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Abstract

The increasing number of processors in today’s many-core architec-
tures has lead to new issues regarding memory management. The per-
formance of many-core processors is often limited by the communica-
tion latency incurred in data transfers between different cores. Con-
ventional memory allocators do not take such communication costs
into account while allocating memory for application tasks at runtime.
While a number of existing proposals address this issue, they result in
the non-uniform utilization of available system resources. This work
introduces Cache Balancer, a technique for dynamic memory alloca-
tion that addresses the limitations of state-of-the-art schemes. Cache
Balancer introduces the access rate metric to measure the utilization
of different cache banks in the system, and uses this at runtime to
determine where memory is allocated. The technique reduces mem-
ory access latency by up to 63.4% by avoiding allocation of memory
in over-utilized cache banks. Furthermore, Cache Balancer incorpo-
rates a runtime task mapper that utilizes information on the execution
characteristics of tasks and the structure of the system interconnect
in determining a mapping solution that results in optimal memory
throughput. This results in additional memory access latency reduc-
tions of up to 14.5%, and combined execution time improvements of
up to 22% as compared to state-of-the-art schemes.
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Introduction 1
Over the past decades decreased transistor sizes have allowed system developers to place
more functional blocks in a chip without increasing the used area. This development
allows the integration of multiple processing elements (PEs) in one single chip, the
basic concept for many-core processors. To increase the utilization of such a many-
core processor, applications are partitioned into a set of tasks that can be executed
concurrently by the different PEs. Because data used within an application might be
shared by multiple tasks, the PEs are connected to a shared memory.

Off-chip memory access has a high latency compared to on-chip memory access, a
problem that already existed with single-core processors. Therefore, on-chip memory,
called a cache, is used to reduce the number of off-chip memory access attempts. Data,
likely to be reused by the PE, is stored in the cache, which reduces the dependence on
the off-chip memory. In many-core processors there are multiple PEs that can access
memory.

The first challenge of many-core processors is how to allow PEs to access the memory
simultaneously. Although caches reduce the average memory access latency, they are
still serving only one memory access at the time. Therefore, if multiple PEs try to access
the memory simultaneously, the different requests are still sequentialized. To overcome
this limitation the single cache can be changed into several smaller caches. If multiple
caches are used and data is replicated in multiple caches, a coherency issue can arise. If
some value is replicated in multiple caches and the value is changed in one of them, the
values in the other caches should be updated as well. Preventing any data replication
avoids this coherency issue. A scheme that prevents data replication is partitioning
the memory space into equal sections called memory pages. The memory pages are
assigned to the different caches in a uniform manner. The content of a memory page
is only allowed to be stored in the cache it was assigned to.

The second challenge that arises with many-core processors concerns the interconnect
structure, connecting the caches and PEs. The interconnect structure should allow the
different PEs to communicate with the caches simultaneously. Also the structure should
allow to connect a large number of PEs and caches, thus the structure should scale well.
For this reason, a network on chip (NoC) is a commonly used interconnect structure.
A NoC connects multiple nodes to each other using point to point connections. Every
node is connected to a limited number of other nodes. If communication is required
between nodes who are not directly connected, information is routed through the NoC
via one or multiple other nodes. The distance that information needs to travel from
source to destination is measured in hops, where one hop is the distance between two
nodes that are directly connected.

A result of the multiple caches and a NoC as interconnect structure is that the distance
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from a PE to the caches differs. Because every hop in a communication path introduces
at least some latency, the latency to access a cache differs as well. Hence mapping data
to a cache close to the processor reduces average memory access latency.

1.1 Motivation

In many applications the size of the required memory is not known in advance. During
run-time memory must be allocated. To enable the dynamic behavior in applications
to deal with the varying memory requirements, dynamic memory allocation is used. A
memory allocator, which is responsible for dynamic memory allocation, provides appli-
cations with an unused memory section upon request. Conventional memory allocators
look for the first free memory section. Therefore it is hard to predict to which cache
the allocated memory maps to. It is likely that the distance from the PE requesting
the memory section to the cache where the newly allocated memory maps to is not
minimal.

A data management scheme that allocates memory in caches close to PEs was presented
in [6]. This scheme allocates memory most of the time that maps to the cache bank
closest to the requesting PE. However only using the caches that are close to the active
PEs can limit the used cache capacity significantly. This limitation was addressed in
the same research and solved by tracking the actively accessed memory pages per cache.
If there are too many active pages stored in a cache, the distance aware scheme is more
flexible allowing memory to be allocated that maps to a cache further away from the
active PEs. The flexibilization of the distance aware scheme is simplified in [20]. In
the simplified scheme, the difference in the number of allocated memory pages in the
different caches is tracked in software.

A significant limitation in both [6] and [20] is that memory access patterns might be
completely different for different memory sections. One memory section can be accessed
many times, while other sections maybe used only once. Hence the utilization of the
different cache banks can differ significantly. Because a cache bank processes memory
requests one after the other, accessing a heavily utilized cache, results in a higher
latency compared to a memory requests to a lightly utilized cache. Therefore, the first
hypothesis is:

if the distance aware scheme is more flexible because the closest cache bank
is heavily utilized, and as a result the allocated memory is mapped to a lightly
utilized cache, it results in a reduced average memory access latency.

If a task is mapped to a PE while distance aware memory allocation is applied, it could
lead to the use of different caches compared to the situation where the same task was
mapped to a different PE. Task mapping has influence on the location of the data. If
two tasks share data then the access latency is reduced if the tasks are mapped to PEs
close to each other. On the other hand mapping the tasks to two PEs close to each
other could result in two PEs sharing a cache because of the distance aware scheme.
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Then, in case the amount of shared data is very little the cache could become heavily
utilized while other caches would still be idle. Hence, the second hypotheses is:

if a task mapping algorithm uses information about the communication la-
tency due to memory access to the caches, the cache utilization, and used
cache capacity, it can map tasks to PEs resulting in a reduction of memory
access latency compared to conventional task mapping algorithms.

This work theorizes that if cache utilization is considered in addition to the communi-
cation latency and used cache capacity during memory allocation, the memory access
latency can be reduced. Furthermore, a task mapper that considers these same effects
while tasks are mapped to the PEs can further improve the memory access latency.
This work proposes a system to measure the cache utilization. This is integrated in a
memory allocation scheme that reduces the memory access latency. In addition, a task
mapping algorithm is proposed that uses information of the memory access characteris-
tics of the tasks themselves to predict performance degradation due to communication
latency and cache utilization. This prediction is used in a task mapping heuristic that
improves memory access latency of the tasks.

1.2 Thesis goals

The main objective of this work is to develop a run-time manager that reduces memory
access latency by allocating memory and mapping tasks both based on the distance in-
formation needs to travel while keeping a balanced utilization of the memory resources.
In addition, a virtual platform should be developed to evaluate the run-time manager.
Hence, the goals for this thesis are the following:

• The development of a memory allocation scheme capable of mapping data to
the closest cache to obtain minimal memory access latency and to balance cache
utilization.

• The development of a management scheme capable of mapping tasks, resulting in
minimal performance degradation due to memory access latency.

• The development of a virtual platform capable of executing parallel workloads.

• The development of a run-time library providing support for applications executed
on the virtual platform.
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1.3 Contributions

The main contributions of this thesis are:

• The Cache Balancer: a memory allocation scheme that maps data to cache banks
while making the trade off between communication cost, used cache capacity and
cache utilization to reduce memory access latency, which is capable of reducing
memory access latency up to 63.4%.

• Pain driven task mapping: a task mapping heuristic that predicts performance
degradation caused by other tasks and uses this prediction to find a task map.
The proposed scheme reduces the execution latency up to 14.5%.

• TMFab (version 2.3): a virtual platform simulating a scalable many-core processor
capable of executing parallel workloads.

1.4 Thesis organization

This work is organized as follow: Chapter 2 explains the target architecture for the
Cache Balancer. Also the concepts are explained which are used for the memory allo-
cation scheme and the task mapper. Chapter 3 discusses the concepts of the memory
allocation scheme and the task mapper. Then, Chapter 4 presents the virtual platform
that is build to test out and verify the concepts presented in Chapter 3. The results of
the verification are presented in Chapter 5 and the final chapter, Chapter 6, concludes
this work.
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Background 2
This chapter introduces concepts that are used in this work and based on existing
technologies. This introduction begins with the basic principles of the architecture
used in this work. Thereafter, transactional memory is introduced, which is used in
the memory hierarchy of the many-core processor. Then, memory allocation is briefly
explained and, finally, this chapter ends with a discussion on some of the existing
strategies for task and data management.

2.1 A tiled based many-core architecture

A commonly used interconnect structure in many-core processors1 is a network on chip
(NoC), thanks to its scalability. The overall chip area is divided into tiles and each tile
includes a router. The routers of all adjacent tiles are connected using a point-to-point
connection, which builds the NoC.

A processing element (PE) tile contains, next to a PE, a private instruction cache and
a level 1 data cache (L1$) to limit the communication in the NoC. Most of these many-
core processors use the level 2 data cache (L2$) as a shared cache layer. To increase
concurrency in the L2$ layer, it is commonly implemented in several banks, allowing
the PEs to access the different banks simultaneously. Depending on the design style of
the many-core processor, the L2$ banks are either included in the PE tiles or a separate
tile is used for the cache banks [9][17]. Figure 2.1 depicts an example of a many-core
processor that uses a separate tile for the different L2$ banks.

