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Abstract

Finding defects in proposed changes is one of the biggest motivations and expected
outcomes of code review, but does not result as often as expected in actually finding
defects. Just-in-time (JIT) defect prediction focuses on predicting bug-introducing
changes, which can help with efficient allocation of inspection time according to
the defect-proneness of the changed software parts. Despite the promising results
achieved by DeepJIT and CC2Vec, two deep learning-based JIT defect prediction
models, industry-based JIT defect prediction studies have not opted yet to apply
deep models.

In this work, the goal is to build and evaluate several JIT defect prediction mod-
els that can help Adyen developers spot defective changes during code review. To
construct a new dataset with a large enough set of labels, we identify four sources of
potential bug-fixing commits by analysing Adyen’s way of working. We make several
practical adaptations to DeepJIT and CC2Vec and compare their performances with
three traditional metric-based models when making predictions at both commit-
level and file-level.

Our results indicate that deep models are able to outperform the metric-based
models across all three datasets. All models performed slightly worse when eval-
uated on Adyen data compared to an open-source setting, but both deep models
still achieved respectable performances and significantly outperformed the metric-
based models. When evaluated in a real-world setting on bugs manually collected
by Adyen developers, DeepJIT performed consistent with earlier findings when eval-
uated on commit-level, but performances fall on file-level. Lastly, we find that al-
though inclusion of each bug source generally does not lead to worse performance,
whether it leads to better performance is dependent on both what type of model is
used and at what granularity predictions are made.
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Chapter 1

Introduction

As software-based systems become an increasingly influential part of our day-to-day
life, defects in such systems can substantially impact businesses and their customer’s
lives. The infamous Heartbleed bug, introduced into the widely used OpenSSL’s
source code through a flawed code change, affected billions of Internet users in 2014.
Code review is a widespread practice used by software engineers to, amongst other
reasons, timely catch such bugs before they reach production. In fact, finding de-
fects in proposed changes is one of the, if not the biggest motivation and expected
outcome of code review [2]. There is however a mismatch between this expectation
and the actual outcome, as code review does not result as often in actually finding
defects [2]. When software grows significantly in both size and complexity, finding
defects and fixing them becomes increasingly difficult and costly. To mitigate this
issue, efficient allocation of inspection time should be done according to the defect-
proneness of the changed software parts. The field of study that attempts to model
and predict such likelihood of defectiveness is called defect prediction.

A large part of the defect prediction research is focused on defect prediction mod-
els that identify defect-prone modules, such as methods, classes, components or files
[3, 7, 30]. However, such approaches have some drawbacks: predictions are coarsely
grained, meaning developers have to inspect large amounts of files. Additionally,
predictions can come in late after a change was made, and as such will require some
time from the original author to refresh their mind. Therefore, researchers have pro-
posed just-in-time defect prediction techniques, focusing on predicting defects at
change-level [16].

Just-in-time defect prediction has attracted an increasingly wide research inter-
est, with machine learning techniques being the predominant approach. The most
common way of working is to craft a set of features that represent characteristics of
a code change, such as change size (e.g. number of lines added), change scope, (e.g.
number of subsystems modified) [15, 24]. These features are then used as defect pre-
dictors by using them as an input to a traditional classifier (e.g. Random Forest) that
predicts the probability of a code change to be defective.

While these metric-based methods have proven to be reasonably effective, the
crafted metrics do not represent the actual functionality of the code changes made.
Two different changes may therefore be similar in terms of metrics, but can still com-
pletely differ in terms of functionality. As a result, deep learning has received some
interest in applying it to just-in-time defect prediction [10, 40]. Instead of exploit-
ing features derived from properties of code changes, deep learning methods typ-
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4 1. Introduction

ically convert source code into vectors to learn its latent features directly. Vectors
can preserve code information thoroughly, and may also include additional context
such as the type of change that was performed. Deep learning therefore allows us
to represent the semantic and syntactic structure of the code changes, where vector
representations of similar code changes are close to each other.

Despite the promising results achieved by deep learning, industry-based de-
fect prediction studies have not opted yet to apply these deep learning based mod-
els. This may be due to - apart from being more complex to implement - the rel-
atively coarse granularity of predictions made in the proposed deep learning mod-
els. Industry-based defect prediction studies have instead opted for techniques that
make predictions at finer granularities such as file- or line-level, in order to better aid
reviewers in localizing potential defects [31, 34, 39].

To fill this gap, we identify the opportunity to evaluate the effectiveness in our in-
dustry setting of DeepJIT [10] and CC2Vec [11], two state-of-the-art deep just-in-time
defect prediction models. We also address the coarse granularity of predictions made
by deep learning models, by adapting them to predict defects at file-level within a
commit. We evaluate this at Adyen, a large-scale company, and use two datasets
based on large-scale open-source projects as baseline for comparison. We thereby
explore new sources to label bug-introducing changes in addition the issue track-
ing system, to collect a large amount and qualitatively good set of labels for our new
dataset.

The research questions we look to answer in our study are as follows:

• RQ1: How well do state-of-the-art just-in-time defect prediction models per-
form on a new dataset, gathered from an industry project?

• RQ2: How effective are the evaluated models at detecting real-world bug-
introducing changes?

• RQ3: How important are the different bug sources for the effectiveness of the
evaluated models?

The experimental results indicate that deep learning based models are able to
outperform the metric-based models across all three datasets. When evaluated on
Adyen data, all models performed slightly worse than in an open-source setting,
but both deep models still achieved respectable performances and significantly
outperformed the metric-based models. At file-level predictions, all models lost a
large amount of performance compared to the observed performances at commit-
level, but deep learning models significantly outperformed metric-based models.
When evaluated in a real-life setting against manually collected bugs, DeepJIT [10]
performed consistent with earlier findings when evaluated on commit-level, but
performances fall on file-level. Lastly, by performing an ablation study on our bug
label sources, we find that although inclusion of every source generally does not lead
to worse performance, whether the inclusion of a source leads to information gain is
dependent on both what type of model is used and at what granularity predictions
are made. Therefore, when selecting sources to obtain labels, taking into account
the granularity of predictions is important.
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The main contributions of this work are:

• An empirical study to evaluate the performances of deep state-of-the-art de-
fect predictions models against a novel, industry-based dataset.

• The identification and evaluation of three novel sources to collect bug-fixing
changes, that can be exploited when traditional sources such as an Issue Track-
ing System are lacking.

The remainder of this work is structured as follows. Chapter 2 provides an expla-
nation of the techniques that are used in this study, and outlines some of the work
related to ours in the field of software defect prediction. Chapter 3 describes the steps
performed to gather and process our novel dataset based on Adyen code, as well as
the adaptions we make to the evaluated models in order for them to fit our use case,
Chapter 4 presents the experiments performed and their respective outcomes. Chap-
ter 5 then discusses the implications of our work for just-in-time defect prediction,
both at Adyen and in the research field. Finally, Chapter 6 recaps the conclusions
drawn from our study and presents some recommendations for future work.





Chapter 2

Related Work

The purpose of software defect prediction is to predict the likelihood of a defect be-
ing present within software. The benefit of defect prediction models would be to
assist software developers with localizing bugs and to prioritize their testing efforts.
The general approach to construct a defect prediction model begins with obtaining
a dataset that labels files or commits as bug-introducing or not. Then, based on the
labels and various features extracted for each sample in the dataset, a supervised ma-
chine learning classifier is trained in order to make predictions on unseen instances.
In this chapter, some of the work closest to ours in the field of software defect pre-
diction are outlined, and the techniques that are used in this study are explained in
more detail.

2.1. Machine Learning for Defect Prediction
A large part of the defect prediction research is focused on defect prediction mod-
els that identify defect-prone modules. Such studies typically evaluate one or more
machine learning techniques as defect predictors, among which the most common
techniques include Random Forest, Naive Bayes and Logistic Regression. The mod-
els are trained through a manually crafted set of features that can function as defect
predictors. The granularity of the crafted metrics and thereby also the predictions of
the models varies greatly, with studies proposing approaches at method-level, class-
level, component-level, file-level and process-level [3, 6, 7, 30]. When trained, these
models can then be run every once in a while at moments when it is crucial to remove
any remaining defects, for example before a release.

Although traditional defect prediction models can be useful in some contexts,
they also have their drawbacks. The predictions are typically coarse grained, leaving
it to developers to locate risky code snippets in potentially very large files. Predictions
can also come in late after a change was made, and as such will require some time
from the original author to refresh their mind. Therefore, researchers have proposed
just-in-time defect prediction techniques, focusing on predicting defects at change-
level.

One of the earliest works on change-level prediction was done by Kim et al. [16],
who suggested to train classifiers on solely the changes made to a file, rather than
the files themselves. Kamei et al. [15] were the first to introduce the notion of just-in-
time defect prediction models, that predict potential defects in incoming commits.
They perform an empirical study of change-level predictions on a variety of open
source and commercial projects from multiple domains. To predict whether or not
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8 2. Related Work

a change introduces a future defect, they train a Logistic Regression model based on
14 features grouped into five dimensions, each of which had proven to perform well
in traditional defect prediction. Additionally, they evaluate the effectiveness of their
predictions when considering the effort required to review changes, for which they
construct a customized effort-aware linear regression (EARL) model.

McIntosh and Kamei [20] note that despite the advantages of just-in-time defect
prediction, like all prediction models, they assume that the properties of past events
(i.e., bug-introducing changes) are similar to the properties of future ones. In their
study, they show this to not be the case, as just-in-time models lose much of their dis-
criminatory power if they are not retrained, and the importance of different feature
dimensions evolves with a project.

Yang et al. [41] evaluate several machine learning classifiers for just-in-time
defect prediction, where they conclude that a decision tree classifier performs best
overall for this task. They then use the Random Forest model to create a two-layer
ensemble learning (TLEL) model, which they show can outperform other state-of-
the-art models, among which the Logistic Regression model of Kamei et al. [15].

The work up until now has focused on predicting defect-proneness of commits.
However, the goal of our study is to help Adyen developers to look for defects within
these commits. In fact, Bacchelli and Bird [2] find that finding defects is observed as
the most difficult task for a reviewer, as it requires deeper understanding of the code.
Making predictions at a finer granularity might aid the reviewers in this by steering
them in the right direction. Fortunately, previous studies have also identified the
need for finer grained solutions.

Pascarella et al. [22] note that defective commits may often be partially defective,
i.e. such commits are composed of both buggy and clean changes to files. The goal of
their work is to provide finer grained predictions for commits that are only partially
defective, allowing for better prioritization during code review. They propose a fine-
grained just-in-time defect prediction model which predicts which changed files in
a commit are likely defective. To this end, the authors consider 24 basic features that
represent a modified version of those previously proposed by [15] and [24]. Different
classifiers were subsequently fed these metrics, where the Random Forest technique
proved to perform the best.

Trautsch et al. [36] builds forth on the work of Pascarella et al. [22] on fine-grained
just-in-time defect prediction. In their work, they observed that static analysis warn-
ings were used in previous defect prediction studies, but not for just-in-time models.
The authors therefore aim to largely follow the work of Pascarella et al. [22] and add
static analysis warnings to that.

