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Preface

Programming a machine to interpret the world around us, similar to how humans perceive it, is a
challenging task. By developing robots that are aware of their surroundings, as well as others of
their kind, we can increase their safety and extend their capabilities. This project solves a very small
part of this puzzle by enabling drones to detect other drones in the vicinity based on their apparent
motion. The code developed for this thesis can be found publicly online 1.

I am thankful for TNO for letting me perform my graduation project in collaboration with a com-
pany. I express my gratitude to my supervisors Jim Rojer and Dr. Guido de Croon for their patience
and support, as well as their flexible mindset in these exceptional times. Their sharp feedback has
been crucial to create this thesis. Additionally, I would like to thank Nicolas Boehrer for sharing
his expertise in the field of computer vision. Finally, I am thankful for my friends and family who
provided me with support and motivation.

1https://github.com/evroon/mav-detection
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Introduction

Nowadays, drones are becoming more and more common. To further extend the capabilities of
drones, groups of drones, called swarms, are now investigated. These swarms can perform tasks
that individual drones are unable to execute. For various tasks of the swarm, the relative locations
of other drones in the swarm are needed. The standard method of obtaining the locations of MAVs,
is by use of a Global Navigation Satellite System (GNSS). Unfortunately, these GNSS signals can be
blocked, jammed, spoofed or interfered by multipath effects, rendering them unavailable. Com-
puter vision is a suitable alternative to localize drones, because cameras are small and provide a
wealth of information.

Typically, research papers investigate the use of appearance-based neural networks that detect drones
in a single image. However, these methods depend on the shape and size of the drones. An alter-
native is to use the motion information in video feeds to detect drones. In this thesis, the apparent
motion of objects in a video, called optical flow, is used to detect drones. Optical flow offers various
advantages compared to other vision-based methods. Firstly, the method is potentially more robust
against background clutter. Moreover, when using optical flow, the method can be independent on
the appearance of the object to detect and therefore works for every moving object.

Simulations were made to acquire the data needed to validate the performance of the object detec-
tor. These simulations are made in AirSim and output a large amount of visual data, such as the
camera image, depth image, a segmentation mask of the drone to detect and ground truth optical
flow images. The main conclusion of this project is that the object detector has a high accuracy , but
only if certain assumptions are met. Specifically, the motion of the object to detect must be large
enough and different compared to the background motion.

This thesis consists of a scientific paper (part I), the preliminary literature study (part II) and finally
an appendix containing recommendations and additional results of the object detector and the Fo-
cus of Expansion estimation.
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Abstract

Drones need to be able to detect and lo-
calize each other if they are to collaborate
in multi-robot teams or swarms. Typically,
computer vision methods based on visual ap-
pearance are investigated to this end. In con-
trast, in this paper, a method based on dense
optical flow (OF) is developed that detects
dynamic objects. This is achieved by com-
paring the flow vectors of dense OF with the
direction to the Focus of Expansion (FoE) in
the image plane. A simulation in AirSim is
developed to validate this approach and to
create datasets for motion-based object de-
tection of MAVs. This simulation includes
ground-truth FoE, depth, OF and IMU data.
The results show that this method performs
well if the OF vector’s magnitude is large
enough and its angle is sufficiently different
from those of static world points. We ex-
pect that the presented method will serve as
a useful baseline for deep learning methods
that use dense optical flow as input.

1 Introduction

Nowadays, Micro Air Vehicles (MAVs) are becom-
ing more and more common. Reasons for their popular-
ity include their high maneuverability, vertical take-off
capabilities and ability to perform tasks that humans
cannot endure [1]. To further enhance the capabilities of
MAVs and overcome the individual limitations of MAVs,
swarms of MAVs were introduced. To enable the proper
functioning of the swarm, sensing of the environment
and the other MAVs is paramount. In particular, the
relative locations of MAVs inside the swarm are needed
for collision avoidance and swarm coordination [2]. The
most basic and robust method of obtaining the loca-
tions of other MAVs, is by exchanging positions obtained
from Global Navigation Satellite System (GNSS) signals.

However, GNSS signals are not always available, for ex-
ample when the signals are blocked, spoofed, jammed or
distorted by multipath effects.

Computer vision is a promising alternative, because
cameras are small/lightweight and provide a vast amount
of information [2]. There are two main types of ap-
proaches solving the relative localization problem. The
first is to create a shared map of the environment and
have the MAVs exchange their location in this map. Si-
multaneous Localization and Mapping (SLAM) is a wide
field of research that targets the first type [3]. The sec-
ond type of relative localization focuses on the detection
of the MAVs themselves. This process is often simplified
by the use of physical devices called markers. These can
be either infrared (see the work of Walter et al. [4]) or
ultraviolet (see the work of Roberts et al. [5]) LEDs,
or colored objects. Markers require specific hardware
changes to the device, which may not always be desir-
able. Markerless detection represents a more difficult
problem. Some methods quite successfully rely on stereo
vision [6, 7]. Of course, for resource minimization, meth-
ods using a single camera are of interest. Currently, the
main approach with a single camera is to employ deep
neural networks that detect other MAVs in a single im-
age [8, 9]. These neural networks show promising results,
but it is not yet clear how well the trained networks can
deal with cluttered backgrounds. Moreover, if the drone
appearance or environment changes substantially with
respect to the training set, retraining may be necessary.

In order to obtain a solution that does not depend on
stereo vision or markers and that is more generic com-
pared to appearance-based methods, it may be useful
to use optical flow. Optical flow has multiple advan-
tages over its alternative vision-based methods. Firstly,
MAVs will possibly be detected in situations where they
are barely distinguishable for the human eye due to back-
ground clutter. Additionally, optical flow based methods
are less dependent on shapes and appearances of MAVs
compared to other methods. Finally, optical flow can
offer a larger maximum detection range compared to ac-
tive markers.

Some papers incorporate motion into their
appearance-based neural network, the so-called hy-
brid methods, such as the work by Yoshihashi et al.
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[10], where the temporal information improves the
performance of the object detector in situations where
there is little contrast between the background and
foreground. Nonetheless, it is a ground-based method
and uses static cameras, which is less challenging
compared to the situation where the observer is moving.

To our current knowledge, the research done by Li et
al. [11] is the only work using purely optical flow with-
out artificial neural networks for the detection of MAVs
from a moving observer in the air. With their method,
they were able to detect other MAVs, even when they
were barely visible because of their size and the clut-
tered background. It has approximately the same de-
tection accuracy (87%) as appearance-based neural net-
works applied to MAV detection (maximum accuracy
of approximately 90%) [8, 12]. However, it is based on
some assumptions. The method of Li et al. is based
on a combination of background subtraction and Lucas-
Kanade optical flow. The background subtraction pro-
cess assumes that the tracked objects have a very differ-
ent motion compared to a distant background, of which
the motion is modelled with a homography transforma-
tion.

This paper will focus on using motion-based ob-
ject detection to detect MAVs from onboard a moving
MAV in more general, 3D environments. Specifically,
we present an optical-flow-based algorithm to detect dy-
namic objects in video feeds from a moving camera. This
is done by comparing the flow vectors with the direction
to the Focus of Expansion (FoE) in the image plane.
This method is applied to simulations run in AirSim [13].
These simulations output ground-truth FoE, depth, op-
tical flow and IMU data, which are valuable for the devel-
opment and validation of motion-based object detection
techniques. The algorithm involves a non-learning im-
age processing pipeline that is based on knowledge of the
properties of the (derotated) optical flow field. We be-
lieve that eventually deep-learning-based methods could
achieve higher performance if they also exploit optical
flow, and expect that the presented, completely compre-
hensible pipeline will be a useful benchmark method.

In this paper, all moving objects (except moving
clouds) are assumed to be MAVs. To output only MAVs
in an environment with other types of dynamic objects,
the pipeline has to be extended with a step that differ-
entiates the MAVs from other moving objects.

2 Detection method

The object detection method is illustrated in figure 2.
First, the optical flow (OF) field is derotated using the
rotation rates of the IMU. The location of the FoE is cal-
culated using the derotated flow. FoE is the point where
the translational flow is 0. This is the motion direction
of the camera. All static points in the environment move

away from the FoE. Points that are closer to the cam-
era in terms of depth, have larger flow. Points that are
further away from the FoE have larger flow as well. Dy-
namic objects may move in other directions. Then the
associated flow vectors do not point away from the FoE.
Unfortunately, they may move away from the FoE lead-
ing to flow that is similar to static objects. The angle
κ between the vector pointing towards the FoE and the
flow vector is calculated, as illustrated in figure 1. The
larger κ, the more likely a pixel belongs to an object
moving relative to the camera. In the following subsec-
tions, the individual steps of the method are explained
in detail. All code used to reproduce this method and
its results can be found publicly online1.

Figure 1: Illustration of κ for a camera moving forward.
The κ angle denotes the difference between angle of the
vector pointing at the FoE and the angle of the flow
vector. For pixels of static objects, κ is approximately
zero. For dynamic pixels, κ is non-zero, except when the
object moves away from the FoE.

2.1 Calculating optical flow

As the object detection method relies on optical flow,
an accurate dense optical flow estimator must be used.
In figure 3, four neural networks estimating optical flow
are compared. They illustrate that on the MIDGARD
[14] dataset, LiteFlowNet [15] and Maskflownet [16] per-
form worse compared to RAFT [17] and FlowNet2 [18].
For all networks, the default weights were used. By vi-
sual inspection, FlowNet2 appears to perform best for
small moving objects. Therefore, FlowNet2 is used for
the results in the rest of this paper.

2.2 Derotation

Derotation has to be applied to the optical flow field
to estimate an accurate FoE. The derotation technique
in this paper is based on the work of Dinaux et al. [19].
The derotation vector per pixel coordinate can be calcu-
lated from equation 1 describing optical flow (u, v). See

1https://github.com/evroon/mav-detection
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Calculate OF
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Sky segmentation

Figure 2: Pipeline of detecting moving objects with vi-
sualizations per step.

Longuet-Higgins et al. [20] for the derivation.
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+ y
W

Z
− Cx+A+Ay2 −Bxy = vT + vR

(1)

The optical flow can be split into two factors: the ro-
tational (uR, vR) and translational (uT , vT ) parts. The
rotational part is only dependent on the pixel coordinate
and rotational rates (A, B, C) of the camera. Therefore,
the structure of the scene (in particular, depth) has no
influence on the rotational part of optical flow. The In-
ertial Measurement Unit (IMU) of an MAV can be used
to measure the rotational rate.

(a) FlowNet2. (b) RAFT.

(c) Maskflownet. (d) Liteflownet.

Figure 3: Different neural networks estimating optical
flow compared using the MIDGARD [14] dataset.

2.3 Calculation of the FoE

The Focus of Expansion (FoE) is the point where all
flow vectors point towards or originate from when an
observer moves through an environment. This point can
lie outside the camera’s Field of View, but in this paper
it is assumed to lie in the image plane. Nonetheless, the
method does work for FoEs outside the Field of View.

The FoE is calculated as presented in figure 4. First,
two optical flow vectors are randomly sampled. The in-
tersection of the two vectors is calculated. This process
is repeated N times, where N equals 1000. A RANSAC
scheme [21] is applied to the set of intersections to make
it more robust against outliers. The RANSAC method
calculates a location in the image where most intersec-
tions have a distance to this point that is lower than a
certain threshold. The resulting location is taken as the
location of the FoE.

OF

N times

Calculate

Intersection
FoE

Randomly sample

flow vector

Randomly sample

flow vector

RANSAC

Figure 4: FoE method flowchart.

