until toe-off, the force ellipse is drawn, while for the swing phase, i.e. toe-off until initial contact, the velocity ellipse is drawn. The dominant leg is indicated
by green and the supporting leg by gray. Furthermore, the ellipse drawn for the gait events initial contact (IC) and opposite toe-off (OTO) are centered on
the heel, whereas the others are centered on the toe, as explained in Table II. Heel rise (HR) is not displayed for LowLowMid and LowHighMid as for these
gaits this gait event occurs after opposite initial contact (OIC) and displaying it would be confusing for the reader.
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E. Elaborate cost table

Below the cost table is shown with the total costs for all metrics (T ∗total, U
∗
total, S

∗
total and O∗total), with the overall total cost

H and with a ranking from 1 to 45 indicating the most optimal gait with 1 and the least optimal gait with 45. Note that the
values presented in this table are computed with a weighting of one assigned to all the weights, as explained in Section II-F1.

TABLE IX
TOTAL COSTS PER METRIC, TOGETHER WITH OVERALL TOTAL COST H , FOR ALL 45 RECORDED GAITS.

Gait T ∗
total U∗

total S∗
total O∗

total Total cost (H) Ranking

MidLowMid -0.418 -0.459 0.18 -0.188 -0.885 17
MidLowLow -0.215 -0.289 0.624 -0.34 -0.22 18
MidLowHigh 0.391 -0.28 0.0854 0.106 0.303 26
MidMidMid -0.393 -0.508 -0.0587 -0.135 -1.09 15
MidMidLow -0.313 -0.384 1.22 -0.196 0.326 27
MidMidHigh -0.605 -0.58 -0.108 -0.451 -1.74 9
MidHighMid -0.268 -0.492 -0.28 -0.366 -1.41 11
MidHighLow -0.174 0.186 0.158 0.205 0.375 29
MidHighHigh -0.354 -0.268 -0.361 -0.362 -1.35 12
LowLowMid -1.16 -1.24 0.182 -0.499 -2.72 4
LowLowLow -0.88 -1.08 0.0261 -0.163 -2.1 6
LowLowHigh -1.4 -1.27 0.189 -0.595 -3.07 1
LowMidMid -1.01 -1.18 -0.151 -0.594 -2.93 3
LowMidLow -0.625 -0.79 -0.199 -0.452 -2.07 7
LowMidHigh -0.988 -1 -0.258 -0.752 -3 2
LowHighMid -0.439 -0.758 -0.0966 -0.715 -2.01 8
LowHighLow -0.443 -0.248 -0.149 -0.452 -1.29 13
LowHighHigh -0.864 -0.914 0.0653 -0.404 -2.12 5
HighLowMid -0.0759 -0.316 0.318 0.0263 -0.0481 20
HighLowLow 0.264 0.257 0.603 0.255 1.38 32
HighLowHigh 0.342 -0.0535 0.338 0.56 1.19 31
HighMidMid -0.152 -0.107 0.124 0.0546 -0.0798 19
HighMidLow -0.255 -0.00186 0.493 -0.0813 0.155 23
HighMidHigh -0.0717 -0.106 0.529 -0.0705 0.281 25
HighHighMid 0.198 0.261 0.588 0.482 1.53 35
HighHighLow 0.262 0.625 0.246 0.418 1.55 36
HighHighHigh 0.354 0.305 -0.0354 0.274 0.898 30
BentMidLowMid 1.28 0.619 -0.247 0.684 2.34 43
BentMidHighMid 1.32 1.23 -0.97 1.27 2.85 44
BentLowLowMid 0.738 0.544 -0.631 0.866 1.52 34
BentLowHighMid 1.09 0.814 -0.768 1.16 2.3 42
BentHighLowMid 1.13 1.03 -0.67 0.618 2.11 41
BentHighHighMid 1.62 1.45 -1.25 1.27 3.1 45
LeaningBackMidLowMid 0.512 1.68 0.197 -0.29 2.09 40
LeaningBackMidMidMid 0.186 1.6 -0.0934 -0.2 1.49 33
LeaningBackMidHighMid 0.455 1.46 0.163 -0.315 1.76 37
LeaningBackLowLowMid -0.991 -0.427 0.229 -0.271 -1.46 10
LeaningBackLowMidMid -0.739 -0.124 0.047 -0.268 -1.08 16
LeaningBackLowHighMid -0.569 -0.126 -0.139 -0.328 -1.16 14
LeaningForwardMidLowMid 0.397 -0.229 0.306 -0.314 0.161 24
LeaningForwardMidHighMid 0.0967 0.0318 -0.0137 -0.105 0.0101 21
LeaningForwardLowLowMid 0.387 -0.226 0.213 -0.29 0.0842 22
LeaningForwardLowHighMid 0.471 -0.0486 -0.0163 -0.0463 0.36 28
LeaningForwardHighLowMid 0.96 0.529 -0.235 0.654 1.91 39
LeaningForwardHighHighMid 0.937 0.888 -0.393 0.335 1.77 38
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F. Elaborate discussion: Effect of gait parameters on metrics

1) Joint torque: Something that stands out when looking at the effect of the stride length on the joint torque is that the
medium stride length (thus the natural gait) results in the highest torque for the hip and ankle around OIC. Since the low stride
length clearly induces the lowest torque in the joints around this moment, it would seem logical for the high stride length to
produce the highest torque, which is not the case. However, looking at the torque costs T ∗total from Table IV we do see this
expected trend of an increasing torque for an increased stride length.