Both the private L1$ and the shared L2$ is implemented in multiple separate caches.
If data replication in the different caches within the same layer is allowed, a coherency
scheme is required to keep the data inside these caches consistent. An approach to
avoid a coherency scheme for shared caches is to deny data replication in the different
caches within a cache layer. This can be achieved by dividing the address space into
equal sections, and each section assigned uniformly to the cache banks. Thus each
cache bank stores a unique subset of the address space. This technique introduces very
little overhead and is completely independent of the system size. Moreover, it uses the
cache capacity effective, since every unique data address maps to a unique cache set in
the shared cache space.

Spreading the address space over the different L2$ banks solves the coherency issue for
the shared cache layer. Applying the same concept to the L1$ results in a large increase
in communication compared to a coherency scheme, since every memory reference to

1In this work many-core processor refers to a processor containing at least 8 processing elements.

5



Legend

P : Processing element tile
$ : Shared cache tile

PE : Processing element
I$ : Instruction cache

L1 D$ : Level 1 data cache
L2 D$ : Level 2 data cache
N I/O : Network interface

R : Router

Figure 2.1: An example of a NoC structure.

an address that does not map to the local L1$ is served in another tile. A second way
to avoid a cache coherency scheme is the use of transactional memories [17].

2.2 Transactional memory

One of the major problems of today’s many-core architectures is the programmability.
Adding more PEs to a system gives a potential performance gain, but it becomes more
difficult to use all PEs efficiently at the same time. To use the different PEs efficiently,
applications require a partitioning scheme, such that the sections, called threads or
tasks, can be executed simultaneously.

If data is shared among tasks, it can result in one task modifying the shared data while
another task is reading it. Ideally tasks do not share data, however in some cases this
is unavoidable. To avoid unpredictable behavior, memory operation on shared data are
executed in critical sections. Critical sections use mutual exclusion, forcing tasks to
stall, in case some other task is executing a corresponding critical section. Placing the
critical sections is mainly the issue in parallel application development.

The idea of transactional memory is to execute the critical section speculative. Hence
a critical section does not force a processor to stall if an other processor is executing a
corresponding critical section, but causes the first processor to ignore the second one,
execute the section and check the validity of the performed work. The only reason
work can be invalid is because conflicting data is used. This means that data was
used in the critical section changed by another PE. There are two different methods
for conflict detection. The first, called optimistic conflict detection, requires a valida-
tion of the used data at the end of the critical section. The second method validates
data at every memory access and is, therefore, called pessimistic conflict detection. A
transactional memory scheme that uses optimistic conflict detection to avoid a cache
coherency scheme was presented in [17].
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Figure 2.2: Basic execution flow for transactional memory.

Figure 2.2 depicts a state diagram that shows the execution model for a transactional
memory scheme using optimistic conflict detection. At the beginning of a task, the
processor enters the normal execution state. If the PE encounters a critical section, the
processor executes the section in the speculative execution state. In this speculation
state, the processor assumes that the data used during the execution of the transaction
is not changed by any other PE. When the end of the transaction is reached, the
processor enters a validation process where the PE checks whether this assumption
was correct. In case the assumption holds, the PE commits the changes made during
the transaction to the L2$. In case the assumption fails, the processor rolls back and
restart the critical section. These speculative executed sections are called transactions.

2.3 Memory allocation

In many application the size of the required memory is not known until run-time, thus
memory must be allocated when the application is executed. To enable the dynamic
behavior in applications to deal with the varying memory requirements, dynamic mem-
ory allocation is used. A memory allocator, responsible for dynamic memory allocation,
provides applications with an unused memory section of sufficient size upon request. A
memory allocator guarantees either to return a pointer to a memory section that is not
in use by any application, or informs the requester that there is no free memory left to
allocate. The second guarantee provided by a memory allocator is that any memory
released by an application is not lost and can be reused later on. This section discusses
briefly the concepts of memory allocation, as this is an important tool to manage data
in many-core processors.

An application defines three different sections within the memory space: instructions,
heap, and stack. The instructions, which define the applications behavior, are generated
by a compiler and placed in the instruction section. Most variables used as local
variables inside functions are stored in the stack space. Global variables visible in the
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Figure 2.3: Default GNU memory map.

Figure 2.4: The heap section.

entire application and the local variables not placed on the stack are stored in the heap
section. Figure 2.3 depicts a layout as the GNU compiler generates by default.

A memory allocator uses the heap to allocate memory. The heap pointer points to the
edge between used and non used memory, as shown in Figure 2.4. When memory is
allocated, the heap pointer is shifted into the nonused memory, thus leaving a nonused
section in the used memory area. This section is then returned as the new allocated
memory section.

The discussed memory allocation scheme works well when there is just one PE. However,
when there are multiple PEs that might try to allocate memory simultaneously, this
could result in a lot of conflicts, as they all try to modify the same heap pointer. The use
of mutual exclusion or transactions results in a working system but would sequentialize
all memory allocations.

To improve the memory allocation process for many-core processors, the allocator can
be divided into a front- and back-end. The back-end provides the front-end with large
memory sections, using the heap pointer, when required. The front-end uses these
large memory sections as a small heap for memory allocation. Because the back-end
can provide multiple of these small heaps, the front-end can use a heap per PE. When a
PE requests a memory section, the request is served by the front-end using such a small
heap reserved for the requesting PE. Therefore, if multiple PEs request memory sections
simultaneously, they can be served in parallel. The heap pointer is only accessed when
a per PE heap does not include a memory section of sufficient size [2].

2.4 Data and task management

This section discusses previous work on data and task management.

In 2006, Cho & Jin [6] presented a memory allocation scheme implementing Distance
awareness. They presented a concept where the memory page allocation scheme is
aware of which processor is requesting the memory page, and which cache bank the
page maps to. Their scheme allocates memory pages mapped to the cache bank closest
to the requesting PE. Cache capacity misses due to the allocation of too many memory
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pages that map to a single cache bank, called Cache overflow, was addressed in this
same research as well. They avoided this effect by tracking the actively accessed memory
pages per cache bank in hardware. If the number of actively accessed memory pages
reached a certain threshold, pages that map to a cache bank one hop further away
where allocated instead. The latter was simplified in [20], where software counters
where used to track the difference in the number of allocated memory pages per cache
bank. However, both [6] and [20] neglected cache utilization in their memory allocation
scheme.

In 2009, Hardavellas et al. [10] investigated the different data types in a shared memory
architecture. They applied this knowledge to determine which cache bank should store
what data in a run-time manager called Reactive-NUCA. The scheme requires a cache
coherence system to keep data in the L2$ banks consistent. They did not consider cache
overflow or cache utilization in their scheme. In 2009, Jin & Cho [12] did research on
cache access patterns. They used a tool to generate hints at compile time, which are
used in a software run-time system, called SOS, to decide which data should map
to which cache bank. However, their study only focused on the access patterns and
communication latency and did not include any knowledge on the used cache capacity
and neglected the impact of cache utilization.

A study on the difference of Cache overflow and Hot caches, referring to over utilized
caches, was presented by Tang et al. in 2011 [21]. They showed that this has not the
same effect, and that the use of last level cache misses as prediction on the hotness of
a cache can be misleading. In their work, they present an application scheduling algo-
rithm based on these principles and on-line measurements. The scheme was constructed
for an architecture using a tree based cache hierarchy. Hence, distance awareness was
not considered. Moreover the PEs could only cause one cache to become hot, and the
number of PEs that could cause a cache to be hot was limited to two. Hence, the miss
rate in the private caches can be compared to determine the hotness of a shared cache.

If distance awareness is applied, memory to be allocated maps to a cache bank close to
the PE that is using the memory. Which cache bank is the closest depends on which
PE is executing the task. Task mapping has a significant impact on memory allocation
when distance awareness is used. If data is already stored in a cache bank, then mapping
a task to a PE far away from that cache bank results in a higher communication latency
compared to a PE close to the cache bank, as it was shown in [1]. However their
research did not consider cache access characteristics. A different approach to reduce
communication latency was presented in [7]. This research minimizes the number of
PEs that share a link using task mapping. However, like [1], cache access characteristics
are neglected.

Majo & Gross presented in 2011 [16] research that focused on non uniform memory
architectures. Their architecture uses a tree based cache hierarchy and two external
random accessible memorys (XRAMs). The architecture included four PEs, which
are grouped in pairs of two PEs, and each par is connected via two cache levels to a
XRAM. In their work they present a scheme for thread scheduling based on profiling.
However, the scheme only considers PEs to use memory directly connected to a XRAM
or indirectly via the other PEs cluster. Also they combine the effect of cache overflow
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and hot caches into a single measure.

A study on different application scheduling algorithms was presented by Zhuravlev et
al. in 2010 [7]. They introduced two new application scheduling concepts. The first
was based on the concept of Pain, which is a prediction of performance degradation
caused by one application sharing resources with a second application. The second
measure they used for application scheduling was the last level cache miss rate. However
both schemes where developed for an architecture using a tree based cache hierarchy.
Therefore, distance awareness was considered as irrelevant. Also the pain caused by an
application was only considered for a single cache.

2.5 Conclusion

A common architecture for many-core processors is a tiled based structure, connection
via NoC. The L2$ layer is implemented in multiple bank, spread over the system.
A memory allocator can select the cache bank where the data maps to. Also task
mapping has a significant impact in data mapping, if distance awareness is used. The
next chapter discusses both memory allocation and task mapping in more detail.
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Memory allocation and task

mapping 3
As the shared cache layer is implemented in multiple banks and PEs can access all cache
banks, there is the possibility that communication paths are longer than required. This
can possibly be avoided by using data and task management. This chapter explains
strategies to manage both data and task and discuss the different effects that might
occur when implementing them.