2.4 Sky segmentation

In outdoor environments, clouds in the sky can also
move independently from the camera and generate sub-
stantial flow. Therefore, we segment clouds and sky by
appearance and mask them out from the result. To this
end, we use HRNet-OCR [22] with the default weights
trained on the Cityscapes dataset [23]. By comparing the



depth buffer from AirSim with the segmentation mask
for the sky, one can validate the performance of the seg-
mentation. Because of the visual simplicity of the envi-
ronment in AirSim, the TPR of the sky segmentation is
at least 99.5% and the FPR is less than 0.1%. The sky
segmentation is performed at half the resolution of the
captured images from AirSim, to reduce memory and
computational effort of the GPU.

2.5 Thresholding and detection output

The output of the algorithm is based on the angle κ
as illustrated in figure 1. The larger κ, the more likely it
is that that pixel belongs to an object moving relative to
the observer. Pixels with a κ angle larger than 15° are
marked as moving objects. Out of these marked pixels,
flow vectors with a magnitude smaller than 1 pixel/frame
are discarded, because the angle of such vectors is sen-
sitive to noise. Similarly, all pixels belonging to the sky
are assumed to be stationary.

However, the threshold on κ can be more substan-
tiated by analyzing how the error in the angle of the
flow vectors behaves for various magnitudes of flow. One
would expect that the error of the estimated OF direc-
tion increases for decreasing OF magnitude. This is the
case, as shown in figure 5. For 100 FlowNet2 images, the
radial error with respect to the ground truth OF data is
plotted for all pixels (except the sky) versus the magni-
tude of the OF. The white line of 0.25 ± (0.5 + 8

|OF| ) is

fitted manually. The flow magnitude and value of κ that
lie in the area between the upper and lower parts of this
function, are discarded. Additionally, flow vectors with
a magnitude lower than 0.5 pixels/frame are removed.
The performance difference when using this ‘dynamic’
method of thresholding depending on the flow’s magni-
tude is presented in the results section (see figure 10).

3 AirSim

Simulations in AirSim [13] are carried out for var-
ious reasons. Most importantly, simulations can pro-
vide ground truth optical flow and FoE data that cannot
be retrieved in real life. The ground truth optical flow
makes it easier to develop a motion-based object detec-
tor, because the ground truth optical flow has no noise
or artifacts. Simulations also enable validation of the
algorithm on low level, by for example comparing the
FoE estimation with the ground truth FoE. Specifically,
AirSim is chosen because of its realistic rendering and
support for MAVs, including various simulated sensors.

3.1 Environments

One environment is used in AirSim: Landscape-
Mountains2. LandscapeMountains is a freely available

2https://www.unrealengine.com/marketplace/en-US/

product/landscape-mountains
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Figure 5: Histogram of the radial error in FlowNet2
(compared to the ground truth OF) versus the magni-
tude of the OF. Averaged over 100 OF fields.

project from Epic Games, the publisher of Unreal En-
gine. It was chosen because of its realism, while at the
same time being not too demanding. To diminish the
influence of visual effects on the estimation of optical
flow and the performance of the object detector, most
of these influences were removed from the simulation.
All moving actors (gates to fly through, birds) are made
invisible. The clouds are translated vertically by 500m
such that they appear above the terrain. Additionally,
to avoid reflections, the ice is replaced by a grass ma-
terial and the fog is disabled. This limits the method
to a set of real-world environments, but in a large range
of applications these assumptions can still be considered
valid. The only visible visual effect is the shadow of the
terrain and MAVs.

3.2 MAV control

The MAVs are controlled using Python scripts. A
loop is run for each simulation configuration, in which
the MAVs are controlled and the data from AirSim is
captured. First, the control inputs are calculated for the
MAV to detect and the observing MAV. The time is ad-
vanced for 43ms (23Hz) and lastly, the data from AirSim
is collected. The simulation is paused while obtaining
the data of AirSim, such that the IMU data and camera
frames are taken at the same timestep. The MAVs follow
their flight path with a maximum deviation of 0.14m.

Two types of sequences are recorded. Firstly, colli-
sion courses, where the MAVs fly towards the same point
at the same time at 4m/s. Secondly, sideways trajecto-
ries in which one MAV moves sideways in front of the
observing MAV, which moves forwards at 4m/s.



3.3 Data acquisition

There are three visual outputs of the simulations: the
RGB camera image, the depth in the camera image and
the segmentation mask of the MAV inside the images.
These three outputs are taken from the same camera, so
all use the same projections. These outputs are shown
in figures 6a to 6c. The camera image and segmentation
mask are saved as PNG files, while the depth image is
saved in AirSim’s pfm format, enabling the use of floats.
Additionally, sensor data is stored of both MAVs. This
includes IMU and GPS data, but also contains collision
data, the control inputs, FoE coordinates and camera
properties. The ground truth FoE is calculated using
the view projection matrix of the observer’s camera and
the observer’s velocity vector. The images are collected
at a resolution of 1920x1024 pixels with a framerate of
approximately 23Hz. The field of view of the camera is
90° and there is no distortion or noise in the image.

(a) RGB camera output. (b) G.t. segmentation mask.

(c) Depth output. (d) Ground truth optical flow.

Figure 6: The different ground truth (g.t.) output
frames captured in AirSim (a-c) and the g.t. optical
flow (d) calculated from the depth output.

3.4 Ground truth optical flow

AirSim has no built-in method of calculating dense
ground truth optical flow. However, it can be calculated
from the depth image and the viewprojection matrix of
the camera. This method is based on the work of Mayer
et al. [24]. A visualization of the ground truth optical
flow is shown in figure 6d and the steps of the method
are shown in figure 7. Using the depth image, one can
deduce the 3D world positions of all projected pixels by
multiplying the inverse of the viewprojection matrix with
the homogeneous pixel coordinates. This will result in
a point cloud. From these 3D points, one can calculate
their 3D positions one timestep ago. Finally, by apply-
ing the viewprojection matrix of the previous frame to
the 3D points, one obtains the 2D coordinates of the
original pixels one timestep ago. The difference between

the original and the reprojected coordinates yields the
ground truth OF.

The optical flow calculation has some limitations.
For example, the flow of visual effects is not taken into
account. This includes shadows, animations of vegeta-
tion, reflections/refractions etc. This limitation can be
avoided by using environments without reflecting sur-
faces and removing dynamic objects.

Depth buffer Project to

3D point
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MAV's points
viewprojection

matrix
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Original 2D depth
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Figure 7: Flowchart for calculating the ground truth OF.

3.5 IMU

The IMU is modeled using the default IMU in Air-
Lib, the library implementing MAV dynamics and sen-
sors inside AirSim. The biases and random walks of the
gyroscope and accelerometer are set to zero. The IMU
data is used for derotation of the optical flow field, as
explained in subsection 2.2.

3.6 Overview of parameters

An overview of all parameters for the simulations and
the object detection method is shown in table 1.

Table 1: Parameters of the simulation and method.

Parameter Value
Resolution 1920x1024 px
Framerate 23 Hz
Field of View 90°
Observing MAV speed 4m/s
Fixed OF magnitude threshold 1 px/frame
Fixed OF radial threshold 15°
Number of collision course sequences 6
Number of sideways sequences 9
Number of FoE validation sequences 3

4 Results

This section will present the results in terms of per-
formance on the FoE estimation and object detection for
the simulations in AirSim.

4.1 AirSim

Because the accuracy of the object detection depends
on the quality of the FoE estimation, the error between
the estimated and ground-truth FoE is analyzed for dif-
ferent situations. A histogram of the FoE errors for one
sequence is shown in figure 8. This is recorded for an
MAV moving (without rotation) at 4 m/s with an FoE



20 pixels from the left and right edges of the image and
an FoE in the center. Two characteristics are notable.
For a forward moving MAV, the estimated FoE is on av-
erage slightly offset upwards (by 7.2 pixels) and to the
right (by 2.8 pixels), but this is small compared to the
total resolution of the image and therefore negligible for
the majority of all pixels. Moreover, the location of the
FoE affects the mean of the x distribution slightly, as the
estimated FoE tends towards the center.
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Figure 8: Histograms showing the error (in x and y di-
rection) between the g.t. FoE and estimated FoE, for a
FoE in the far left (at x = 20 px), center (at x = 960
px) and far right (at x = 1900 px) part of the image.
The legend includes the means and standard deviations
of the distributions.

The performance of the object detection method is
determined by the True Positive Rate (TPR) and the
False Positive Rate (FPR). TPR is the percentage of
pixels from dynamic objects that are identified as dy-
namic object pixels. FPR is the percentage of pixels
from static objects that are identified as dynamic object
pixels. Ideally, one would have a large TPR for a very
small FPR. In this case, the FPR is always relatively
small, but the TPR varies considerably. This is shown
in figure 9, where the TPR is plotted against κ for var-
ious speeds of the MAV to detect. As can be seen, the
object detector is less accurate for slower moving objects.

The relation between the TPR/FPR and the mag-
nitude of the OF of the detected object is presented in
figure 10). The average TPR for κ between 180° and
90° is taken as measure of performance. It is clear that
lower OF magnitudes decrease the TPR, but the FPR is
unaffected. As hypothesized in section 2.5, a threshold
that is dependent on the magnitude of the OF vector (a
dynamic threshold) indeed results in a higher TPR for
slower moving objects. However, this also increases the
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Figure 9: TPR vs κ, where MAV to detect moves from
left to right with four different speeds (thus four magni-
tudes of OF) at a relative distance of 5m, decreasing κ
from 180° to 0°. A dynamic threshold is applied.

FPR to 0.5% - 2.0%, which could be considered accept-
able depending on the application. In situations where
the object to detect has a large OF vector, a fixed thresh-
old would be more suitable.
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Figure 10: TPR and FPR vs the magnitude of the OF of
the MAV to detect for κ > 90° using a fixed and dynamic
threshold.

Additionally, lower values of κ degrade the perfor-
mance of the object detector. This is illustrated in fig-
ure 11, in which the angle κ is visualized. A higher inten-
sity in the image indicates a higher value of κ, meaning
that the flow vector is not pointing towards the FoE.
Thus, such a flow vector does not only correspond to the
flow created by the translation of the camera, but also



to the motion of the object belonging to that pixel. In
figure 11a, κ is large and therefore the MAV is easy to
detect. In figure 11b, the MAV is more challenging to
detect and in figure 11c, the method is unable to detect
the MAV as κ is close to zero.

To test the method in more complex circumstances,
data was recorded for a collision course where the flight
paths of the MAVs cross at an angle of 75°, shown in
figure 11d. In this case, the MAV to detect remains
at the same location in the image during the sequence,
but becomes closer and therefore larger in the image.
It can be seen that the right part has a κ angle close
to zero. However, using a dynamic threshold, the TPR
is still high (0.98) at the cost of a relatively high FPR
(2.8 ·10−2). Unfortunately, this is only the case for short
distances. For larger distances, the magnitude of the
flow is too small to properly estimate κ.

(a) κ ≈ 180°. TPR: 0.97,
FPR: 6.2 · 10−3.

(b) κ ≈ 90°. TPR: 0.95,
FPR: 4.3 · 10−3.

(c) κ ≈ 0°. TPR: 0.93,
FPR: 1.5 · 10−2.

(d) CC. TPR: 0.98,
FPR: 2.8 · 10−2.

180°

0°

90°

Figure 11: κ displayed for various situations. In (a) to
(c), the MAV moves sideways from left to right. In (d),
the observer and target are on a collision course (CC)
of 75°. The white dot represents the FoE. A dynamic
threshold is applied to calculate the TPR and FPR.

5 Discussion and Conclusion

We have introduced an optical-flow-based algorithm
for detecting other moving objects, where our interest
lies in the detection of other drones. The object detec-
tion method in this paper proves to work successfully if
the angle of the optical flow vector of the object to de-
tect is sufficiently different from the background flow, as
illustrated in figure 11. This means that objects moving
towards the FoE, which are crossing the flight path of
the observer and are thus considered dangerous, can be
successfully detected. Although the method is based on
assumptions of the OF, it does not assume a specific ap-
pearance of the moving object, which makes it suitable
for a wide range of applications.

