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Abstract

Distributed energy resources challenge the situational awareness of power flows. Many distri-
bution grid (DG) operators have not yet implemented state estimation (SE) due to the expense
or privacy constraints of measurements that lead to an unobservable system, as well as inaccu-
rate grid parameters. A key concern with the latter is the presence of medium- and low-voltage
transformers with off-load tap changers, whose tap positions critically influence voltage levels
across the network. Identifying transformers where the registered position is likely incorrect–
and, when on-site verification is impractical, estimating a plausible tap setting–constitutes a
valuable contribution to improving network observability and operational accuracy. Although
operators could manually inspect each transformer, this is impractical–there are, for instance,
up to 20,000 transformers in the Southern Netherlands.

To address these challenges, this thesis proposes a novel topology-aware framework for esti-
mating state and transformer tap positions in unobservable DGs. The framework comprises
two key components. First, a generative adversarial network (GAN) is used to train a gener-
ative model conditioned on the network topology and synthetic power flow data, generating
realistic measurements. Second, an integrated model, referred to as the TapSEGNN model,
is proposed for estimating state and transformer tap positions.

Both of these components employ a core model architecture which combines graph and
simplicial complex neural networks to capture spatial dependencies between nodes, edges,
and higher-order structures. To train these components, an industrial-grade data-processing
pipeline was developed using a real DG topology and simulating the exact available mea-
surement locations. The results show that balanced adversarial training of GAN accurately
imputes the missing active power injection measurements, but produces high variance in
imputations for voltage magnitude and active power flow measurements. The performance
of the TapSEGNN model demonstrates at least tenfold higher accuracy for SE compared
to conventional methods, and it predicts transformer tap positions with 100% accuracy in
a computationally efficient manner. TapSEGNN also shows promising scalability for larger
networks; however, it struggles with generalisability across similar real networks. Finally, the
suboptimal performance of both components in certain aspects warrants further investigation,
which is recommended as future work.
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Chapter 1

Introduction

1-1 Background and Motivation

One-third of electricity in the world comes from renewables, pushing the energy transition
forward at an unprecedented pace to align with climate goals and sustainable practices [7].
The growing adoption of renewable energy sources (RES) by both producers and consumers is
accelerating this transformation. Economically and socially, this transition offers opportuni-
ties for market growth and energy democratisation. While plugging the RES into the current
grid marks a significant engineering achievement, it introduces several issues, such as higher
generation, bidirectional power flows, and voltage violations, leading to grid congestion and
potential blackouts. To address such problems, system operators require accurate network
models to make informed decisions for planning and expanding the grid.

Tracing the origins of the power industry [8], under complex system operations or adverse
conditions, the operator would have to manually analyse the situation and input the data
into a power flow (PF) program to get results and insights into the problem. However,
since the data were treated deterministically at that time, the results would most likely be
unsatisfactory. With the advent of technological capability, the Energy Management System
(EMS) of modern control centres allow operators to simulate, plan, operate, and monitor
the power grid optimally using tools like state estimation (SE), PF analysis, contingency
analyses, fault calculations, and voltage stability. Among these, SE precedes all other analyses
in the pipeline. Since SE enables operators to closely monitor the underlying assets of the
power system, preferably in real-time, numerous measurements are desired across the network.
However, in general, the measurement infrastructure differs between the transmission grid
(TG) and the distribution grid (DG) for any nation.

The TG manages extra-high and high voltage (EHV and HV) lines. It is considered the
backbone of the power grid because it transports bulk electricity from the synchronised and
asynchronous generation sources to the DG. The power fed to the DG gets distributed among
the industrial and residential consumers through medium and low voltage (MV and LV) lines.
Because of the critical role of the TG, any disturbances in it could cause a nationwide blackout,
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2 Introduction

affecting the lives of millions. Thus, the operational reliability standards of the TG always
include "n-1" reserve: there is always a reserve for a single fault. Moreover, these regulations
also ensure full observability of the network, i.e., the number of observations in the grid
is sufficient to determine an accurate network model. However, these regulations do not
fully apply to the DG. First, because the DG is not as critical as the TG, and second, it is
significantly larger [6]. As a result, national investment in the DG measurement infrastructure
is limited, leading to fewer measurements and often no fault reserves [6]. Table 1-1 gives an
impression of the size of the DG as compared to the TG in the Netherlands. Comparing the
medium voltage (MV) and low voltage (LV) networks in the DG, the MV network often has
better observability as compared to the LV network, as consumer privacy contracts restrict
access to the load profiles.

Table 1-1: Transmission and distribution networks in the Netherlands, 2009 [6].

Voltage level Station type Number of stations Total Line Length
EHV (220/380 kV) EHV/HV Dozens 2685 km

HV (50/110/150 kV) HV/MV ∼200 9252 km
MV (3-25 kV) MV/LV ∼20,000 101,965 km
LV (0.4 kV) LV/consumers ∼50-200 145,339 km

Despite these infrastructural differences, the integration of RES throughout the grid causes
congestion in both the TG and the DG. For the TG, full observability allows well-established
SE tools [9] to provide accurate network models for optimal decision-making. However, the
same does not hold for the DG, where adapting SE methods designed for the TG is difficult
due to limited observability. In addition to that, the quality of the network model is also
susceptible to the input model parameters [10]. Conventional TG-based methods, such as
residual analysis, cannot differentiate between a faulty measurement and one that results from
inaccurate model parameters. This makes it challenging to deal with the limited observability
in state and parameter estimation (SPE) for the DG.
Another challenge is dealing with the uncertainties in the grid caused by ageing infrastruc-
ture and cybersecurity concerns [11, 12]. Taking into account the current computational
capabilities, this issue can be addressed with a data-driven approach for SPE, aligning with
the philosophical framework of inductive reasoning [13]. Enhanced sensing capabilities create
opportunities to rigorously test hypotheses against observable phenomena–scientific progress
as a cycle of conjectures and refutations [13]. Data-driven or machine learning (ML) thrives
with this vision by identifying and refining patterns through iterative hypothesis testing,
where models are continuously updated to accommodate new evidence. Moreover, integrat-
ing synthetic data distribution and domain-specific physical models as prior knowledge further
streamlines the training process. These priors constrain the search space for optimal func-
tional mapping, leading to more efficient model convergence. The remarkable advancements
in image generation with generative adversarial network (GAN) architecture serve as com-
pelling evidence of the efficacy of machine learning approaches.
In light of the challenges above, this thesis proposes a novel ML framework to tackle the
inherent limitations in the observability of the DG and to extend SPE capabilities for enhanced
grid monitoring. Specifically, the proposed framework is built around graph neural network
(GNN), a class of inductive neural networks that inherently encode the structural topology of
the power grid. GNNs provide a computationally efficient and topology-aware solution that
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1-2 Industrial Motivation 3

is well-suited for learning from sparse and graph-structured data, such as that found in the
power grids.

The framework applies the GNN architecture in two complementary stages. First, to mit-
igate the challenge of limited observability, the GNN is integrated within a GAN setup to
infer missing measurements and reconstruct an otherwise unobservable or partially observable
network model into a fully observable one. In the second stage, this reconstructed network
model serves as an input for SPE, where the GNN operates in a supervised regression setting
to accurately estimate the system states and required parameters. This two-stage framework
highlights the adaptability and effectiveness of GNNs in addressing both observability and
estimation challenges outlined earlier. In the next section, an industry-specific perspective of
the challenges outlined above is delineated.

1-2 Industrial Motivation

A metaphor commonly used in the industrial perspective for power grid SE is [14],

"We are currently regulating traffic without knowing where the traffic is, SE will allow us
to know where the traffic is."

Congestion is a significant issue worldwide, resulting in thousands of hours of lost time annu-
ally [15]. For example, the current congestion situation in the Dutch power grid is shown in
Figure 1-1. Consequently, the grid operators are actively working to address this challenge
by optimising and extending the capabilities of the existing infrastructure. In the Nether-
lands, among the six distribution system operators (DSOs), Stedin is conducting research to
develop an SE toolbox for its DGs. One such study focused on a subnet of an MV network
in the southern Netherlands, where conventional SE methods were applied. The choice to
focus on a subnet–rather than the entire network–was driven by limited observability, which
made full-network analysis impractical. For this isolated subnet, the conventional SE method
called weighted least squares (WLS) was applied. The result of SE were erroneous, instead of
a voltage drop along the feeder line–as expected due to line impedance and load–the estima-
tion showed increasing voltage levels. Upon investigation, two possible issues were identified:
poor data quality and incorrect input model parameters, particularly the tap position of the
transformer.

The tap-position of a transformer, as illustrated in Figure 1-2, plays a critical role in regulating
voltage levels across the DG. In HV/MV transformers, on-load tap changers are commonly
used to dynamically adjust voltage in response to load variations. However, in MV/LV
transformers with off-load tap changers, tap positions are often fixed and manually set. When
these tap settings are not accurately known or reflected in the network model, it can lead to
incorrect SE at various nodes within the LV network. This inaccuracy makes the LV network
more susceptible to undetected voltage violations. For instance, the system might fail to
recognise an overvoltage or undervoltage condition, or worse, misclassify it. As a result,
operators may rely on faulty estimates and make misguided operational decisions. While
operators could manually inspect and record tap settings at each transformer station, this is
not practical. For example, as shown in Figure 1-3, some DGs in the southern Netherlands
contain up to 500 transformers, making manual inspection infeasible for the operators.
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Figure 1-1: Regional congestion map for DG in the Netherlands (adapted from [1]). The
load map indicates the grid capacity available for new registrations for power consumption at
specific locations. The generation map shows transport capacity available for new registrations
for distributed generation. Transparent areas denote locations with available transport capacity
without any waiting in registration.

Another key aspect that influences this work is the type of measurements used for SE. Most
of the MV networks today rely on data from Supervisory Control and Data Acquisition
(SCADA) systems, which typically provide measurements averaged over 5-minute intervals
[6]. As a result, transient behaviours are not captured because deploying advanced, high-
frequency sensors like Phasor Measurement Unit (PMU), capable of tracking such dynamics,
is prohibitively expensive. Consequently, the SE performed in industrial settings is focused on
steady-state conditions. It computes static root mean square (RMS) values for either voltage,
current, power injections or power flows, disregarding any transient dynamics or time-varying
characteristics. This SE approach aligns with the limitations of SCADA data and prioritises
operational efficiency over capturing rapid fluctuations. For these reasons, this work focuses
on developing SE for static conditions, aiming to estimate the steady-state of the system.

1-3 Research Question

The aspects mentioned above guide the careful selection of methodologies with strong po-
tential for deployment in industrial settings. To systematically identify and evaluate existing
work, address its limitations, and propose improved methodologies, it is essential to define a
clear scope and research objective. The scope of this work is shown in Figure 1-4. Building
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(a) Disconnected tap-changer showing
rotary-switch to switch between 5-tap po-
sitions from A-E

(b) Tap changer connected with transformer
winding using tap leads

(c) Cross-sectional view of tap-changer con-
nected with the transformer winding

(d) Schematic view showing the
working principle of tap-changers
regulating secondary voltage by
changing winding ratio

Figure 1-2: Illustration of tap-changer structure and operation (Courtesy: [2])
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Figure 1-3: Histogram showing the distribution of the number of transformers in 160 MV/LV
networks.

on top of this, the research objective is framed as the central research question that this work
aims to answer.
How can graph-based methods effectively leverage topological information to perform gener-
alizable, computationally efficient and joint state and transformer-tap position estimation in
electric networks with limited observability?
By emphasising graph-based methods, the question targets solutions that take into account
the topology of the power grid with sparse measurements. The properties of these meth-
ods, like parameter-sharing, shift-invariance, and permutation equivariance, contribute to the
development of models that are both generalizable, scalable and computationally efficient.

1-4 Main Contribution

The main contributions of this work are summarised as follows,

1. Industrial-Grade Data-Processing Pipeline
A scalable data-processing pipeline is designed to generate and sample synthetic data
from practical DG topologies, tailored for static SE.

2. Topology-Aware State and Parameter Estimation
A novel machine learning model, TapSEGNN, is developed using a hybrid node-centric
graph neural network and edge-centric simplicial complex neural network architecture.
It incorporates higher-order topological features, such as edge-triangle relations, for the
accurate estimation of system states and parameters.

3. Imputation of Missing Measurements with Adversarial Learning
A topology-aware generative adversarial network is proposed to impute missing critical
measurements by implicitly learning the distribution of synthetic power flow results.
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Power System 
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Figure 1-4: Scope of this work as an overlap of key research domains: power system analysis,
generative machine learning and graph machine learning (Figure inspired by a covering problem
[3])

The complete codebase for this work is publicly accessible via the GitHub repository at [16],
accompanied by a detailed README file.