Another common method to introduce finer grained predictions, is through a
two-phase approach. For example, Yan et al. [37] propose a two-phase framework
where in the first phase a Logistic Regression model is used to identify potentially
defective commits based on change-level metrics. In the second step, they attempt
to localize the bug through an n-gram model trained on source code lines. The model
aims to sort lines according to their entropy, under the assumption that the entropy
of a line is correlated with the likelihood of it introducing a bug.

Similar to this, Pornprasit and Tantithamthavorn [23] leverage a Random For-
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est model to predict potential bug-introducing commits. Predictions made are then
normalized to account for the defect-density of a commit, which allows for consider-
ation of inspection effort. Finally, defective lines are ranked by their level of riskiness,
which is computed using LIME [26].

Yang et al. [42] note that most works follow a supervised approach, even though
obtaining enough qualitative labelled samples can be an issue. To address this limi-
tation, they propose an unsupervised model for effort-aware just-in-time defect pre-
diction, For several change metrics originally proposed by Kamei et al. [15], they
build an unsupervised model that ranks changes in descendant order according to
the reciprocal of their corresponding raw metric values. In their results, they show
that their unsupervised model could achieve higher recall compared to that of su-
pervised models in a cross-project setting. However, their results have been shown
not hold under a within-project setting in a follow-up study by Yan et al. [38], where
unsupervised models did not perform statistically significantly better than state-of-
art supervised models.

2.2. Deep Learning for Just-in-Time Defect Prediction
So far, there have only been very few studies that seek to apply deep learning to the
task of just-in-time defect prediction.

In 2015, Yang et al. [40] were the first to investigate the performance of deep
learning in just-in-time defect prediction. To this end, they propose Deeper, a model
based on a Deep Belief Network [9]. The model initially automatically extracts a set
of features from the basic change-based metrics proposed by Kamei et al. [15]. They
then input this new set of features into a Logistic Regression model to predict poten-
tially defective commits.

Hoang et al. [10] note that even though Deeper leverages a Deep Belief Network,
the model does not leverage the true notion of deep learning as it still requires man-
ually crafted features as input. They therefore propose an end-to-end trainable con-
volutional network that takes both the message and code changes as its input. To
validate their approach, they adopt two datasets based on open-source projects (QT
and OpenStack) originally collected by Kamei et al. [15] and include the correspond-
ing code changes. They show that they are be able to outperform both Deeper [40] as
well as the metric-based model by Kamei et al. [15] in predicting defective commits.

Hoang et al. [11] introduce CC2Vec, a deep learning-based approach to learn
the distributed representation of commit. By learning the relationship between the
message and the code changes of a commit, the semantics of code changes can be
learned and represented through an embedding. These embeddings can be applied
to a variety of software engineering tasks, but specifically to just-in-time defect pre-
diction, they can be combined with models such as DeepJIT to improve the discrimi-
natory power of the model. Their results show that adding CC2Vec to DeepJIT is able
to improve its performance.
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2.3. Just-in-Time Defect Prediction in Industry
Although scarce, some studies have preceded ours in applying just-in-time defect
prediction in an industry setting. We highlight some of these studies in this section.

Shihab et al. [31] conduct a year-long study at BlackBerry to better understand
risky changes. Using change-based metrics, that are largely similar to that of Kamei
et al. [15], they train a Logistic Regression model to predict defective commits.

Tan et al. [34] perform just-in-time defect prediction in an online manner at
Cisco. In their work, they evaluate several updateable classification algorithms that
incrementally take advantage of new unseen data. This way, they appropriately deal
with the time-sensitiveness of the dataset, and are able to incrementally improve the
model as it runs in production.

In collaboration with Video games developer Ubisoft, Nayrolles and Hamou-
Lhadj [21] developed CLEVER, which also relies on a two-phase approach to iden-
tify defective commits. In the second phase of their model, they perform a simi-
larity analysis between the potentially defective commit and code snippets from a
database of known bugs. By doing so, they are able to reduce the number of false
positives generated by the model.

The most recent industry-based just-in-time defect prediction study was done
by Yan et al. [39]. In their work, they evaluate several state-of-the-art models, su-
pervised and unsupervised, when applied to a dataset based on 14 Alibaba projects.
They identify CBS+ [12] as the best performing model, which is largely similar to that
of Kamei et al. [15] but makes some improvements related to effort-aware sorting.
They proceed by making predictions on recent changes, and ask developers at Al-
ibaba to review a list of 33 changes that were predicted to be defective. They report
that developers agreed with the model’s prediction in 33% of the time.

2.4. Applying Deep Just-in-Time Defect Prediction in Industry
So far, we have learned that traditional defection prediction brings along several
disadvantages. As a result, research in recent years have proposed methods that
perform predictions at the change level, focusing on predicting defect-inducing
changes. By using change properties that have been shown to characterize risky
commits as features, models are able to achieve good performances, at different
change-level granularities. However, such metric-based features do not represent
the semantic and syntactic structure of the actual code changes. Two changes may
therefore have similar metrics, but can very well be semantically very different, and
thus may differ in their defectiveness. By leveraging deep learning, recent studies
have come up with semantically sensitive defect prediction models that are able to
outperform the metric based classifiers. Despite these promising results, we saw that
defect prediction studies in industry have not opted yet to apply these deep learning
based models. Moreover, the performances of deep learning have even been ques-
tioned by the authors of JITLine, who argue their simpler metric-based approach
achieves better results [23]. We therefore identify the opportunity to evaluate the
effectiveness of deep learning models in our industry setting.

In the remainder of this section, we elaborate on the three models we look to
apply in our study: DeepJIT [10], CC2Vec [11] and JITLine [23].
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2.4.1. DeepJIT
DeepJIT [10] is an end-to-end deep learning framework, and is regarded as the cur-
rent state-of-the-art deep learning approach for just-in-time defect prediction. On a
high level, the model takes the commit message and the code changes as an input,
extracts features in the form of vector representations using two separate convolu-
tional networks, and finally inputs the concatenation of these vectors into a fully-
connected layer to generate the probability of the commit to be defective. To have
a better understanding of what happens in each of these phases, each phase is dis-
cussed in this section in more detail. More specifically, we first discuss how commit
messages are processed, then we discuss how code changes are processed and finally
we discuss the final layer that combines both sources into an output. An overview of
the DeepJIT model is given below in Figure 2.1.

Commit message architecture

Encoding Convolutional 
layer

Convolutional 
layer

Feature 
combination layer

Fully connected
layer

Encoding

Code changes architecture

Output layer

Predictions

Commit 
message

Code
changes

Input layer

Figure 2.1: Overview of the DeepJIT model showing its architecture.

Commit message architecture Each commit message m is essentially a sequence
of words, or tokens [t1, ...t|m|]. All unique tokens that occur in a commit message in
the training set are added to a vocabulary Vm . Upon initialization of the network,
a dense vector of size dm ∈ R is randomly initiated for each token in the dictionary.
A commit message can then be represented as an array of dense vectors that corre-
spond to the tokens in the message, which can best thought of as its matrix repre-
sentation m → M ∈ R|m|×dm . The values in the dense vectors, to best represent the
meaning of a token, are jointly learned with the rest of the network during the train-
ing process.

For the purpose of parallelization, all commit messages are padded or truncated
to the same predetermined length m. To pad a message that consists of m−n tokens,
a special <unk> token is appended to the message n times.

The matrix representation of a commit message is then fed into a convolutional
layer. In short, this layer performs a dot product between two matrices, where one
matrix is the representation matrix of the commit message, and the other a set of
learnable parameters otherwise known as a kernel. The kernel is spatially smaller in
its height than a representation matrix but is equal in its width. During the forward
pass, the kernel slides across the height of the representation matrix. This produces a
one-dimensional representation known as an activation map that gives the response
of the kernel at each spatial position of the input matrix.

Subsequently, the activation map is put into a pooling layer that summarizes
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nearby values in the activation map, which decreases the required number of param-
eters and computation time. More specifically, a max pooling operation is applied,
meaning nearby values are summarized according to the highest value among them.

In practice, multiple kernels of differing heights are applied to the matrix that
represent the commit message, thus multiple activation maps are produced for one
message. The results of the max pooling operation from each kernel are then used to
form an embedding vector of the commit message. An overview of DeepJIT’s commit
message architecture is given below in Figure 2.2.

max pooling
layer

 

Commit
message

Dense random
vectors

Commit message
matrix 

Convolutional
layers with

kernels

Embedding
vector 

Figure 2.2: Overview of DeepJIT’s commit message architecture.

Code changes architecture Code changes, similarly to messages, can also be
viewed as a sequence of tokens, and therefore a large amount of steps performed in
processing a commit message is also applicable to the processing of code changes.
However, while the semantics of a message can be inferred from a bag of words, the
code changes in a commit include a change in different files and different kinds of
changes (removals or additions) for each file. Code changes are therefore processed
by DeepJIT in slightly different ways compared to messages, in order to fully repre-
sent the structure of code changes. In this section, we explain these differences in
more detail.

A commit that touches n files can be thought of as a collection of code changes
C , which contains a list of file changes [F1, ...F|n|]. For every file change Fi , its salient
features are computed in the same way. Therefore we first explain how a change Fi

is processed, after which we explain how all results are combined.

A file change Fi is parsed into a sequence of deleted and added lines, and each
line is parsed into a sequence of tokens. A special <deleted> token or an <added> to-
ken is inserted at the beginning of deleted or added lines respectively so that Deep-
JIT recognizes which change operation was performed. Given now that Fi is a col-
lection of lines L, and each line is a collection of tokens T , we can in a manner
similar to commit messages obtain the matrix representation of file change Fi as
Fi → Fi ∈ R|L|×|T |×dc . Here dc represents the size of each dense vector that is ran-
domly initiated for each token in the dictionary Vc , similarly to the process as we
observed for commit messages. The number of lines and the number of tokens in
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each line in Fi are also padded or truncated for parallelization purposes using a spe-
cial <unk> token. The matrix representation of a code line Li is then comparable
to that of a commit message, thus the same convolutional architecture as observed
for commit messages is applied to each code line to extract its embedding vector.
The embedding vectors obtained from each line are then stacked to form a repre-
sentation of the file change Fi . The result is a 2D matrix, to which we again apply
the convolutional layer and pooling layer, resulting in the embedding vector zFi that
represents file change Fi .

This process is applied to each file change Fi ∈ C , and the resulting embedding
vectors are then concatenated to build a new embedding vector that represents the
collection of code changes C :

zC = zF1 ⊕ ...⊕ zFn (2.1)

Feature combination layer The inputs of this layer are the two embedding vectors
zm and zC that were produced in the previous two steps. These vectors are first con-
catenated to create a unified representation for the commit:

z = zm ⊕ ...⊕ zC (2.2)

This vector z is then input into a fully connected layer, where the values of z are
mapped to an output vector h of a predetermined size through a matrix multipli-
cation with a trainable weight matrix. In order to help the network learn complex
patterns, the output vector h of the fully connected layer is passed through a ReLU
activation function, after which h is passed to the final output layer which computes
a probability score for the passed commit to be buggy or clean.