The method in this paper has the following limita-
tions. Most importantly, the method is based on motion,
so if the observer is stationary or the object to detect has
no optical flow as observed by the observer, detection
by means of flow direction will not succeed. Therefore,
MAVs on head-on collision courses can not be detected
in this way because they have the same flow field as the
surroundings, but with a larger divergence. One could
utilize the divergence of the OF field to detect head-on
colliding objects (just as for static objects).

Another limitation is the computational effort of our
current implementation. FlowNet2 runs on approxi-
mately 1.7 Hz on an RTX 2070 for 1920x1024 images.
This would be too slow to use in real-time on MAVs
themselves. Therefore, the resolution has to be reduced
and/or a smaller neural network must be used. The effi-
ciency of the algorithm itself can be improved by imple-
menting it in C++ instead of Python.

In this paper, a classical implementation is presented
to demonstrate its performance without relying on neu-
ral networks for the detection task. We expect that
deep neural networks could achieve a higher performance
when provided with multiple images, the optical flow
field, or even the κ angle per pixel. However, we ex-
pect that the currently presented pipeline can provide a
valuable benchmark performance.
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1
Introduction

Nowadays, Micro Air Vehicles (MAVs), also known as drones, are becoming more and more com-
mon. Reasons for their popularity include their high maneuverability and agility, simple design
and vertical take-off capabilities. However, the relatively small size of MAVs also introduces the
drawbacks of MAVs. MAVs have typically a short flight time and limited sensing capabilities. These
disadvantages introduced a strong motivation to study the concept of swarms of MAVs, where the
idea is to create larger groups of MAVs to reduce the individual limitations of the MAVs. Moreover,
swarms of MAVs can perform tasks that a single MAV is unable to do, such as lifting a heavy object.

Three additional reasons on the global level of the swarm exist in favor of swarms compared to
individual MAVs. Firstly, swarms are more robust to the loss of individual MAVs. Secondly, swarms
can reconfigure to execute different tasks, making them flexible. Additionally, the swarm can adjust
its size according to the global task that needs to be performed. [14] Moreover, a swarm of drones
can cover larger areas in reconnaissance and surveillance tasks, as well as gather more information
compared to individual MAVs. [66]

To enable the proper functioning of the swarm, as well as the MAVs on an individual level, sens-
ing of the environment and the other MAVs is paramount. In particular, the relative locations of
MAVs inside the swarm are needed for a large number of applications. The most basic and optimal
methods of obtaining the locations of MAVs, is by using Global Navigation Satellite System (GNSS)
(specifically, GPS) or Motion Capture System (MCS) signals. However, MCS requires an extensive
setup of calibrated cameras and markers mounted on the MAV. [14]

Unfortunately, similar to MCS, GPS is not always available. This is where the motivation of this
project starts to become clear. In warfare situations, GPS signals are actively jammed or spoofed.
Jamming is the emission of arbitrary radio waves to make the original signal unusable and spoofing
attempts to mislead the receiver by emitting incorrect signals on purpose. In these cases, the MAV
is located inside a GPS-denied environment. A temporary workaround is to change the frequency
bands on which to send and receive GPS signals. However, this is not a very effective method as the
enemy will be able to notice this and jam or spoof signals on the new frequencies. In other cases of
GPS denied environments, the GPS signal is entirely unusable or unreliable, for instance indoors, in
cases where multipath effects1 play a role or at high latitudes, where no signals from GPS satellites
can be received.

This project will focus on using vision to determine the relative positions of drones within a swarm.

1Multipath effects correspond to interference of multiple reflected signals from satellites, decreasing the accuracy of GPS
signals
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16 1. Introduction

To provide navigation even when GNSS is unavailable, additional research is needed. Multiple
methods can be found in literature to solve this problem, such as the use of radar, sound, infra-red
and vision. Specifically, optical flow will be used to detect MAVs in video feeds. Using the location
of an MAV in an image, the direction of the MAV relative to the observer can be determined. Using
depth information, obtained by for instance radio communication or stereo vision, one can deter-
mine the relative localization of other MAVs inside the swarm. Using communication, the drones
will share their estimates to other drones in order to improve each other’s estimates, provided that
the drones are within the camera’s FoV. State estimation will be applied to the position estimates to
obtain a better estimate of the relative localization.

1.1. Research questions
The main research question is posed as follows:

“How can optical flow be applied to detect MAVs in order to perform relative localiza-
tion of MAVs inside a swarm as objective?”

The sub research questions are:

1. What kind of camera(s) are needed to be able to detect and identify MAVs at the relevant
maximum range in its operational context?

2. How is the problem of relative localization typically solved for swarms of MAVs?

3. Which kind of optical flow is the most suitable and best performing in the domain of moving
object detection?

4. How is moving object detection typically handled using computer vision?

5. What is state estimation and how will it possibly improve the relative localization of other
MAVs inside a swarm?

1.2. Structure of the report
This report represents an literature study of the current research progress in the domains of relative
localization. Each chapter handles one or two (sub) research question(s). In chapter 2, the sen-
sors typically used for relative localization will be discussed (see research question 1). Moreover,
different aspects of relative localization will be elaborated (see research question 2). Both SLAM,
vision-based and the non-vision based MAV detection methods are explained. Finally, the types
of communication between MAVs are compared. In chapter 3, optical flow is explained and the
most important methods of optical flow are discussed (see research question 3). Based on chap-
ter 3, chapter 4 explains how optical flow and appearance based neural networks can be used to
detect moving objects (see research question 4). In chapter 5, state estimation using different types
of Kalman Filters is pointed out (see research question 5). The preliminary results, in chapter 6, il-
lustrate how various optical flow methods can be applied to perform moving object detection. The
method for the thesis work is proposed in chapter 7. The conclusion and planning can be found in
chapter 8 and 9.



2
Relative Localization

In swarms of MAVs, one of the most important types of information is knowing what the relative
position is of one MAV to the other MAVs. Sensing in a swarm is more complex than an individual
MAV attempting to sense its environment. An MAV in a swarm has to take the other MAVs into
account while perceiving the environment.

In the second half of the previous century, a lot of research was put into the development of Kalman
Filters as means of navigation. GPS did not exist yet at that time and Kalman Filters were the most
useful method of determining accurate position estimates. When GPS was introduced in the 1980’s,
navigation systems became much simpler and the research into the Kalman Filter for navigation
purposes became less relevant because of the high accuracy and absence of drift in GPS position
estimates.

However, GPS is not always available. In so-called GPS-denied environments, where no reliable GPS
signal is available, either because it is being jammed or spoofed, blocked by obstacles (for instance,
indoors), has been degraded due to multipath effects or is not available in areas with high latitude,
e.g. the north pole and south pole. An alternative is the use of Motion Capture Systems. However,
this requires a setup of various cameras placed in the environment and markers mounted on the
MAV. Obviously, the use of an MCS system heavily restricts the area in which MAVs can operate
to specific indoor scenarios. Therefore, relative localization methods that rely solely on on-board
sensing must be considered in this context.

In this chapter, different aspects of relative localization will be elaborated. Firstly, the sensors typ-
ically used for relative localization will be discussed. Subsequently, visual odometry (VO) and (vi-
sual) SLAM will be explained, along with their characteristics. The most relevant SLAM techniques
are presented as well. As an alternative to SLAM, both the vision-based and the non-vision based
MAV detection methods are presented. Finally, the types of communication between MAVs are com-
pared.

2.1. Sensors
2.1.1. IMU
An Inertial Measurement Unit (IMU) is a principal sensor in any form of aircraft. It is one of the
most important sensors onboard an MAV. Followed by the smartphone industry, Micro Electrical
Mechanical Sensors accelerometers (MEMS) nowadays form a crucial component of MAVs. An IMU
consists of an accelerometer and a gyroscope. A MEMS accelerometer determines the specific force
of an object with respect to the inertial reference frame in rest. A MEMS gyroscope measures the
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18 2. Relative Localization

rotational rate of the object. The main advantages of MEMS include their very low cost, very small
volume and their lightweightness. Associated with these advantages, however, the main disadvan-
tage is that their output includes significant noise. More expensive and heavier gyroscopes, such as
the Ring laser gyroscope, offer better accuracy and Signal to Noise Ratios (SNR).

Next to noise, MEMS gyroscopes also suffer from drift. This drift depends on the temperature of the
sensor and the type of sensor. The drift and noise of the MEMS accelerometer, as well as measure-
ments from other sensors can be corrected for using sensor fusion. This is described in chapter 5.

Next to the IMU, several other sensors are present on most MAVs. A magnetometer measures the
magnetic field in the vicinity of the MAV. If there are not too much disturbances in this magnetic
field, the field lines of the earth’s magnetic fields can be measured, by which the direction of the
north pole can be estimated. A barometer measures the air pressure, yielding a reasonably accurate
altitude estimate if the air pressure on ground is known.

2.1.2. Vision
An obvious concept to solve the relative localization problem is to rely on vision. A single image con-
tains a rich amount of data, a video even more so. A main advantage of vision is its high directional
accuracy, due to the relative high density of pixels in modern cameras.

However, vision suffers from a high amount of disadvantages as well. Firstly, vision-based detection
relies on a Line of Sight (LoS) between the observer and the target. This Line of Sight assumption can
be broken by obstacles or in situations with low visibility, such as introduced by fog or (low altitude)
clouds. Another cause of non-LoS situations is the limited FoV of cameras. Omni-directional vision
can only be achieved using multiple cameras. Mounting multiple cameras on an MAV increases
the mass of the MAV and reduces the space available etc. Moreover, vision-based approaches are
generally computationally expensive due to the large amount of unstructured data that has to be
processed. This constraint drives a large amount of current research that is driven by the objective
of reducing the computational effort of navigational algorithms and therefore allowing these algo-
rithms to be used on smaller MAVs. Algorithms requiring lots of computations also require a large
amount of power, which in turn reduces the amount of energy available for the MAV’s flying task
and thus reduces the action radius of an MAV.

In figure 2.1, the different methods of vision-based relative localization are presented. The two main
types of solving the localization problem are based on either using the environment or the detection
of MAVs directly. Simultaneous Localization and Mapping (SLAM) is wide field of research that
targets the first type, where simultaneously a map is build of the environment, as well as the pose of
the observer is estimated. Collaborative SLAM (CoSLAM) extends SLAM to multiple cameras with
different poses. CoSLAM uses communication of keyframes between different entities to build a
global map of the surroundings.

Figure 2.1: Overview of the different methods of vision-based relative localization.

The second type of relative localization focuses on the detection of the MAVs themselves. This can
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either be done using markers or without markers. Markers are physical devices that make the MAVs
easier to detect. These can be either infrared (IR), ultraviolet (UV) or colored objects. Markerless de-
tections are harder to perform and rely on methods such as optical flow, neural networks and stereo
vision. The advantages and disadvantages of the various methods are summarized in table 2.1.

Table 2.1: Qualitative characteristics of relative localization methods.

Method Advantages Disadvantages

Colored markers [62] • Can detect IDs of different MAVs

• Can detect other MAVs (relatively) easily

• Not feasible on smaller MAVs or flapping wing MAVs

• Can only detect other MAVs with markers

• Relatively limited range (15m)

Infrared [49] • Accurate

• Computationally simple

• Can perform in visually cluttered situations

• Lower dependence on lighting conditions

• Heavy (approx. 400g)

• Needs visual line of sight

• High energy expense if many sensors are used (10W)

• Relatively low range (12m)

Optical flow [36] • Robust against cluttered backgrounds

• Less dependent on the perceived appearance of the

target

• Can provide data individual frames cannot yield

• No real-time method yet that can be run onboard.