1-5 Report Overview

This thesis is structured into five chapters and two appendices that provide supplementary
details. Following the introduction, Chapter 2 presents the theoretical background for power
system SPE. It starts with the mathematical modelling of power system components for
the PF problem, followed by a review of both conventional and emerging SPE methods.
Due to the limitations posed by topological observability in the DGs, the chapter introduces
topology-aware neural network architectures, including GNN and simplicial complex neural
network (SCNN), which form the foundation of the proposed learning frameworks.

Chapter 3 outlines the objective of the methodology and details the core architecture built
using GNN and SCNN. This architecture is further extended to support GAN and applied
to the joint SPE task. Chapter 4 describes the scenario generation process and presents the
main results, focusing on the performance of the GAN and SPE models. It also evaluates their
scalability and generalisability aspects, as well as their comparison with baseline methods.
Finally, Chapter 5 summarises the key findings, answers the central research question, and
discusses the limitations and future directions of this work.
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Chapter 2

Theoretical Foundations

In electrical power networks of sizes as large as those given in Table 1-1, it is essential for
the operator to dispatch power optimally over large geographic distances, taking into account
system losses. To accomplish this, alternating-current power flow (PF) calculations (hereafter
referred to simply as PF) are necessary to build accurate network models that help maintain
nominal power loading across the network. Therefore, this chapter establishes the founda-
tional concepts to represent an accurate network model. It begins with the mathematical
modelling of power system components and formulates the PF problem, which underpins
traditional and modern state and parameter estimation (SPE) methods. The chapter then
reviews conventional and emerging SPE techniques, particularly in the context of distribution
grid (DG) with limited observability.

Recognising the limitations of the classical approaches, this chapter introduces topological
observability as a critical concept and explores how power systems can be represented using
graph structures and simplicial complexes. These representations enable the use of topology-
aware neural networks. In particular, graph neural network (GNN) and simplicial complex
neural network (SCNN) architectures embed physical topology directly into the learning ar-
chitecture. By leveraging domain structure, these models enhance interpretability, scalability,
and efficiency in distribution grid state and parameter estimation (DGSPE).

2-1 Mathematical Modelling of Power System

2-1-1 Phasor Notation

Phasor notation is required to denote the sinusoidal steady-state conditions in the power
system for various quantities like voltage, current, power, and impedance. Consider root
mean square (RMS) phasors for voltage and current with angular frequency ω as

V = |V |ej(ωt+θv),

I = |I|ej(ωt+θi), (2-1)
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10 Theoretical Foundations

where |V | and |I| are the peak magnitude of voltage and current phasors, respectively, with the
corresponding phase-shift angles θv and θi. Using these RMS phasors, time-average complex
power injection S at a bus can be given as

S = V I∗ := P + jQ, (2-2)

where P and Q denote the active and reactive power injection components [17]. Power
delivered to the bus is considered positive, and vice versa. Similarly, the time-average complex
power flow from bus i to bus j, Sij , can be shown as

Sij = V iI
∗
ij := Pij + jQij , (2-3)

where Pij and Qij are the active and reactive PF components. In further discussion, com-
plex numbers will be denoted with an underline. The expressions in (2-2) and (2-3) will be
discussed further in Section 2-1-6.

2-1-2 One-line Diagram

The practical networks consist of three-phase PF. The analysis of these networks becomes
very complicated and cumbersome if they are depicted with three lines for each component,
as shown in Figure 2-1a. For this reason, the power system community commonly uses per-
phase equivalent models and one-line diagrams for power flow analysis (PFA) [18]. However,
these simplified representations are valid only if the system is balanced, which necessitates
meeting the following conditions in the power system:

• loads are equally distributed among all three phases of the system.

• no mutual inductance is present between the three-phase lines.

• neutral for all sources and loads are at the same potential.

• all network variables operate in the positive sequence, which is associated with normal
operating conditions in the power system [17].

As shown in Figure 2-1, a single-phase equivalent can fully represent the balanced power
system network. A single-phase diagram can be simplified further for PFA, which is called a
one-line diagram. These diagrams only incorporate the components necessary for the problem
under study. In PFA, for example, one-line diagrams do not show the circuit breakers but are
required for network protection analysis [18]. Moreover, the standards for such representations
can vary across different industries.

In the context of PFA and state estimation (SE) carried out in this study, a one-line diagram
depicts the following components: 1) generators, 2) loads, 3) transformers, 4) power lines, 5)
power stations. The power stations are modelled as buses or nodes connected to generators,
loads, transmission lines or transformers–if any–as shown in Figure 2-2a. The transformers
and transmission lines connect these buses as branches. A simple one-line diagram for a 4-bus
system is given in Figure 2-2b.
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(b) Single-phase equivalent of the balanced
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Figure 2-1: Representations of a balanced power system network with three balanced sources
V a, V b, and V c with source impedance ZG supplying to wye-connected balanced loads. For
In = 0 Figure 2-1a can be represented as Figure 2-1b.

𝐺

𝐺

𝐺

.

.

.

...

...

𝑉𝑖

𝑆𝐺𝑖

𝑆𝐿𝑖

𝑆𝑖

(a) General bus representation of a
power station

𝐺

𝐺

1

3

2 4

(b) One-line diagram of a 4-bus system

Figure 2-2: One-line diagram with detailed bus representation. In (a), the ith bus is injected
with complex power SGi from generators, supplying complex power Si to transmission lines and
SLi to loads. In (b), there are two generators located at buses 1 and 3; 3 loads at buses 2, 3,
and 4; and a transformer connecting buses 2 and 4.

2-1-3 Per-Unit (pu) System

The per-unit (pu) system is a normalisation technique for power system analysis. It is used
to express the voltage, current, and impedance across the network with respect to predefined
base quantities, significantly simplifying calculations and system studies [17]. Moreover, this
technique allows for narrowing down the wide range of values of certain quantities, offering
clear relative insights and comparisons across the network. Using Figure 2-1b as an example,
let the voltage distribution across the impedances ZG and ZL be noted as |V G| and |V L|,
respectively. Also, consider the RMS amplitudes of base voltage and base current be |V B|
and |IB|, so that per-unit quantities across the circuit can be calculated as

vG/L =
V G/L

V B

, (2-4)

ia = Ia

IB

. (2-5)
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12 Theoretical Foundations

As a result, the per-unit impedance and RMS power can be given as

ZB = V B

IB

(2-6)

=⇒ zG/L =
vG/L

ia

=
ZG/L

ZB

SB = V BIB. (2-7)

It is important to note that, for networks with transformers, the network can be segmented
into different sections by the transformers. Each section has its own base voltage. This way,
the transformer is already processed in the base quantities, thus simplifying an ideal trans-
former to an ideal line. To simplify notation and prevent duplication of essential concepts in
the forthcoming sections, the scalar per-unit quantities for voltage and current are represented
by |V | and |I|, respectively.

2-1-4 Two-port Network Representation

In the context of PFA, the per-phase equivalents of the transmission lines and transformers are
represented using a two-port network model [18], as illustrated in Figure 2-3. This approach
simplifies the component into a lumped model characterised by generalised circuit constants.
The key assumptions underlying this representation are as follows:

• Passive: The component (transmission lines or transformers) does not generate energy.
For instance, in the case of transmission lines, it is assumed that no generators are
connected along the line.

• Linear: The component parameters, such as resistance, inductance, and capacitance,
remain constant regardless of the amount of current flowing through them.

• Bilateral: These parameters do not depend on the direction of the current flow.

𝑎1 𝑎2
𝑎3 𝑎4

𝑉𝑠

𝐼𝑠 𝐼𝑅

𝑉𝑅

Figure 2-3: Two-port representation with a1, a2, a3 and a4 as the generalised circuit constants
which are scalar complex numbers representing a circuit admittance. Subscripts S and R represent
sending and receiving terminals.

In matrix form, the two-port representation can be given as[
V S

IS

]
=
[
a1 a2
a3 a4

] [
V R

IR

]
. (2-8)
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It should be noted that the constants a1, a2, a3 and a4 are complex pu values and satisfy the
following relationship:

a1 a4 − a2 a3 = 1. (2-9)

For PF studies, π-representation is used for transmission lines and transformers. A general
tap-changing and phase-shifting transformer model used for PFA is shown in Figure 2-4 using
a nominal-π representation. The tap positions in the transformers are used to control the
winding ratio. This allows control of the voltage at the tapped side of the transformer. Phase-
shifting can control the active power injection into the transmission line, preventing issues
like uncontrolled PFs and uneven transmission line loading [19]. The generalisation constant
matrix for transformers can be given by

[
If

It

]
=

(y
s

+ j bc
2

)
1

N N∗ −y
s

1
N∗

−y
s

1
N y

s
+ j bc

2

[V f

V t

]
, (2-10)

where N = τejδ is the complex-tap τ ratio of the transformer. For this work, the phase-shift
angle δ = 0 to reflect a common assumption in DGs where transformers are not used for
phase-shifting but only voltage magnitude regulation.

𝑗
𝑏𝑐
2

𝑗
𝑏𝑐
2

𝑦𝑠 =
1

𝑟𝑠 + 𝑗𝑥𝑠

𝑉𝑓 𝑉𝑓

𝑁

𝑁 = 𝜏𝑒𝑗𝜃𝑠ℎ𝑖𝑓𝑡

𝑉𝑡

𝐼𝑓 𝐼𝑡

𝑁: 1

Figure 2-4: Impedance diagram of a general phase-shifting tap-changing transformer. The fixed
terminal of the transformer has voltage V f with entering current If . The series admittance y

s
(reciprocal of impedance) is at the tapped side of the transformer with magnetising susceptance
j bc

2 accounting for all leakage and winding losses. The tap-position is given by τ and phase-shift
by θshift.

Transmission line models can be classified based on their lengths, as outlined below,

• Short lines: For transmission lines less than 100 km long, the shunt admittance (y
sh

)
can be neglected because the voltages are not very high; as a result, the capacitive
effects are minimal.

• Medium lines: For lines with lengths between 100 km and 250 km, nominal-π represen-
tation is used. The term "nominal" indicates that the line parameters can be considered
lumped, providing an accurate approximation for most practical purposes. This simpli-
fication is widely adopted in PFA and is discussed here.
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𝐼𝐺 𝐼𝐿

Figure 2-5: Nominal-π of a transmission line. The subscripts G and L depict the generator and
load side of the line, respectively. Series and shunt admittance given by y

s
and y

sh
respectively.

• Long lines: For lines whose lengths are more than 250 km, an equivalent-π representa-
tion is employed. Unlike the nominal-π model, this approach treats the line parameters
as uniformly distributed along their length. First-order differential equations give equiv-
alent descriptions for the generalised circuit constants of these lines.

The nominal-π representation model for transmission line is illustrated in Figure 2-5. The
generalisation circuit constants for it can be given by

[
IG

IL

]
=
[
y

s
+ y

sh
2 −y

s

−y
s

y
s

+ y
sh
2

] [
V G

V L

]
. (2-11)

2-1-5 Construction of Bus Admittance Matrix

In the context of network representation shown in Figure 2-2, the bus admittance matrix
(Ybus) is used to describe the connectivity of transmission lines and transformers with the
buses in the network. Each entry in this matrix is a complex value representing the generalised
circuit constants derived from the two-port network model discussed in Section 2-1-4. For
instance, these two equations (2-10) and (2-11) represent a 2× 2 bus admittance matrix that
models the connection between two buses. A generalized construction of the Ybus can be
given by Figure 2-6.
Using Kirchhoff’s circuit laws,

Ii =
n∑

k=1
k ̸=i

(
Is,ik + Ish,ik

)

=
n∑

k=1
k ̸=i

(
y

s,ik
(V i − V k) + y

sh,ik
V i

)

= V i

 n∑
k=1
k ̸=i

(
y

s,ik
+ y

sh,ik

)− n∑
k=1
k ̸=i

y
s,ik

V k, (2-12)
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Figure 2-6: Bus i connecting to n other buses

where, the injection current at bus i is divided among the branches flowing through the
series impedance y

s,ik
and shunt impedance y

sh,ik
as Is,ik and Ish,ik, respectively. First term

represents the diagonal elements describing the relation between Ii and V i. The second term
represents the off-diagonal elements relating Ii with the voltage magnitude of all other buses
V k,∀k ̸= i, thus

Y ii =

 n∑
k=1
k ̸=i

(
y

s,ik
+ y

sh,ik)

) ,

Y ik = −y
s,ik

, ∀k ̸= i,

so that,

Ii =
n∑

k=1
Y ikV k. (2-13)

Now, (2-13) can be given for all such buses, writing in Ohm’s law as


Y 11 Y 12 · · · Y 1n

Y 21 Y 22 · · · Y 2n
...