2.4.2. CC2Vec
CC2Vec [11] is an approach to learn the distributed representation of a commit. Un-
like DeepJIT, which ignores the information about the hierarchical structure of code
commits, CC2Vec has been designed to automatically learn the hierarchical struc-
ture of code commits using a Hierarchical Attention Network (HAN) architecture. In
short, CC2Vec attempts to learn the relationship between the actual code changes
and the first line of a commit message, which is supposed to represent the semantic
meaning of the code changes in the commit. As a result, CC2Vec is able to embed
code changes in a commit according to their semantic meaning. This embedding
vector can be exploited by other task-specific models, or in our case, by providing it
to DeepJIT as an extra input. To have a better understanding of how CC2Vec works,
we briefly discuss each phase in more detail. More specifically, we first discuss how
commit messages are processed, then we discuss how code changes are processed
and finally we discuss the final layer that combines both sources into an output. In
Figure 2.3, we provide a high level overview of the framework of CC2Vec.

Input layer Similarly to DeepJIT, a commit that touches n files is represented as a
list of file changes [F1, ...F|n|]. A file change Fi is then split into two lists that contain
the corresponding added lines and deleted code lines in Fi respectively. Both lists
are subsequently represented as three-dimensional matrices Ba and Br respectively,
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Figure 2.3: Overview of the CC2Vec model showing its architecture.

such that B → B ∈ RH×L×W . Here, H denotes the number of groups of lines (hunks),
L denotes the number of lines and W denotes the number of words per line. For
the purpose of parallelization, all dimensions are padded or truncated to the same
predetermined sizes.

Hierarchical Attention Network (HAN) The HAN is used to build vector represen-
tations from the matrices Ba and Br . It consists of several parts, which are traversed
in the following consecutive order: a word sequence encoder, a word-level attention
layer, a line encoder, a line-level attention layer, a hunk sequence encoder, and a
hunk attention layer.

In each sequence encoder, a bi-directional GRU is leveraged to summarize infor-
mation from the context of the input sequence in both directions. For example, in
the word sequence encoder, a line (i.e. a sequence of words [w1, ..., wW ] is passed to
a forward GRU that reads the line from w1 to wW and a backward GRU that reads the
line from wW to w1. Both passes result in a hidden state vector h, from which the
annotation of each processed word can be obtained as follows:

−→
hk =−−−−−−−→

GRU (wk ),k ∈ [1,W ] (2.3)

←−
hk =←−−−−−−−

GRU (wk ),k ∈ [W,1] (2.4)

The vector representation of a word wk is obtained by concatenating
−→
hk and

←−
hk :

hk =−→
hk ⊕

←−
hk (2.5)

In a similar manner, the line sequence encoder and the hunk sequence encoder
obtain the vector representations of respectively each line and each hunk.

Each sequence encoder is followed by a corresponding attention layer, which
aims to identify the most important elements in the input sequence. For example, in
the word-level attention layer, the annotation of a word as represented in Equation
2.5 is passed to a fully connected layer with ReLU to obtain its hidden representa-
tion uk . An importance weight αk is subsequently obtained for each word through
a word context vector that is randomly initialized and trained during the training
process. Finally, a line can then be represented as a weighted sum of the embed-
ding vectors of the contained words based on their importance. In a similar manner,
the line-level attention layer and the hunk-level attention layer obtain the represen-
tations weighted by importance of respectively each hunk and all hunks. The final
result is a set of two embedding vectors ea and er that correspond to respectively the
added and removed code, which are both obtained through the weighted sum of all
hunk embeddings:
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e =∑
i
αi hi (2.6)

Comparison layers The embedding vectors of the removed code and added code
are compared through multiple comparison functions to explore their relationship.
Eventually, all the embedding vectors associated with all the changed files under one
commit are concatenated to construct a new embedding vector ep representing the
code change in a given patch (or commit).

Word prediction layer In order to determine the effectiveness of the embedding
vector ep of a given commit, ep is used to predict the likelihood of each word within
the vocabulary to occur in the corresponding commit message. This is done by pass-
ing the embedding vector to a fully connected layer, followed by a sigmoid function
to get the probability distribution over all words. The objective function then at-
tempts to minimize the difference between the probability scores and the actual oc-
currence of each word.

Combining with DeepJIT To use CC2Vec with DeepJIT, for each commit, the em-
bedding vector ep of the code changes extracted by CC2Vec is concatenated with the
two embedding vectors extracted by DeepJIT from the commit message and codes
change to form a new embedding vector. This new embedding vector is provided as
input into the fully connected layer of DeepJIT to compute the likelihood that the
given commit is buggy. An overview of the combined models is given below in Figure
2.4.
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Figure 2.4: Overview of the combined model of DeepJIT and CC2Vec.

2.4.3. JITLine
JITLine [23] is a machine learning based just-in-time defect prediction approach that
can both predict defect-introducing commits and identify defective lines that are as-
sociated with that commit. The goal of their approach is to make predictions based
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on code changes, while also reducing the amount of training typically needed by
more complex deep-learning approaches. Therefore, tokens of code changes are ex-
tracted as features, representing each change line as a bag-of-tokens.

To account for the imbalance of the datasets, JITLine makes use of the commonly
used SMOTE technique for oversampling of defective samples in the training set.
However, to ensure the best performance of the SMOTE algorithm, JITLine uses a
Differential Evolution algorithm to determine the best value of SMOTE’s k nearest
neighbours hyperparameter. The fitness function of the differential evolution algo-
rithm is to maximize the AUC obtained through using SMOTE with a candidate k.

After obtaining k and oversampling the training data with SMOTE, the commit-
level metrics adopted from [20] are used to build a commit-level just-in-time defect
prediction model using Random Forest as their classification technique. Predictions
made are then normalized to account for the defect-density of a commit, which
allows for consideration of inspection effort. Finally, defective lines are ranked by
their level of riskiness, which is computed using LIME [26].



Chapter 3

Building Defect Prediction Models
for Adyen

The goal of our study is to build and evaluate several defect prediction models that
can help Adyen developers spot defective changes during code review. Such mod-
els should therefore predict the defectiveness of an incoming change based on inputs
drawn from the change under inspection.

To this end, we leverage state-of-the-art just-in-time defect prediction models to
classify changes made to Java files as ‘defective’ or ‘clean’ during code review. We do
so by training and evaluating the models against a dataset that we collect based on
the Adyen repository. To ensure a large and varied enough set of labelled samples, we
identify and exploit several sources of information to label bug-introducing changes.
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Figure 3.1: Overview of our approach towards building just-in-time defect prediction models for Adyen

This chapter consists of three sections. First, we describe the data collection steps
performed to gather our new labelled dataset based on the Adyen repository. Sec-
ondly, we discuss the datasets and their characteristics that are used in our experi-
ments. Finally, we describe the models we leverage in our study, and the adaptions
we make in order for them to fit our use case. Figure 3.1 provides an overview of our
approach.

3.1. Data Collection
Our data collection consists of three parts. We first ingest all raw change data and
their historic properties. We then label all bug-introducing changes that are sus-
pected to have introduced a bug. Finally, we apply a set of preprocessing steps to our
data to mitigate noise and false labels in our dataset.

17
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3.1.1. Data Ingestion
For our data ingestion, we take inspiration from the data collection tool proposed by
Rosen et al. [28], that uses an extensive git log command to collect code metrics and
historic properties for every commit. We extend their approach by also collecting
the added and removed lines for each change, and collect all data also for file-level
changes separately. Then, for every change, we compute a set of change properties
that can represent the likelihood of introducing bugs. We calculate each metric by
chronologically traversing the history of a project. We note that incorrect handling of
file renames lead to large discrepancies in the calculated historic properties, thus we
implement a correct handling of file renames to ensure history properties are trans-
ferred properly. Furthermore, to align with previous work, we ignore whitespace-
and comment-only changes, as well as large refactorings [15, 20] in the process.

On commit-level, we extract 14 change-level features as proposed and reused
by many prior studies [15, 20, 36]. We choose to use these metrics since they have
proven to perform well in previous defect prediction research, capturing different
properties at change-level that might explain the bug-proneness of a change. These
properties of code changes measure the dispersion across the codebase (Diffusion),
the change volume (Size), the modified areas of the codebase (History), and the ex-
perience of the author and involved developers (Experience). Some previous studies
have also included review properties originally proposed by McIntosh and Kamei
[20], representing characteristics such as the number of reviewers and the discus-
sion length. These metrics however can only be calculated after a review has been
performed, whereas the aim of this work is to make predictions before the review is
conducted. Therefore, we choose to not include such review metrics in our work.
Moreover, Krutauz et al. [17] find that review metrics are neither necessary nor suf-
ficient to create a good defect prediction model, thus our decision should not be of
big impact to our results.

At file-level, we collect augmented versions of the features calculated at commit-
level as proposed by Pascarella et al. [22]. Some of the metrics are directly translat-
able, such as size properties, while some metrics that are specific to the scope of a
commit are adapted to better capture the properties of the file change.

Dimension Feature Description

Diffusion

NS Number of subsystems touched by the current change
ND Number of directories touched by the current change
NF Number of files touched by the current change
ENT Entropy across touched files

Size
LA Lines of code added by the current change
LD Lines of code deleted by the current change
LT Lines of code in all changed files before the current change

History
NDEV Number of developers that changed the files
AGE Average time interval between the last and current change
NUC Number of unique changes to the files

Experience
EXP Developers experience
REXP Recent developer experience
SEXP Developer experience on a subsystem

Table 3.1: Commit-level change metrics
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Dimension Feature Description

Diffusion
ENT Entropy of changes to the file up to the considered com-

mit
SCTR Number of different directories touched by the devel-

oper in commits where the file has been modified

Size
LA Lines of code added to the file by the current change
LD Lines of code deleted from the file by the current change
LT Lines of code in the file before the current change

History
NDEV Number of distinct developers made changes to the file

up until the current change
AGE Time interval between the last and current change to the

file
NUC Number of times the file was the only file involved in a

change up until the current change

Experience

EXP Developers experience
REXP Recent developer experience
SEXP Developer experience on a subsystem
OWN Boolean value indicating whether the commit is done by

the owner of the file

Table 3.2: File-level change metrics

We refer to Table 3.1 and Table 3.2 for an overview of metrics used at respectively
commit-level and file-level.

3.1.2. Labelling
After collecting our raw dataset of changes, we look to annotate the changes that
likely introduced a bug. Previous datasets that have been collected in order to be
used for defect prediction generally rely on the SZZ algorithm originally proposed
by Sliwerski et al. [32]. The SZZ algorithm was developed as an approach to identify
bug-introducing commits in a software repository, and was later given its name after
the initials of the three authors.