• Accuracy of 86%

• Only works for small differences between frames

Neural networks [58] • Low-cost depending on cameras • Works for clearly visible and distinguishable shapes of

MAVs

• Accuracy of around 85% to 90%

Stereo vision [60] • MAVs without markers can be detected

• (Slightly) less weight, power consumption etc

• MAVs can be recognized at different angles, positions,

speeds and sizes

• Other MAVs have to be detected against cluttered, dy-

namic backgrounds

SLAM [11] • It can mitigate the integration drift of VO.

• Can provide reliable navigation in GPS denied envi-

ronments.

• Includes IDs.

• Does not need LoS.

• Provides a 3D map of the surroundings

• Computationally expensive (except Navion [56])

• Requires communication

• Depends on lighting conditions

• Requires sufficient visual overlap

In table 2.2, the different methods of relative localization for MAVs are presented. Note that there
exist clear differences between the markerless methods and the other marker-based methods. The
methods based on the detection of active markers, either using color, IR or UV, have a relatively
short maximum range of at most 15m in the case of UV markers. This is because a small marker is
hard to perceive at long distances, where the marker only spans a few (or less) pixels in the image.
For larger distances, the results became unreliable. The maximum range could theoretically be in-
creased by increasing the resolution of the camera, as well as using more powerful and larger LEDs.
However, in practice this could be unpractical. A method based on markerless detection, such as
the stereo vision approach of [60] can reach larger distances. Unfortunately, maximum ranges for
neural network and optical flow based approaches are not given in literature. [58]

The main disadvantage of the markerless methods is that they require a high amount of compu-
tations. As shown in table 2.2, the markerless methods only work in decentralized setups, where
the computations are performed on a desktop, except for the stereo-vision based method of Navion
[56].
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Table 2.2: Quantitative characteristics of relative localization methods. ‘D’ means that the computation is deployed on
a desktop computer, ‘O’ corresponds to computation performed onboard an MAV. Other symbols: ‘E’=Error, ‘R’=Recall.
Accuracies in percentages represent the ratio of positive detections divided by true positives.

Method Range MAV/marker size Sensor mass, power, size Computational effort Accuracy

Colored markers [19] 5.5m1 9x9cm <2.6W2, 23g, 39x26x25 mm O, 600MHz ARM, 7-27 Hz 6.5cm

IR [49] 6.0m3 11x11cm 10W, 400g, 220mm diameter O, 1kHz 5-35cm4

UV [61–63] 15m5 55cm 50g O, 72Hz 10-20%

Stereo vision [60] 20m6 55cm <3.8W, Karmin2 (450g, baseline 25cm) O, 40Hz R>75%, E<1m

Optic flow [36] NS NS NS, GoPro 3 (700g, 105x248x103mm) D, 8.9Hz 87%

Neural networks [58] NS NS NS D, High 85%-90%

ORB-SLAM [42] N/A N/A Regular handheld camera D, High 2 cm indoor

Navion [56] N/A N/A 24mW, 5x4mm O, 171Hz E=0.28%

2.2. Visual Odometry and Visual SLAM
Visual Odometry (VO) can be used by robots to estimate its motion based on measurements derived
from vision. It has an inertial counterpart, Visual Inertial Odometry (VIO), which combines vision
data with the data from an Inertial Measurement Unit (IMU). VIO can be used by MAVs to navigate
precisely.

SLAM is an extension of VIO, where, next to the localization, simultaneously a map of the environ-
ment is build. SLAM is the combination of VO and loop detection and closure and an application
of the Structure from Motion (SfM) field. SLAM guarantees global consistency, which VO does not,
meaning that the estimated trajectory is correct from start to end. SLAM fails easily if not used in
combination with IMU. SLAM has the advantage that it can diminish the integration drift that VIO
methods suffer from. In general, SLAM methods are computationally intensive. However, Navion
[56] counters this and introduces a lightweight alternative which uses stereo vision, only uses 25mW
and can still run at 170Hz on a very small chip.

SLAM can also be used with other sensors than cameras. LIDAR-based SLAM depends less on light-
ing and is computationally less requiring. Contrarily, it is more expensive, has more mass and a
LIDAR sensor requires more power [14, 43].

SLAM can be used very effectively in static environments. However, in dynamic environments, for
example an MAV that is part of a swarm, this assumption is no longer valid. One solution to this
problem is to discard these dynamic features as outliers. However, at the same time, these features
contain useful data that can be used to estimate the relative trajectories between moving objects,
such as MAVs. To correctly achieve this, one has to separate the tracking errors (the real outliers)
from the dynamics features. By combining the methods of collaborative visual SLAM and optical
flow, one can solve the problems of relative localization and mapping for MAVs in a swarm. The
IMU can be used for improving the Visual Inertial Odometry estimate and obtaining the absolute
scale of the environment, as well as Communication between the MAVs is needed for collaborative
visual SLAM. The computational power that is required will be relatively high, as SLAM and optical
flow require a large amount of calculations.

1For larger distances, the structure of circle is lost.
22.6W is the power usage of the complete system.
3Could have been more, as the sensor was not calibrated for >6m.
4The accuracy depends on distance.
5For larger distances, spurious drop-offs happen as the spot area becomes too small
6Determined by the camera’s resolution and baseline. Between 20m and 50m, results were not reliable anymore.
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2.3. Characteristics of vSLAM methods
Visual SLAM methods are typically divided into two categories: The direct approach and indirect
approach. The direct vSLAM methods do not use features, but use pixels directly. An example of
such an approach is LSD-SLAM. [18] These direct approaches can give higher accuracy, if a precise
calibration of the camera is available. [73]

Another difference between SLAM methods is the differentiation between filter based approaches
and key-frame based approaches. Filter based approaches use an Extended Kalman Filter (EKF),
where the state vector contains the camera pose. as well as the locations of the tracked landmarks.
This means that filter based approaches become inefficient for high numbers of landmarks, as each
landmark has to be updated each iteration. [73] A solution to this problem is the Multi-State Con-
straint Kalman filter (MSCKF). [41] In this model, the landmarks are removed from the state vector
and instead, constraints on the motion of the camera are put into place. Now, the iterations are
performed efficiently despite the large number of landmarks.

The key-frame approaches split the two main tasks into separate threads. The first thread tracks the
pose of the camera, while the other thread generates a map of observed features. [33] This makes
the method very efficient. The camera pose and mapping tasks are dependent on each other. The
map is built up by triangulating the mapped features. [73]

The application determines which of the two types is best suited. Filter-based approaches are gen-
erally easier to implement and have more performance if the state vector is not too large or if MSCKF
is used. Key-frame approaches have typically higher accuracy but require more computational ef-
fort. Additionally, Key-frame approaches are less complicated to extend to collaborative situations.
The agents can send their key frames to a central server, where the global map is generated con-
stantly. Filter based approaches have the challenge of applying a single filter on different agents in
order to enable collaboration. [73]

2.4. vSLAM methods highlighted
Several open-source SLAM implementations exist, most notably ORB-SLAM2 [42]. Other SLAM
methods have been developed that focus on dynamic scenes, such as SLAMMOT [13] and Dy-
naSLAM 2 [7].

2.4.1. ORB-SLAM2
ORB-SLAM (and its successor ORB-SLAM2) is considered the most robust type of SLAM implemen-
tation. Its name derives from the fact that it uses the ORB feature detector. [53] ORB-SLAM2 features
a loop closing, map reuse and relocalization techniques. Bundle adjustment is used to refine the
generated 3D maps. Bundle adjustment uses nonlinear least squares solving to optimize the SfM
results. [73]

2.4.2. SLAMMOT
Most SLAM methods ignore the information of moving objects. However, some this information
can also be extracted and used for the tracking of objects. This type of SLAM is called Simultaneous
Localization, Mapping and Moving Object Tracking (SLAMMOT) [13]. SLAMMOT decomposes the
information of the gained features into two separate maps, the static and dynamic map.

2.4.3. DynaSLAM 2
Interestingly, SLAM methods suited for general dynamic environments have also been pursued. An
example is DynaSLAM 2 [7]. DynaSLAM 2 targets stereo and RGB-D platforms and uses the ORB
feature detector to detect and track features.
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2.5. Vision-based MAV detection methods
As presented in figure 2.1, the alternative to SLAM is using ‘direct’ detection techniques that focus
on detecting other MAVs instead of using information of features in the surroundings. This sec-
tion will elaborate on these techniques, first discussing the methods based on the use of markers.
Subsequently, the more advanced marker-less techniques are discussed.

2.5.1. Infrared markers
Infrared sensors were researched by Roberts [49] as a way for flying robots to collectively navigate
indoors. It operates using LEDs, called the marker, emitting infrared light at a given wavelength
and phototransistors receiving the signal on the same wavelength. [17] RGB-D sensors use this
infrared technique to calculate a depth map. An RGB-D sensor combines an RGB camera with an IR
projector and an IR camera, resulting in a depth map.

Similar to infrared sensors, Light Detection And Ranging (LIDAR) work similarly to infrared sensors
by using Time of Flight. It features a laser rotating along one axis at 30 Hz to 1kHz which simulta-
neously receives the emitted laser pulses. The time difference between departure and arrival, along
with phase information can be used for depth estimation. The advantage of LIDAR compared to
regular cameras is its reduced sensitivity to environmental factors and the ability of estimating ac-
curate depth information. On the other side, LIDAR requires more power, are heavy and large. Addi-
tionally, extra care has to be taken for operating with lasers safely in urban environments. Miniature
LIDARs have been developed to address these issues. However, currently miniature LIDARs suffer
from solar interference. [17]

Infrared sensors have the advantage of not requiring algorithms with a high computational load,
sensors or modifications to the environment. Additionally, varying indoor illumination does not
affect the operation of the infrared sensor. Unfortunately, the maximum range at which the infrared
markers can be detected is very limited (around 12m) [49]. The Field of View (FoV) of the sensors
are confined to a few degrees. Another major disadvantage of using infrared-based methods such as
the RGB-D sensor is interference with external sources of infrared. The RGB-D sensor is less robust
to natural light than standard stereo cameras and is therefore less suitable for outdoor use. Finally,
the total setup for infrared sensors used by Roberts [49] is heavy. The total system of sensors has a
mass of approximately 450g.

2.5.2. Ultraviolet markers
Walter et al. [61–64] researched an alternative to infrared markers, namely ultraviolet markers. Ul-
traviolet is harder to find in nature, which makes the detection of such active markers easier. It
features a higher accuracy compared to infrared sensors. By mounting the LEDs on the ends of the
rotor arms, one can use the relative orientation of the two LED spots in the image to estimate the
orientation of the MAV.

The number of pixels covered by the LED in the image determines the distance between the marker
and the observer. The range is however still limited. The LED spots in the image cover a single pixel
for large distances. This maximum range is determined by the resolution of the camera, radiation
intensity of the LED, sensor type and exposure rate.

2.5.3. Colored markers
Roelofsen et al. [50] has considered the use of non-active (passive) markers in the form of colored
balls attached to an MAV. Color segmentation is applied to detect the marker in the image. This
method as well reduces the complexity of the problem and makes the detection task much easier
compared to markerless solutions. By registering the amount of pixels of the sphere in the camera
image, a distance measurement can be estimated.
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2.5.4. Stereo vision
Stereo vision is the method of combining data from multiple cameras (typically two) to determine
per-pixel depth in an image. By matching every pixel in the left image to the same feature in the
right image, one can calculate the depth (the euclidian distance between the camera and the object)
using the offset of the pixel between the two images, called the disparity.