...
...

...
Y n1 Y n2 · · · Y nn




V 1
V 2
...

V n

 =


I1
I2
...

In


or YbusVbus = Ibus, (2-14)

where Ybus ∈ Cn×n, Ibus, Vbus ∈ Cn×1 for network with n buses in the network.
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2-1-6 Power Flow Problem

PF problem involves determining the unknown variables across the buses of the single-phase
equivalent power system network based on known variables, using a set of nonlinear equations
that describe the relationships between these variables. Once all the values are determined,
the PF problem is considered fully solved: the RMS values of the quantities in the system
are completely defined. It does not account for any transient effects in these quantities and,
therefore, is considered static. The PF equations govern the relationships between the four
variables considered at each bus: voltage magnitude (|V |), voltage phase-shift angle (θ which
is equal to θv in Section 2-1-1), active power injection (P ) and reactive power injection (Q),
derived from Section 2-1-1 as

V i = 1
Y ii

Pi − jQi

V ∗
i

−
n∑

k=1
k ̸=i

Y ikV k

 , (2-15)

θi = arg(V i), (2-16)

Pi = |V i|
n∑

k=1
|V k| (gik cos θik + bik sin θik) , (2-17)

and

Qi = |V i|
n∑

k=1
|V k| (gik sin θik − bik cos θik) , (2-18)

where, gik = Re(Y ik) and bik = Im(Y ik) from the Ybus matrix, and θik = θi − θk. Moreover,
the complex power injection can be denoted as Si = Pi + jQi.

Essentially, for a network with n buses, there will be 4n bus variables for the PF problem.
At each of these buses, if two variables are specified, the remaining 2n variables can be
determined by solving the 2n PF equations. Assigning the known variables at every bus
depends on the devices connected to that bus. In physical networks, [17], there are three
specific combinations giving rise to three types of buses:

1. PQ Bus: At these buses, the known quantities are real power −Pi and reactive power
−Qi (−ve sign implies power is drawn from the bus). For this bus, the objective of the
PFA is to determine |V i| and θi.

2. PV Bus: These buses have input real power Pi and voltage |V i| specified1. For these
buses, PFA determines θi and Qi.

1Specified as RMS values
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2-2 State and Parameter Estimation Methods 17

3. Slack or Reference Bus: This bus specifies the phase angle (chosen as θi = 0◦) as a
reference for all other buses and the voltage (specified one p.u.). The bus connected
with the largest generator in the network is considered the slack bus, because it is
required that the variations in both active and reactive power due to I2R losses are
the minimal percentage of the generator’s overall capacity. Buses connected with small
generators could lead to instability or overloading. PFA uses this bus as the reference
for determining the angles in all other buses.

The definition of the state vector in this problem depends on the solution method employed.
Extensive literature is available on solving this problem using numerical techniques, data-
driven black-box approaches, and model-based methods. To provide a foundational under-
standing of the PF problem, the most popular iterative solution methods: Gauss-Seidel (GS)
and Newton-Raphson (NR) are discussed in Appendix A. Since, PFA serves as the foundation
for measurement model in SE, an SE solver can solve the PF problem, but a PF solver will
be unable to address a nontrivial SE problem [14]. The following section will discuss SE
methods.

2-2 State and Parameter Estimation Methods

Formally, let B represent the set of buses in the network with number of buses |B| = n. Bus
1 can be the slack bus and the remaining n− 1 PQ buses. Moreover, consider the branch set
U ⊆ B × B with |U| = d denoting the distribution lines and transformers. For n buses and d
branches, the primary goal of SE is to determine the voltage magnitude |V | and voltage phase
angle θ as states for all buses in the network. It is important to recall from Section 2-1-6
that one bus in the network specifies the phase angle θ1 = 0◦ as a reference for other buses.
Therefore, SE requires determining only unknown 2n−1 states with state-vector u ∈ R2n−1

defined as,

u = [θ2, θ3, ..., θn, |V |1, |V |2, ..., |V |n]. (2-19)

The determination of the states for the entire network allows for the calculation of other quan-
tities like complex power injections Pi+jQi at buses and power flows Pij+jQij in the branches.
Additionally, using the notation in above sections, the network branch parameters considered
for the PF problem here2 for branch ij will be [Re(y

s,ij
), Im(y

s,ij
), Re(y

sh,ij
), Im(y

sh,ij
), τij ]

or [rij , xij , gij , bij , τij ]. So, the parameter-vector p ∈ Rd×5 with kth row corresponding to the
branch connecting bus i and j, i.e., [p]k = [rij , xij , gij , bij , τij ].

Using the above definitions, the measurement model for the SE can be given as

z = g(u) + e, (2-20)

where, z ∈ Rm is the measurement vector, u is the state-vector, g : R2n−1 → Rm is the
nonlinear vector-valued function relating measurements in z to state u and e ∈ Rm is the

2Phase-shifting angle δ = 0 for all transformers.
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measurement-error vector with arbitrary statistical properties (e.g., Gaussian distribution).
Various SE methods introduce their own g to effectively3 minimise the difference between
z and g(u). This formulation can be extended for parameter estimation in three ways:
sequential, joint, or disjoint [14] approaches.

• Sequential Approach: SE is performed first, followed by parameter estimation (PE),
avoiding any changes to the SE algorithms. Therefore, the measurement model for SE
stays the same here.

• Joint Approach: SE and PE are solved simultaneously, modifying the measurement
model as [

z
zp

]
=
[

g(u, p)
gp(u, p)

]
+
[

e
ep

]
, (2-21)

where, zp contains the suspected parameter values from the database, gp contains the
expressions (mostly linear) having a priori mathematical model about the parameter
vector [20] and ep denotes the error-vector corresponding to zp.

• Disjoint Approach: PE is conducted independently of SE, without relying on the
concepts of SE [21].

For transformer tap-position estimation, sequential and joint approaches based on SE con-
cepts are more suitable than disjoint methods. Disjoint methods for individual equipment
measurements, while potentially more accurate, are generally impractical for networks with
numerous equipment following the arguments in Section 1-2, specifically, Figure 1-2.

2-2-1 Conventional Methods

For the measurement model given in (2-20), the function g consists of the PF equations
mapping states to the measurement. The goal of SE is to solve for the most likely u such
that it minimizes the residual vector (r = z − g(u)). A method widely used in statistics for
this is maximum likelihood estimation (MLE), whose objective is to maximise the likelihood
function that represents the joint probability distribution of all the measurements as a function
of the state vector. In MLE, assuming Gaussian-distributed errors, the negative log-likelihood
function is equivalent to the sum of squared residuals, corresponding to weighted least squares
(WLS) [9].

Newton and Quasi-Newton methods are conventional numerical techniques for solving this
nonlinear WLS problem. These methods rely on the assumptions that the error vector is
independent (covariance matrix E(ee⊤) is diagonal) and identically distributed (sampled from
a zero-mean Gaussian distribution E(e) = 0). Under these assumptions, the objective function
boils down to a nonlinear WLS problem given as

min
u

W (u) = e⊤R−1e, (2-22)

3depends on the type of optimisation problem and underlying assumptions
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where the covariance matrix R = E(ee⊤) = diag(σ2
1, σ2

2, ..., σ2
m) ∈ Rm×m with σi as the

standard deviation associated to measurement i. Since g(·) is a multivariate nonlinear vector-
valued function, this problem can be classified as a nonlinear, non-convex, unconstrained
minimisation problem. From a systems and control perspective, gradient-based and gradient-
free methods solve this problem. The most widely adopted methods are gradient-based. For
(2-22), the first derivative can be given by [22]

∇⊤W = 0
=⇒ J⊤R−1e = 0, (2-23)

with Jacobian matrix J =
[

∂g(u)
∂u

]
. Now, this is equivalent to solving x1(u) = 0 with Newton’s

method in Section A-0-2 giving rise to the following iteration:

∇
(
J⊤R−1e

)
u=u(k)

∆u(k) = −
(
J⊤R−1e

)
u=u(k)

=⇒
(
−J⊤R−1J +A

)
u=u(k)

∆u(k) = −
(
J⊤R−1e

)
u=u(k)

, (2-24)

where A ∈ Rm×m is the Hessian matrix [22], whose elements can be given by

[A]pq =
m∑

l=1

∂2g(u)
∂[u]p∂[u]q

[R]−1
ll [e]l. (2-25)

The variant of Newton’s method which ignores the Hessian matrix–not accounting for second
order derivatives–results in the Gauss-Newton (GN) method, whose iteration will be,

G(k)∆u(k) =
(
J⊤R−1e

)
u=u(k)

u(k+1) = u(k) + ∆u(k). (2-26)

with G = J⊤R−1J as the gain matrix.
The convergence of this algorithm highly depends on the amount of omission due to the
Hessian matrix A. For local (when ||u(0) − u∗||2 is small) convergence,

• if ||A(u(k))|| << ||G(k)|| then algorithm is quadratically convergent.

• if ||A(u(k))|| < ||G(k)|| then algorithm is linearly convergent.

• Otherwise, it may not be convergent at all.

In power systems, the impact of A is negligible only when measurement errors are simple, as
noted in [23]. However, topological or parameter errors can significantly affect the system,
making the convergence of the GN or Newton’s method unreliable. To address this, global
convergence criteria can be used by modifying the GN method employing techniques like line
search or trust-region approaches as discussed in [24]. The main idea of these methods is to
modify the step length ∆u to make it feasible for the optimisation problem, which is discussed
in detail in [25].
Upon comprehensively addressing the GN method, the PE techniques built upon it can be
discussed.
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Method of State-Vector Augmentation

This method adopts a joint approach to SPE. When the GN method accounts for parameters
as states in its formulation, it is called the method of state-vector augmentation. Using (2-21),
the WLS objective function (2-22) for this method becomes

min
u,p

W (u, p) =
[
e ep

] [R 0
0 Rp

]−1 [
e
ep

]
, (2-27)

with Rp = E(epe⊤
p ) the error covariance matrix for parameter vector.

Method of Residual Analysis

As opposed to state-vector augmentation, residual analysis is a sequential method that first
performs SE, identifies high residuals as bad data, and focuses on the network parameters
associated with these bad data for PE. However, this method relies on linear approximations
of PF equations, limiting validity and struggles to distinguish between errors due to bad
measurements versus incorrect parameters. Additionally, estimating transformer tap posi-
tions critically depends on reactive power injection and terminal voltage measurements, often
unavailable in DGs.
The state-vector augmentation method relies on global information from all network buses,
while the residual analysis method uses highly local data from the terminal buses of the
transformer. Figure 2-7b shows how tap-position errors affect SE accuracy across varying
parameter error levels and neighbourhood sizes (see Figure 2-7a). The results indicate that
such errors influence a region broader than the immediate neighbourhood but not the entire
network, underscoring the need for a balanced approach. Specifically, a method that incor-
porates information beyond the terminal nodes, yet avoids full-network dependence, can offer
more effective estimation. Section 2-2-2 explores such methods, which leverage neighbourhood
topology for parameter estimation.
Since both the methods for PE depend on the GN, the limitations in GN impact the perfor-
mance of PE methods. The main limitation of the GN method is that it assumes Gaussian
noise and a full-rank Jacobian resulting from a fully observable network, which is not the case
in practical DGs. Moreover, even for fully observable networks, convergence issues in these
methods can stem from high weights on specific measurements, significant disparities in line
lengths, or an excess of power injection data.
To address such limitations, neural network methods offer a promising solution by (1) by-
passing the need for linearization, which forms the basis of GN method and residual analysis,
(2) being trainable to identify patterns and correlations in the data, aiding in distinguishing
measurement errors from parameter inaccuracies, and (3) reducing reliance on strict assump-
tions, thereby making the model more adaptable to real-world scenarios. These methods are
discussed in the next section as emerging methods.

2-2-2 Emerging Methods

The logical foundation of the emerging methods is to employ a neural network (NN) as a
universal functional approximator [26]. They learn the nonlinear mapping between input
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(a) One-hop neighbourhood of
transformer (edge) connecting bus
0 and 1 highlighted in red. Edges
considered as neighbourhood are
marked by 1.0, otherwise 0.0. This
makes one-hop neighbours of the
transformer as buses (nodes) 2, 3
and 5.

(b) Impact of transformer tap-position error on residual
magnitudes across different neighbourhood sizes in a 42-
bus network, normalised relative to the baseline case (pe
= 0.0).