3.1 Memory management

In this section strategies for memory management are explained. Section 3.1.1 shows
the current state-of-the-art. Section 3.1.2 explains the memory allocator of Cache
Balancer, a new concept introduced in this work.

3.1.1 State-of-the-art data management

This work is focusing on the type of many-core PEs, introduced in Section 2.1. If
data is distributed in a round robin manner over the memory address space, then
there is a potential that a PE on one side of the system uses memory that maps
to a cache bank on the other side. This means that the length of a communication
path, measured in the number of hops, can vary depending on which cache bank is
used by a PE. Assuming that every hop in such a path introduces at least one cycle
latency, a longer communication path results in a larger latency. Another aspect is
that every link in any communication path can be used by another node pair. This
could cause one communication path to block another. If the average hop-count of the
communication paths increases, the chance that different communication paths share
links is increasing as well. This interference of one path blocking another is increasing
the latency even further. Similar, assuming that every hop increases the energy required
for communication, a shorter communication path reduces energy consumption, as a
result minimizing the hop-count in the communication paths reduces latency and energy
consumption.

As explained, different memory sections map to different cache banks. As memory is
allocated to store data and a memory allocator is free to choose which memory section
to use, memory allocation can manipulate the bank selection for data. Allocating
memory mapping to a cache bank close the requesting PE minimizes the length of the
communication path. Figure 3.1 depicts a heat map showing the different hop-counts
from the highlighted blue PE to the different cache banks.

11



Figure 3.1: Distance from a PE to the different caches.

A scheme proposed in [6] achieves this minimization using the explained concept. To
apply this concept, the memory space is divided into memory sections of equal size,
where any consecutive section maps to a different cache bank. Thus, if the cache bank
selection is defined by

C =
Address mod 2k

2m
(3.1)

where C is the cache bank that stores data with address Address, k and m define the
bits used from the address to determine the cache bank, with m < k, then the section
size is equal to 2m. If a PE requires more memory, it allocates memory from a section
that maps to a cache bank close to the PE .

This memory allocation scheme restricts the allocator to use only memory that maps to
exactly one cache. This technique reduces the average hop-count in the communication
paths between PEs and cache banks, but it also reduces the available cache capacity
for a PE. In the situation where not all PEs are active, any cache bank with a certain
distance to the active cores is unused. If the active cores use a large data set, larger
than the cache capacity they are allowed to use due to distance awareness, then this
results in cache misses in the shared cache banks. Also the costs of the use of a longer
communication path is lower compared to the costs due to a cache miss. If the total
cache capacity in the shared cache layer is utilized better, it results in a reduced average
memory access latency and energy consumption. Hence, in case a cache suffers from
cache overflow, referring to cache misses due to the limited capacity, the distance aware
scheme should be less strict, allowing PEs to allocate memory mapping to cache banks
further away and, therefore, utilizing the cache capacity better. The concept of making
the distance aware scheme more flexible, allowing PE to allocate memory that maps
further away, is called memory page dispersion.

If page dispersion is required, the distance between the requesting PE and the used
cache bank is still important. An increased hop-count in the communication paths
still has an increased latency. However the costs due to increased hop-count is lower
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compared to the costs due to a L2$ miss. Therefore, if the closest cache bank suffers
from cache overflow, a memory section should be selected that maps to the next closest
cache bank. If the next closest cache bank also suffers from cache overflow, this would
still result in a L2$ miss. Therefore, not only the communication distance should be
considered, but also if the selected memory maps to a cache bank that suffers from
cache overflow.

One approach to this problem is counting the active accessed pages in a cache bank,
as it was proposed in [6]. In that work, a dedicated hardware unit registers all pages
that are accessed in a cache bank. The information of this unit shows how much cache
space is used per cache bank and, thus, shows whether the cache bank suffers from
cache overflow.

An alternative scheme that simplifies the detection of cache overflow was proposed in
[20]. This proposal consists of an algorithm counting the difference in the number of
memory pages allocated in the cache banks. This proposal showed that this algorithm
can achieve similar performance as [6], but did not require any changes in the logic
circuitry.

The algorithm proposed in [20] uses a counter for each shared cache bank. The counters
are incremented when a memory page is allocated in the corresponding cache bank.
When memory pages are allocated the algorithm compares the counter values against
a threshold. If a counter value exceeds the threshold of the corresponding bank, it
is avoided for memory allocation. To guarantee that at least one bank is allowed for
memory allocation, the next two formulas are used as invariants by the algorithm.

∃i[ci = 0] (3.2)

∀i[ci ≥ 0] (3.3)

where ci is the counter value that corresponds to cache bank i. If the first invariant is
not fulfilled after memory allocation, all counter values are equally decremented until
both invariants hold. When memory is deallocated, the same action is performed in
reverse order. Thus, decrementing the counter of the cache bank where the deallocated
memory page maps to. If the second invariant does not hold, all counters are equally
incremented until both invariance are fulfilled.

The value of the threshold can be used to influence the memory page dispersion degree.
When the threshold is 0, the cache bank selection approaches a round robin scheme.
When set to infinite, the scheme behaves like the distance aware scheme.

Both [6] and [20] did not consider the cache utilization in their work. As it was shown
in [21], cache overflow and cache utilization are not the same effect, and should be
considered separately when memory sections are selected for allocation. In [21], cache
utilization was measured using the miss rate in the private caches. This works well
if these misses are always served by the same L2$. However if the memory address
of the miss is used to determine which cache bank handles the request, the private
cache miss rate provides only an indication on the overall utilization of the L2$. The
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(a) A hot cache (b) Hot cache avoidance

Figure 3.2: Avoiding over utilized caches.

next section discusses how cache utilization can be measured in a many-core processor,
implementing the shared cache layer in multiple banks.

3.1.2 The Cache Balancer

This section introduces the Cache Balancer, a scheme improving state-of-the-art by
taking a third important effect into consideration for memory allocation. This third
effect impacting system performance is then cache utilization. When multiple PEs
access one single cache bank, the requests are sequentialized, and it is slower compared
to PEs accessing different cache banks.

Figure 3.2a depicts a situation where a large number of PEs share data in a certain
cache. In this figure the blue PEs access the red cache for shared data. The green PE
allocates private data in the same cache due to distance awareness. If the green PE
allocates memory in a cache one hop further away, the access latency is reduced, since
the request can be served directly, as shown in Figure 3.2b. A hot cache refers to a
cache bank that suffers from over utilization. A cold cache is an under utilized cache
bank.

The Cache Balancer improves the state-of-the-art by taking the hotness of caches into
consideration. When a PE requests a memory section, the Cache Balancer detects,
first, whether the cache bank closest to the PE is hot. If this is not the case, then cache
overflow is considered. If the cache bank is neither hot nor overflowing, a memory
section is allocated that maps to the closest cache bank. In case the cache bank suffers
from either hotness or overflow, the Cache Balancer looks for a memory section that
maps to the next closest cache bank, and repeats the process.

Cache overflow is detected using a similar algorithm to the one presented in [20]. Mea-
suring whether a cache is hot could be achieved by counting the number of accesses
to a given cache in a certain time frame. With the use of a threshold, the decision on
whether a cache is considered to be hot could be straightforward. However, this could
result in all cache being hot and, hence, the information whether caches are hot is lost.
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To avoid this, the Cache Balancer uses a relative measure. The relative measure, called
access rate, is defined by:

Ai =
ai

at

where Ai is the access rate for cache bank i, ai is the number of accesses to cache bank
i and at is the number of accesses to the overall shared cache layer. The access rate
shows how heavily a cache bank is utilized with respect to the other cache banks. If a
cache bank has an access rate of 1, then all other cache banks have a access rate of 0.
This means that all the L1$ misses were served by the cache bank with an access rate
of 1.

If the total number of cache accesses is low, the access rate shows that the caches that
are accessed are hot, while this might not be the case. This could cause a PE to apply
page dispersion while not necessary. To avoid this behavior the allocating PE needs
more information than only the access rate. Combining the access rate with the number
of accesses per bank could give good insight whether a cache bank is hot or cold.

The Cache Balancer uses a threshold to decide whether a cache bank is considered
as hot. The threshold for the access rate can influence how quickly a cache bank is
considered to be hot. A threshold of 1 almost ignores any hot caches, since 1 is the
maximum value for the access rate. Thus, if more than one cache bank is accessed, all
cache banks are considered cold. A threshold of 0 makes all cache banks hot.

If the difference between the access rate of two cache banks is small, the difference
in utilization is small as well. If the cost do not outweigh the benefits of selecting a
different cache bank due to utilization, then page dispersion should not be applied.
Hence, there should be a significant difference between the access rates of the hot and
cold cache. The result is that a cache bank can be warm. This means that memory
that maps to such a cache bank can be selected because of distance awareness, or to
avoid cache overflow, but is not used to avoid a hot cache.

To achieve this, two different thresholds are required: one for deciding whether a cache
bank is hot, and one to decided whether a cache bank is cold. If the distance between a
selected cache bank and the PE increases, the communication costs increase as well. The
benefits of memory accesses to a lightly utilized cache bank should, at least, be larger
than the communication costs. Thus, the threshold to decide whether the cache bank
is cold should depend on the distance to the requesting PE. Therefore, the threshold
functions are defined by:

thot = α ·midrange(A)

tcold = E[A]
β·HC(pi,mj)

where thot and tcold are the thresholds, α and β are parameters that control the distri-
bution of data in the cache banks, HC(pi,mj) is the number of hops between PE i and
cache bank j, and midrange(A) is the midrange of the access rates:
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midrange(A) =
max(A) + min(A)

2

where A is the set of access rates. α influences the decision on whether a cache bank
is considered to be hot and, thus, how heavily a cache is utilized before it is avoided
by the memory allocator. The β value influences the data distribution. A low β value
allows data to be spread further away from the PE, a high β value results in memory
allocated closer to the PE.