Stereo vision can be used as a method of detecting MAVs, as MAVs seem to be “floating” in the
air [12, 60]. In their work, the YOLOv2 network [46] is used to detect MAVs from stereo disparity
images. The YOLOv2 network has one convolutional neural network which puts bounding boxes
around objects. YOLOv2 can detect objects from more than 9000 object categories, which explains
its nickname YOLO9000, in real-time. It has been used for MAV detection in RGB images as well by
Aker and Kalkan [2]. Returning to the stereo vision method of Carrio et al., a synthetic dataset was
developed using Microsoft’s AirSim [55], which is a computer graphics tool based on Unreal Engine
4 that is focused on generating realistic graphics for robot simulations, as well as generating sensor
measurements.

2.6. Non-vision based MAV detection methods
Next to vision, measurements from various other sensors can be analyzed to detect MAVs. In this
section, sound and RADAR are elaborated.

2.6.1. Sound
Alternatively, acoustic signals can be used for detection of MAVs. Acoustic patterns of MAV sounds
should be analyzed in order to distinguish MAV sounds from sounds of other objects. Acoustic
analyses require information of current wind conditions. Also, this method may fail in environ-
ments with high background noise, such as cities. The advantages of this method are that it relies
on low-cost components and it can work outside line-of-sight conditions. [24] Microphones can
pick up sounds from all directions, whereas cameras have a limited FoV. Therefore, the aperture of
this method is larger than vision-based methods.

2.6.2. RADAR
Opposed to vision-based techniques and in line with acoustics methods, RAdio Detection And Rang-
ing (RADAR) is not affected by low visibility situations, such as fog, clouds etc. In general, it does
not require a LoS to other MAVs. Also, it does not need the MAV to transmit signals and higher fre-
quencies allow the use of Doppler effect. On the adversary, small MAVs are difficult to detect using
RADAR. Until now, not enough research has been put into the detection of multiple types of MAVs,
different RADAR geometries to achieve robust detection of these scenarios. [24]

2.7. Analysis of Relative Localization Methods
When considering non-SLAM based relative localization methods, the main differentiation is that
of using markers or not. Developing methods without markers, saves mass and volume [60].

2.8. Communication
Crucial in collaborative relative localization techniques is the communication between agents. This
is typically done using radio waves. MAVs can communicate using different technologies. The major
forms of communication include the IEEE 802.11 standard and the XBee-Pro platforms. The latency
of IEEE 802.11 varies significantly during operation from 2ms to 270ms. The latency of XBee-Pro
is more robust at around 10ms. However, IEEE 802.11 has a much larger bandwidth of 11 to 54
Mb/s compared to 250kb/s in the case of XBee-PRO. [3] In the optimal case, a combination of XBee-
Pro and IEEE 802.11 would be used, to combine the advantages of both platforms, namely the low
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latency of XBee-Pro and the high throughput of IEEE 802.11.



3
Optical Flow

Optical flow is a widely used approach for the tracking of features. The optical flow often represents
the physical velocity of an image, projected onto the camera image. Optical flow can be imple-
mented in many different forms. The methods are mostly differentiated by one characteristic: It is
either based on the tracking of a set of features (sparse optical flow) or determine optical flow for
every pixel, or blocks of pixels, in the frame (dense optical flow. [34] The first person to describe op-
tical flow was Gibson [23]. One needs a distance measurement to be able to calculate velocity. [14]
In the next section will be explained why optical flow was chosen as the method to detect MAVs.

3.1. Why optical flow?
Optical flow has multiple advantages over its alternative vision-based methods, such as appearance-
based neural networks. Firstly, according to Li et al. [36] MAVs could be detected in situations
where they were barely distinguishable for the human eye due to background clutter and their size.
Additionally, optical flow based methods are less dependent on shapes and appearances of MAVs
compared to other methods. [36] Moreover, neural networks typically use an input format with
a certain (relatively low) image resolution, such as 800 x 600. Higher resolutions require higher
computational effort and retraining of the network. Optical flow methods do not suffer from this
constraint. Finally, optical flow has hypothetically relatively large maximum range compared to
active markers. But this points to one of the research questions of this project.

A major drawback of optical flow is the computational effort that is required. Especially dense op-
tical flow methods face a large challenge when attempted to run in real-time. Additionally, optical
flow-based detection assumes the target has different motion compared to the background. Other-
wise, the output is zero and other methods such as appearance-based methods have to be applied.

3.2. Interpretation of Optical Flow
The interpretation of optical flow has been studied by Longuet and Prazdny. [38] The most impor-
tant notion in this paper is the fact that flow can be split into a translational and a rotational part.
In equation 3.1, the equations describing the optic flow vectors in the image plane (u and v) are de-
scribed, where U, V and W represent the translational velocities, A, B and C represent the rotational
rates and the inertial coordinates in the physical world are X, Y and Z. As can be seen, the transla-
tional part depending on U, V and W can be split into uT and the rotational part depending on A, B
and C can be substituted by uR .

25
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The Focus of Expansion (FoE) is the point inside or outside the image where the optical flow has
zero magnitude. Using the FoE, one can estimate the direction of movement of the camera. Setting
uT = uR = 0 in equation 3.1, one obtains:

xFoE

yFoE
= U

V
(3.2)

Another observation can be made: The Time-To-Contact (TTC), which is given by Z
W . This yields a

measure of time that can be used to determine whether a collision is about to happen. An example
of TTC calculation for MAVs was presented by de Croon et al. [16]. In their work, the FoE is not cal-
culated, as errors in the location of the FoE lead to large errors in the results. Instead, the parameters
of the optical flow field are determined directly.

3.3. Implementations of Optical Flow
Currently, various methods of calculating optical flow exist. Most important measures of optical
flow approaches are their accuracy and computational effort. In this section, the approaches will be
discussed in order of rising accuracy. Different approaches are

3.3.1. Traditional approaches
Lucas-Kanade
Lucas-Kanade optical flow [39] is a very popular type of optical flow and is typically used as a sparse
form of optical flow. It matches a certain sub-region, for instance a block of three by three pixels, nu-
merically from the current frame in the next frame. This template is warped using a transformation
back into the original image. This transformation can be simply a rotation or an affine transfor-
mation. The objective of Lucas-Kanade is to minimize the sum of the squared errors between the
template and the warped image. The warp is calculating using interpolation between the pixels. [5]

Lucas-Kanade must rely on a feature detector. The most popular feature detectors include Harris
[25], FAST [59] and Shi-Tomasi [29]. Scale Invariant Feature Transform (SIFT) is a method which
robustly handles arbitrary transformations of features between frames. It has a lightweight variant
called Speeded Up Robust Features (SURF) [6]. A method that combines the methods of FAST and
BRIEF is Oriented FAST and Rotated BRIEF (ORB) [53]. ORB has a better performance than SIFT
and SURF and is more than 100 times faster than SIFT. [53]

Farnebäck
Farnebäck [20] introduces a dense optical flow method. In various research papers, Farnebäck was
proven to outperform Lucas-Kanade. [8, 15, 22] The method of Farnebäck consists of two steps. In
the first step, all block of pixels are fitted by quadratic polynomials. The second step involves the
estimation of displacement fields from polynomial approximations.

LDOF
Brox [8, 9] optical flow has a higher accuracy compared to Farnebäck, as proven in the work from
Brox et al. Brox et al.’s Large Displacement Optical Flow (LDOF) method
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LLUVIA
A very high performance open source optical flow implementation is LLUVIA [1]. It takes approx-
imately 1ms to process an image of 1016x544 pixels on a GTX-1080 GPU. It uses the Vulkan API,
enabling support for a wide range of hardware configurations, in contrast to many approaches that
rely on the proprietary CUDA software, which needs an Nvidia GPU to operate. An alternative is
OpenCL, which is the open-source counterpart of CUDA. OpenCL is, however, slowly adapted by
the industry and it is difficult to develop for a wide range of hardware. Vulkan gives more control
to the developer than its predecessor OpenGL, meaning at the same time that the developer has to
write more fundamental code. Most importantly, it is rapidly adopted by the major GPU manufac-
turers, as the industry has a large need for very efficient GPU drivers. The method of LLUVIA uses a
filter-based approach.

3.3.2. Neural networks
Neural networks are becoming increasingly popular over the years in numerous research fields.
Computer vision is one of the main fields. Neural networks consist of layers connected by nodes
in which each node has a certain weight. These weights form the information stored in the network.
The layers connect the input to the output of the network. The weights are unknown and have to
be determined by a process called training. For each node, the activation function determines the
output of the node given the input. The weights determine the shape of the activation functions.
The performance of a neural network is defined by a squared cost function. Using gradient descent,
the back propagation method attempts to minimize the cost function by slowly improving each
weight in the network. Gradient descent is an optimization method that tries to find the (preferably
global) minimum of a function by analyzing the gradient at its current input of the function. Other
optimization methods include branch and bound, single step solvers, dual ascent etc.

An important disadvantage of neural networks is that they are certainly not a black box model. The
weights and nodes have no physical meaning and the training process is arbitrary. There is no real
connection between the model and its physical representation. Additionally, neural networks can
require immense amounts of computational power. On the contrary, a benefit of using neural net-
works is that they can fit any complex dataset, however scattered or nonlinear it may be.

An upcoming technique for calculating dense flow is by the use of neural networks. The first neural
network that could learn to apply optical flow using an artifical dataset was FlowNet. [28] FlowNet
makes use of a Convolutional Neural Network (CNN) for estimating a dense optical flow field. The
disadvantage of this method, is that it cannot accurately calculate small flows. This is interesting,
as conventional optical flow methods have little difficulty with small motions compared to large
motions. FlowNet has a successor called FlowNet 2.0, which stacks the FlowNetS and FlowNetC ar-
chitectures as a deeper network. Additionally, it adds a network that works in parallel and handles
small flow vectors. Alternatively, DeepFlow [67] uses Deep Matching to match patches in images
instead of learning. The most relevant types of neural-network based optical flow methods are pre-
sented in table 3.1, benchmarked with the MPI-Sintel dataset [28].

Note however, that neural network-based approaches for calculating optical flow, especially FlowNet2,
can be very sensitive to attacks, where a certain pattern spanning less than 1% can disrupt a large
part of the image. [45] A patch of 0.1% can disrupt a FlowNetC network by increasing the error by
100%. A patch of 4.5% of the image size can increase the flow error by 555%.

FlowNet2 has a more lightweight version with a higher runtime of around 2.2 times faster, but at the
same time also a higher accuracy, called LiteFlowNet3. Additionally, LiteFlowNet3 has only 5.2 M
parameters compared to the 160M parameters of FlowNet2. [26]

An open-source optical flow framework created by Microsoft called MaskFlownet [71] achieves ex-
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cellent results in the MPI Sintel and KITTI benchmarks, respectively third and fifth. These results
are achieved by taking occlusion into account.

Table 3.1: Characteristics of a relevant optical flow methods. Taken from the KITTI benchmark. [22] The density of the
methods is always 100.00% except for Lucas-Kanade, where it is 99.90%. The programming languages are: C = C/C++, P =
Python, M = Matlab.