There are two main stages in the SZZ algorithm: identifying defect fixing com-
mits, followed by identifying defect-introducing commits. In both stages, the SZZ
algorithm makes extensive use of an internal Issue Tracking System (ITS) to track
information about bugs and when they were fixed. Because a well-maintained ITS
is not a given, previous studies have relied on a more ad-hoc SZZ algorithm [22, 36]
that only scans the commit messages for keywords such as "fix" and "bug", which
removes the restriction of needing an Issue Tracking System. However, the rate of
mislabelling clean commits as buggy may drastically increase, which can have a
significant impact on the performance of the model [5, 36].

At Adyen, we observe an unusually low amount of issues related to bugs. Dis-
cussions with developers internally revealed that generally a more ad-hoc style of
fixing bugs is employed. For example, when a bug is noticed during a code review,
or when a bug is noticed in production code where speed is of higher importance
than applying best practices. Relying on the ad-hoc SZZ algorithm is not a good
alternative for our study, as due to work practices at Adyen, commits that do not
belong to an issue start their message with prefix "FIX". The rate of mislabelling
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clean commits as buggy due to the occurrence of keyword "fix" would therefore
be too big, while leaving it out as keyword will likely result in a too incomplete
label set. To overcome this, we need to diversify our sources for defective samples
to gain a large and accurate enough dataset of labeled defective samples, without
relying on error prone keyword matching. We first discuss the identified sources
for bug fixes, and subsequently discuss our approach to obtain the corresponding
bug-introducing changes. An overview of our approach is shown in Figure 3.2

Review 
Concerns

Bug fixing 
commits

Emergency
Commits

Release Patches

Issues

Git blame

Bug introducing
commits

Bug fix sources

Figure 3.2: Overview of our approach to label bug-introducing changes.

1. Bug-fixing change identification
We identify four different potential sources to collect bug-fixing commits from which
we can deduct the bug-inducing commits: issues, release patches, emergency com-
mits and review concerns. In order to collect bug fixes from each of the sources, we
extract data from the VCS (git), ITS (YouTrack) and the code review platform (Up-
source) that Adyen uses internally. Below, we describe each of the sources individu-
ally and explain how we extract bug labels from them.

• Issues. A common methodology to address a bug is to create an issue in the
Issue Tracking System, where the behavior of the bug is described, and labelled
with type "Bug". When the developer makes a change that fixes the bug, the
unique identifier of the issue (IssueID) can be added to the commit message to
signal that the bug was fixed. We extract all issues in the Issue Tracking System.
The issues are then filtered by type “Bug” and a resolved state, either “Fixed” or
“Verified”. For each issue, we then store its IssueID and the timestamp when
the bug was reported. We can then collect any bug-fixing commit by collecting
commits that mention any of the collected IssueIDs.

• Release Patches. Commits made as patches to the release branch during beta
testing or live. The priority of the commit having to go through quickly, indi-
cates the commit is likely to be some sort of fix. We can therefore make a gen-
eral assumption that these commits are bug fixes. For each release branch, we
collect all commits that follow the initial commit of the release branch. From
the commit message, we extract the commit hash of the corresponding com-
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mit that was cherry picked from the master branch. We then extract the com-
mit by its hash from the master branch and label it as bug fixing.

• Emergency commits. Identifiable by a reserved prefix in the commit mes-
sage, emergency commits are very similar in their purpose to the previously
discussed patch commits. However, the prefix is reserved for emergency fixes
that skip a part of the normal testing procedure. Because of this, a commit is
only eligible for this procedure if an important fix is required. Emergency com-
mits are rare, but provide us with near certainty potential bug-fixing commits.
We traverse all commits in the git history to collect commits that start with the
reserved prefix. All these commits are labelled as bug fixing commits.

• Review Concerns. Every commit made to the Adyen repository will end up in
a code review, generated by Upsource. Reviewers are automatically assigned
to a review. A reviewer can give feedback, and choose to "accept changes" or
"raise concern". A concern can be raised when a reviewer finds severe or criti-
cal problems, i.e. it is too risky that the code goes live. Therefore, we can make
the assumption that a bug fix is required. To address any raised concerns, the
author of the code under review tags the review’s unique identifier (ReviewID)
in follow-up commits, which we assume to be a bug-fixing commit. We tra-
verse all commits in the git history to collect a set of ReviewIDs mentioned in
commits. For each mentioned ReviewID, we check if at least one concern was
raised in the review. If that is the case, we label all commits following the con-
cern as bug fixing.

2. Bug-introducing change identification
After determining all defect-fixing changes, the SZZ algorithm leverages the git blame
command to identify the lines that were changed by defect fixing changes. Each line
of code changed is tracked back to the previous commit that modified the same line.
Every commit that previously made a change is a potential candidate to be blamed
for introducing a bug.

To identify bug-introducing changes, we make use of the implementation of the
SZZ algorithm by Pydriller [33]. When we provide it the bug-fixing commits that
we have already identified, we are able to retrieve the bug-introducing commits
preceding these bug fixes. Commits with only whitespace and/or comment changes
are automatically skipped in order to reduce noise. A file change is considered to be
defective if at least one line in the change for that file is defective. A commit is then
counted as defective if at least one file contained in the commit is defective.

In total, we collect 5615 bug fixes, and leverage those to annotate a total of 7532 bugs.
Table 3.3 provides an overview of the number of bugs and bug fixes found per source.

3.1.3. Data Processing
After extracting data from the VCS and labelling all bug-introducing changes, we ap-
ply a set of code sanitation steps and filters to mitigate noise and false positives in
our labels.
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Source # fixes # bugs

Patches 4291 5869
Reviews 989 1528
Issues 271 472
Emergency 64 87
Total 5615 7532

Table 3.3: Number of bugs and bug fixes found per source. Note that some commits are identified
as bug-introducing through bug fixes from different sources, thus the cumulative number of buggy
commits is higher than the total number of (unique) buggy commits.

Code Sanitation For our code sanitation, we largely follow code sanitation steps
from previous work [10] to align with our work. First, each change file is parsed into
an array of added and deleted lines, with each line prepended with an <added> or
<deleted> token to indicate the modification type. Each line is then parsed into a
sequence of tokens, with each token being separated by whitespace. As suggested
by Rahman et al. [25] and later also adopted by the authors of JITLine [23], non-
alphanumeric tokens that are often part of the language specific syntax are replaced
by whitespace to ensure that analyzed tokens are not unnecessarily repetitive.

In theory, the number of tokens that can occur in source code is limitless. New
function and variable names are introduced on a continuous basis, leading to an
ever increasing vocabulary size as the project progresses. An unlimited vocabulary
in turn may lead to a dimensionality problem, and poorer generalization to unseen
data [13]. To combat this, we follow the approach by the authors of DeepJIT and JIT-
Line and replace numeric and string literals with <num> and <str> respectively. We
also remove rare code tokens, i.e. tokens that occur less than three times from our vo-
cabulary to limit our vocabulary size. Any token that is not present in the dictionary
is replaced with a special <unk> token.

Filtering We subsequently apply a set of filters based on characteristics of the data
samples. We largely follow the steps taken by previous work [10, 15, 20] .

• Non-Java Changes. Since we look to train models based on code changes, our
model is specific to the programming language used in changed files. More-
over, what programming language used is likely to impact the change metrics.
Because Java is the main programming language used at the studied system,
we are interested only in changes made to Java files. We therefore filter out all
changes to non-Java files in a commit. Previous work makes no mention of
applying such filter, but discussions with McIntosh and Kamei [20] and Porn-
prasit and Tantithamthavorn [23] reveal such filter is indeed applied in their
work.

• Sanitized Changes. We also filter out changes that after applying the sanita-
tion described above do not contain any other changes, i.e. changes that only
update comments, whitespaces, and/or perform renames.
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• Refactoring Changes. We filter out extremely large commits, as these are
likely noise caused by general refactorings or routine maintenance. We adopt
boundaries that define extremely large commits as changes that include at
least 10000 lines or at least 100 files.

• Recent Date Period. Following previous work [20], we also consider a lim-
itation of SZZ, where we are dependent on future bug fixes to identify bug-
inducing commits. As a result, bug-inducing commits made in the most re-
cent period in our dataset may not be labeled yet as such, as the bug is yet
to be fixed. More specifically, we remove recent data according to the median
timedelta observed between a bug’s occurrence and its fix. We determine the
median value to be equal to 14 days, meaning all changes within 14 days of our
data collection time are removed.

3.2. Datasets
To benchmark the performances achieved on Adyen data, we recollect two other la-
belled datasets based on open-source projects: QT and OpenStack. QT, developed
by the Qt Company, is a cross-platform application framework and allows contri-
butions from individual developers and organizations. On the other hand, Open-
Stack is an open-source software platform for cloud computing and is deployed as
an infrastructure-as-a-service which allows customers to access its resources. Both
datasets were originally collected by McIntosh and Kamei [20] to evaluate their pro-
posed model based on process metrics for just-in-time defect prediction. The au-
thors of DeepJIT [10] reused and adapted these datasets to include information on
code changes, to be used for their deep-learning based defect prediction model. The
authors of JITLine [23] further adapted the datasets by extracting code token features,
and collected ground-truth labels at line-level in order to evaluate their predictions
of defective lines. Because all three studies that we focus on in our work (i.e. CC2Vec,
DeepJIT and JITLine) benchmarked their results on these two datasets, we choose to
do so as well in order to guarantee the best comparability with our study. We recol-
lect both datasets by following all data ingestion and processings steps outlined in
this chapter, to ensure comparability of the obtained results between all datasets.

In the end, we obtain six different datasets, based on three different projects with
labels at two different granularities. Table 3.4 presents the detailed dataset statistics.

Granularity Project # Changes % Defective Language

Commit-level
QT 24140 7.3 C++
OpenStack 13151 12.3 Python
Adyen 80720 9.3 Java

File-level
QT 71843 3.2 C++
OpenStack 46354 5.1 Python
Adyen 282634 4.2 Java

Table 3.4: Statistics for each of the collected datasets.
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3.3. Models
We evaluate the performance of three different state-of-the-art approaches: Deep-
JIT [10], CC2Vec [11], JITLine [23]. All three models follow a supervised approach,
thus inferring a function from our labeled training data to predict the probability of
a change being defective. We specifically choose to evaluate the deep learning based
DeepJIT and CC2Vec models, as they are regarded as the current state-of-the-art
deep models and have shown to outperform the metric-based classifiers on open-
source datasets. We incorporate JITLine, a metric-based classifier, as the authors
have in turn shown to outperform both DeepJIT and CC2Vec with their approach
[23].

By leveraging deep learning, recent studies have come up with semantically sen-
sitive defect prediction models that are able to outperform the metric based classi-
fiers. Despite these promising results, we saw that defect prediction studies in in-
dustry have not opted yet to apply these deep learning based models. We therefore
identify the opportunity to evaluate the effectiveness of deep learning models in our
industry setting.