Figure 2-7: Visualisation of transformer neighbourhood (left) and tap position influence (right).

measurements and system states or parameters without requiring explicit physical models.
These methods can be classified into physics-agnostic neural networks (PANNs) and physics-
informed neural networks (PINNs).

Physics-Agnostic Neural Networks

The PANNs include fully connected neural networks (FCNNs), convolutional neural networks
(CNNs), and autoencoders, which are collectively referred to as deep neural networks due to
their multiple hidden layers and strong approximation capabilities [26]. Early work in this
area, such as [27] applied a single perceptron NN for SE. But, the number of inputs required
here must be at least 2n + 1 for a network with n buses to ensure the output is meaningful.
The capabilities of FCNNs are enhanced in recent studies, like [4], by applying hierarchical
agglomerative clustering to merge statistically correlated neurons, forming a more compact
and interpretable architecture, illustrated in Figure 2-8.

The independence of physics-agnostic methods from network topology and parameters, while
providing flexibility, comes at the cost of increased complexity. This can lead to overfitting,
where the model learns to capture noise or irrelevant patterns in training the data, reducing
its ability to generalise. Additionally, the lack of domain knowledge can result in the model
producing infeasible results that are inconsistent with the underlying physical principles gov-
erning the system. Due to these reasons, the model learnt may not be interpretable, adding
a risk of bias. Therefore, physics-informed neural networks are discussed in the next section.
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Figure 2-8: Neuron reduction in a layer via clustering: Left panel illustrates three distinct clusters
in the hidden layer, while right panel depicts the clustered layer with a single representative neuron
for each cluster [4].

Physic-informed Neural Networks

The concept of PINNs is well-suited and explored for application to DGSPE. There are a
total of four general approaches to integrate the physics into a deep NN model [28, 29]:

1. Physics-informed Initialisation: Instead of relying on traditional initialisers such
as zero, random, or Xavier initialisation [30], the nonlinear and non-convex nature of
the PF problem can be addressed by leveraging sequential pre-training and fine-tuning.
Pre-training involves training the model on a synthetic dataset to provide a robust
starting point, followed by fine-tuning on real-world data to enhance convergence.

2. Physics-informed Loss-Function: Rather than exclusively using a vanilla loss func-
tion, physics-informed soft constraints can be added into the loss function alongside
regularizers to embed prior knowledge of the system or penalise violations in model
output. For example, in [31], the loss function is given as,

LPINN = ||Vbus − V̂bus||2 + λPINN||S− V̂busY∗
busV̂bus|| (2-28)

where V̂bus is the predicted voltage magnitude vector for all buses and other notations
reused from Section 2-1-5. The first term is the vanilla loss between predicted and
output voltage phasor, and the second term penalises the non-feasible PF equation
solutions with λPINN as an arbitrary hyperparameter.

3. Physics-informed design of NN Architecture: Embedding physical principles di-
rectly into the NN architecture is another approach. The most utilised concept in this
context involves leveraging the network topology in the PF problem to build GNN,
which are extensively discussed in the following sections.

4. Physics-informed hard constraint: Since a machine learning model is essentially an
optimisation problem, hard constraints can be incorporated into the model. However,
this approach is generally ineffective due to the large number of parameters in typical
DNN models [29]. While methods like the Krylov subspace approach can handle these
constraints, they often lead to worse performance than a simple soft-constrained loss
function.
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The above approaches can complement each other in learning complex mappings, particu-
larly for DGSPE. Among them, the most impactful is the physics-informed design of the
NN architecture. This approach enhances computational efficiency and generalisation across
varying network conditions by directly embedding a non-Euclidean data structure as the net-
work topology into the model. Unlike FCNNs, GNNs enable localised message passing and
sparse matrix operations, significantly reducing computational overhead and improving scal-
ability. This architectural advantage makes them well-suited for real-world DG applications,
as explored in Section 2-3 and Section 2-4.

2-3 Topological Representations for Power Systems

Graph representations enable the application of deep learning to non-Euclidean data4, ex-
tending CNNs beyond traditional Euclidean domains, such as images. Graph representations,
especially for domains like power systems, display remarkable capabilities to model and un-
derstand complex relationships between different components in the power grid [32]. This
allows solving the SE and PE problems as node or edge-level prediction tasks depending on
the representation. For the task of SPE, there are various ways of modelling the power grid
as a graph. For example, the one-line diagram shown in Figure 2-2(b) can be transformed
into various graph-based formats, as illustrated in Figure 2-9, to suit different modelling and
learning needs.

• Standard Bus-Branch Graph: Represents buses as nodes and branches (lines/trans-
formers) as edges, commonly used in [33, 34, 35, 36, 37]; illustrated in Figure 2-9(a).

• Branch-as-Node Representation: Each branch is modelled as a node with embed-
ded terminal bus information, as proposed in [38].

• Three-Phase Extensions: Product graphs are used to couple single-phase nodes
across multiple phases, allowing three-phase SE as demonstrated in [39, 40]; see Figure 2-
9(b).

• Heterogeneous Hypergraphs: All grid components are modelled as nodes or edges
with diverse feature sets, forming hyper-nodes [41] or hyper-edges [42], as shown in
Figure 2-9(c-d).

This work extends the standard bus-branch graph to a hybrid representation that integrates
undirected and directed graphs as discussed in detail in Section 3-2 in the context of DGs.
Here, the abstract representations will be discussed. The undirected graph representation is
detailed in the next section, followed by that for the directed graph. The latter is comple-
mented by simplicial complexes (SC), which enhances the directed graph representation by
capturing high-order interactions in the network topology.

4Data not defined by a Euclidean distance metric
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𝐺

𝐺 ABAB

A

B B

A

(a)

(b) (c)

(d)

Figure 2-9: Graph representations of Figure 2-2(b): (a) Simple graph with node and edge;
(b) Cartesian product graph with no inter-phase dependencies among neighbouring nodes; (c)
Heterogeneous hyper-graph with hyper-edges; (d) Heterogeneous hyper-graph with hyper-nodes
where A and B represent the direction associated with the power flow across the component.
Non-black colours represent feature spaces, with identical colours indicating the uniform feature
space.

2-3-1 Terminology for Graph Representation

A common graph terminology, is given by an undirected unweighted graph G = (V, E) , where
V denote the set of nodes and E ⊆ V × V the set of edges. For this graph, the neighbouring
set for a node i is denoted by N = {j ∈ V : (i, j) ∈ E}. The spatial dependency of the
nodes is represented by a graph shift operator (GSO) denoted by S ∈ R|V|×|V|. The generic
requirement for GSO is that [S]ij = 0 ∀(i, j) ̸= E , and i ̸= j. The graph adjacency matrix,
A and Laplacian matrix, L are the special cases of S. Both of them are sparse, symmetric,
and positive semi-definite matrices. For a weighted A, [A]ij > 0 ∀(i, j) ∈ E . Furthermore,
a diagonal matrix D for a graph denotes ith diagonal element as node-degree, i.e., |N (i)|
for node i. Using A and D, the graph Laplacian is defined as, L = D −A. For numerical
stability, which is relevant for GNNs, the normalised version of these matrices is used as GSO,

Ã = D−1/2AD−1/2, L̃ = D−1/2LD−1/2, (2-29)

where Ã and L̃ denote the normalized adjacency and Laplacian.

Node features are represented by the matrix X = [x1, ..., xF ] ∈ R|V|×F with F features per
node, and edge features by X1 = [x1

1, ..., x1
G] ∈ R|E|×G with G features per edge. An equivalent

node- and edge-wise representation can be given as
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X =


x⊤

1
x⊤

2
...

x⊤
|V|

 , xi ∈ RF ∀i ∈ V (2-30)

and

X1 =


(x1

1)⊤

(x1
2)⊤

...
(x1

|E|)
⊤

 , x1
i ∈ RG ∀i ∈ {0, 1, . . . , |E|}, (2-31)

respectively. To distinguish filter banks in the coming discussion, for F = 1 and G = 1, the
feature vectors are denoted as x ∈ R|V| and x1 ∈ R|E| for node and edge, respectively.
Remark 2.1 The notation for node and edge feature vectors and matrices holds for both the
undirected and directed graph representation.
A notable limitation with the graph representations is their inability to capture richer infor-
mation about network edges–specifically, the spectral dependencies that arise from modelling
higher-order structures like edges and triangles within the topology. Approaches leveraging
SC have been proposed here to address this limitation [43, 44].

2-3-2 Terminology of Simplicial Complexes Representation

Conceptually, SCs generalise graphs. The above graph representation can be replaced with
the set of directed edges Ed so that directed graph Gd = (V, Ed). For the set of nodes V,
k−simplex Sk, is a subset of V consisting of k + 1 unique elements. Therefore, V = S0

represents the node-set. Similarly, edge-set is Ed = S1 and triangle-set can be denoted as

S2 = {{vi, vj , vk}|vi, vj , vk ∈ V, vi ̸= vj ̸= vk}.

Moreover, a simplicial complex XK of order K, is a collection of simplices such that for
any k−simplex Sk, it includes any subset Sk−1 ⊂ Sk, as illustrated in Figure 2-10. Like
the adjacency matrix, which encodes the spatial dependency of the nodes in the graphs,
Hodge Laplacians and incidence matrices encode that for SCs [43]. The incidence matrix,
Bk ∈ R|Sk−1|×|Sk|, has (k−1)−simplices as rows and k−simplices as columns; representing the
adjacency between these elements. For example, node-to-edge incidence will be represented
by B1 and edge-to-triangle incidence will be represented by B2.
Furthermore, to understand the boundary condition in SCs, the boundary operator can be
defined using graph-theoretic Hodge theory [43].

Definition 1. (Boundary Operator) For a given k−simplex, Sk, the boundary homomorphism
(or the boundary operator) is ∂k : Ck → Ck−1 is,

∂kSk =
∑

i

(−1)i[v0, v1, ..., v̂i, ..., vn], (2-32)
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where v̂i indicates that point vi is deleted from the sequence and Ck is the space of k−chains
[43].

An example can make it more concrete,

• For S1 = [v1, v2],

∂1[v1, v2] = (−1)0[v2] + (−1)1[v1]
= v2 − v1.

• For S2 = [v1, v2, v3],

∂2[v1, v2, v3] = (−1)0[v2, v3] + (−1)1[v1, v3] + (−1)2[v1.v2]
= [v2, v3]− [v1, v3] + [v1, v2].

• Also note that, taking 1−simplex boundary of 2−simplex boundary,

∂1∂2[v1, v2, v3] = [v3]− [v2]− [v3] + [v1] + [v2]− [v1] = 0. (2-33)

When extending the concept of boundary operator to a finite set of Sk, the algebraic repre-
sentation is given by the incidence matrix. Thus, (2-33) extends as

Bk−1Bk = 0. (2-34)

Using these adjacency relations for X 2, the Hodge Laplacian structure of the graph as a SC
can be fully given by,

L0 = B1B⊤
1 ,

L1 = L1,l + L1,u := B⊤
1 B1 + B2B⊤

2

L2 = B⊤
2 B2. (2-35)

where, the matrix L0 ∈ R|S0|×|S0| = R|V|×|V|, known as the graph Laplacian, L1 ∈ R|S1|×|S1| =
R|E⌈|×|E⌈| captures relationships between edges in two ways: through the lower Laplacian L1,l,
which accounts for shared vertices, and the upper Laplacian L1,u, which accounts for shared
triangles. Similarly, L2 ∈ R|S2|×|S2| represents the connectivity or proximity between triangles
based on the edges they share. These Laplacians will further allow the formulation of simplicial
convolutional neural networks in Section 2-4-3.

In this context, the Hodge-Laplacian L1 can be further studied to gain more insights using an
example from a subnet of a practical network in the Southern Netherlands. Topologically, for
the subnet with 12 nodes, 14 edges and 3 triangles, consider x ∈ R|V| = R12, x1 ∈ R|E| = R14

and τ ∈ R|Θ| = R3 as the 1-dimensional signal on node, edge and triangles. The incidence
matrices B1, B2 and their transpose B⊤

1 , B⊤
2 can be interpreted by divergence, gradient, curl-

adjoint, and curl operator as discussed next.
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1 2 4
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𝑓1

𝑓3𝑓2

𝑓4
𝜏1

𝑣1 𝑣2 𝑣4

𝑣3

Figure 2-10: Simplicial complex representation of Figure 2-9(a) with arbitrary orientations
(not strictly required but consistent with the classical definition). Signal for 0-simplices:
[v1, v2, v3, v4]; signal for 1-simplices: [f1, f2, f3, f4]; and signal for 2-simplices: [τ1]. For ex-
ample, with S0 : {2}, {4}, S1 : {1, 2}, {1, 3}, S2 : {1, 3, 2} the corresponding SC will be
X 2 : {{1}, {3}, {2}, {1, 2}, {2, 3}, {1, 3}, {1, 3, 2}}.