Method Out-Noc Out-All Avg-Noc Avg-All Runtime Environment
MaskFlownet [71] 2.07 % 4.82 % 0.6 px 1.1 px 0.06 s TITAN Xp

LiteFlowNet3-S [26] 2.49 % 5.91 % 0.7 px 1.3 px 0.07s GTX 1080
LiteFlowNet3 [26] 2.51 % 5.90 % 0.7 px 1.3 px 0.07s GTX 1080
LiteFlowNet2 [27] 2.63 % 6.16 % 0.7 px 1.4 px 0.0486 s GTX 1080

FlowNet2 [28] 4.82 % 8.80 % 1.0 px 1.8 px 0.1 s GPU @ 2.5 Ghz (C)
DeepFlow2 [48] 6.61 % 17.35 % 1.4 px 5.3 px 22 s 1 core @ >3.5 Ghz (C)
DeepFlow [67] 7.22 % 17.79 % 1.5 px 5.8 px 17 s 1 core @ 3.6Ghz (P)
EpicFlow [47] 7.88 % 17.08 % 1.5 px 3.8 px 15 s 1 core @ 3.6 Ghz (C)

LDOF [9] 21.93 % 31.39 % 5.6 px 12.4 px 1 min 1 core @ 2.5 Ghz (C)
PolyExpand [20] 47.59 % 54.00 % 17.3 px 25.3 px 1 s 1 core @ 2.5 Ghz (C)
Pyramid-LK [39] 65.81 % 70.16 % 21.8 px 33.2 px 1.5 min 1 core @ 2.5 Ghz (M)

(a) Source (b) FlowFields [4] (c) DeepFlow [67] (d) LDOF [9] (e) PCA-Flow [68] (f) FlowNetS [28] (g) FlowNet2 [28]

Figure 3.1: Results of various open-source optical flow methods. The runtime is displayed in the upper right corner. ‘Noc’
means no occlusion. Figure taken from Ilg et al. [28].
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Moving object detection

The vision-based detection of MAVs in a swarm is still a challenge. [14] The algorithm has to be
able to detect MAVs at various orientations, velocities and shapes. Additionally, imperfect lighting
conditions pose extra challenges on the detection task. In existing literature, two main methods
exist of detecting moving objects from a moving camera. The first one is based on the appearance
of the MAV. Typically, neural networks are used to detect MAVs based on their appearance. [51] Haar
models can be used as well, but give a lower accuracy. In return, Haar cascade models have do not
require the availability of a GPU, require less computational effort and have a higher easy of use
compared to neural networks. [44] In this chapter, both optical flow and machine learning methods
will be discussed, along with their advantages and disadvantages.

An advantage of using vision for the detection of MAVs, is that drones can be detected that do not
have Radio Frequency (RF) transmission. Moreover, optical sensors are typically cheap and have
very high angular resolution. [24] A major disadvantage of vision-based detection of MAVs and
other objects, is that it needs a line-of-sight (LoS) between the observer and the object that is to
be detected. This LoS assumption can be broken in situations where visibility is limited due to fog
or clouds, when occlusion takes place and the objects is (partially) hidden behind another object,
when the MAV is outside the FoV of the camera or during night-time. Radar-based methods can
greatly overcome this problem. However, radar-based methods suffer from the challenge of detect-
ing small objects, because their radar cross-section is very small. [24]

4.1. Optical Flow
To our current knowledge, the research done by Li et al. [36] is the only work using purely opti-
cal flow without artificial neural networks for the detection of MAVs. With their method, they were
able to detect other MAVs, even when they were barely visible because of their size and the clut-
tered background. It has approximately the same detection accuracy (87%) as appearance-based
neural networks applied to MAV detection (maximum accuracy of approximately 90%). [2, 58] The
method of Li is based on a combination of background subtraction and Lucas-Kanade optical flow.
The background subtraction process assumes that the tracked objects have very different motion
compared to the background. If the motion difference is larger than a certain threshold, the object
is pruned and these points are clustered.

4.2. Appearance-based MAV detection using neural networks
In line with its rise in a wide range of research fields, machine learning is now applied to the problem
of detecting MAVs in an image based on their appearance. As explained by Taha and Shoufan [58],
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openly accessible datasets in this research area are hard to find. The papers written in this research
domain typically fail to provide the maximum range of their method at which MAVs could still be
detected. Typically, the device used and the type of drone are also neglected in their papers.

YOLO9000 [35] is a commonly used neural network model for detecting objects in images. The
YOLO9000 network has one convolutional neural network which puts bounding boxes around ob-
jects. YOLOv2 can in real-time detect objects from more than 9000 object categories, which explains
its nickname YOLO9000. It has been used for MAV detection in RGB images as well by Aker and
Kalkan [2].

4.3. Hybrid methods
Advanced methods combine the advantages of both neural networks segmentation models and op-
tical flow methods, effectively combining motion and appearance information. The authors of [51]
apply this strategy. The main advantage of hybrid method is that they do not suffer from the situa-
tion in which targets become smaller, resulting in unreliable optical flow estimates. ClusterNet [35]
also combines appearance and motion information. Yoshihashi et al. [69] introduce a Recurrent
Correlation Network

4.4. Background subtraction
Next to optical flow, a commonly used method of detecting moving objects is the method of back-
ground subtraction. By calculating a geometric model of the pose difference between frames, one
can exclude the features or pixels that do not conform this model. One technique for removing out-
liers is the use of RANdom SAmple Consensus (RANSAC) [21]. Alternatively, the camera ego-motion
can be estimated using an inertial measurement unit (IMU). [54]

The Mixture of Gaussians 2 (MOG2) [72] method is an efficient background subtraction method that
revolves around a Gaussian Mixture Model (GMM). MOG2 models each background pixel using a
set of Gaussian distributions. The weights of this set correspond to the durations for which these
pixels remain inside the scene. The background pixels are those that stay longer at the same lo-
cation. MOG2 slightly improves its accuracy compared to the original MOG, but greatly improves
processing time and is more robust to illumination changes.

4.5. Datasets
To avoid spending large amounts of time on creating a dataset and to be able to compare the method
with other methods in literature, existing datasets were sought. As explained by Taha and Shoufan
[58], openly accessible datasets in this research area are hard to find. Most datasets focus on the
usage of neural networks and provide separate images that are uncorrelated with each other and
can therefore not be used. Instead, video feeds are necessary, where each frame follows the previous
frame by a few milliseconds, such that optical flow can be enabled.

A dataset with videos taken from an MAV of other MAVs is the one from Rozantsev [52]. This dataset
provides greyscale videos of drones and planes. It is a challenging dataset, because of the relatively
low resolution of around 752x480 pixels, as well as high brightness changes and motion blur in the
drones category of videos.

A dataset that focuses on the detection of MAVs in order to improve security and defense in the
public domain has been created by Zhao1. The dataset provides RGB, as well as (thermal) IR videos.
However, the dataset provides videos in which the target MAV is already centered in the image
frames and the background is very uniform, making the MAVs easy to detect. Thus, the dataset

1See: https://github.com/ZhaoJ9014/Anti-UAV
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is not very representative for real-world situations relevant to this project. Li et al. [37] created a
dataset to estimate the positions of MAVs from multiple cameras. The cameras are positioned stati-
cally, which makes the detection task less challenging. Therefore, it is suitable for early stage testing
of detection algorithms, but less realistic for real-world situations.

Pawelczyk et al. [44] created a dataset for which they collected hundreds of YouTube videos con-
taining MAVs and videos without MAVs. Unfortunately, the dataset cannot be downloaded, there is
a corresponding issue on the GitHub repository. Similarly, an MSc thesis focusing on drone detec-
tion using machine learning [57] provides a dataset with RGB and IR real-world videos of airplanes,
birds, MAVs and helicopters. Except for the helicopter videos, all videos are obtained from a camera
that is not moving. The videos are 640 × 512 pixels in resolution and have associated masks.

A popular dataset with video feeds taken from a camera mounted on various MAVs is created by
Zhu et al. called VisDrone2018 [70, 71]. Unfortunately, the dataset has no videos containing other
MAVs in the video feeds. However, it features a large set of videos taken from different situations,
with (relatively) small objects such as cars, pedestrians present in the video feeds. It can therefore
still based as a more general dataset for object detection or for background subtraction.

Walter et al. [64] automatically created a dataset called MIDGARD in which other MAVs in the video
feeds are annotated by the use of UV sensors. By marking the other drone with two UV markers
and filtering this data using a Kalman Filter, the estimated position of the MAV can be reprojected
into the camera image and subsequently, the MAV can be annotated. The project is focused towards
machine learning applications, but is also very useful for optical flow methods.

A typically used dataset for optical flow is the MPI Sintel dataset [10]. In this dataset, different scenes
are rendered using different rendering settings. Each higher render setting contains more render
passes, therefore increasing the realism of the scene. The albedo pass only represents meshes with-
out shading. The clean pass includes basic shading and specular reflections (reflection where the
strength is based on the direction of light and the normal of the surface). The final pass includes
motion blur, depth of field, atmospheric effects etc. An alternative to the MPI Sintel dataset is the
FlyingThings3D dataset [40]. This dataset is a popular artificial dataset for training neural networks
in computer vision. Another alternative to the two aforementioned datasets is KITTI [22]. KITTI is a
more diverse dataset that can be used for optical flow and visual odometry is KITTI. KITTI is widely
used in these fields.





5
State estimation

State estimation is needed because system and measurement noise introduce biased estimates for
the states and therefore cause biased estimators and thus reduce the accuracy of the models. Addi-
tionally, not all states can be measured but have to be calculated based on the data of other sensors.
Finally, sensor fusion improves the accuracy of the estimates by combining the data of multiple
sensors.

5.1. Kalman Filter
Kalman filtering [32] is a recursive state estimation technique in which, for each timestep, the state
is estimated using a weighted average between a prediction of the state in the next timestep and a
set of measurements. The Kalman gain determines whether the prediction has more effect on the
estimation or whether the measurements determine the new estimation. The Kalman Filter is an
optimal filter. Unfortunately, it only applies to linear systems. However, in line with most natural
processes, the dynamics of an MAV are highly nonlinear. Therefore, the standard Kalman Filter
cannot be used to estimate the states of this problem.

5.1.1. Extended Kalman Filter
As an extension of the original Kalman Filter, the Extended Kalman Filter [30] enables the Kalman
Filter for use in non-linear systems. The EKF achieves this by linearizing the system locally in the
vicinity of the current state estimation. This is done by calculating the jacobians of the transition
and output matrices. The EKF is, however, not an optimal filter and is therefore not guaranteed to
converge.

~x(t ) state vector of dimension n F(t ) System matrix (n×n)
~x0 initial state B(t ) Input matrix (n×m)
~u(t ) control input vector of dimension m G(t ) System noise input matrix (n×m)
~w(t ) system noise vector of dimension m H(t ) Observation matrix (m×n)
~v(t ) measurement noise vector of dimension p D(t ) Feedforward matrix (p×m)

Table 5.1: Vectors and matrices used in the Kalman Filter.

Nnote that the D matrix has to be zero for Kalman Filtering. Using the ~x, ~u, ~z vectors, along with
the matrices F, B, G, H and D, and the noise vectors ~v , ~w , the complete continuous system can be
described as follows:

~̇x = F (t )~x(t )+B(t )~u(t )+G(t )~w(t )

~z = H(t )~x(t )+D(t )~u(t )+~v(t )
(5.1)
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This system can be discretized, which is needed for computing the system on a computer, yielding:

~xk+1 =Φk+1,k~xk +Ψk+1,k ~uk +Γk+1,k ~wd ,k

~z = Hk+1~xk+1 +Dk+1~uk+1 +~vk+1
(5.2)

The measured data is calculated as follows:

~z(t ) =~h(~x(t ),~u(t ), t )+~v(t ) (5.3)

The Extended Kalman Filter executes mainly seven steps for each timestep. The first step is to cal-
culate the one-step ahead prediction. This is done by integrating the function ~f (~x,~u) from time k to
k+1, as such:

~xk+1,k =~xk+1,k +
∫ tk+1

tk

~f (~xk,k ,~uk , t )d t (5.4)

When using this equation numerically on a computer, the integral becomes a summation.