In order to measure the access rate it is required to integrate an access counter per
cache bank and a counter for the total number of accesses. A shared cache bank access
increments the counter of the cache bank and the total access counter. Next to the
counters, a number of registers are required to store the access rates. To make a proper
prediction on the distribution of the access rate, a walking average is used. After a
certain number of clock cycles the counters are sampled and averaged with a number of
previous samples, creating the new access rates. To limit the required calculation units
inside the cache banks the registers can store the counted values. This comes with the
cost of an additional register per cache bank to store the total number of accesses and
an additional flit in the communication packet for reading the counter values. Besides
the limitation of the required calculation units, this also allows the PE to read the
counter values to combine the access rate with the number of accesses avoiding page
dispersion when all cache banks are cold.

Input: Initial cache bank (init), Number of memory pages (npage)
Result: Selected cache bank
i = init;
if Ai > thot || ci > toverflow then

i = getNextCache();
while Ai > tcold && ci > toverflow do

i = getNextCache();
if i == −1 then

i = init;
break;

end
end
if ci == 0 then

min = findMinPageCounter();
for j = 0 To NUMBER OF CACHES do

cj = cj −min;
end

end
ci = ci + npage;

end
return i;

Algorithm 1: Cache bank selection.
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Algorithm 1 shows the pseudo code for the cache bank selection. In this algorithm
both cache overflow and hot caches are considered to find a cache bank. The input of
the algorithm is the initial cache bank that was selected by the distance aware memory
allocation and the number of memory pages to allocate. The output is the selected
cache bank. The getNextCache function returns the next closest cache bank, or −1 in
case all cache banks have been searched. The findMinPageCounter function returns
the minimum value of the memory page counters used to avoid cache overflow.

3.2 Task mapping

In a shared memory architectures, there is a difference in shared and private data.
Private data is used by a single PE. The memory management schemes can be applied
while allocating private data. For shared data, which is data used by at least two PEs,
the schemes might be less effective. In case tasks, who share data, are mapped to
opposite sides of the system, it might result in poorly performance of the management
schemes. Hence, good task mapping is important in the context of data management.

If the described data management schemes are used, then task mapping changes the
overall memory allocation. If a task is mapped to a PE, the used data is allocated
close to that PE. If the task was mapped to another PE, it can be the case that there
is another cache bank closer and, thus, the data is allocated in a different cache bank.
This only holds for the private data of the task, the shared data might still map to
the same cache bank. Hence mapping tasks influences memory allocation, but with
a different granularity as direct memory allocation does. Task mapping changes the
location of the complete private data set used for the task by the PE in stead of separate
memory sections.

The decisions about what task should be mapped to what PE, should have the same
considerations as the memory management schemes. A cluster of cache banks can be
selected to guide the task mapper to use a certain area of the many-core processor. A
tasks should be mapped to a PE that is close to the shared data used for the task.
However the amount of shared data used for a task might be very small or non at all.
Thus the distance of the PE executing the task and the cache storing the shared data
might be completely insignificant. In that case, cache overflow avoidance or hot cache
avoidance might be the significant factor for task mapping.

The allocation of the shared memory can be something known at run-time, and could
be used by a task mapper. However which task is going to use what data, what data is
shared among tasks and what the ratio is between shared and non shared data is still
unknown. Hence, deciding how important the different effects are is almost impossible
without more knowledge about the overall behavior of the application and the tasks
within applications. Before considering how this information could be obtained the
information requirements should be known.

The next sections presents the concepts for task mapping used in this work. The
section starts with a discussion on a distance aware based approach in Section 3.2.1,
followed by the introduction of the pain measure in Section 3.2.2 and ends with the
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explanation of the scheme introduced in this work and the discussion on the validity of
the assumptions in Section 3.2.3 and Section 3.2.4, respectively.

3.2.1 Distance aware task mapping

If the task mapper knows which task uses which data, then it can map the tasks as
close to the shared data as possible. In case multiple tasks share data, it could be the
case that not all tasks can be mapped with a single hop distance to the cache bank
storing the shared data. Even if the task share the same data, one task can have higher
memory throughput requirements for the shared data compared to another task. Thus,
it matters which task is placed closer to the target cache bank. These requirements
mainly depend on two variables, the L1$ miss rate of the PE executing the task and
the amount of requested data for the task. To make the latter practical to use, it is
defined by the load/store rate:

LS =
memory operations

instructions
(3.4)

where memory operations is the number of memory operation instructions for a task
and instructions the total number of instructions.

By using the load/store rate LS and the miss rate, a mapping strategy can be con-
structed, which minimizes communication latency. The tasks are ordered descending
on the combination of both the load/store rate and the miss rate, then mapped one at
the time to a free PE that is located as close as possible to the cache banks with the
shared data.

Mapping tasks as close as possible to the cache banks where the shared data maps
to could result in two PEs sharing a cache bank for their private data. If the tasks
use more private data than shared data, it could be better not to map the tasks close
to this cache bank, as this is not the bottleneck for the execution of the application.
Spreading the tasks potentially increases communication latency, but when tasks use
more private data as shared data, then this might avoid cache overflow or hot caches.

3.2.2 Pain; predicting performance degradation due to shared resources

Zhuravlev et al. presented in [24] different strategies to recognize whether applications
could share memory resources without losing too much performance. In their research,
they show that a scheme based on static analysis performed best, but that a similar
scheme based on the last level cache miss rate showed similar quality. They reasoned
that this was better applicable, since this required less changes in the compiler. However
miss rate is something that can only be measured at runtime, moreover if tasks should
be managed according miss rate then the management scheme can only start when the
tasks are already running. This implies that tasks should migrate in case the miss rate
in the last cache level becomes unbalanced. This could work well with the processor
architecture they use. This architecture uses a tree based memory hierarchy. The cache
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coherency scheme in this type of memory hierarchy forces data migration if required,
as PEs are not allowed to access far away caches.

In a tiled based many-core processor, the PEs are allowed to access all the different
cache banks. Thus, this type of data migration does not occur. As a result, a scheme
should decide which data should be migrated and when the migration should happen.
The decision, as well as the migration, introduces a latency and, hence, it would be
better if avoided.

The scheme based on static analysis proposed in [24] introduced a measure called
Pain. Pain is a combination of two different parameters, cache sensitivity and cache
intensity. Cache sensitivity indicates how much an application suffers when cache space
is taken away from it by another application sharing memory resources. Cache intensity
estimates how aggressively an application is using the cache. The cache intensity is
predicted using the number of memory operations. Cache sensitivity is defined by

S = (
1

n+ 1
)

n∑

i=0

i · h(i)

for a n set associativity cache and where h(i) is a function of the reuse distance of the
application.

If application A and B are mapped, in such a way that they share a cache, then the
pain for application A caused by application B is

Pain(AB) = S(A) · Z(B)

where S(A) is the sensitivity of application A, and Z(B) is the intensity of application
B. The total pain caused by the applications sharing one cache is

Pain(A,B) = Pain(AB) + Pain(BA)

The pain measure is used to decide whether two applications can be scheduled in such
a way that either they share a cache, or it is better not to schedule the application as
such.

Analyzing the principles of this scheme reveals that Pain is a measure closely related
to both cache overflow and hot caches. The sensitivity measure shows how likely it is
that some application causes cache to overflow. Cache intensity shows how likely it is
that an application causes a cache to become hot.

The scheme based on the Pain measure was proposed to apply on applications scheduled
on a multi-core PEs using a tree based memory hierarchy. Section 3.2.3 explains a new
concept introduced in this work based on the concept of Pain.
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3.2.3 Pain prediction in a tiled based architecture

In many-core processors the PEs can access all shared cache banks. Tasks could share
data possibly stored in multiple caches. In other words, one task could cause pain for
several other tasks. Mapping a task to a PE fixes the communication paths from that
PE to the cache banks storing the data for the task. The task mapper should be aware
of this and take it in consideration while mapping tasks to PEs. Therefore, the task
intensity is defined by:

Z(mi) =
∑

tj∈Ti

Zi(tj,mi)

where mi is cache bank i, tj is task j, Ti the set of tasks that is using mi and Zi(tj,mi)
is the intensity per cache caused by tj in cache mi. Therefore:

Z(A) =
∑

mi∈M

Z(mi)

where M is the set of cache banks and Z(A) is the applications cache intensity. The
Zi(tj,mi) is estimated by the number of memory operation in ti that access data stored
in mi. Using the per cache intensity pain can be estimated as task pain

Pain(ti) =
∑

mj∈Mti

S(ti) · Z(mj)

where Mti is the set of caches used by ti, and S(ti) equal to the original S(A) only now
the sensitivity is narrowed down to ti instead of the sensitivity of the entire application.
These functions are closely related to the original functions but at a finer granularity.
This is required for a task mapper designed for a many-core processor.

To integrate distance awareness into the task mapper communication latency due to an
increased hop-count should cause pain as well. What the hop-count is in the different
communication paths from the PE executing the task to the cache banks storing the
data, depends on which PE was selected by the task mapper. Hence, the communication
pain makes use of the temporal mappings function

map(ti) = pq

where pq is a free PE. The temporal mappings function is only used to evaluate the pain
for a task when it is mapped to a PE. By using the mappings function, a communication
pain prediction is defined by

CP (ti | map(ti) = pq) =
∑

mj∈Mi

2 ·HC(pq,mj) · Z(mj) · S(ti)
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Figure 3.3: Pain due to the combination of cache utilization and communication.

where the function HC(pq,mj) is the hop-count of the communication path from pq
to mj. This function is doubled since every memory access consists of a request and a
response. Then, finally the pain mappings function can be defined by

pmap(ti) = min
pj∈P

(Pain(ti) + CP (ti | map(ti) = pj))

which is used as mathematical description of the task mappings function used by the
mapper introduced in this work.