Figure 2-11: Subnet from a real DG with three 2-simplices (triangles) in the topology.

1. Divergence Operator B1: As the name suggests, the divergence operator, div(x1) =
B1x1 when applied to the edge-flow, maps the flow diverging through each node of the
graph. Along this line, for directed edges (i, j) and (j, k) connecting nodes i, j, k with
edge-signal [x1]l and [x1]m respectively, the lth element of B1x1 will be [x1]l − [x1]m
(inflow minus outflow) [45]. Thus, in Figure 2-12a, the net flow can be illustrated for
each node.

2. Gradient Operator B⊤
1 : The gradient operator for a directed graph is given by x1

G ∈
im(B⊤

1 ) where im(·) represents the image or column space of the matrix. Applying the
gradient operator on the node-signal x is a simple matrix transformation, B⊤

1 x. The
logical foundation of this operator is taking the difference of node-signals across the
directed edge. This interpretation is shown in Figure 2-12b for a random signal over
the nodes.

3. Curl adjoint B2: The curl adjoint represents the image of B2, i.e., x1
C ∈ im(B2). For

instance, applying the curl over a triangle signal τ = 1, x1
C = B2τ can be illustrated in

Figure 2-12c.
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4. Curl Operator B⊤
2 : Applying curl operator to edge-signal x1, the net flow circulating

along each triangle is computed. Curl operator is represented as, curl(x1) = B⊤
2 x1, so

the ith element of curl(x1) is the net flow curling across the ith triangle. This operator
can be interpreted from Figure 2-12d.

(a) Divergence for edge-signal x1 = 1. For
instance, at node 3, div(x1) = 1, represent-
ing net inflow of value 1. This can be verified
by Figure 2-11 with node 3 only with incident
edge (2, 3).

(b) Gradient x1
G for random node-signal x =

[−1, 1, 0, 0, −2, 1, −2, −3, −1, 1, 1, 2]. As an
example, for x4 = −2, x10 = 1, x11 = 2.
The flow induced across the edges (4, 10) and
(4, 11) will be 3 and 4 respectively.

(c) Curl adjoint x1
C for τ = 1. As seen in

Figure 2-11, for the triangle formed by edges
(2, 8), (8, 9) and (2, 9), the edge (2, 9) is of
uncyclic nature, i.e., for nodes (a, b, c) with
c > b > a, cyclic edges are (a, b), (b, c) and
(c, a). Thus, x1

C = −1 for (2, 9) for τ = 1.
Moreover, edge (10, 11) is a common edge for
two triangles and is cyclic for both, therefore
x1

C = 2.

(d) Curl operator curl(x1) for random x1 =
[0, 2, 1, 0, −2, −1, −2, 1, 1, 1, 1, 1, 0, 2]. For
triangle (2, 8, 9), edge-signal at (2, 8), (8, 9)
and (2, 9) is 0, 0 and 1 respectively. And
since, (2, 9) is uncyclic, curl(x1) = 1 · 0 +
1 · 0 + (−1) · 1 = −1.

Figure 2-12: Interpretation of subspaces of incidence matrices B1, B2 using (a) Divergence
operator showing net flow at nodes, (b) Gradient operator computing edge flows from node
potentials, (c) Curl adjoint operator for triangle flows, and (d) Curl operator measuring circulation
around triangles.

These interpretations also summarise the subspaces of the Hodge-Laplacian L1 using direct-
sum decomposition given as
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R|E| = im(B⊤
1 )⊕ im(B2)⊕ ker(L1). (2-36)

Note that, columnspace(B⊤
1 ) = rowspace(B1) = im(B1). Out of these three subspaces, the

first two, im(B⊤
1 )⊕ im(B2) are accounted for by above operators. The third subspace is the

nullspace, which is accounted for by the harmonic operator.

5. Harmonic Operator: The ker(L1) is the harmonic space, which is both divergence- and
curl-free. Reconsidering our example, for the given topology, the ker(L1) = ∅.

These interpretations justify the richness of information that the SC can extract, comple-
menting the simple graph representation.

In summary, five representations of power systems are discussed. The first four, excluding
SCs, are common in the literature for distribution grid state estimation (DGSE). However, the
fifth one, the SCs, demonstrates the potential to extract additional topological information
applicable to a wide range of networks [46]. These representations can be applied to design
topology-aware filters and neural networks. The former is a foundational topic in graph signal
processing (GSP) discussed in Appendix B. Building on that, the latter is discussed in the
next section.

2-4 Topology-Aware Neural Networks

GNNs are built on graph filters by introducing learnable filter coefficients and model com-
plex dependencies by adding components like pointwise nonlinearities. Similar to how GSP
extends digital signal processing to graph-structured data, GNNs extend traditional neural
networks to operate on non-Euclidean domains. This section summarises the main GNN
architectures utilised in this work, introducing graph convolutional neural network (GCNN),
graph attention neural network (GAT), and SCNN.

2-4-1 Graph Convolutional Neural Networks

For a GCF defined in Definition 7, a graph perceptron nesting the GCF with a pointwise
nonlinear activation function σ : R→ R can be denoted as

x′ = σ(GCF(x)), (2-37)

where x′ denotes output graph signal embedding of the perceptron. Some examples of this
activation function for x ∈ R include ReLU(x) = max(0, x) or hyperbolic tangent tanh(x),
depending on the task. Like the traditional multi-layer perceptron, the multi-layer graph
perceptron is illustrated in Figure 2-13(a). Further, extending for graph signals with multiple
features, using graph perceptron as denoted in (B-6), a multi-layer graph perceptron is shown
in Figure 2-13(b). For a graph signal with multiple features X, the number of features at
each layer is determined by the GCNN parameter matrix Hl,k ∈ RFl−1×Fl at lth layer for kth
filter order. So that parameter matrix for the first layer can be denoted as H1,k ∈ RF ×F1 .
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This matrix maps the Fl−1 input features from the previous layer to Fl output features in the
current layer. As a result, the output embedding of the layer is represented as Xl ∈ R|V|×Fl .
Incorporating all the parameter matrices, the parameter set for GCNN can be denoted as

HGCNN =
L⋃

l=0

K⋃
k=0

Hlk ∪WGCNN, (2-38)
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Figure 2-13: Graph Convolutional Neural Network. A single feature GCNN is shown in (a), and
a GCNN with filter banks in (b), with three layers and a readout layer. The GCFs are shown in
the blue boxes, and activation functions are shown in the orange boxes.

with WGCNN denoting the parameter set of the readout layer, which depends on the specific
task of the GCNN, such as node prediction, classification, etc. Since this work proposes to
use the GCNN, a compact representation can be given as

Ŷ = GCNN(S, X,HGCNN), (2-39)

where Ŷ is the output node embeddings, as illustrated in Figure 2-13(b). The complexity of
L layer GCNN is O(LF 2K(|E|+ |V|)), linear in the number of nodes and edges. The imple-
mentation of this architecture for the proposed work will be discussed in the next chapter.

2-4-2 Graph Attention Networks

Inspired by the popular self-attention mechanism used in natural language processing (NLP)
[47], which enables learning the most relevant parts of sentences to make decisions, a similar
concept can be applied to graph signals. The relevance between two nodes can be determined
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by learning parametric edge weights from the node and connecting edge features5 [48]. Using
the representation for node-feature matrix from (2-30), a shared linear transformation is
applied to every node parameterised by a weight matrix W ∈ RF ′×F . Similarly, edge features
X1 = [x1

1, x1
2, ..., x1

|E|] are transformed using We ∈ RF ′×G. This way, the relevance of node
j’s features to node i connected by edge k can be measured by the attention coefficient

αi,j =
exp

(
LeakyReLU

(
a⊤

s Wxi + a⊤
t Wxj + a⊤

e Wex1
k

))
∑

k∈N (i)∪{i} exp
(
LeakyReLU

(
a⊤

s Wxi + a⊤
t Wxj + a⊤

e Wex1
k

)) (2-40)

where as ∈ R1×F ′ , at ∈ R1×F ′ and ae ∈ R1×F ′ shared across all nodes. The softmax function:
exp(·)∑

k∈N (i)∪{i}(·) here allows discriminating important nodes across the neighborhood of node
i. Since the attention coefficients depend on the node degree, αi,j ̸= αj,i. Learning all the
attention coefficients in the graph is equivalent to learning a attention-induced GSO: Aα

[Aα]i,j = αi,j . Thereby, the propagation rule, similar to GCNN for layer l will be

Xl = σ(AαXl−1W⊤), (2-41)

where Xl ∈ R|V|×F ′ . Following the work of [47], the learning process can be stabilised by a
multi-head attention mechanism [48]. In this mechanism, M independent attention mecha-
nisms are executed, and the resulting feature matrices are averaged. This multi-head attention
layer can be given as an extension of (2-41) as

Xl = σ

[
1

M

M∑
m=1

A(m)
α Xl−1[W(m)]⊤

]
. (2-42)

The total set of trainable parameters for GATs here will be

HGAT =
M⋃

m=1
A(m)

α ∪
M⋃

m=1
W(m) ∪WGAT, (2-43)

where WGAT is a task-dependent set of parameters associated with the readout layer, sim-
ilar to (2-38). To utilise this architecture in the proposed method, consider the compact
representation of (2-42) as

Ŷ = GAT
(
S, X, X1,HGAT

)
, (2-44)

where S specifies the neighborhood set N (i) used in (2-40). Some key properties of GAT are
given below,

5Original work uses only node features, while standard implementations allow edge features.
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1. Discriminatory power: The attention coefficients assign different importances to nodes
of the same neighbourhood, improving the selectivity power of the model. Further, the
learned αij can also benefit the interpretability of the model.

2. Applicable for varying degrees of nodes: By specifying arbitrary weights to the neigh-
bours.

3. Inductive implementation: As the set of parameters is independent of the graph dimen-
sions, this mechanism can generalise to unseen graphs.

4. Computational Complexity: The complexity of L layer GAT is O(LMF ′(|V|F + |E|)),
which is linear in the number of nodes and edges, thus on par with the complexity of
GCNNs. Since individual head computations are independent, they can be parallelised
for efficient operation.

While GCNN and GAT architectures leverage spatial information with a primary focus on
nodes and their features, they often overlook the rich spatial information embedded in edges
and their multiple features, as motivated in Section 2-3-2. To address this limitation, SCNNs–
naturally suited for edge-centric tasks–offer a promising alternative, as discussed in the next
section.

2-4-3 Simplicial Complex Neural Networks

Building upon the simplicial convolutional filter (SCF) defined in (B-7) for 1−simplicial sig-
nals, the SCNN layer with SC perceptron nesting the SCF with a pointwise nonlinear activa-
tion function σ : R→ R can be denoted for layer l as

X1
l = σ(SCF(X1

l−1)). (2-45)

This can be followed by a readout layer having a similar design as discussed in Section 2-4-1
and denoting the SCNN output as Ŷ1. The parameter set associated with SCNN can be
given as

HSCNN =
Q1⋃

q1=0
Hl

q1 ∪
Q2⋃

q2=0
Hu

q2 ∪W
SCNN, (2-46)

whereWSCNN is associated with the task-dependent readout layer. A compact representation
for SCNN can be given as

X̂1 = SCNN
(
L1,l, L1,u, X1,HSCNN

)
. (2-47)

The computational complexity of SCNNs with L layers is given by O(L|E|(Q1 + Q2)DG2)
[49], excluding the readout layer, linear in the number of edges. Similar to Figure 2-13 for
GCNN, the architecture of multi-layer SCNN is given in Figure 2-14.
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Ŷ1 = NN(X12)

Readout

Ŷ1

Figure 2-14: Simplicial complex neural network architecture with two layers. The simplicial
complex filters are shown in blue boxes, with a readout layer and activation functions in orange
boxes.

2-4-4 Recent Works with Topology-Aware Neural Networks

Several works utilise GCNN and GAT as their primary architecture for DGSPE. Table 2-1
distinguishes these works based on their scope and model architecture, if specified.