3.3.1. DeepJIT
DeepJIT [10] is an end-to-end deep learning framework for just-in-time defect pre-
diction. On a high level, the model takes the commit message and the code changes
as an input, extracts features in the form of vector representations using two separate
convolutional networks, and finally inputs the concatenation of these vectors into a
fully-connected layer to generate the probability of the commit to be defective. More
details on each of these steps are explained in Section 2.4.1.

In our implementation, we make some adaptations to the original implementa-
tion of the model provided by the authors of DeepJIT.

• Generalization to multiple file changes. The original implementation ex-
pects each commit to contain only one file code change. As commits in our
dataset consist of multiple file changes, we extend their implementation to en-
sure the convolutional layer and pooling layer are applied to each file to build
its embedding vector. These embedding vectors are then concatenated before
being fed to the fully connected layer. This implementation follows the ap-
proach as described in their work, but a discussion with the authors revealed
the authors had only experimented with commits that contain only one file.

• Adaption of the loss function to deal with class imbalance. The authors
of DeepJIT propose a custom weighted loss function that imposes a higher
cost on misclassification of the minority class (i.e., buggy commits). However,
this loss is left out in their actual implementation, where only a Binary Cross-
Entropy Loss is used. To deal with the imbalance, the authors randomly sam-
ple mini batches from the training data in a balanced manner, guaranteeing
the same amount of positive and negative samples in each mini batch. As a
result, the minority class is oversampled while the majority class is undersam-
pled. Not only does this method lead to sampling with replacement, it likely
also leads to more overfitting on the buggy samples as multiple copies of the
same instance are trained on in one epoch.
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In our approach, we also choose to use a Binary Cross-Entropy Loss, but add
a manual rescaling weight pc to the loss of positive examples. By tuning the
value of this weight, it is possible to trade off recall and precision. In our binary
classification task, the loss can be described as:

Hp (q) = 1

N

[
N∑

i=1
pc yi · log(p(yi ))+ (1− yi ) · log(1−p(yi ))

]
(3.1)

To balance the performance of our model between precision and recall, the
positive weights are calculated according to the distribution of the two classes
in the training data. Furthermore, to include regularization and thereby limit
overfitting, we shift from the proposed Adam optimizer to using the widely
used AdamW optimizer originally proposed by Loshchilov and Hutter [19].
The AdamW optimizer allows us to include a weight decay component that
is equivalent to adding an L2 regularization component to our loss function.

• Early stopping with validation loss to prevent overfitting. To prevent the
model from overfitting, we extend it by introducing early stopping. While the
authors of DeepJIT mention applying early stopping, this is likely done after
training based on the training loss of each epoch. This however does not pre-
vent overfitting, as the decrease of training loss typically does not stop (due to
overfitting). We therefore split the training set into a new training set and a
validation set at a ratio of 80:20. When the validation loss does not improve for
five epochs, we stop training.

• Dynamic determination of padding values according to the underlying data.
To ensure samples are equally sized, all samples are padded to the same sizes.
This happens at line-level (code line length), file-level (LOC added/removed)
and commit-level (number of files per commit, message length). When deter-
mining padding values, training time is the most important factor to consider:
too low padding leads to a lot of truncation, thus information loss, while too
much padding leads to unnecessarily long training times. We can estimate a
reasonable range of padding sizes to test by inspecting these characteristics of
our training datasets. We refer to Appendix A for details on this.

3.3.2. CC2Vec
CC2Vec [11] is an approach to learn the distributed representation of commit, which
effectively means the model learns to embed a code change into a vector space where
semantically similar changes are close to each other. To optimize the vector repre-
sentations of code changes in commits, CC2Vec predicts the words in the first line
of the commit message using the actual code changes as its input. Unlike Deep-
JIT, which relies on its CNN’s to automatically extract information about the struc-
ture of the removed code or added code, CC2Vec leverages an attention mechanism
to model this structural information. To apply CC2Vec to the task of defect predic-
tion, the DeepJIT model is augmented to make use of the information provided by
CC2Vec. Specifically, the distributed representation of a commit is concatenated
with the vector representations produced by the two convolutional layers of DeepJIT,
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before the fully connected layers.
In our implementation, we make some minor adaptations to the original implemen-
tation of the model provided by the authors of CC2Vec:

• Inclusion of the hunk encoder and attention layers. When analyzing the
original implementation provided by the authors, we find that CC2Vec also ex-
pects each commit to contain only one file change. However, this goes unno-
ticed when inputting a regular commit because the hunk encoder and hunk
attention layers are simply left out. As a result, the model interprets each file as
a hunk, and applies the comparison functions to compare the added and re-
moved lines in all file changes, instead of within just one file change. To ensure
CC2Vec generalizes correctly to multiple files, we adapt the model to correctly
include the hunk encoder and attention layers. In doing so, we follow the de-
scriptions in the original paper.

• Exclusion of the test set from training. In our implementation, we follow
the critique made by the authors of JITLine [23], who note that CC2Vec incor-
rectly uses the whole dataset (i.e., training + testing) for model training. They
do so by assuming that all unlabelled testing samples would be available be-
forehand. However, considering the significant amount of time needed for re-
training before making predictions would render the model ineffective for our
just-in-time use case. For this reason, we choose to leave out test samples in
the training phase.

• Empirical determination of file padding value. To determine suitable
padding values, we follow the same analysis as performed for DeepJIT (Ap-
pendix A). However, initial experiments showed that increasing the number of
padded files greater than 2 always leads to worse performance. This leads us
to believe that the implemented padding method impacts a model’s classifica-
tion. Therefore, we fix the number of padding values to 2.

• Improvements similar to that of DeepJIT. Some of the adaptions made to
DeepJIT can also be applied to CC2Vec, i.e. we include early stopping based on
a validation set and add an weight decay component to the loss function. Fur-
thermore, since DeepJIT is used in combination to produce bug predictions,
all adaptations to DeepJIT described above are also included here.

3.3.3. JITLine
JITLine [23] is a machine learning based just-in-time defect prediction approach that
can both predict defect-introducing commits and identify defective lines that are as-
sociated with that commit. Its approach therefore consists of two phases. In the
first phase, commit-level metrics are used to build a commit-level just-in-time de-
fect prediction model using Random Forest as the classification technique. In the
second phase, lines in a suspected defective commit are ranked by their level of risk-
iness, which is computed using LIME [26].

In our work, we focus on identifying both defective commits as well as defective
lines. Because a ranking of defective lines does not provide us with clear predictions,
we mainly look to leverage the first phase of the model.
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To evaluate the effectiveness of JITLine at identifying defective files, we also lever-
age the first phase of the original model. However, we now provide it with manually
crafted features at file-level that were presented earlier in Table 3.2.

3.3.4. Class Imbalance
To deal with class imbalance, we apply separate approaches for our metrics-based
models and our deep learning based models. For the metrics-based models, we ap-
ply the often used SMOTE technique [4] to oversample the defective samples in our
training dataset. For the deep learning models, i.e. DeepJIT and CC2Vec, such a tech-
nique cannot be applied in a straightforward manner. Instead, as described earlier,
we deal with the class imbalance through a loss function that is weighted according
to the distribution of the two classes.

3.3.5. Model Evaluation
Evaluation setting Our study focuses on evaluating performances at both commit-
level and file-level within a change. Therefore, we perform experiments and report
results for both settings. As baselines, we train a linear Logistic Regression classifier
and a non-linear Random Forest model, similar to that of many existing approaches
in research and industry that use only process metrics as input features [15, 22, 23,
36, 36, 37]. Both baselines apply SMOTE [4] to ensure a balanced dataset, and hyper-
parameter optimization is performed via grid search on a validation set. For the final
hyperparameter settings, we refer to Appendix B.

Performance metrics For each optimized model, we compute the following per-
formance metrics:

1. Precision is a good measure for a model’s proneness to wrongly classifying
clean changes as defect-introducing changes. The higher the precision, the
better a model is able to correctly predict defect-introducing changes. The pre-
cision is calculated as Pr = T P

T P+F P .

2. Recall is used to measure the model’s ability to identify defect-introducing
changes as such. A recall score of 1 indicates that the model was able to
predict all defect-introducing changes correctly. The recall is calculated as
Rec = T P

T P+F N .

3. F1-score is the harmonic mean between precision and recall, and is therefore
computed as F 1 = 2×Precision×Recall

Precision+Recall .

4. AUC is the Area Under the ROC Curve, which displays the true positive rate ver-
sus the false positive rate of a model at different classification thresholds. In the
field of just-in-time defect prediction, the AUC is arguably the most common
metric by which models are compared. This is done as datasets in the field are
naturally imbalanced, causing threshold-dependent measures (i.e., precision,
recall, or F1) to be dependent on the chosen threshold. The AUC score does not
need a manually set threshold and thus can be a quite objective interpretation
of a model’s ability to differentiate between defective or clean commits. AUC
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scores range from 0 to 1, where a value of 1 indicates perfect discrimination,
while a value of 0.5 indicates random guessing. A score lower than 0.5 can be
resolved by flipping the binary classifications of the model.



Chapter 4

Experiments

The goal of our experiments is to evaluate the effectiveness of just-in-time defect
prediction models when applied in our industry setting. We do so through a set of
research questions that we look to answer by performing experiments:

• RQ1: How well do state-of-the-art just-in-time defect prediction models per-
form on a new dataset, gathered from an industry project?

• RQ2: How effective are the evaluated models at detecting real-world bug-
introducing changes?

• RQ3: How important are the different bug sources for the effectiveness of the
evaluated models?

4.1. Methodology
To answer our research questions, we collect a novel dataset based on a large-scale
industry project. We evaluate the performance of the three proposed models (Deep-
JIT, CC2Vec and JITLine). As our baselines, we implement a non-linear Random For-
est classifier and a linear Logistic Regression classifier, using commit-level change
metrics as features.

In order to be able to compare the obtained results to that of prior work, we
also train and evaluate the performance of all models on the QT and OpenStack
datasets. We apply similar data extraction and preprocessing steps to each of the
three datasets to ensure comparability.

To answer RQ1, we use the first 90% of the datasets as training set, and the rest as
our test set. We do so as our data is time-sensitive, thus we need to make sure we only
use realistically available labels during training. We train all models at two different
change granularities: commit-level and file-level. We evaluate the performance of
the models mainly by their F1-score, the harmonic mean between precision and re-
call. We also report the precision and recall scores with a decision boundary at 0.5,
complemented by precision-recall curves that show the models performances at var-
ious thresholds. Finally, we report the models AUC scores as well as the correspond-
ing ROC-curves, as these can serve as indicators of how well the model generalizes
to varying classification thresholds and class distributions.

To answer RQ2, we collect a total of 11 changes that were manually labelled by
developers at Adyen as buggy while performing code reviews. All bug-introducing

29
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changes were collected over a time span of 2 months, later than the evaluated dataset
in RQ1. To allow for comparison with the results achieved in RQ1, we randomly sam-
ple a number of non-buggy changes from the same period. The number of randomly
sampled changes is determined by the ratio of buggy and clean changes in the origi-
nal Adyen dataset. To mitigate the impact of randomness, we repeat each experiment
100 times and report the resulting mean and standard deviations.