The collection of these equations describe the vector function f (~x(t ),~u(t ), t ). The jacobian of f (~x(t ),~u(t ), t )
is called F (~x(t ),~u(t ), t ). Similarly, the jacobian of h(~x(t ),~u(t ), t ) is called H(~x(t ),~u(t ), t ). So:

F (~x(t ),~u(t ), t ) = ∂~x f (~x(t ),~u(t ), t )

H(~x(t ),~u(t ), t ) = ∂~x h(~x(t ),~u(t ), t )
(5.5)

The second step calculates the jacobians F and H as stated in equation 5.5. The third step discretizes
the system into the Φ and Γ matrices. The fourth step calculates the covariance matrix of state
prediction error (Pk+1,k ), using:

Pk+1,k =Φk+1,k Pk,kΦ
T
k+1,k +Γk+1,kQΓk+1,k (5.6)

The third step determines the Kalman Gain:

Kk+1 = Pk+1,k H T (HPk+1,k H T +Rk+1)−1 (5.7)

The fourth step updates the measurement according to the calculated Kalman gain:

~xk+1,k+1 =~xk+1,k +Kk+1(zk+1 −~h(~xk+1,k ,~uk+1)) (5.8)

Finally, the fifth step calculates the covariance matrix of state estimation error (Pk+1,k+1):

Pk+1,k+1 = (In −Kk+1H)Pk+1,k (5.9)

This process is repeated for all timesteps.

5.1.2. Unscented Kalman Filter
An alternative to the Extended Kalman Filter is the Unscented Kalman Filter (UKF) as introduced
by Julier and Uhlmann [30]. The difference between the UKF and EKF is that the UKF addresses
approximation problems of the EKF. In the EKF, the state distribution is modeled by a Gaussian
Random Variable (GRV) to which a first order linearization is applied. This first order approxima-
tion can produce large errors in the mean and covariance of the calculated output. This results in
performance and divergence issues. The UKF solves this problem by sampling the state distribution
using multiple (2N +1, with N the number of dimensions) sample points. This estimates the mean
and covariance up to the third order of a Taylor expansion. The computational effort required by
the UKF is comparable to that of the EKF. Another advantage of the UKF over the EKF is that no
calculation of the Jacobians or Hessians are required. [65]
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Figure 5.1: The Unscented Transform. Source: Wan et al. [65]

5.2. Covariance Intersection
The Kalman Filter and Extended Kalman Filter assume that the correlations between and among the
state estimates and measurements are uncorrelated. However, in a large number of applications,
this assumption does not hold. The covariance intersection (CI) technique proposed by Julier and
Uhlmann [31] solves this problem.

Taking two variables, A and B, for example measurements and assuming they are to be fused to-
gether to form C. The means are denoted â, b̂ and ĉ. The covariances are denoted A, B and C. The
properties ĉ and C can be calculated via equation 5.10. [31]

C−1 =ωA−1 + (1−ω)B−1

ĉ = C
(
ωA−1â + (1−ω)B−1b̂

) (5.10)

Now, the equation xT P−1x = 1 gives two covariance ellipses for A and B. Using the equation 5.10,
the updated covariance ellipse is located inside the region of intersection of the covariance ellipses
A and B. ω chooses which ellipse is selected as update. ω has to be chosen by optimizing a crite-
rion of uncertainty, such as |C|. The difference between the ellipses corresponding to Covariance
Intersection and the original Kalman covariance ellipses are shown in figure 5.2.

Using CI for SLAM, one can save 100 times less storage and computational costs, while having a less
than three times larger standard deviation. Therefore, the performance gain of utilizing the cross co-
variance information between A and B is much smaller compared to the quantity of computational
resources that is required.
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Figure 5.2: Covariance Intersection. Source: Wan et al. [65]



6
Preliminary Results

This chapter presents the preliminary results obtained during the literature study. These results
act as a first feasibility check for optical flow based moving object detection. In order to find a
proper MAV detection algorithm based on optical flow, first the optimal OF method has to be found.
Therefore, Lucas-Kanade and Farnebäck were analyzed.

6.1. Comparison between various optical flow methods
In figure 6.1, different optical flow methods are applied to the dataset of Li et al. [37]. Specifically,
camera 1 (cam1) from dataset 2 is used. The videos are taken from a static camera and focus on an
MAV that is moving. Qualitatively speaking, FlowNet performs the best as area of flow matches the
real flow more accurately than Farnebäck and LLUVIA. Farnebäck and LLUVIA indicate a greater
area of flow around the MAV than is physically there. Moreover, LLUVIA generates flow in parts of
the image where there is no optical flow which results in noise. Lucas-Kanade only tracks a low
number of features on the MAV and therefore is less accurate. FlowNet2 performs best of these four
methods in KITTI [22] and MPI-Sintel [68] benchmarks as well, so it is not surprising that applies
here as well.
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(a) Original frame.

(b) Lucas-Kanade. (c) Farnebäck.

(d) LLUVIA. (e) FlowNet 2.0.

Figure 6.1: Different types of optical flow used to detect MAVs. Dataset: [37].
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6.2. FlowNet2 applied to the MIDGARD dataset
As FlowNet2 showed most potential, this method will be investigated in more detail. In figure 6.2,
FlowNet2.0 is applied to the MIDGARD dataset [64]. Specifically, the warehouse-transition scenario
of the indoor-modern folder is used. In this case, the images are taken from an MAV and have one or
more MAVs in their FoV. Both the observing and the observed MAVs are flying and in motion. Using
the input images shown in a and b, one obtains a optical flow image in which the MAV is clearly
visible and easy to detect using a proper moving object detection algorithm focused on detecting
MAVs. In figure 6.3, the optical flow image clearly makes the MAV more distinguishable. In the
original two input frames, the MAV is hard to recognize due to the low illumination and low contrast
relative to the background. However, the optical flow output successfully yields the different flow of
the MAV compared to the background pixels. Unfortunately, in a high number of input frames, the
MAV has little motion in the image and therefore the output of FlowNet2 does not clearly visualize
the MAV, as can be seen in figure 6.4. This could be solved by combing the optical flow detection
method with appearance based object detectors or by taking information of the previous frames
into account and assuming that if there is no flow, the MAV remains at the same position in the
image.

(a) Input image 1. (b) Input image 2. (c) FlowNet2 output image.

Figure 6.2: Situation in which works succesfully in terms of highlighting the MAV. Dataset: MIDGARD [64].

(a) Input image 1. (b) Input image 2. (c) FlowNet2 output image.

Figure 6.3: Situation in which the MAV is poorly recognizable in the original frames, but much easier to detect in the
output of Flownet2. Dataset: MIDGARD [64].

(a) Input image 1. (b) Input image 2. (c) FlowNet2 output image.

Figure 6.4: Situation in which the MAV is not moving compared to the camera and the MAV is unrecognizable in the
output of Flownet2. Dataset: MIDGARD [64].
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6.3. Background subtraction using Focus of Expansion
A method of subtracting the background from an image was explored by use of Lucas-Kanade opti-
cal flow. First, approximately 2000 features are detected and tracked. If there are less than 1000 fea-
tures, new features will be detected and tracked. The total flow per features for around ten frames
is considered to increase robustness. Now, if the camera moves, the intersection of all tracks of the
static features is a single point called the Focus of Expansion (FoE). The features that do move in
physical space will, generally speaking, not point towards the FoE. These features can be extracted
as the dynamic features. The FoE is calculated by taking for each track a random other track and
calculating the point of intersection. The FoE is then the median of all intersection x and y val-
ues. RANSAC could be used as a more sophisticated method of removing outliers. In figure 6.5, the
method is presented where the green lines are static feature tracks and the red lines are dynamic
feature tracks. The FoE is the red dot in the center of the image. Therefore, in this case, the camera
is moving forward.

Figure 6.5: Dynamic feature detection using Lucas-Kanade optical flow. The red dot is the calculated FoE. Green lines
represent the flow of static features, red lines those of dynamic features. Dataset: VisDrone [70, 71].
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Proposed method

This chapter describes the method that is selected for the thesis work after the literature study. In the
next section, the use case is described. Furthermore, the research objective and research questions
are explained.

7.1. Use case
This project focuses mainly on navigation for swarms in GPS-denied environments. In this context,
an MAV will be considered to be a quadcopter, as it is the most popular type of MAV and most
datasets are focused on this type of MAV. Different types of formations can be explored. in which
MAVs have to be detected. The formation of MAVs can either be: one MAV (MAV A) on top of other
MAVs, where MAV A has a camera with a field of view that spans the other MAVs (see figure 7.1).
Alternatively, all MAVs can fly side-by-side, with cameras pointing horizontally towards each other
or only downward facing cameras that partially overlap per MAV.

The use case of this research is that swarms can be investigated as a faster, more persistent and
possibly less expensive way to conduct ISR missions. ISR missions aim to search areas for possible
hostile or neutral objects relevant before entering the area. The operational scope will be land-based
operations, where areas from 1x1km up to 10x10km are searched.

(a) Horizontal formation. (b) Vertical formation.

Figure 7.1: Different formations for MAV swarms. The diagonal lines represent the FoV of the cameras mounted on the
MAVs.

7.2. Research objective
The main research objective of this thesis is to detect MAVs using optical flow, in order to perform
relative localization of MAVs in a swarm.

This objective is aimed at improving the current existing methods of vision-based MAV detection,
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specifically those that involve optical flow. First, the most suitable and best performing optical flow
method will be determined using simple scripts. This optical flow method will be analyzed in the
context of MAV detection. This includes analyzing the cases where the method works well, but also
analyzing its weaknesses, for instance in cases with little motion. Now, the method can be optimized
for MAV detection instead of moving object detection in general. Using the datasets that are openly
available, the method will be tested for its effectiveness and accuracy. If proven useful, the optical
flow-based method can be combined with neural networks aimed at appearance-based detection,
which hopefully increases the accuracy of the method with a trade-off in computational complexity.
Experiments will be conducted to assess the accuracy of the detection method in real-life situations.

7.3. Research questions
The main research question for the research, which is based on the literature, is posed as follows:

“How effective is the use of optical flow, obtained with a monocular camera, when used
to detect other MAVs?”

The sub research questions are:

1. What is the maximum range at which optical flow can be used to detect MAVs of a given size?

2. How can one use background subtraction, combined with other sensor data, to improve the
MAV positions?

3. What is the optimum in the trade-off of accuracy vs. total computational effort per MAV?

4. Which kind of (lateral) formation is optimal for the optical flow detection technique for MAVs?

7.4. Measures of performance
As this research is mainly focused around the detection of MAVs, the main objective is to develop an
algorithm that has very few false positives (FP) and a relatively high number of true positives (TP),
as well as few false negatives (FN). By plotting the TP / FP ratio for different parameters, such as a
threshold, one hopes to find a very high curvature in this figure, meaning that for a low number of
FP, a large number of TP is found. Furthermore, recall and precision are often used as evaluation
metrics, where the precision is T P

T P+F P and the recall is T P
T P+F N . Ideally, both precision and recall

should be one. For the state estimation part, the goal is to have a very small Root Mean Squared
Error (RMSE) in the position estimation.



8
Conclusion

This report has given an overview of the existing literature in the domain of vision-based relative
localization. The different methods of relative localization are discussed, including marker-based
and markerless detections of MAVs, as well as SLAM. Various classical and modern state-of-the-art
optical flow approaches are explained, along with their respective advantages and disadvantages.

This project attempts to improve relative localization of MAVs in GPS-denied situations. In litera-
ture, remarkably little research has been put into detection of MAVs using optical flow. Therefore,
this project aims to apply optical flow to the problem of MAV detection in video feeds. After all, ex-
isting literature has shown that combining motion data with appearance information can improve
the detection of small moving objects.

Other methods of relative localization involve the use of markers. These markers can make the
detection of MAVs easier, as the target has a much more distinct appearance compared to the back-
ground. These markers can operate in the visual range of the spectrum, but can also be based on
infrared or ultraviolet LEDs. Especially ultraviolet is not very common in nature and therefore is
suited for the task of detection. However, markers form an extra requirement on MAVs and require
the MAV to carry extra weight and reduce the space available on the MAV. Additionally, and more
importantly in the case of large MAVs, LEDs are hard to detect on large distances (>15m).