2-5 Topological Observability in Distribution Grids

From a systems and control perspective, in the context of static SE, the network is fully
observable if there exists a unique mapping between the state vector u and the measurement
vector z under ideal conditions, where the noise vector e = 0. This is equivalent to solving
a determined or overdetermined system of nonlinear power flow equations. For DGs, due to
a limited number of measurement devices and their suboptimal placement, DGs tend to be
completely unobservable [6]. This means that certain buses in the network lack measurements
for at least two key quantities among |V |, θ, P , and Q. For example, Figure 2-15 shows
an unobservable real network in the Southern Netherlands. It is observed that medium
voltage (MV) stations: 4, 14, 18, and all low voltage (LV) terminals of MV/LV transformers
do not have any measurements. From a mathematical standpoint, unobservable DGs yield
an underdetermined nonlinear system with infinitely many solutions.

To complement real measurements, virtual measurements are sometimes inferred using Kirch-
hoff’s and Ohm’s laws. However, these laws assume that the mathematical model is accurate,
which often fails due to factors like inaccurate system parameters, such as transformer tap
positions. A more widely adopted strategy is to derive or generate pseudo-measurements,
which involve estimating measurements at unobserved buses based on prior knowledge or
historical data. The methods adopting this strategy are briefly classified below:

1. Aggregated consumer load data: For LV networks, smart meter data, which typi-
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Table 2-1: Recent studies on SE for power systems. OH stands for Observability Handling.

Model
name/ref.

OH PE SCNN in
Model Ar-
chitecture

Other Limitations

Power-GNN [37] ✓ ✓ × Applies Kron-reduction to eliminate
unobserved nodes affecting feasibil-
ity of SE

MT-GCN [38] × ✓ × Assumes SE is accurate before per-
forming PE which is unrealistic in
practice

DSS [42] ✓ × × Assumes network is observable with
pseudo-measurements

Ele-GNN [34] ✓ × × Diffusion matrices used for label
propagation lack guaranteed spec-
tral properties, affecting observabil-
ity

GAEN [46] × × ✓ Assumes a fully-observable network
not suitable for DGs

cally records cumulative energy consumption (in kWh), can be utilised to estimate power
injection distributions. However, since SE relies on (5-minute average) Supervisory
Control and Data Acquisition (SCADA) measurements with higher sampling rates than
(monthly) smart meter data, parametric methods have been developed to infer stochas-
tic power injection distributions for fast-timescale SE using slow-timescale smart meter
data [4]. These methods, however, rely on the key assumption that aggregated con-
sumer load is fully known, which is often violated due to privacy-related limitations on
access to individual consumption data. Additionally, non-uniform data reporting and
lack of synchronisation across measurement sources introduce further uncertainties to
these methods [50, 51].

2. Matrix-Completion Methods: This method formulates all available data into a
matrix and minimises its nuclear norm to estimate missing entries or unknown states.
The biggest drawback of this method is that the formulation for minimising the nuclear
norm restricts the use of linearised power flow equations, which limit their validity
[52, 53].

3. Label Propagation in Graph Signal Processing: This method employs graph
representation of the DG to enable GSP techniques. As proposed in the Ele-GNN ar-
chitecture [34], observability is addressed by propagating known measurements–encoded
as node features–from the corresponding buses to their connected neighbours through
the graph edges. This propagation is governed by a diffusion matrix, where each element
is defined using the so-called electrical distance: [ Delegnn ] ij =

√
r2

ij + x2
ij . The node-

feature matrix is iteratively multiplied by the diffusion matrix until convergence. Despite
its simplicity, the definition of electrical distance used here oversimplifies the nonlinear
and complex nature of the underlying power flow equations. This metric may be more
appropriate for transmission grid (TG), where the reactance-to-resistance ratio (x/r)

Soham Prajapati Master of Science Thesis



2-5 Topological Observability in Distribution Grids 35

is typically high (on the order of 5–20), allowing the approximation
√

r2
ij + x2

ij ≈ xij

to hold. But this diffusion behaviour undermines the physical relevance for DGs where
x/r < 1.
Another critical issue with this method is the absence of guarantees regarding the spec-
tral properties of the diffusion matrices. For convergence, the spectral radii must satisfy
ρ(Delegnn

v )≤ 1 and ρ(Delegnn
e ) ≤ 1 for nodes and edge-graphs, respectively; however, this

condition is not ensured in the study. Consequently, the reliability of this method for
valid SE remains questionable.

The above methods, as discussed, do not directly address the observability problem as one
of solving an underdetermined system of equations–an inherent challenge in practical DGs.
While matrix-completion methods offer a formulation in this direction, they are restricted to
using linear power flow equations [53]. Conceptually, the infinite solution space of an underde-
termined system of equations can be constrained by implicitly conditioning the equations on
the network topology and synthetic data distribution, which aligns with real loading scenar-
ios. This helps to generate pseudo-measurements that are more realistic in nature. Reviewing
methods in this direction leads to the umbrella term of generative models in machine learning.
Since the scope of this work is limited to graph neural networks, generative models are briefly
introduced in the following section to address pseudo-measurements.

2-5-1 Pseudo-measurements using Generative Models

Consider a tractable–simple to express–probability distribution Z defined in Rq, such as a
Gaussian distribution. Now consider the probability distribution χ defined in Rp representing
the space of synthetic power flow results for a network with fixed topology. This distribution
is typically multi-modal and high-dimensional due to the nonconvex nonlinear nature of the
power flow equations. The goal of a generative model GΦ parameterised by the set Φ is to
learn a function

GΦ : Rq → Rp (2-48)

such that GΦ(v) ≈ u, so that for each sample u ∼ χ there exists at least one point v ∼ Z. In
other words, a generative model GΦ enables the mapping of samples from a simple distribution
to a complicated distribution. This simple or tractable distribution is commonly called the
latent distribution, a term originating from models like Restricted Boltzmann Machines [54].
In the above formulation, q is a latent variable that is unobserved, not undefined–it cannot
be directly accessed or manipulated during training.

There are various techniques to learn a GΦ, depending on the domain and task of the prob-
lem. Since this work generates synthetic power flow results using high-fidelity model-driven
simulations, generative models relying on Markov chain Monte Carlo and variational inference
techniques are disregarded for this study, bypassing the need for computationally intensive
inference procedures and approximations in favour of direct, physics-based data generation.
Moreover, inspired by its success across various scientific disciplines [55, 56], the generative
adversarial network (GAN) incorporates highly effective methods, such as backpropagation
and dropout [57]. It generates samples using forward passes, enabling any differentiable NN
architecture in the GΦ.
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Figure 2-15: Available measurements highlighted in a 42-bus network from the Southern Nether-
lands. Three types of measurement devices are illustrated: devices in the switches connecting the
station, devices within the station, and devices at the load connected to the station.

In this context, to generate pseudo-measurements, Kamal et. al., [58] propose a physics-
informed GAN leveraging PF equations in its loss function to infer pseudo-measurements at
unobserved buses. More recently, in [59], the Generative Adversarial Imputation Network
(GAIN) from [60] is extended by incorporating convolutional neural network (CNN) into the
model architecture, to improve the reconstruction accuracy. Despite these advancements,
both works share a standard limitation: the generator model ignores explicit knowledge of
the grid topology, which is also emphasised in [61]. In other words, neither the fully connected
nor the convolutional architectures enforce the physical connectivity or locality inherent to
electrical networks. To address this gap, a GNN is proposed to replace the fully connected
neural network (FCNN) or CNN backbone.

The detailed design of GNN-based GANs, along with the entire proposed framework for
DGSPE, is described in the next chapter.
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Chapter 3

Proposed Methodology

This chapter delineates the topology-aware framework as the main contribution of this work
for state and transformer tap-position estimation in unobservable distribution grid (DG). A
high-level overview of this framework for a 4-bus network with one transformer is given in
Figure 3-1. The first component of this framework is generative adversarial network (GAN),
where the generator model GΦ (Φ is the parameter set of the generator model) is trained
to impute missing measurements. A discriminator model DΥ (Υ is the parameter set of the
discriminator model) provides adversarial feedback by learning to distinguish between real
and imputed (potentially inconsistent) measurement sets, implicitly guiding GΦ to produce
more realistic outputs. This adversarial training is conditioned with the DG topology and
synthetic power flow results, addressing limitations as discussed in Section 2-5-1 and ensuring
that GΦ synthesises realistic values.

Once GΦ reconstructs observability in the system, the observable network is then passed
to the next element of the framework: the state and parameter estimation (SPE) model
MΨ. This model integrates graph neural network (GNN) and simplicial complex neural
network (SCNN) architecture, followed by message-passing layers for predicting correct tap
positions. Since the GΦ and MΨ models are built upon a high-order, topology-aware neural
network architecture, this chapter first explains the underlying graph representation, followed
by an overview of the core model architecture. This architecture is then specialised to generate
pseudo-measurements using GAN and perform SPE, which will be discussed in the following
sections.

3-1 Hybrid Graph Representation

This section discusses the proposed graph representation using an example of a medium
voltage (MV) network. Figure 2-15 represents a real network in the Southern Netherlands,
hereby referred to as Net 42-A, with two high voltage (HV), 22 MV, and 18 low voltage (LV)
buses, indexed as

Master of Science Thesis Soham Prajapati



38 Proposed Methodology
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Figure 3-1: Conceptual overview of the proposed framework showing input/output distributions
for each component in the framework via violin and scatter plots. Starting with a distribution of
latent space at the missing measurements, the GΦ and DΥ models in the GANs constrain it to
a realistic measurement space. This measurement space is next transformed into the distribution
of the state estimates using the MΨ model. The edge-feature vector at the transformer edge
represents logits for tap-position classification.

• HV Buses: {0,1},

• MV Buses: {2, 3,..., 23}, and

• LV Buses: {24, 25,..., 41}.

Moreover, it has 22 lines, 2 HV/MV transformers, 18 MV/LV transformers, and 20 connected
loads, with 12 loads measured. Since HV/MV transformers are typically equipped with
automatic tap-changers, they are disregarded for the parameter estimation (PE) task.

In the operational setting, typically, there are two configurations of measurements:

1. Power flow measurement, P +
ij , at the switches connecting MV buses i and j.

2. Voltage magnitude |V |i and active power injection Pi measurements at the buses, either
as consolidated or simple measurements.

Remark 3.1 To clarify point (2) above, buses 2 and 3 correspond to central MV substa-
tions equipped with measurement devices across their respective busbars. Specifically, bus
2 aggregates connection to buses 4, 7, 16, and 22, while bus 3 serves buses 6, 10, and 19.
To represent each bus with a single–consolidated measurement–the voltage readings from all
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connected buses are averaged to obtain a representative voltage magnitude for the substa-
tion. Similarly, the net active power injection is computed as the sum of the individual power
injections at the connected buses. These are considered consolidated measurements.

In (1), the power flow measurement is considered as edge-level information. Since these mea-
surements are directional in nature at a given instant, they motivate the use of a directed
graph representation. This directionality is essential to capturing the network’s actual op-
erational behaviour at a given time. Moreover, the line and transformer parameters can be
added to this edge-level information to embed physical context and implicitly learning the
bus-admittance matrix Ybus.

In (2), the voltage magnitude |V |i and active power injection Pi are node features indepen-
dent of any specific direction, thereby motivating an undirected graph representation. This
choice further facilitates the application of graph convolutional neural network (GCNN),
which operates effectively on undirected graphs by aggregating node features from symmetric
neighbourhoods.

Bringing these two perspectives together, we adopt a hybrid graph representation proposing:

1. An undirected graph G to process node-level features,

2. A directed graph Gd to process edge-level features and account for high-order topological
dependencies like edge-triangle relationship (see Section 2-3-2).

In this setup, all buses in the network are considered as nodes, i.e., B = V, and all physical
connections–lines and transformers–are represented as directed edges, i.e., U = Ed. The node
feature matrix is defined as X ∈ R|V|×2, where each row corresponds to a node feature vector
[X]i = [|V |i, Pi] for all i ∈ V. Similarly, the edge feature matrix is defined as X1 ∈ R|E|×6,
where for each directed edge (j, k) ∈ E , the corresponding feature vector is given by

[X1]jk = [P +
jk, rjk, xjk, gjk, bjk, τjk].

Here, P +
jk denotes the positive active power flow along the direction of edge (j, k), consis-

tent with the directed graph formulation. Notably, due to the permutation equivariance of
simplicial complexes (SC) [45], edges for which P + measurements are not available can be
assigned an arbitrary direction without compromising the integrity of the learning process.
The full representation of the hybrid graph representation is given in Figure 3-2.

To incorporate the underlying topology for learning:

• Node-focused graph convolution uses the normalised adjacency matrix Ã as defined in
(2-29), enabling feature propagation in the undirected graph G.

• Edge-focused graph convolution exploits higher-order topology using the lower and up-
per Hodge Laplacians, L1,l and L1,u, associated with Gd as defined in (2-35).