Because the mapping scheme is applied at run-time, an algorithm should be used which
avoids the search through all possible mappings. The same algorithm, as explained in
Section 3.2.1, can be applied, with the difference that for task assignment the pmap

function is used to decide whether a task maps to a PE.

Figure 3.3 shows four different examples of pain distribution in a many-core processor.
Figure 3.3a shows the situation where a task is using data in the blue highlighted cache.
As no other PE is using this cache, and since the communication pain for the PEs close
to the blue cache is low compared to the other PEs, these PEs introduce very little pain.
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If a second task is mapped, using the same shared data, a possible pain distribution is
depicted in Figure 3.3b. This figure assumes that the shared data is larger compared
to the private data. If this is not the case, Figure 3.3c could be the result. The pain
distribution is depicted in Figure 3.3d in case the second task uses different shared
data.

In the worst case scenario, the sorting algorithm is O(n2) but on average O(n · log(n))
for n tasks [11]. To find the PE to map a task to is O(p), where p is the number of PEs
allowed to execute the tasks. Thus, the overall algorithm is O(n · p · log(n)) on average
and O(p · n2) in the worst case.

3.2.4 Gathering hints for task mapping

The next list sums up the used parameters as reminder of what was required by the
mapping algorithm:

P the set of free PEs that are allowed to execute one of the tasks
HC(pi,mj) the hop-count in the communication path from PE i to cache j

LS the per task load/store rate
Z(ti,mj) the per cache intensity in cache j caused by task i

S(ti) the cache sensitivity for task i

MR the per task L1$ miss rate

Which PE is free and which PE is executing a task is known at run-time. To limit
the search through the free PEs, a scheduling unit can select a subset of the free PEs
and allow only the selected PEs to execute the tasks. The selection of such a subset
is mainly important when a scheduler is involved with knowledge of possible other
executed applications. The algorithm involved in the subset selection is kept out of
scope in this work and any free PE is allowed to execute one of the tasks. Hence, P ,
the set of free PEs allowed to execute a task, is known by the task mapper.

The hop-count function HC(pi,mj) depends only on the topology of the many-core
processor. Once this is implemented in silicon, the topology is fixed and can be stored
as constant look-up table in memory. This function is also required for any distance
awareness. Hence, it does not introduce any additional costs.

In [5], it was shown that it is possible to track down a load/store rate. However, in this
work it was assumed that every loop was iterated just once. This one loop iteration
load/store rate is not equal to the one defined in Equation 3.4. However, it could still
serve as a rough estimation. If it is possible to predict this more accuracy, it would be
preferable.

If the number of iterations in a loop is dependent on a constant, then the number of
memory operations and the number of instructions within the loop could be multiplied
by this constant and result in an exact number. This is not possible when the number
of iterations does not depends on a constant. In most cases the compiler does know on
which variable the number of iterations depends. If the compiler can trace the variables
back to the point of task mapping, a hint can be injected. This hint can be evaluated
at run-time to determine the load/store rate for the used input data set. As the cache
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intensity is defined as the total number of memory operations, the compiler can predict
this number in the same way. In case the compiler is not capable of providing an
accurate hint, the rough estimation can be used.

The per task reuse distance could be generated using profiling. The downside of profil-
ing is that this gives a number for a specific data input set. Ding & Zhong in [8] showed
that it is possible to combine two profiling runs and pattern recognition to produce an
parameterized model for the reuse distance that only depends on the size of the input
data. The latter is, in most cases, known when task mapping takes place. The param-
eterized model for the reuse distance can be injected as hint by the compiler. Finally
Zhong et al. showed in [23] that, using the parameterized model generated with the
techniques presented in [8], a parameterized model can be generated for the miss rate.
Thus this can be injected as hint as well.

The techniques used to generate the parameterized models for both the reuse distance
and the miss rate only works well when the application produces predictable access
patterns. Even though this is often the case, it can happen that these predictions have
a significant error.

3.3 Conclusion

The distance aware scheme has big potential, especially when applied in a large system.
This reduces the distance packets needs to travel. It decreases communication latency
and NoC energy consumption, but this might cause cache overflow or hot caches.

Page dispersion might overcome the cache overflow problem introduced by the distance
aware management scheme. However, on its own, it almost performs equally to a round
robin bank selection scheme, since round robin bank selection avoids cache overflow as
much as possible. If combined with distance awareness, this could increase the chance
of hot caches, since the chance that multiple PEs are using data stored in a single cache
bank is increased when page dispersion is applied.

Page dispersion due to hot caches could avoid hot caches, but on its own, it performs
again close to the round robin scheme. Depending on the application, it might perform
a little better since hot caches are avoided. Anyhow, if the access rates for the different
cache banks do not differ significantly, then it is similar to a round robin scheme. In
other words, it is likely that all three management schemes show big potential in theory,
but might not perform in reality if only one is applied. Applying all the three concepts
should overcome the different problems.

For the task mapping algorithm, static analyses and profiling are used to generate
hints. These hints are used to predict the behavior of the task to map and evaluated
at run-time to guide task mapping. The algorithm considers the same effects used in
memory allocation. Therefore, at first glance, the data management scheme may look
redundant. However, as explained in Section 3.2.4 the hints are not alway as accurate as
they need to be to generate a good map for the tasks. In this case the memory allocation
schemes are making up for possible mapping errors. Also some applications produce
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hot caches or cache overflow independent of the task map, as this is the behavior of
the applications. Hence, both the task mapping algorithm and the memory allocation
schemes should be used.

The next chapter presents the virtual platform that is used to develop and evaluate the
concept introduced in this chapter. Also the run-time library is introduced in the next
chapter. This library implements a memory allocator and a task mapper which use the
concepts introduced in this chapter.
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TMFab many-core architecture 4
This chapter describes the concepts of the Transactional Memory Fabric (TMFab) ar-
chitecture, which forms the base platform used for this work. This chapter begins with
a description of the components used within TMFab and, then, provides an overview of
the transactional memory scheme used for lock-free accesses to shared data. Further-
more, it describes the design of the SystemC model of the architecture, and its runtime
software library libtmfab.

4.1 Overview

TMFabis a many-core processor platform that incorporates a large number of process-
ing elements, caches and other peripherals connected over the R3 NoC. The R3 NoC
consists of 7-port wormhole routers that allow the creation of 3D meshes across mul-
tiple silicon dies. The routers implement a dimension-ordered ZXY routing algorithm
and offer best-effort service [15]. Components are placed within tiles containing an R3
router, and these tiles are interconnected in 2D to form one layer of the mesh. Mul-
tiple dies stacked one above the other form 3D stacked Systems-on-chip. Figure 4.1
illustrates such a die stack and the interconnection of tiles using the 3D NoC.

The TMFab architecture uses simple RISC processor cores due to their small size [14],
allowing them to be integrated in large numbers at a small area cost. The processors,
as previously mentioned, are also implemented within tiles. There are two types of
processor tiles within the TMFab architecture:

1. Supervising processor (SU): The main processing tile that controls the spawning
of tasks on the array, and performs input/output operations;

2. Processing element (PE): The processor cores, which execute parallel tasks.

Figure 4.1: An abstract model of the 3D stacked System-on-chip.
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Figure 4.2: Supervisor Unit.

The architectural details of these two tiles are illustrated in Figure 4.2 and Figure 4.3,
respectively. Both processor types are connected to the memory hierarchy through the
3D NoC, and access external memory through the shared cache layer, composed of
multiple L2$ cache banks, each located in a dedicated tile. The total data memory
address space is divided into memory pages, and distributed uniformly over the shared
L2$ cache layer. Hence, each unique data address maps to only a single cache bank
thus avoiding the need for a coherence scheme. The L2$ tiles are connected through
an arbiter to an XRAM. Transfers with this memory are done at page granularity.

Processing Element

The primary difference between the SU tile and the PE tile lies in their internal ar-
chitecture. The PE tiles incorporate transactional data caches, which enable lock-free
accesses to shared data. Concurrent accesses to shared data are ordered and managed

Figure 4.3: Processing Element.
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Figure 4.4: Shared cache.

automatically by TMFab’s transactional memory system. Thus the PE tiles contain
TM-specific hardware such as a speculative read buffer (srb) and speculative write buffer
(swb). The TMFab system assumes that sequential and parallel code are not executed
simultaneously. During the phase of sequential execution, all PE tiles are inactive and,
similarly, during the parallel phase, the SU is stalled. The SU tile does not use the TM
system and, hence, contains conventional data cache. However, since the SU tile must
communicate with peripherals, IO devices and other custom components, it includes a
memory mapped register set. Furthermore, since the SU is responsible for scheduling
and mapping the tasks on the PEs, it includes a dedicated scheduler unit. The sched-
uler unit is responsible for managing the tasks in the processor array. Whenever a new
task is scheduled, this unit sends out a packet to the target PE signaling that it should
start a new task. It also sends a pointer to the task that must be executed, and a
pointer to the data for that task. The task mapper, integrated in the scheduling unit,
can map the task either on the first free processor in the array or at a target indicated
in software. The SU can read the status of the different PEs in the array via memory
mapped registers.