To answer RQ3, we perform an ablation study on our four sources for bug fixing
commits. Changes identified as bugs through the ablated source are labelled as clean
in the training set, after which the model is retrained. We then evaluate the perfor-
mance of the models on the real-world bugs collected for RQ2, following the same
random sampling approach to ensure comparability.

4.2. Results
In this section, we present the results of our experiments and the observations we
make based on them.

4.2.1. RQ1: How well do state-of-the-art just-in-time defect prediction
models perform on a new dataset, gathered from an industry project?

Table 4.1 shows the performance of all evaluated models at commit-level, Table 4.2 at
file-level. For each model, we report the AUC score and its achieved precision, recall
and F1-score at a threshold of 0.5. For completeness, we also provide the correspond-
ing confusion matrix for each obtained result in the last 4 columns. In addition, we
report the ROC curve and the precision-recall curves for all models at commit-level
in Figure 4.1 and at file-level in Figure 4.2. In our observations, we first focus commit-
level results before we discuss the results at file-level.

Dataset Model Precision Recall F1 AUC TN FP FN TP
Commit-level

OpenStack

DeepJIT 0.320 0.638 0.426 0.811 931 221 59 104
CC2Vec 0.248 0.767 0.375 0.800 773 379 38 125
JITLine 0.343 0.491 0.404 0.813 999 153 83 80
RF 0.327 0.491 0.392 0.815 987 165 83 80
LR 0.259 0.681 0.375 0.762 834 318 52 111

QT

DeepJIT 0.262 0.533 0.351 0.813 1971 271 84 96
CC2Vec 0.259 0.544 0.351 0.821 1962 280 82 98
JITLine 0.313 0.350 0.331 0.787 2104 138 117 63
RF 0.305 0.394 0.344 0.792 2080 162 109 71
LR 0.171 0.633 0.269 0.768 1688 554 66 114

Adyen

DeepJIT 0.223 0.593 0.324 0.762 5773 1548 306 445
CC2Vec 0.250 0.469 0.326 0.726 6266 1055 399 352
JITLine 0.280 0.181 0.220 0.729 6971 350 615 136
RF 0.287 0.204 0.238 0.728 6941 380 598 153
LR 0.180 0.563 0.273 0.704 5397 1924 328 423

Table 4.1: Model performances when evaluating commit-level predictions. The best score achieved
within each dataset is displayed in bold.
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(a) ROC curves per dataset for every model
when trained and evaluated at commit-level.

(b) Precision-recall curves per dataset for ev-
ery model when trained and evaluated at
commit-level.

Figure 4.1: Precision and recall trade-off at varying thresholds when making predictions at commit-
level.
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Observation 1: On open-source datasets, most models achieve good and simi-
lar results at commit-level, with deep learning models slightly outperforming the
metric-based models. When comparing results obtained for OpenStack (Table 4.1),
DeepJIT achieves an F1-score of 0.426, with a precision and recall of 0.320 and 0.638
respectively at the threshold of 0.5. It thereby outperformed the metric-based models
and CC2Vec in terms of F1-score, where JITLine was the best metric-based performer
at 0.404. AUC scores for OpenStack were largely the same for all models, with only the
Logistic Regression baseline underperforming. For the QT dataset, we observe com-
parable performances between the deep learning and metric-based models. DeepJIT
and CC2Vec achieve the same F1-score of 0.351, and thereby only slightly outper-
form the best performing metric-based model in JITLine with an F1-score of 0.331.
AUC scores for both DeepJIT and CC2Vec are also higher than the other models at
0.813 and 0.821 respectively, with the best performer in the Random Forest baseline
achieving 0.792.

Looking at the ROC-curves for all models at commit-level (Figure 4.1), we
only observe minor differences between the models. The difference in terms of
performance becomes more apparent when we compare the precision-recall curves
(Figure 4.1). We clearly observe here that in the OpenStack dataset, DeepJIT outper-
forms the other models, especially as we prioritize precision more over recall.

Observation 2: Deep Learning significantly outperforms metric-based models on
Adyen data at commit-level, but all models perform worse than in an open-source
setting. DeepJIT and CC2Vec obtain very similar F1 scores of 0.324 and 0.326
respectively, and thereby outperform the metric-based model of JITLine and our
baselines by up to 48%. F1-scores for all models are however slightly lower compared
the result achieved on the OpenStack and QT datasets, with especially JITLine and
the Random Forest baseline performing poor in terms of recall. The AUC scores also
drop, with DeepJIT being the best performer with an AUC of 0.762. JITLine and the
baseline Random Forest model achieve significantly lower recall values on Adyen
data compared to their evaluation on the open source datasets: 0.181 and 0.204
respectively. Both DeepJIT and CC2Vec thereby show to generalize better to our
novel industry dataset than the metric-based models.

Observation 3: At file-level predictions, All models lose a large amount of perfor-
mance compared to commit-level, but deep learning models significantly outper-
form metric-based models. In terms of F1 score, we observe that both DeepJIT
and CC2Vec outperform the metric-based models across all three datasets at file-
level (Table 4.2). The metric-based models most notably give up a lot on recall when
compared to the results achieved at commit-level. For example, JITLine and the Ran-
dom Forest baseline achieve recall scores as low as 0.079 and 0.091 respectively when
evaluated on Adyen data. Both DeepJIT and CC2Vec achieve significantly better re-
call scores at 0.512 and 0.434, respectively. In terms of precision, all models drop
significantly in performance compared to commit-level predictions, and all achieve
very comparable results. On Adyen data, CC2Vec most notably outperforms the rest
with a precision of 0.141, thereby also achieving the best performance in terms of
F1 score. Finally, when comparing the models by their AUC, DeepJIT and CC2Vec
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achieve comparable results and significantly outperform the rest in all three datasets.

Looking at the ROC-curves for all models at file-level (Figure 4.2), we observe that
both DeepJIT and CC2Vec outperform the other models. Similar results are observed
from the the precision-recall curves 4.2, where deep learning becomes the even more
favorable approach as we increase the importance of precision over recall.

Dataset Model Precision Recall F1 AUC TN FP FN TP
File-level

OpenStack

DeepJIT 0.165 0.587 0.258 0.788 3810 697 97 138
CC2Vec 0.153 0.489 0.233 0.791 3868 639 120 115
JITLine 0.179 0.234 0.203 0.754 4254 253 180 55
RF 0.169 0.230 0.195 0.769 4242 265 181 54
LR 0.115 0.523 0.189 0.718 3565 942 112 123

QT

DeepJIT 0.157 0.527 0.242 0.821 6582 669 112 125
CC2Vec 0.133 0.527 0.213 0.829 6437 814 112 125
JITLine 0.137 0.143 0.140 0.747 7037 214 203 34
RF 0.124 0.143 0.133 0.743 7010 241 203 34
LR 0.055 0.620 0.100 0.661 4704 2547 90 147

Adyen

DeepJIT 0.118 0.512 0.192 0.751 22954 4422 563 591
CC2Vec 0.141 0.434 0.213 0.756 24331 3045 653 501
JITLine 0.121 0.079 0.096 0.687 26718 658 1063 91
RF 0.117 0.091 0.102 0.688 26581 795 1049 105
LR 0.070 0.581 0.124 0.671 18421 8955 484 670

Table 4.2: Model performances when evaluating file-level predictions. The best score achieved within
each dataset is displayed in bold.

Observation 4: CC2Vec does not clearly outperform DeepJIT in any dataset, ques-
tioning the effectiveness of the model in a just-in-time defect prediction setting. As
has also been discussed in all three previous observations, DeepJIT and CC2Vec per-
form very similar to one another in all three datasets and at both granularities. We
also observe very similar ROC-curves and precision-recall curves for both models.
Since CC2Vec is an extension of DeepJIT, and only differs from DeepJIT by adding an
additional vector representation of the code changes, this similarity of performance
indicates that the effectiveness of these representations is limited in our study.
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(a) ROC curves per dataset for every model
when trained and evaluated at commit-level.

(b) Precision-recall curves per dataset for ev-
ery model.

Figure 4.2: Precision and recall trade-off at varying thresholds when making predictions at file-level.
The best score achieved within each dataset is displayed in bold.
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RQ1 Conclusion

Deep Learning based models outperform the metric-based models across
all three datasets. When evaluated on Adyen data, all models perform
slightly worse than in an open-source setting, but both DeepJIT and
CC2Vec still achieve respectable performances and significantly outper-
form the metrics-based models. At file-level predictions, all models lose a
large amount of performance compared to the observed performances at
commit-level, but deep learning models significantly outperform metric-
based models. Deep learning therefore proves to be more effective at iden-
tifying defective changes than metric-based models, and better general-
izes to our novel industry-based dataset. Considering the performances of
DeepJIT and CC2Vec are comparable, the effectiveness of the embeddings
produced by CC2Vec in a just-in-time defect prediction setting seems lim-
ited. As DeepJIT also requires significantly less training time, we consider
DeepJIT to be the best performing model.

4.2.2. RQ2: How effective are the evaluated models at detecting real-world
bug-introducing changes?

Table 4.3 shows the the performance of the evaluated models when evaluated against
the manually collected bug-introducing changes mixed with randomly sampled
clean changes.

Model Precision Recall F1
Commit-level
DeepJIT 0.250 (0.033) 0.727 0.371 (0.036)
JITLine 0.247 (0.159) 0.091 0.127 (0.016)
LR 0.234 (0.028) 0.727 0.353 (0.032)
RF 0.000 (0.000) 0.000 0.000 (0.000)
File-level
DeepJIT 0.080 (0.005) 0.818 0.146 (0.008)
JITLine 0.000 (0.000) 0.000 0.000 (0.000)
LR 0.103 (0.091) 0.818 0.183 (0.015)
RF 0.274 (0.091) 0.182 0.214 (0.026)

Table 4.3: Model Performances when predicting manually collected bugs at commit-level and file-level.
Reported results are the average of 100 runs, with the standard deviation reported in brackets behind
it. The best score achieved within each dataset is displayed in bold.

Observation 5: DeepJIT achieves consistent Precision and Recall scores at
commit-level, and significantly outperforms the metric-based models. When
predicting bugs at commit-level, DeepJIT achieves a Precision and Recall of 0.250
and 0.727 respectively, and thereby outperforms all other models in all three metrics.
This is very comparable to the results obtained in RQ1 (Table 4.1, where it achieved
a Precision and Recall of 0.320 and 0.638 respectively. The baseline Random Forest
model and JITLine proved ineffective at correctly identifying the collected bug-
introducing commits, predicting respectively 0 and 1 out of the 11 buggy commits
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as such. The Logistic Regression baseline was the best performing metric-based
model, achieving a recall score of 0.727.