Because of this relatively small maximum distance, markerless approaches were considered in this
project. Markerless approaches include neural networks that detect MAVs based on appearance,
optical flow based methods and stereo vision methods. Although stereo vision can perform detec-
tions of larger distances and yields a wide range of information, it requires more sensors and has
(yet) a relatively large amount of false negatives.

To reduce the time spent on generating a dataset, various datasets were explored and analyzed.
However, as pointed out in literature, a low amount of high-quality datasets currently exist that
can be used for vision-based MAV detection. The datasets that are best suited for this project are
MIDGARD [64], the work by Li et al. [37] and the dataset used for the MSc thesis of Svanstrom [57].

State estimation can be used for drones to calculate the states of an MAV given accelerometer in-
puts. Additional sensors, such as gyroscopes, barometers, magnetometers and cameras are also
often available on MAVs. Kalman Filtering is a form of state estimation. The most suitable Kalman
Filter would be the Unscented Kalman Filter, because of its non-linear nature, accuracy and be-
cause it does not need the calculation of Jacobian or Hessian matrices. Covariance Intersection can
be applied to avoid the problems of correlated measurements.
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Based on benchmarks in literature and preliminary results, neural networks such as FlowNet2 prove
to be the most promising method of obtaining optical flow. However, it is common that the flow in
an image is of low magnitude and therefore it is hard to detect an MAV using optical flow. This could
be solved by combing the optical flow detection method with appearance based object detectors or
by taking information of the previous frames into account and assuming that if there is no flow, the
MAV remains at the same position in the image.

The proposed method for the thesis work follows from the preliminary results. The main research
objective of the thesis is to detect MAVs using optical flow, in order to perform relative localization of
MAVs in a swarm. This objective is aimed at improving the current existing methods of vision-based
MAV detection, specifically those that involve optical flow. In the next chapter, a more detailed
description of the future work and planning of the thesis will be given.



9
Planning

This chapter describes the planning of the literature study and thesis. In figure 9.1, the planning is
presented using a Gantt diagram. The planning is based on the research objectives introduced in
section 7.2.

9.1. Developing and optimizing the MAV detection method
First, the MAV detection algorithm as introduced in the preliminary results will be further devel-
oped. The neural network will be used and trained specifically for the detection of MAVs, in partic-
ular quadrotors. Furthermore, this detection method will be validated using the datasets given in
chapter 4.

The optical flow detection will be optimized to achieve better performances (computationally-wise)
and accuracies. One example of optimization is the combination of optical flow with appearance-
based object detection, which can hopefully increase the accuracy of the detections. Additionally,
background subtraction is expected to yield better results.

9.2. Experiments
After the development of the detection method, experiments will be conducted in order to prove
the robustness in real-life situations. Using cameras mounted on octocopters, other MAVs inside
the FoV of these cameras will be attempted to detect using the developed method. Whether the
algorithm can be run onboard the MAV during the experiment or not depends on the practical lim-
itations of the setup of the experiments and whether the method is computationally fast enough to
run onboard the MAVs.

9.3. State estimation
If there is enough time, state estimation will be applied to perform full relative localization, but
in principle this project focuses on MAV detection. Around the same time as the conduction of
the experiments, state estimation will be applied to the detection approach to provide a relative
localization method. This will complete the relative localization aspect of the method, where state
estimation is expected to yield the relative position of other MAVs given the position of the observing
MAV. The state estimation step essentially transforms the 2D image coordinates of the detected MAV
(in the video feed) to 3D inertial coordinates in the physical world. By combining IMU data using
sensor fusion, one can (in theory) create a robust relative localization method.
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Figure 9.1: Gantt diagram representing the planning of the thesis.
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A
Recommendations

In the paper, some recommendations were suggested. In this section, these recommendations are
explained in more detail. Additionally, some recommendations are added that are not in the paper.

An aspect that is not covered by the paper is how to perform relative localization. To perform relative
localization, two steps have to be added to the pipeline. Firstly, the drones have to be distinguished
from the other moving objects. This would have to be performed by the use of an appearance-based
method, such as template matching or an appearance-based neural network, depending on the
use case. Secondly, to estimate the 3D position of the other drones, not only the direction towards
the other drones is needed, but also a measure of distance, for instance by the use of range-based
methods. However, these signals can be jammed or spoofed, similar to GPS signals in a GPS-denied
environment. An alternative could be to estimate the depth using a monocular depth estimating
neural network.

To enable real-time onboard execution of the object detection method on drones, the algorithm has
to be made more efficient. FlowNet2 runs on approximately 1.7 Hz on an RTX 2070 for 1920x1024
images. This would be too slow to use in real-time on MAVs themselves. Therefore, the resolution
has to be reduced and/or a smaller neural network must be used. The efficiency of the algorithm
itself can be improved by porting the code from Python to C++ and making use of multithreading.

To improve the performance of the object detector, a neural network can be trained on images of
κ. This neural network will possibly be more accurate at distinguishing moving objects from static
objects. Additionally, one could add the magnitude of the (derotated) optical flow field as input for
this network as well. This may improve the accuracy further.

A remarkable result would be to prove this object detection method works on real-world experi-
mental data. In Appendix B, an attempt is made to apply the object detector to experimental data.
However, the results are not comparable to the results based on simulation data. The dense optical
flow estimated by FlowNet2 does not show a diverging flow field around an FoE as expected for flow
generated by a translating camera. Further investigation would be needed to assert the validity of
this method in real-world circumstances.
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B
Additional results

B.1. Qualitative object detection results
In this section, additional results of the object detector are presented for various situations and en-
vironments. The object detector either performs well or it is affected by artifacts, such as shadows, a
slightly off sky segmentation or other moving objects in the scene. Figures B.1 to B.4 are demonstra-
tions using the same parameters as figure 11 (a-c) in the paper. The MAV to detect moves sideways
towards the right at a constant speed of 0.75 m/s relative to the observer at a distance of 5 meters.
The observing MAV moves with a speed of 4 m/s forwards. Figure B.5 is an example where the MAV
is on a collision course but too far away to be detected, as FlowNet2 cannot estimate flows of such
small objects. All examples use a static threshold of 15°.

(a) Camera input. (b) κ.

180°

0°

90°

(c) Result. (d) G.t. segmentation mask.

Figure B.1: An example where the motion-based object detector works accurately. TPR: 0.96, FPR: 6.3 ·10−3.
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(a) Camera input. (b) κ.

180°

0°

90°

(c) Result. (d) G.t. segmentation mask.

Figure B.2: Hangar scene1. Note the edges of buildings and poles where the sky segmentation is slightly off. Also, the
shadow of the MAV is clearly detected as a moving “object”. TPR: 0.98, FPR: 0.14.

(a) Camera input. (b) κ.

180°

0°

90°

(c) Result. (d) G.t. segmentation mask.

Figure B.3: Automotive Winter Scene2. Note the water in the right part of the image introducing a region of false positives.
TPR: 0.98, FPR: 5.0 ·10−2.

1https://www.unrealengine.com/marketplace/en-US/product/industrial-area-hangar
2https://www.unrealengine.com/marketplace/en-US/product/automotive-winter-scene

https://www.unrealengine.com/marketplace/en-US/product/industrial-area-hangar
https://www.unrealengine.com/marketplace/en-US/product/automotive-winter-scene
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(a) Camera input. (b) κ.

180°

0°

90°

(c) Result. (d) G.t. segmentation mask.

Figure B.4: Rural Australia scene3. There is a high amount of false positives due to moving tree leaves and corresponding
shadows. TPR: 0.98, FPR: 0.52.

(a) Camera input. (b) κ.

180°

0°

90°

(c) Result. (d) G.t. segmentation mask.

Figure B.5: Collision course of 75°. The MAV to detect is not detected because it is too far away. TPR: 0.0, FPR: 3.6 ·10−3.

3https://www.unrealengine.com/marketplace/en-US/product/rural-australia

https://www.unrealengine.com/marketplace/en-US/product/rural-australia
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B.2. ROC curve
In figure B.6, the Receiver Operating Characteristic (ROC) curve is presented for a typical sequence
with the LandscapeMountains environment. Note that the false positive rate is very small compared
to the true positive rate.
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Figure B.6: ROC curve for an MAV to detect moving sideways at 7.7 pixels per frame using a fixed threshold.
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B.3. Experimental data
Additionally, the object detector was tested on a real dataset. However, the results are largely af-
fected by poor estimations of FlowNet2 for the angle of the optical flow vectors. In figure B.7, the
normalized optical flow fields are presented. The optical flow is, similar to the simulations, dero-
tated using IMU data. The camera and IMU were placed on a gimbal to reduce unwanted vibrations
and rotations. The original footage was recorded with a field of view of 47° at 38Hz, but sped up 16
times (by skipping all frames except each 16th frame) to increase the overall magnitude of the flow,
which improves the flow estimation. There are almost no moving objects in the scene, except for
the drone’s shadow (visible in figure B.7) and moving clouds. A second drone is flying in the field of
view of the observing drone, from the right side of the image to the left. Both drones fly at a height of
approximately 20 meters (because of safety reasons), which is much higher than the drones in the
simulations that fly at 2.5 meters above the ground. However, the magnitude of the diverging flow
due to the motion of the camera is similar to the simulated data, due to the accelerated speed of the
footage.

The three examples demonstrate that the optical flow fields have no clear diverging optical flow
vectors pointing away from an FoE, which should be expected. A possible explanation could be that
FlowNet2 is not trained for this kind of an environment or that there is too much vibration of the
camera, which is not present in the AirSim simulations. These results are included to indicate the
challenge that is needed to apply the object detection method to real-world situations.

(a) Camera view. (b) Example where no clear diverging flow pattern is present.

(c) Example where no clear diverging flow pattern is present. (d) Example where there is a diverging flow pattern visible, but
the FoE lies too far to the right and the flow does not diverge from
the FoE in straight lines.

Figure B.7: The optical flow fields estimated by FlowNet2 for experimental data, where the magnitude of the flow is nor-
malized to one to visualize the direction of the flow. White pixels have a magnitude of flow smaller than 0.01 px/frame.
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B.4. FoE error analysis
To determine how much the error in the FoE estimation affects κ, the angle between the g.t. FoE
and estimated FoE is presented in figure B.8 for three sequences. The three sequences are the same
as in figure 8 of the paper. In one sequence, the MAV moves towards the left and therefore the FoE is
located in the left part of the image. In the other two, the FoE lies in the center and right side of the
image. The results are averaged over 100 images per sequence.

It can be seen that the introduced angular error only affects a relatively small portion of the image.
At least 91.4% of the pixels have an angular error of 1° or less and 99.6% of the pixels have an angular
error of at most 5°, which is small when compared to a (fixed) angular threshold of 15°. By assuming
the error to be only dependent on the distance to the FoE and not the location relative to the FoE,
the distance to the FoE can be calculated where the angular error is smaller than 1° or 5°. In the
worst case scenario (where the FoE is in the left part of the image), a distance of 52 pixels from the
FoE is needed for the error to be less than 5°. At a radius of 232 pixels, the error is 1° or smaller.
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(a) FoE positioned in the left part of the image. 91.4% of the pixels have an error less than 1°, and 99.6% of the pixels have an
error less than 5°. At a distance of 52 pixels from the FoE, the error is than less 5°. 232 pixels away, the error is less than 1°.
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22°

(b) FoE positioned in the center of the image. 94.3% of the pixels have an error less than 1°, and 99.9% of the pixels have an
error less than 5°. At a distance of 26 pixels from the FoE, the error is than less 5°. 188 pixels away, the error is less than 1°.
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(c) FoE positioned in the right part of the image. 97.0% of the pixels have an error less than 1°, and 99.9% of the pixels have
an error less than 5°. At a distance of 28 pixels from the FoE, the error is than less 5°. 137 pixels away, the error is less than 1°.
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Figure B.8: Error between the g.t. FoE and estimated FoE (in degrees) for three different locations of the FoE.
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