4.2 Hardware transactional memory

Hardware Transactional Memory (HTM) is used as a concurrency control scheme to
enable lock-free accesses to shared data. In this scheme, processing elements execute
critical sections of tasks - transactions - speculatively. The scheme assumes that no
mutual exclusion is required for any accesses to shared data. However, to ensure cor-
rectness, all data used and modified by the transaction are isolated in dedicated buffers,
namely the srb and swb. At the end of the transaction, the data set used/modified
during execution are validated against others in the system to determine if data depen-
dencies exist and, thus, if mutual exclusion was indeed required. If data dependencies
exist, one of the contending transactions rolls back its modifications and restarts its
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Figure 4.5: Virtual platform overview.

work, while the other transaction commits its modifications to memory.

TMFab uses the transactional memory scheme proposed by Michos et al. in [17]. In
this particular implementation, cache lines read from the L2$ are appended with an
additional field indicating the previous transaction that modified the line. During
validation, this field is rechecked in the L2$ to determine if the cache line was modified
during the time the transaction was executing. If the value is found to have changed, the
validating transaction is aborted and restarted. If the value is found to be unchanged,
the modifications by the validating transaction are committed to memory alongside the
transaction’s identifier.

4.3 Virtual platform

The TMFab architecture was implemented in SystemC [18] as a parametrizable many-
core model. This allows the integration of external C/C++ based tooling with the
SystemC model for debug, profiling or other purposes. An overview of the virtual
platform is shown in Figure 4.5.

The virtual platform contains parameterizable simulation models for TMFab compo-
nents. The PEs are implemented as single cycle instruction-set simulators that conform
to the Microblaze instruction set architecture. Other components are implemented as
cycle-accurate behavioural models. The platform is configured using an input spec-
ifications file that specifies the configuration and floor plan of the many-core array.
Configuration parameters include:

1. L1$/L2$/swb/srb size, associativity, line size, replacement policy;

2. NoC router FIFO depth, flit width;

3. System floor plan, clock frequency.
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The system floor plan is specified using a three dimensional integer array with entries
corresponding to system tiles, and values corresponding to tile types. This array is
parsed during elaboration to instantiate different tiles, and set up the routing tables
for network interfaces.

4.3.1 Power Modeling

All simulation models within the virtual platform include a parameterizable energy
model. This energy model is generated through the use of state-of-the-art tooling that
reports energy per operation for various components. These values are stored in a
lookup table, and scaled according to the selected clock frequency. For NoC routers,
energy per flit was generated using the ORION estimator [13]. Since ORION reports
lumped power values for the router, the per port estimates had to be derived from the
reported values. The following formula is used to determine the active and leakage
energy consumption per clock cycle per port:

Eactive = Eload=1.0−Eload=0.0

#ports

Eleakage = Eload=0.0

#ports

where Eload=x is the total energy generated by ORION for a load of x and #ports is the
number of input and output ports of the router. For caches, the CACTI estimator [22]
was used to obtain energy per access. Since no standard estimators or energy models
exist for the simple RISC cores like the Microblaze, the next procedure is used to derive
the energy values per instruction. First an energy trend per instruction was generated
using the Wattch [3] extension for the SimpleScalar tool [4]. Wattch uses predictive
technology models to estimate power in the 90nm node. However, since SimpleScalar
models the PISA instruction set, its estimates for arithmetic and logic instructions were
observed to be high. Given the detailed nature of these estimates, the choice was made
to scale the energy values according to a small subset of estimates available for the
Leon3 processor [19]. The resulting energy model represents that of a simple embedded
RISC processor core.

At runtime, the cycle-accurate activity of components, tracked through the use of
activity counters, is converted into power dissipation estimates using the energy model
in the form of a look up table. These can be logged as traces corresponding to the
execution. The simulation setup and the obtained energy numbers are presented in
Appendix A.

4.3.2 Instruction level debugging: ADB

To gain insight into the execution flow of applications executed on the virtual platform,
the assembly debugger (ADB) was developed. ADB is designed to debug the many-core
processor and allows an application developer to set breakpoint and watches at the PE
granularity. To gain more insight into what happens due to the transactional memory
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I/O functions

tm printf(const char *format, ...)
tm fopen(const char* filename, const char* mode)
tm fclose(TM FILE* file stream)
tm fprintf(TM FILE* file stream, const char* format, ...)
tm fwrite(const void* ptr, size t size, size t n, TM FILE* file stream)
tm fgets(char* dest, int size, TM FILE* file stream)
tm fread(void * ptr, size t size, size t count, TM FILE* file stream)

Thread support

execute(void* taskname, void* args)
execute on(unsigned int pe, void* task, void* args)
start threads(tm task t* task pool[], unsigned int num task)
phase barier()
task barrier create(unsigned int num pe)
task barrier(tmbarrier t barrierId)
txn start(id)
txn end(id)
shared read(var)
shared write(var, value)

Memory allocation

malloc(unsigned int size)
malloc for(unsigned int size, unsigned int pe)

Table 4.1: Function overview of libtmfab.

scheme, ADB enables the examination of values in the local L1$s, and the likelihood
of success and failure of transactions. Furthermore, it supports instruction tracing and
function call tracing.

4.4 libtmfab: The run-time library

A special purpose runtime software library was developed to support the various func-
tionalities of the TMFab architecture, and to implement interfacing between the virtual
platform and host machine. An overview of the function implemented in libtmfab is
listed in Table 4.1.

The execute and execute on function start a single task. The difference between the
two is that the execute function is assigning the task on the first free PE, where as
the execute on function allows the application developer to specify which PE has to
execute the task. The phase barrier function is used to join all tasks. The SU is
the only processor allowed to execute the function, causing the SU to wait until all
tasks are complete. The difference between the malloc and malloc for functions is
that malloc for requires the application developer to specify a PE. This is used by
the memory allocator to select a memory section that maps to the closest cache bank
to the specified PE.
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Inside a task, the txn start and txn end functions are used to start and end a trans-
action. In a transaction all shared memory operations should be marked as such using
the shared read and shared write functions.

4.4.1 I/O support

The platform implements a memory mapped register interface for communication be-
tween the running application and the platform. The interface is used in various func-
tions implemented in the run-time library. The task and memory management func-
tions, in particular, implement the principles proposed in this work, in Chapter 3. The
file stream management function enables the creation and use of file streams that access
files located on the host machine.

4.4.2 Parallel software model and thread support

TMFab’s software model allows the SU to create and spawn a thread via a function
call, in a manner similar to the Posix thread model. To provide the task mapper with
better insight of the tasks that must be mapped onto PEs, the software model allows
the spawning of task pools. This approach allows the mapping of tasks according to
their execution characteristics.

At startup all processors executes the same instructions until they reach the main
function, which is implemented in the run-time library. The main function provides
all processors their own stack space, located in the nearest cache bank following the
distance aware allocation scheme. Following stack space allocation, PEs wait until tasks
are mapped onto them, while the SU begins with the execution of the main function
of the application.

4.5 Conclusion

This section examined the TMFab transactional many-core architecture and its imple-
mentation in SystemC as a parameterizable model. The inclusion of power models for
components enables the tracing of power through execution of applications, and the
included assembly level debugger provides insight into the actual execution on PEs.
The virtual platform is supported by a runtime software library that includes a num-
ber of functions that can be called from application software to control architectural
components. This library also contains the memory and task management functions
proposed in this work.

The next chapter introduces the experiments which are performed to evaluate the
concept presented in the previous chapter. Also, the results of these experiments are
presented in the next chapter.
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Results 5
This chapter presents the results of this work as well as the simulation setup and a
discussion on the measures for evaluation. The first section in this chapter discusses
briefly what the values are that are measured to evaluate the quality of the work. This
is followed by the system configuration and, thereafter, the results are presented.

5.1 Quality measures

In this chapter the principles presented in Chapter 3 are evaluated. These principles
should reduce the access latency of the shared cache layer, and reduce the communica-
tion energy consumption. Therefore, most results are shown as execution latencies. In
these numbers, the initialization latency is left out to keep the focus on how the PEs
behave under certain conditions.

Next to the execution time, the number of request served by the different cache banks
is evaluated. This shows which cache banks handles the memory request and, thus,
what the results are of the different memory allocation schemes. The consumed energy
is the final measure used to evaluate the memory allocation schemes.

5.2 Virtual platform configuration

Figure 5.1 depicts the default topology that is used for simulation, unless explicitly
stated otherwise. The default virtual platform configuration is listed in Table 5.1.

In some cases, it might be interesting to evaluate the behavior of benchmarks on the
same many-core processors with a different number of shared cache banks. The number
of shared cache banks limit the memory throughput for the shared cache layer to the
PEs. Figure 5.2 depicts two additional topologies including 8 or 32 cache banks. In the
different topologies, the L2$ associativity is selected such that the overall shared cache
capacity remains the same. Thus, in case of 8 cache banks, the associativity is set to
16; in the default setup, the associativity is 8 as specified in Table 5.1. When there are
32 cache banks, associativity is set to 4.

5.3 State of the art memory allocation

In this section, state-of-the-art memory allocation is evaluated. First, the distance
awareness is discussed, followed by the avoidance of cache overflow.
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System configurations

# PEs : 32
# shared cache banks : 16

# routers : 64

Cache configurations

L1$ size : 65536 byte
L1$ associativity : 4

L1$ line size : 64 byte
L2$ size : 131072 byte

L2$ associativity : 8
L2$ line size : 64 byte

# entries in srb : 1024
entry size srb : 10 bit
# entries swb : 256
entry size swb : 91 bit

NoC configuration

# router ports : 7
router fifo depth : 12
virtual channels : no

NoC interface fifo depth : 18

Table 5.1: Virtual platform configuration.

die 1 die 2

S P0 P1

P2 $0 $1 P3

P4 $2 $3 P5

P6 P7

P8 P9

P10 $4 $5 P11

P12 $6 $7 P13

P14 P15

die 3 die 4

P16 P17

P18 $8 $9 P19

P20 $10 $11 P21

P22 P23

P24 P25

P26 $12 $13 P27

P28 $14 $15 P29

P30 P31

Legend

S : Supervising unit
Px : Processing element x
$y : Shared cache bank y

: Empty tile

Figure 5.1: Default topology.