Observation 6: DeepJIT achieves better than expected recall at file-level, but is
significantly outperformed by the Random Forest baseline in terms of precision.
With a Recall score of 0.818, DeepJIT was able to identify most buggy file changes
correctly, but does so by giving up some of its Precision observed in RQ1 (0.118,
Table 4.2). The Logistic Regression baseline model achieved the same recall, but
achieves a slightly better precision of 0.103. Finally, we observe a significantly higher
precision achieved by the Random Forest baseline model, on average 0.274, but with
a much lower recall score of 0.182. The Random Forest model thereby performs
better than its commit-level based counterpart, and also becomes the overall best
performing model at file-level in terms of F1-score.

Observation 7: Predictions by the same model at the different granularities do not
necessarily overlap. When we inspect Table 4.4, we see some significant differences
between a model’s predictions at commit-level and file-level. For example, DeepJIT
wrongly predicts commits #1, #2 and #4 as clean, while the same model trained and
evaluated at file-level predicts them correctly as buggy. On the other hand, DeepJIT
correctly identifies commits #9 and #10 as bug introducing changes, but fails to do
so at file-level. For the metric-based models, we can observe the same dissimilarities
between the commit-level and file-level based models.

Commit-level File-level

bug DeepJIT JITLine LR RF DeepJIT JITLine LR RF
#1 X X X X
#2 X X
#3 X X X
#4 X X X
#5 X X X X
#6 X X X X X X
#7 X X X X
#8 X X X
#9 X X

#10 X X
#11 X X X X

Table 4.4: Correctness of prediction for each manually collected bug at commit-level and file-level. A
checkmark indicates the model successfully predicted the bug as such.
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RQ2 Conclusion

At commit-level, DeepJIT performs consistent with the findings in RQ1,
achieving similar or even better precision and recall scores when predict-
ing real-world buggy changes. It thereby significantly outperforms the
metric-based models in both precision and recall. At file-level however,
even though good recall scores are observed, some precision is lost in the
real-world setting compared to our earlier findings. Comparing individ-
ual predictions at both granularities also reveals there is a dissimilarity be-
tween a model’s predictions at both granularities. Overall, even though
the number of samples is very limited, DeepJIT shows promising initial re-
sults when tested on a real-world bugs at commit-level, but more research
is needed to effectively incorporate predictions at file-level in a real-world
setting.

4.2.3. RQ3: How important are the different bug sources for the effective-
ness of the evaluated models?

Table 4.5 shows the the performance of the evaluated models for each ablated source.

Observation 8: No particular source is clearly most representative of buggy
changes, as it seems dependent on both model and granularity of predictions.
While some models perform best when all sources are included in the labelling
process, others benefit from leaving out one source. For example, ablating labels
obtained through release patches leads to the largest performance loss for DeepJIT,
achieving only a recall of 0.091 at commit-level. However, all other metric-based
models improve either on recall, precision or both at commit-level when doing
so. Ablating issues leads to a significant drop in performance for DeepJIT at both
commit-level and file-level, achieving recalls of 0.273 and 0.545 respectively. For
metric-based models, ablating issues does not clearly lead to a drop or gain in
performance. Ablating labels obtained through emergency commits often resulted
in a performance loss at both prediction granularities, with the exception of DeepJIT
at file-level. Finally, ablating labels obtained through code reviews almost always
lead to a decrease in recall, albeit only small.

Observation 9: Using emergency commits as bug source may introduce noise in
labels at file-level. For DeepJIT, ablating any source of data almost always led to a
deterioration in performance, except while ablating labels collected through emer-
gency commits. Upon closer inspection of the source, it becomes evident that a large
part of emergency commits are "reverts" of previous commits. The reverted commit
is therefore indeed likely to be bug-introducing, but also all changed files are labelled
as such, even though only one of the files is likely to be bug-introducing. This likely
leads to a large amount of file changes wrongly labelled as bug-introducing, thereby
introducing noise to our labelled dataset.



38 4. Experiments

RQ3 Conclusion

Whether inclusion of any of the proposed bug label sources leads to infor-
mation gain is dependent on both what type of model is used and at what
granularity predictions are made. Bugs labelled through release patches
are the most important source for our deep-learning based model, but
cause the metric-based models to perform worse. Labels obtained through
emergency commits are suspected to introduce some noise at file-level
due to such commits often being "revert" commits. Therefore, when se-
lecting sources to obtain labels, taking into account the granularity of pre-
dictions is important.
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Commit-level
Model Ablated Source Precision Recall F1

Iss. Pat. Eme. Rev.

DeepJIT

All sources 0.250 (0.033) 0.727 0.371 (0.036)
7 0.198 (0.042) 0.273 0.227 (0.027)

7 0.168 (0.069) 0.091 0.114 (0.015)
7 0.190 (0.025) 0.545 0.281 (0.027)

7 0.243 (0.043) 0.455 0.315 (0.036)

JITLine

All sources 0.247 (0.159) 0.091 0.127 (0.016)
7 0.000 (0.000) 0.000 0.000 (0.000)

7 0.401 (0.225) 0.091 0.142 (0.015)
7 0.000 (0.000) 0.000 0.000 (0.000)

7 0.000 (0.000) 0.000 0.000 (0.000)

baseline_RF

All sources 0.000 (0.000) 0.000 0.000 (0.000)
7 0.000 (0.000) 0.000 0.000 (0.000)

7 0.250 (0.163) 0.091 0.127 (0.016)
7 0.000 (0.000) 0.000 0.000 (0.000)

7 0.000 (0.000) 0.000 0.000 (0.000)

baseline_LR

All sources 0.234 (0.028) 0.727 0.353 (0.032)
7 0.265 (0.033) 0.818 0.399 (0.037)

7 0.251 (0.029) 0.818 0.383 (0.033)
7 0.099 (0.017) 0.273 0.144 (0.018)

7 0.216 (0.027) 0.636 0.322 (0.030)

File-level
Model Ablated Source Precision Recall F1

I P E R

DeepJIT

All sources 0.080 (0.005) 0.818 0.146 (0.008)
7 0.060 (0.005) 0.545 0.107 (0.008)

7 0.079 (0.005) 0.818 0.143 (0.009)
7 0.089 (0.006) 0.909 0.163 (0.009)

7 0.079 (0.005) 0.818 0.144 (0.008)

JITLine

All sources 0.000 (0.000) 0.000 0.000 (0.000)
7 0.300 (0.179) 0.091 0.134 (0.015)

7 0.195 (0.110) 0.091 0.119 (0.015)
7 0.000 (0.000) 0.000 0.000 (0.000)

7 0.000 (0.000) 0.000 0.000 (0.000)

baseline_RF

All sources 0.274 (0.091) 0.182 0.214 (0.026)
7 0.000 (0.000) 0.000 0.000 (0.000)

7 0.192 (0.122) 0.091 0.118 (0.016)
7 0.000 (0.000) 0.000 0.000 (0.000)

7 0.000 (0.000) 0.000 0.000 (0.000)

baseline_LR

All sources 0.103 (0.010) 0.818 0.183 (0.015)
7 0.089 (0.008) 0.727 0.158 (0.013)

7 0.104 (0.010) 0.727 0.181 (0.016)
7 0.021 (0.002) 0.182 0.038 (0.003)

7 0.082 (0.005) 1.000 0.151 (0.009)

Table 4.5: Ablation study of bug sources when predicting manually collected bugs at commit-level and
file-level. Reported results are the average of 100 runs, with the standard deviation reported in brackets
behind it. The best score achieved within each dataset is displayed in bold. The source that is left out
during training is marked with an "7" in the Ablated Source column.





Chapter 5

Discussion

We summarize the results in our study, and discuss implications and threats to valid-
ity in this section.

5.1. Practical Implications
Our study reveals the following practical implications that should be considered in
future studies related to just-in-time defect prediction.

Deep learning can work, but issues remain. The results from our study show that
in the setting of just-in-time defect prediction, deep learning models can outper-
form traditional metric-based classifiers in both open-source and industry settings.
Nonetheless, the issues that we encountered and the adaptations we have had to
make when reusing both DeepJIT and CC2Vec raise some concern.

As already stated in Observation 4, we saw that CC2Vec, an extension on top of
DeepJIT, was unable to contribute in a significant way to the ability of predicting
bugs in changes. We therefore question the effectiveness of the embeddings pro-
duced by the model. While we encourage the work towards learning code represen-
tations, more research is needed to study the effectiveness of produced embeddings
before such models can be effectively applied in just-in-time defect prediction. A re-
cent study by Tian et al. [35] compares embeddings of buggy code and patched code
produced by CC2Vec when combined with PatchNet, but not as a stand alone.

A study by Zeng et al. [43] that was published just before finishing this work,
focuses on evaluating the current state-of-the-art deep learning models for just-in-
time defect prediction (i.e. DeepJIT and CC2Vec). They draw some of the same con-
clusions as we do, such as the ineffectiveness of CC2Vec, but also show the results
obtained in the work of CC2Vec were likely obtained with partially dummy data. As
far as we know, our study and that of Zeng et al. [43] are the only studies so far to have
observed this issue. We therefore conjecture that not only the results obtained in the
original study, but follow-up studies such as JITLine were also impacted by this and
other issues. In fact, we notified the authors of JITLine about a bug in their replica-
tion package, one that we had also observed to be present in the replication package
of CC2Vec. The authors responded by pointing out they had used the code as pro-
vided in the replication package of CC2Vec, confirming our suspicion. We have pro-
posed a fix1 to the authors of CC2Vec, which has been approved but left unmerged

1github.com/soarsmu/CC2Vec/pull/2
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unfortunately.

A variety of evaluation metrics is necessary to represent a model’s performance in
a real-world setting. In the field of just-in-time defect prediction, the AUC is ar-
guably the most common metric by which models are compared. This is done as
datasets in the field are naturally imbalanced, causing threshold-dependent mea-
sures (i.e., precision, recall, or F1) to be dependent on the chosen threshold. The
AUC score does not need a manually set threshold and thus can be a quite objective
interpretation of a model’s ability to differentiate between defective or clean com-
mits. We conjecture however that achieving better AUC scores does not represent a
meaningful improvement without considering other performance metrics, such as
precision and recall. The authors of JITLine provide us an excellent example, where
they report their implementation of DeepJIT to have an AUC of 0.75, but report pre-
cision and recall scores of both 0. Although such a model might overall show decent
capability of separating positive from negative classes, in practice it is of little use to
help spot bugs in commits. Adding additional performance metrics such as precision
and recall can give us a good indication of the expected capability of a classifier if it
were to be applied in a real-world setting. Moreover, one could report the precision-
recall curve, which allows for a threshold-independent evaluation of a model’s per-
formance in terms of precision and recall.

Models should be treated as risk indicators, not as oracles. Even though the eval-
uated models display the ability to discriminate buggy changes from clean changes,
predictions are still very much prone to errors. We therefore conjecture that defect
predictions should be viewed as a predicted "level of riskiness" and suggest that prac-
titioners, instead of judging predictions to be either right or wrong, instead use such
predictions as an objective source of information decision making. In our studied
use case, code reviewers at Adyen could for example use the predictions on riskiness
in their decision on where more attention should be payed during code reviews.