Another interesting effect can be seen around OIC of the hip, as for increasing step height, a lower torque is observed.
This feels counter-intuitive, since larger movements are expected to result in higher joint torques, rather then lower ones. Once
again, when we look at Table IV to analyze the effect of the step height on the torque, we see the expected result, as for
higher step heights, higher torque costs are observed.

Lastly, for a high walking speed we see a very high knee torque around OTO, also clearly visible in Table IV with a high
cost. This time no clear trend is seen in the cost table as the lowest torque is observed for the medium walking speed instead
of the low one. An explanation could be that walking in the natural gait is the most relaxed gait and thus the least GRFs would
arise, but this is speculation.

In general we could say that it is more difficult to detect a clear pattern of the effects of the gait parameters on the joint
torques compared to the joint angles when purely visually analyzing the trajectories. However, using the table with computed
torque costs it is possible to find some more expected trends, indicating that the torque metric might be a useful number in
analyzing the joint torque.

2) Joint fatigue: In Figure 6 the torque thresholds, associated with the fatigue model are also displayed. As specified in
Section II-D, the joints should experience an increase in fatigue when the torques exceed the threshold and should decrease
in fatigue when torques stay within the thresholds. In Figure 7 it is seen that the switching between the fatigue increasing
and decreasing mode works flawlessly. However, when in recovery mode, instead of seeing a decrease in the fatigue level
it more or less stays constant. This can be explained by looking at the recovery part of Equation 4. There we see that the
recovery increment is dependent on the fatigue level itself and as we are dealing only with fatigue levels of 0.07% or lower,
this increment will always be almost negligible.

The reason that we only encounter such low fatigue levels is through our assumption that we start the analyzed gait cycle
with a completely rested body, while in reality this is not the case. To be able to incorporate the effect of the recovery part
of the fatigue model on the analysis as well, it might be interesting to try out different initial fatigue levels. Furthermore, the
recovery constant selected in this research was purely based on previous works and could therefore lack in reflecting reality.

An interesting effect can be seen in the fatigue levels of the ankle in Figure 7, as the fatigue increases quite rapidly during
loading response, whereas it increases more slowly during mid-stance and terminal stance. This might seem odd as the ankle
torque produced during push-off (around OIC) is much larger than the torque produced during loading response. The cause of
this is fatigue parameter λ, determined during the calibration experiments, which is much larger in plantar flexion direction
than in dorsiflexion. A higher λ value means that more effort is required by the joint for fatigue to occur. Therefore, it makes
sense that ankle plantar flexion has a higher λ as the ankle joints are much stronger and therefore better resistant to fatigue in
this direction.

When looking in Table IV it is seen that increasing the stride length or the step height results in an increased fatigue cost.
As performing larger motions requires more energy this seems to make sense. For the walking speed, the natural gait results
in the lowest cost, indicating that increasing or decreasing the speed is more tiring for the legs. To walk at a higher speed,
higher accelerations are also required, which are generated in the joints, so this also feels correct. According to this reasoning,
walking slowly should result in a lower fatigue cost. However, to walk slowly, the limbs should be lifted longer, which could
be the cause of this higher fatigue cost. This all suggests that the natural gait involves a walking speed that has found the right
balance between these things and is quite energy-efficient.

3) Manipulability: As for the manipulability, the ellipse orientation during stance phase points quite closely towards its
reference angle, the pelvis. This can be seen in Figure 8 and is confirmed by the low O values observed in Table V. Furthermore,
the ellipse shape is quite flat during the stance phase. These two things mean that the stance leg is configured such that it can
carry the bodyweight very efficiently during walking. This is not only the case for the natural gait, as Figure 11 in Appendix D
shows similar ellipse orientations during the stance phase for the other analyzed gaits, suggesting that, no matter the walking
motion, the body ensures that its weight can be carried efficiently by the legs.

For the velocity ellipse orientation more deviation from the reference angle (i.e. the ground) can be seen, as in initial swing
the ellipse is oriented slightly downward and during terminal swing, the ellipse is tilted upward. When thinking purely in terms
of motion, this does not make sense, as in initial swing the foot is lifted, thus an upward-pointing ellipse would be expected,
and for terminal swing vice versa. Following this reasoning, the decision we made to point the reference angle for the velocity
ellipses parallel to the ground might be a bit coarse and we suggest possible future works to reconsider this.