5.3.1 Distance awareness

In this section, the distance aware memory allocation is verified and evaluated. For
this reason, two different synthetic benchmarks are introduced: BlockAllocation and
WriteArray.
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die 1 die 2
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$0 $1 $2 $3
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die 3 die 4
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$16 $17 $18 $19
$20 $21 $22 $23
P20 P21 P22 P23

P24 P25 P26 P27

$24 $25 $26 $27
$28 $29 $30 $31
P28 P29 P30 P31

(b)

Legend

S : Supervising unit
Px : Processing element x
$y : Shared cache bank y

: Empty tile

Figure 5.2: Topologies with different L2 cache counts.

5.3.1.1 BlockAllocation

BlockAllocation is a synthetic benchmark that evaluates whether the distance aware
memory allocation is working correctly. It spawns a number of threads, and every
thread allocates a number of memory sections. Equation 3.1.1, the same equation
used by the architecture to select a cache bank for a memory request, is used to verify
whether the allocated section maps to the correct cache bank.
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ptr 1 2 3 4 5

PE1 2 3 4 5 0
PE2 2 7 2 2 2
PE3 7 0 1 3 3
PE4 3 5 5 6 6
PE5 4 6 6 7 0
PE6 6 1 2 3 3
PE7 2 2 4 4 6
PE8 2 3 5 7 1

ptr 1 2 3 4 5

PE9 7 7 0 1 1
PE10 2 2 2 3 3
PE11 4 5 0 2 3
PE12 3 4 5 6 1
PE13 2 2 3 3 4
PE14 3 6 7 1 3
PE15 3 4 5 5 0
PE16 7 0 0 1 2

Table 5.2: Round robin data placement.

ptr 1 2 3 4 5

PE1 0 0 0 0 0
PE2 1 1 1 1 1
PE3 0 0 0 0 0
PE4 1 1 1 1 1
PE5 2 2 2 2 2
PE6 3 3 3 3 3
PE7 2 2 2 2 2
PE8 3 3 3 3 3

ptr 1 2 3 4 5

PE9 4 4 4 4 4
PE10 5 5 5 5 5
PE11 4 4 4 4 4
PE12 5 5 5 5 5
PE13 6 6 6 6 6
PE14 7 7 7 7 7
PE15 6 6 6 6 6
PE16 7 7 7 7 7

Table 5.3: Distance aware data placement.

If this benchmark is executed with 8 threads, all allocating 5 memory section, then
Table 5.2 shows the outcome when allocating memory according to a round robin
cache bank selection and Table 5.3 shows the outcome using distance aware memory
allocation.

5.3.1.2 WriteArray

The second synthetic benchmark, WriteArray, is designed to show the impact of dis-
tance aware memory allocation. Every thread in the synthetic benchmark writes values
into an array, where the size of the arrays are independent of the number of threads.
Hence, incrementing the number of threads executing the synthetic benchmark incre-
ments the total amount of work.

All arrays are private to the thread that writes values into the array. Therefore, chang-
ing the number of threads does not have a direct impact on the overall execution time
of the synthetic benchmark. However, if data is spread over the shared cache layer
using round robin in cache bank selection, data request and responses to and from the
shared cache banks can potentially interfere with each other and, thus, a change in the
number of threads might have an indirect impact on the overall execution time.
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Figure 5.3: Execution time for WriteArray with distance awareness.

The benchmark is designed such that all arrays fit into the shared cache layer. This
avoids any page misses in the shared cache layer. Also the kernel of the workload is
executed twice, where the first run serves as prefetch of the arrays, and the second run
as actual benchmark kernel.

Figure 5.3 presents the WriteArray execution time using a varying number of PEs. The
distance aware allocation scheme is compared with round robin. The round robin bank
selection shows a more or less linear increase, as expected. The irregularities in the
plot can be explained by the fact that, during initialization all PEs try to allocate their
private arrays at the same time. Hence, which PE allocates first varies with the number
of PEs and, thus the hop-count in the communication paths between the shared cache
and the PEs varies as well. The flat lines for the distance aware allocation shows that
this principle has indeed a significant impact. The comparison between the round robin
and distance aware allocation shows that a larger system, with potentially more active
PEs, has a bigger significance.

Figure 5.11 presents the total NoC energy for the execution of the WriteArray kernel
on a varying number of PEs. These graphs show that there is a significant difference in
the energy consumed by a round robin scheme compared to the distance aware scheme.
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Figure 5.4: NoC energy for WriteArray with distance awareness.
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Figure 5.5: Requests for WriteArray with distance awareness.

The different PE to cache bank ratios show, that when the PEs execute an application
that heavily utilizes the shared cache banks, it might result in hot caches. When the
number shared cache banks is equal to the number of PEs, there is no change when
the number of active PEs is increased. However, when this ratio changes, a significant
difference presents itself when PEs start to share cache banks.
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Figure 5.6: Page dispersion due to cache overflow.

Figure 5.5 shows the request distribution to the different caches. This graph reveals
that the distance aware scheme allocates memory such that it maps to a limited number
of cache banks.

5.3.2 Page dispersion due to cache overflow

To analyze the impact of page dispersion caused by cache overflow, the synthetic bench-
mark CapacityTest is used. This benchmark is an extension of the WriteArray bench-
mark, which implements one very important difference. The array size used by the
threads is variable and, possibly, larger as the capacity of a shared cache bank. Fig-
ure 5.6 compares the execution time for distance awareness against the memory alloca-
tion scheme implementing page dispersion due to cache overflow. As all PEs are forced
to use memory that only maps to the cache bank closest to the PE, eventually the cache
bank runs out of capacity and is forced to use off-chip accesses to the XRAM. While
the distance aware scheme runs out of capacity the cache overflow avoiding scheme is
allowed to disperse pages and avoid the off-chip accesses to the XRAM.

Figure 5.7 shows the distribution in memory request, for all the cache banks. This
figure reveals that the used memory is indeed spread over more cache banks if page
dispersion is applied.

5.4 Cache Balancer

This section evaluates the quality of the Cache Balancer. The first part of this section
focuses on the memory allocation scheme. Thereafter, the task mapping is evaluated
and, finally, the memory allocation and task mapping schemes are compared to state-
of-the-art.
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Figure 5.7: Data distribution due to cache overflow avoidance.
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Figure 5.8: Hot cache avoidance.

5.4.1 Utilization aware memory allocation

The AccessControl synthetic benchmark is used to show the effect of hot caches. This
benchmark uses 7 tasks to control the access rate of a single cache bank. The tasks have
an equal shared and private memory section available. In the kernel of the benchmark
the tasks write, according to a given shared to private ratio, to either the private or
the shared data. The shared data is shared by all tasks and mapped to a single cache
bank. If the shared to private ratio is high, the cache bank becomes hot. If the ratio is
decreased, then the cache becomes less hot.

A victim task is placed next to the potentially hot cache. The task allocates a memory
section and writes values into the allocated section. If the cache bank close to the
victim task is hot, the task takes longer to execute, since the task has to wait more
often before a memory request is served.
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Figure 5.9: Cache access due to hot cache avoidance.

Figure 5.8 depicts a plot of the execution latency of the victim task. In this plot the hot
cache avoidance scheme is compared with distance aware. The reduction in execution
time is mainly due to a reduction in memory access latency, which is a reduction of
63.4%. Figure 5.9 compares the number of requests per cache bank for the case where
the hot cache access is 1.0. Even though the change is little, the memory access latency
is significantly reduced when the allocated memory maps to a cache that is cold.

Figure 5.10 depicts the different execution latencies for the WriteArray benchmark,
which is the same benchmark used to evaluate distance awareness. This benchmark
consists of two different phases: an initialization phase and a kernel phase. The memory
allocation takes place in the initialization phase, causing a certain cache access pattern.
Thereafter, the kernel is executed, causing a different cache access pattern compared to
the initialization phase. The Cache Balancer uses the access rate as prediction for the
future. Figure 5.10b and Figure 5.10c show a little worse performance than the distance
aware memory allocation scheme because the two different phases have different cache
access patterns. Figure 5.10a reveals that, when the number of cache banks is small
compared to the number of PE, the cost of the miss prediction is overcome by the
benefit of the increased memory throughput caused by Cache Balancer. The energy
consumption change in the NoC caused by Cache Balancer is insignificant, as shown in
Figure 5.11.

The execution of the WriteArray benchmark with 16 tasks combined with the Cache
Balancer results in a request distribution, as depicted in Figure 5.12. This histogram
shows how the Cache Balancer distributes the data over the memory, and thereby
reduces contention in the shared cache banks. The result is that the energy is spread
over more cache banks compared to the distance aware scheme, as shown in Figure 5.13.
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Figure 5.10: Execution time for WriteArray with Cache Balancer.