5.2. Threats to Validity
Threats to internal validity. The threats to internal validity refer to errors in the
performed experiments and experimenter bias.

For each task, existing implementations of relevant data collection tools were
used or adapted when available, and implementations of all models studies were ob-
tained and reused, We have also been in contact with the authors of all models used
to ensure correctness of our work, and have used the same evaluation metrics that
were used in previous studies. Nonetheless, quite some adaptations had to be made
to both data collection tools and reused models. Even if some if these adaptations
were in order to remove bugs, errors may remain.

Another significant threat to our study regards the validity of our collected
dataset, which is two-fold. Firstly, we have identified new sources to collect bug-
fixing commits. All of the sources used were selected according to Adyen’s way of
working, and are therefore assumed to be reliable enough sources for bug-fixes. To
assess the individual effectiveness of each dataset, we have also provided an abla-
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tion study that mostly solidified our assumption. Nonetheless, manual validation by
experts would be necessary in order to guarantee this. Secondly, a threat to the va-
lidity of our dataset is caused by the SZZ algorithm [32], through which we identify
bug-introducing changes in our datasets. The SZZ algorithm is commonly used in
defect prediction research, yet has known limitations [8, 27]. However, the focus of
our study is to compare the performance just-in-time defect prediction models in an
industry setting. Since the SZZ algorithm is the most widely used algorithm in the
field, we deem it the best option available to do conduct our study.

External validity Threats to external validity concern the generalizability of our
work. We emphasize that the focus of this work lies in applying just-in-time defect
prediction at Adyen, in order to aid Adyen developers in performing code reviews.
If the same models were to be applied in a different setting, different results may
be obtained. That being said, we have mitigated some concerns regarding general-
izability by evaluating all models used on publicly available datasets that have also
been been used in the studies that originally proposed the models. Although these
projects might not be representative of all projects out there, together they cover a
variety of programming languages, application domains and sizes. We therefore be-
lieve the obtained results in this work meaningfully contribute to the validation of
empirical knowledge about just-in-time defect prediction models in an industry set-
ting.





Chapter 6

Conclusion

Finding defects in proposed changes is one of the biggest motivations and expected
outcomes of code review, but does not result as often in actually finding defects. To
mitigate this issue, efficient allocation of inspection time could be done according
to the defect-proneness of the changed software parts. The field of study that at-
tempts to model and predict such likelihood of defectiveness is called defect predic-
tion. Just-in-time defect prediction models, that predict defects at change-level, can
help developers spot defective changes during code review.

In this work, we have investigated the effectiveness of state-of-the-art just-in-
time defect prediction approaches when applied in an industry setting. To construct
a new dataset with a large enough set of labels, we identified four sources of poten-
tial bug-fixing commits by analysing Adyen’s way of working. We compared three
traditional metric-based models with two recent deep learning-based models that
make predictions at both commit-level and file-level. We set out to answer three
research questions related to the models’ performances and the effectiveness of our
label sources. We rephrase each of the research questions and the corresponding
conclusions below.

RQ1: How well do state-of-the-art just-in-time defect prediction models perform
on a new dataset, gathered from an industry project?
To answer this research question, we trained and evaluated all models on our
newly collected dataset, as well as two datasets based on large-scale open source
projects. We concluded that deep learning based models outperform the metric-
based models across all three datasets. When evaluated on Adyen data, all models
performed slightly worse than in an open-source setting, but both DeepJIT and
CC2Vec still achieved respectable performances and significantly outperformed
the metrics-based models. At file-level predictions, all models lost a large amount
of performance compared to the observed performances at commit-level, but
deep learning models significantly outperformed metric-based models. Deep
learning therefore proves to be more effective at identifying defective changes than
metric-based models, and generalizes better to our novel industry-based dataset.
Considering the performances of DeepJIT and CC2Vec are comparable, the effec-
tiveness of the embeddings produced by CC2Vec in a just-in-time defect prediction
setting seems limited. As DeepJIT also requires significantly less training time, we
consider DeepJIT to be the best performing model in both an open-source setting as
well as on our large-scale industry dataset.

45
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RQ2: How effective are the evaluated models at detecting real-world bug-
introducing changes?
To answer this research question, we tested the models on a small set of manu-
ally collected bugs by developers at Adyen. At commit-level, DeepJIT performed
consistent with the findings in RQ1, achieving similar or even better precision and
recall scores. It thereby significantly outperformed the metric-based models in
both precision and recall. At file-level however, even though good recall scores
are observed, some precision is lost in the real-life setting compared to our earlier
findings. Comparing individual predictions at both granularities also revealed there
is a dissimilarity between a model’s predictions at both granularities. Overall, even
though the number of samples is very limited, DeepJIT shows promising initial
results when tested in a real-world setting at commit-level, but more research is
needed to effectively incorporate predictions at file-level in a real-life setting.

RQ3: How important are the different bug sources for the effectiveness of the eval-
uated models?
Finally, we performed an ablation study to investigate the added value of all four
identified bug sources in detecting the collected real-world bugs. We found that
Whether inclusion of any of the proposed bug label sources leads to information
gain is dependent on both what type of model is used and at what granularity pre-
dictions are made. Bugs labelled through release patches are the most important
source for our deep-learning based model, but cause the metric-based models to
perform worse. Labels obtained through emergency commits are suspected to in-
troduce some noise at file-level due to such commits often being "revert" commits.
Therefore, when selecting sources to obtain labels, taking into account the granular-
ity of predictions is important.

6.1. Future Work
Conducting this study provided us with some insights into both the models evalu-
ated, as well as applying just-in-time defect prediction in practice. In this section, we
therefore conclude by sharing some recommendations for future research.

• Improving DeepJIT and CC2Vec. We have made several small adaptations to
both DeepJIT and CC2Vec, mostly with regards to adapting to our dataset and
improving the training effectiveness. We however also propose some structural
improvements for future work that we believe will likely contribute to their
performances. Firstly, with regards to DeepJIT, we note that the final convo-
lutional layer scales as the number of input files grows. Moreover, weights of
the individual file embeddings are trained individually, meaning the order in
which files are analyzed impacts the prediction of the model. As also discussed
in our approach, the authors of DeepJIT had only experimented with commits
that contain only one file, which removes the concern of file ordering. We hy-
pothesize that by making the layer agnostic to the order of its input, DeepJIT
will be able to generalize better to commits that span multiple files. We recog-
nize that a similar methodology was applied in CC2Vec in order to concatenate
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the file embeddings, thus CC2Vec may benefit from such an improvement in a
similar manner.

Secondly, we hypothesize the performance of CC2Vec is hampered by its
padding method. In the original implementation, lines, hunks and files are
padded with a generic <unk> token. The padding tokens are however weighted
in the prediction, meaning the model attempts to make sense of useless infor-
mation. We hypothesize that as the size of the padding increases, the amount
of noise that contributes to the prediction grows. This concern can likely be
fixed by incorporating masking, a common technique used to help the model
identify and ignore all padded values.

• Improving the interpretability of deep predictions. In order to better aid
reviewers during code review, we have in this work focused on making finer
grained predictions within a commit. However, this still does not add to the
interpretability of the model, i.e. "why does the model think this change is
defective?". One approach to add interpretability to deep models is through
an interpretation algorithm such as GradCAM [29], that utilizes the weights
in a CNN to visually show the important regions that affect model decisions.
Another approach is through incorporating attention layers within the model,
which are usually easy to interpret as their value represents the importance of
each connection towards the output. However, improved interpretability of a
model often comes with more simplicity of the model, thus it is believed that
there is a trade-off between interpretability and performance of a model [18],

• Automated patch repair models could serve as recommendations. As an al-
ternative to explaining why a model suspects a bug, we could also aim to pro-
vide the user with a recommendation on how to fix it. The research field that
revolves around solving this task is called Automated Program Repair (APR).
Recent studies on APR typically employ a data-driven approach, where by
leveraging a large database of existing patches, source code snippets or both,
relevant fixes can be recommended [1, 14].

• Empirical assessment of models in code reviews. As a next step towards
introducing just-in-time defect prediction at Adyen, an in depth case study
that applies the studied just-in-time defect prediction models in code reviews
should be conducted. Such a study should focus on understanding the infor-
mation needs of a reviewer that a prediction should provide, in order to effec-
tively guide a reviewer in spotting a bug. Additionally, it should be investigated
how reviewers perceive the usefulness and trustworthiness of a model at vary-
ing classification thresholds. This will allow for determination of a suitable
trade-off between precision and recall. Finally, bringing a model to produc-
tion should allow for collecting more ground-truth labels on bug-introducing
changes, which will help tremendously in improving the task further.
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Appendix A

Padding hyperparameter
determination

To ensure parallellization, all samples for DeepJIT and CC2Vec are padded to the
same sizes. This happens at line-level (code line length), file-level (LOC added/re-
moved) and commit-level (#files, message length). We can estimate the right
padding values by inspecting the datasets. We inspect all three levels in Figures A.1,
A.2 and A.3 respectively. The determined hyperparameters for each model are pro-
vided in Table A.1

Figure A.1: The above graphs display the values for the code line lengths for each dataset. Bin width is
set to 2

55



56 A. Padding hyperparameter determination

Figure A.2: The above graphs display the values for each dataset at file-level. From left to right: number
of lines added, number of lines removed, total number lines (added + removed). Bin widths are set to
5, 5 and 5 respectively.

Figure A.3: The above graphs display the values for each dataset at commit-level. From left to right:
number of files changed, message length. Bin widths are set to 1 and 10 respectively.
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Dataset Hyperparameter DeepJIT CC2Vec

QT

MESSAGE_LENGTH 20 20
CODE_LINE_LENGTH 16 16
NUM_CODE_LINES 100 15
NUM_FILES 10 2

OpenStack

MESSAGE_LENGTH 20 20
CODE_LINE_LENGTH 16 16
NUM_CODE_LINES 100 15
NUM_FILES 10 2

Adyen

MESSAGE_LENGTH 30 30
CODE_LINE_LENGTH 16 16
NUM_CODE_LINES 100 15
NUM_FILES 10 2

Table A.1: Determined hyperparameters for both CC2Vec and DeepJIT for every dataset





Appendix B

Baselines hyperparameter
optimization

OpenStack QT Adyen
Hyperparameter commit file commit file commit file

N_ESTIMATORS 1400 1800 200 1000 1600 2000
MAX_FEATURES auto sqrt auto sqrt auto auto
MAX_DEPTH 80 10 110 10 80 70
MIN_SAMPLES_SPLIT 2 10 5 5 5 4
MIN_SAMPLES_LEAF 4 1 2 2 4 2
BOOTSTRAP true true true true true true

Table B.1: Best set of hyperparameters for the Random Forest baseline model for every dataset at both
granularities.

OpenStack QT Adyen
Hyperparameter commit file commit file commit file

C 1.0 1.0 1.0 1.0 1.0 0.9

Table B.2: Best value for the hyperparameter C for the logistic regression baseline model for every
dataset, at both granularities.
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