The core model architecture utilises these convolution operations on node and edge features
as detailed in the next section.
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Figure 3-2: Hybrid graph representation for a 4-bus network representing nodes as PV buses and
edges as lines and transformers (if edge is a line, τ = 0). (b) and (c) represent the equivalent
graph and simplicial complex representation of (a).

3-2 Core Model Architecture

The core model architecture proposed here uses the twin forces of graph and simplicial complex
convolutional operations to independently derive high-dimensional node and edge embeddings.
These embeddings are combined with a graph attention mechanism to output node- and edge-
level spatial dependency-informed node embeddings that can be specialised further to generate
pseudo-measurements and perform SPE.

Using the node-feature matrix from the proposed hybrid graph representation X ∈ R|V|×2, a
GCNN from (2-39) using a normalised adjacency matrix, Ã, to exploit the topology can be
given as

Ŷ = GCNN
(
Ã, X,HGCNN

)
, (3-1)

where Ŷ = [ŷ1, ŷ2, ..., ŷFL
] ∈ R|V|×FL , with FL denoting the output feature dimension pro-

duced by the final (i.e., L -th) layer of the GCNN.

Similarly, the high-dimensional edge-embeddings exploiting the topology of the directed graph
with higher-order structures through an SCNN architecture from (2-47) can be given as

Ŷ1 = SCNN
(
L1,l, L1,u, X1,HSCNN

)
. (3-2)
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where Ŷ1 =
[
ŷ1

1, ŷ1
2, ..., ŷ1

GL

]
∈ R|V|×GL , with GL denoting the output feature dimension

produced by the final (i.e., L -th) layer of the SCNN. The node- and edge-embeddings are
further passed to a graph attention neural network (GAT) network from (2-44) as

Xo = GAT
(
S, Ŷ, Ŷ1,HGAT

)
, (3-3)

where Xo =
[
xo

1, xo
2, ..., xo

Fo

]
∈ R|V|×Fo , with Fo denoting the output node-feature dimension

of the core model. This output embedding will be specialised for GAN and SPE, as discussed
in the following sections. The architecture schematic of this model, with simplified notation,
is shown in Figure 3-4 within the red box. The hyperparameters selected for the model
architecture are discussed in the next chapter in Section 4-2.

3-3 Generating Pseudo-Measurements

This is the first component of the proposed framework, which utilises the core model archi-
tecture for generating pseudo-measurements for unobservable DG. Following the proposed
graph representation from Section 3-1, consider a given network where the synthetic power
flow results and network parameters are embedded into the node and edge feature matrices
X and X1, respectively. To simulate the real measurement setup, distinguishing between
available and unavailable measurements, mask matrices are introduced:

• MV ∈ R|V|×F for nodes, and

• ME ∈ R|E|×G for edges,

where the dimensions of these masks are equivalent to those of X and X1, respectively. Each
element in the mask matrices is defined as:

[MV/E ]ij =


1, if the corresponding measurement is available

or the entry is a parameter (for edges),
0, otherwise.

Using these matrices, the masked input matrices are defined as

X̃ = X⊙MV + ZV ⊙ (1−MV), (3-4)
X̃1 = X1 ⊙ME + ZE ⊙ (1−ME). (3-5)

Where ⊙ denotes the element-wise (Hadamard) product, 1 is a matrix of ones of the same
shape as the corresponding mask, and ZV and ZE are noise matrices (of the same shape as X
and X1). This formulation of X̃ and X̃1 embeds a latent distribution at the missing entries,
enabling the training of generative/generator models. The following section discusses the
generator model proposed in this work.
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3-3-1 Generator Model

The generator model uses the proposed core-model architecture from Section 3-2. Given a
network topology, consider the core model already conditioned with Ã, L1,l and L1,u. Using
input feature matrices as X̃ and X̃1, the core model produces node and edge embeddings
using (3-3) and (3-2), respectively. This input-output relationship can be expressed as

(X̄, X̄1) = GΦ(X̃, X̃1), (3-6)

where X̄ and X̄1. The final layer dimensions of the core-model are kept such that X̄ ∈
R|V|×F and X̄1 ∈ R|E|×G, to consider them as imputed node and edge-feature matrices.
These matrices representing the GΦ output distribution are distinguished from X and X1

representing the synthetic power flow distribution with a discriminator model discussed next.

Remark 3.2 From this point onward, the output matrices of the generator, X̄ and X̄1, will be
referred to as fake measurements. In contrast, the ground-truth matrices X and X1, simulated
from the synthetic power flow distribution, will be referred to as real measurements.

3-3-2 Discriminator Model

The discriminator model classifies the graph as real or fake. From a graph machine learning
perspective, this boils down to binary graph classification–classify real as one and fake as
zero. In this context, given the inputs to a discriminator model DΥ: node-feature matrix
XD ∈ {X, X̄}, edge-feature matrix X1

D ∈ {X1, X̄1} and graph adjacency A, the DΥ is
designed to perform binary classification so that DΥ

(
XD, X1

D, A
)
∈ [0, 1].

For such a graph classification task, the proposed work employs the DiffPool architecture [62].
This architecture uses a differentiable pooling mechanism that learns hierarchical representa-
tions by clustering nodes in a data-driven, end-to-end manner. The end-to-end differentiabil-
ity of the DiffPool architecture enables the discriminator to learn structural and feature-based
patterns that distinguish real graphs from generated ones. A step-by-step overview of this
architecture, adapted for this work, is illustrated in Algorithm 1.

DiffPool performs two key operations at each layer: (i) learning a dense embedding of node
features, and (ii) computing a soft assignment matrix to cluster nodes into fewer groups. The
kth-layer of DiffPOOL maps: R|V|×F → R|Ck|×Fk with reduced number of nodes (clustered-
nodes) as |Ck| < |V| and transformed feature-space dimension Fk. These operations progres-
sively reduce the number of clustered nodes across layers, |Ck−1| < |Ck| < |Ck+1|, compressing
the graph structure. The GCNN architecture (from (3-1)) is utilised at the core of these
operations.

As shown in Algorithm 1, each layer outputs updated node features and a coarsened adjacency
matrix based on the learned cluster assignments. This hierarchical compression continues until
the final layer, where all nodes are aggregated into a single clustered node |CL| = 1. This
is achieved by fixing the final assignment matrix to all-ones, AL = 1 ∈ R|CL−1|×1, so that
XD,L ∈ R1×FL , producing a graph-level representation.

The final output feature vector is passed through a linear transformation followed by a sigmoid
activation to yield the discriminator score. The softmax(·) is applied across the rows. Since
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3-3 Generating Pseudo-Measurements 43

Algorithm 1 DiffPool Architecture adapted for binary graph classification [62]
Require: Feature matrices XD,1 := XD, X1

D,1 := X1
D and graph adjacency A1 := A.

Require: Feature transformation dimensions at each layer {F1, ..., Fi, ...FL}.
Require: Reduced clustered-node sizes at each layer {|C1|, ..., |Ci|, ..., |CL|} with |CL| := 1.
Require: GCNNembed,i : R|V|×Fi → R|V|×Fi+1

Require: GCNNpool,i : R|V|×Fi → R|V|×|Ci|

Require: Linear layer : RFL → R1

1: for L− 1 layers do
2: ZD,i ← GNNembed,i(XD,i, Ai)
3: Si ← GNNpool,i(XD,i, Ai)
4: XD,(i+1) ← softmax(Si)T · ZD,i

5: S(i+1) ← softmax(Si)T ·Ai · softmax(Si)
6: end for
7: DΥ(XD, X1

D, A)← sigmoid(Linear(XD,L))

softmax(x) ∈ [0, 1] ∀x ∈ R, the DΥ
(
XD, X1

D, A
)
∈ [0, 1]. An output close to 1 indicates

high confidence of DΥ that the input graph is real. From this point onward, for brevity in
notation, the discriminator model implicitly conditioned on the graph adjacency A is denoted
as: DΥ(X, X̄1, A) := DΥ(X, X̄1).

3-3-3 Generative Adversarial Networks

Using the proposed GΦ and DΥ model architectures, the GAN setup is formulated here for
adversarial training. Given the DΥ model, the goal of the GΦ model is to generate output
X̄ and X̄1 such that DΥ(X, X̄1) → 1: it classifies the graph as real. This requires training
parameters Φ such that:

Φ∗ = arg min
Φ

− log
(
DΥ

(
GΦ

(
X̃, X̃1

)))
or, alternatively,

= arg min
Φ

log
(
1−DΥ

(
GΦ

(
X̃, X̃1

)))
. (3-7)

Along this line, given the GΦ model, the goal of the DΥ is to classify the generated graph as
a fake graph and a real graph as real. This can be expressed as learning the discriminator
parameter set Υ such that:

Υ∗ = arg max
Υ

log DΥ
(
X, X1

)
+ log

(
1−DΥ

(
GΦ

(
X̃, X̃1

)))
. (3-8)

Here, since DΥ ∈ [0, 1],

1. maximising the first term log DΥ
(
X, X1) indicates maximising the probability that the

discriminator model identifies the training sample as real so that log DΥ
(
X, X1)→ 1.
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2. maximising the second term log
(
1−DΥ

(
GΦ

(
X̃, X̃1

)))
indicates maximising the prob-

ability that the discriminator model identifies the generated sample as fake so that
DΥ

(
GΦ

(
X̃, X̃1

))
→ 0.

Using (3-7) and (3-8), the GAN setup is formulated as a minimax objective function

min
Φ

max
Υ

log DΥ(X, X1) + log
(
1−DΥ

(
GΦ(X̃, X̃1)

))
, (3-9)

training GΦ and DΥ in an adversarial setting. Solving the above loss function is conceptualised
as a two-player, zero-sum game: the gain of GΦ is the loss of DΥ and vice versa. The
objective of the generator is to deceive the discriminator. Concurrently, the objective of the
discriminator is to improve its accuracy in classifying real graphs as real and generator output
as fake. This adversarial training is illustrated in Figure 3-3, and the chosen approach for
solving the objective in (3-9) is discussed in Section 3-5. Given the GAN setup, which imputes
missing measurements with realistic ones, the SPE can be performed as discussed in the next
section.

GΦ

DΥ
Binary  
Cross  

Entropy 
Loss 

Gradient Descent

Gradient Ascent

Distribution of real 
measurements

Distribution of 
latent space

Distribution of realistic 
measurements

Figure 3-3: Adversarial training loop of GAN proposed for missing feature imputation. The
dotted line represents the gradient descent and ascent updates to the parameters Φ and Ψ. These
updates correspond to their respective minimisation and maximisation objectives, as defined in
(3-7) and (3-8).

3-4 TapSEGNN Model for State and Parameter Estimation

This section extends the core model architecture to enable the prediction of transformer
tap positions. The resulting model is referred to as the TapSEGNN model. The node and
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edge feature matrices, denoted by X̄ and X̄1 respectively, are assumed to be imputed with
pseudo-measurements generated by the trained model GΦ. These matrices, together with
the global network topology information in Ã, L1,l and L1,u, serve as inputs to the core
model architecture. The core model is configured with an output feature dimension Fo = 2,
corresponding to two quantities at each node: voltage magnitude |V |i and phase angle θi, so
that Xo ∈ R|V|×2. This output Xo, accounting for the global network topology information, is
passed to the transformer readout layers to put emphasis on the local network topology around
the transformers, addressing the limitations in the method of state-vector augmentation and
residual analysis as discussed in Section 2-2-1. To tailor these readout layers, consider the set
of edges in the graph modelled as transformers:

Nt = {(i, j) : (i, j) ∈ E and (i, j) represents a transformer} (3-10)

For each of such edges in Nt, the set of h-hop neighborhood nodes can be given by the set

N ij
b = {k ∈ V| dist(k, i) ≤ h or dist(k, j) ≤ h}, (3-11)

where dist(i, j) represents the shortest path distance between node i and node j in terms of
hops or edges. Let Mij be the binary mask matrix for edge (i, j) of size R|N ij

b
|×|V|. This

mask selects the rows of Xo associated with the subset of nodes N ij
b ⊆ V. The masked node

features for edge (i, j) are then extracted as

Xo,ij = MijXo, (3-12)

where Xo,ij ∈ R|N ij
b

|×2 consists of the node feature vectors xo
k ∈ R2 (see (2-30)) for each node

k ∈ N ij
b , i.e.,

Xo,ij =


(xo

1)⊤

(xo
2)⊤

...
(xo

|N ij
b

|
)⊤

 .