5.4.2 Pain driven task mapping

Figure 5.14 presents execution time for the WriteArray benchmark when the tasks are
mapped by Cache Balancer. The stepwise incrementing execution time that especially
stands out in Figure 5.14a is a result of used task pain. Because all used data in the
tasks is private, the task pain is causing the Cache Balancer to map the tasks such that
they do not share, as less as possible, the cache banks. Thus if only 8 task are mapped
in a many-core processor with 8 cache banks, the task are mapped such that they do
not share any cache bank. Up until 16 tasks, Cache Balancer maps the tasks such
that only two processors share a cache bank. This effect is still visible in Figure 5.14b.
However, when the number of cache banks is equal to the number of PEs, tasks are
always mapped to a PE that does not share a cache bank.

Figure 5.15 depicts the NoC energy consumption for the WriteArray benchmark where
tasks are mapped by Cache Balancer. The slight decrease in energy consumption with
a small number of active PEs, as shown in Figure 5.15a, is because the task are mapped
closer to the cache bank compared to round robin task mapping. Also the consumed
leakage energy is less, since the execution time is decreased.
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Figure 5.11: Energy for WriteArray with Cache Balancer.
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Figure 5.12: Requests for WriteArray with Cache Balancer.
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Figure 5.13: Cache energy density for WriteArray with Cache Balancer.
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Figure 5.14: Execution time for WriteArray with Pain driven task mapping.
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Figure 5.15: Energy consumption for WriteArray with Pain driven task mapping.

To demonstrate the different effect from Cache Balancer, a synthetic benchmark is used,
similar as to the AccessControl benchmark, used to evaluate the memory allocator.
Again, multiple tasks either share a cache bank for shared data, or use private data in
separate cache banks. The benchmark is executed with different components of Cache
Balancer switched off, which are then switch on one at the time. Because the topology
with 8 cache banks showed the largest difference, this topology is used to evaluate the
different components. To demonstrate the effect of a large data set without increasing
the simulation time significantly the shared cache bank size is reduced to 64Kb. The
different task maps are shown in Table 5.4.

Then next chapter presents the conclusion of these results and, with that, the results
of this work.
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num t1 t2 pr

0 0 1 2
1 3 4 5
2 6 7 8
3 9 10 11
4 12 13 14

(a) Round robin

num t1 t2 pr

0 3 27 7
1 2 31 6
2 0 29 8
3 4 19 5
4 1 28 9

(b) Distance aware

num t1 t2 pr

0 8 27 5
1 4 20 13
2 0 19 16
3 12 21 9
4 6 28 24

(c) Pain driven task mapping with
shared data

num t1 t2 pr

0 1 0 4
1 8 12 16
2 20 24 28
3 5 9 17
4 21 29 6

(d) Pain driven task mapping with
private data

Table 5.4: The different task maps.
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Conclusions and future work 6
6.1 Conclusions

This work has explored state of the art memory allocation and task mapping, to in-
vestigate whether this can reduce memory access latency in many-core processors. In
the introduction, two hypotheses where defined, speculating that the average memory
access latency is reduced when the communication costs are minimized, while keeping
a fair balance in the used capacity and utilization of the different caches.

Several steps have been taken to investigate the impact of the different effects in both
memory allocation and task mapping. As first step, the concepts of state-of-the-art
memory allocation is implemented for a many-core processor. The scheme integrates
both distance awareness and used cache capacity information in a memory allocation
scheme. The memory allocator is extended, allowing it to consider cache utilization as
well. To obtain information about the cache utilization, this work introduces access
rate, which represents how heavily a cache is utilized relative to the other caches.
A measurement system for the access rate was integrated into the virtual platform,
allowing the memory allocator to use this at run-time.

The second step involves a task mapping scheme. An algorithm, which considers cache
utilization while tasks are mapped to the PEs, is used as starting point. Because this
algorithm was designed for an architecture where PEs could share only a single cache,
the algorithm was extended in such a way that all caches used by a PE are considered.
Thereafter, distance awareness was integrated into the algorithm.

The last step was the development of a virtual platform. This platform simulates
a parameterized many-core processor. The parameterization allows the selection of
different topologies and different memory sizes. The system simulates two different
data cache levels, a shared L2$ and a private L1$. In the shared cache layer data
replication is prevented to avoid coherence overhead. The private caches use a hardware
transactional memory scheme, which eliminates the need for a coherency scheme.

The different memory allocation and task mapping algorithms are compared to each
other to obtain insight into the impact of the different effects. The results showed that
distance awareness in memory allocation reduces memory access latency compared to
round robin memory allocation. A second important observation is that the latency of
an increased communication distance is almost insignificant compared to the latency of
a L2$ miss. Hence allocating memory that maps to a cache further away compared to
the closest one to avoid L2$ misses can reduce the memory access latency significantly.
Similarly, if communication latency is increased to avoid the allocation of memory that
maps to an overutilized cache reduces memory access latency. Avoiding the overutilized
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caches with memory allocation can reduce the memory access latency by 63.4%, and
this confirms the first hypothesis. Finally, the last part of Chapter 5 showed that the
same effects should be considered during task mapping. After an in depth analysis of
the mapping algorithm, it was found that this can further reduce execution time up to
14.5%, and this confirms the second hypothesis.

6.2 Future work

Two different topics are of interest for future work regarding this thesis. First, this
work does not take thermal effects in consideration and, thus, dynamic voltage and
frequency scaling is not used. If this is considered, then:

• caches close to PE running at a low frequency are less utilized, allowing PEs
running at a high frequency to use these caches, which could prevent the other
caches from becoming over utilized;

• the more uniform utilization of the resources spreads the power dissipation out
over a larger area, which could lead to lower temperatures.

The second topic concerns task or application scheduling. In this work, only a single
application is considered. However, it is likely that a many-core processor executes
multiple applications concurrently. Then, it might be the case that it is more efficient
not to schedule all tasks at the same time, but to reserve some resources for other
applications. A second reason not to schedule all tasks at the same time might be that
the increased performance is very little compared to the additional used energy.

6.3 Publications

• Jurrien de Klerk, Sumeet S. Kumar, Rene van Leuken; CacheBalancer: Access
Rate and Pain Based Resource Management for Chip Multiprocessors,
submitted to Computer Systems & Architectures workshop, International Sym-
posium on Computing & Networking 2014.

• Demonstrator: DATE 2013 University Booth
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Energy look up tables A
A.1 Network on chip modules

General NoC setup

flit width 36
virtual channels 0

output buffer disabled

(a)

Router setup

flit width 36
virtual channels 0

output buffer disabled

(b)

Network interface setup

Number of input ports 1
Number of output ports 1

Input FIFO depth 18

(c)

Table A.1: Orion NoC simulation setup.

Router energy (pJ)

Eactive 19.4277
Eleakage 2.1017

(a)

Network interface en. (pJ)

Eactive 13.3933
Eleakage 2.1297

(b)

Table A.2: NoC energy look-up table.

A.2 Memory hierarchy modules

Setup

Total size 131072 bytes
Associativity 8

Bus width 88
Tag size 42

(a)

Energy (pJ)

Eactive 200.267
Eleakage 263.511

(b)

Table A.3: Level 2 data cache energy look-up table.
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ICache

Total cache size 4096 byte
Associativety 2

Tag size 21
Bus width 64

L1DCache

Total cache size 65536 byte
Associativety 4

Tag size 74
Bus width 138

SRB/hazard table

Total cache size 32768 byte
Associativety direct mapped

Tag size 10
Bus width 20

SWB

Total cache size 16384 byte
Associativety direct mapped

Tag size 66
Bus width 26

Table A.4: Processor local memory module configuration.

Energy (pJ)

ICacheleakage 9.7664
ICacheaccess 21.1452

L1DCacheleakage 143.3645
L1DCacheaccess 143.015

SRBleakage 1.6149
SRBaccess 2.9629

SWBleakage 34.0547
SWBaccess 41.6812

Table A.5: Processor local memory module energy look-up table.
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A.3 Microblaze processor

logic & arithmatic

and 103.0716
or 103.4004
xor 103.4004
nor 102.9254
add 100.7102
addi 100.0037
sub 100.8526
subi 99.9312
mult 103.1342
multi 103.6681
srl 101.3231
sra 101.7831
cmp 100.0353
cmpu 100.3451

load/store

lbi 218.4289
lb 219.1571
lhi 231.0722
lh 231.7597
lwi 231.0722
lw 231.0722
sbi 276.9693
sb 256.7231
shi 235.1698
sh 235.4715
swi 235.4959
sw 235.5801

branch

bri 237.7202
bril 295.5496
br 199.9647
brl 257.7941
beq 213.3156
bne 213.2385
ble 207.6671
bgt 207.5900
blt 179.7809
bge 225.5001

float

fadd 221.0395
frsub 221.3111
fmul 224.6329
fdiv 242.8718
fcmp eq 221.9587
fcmp lt 221.9587
fcmp le 221.9169
flt 221.0813
fint 221.0813
fsqrt 260.6720

Table A.6: Microblaze instruction energy in pJ.
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Acronyms

ADB assembly debugger . 39

L1$ level 1 data cache. 5, 6, 12–15, 19, 26, 30, 34, 35, 37, 39, 42, 45, 49

L2$ level 2 data cache. 5, 6, 12, 14–20, 34–37, 42, 44

lhoard light hoard . 36

LRU least recently used . 34

NoC network on chip. 5, 11–13, 31, 33, 38, 42, 45

PE processing element . 12–20, 33, 35, 36, 42

srb speculative read buffer . 14, 18, 19, 34, 42

SU supervising processor . 12–15, 18, 20, 35, 36

swb speculative write buffer . 14, 17, 19, 35, 42

TMFab Transactional Memory Fabric. 11, 12, 49

XRAM external random accessible memory . 9, 14, 33, 35, 46, 47
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