Using these node-feature vectors and given that the corresponding transformer (edge (i, j))
has total t tap positions, the output row-vector tij ∈ R1×t is defined as

tij =
(
aij
)⊤
[∥∥∥∥

k∈N ij
b

Ωxo
k

]⊤

:= Tap(Xo,ij), (3-13)

where Ω ∈ Rt×2 and aij ∈ R|N ij
b

| are parameter matrices and || denotes horizontal concate-
nation operator. The elements in tij are considered as unnormalised probabilities, or logits.
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Note that the dimensions of Ω are independent of |N ij
b | and hence Ω is proposed to be shared

for all transformers (i, j) ∈ Nt. For all transformers in the network, the total parameter set
here will be

HTap =
⋃

(i,j)∈Nt

aij ∪Ω. (3-14)

At this point, comprising the core model and readout layers for transformer tap positions,
the TapSEGNN model is mathematically referred to as MΨ with the parameter set Ψ =
{HGCNN,HSCNN,HGAT,HTap}. Considering MΨ has already incorporated the topology in-
formation in Ã, L1,l and L1,u for (3-1), (3-2) and (3-3), a compact expression of input-output
relationship for MΨ is given as

(Xo, tij) = MΨ(X̄, X̄1) ∀(i, j) ∈ Nt. (3-15)

To perform node-regression for state estimation (SE), consider node-label matrix Z given as

Z =


z⊤

1
z⊤

2
...

z⊤
|V|

 , zi = [|V |i, θi] ∀i ∈ V, (3-16)

The quantities in zi will be synthetic power flow results serving as labels to train for SE. The
following loss function guides this training

LSE =
∑
i∈V

1
σ2

i

∥xo
i − zi∥22 , (3-17)

with σi as the standard deviation associated to measurement in xo
i for node i.

Concurrently, the logit-vector tij from (3-15) is given as an input to the cross-entropy loss
function [63] to predict the correct tap position for a single transformer as

Ltap-ij = −
t∑

k=1
yk log P (y = k|tij), (3-18)

where P (y = k|tij) is the predicted probability for class k out of t classes, given input tij and
yk as the one-hot encoded label for true tap-position. Summing this classification loss for all
transformers, (i, j) ∈ Nt, will be

LTap =
∑

(i,j)∈Nt

Ltap-ij or

=
∑

(i,j)∈Nt

(
−

t∑
k=1

yk log P
(
y = k|tij

))
. (3-19)
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Combining the LSE and LTap, the joint SPE loss function can be given as

LTapSE = LSE + λtapLTap + λregR(Ψ), (3-20)

where λtap as the hyperparameter weighing LTap as compared to LSE, R(Ψ) is the regular-
ization term for all the trainable parameters and λreg denoting the weight on R(Ψ). The
regularisation avoids overfitting of the model by penalising impractical parameter sizes. Typ-
ically implemented using absolute or Euclidean norms, it encourages model simplicity and
improves generalisation to unseen grid conditions. So, the objective of the TapSEGNN model
is to obtain

Ψ∗ = arg min
Ψ

LTapSE. (3-21)

An architectural overview of TapSEGNN is illustrated in Figure 3-4. The following section
elaborates on the chosen approach to solving the above objective, grounded in a systems and
control perspective.

M

tij =tij =tij =

X̄ =

X̄1 =

Ll =

Lu =

Ã = ΦY =

ΦY1 =

Aα =
Xo =

TapSEGNN

Xo

tij = tij

SCNN (X̄1, Ll, Lu)

GCNN(X̄, Ã)

GAT( ΦY, ΦY1)
Tap(Xo)

Core Model

1 2 3

4

Figure 3-4: Architecture of TapSEGNN model proposed for SPE along with the core model
highlighted within the orange box. A generalised Tap(Xo) layer is shown for all transformers.
The output Xo is used for state estimation and tij ∀(i, j) ∈ Nt for tap position prediction.

3-5 Model Training

From a systems and control perspective, solving (3-9) and (3-21) requires identifying the
underlying functions. Note that the functions proposed here are universal approximators or
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so-called neural networks. They are considered non-convex functions [54] due to

1. Nonlinear activation functions like the sigmoid function in (3-19).

2. Weight space symmetry or non-unique configuration of model parameters leading to
multiple local minima.

Thus, solving optimisation problems with neural networks involves iterative methods instead
of deriving a closed-form analytical expression. Moreover, the differentiable nature of the pro-
posed architectures allows employing approximate1 first-order gradient-based iterative meth-
ods. Calculating the Hessian matrix often requires approximation, and the updates can be
error-prone due to the typically poor condition number of these matrices [54]. While finite
differences can be used to calculate the gradients, the cost of computation, for example, for
MΨ, is O(|Ψ|2) for |Ψ| number of parameters. A better approach is the backpropagation algo-
rithm [57], which is utilised in this work. Backpropagation allows for computing in O(|Ψ|)–the
exact cost to evaluate the model.

After calculating the gradient using backpropagation, the algorithms available to update the
model parameters are either deterministic or stochastic. The former algorithms use all train-
ing examples, while the latter ones randomly select individual training examples. Recent
advances in machine learning have demonstrated the dominance of stochastic methods over
others, specifically the stochastic gradient descent method (SGD) [64]. However, the plain
SGD update leads to problems like vanishing gradients at saddle points and erratic gradient
behaviour due to the stochasticity. The Adam algorithm addresses these challenges by com-
puting parameter-specific adaptive learning rates using gradient descent with estimated first
and second moments of the gradients [65]. It uses exponential moving averages to accumulate
the mean or momentum and uncentered2 variance of past gradients, allowing for more stable
and efficient updates. For these reasons, the Adam algorithm is used in this work to update
the model parameters in solving the objective functions.

The next chapter presents a series of tests conducted to evaluate the proposed framework and
its training aspects.

1ReLU(x) = max(0, x) isn’t differentiable at x = 0, so in practice, gradients at that point are arbitrarily
set

2Uncentered variance is E[x2] instead of centered variance E[(x − E[x])2]
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Chapter 4

Results

This chapter presents a series of experiments to evaluate the proposed methodology using
quantitative measures. It first proposes the case-study networks used in this study. Using
these networks, it discusses an industrial-grade workflow for generating data in the real case
study networks. This data, made up of power flow snapshots, is then customised into three
separate datasets, each designed to train specific components of the proposed framework for
their respective tasks. The trained models are then tested on unseen batches of the datasets
to evaluate their performance, starting with the generative adversarial network (GAN) and
followed by the TapSEGNN model. Since the core model architecture in these components is
a graph neural network (GNN), the generalisability and scalability aspects of it are studied
with a focus on state estimation (SE). The proposed core model is then compared with other
baseline models to identify its pros and cons. Finally, a discussion summarises the main
insights from the obtained results.

4-1 Dataset Generation

The case study network considered for this work is Net 42-A, as discussed in Section 3-1. Given
the model hyperparameters and training configuration tuned for Net 42-A, this study tests
the scalability and generalizability of the TapSEGNN model using the following networks:

• Net 320: An open-source synthetic network, known as MV Oberrhein. This network
has 141 LV buses, 177 MV buses and two HV buses. It has 147 loads, 194 lines, 141
MV/LV and 2 HV/MV transformers. This network is used to test the scalability of
TapSEGNN.

• Net 42-B: A real network from the southern Netherlands, similar to Net 42-A. This
network has 18 LV buses, 22 MV buses and two HV buses. It has 19 loads, 20 lines, 18
MV/LV and 2 HV/MV transformers. This network is used to test the generalizability
of TapSEGNN, but with a focus on SE only.
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Using these networks, the dataset generation workflow includes two main steps:

1. Processing the real networks: The modern-day utility industries use Geographic Infor-
mation Systems (GIS) to model the electrical networks. These systems are designed to
analyse and manage the assets and present spatial and geographical data of the net-
works. The GIS network models are realised into Python-based dataframes using an
open-source library called Pandapower [66]. The available measurement locations of
the GIS network models are mapped to Pandapower networks. Typically, the SCADA
measurements are available at some MV substations, and smart grid terminal (SGT)
measurements are available at the LV terminal of MV/LV transformers. These mea-
surements are mapped to the Pandapower network model at the buses and expressed in
the mask matrices MV and ME as introduced in Section 3-3. Such mapping of measure-
ments for a one-line diagram of Net 42-A is illustrated in Figure 2-15. For a synthetic
network like Net 320, where no practical measurement locations are possible, 50% spar-
sity is randomly simulated in the mask matrices. In addition, historical measurements
of active power P at the loads are also processed to derive the standard deviation σload
in megawatts (MW). In summary, MV , ME and σload are obtained in this step and
stored in a dataframe as illustrated in the top cell of Figure 4-1.

2. Simulating the synthetic data: In this step, synthetic power flow snapshots are generated
by perturbing the active power consumption/generation at the loads using zero-mean
Gaussian noise with standard deviation σload. Two datasets are sampled from these
snapshots: Dataset GAN and Dataset SE, under nominal transformer tap positions.
Given a trained model GΦ, the pseudo-measurements can be generated and X̄, X̄1 can
be sampled. This is useful to evaluate the influence of GAN performance for state and
parameter estimation (SPE). Since this dataset is the imputed version of Dataset SE,
it is referred to as Dataset ISE.

Another dataset that reflects the variability in transformer settings, called Dataset
TapSE, is generated. The tap positions are randomly perturbed for all MV/LV trans-
formers. Each tap is sampled uniformly within its allowed operational range, defined by
the minimum and maximum tap positions. This introduces variability in voltage reg-
ulation and network behaviour due to tap changes, in addition to load perturbations.
All these datasets are mathematically expressed as follows:

(a) Dataset GAN: This dataset is used to train the GAN in (3-9). Following the
predefined notations, for a fixed network topology defined by Ã, L1,l and L1,u, this
dataset is denoted for N samples as

DGAN = {(X(i), (X1)(i), M(i)
V , M(i)

E )}Ni=1. (4-1)

(b) Dataset SE: This dataset is used to evaluate the performance of the core model,
assuming the network parameters are accurate and is trained for (3-17). Following
predefined notations, for a fixed network topology defined by Ã, L1,l and L1,u, this
dataset is denoted for N samples as

DSE = {(X(i), (X1)(i), Z(i))}Ni=1. (4-2)
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Note the X, X1 instead of the generator output X̄, X̄1. The dataset sampled from
the generator output X̄, X̄1 is denoted as

DISE = {(X̄(i), (X̄1)(i), Z(i))}Ni=1. (4-3)

(c) Dataset TapSE: This dataset is used to assess the performance of TapSEGNN for
joint state and parameter estimation. This dataset is denoted as

DTapSE = {(X(i), (X1)(i), Z(i), T(i))}Ni=1. (4-4)

In this dataset, the tap position τjk ∀(j, k) ∈ Nt is uniformly sampled from the
range of minimum to maximum allowable tap positions. This tap setting is included
in the feature vector as part of [X̄1]jk = [P +

jk, rjk, xjk, gjk, bjk, τjk]. The matrix T
contains the actual tap positions, where [T]jk = τjk, and these values are used to
compute the resulting voltage magnitudes, angles, and active power injections and
flows represented in X and Z.

In the case study network Net 42-A, σload ≈ 10−4MW was identified. However, assigning
this standard deviation to all loads results in limited variability in the power flow results,
producing nearly identical training samples. This is problematic for training the model for
SE, where a narrow range of noisy input features (voltage magnitude and active power) must
map to a wider range of target values (filtered voltage magnitude and voltage angle). In
particular, the relatively high variability of voltage angles can lead to one-to-many mapping,
making it difficult for the model to learn the underlying nonlinear relationships. To address
this, a standard deviation of σload = 10−1 MW is assigned to all loads in the network when
generating the snapshots for all datasets. The variability in this case is shown in Figure 4-2
with box-plots, corresponding to the DSE dataset. On top of this, perturbation of transformer
tap positions results in the voltage variability at the LV buses as shown in Figure 4-3.
The number of samples in all the datasets is set to 4096, a power of 2, to ensure efficient
memory usage and computational performance on modern hardware. Selecting this number
of samples instead of higher or lower powers of 2 is justified

• theoretically, because the standard error of the mean of the trained model as an estimator
decreases with the square root of the number of samples. For example, for two datasets
with 100 and 10,000 samples, the latter requires 100 times more computation, but
estimator error is reduced only by a factor of 10 (see Section 5.4 of [54]).

• empirically, increasing the number of samples beyond 4096 did not significantly improve
performance, indicating diminishing returns.

These datasets are used to train the models in the proposed framework: GΦ, DΥ and MΨ.
The individual model performances are discussed in detail in the following section.

4-2 Performance of the Proposed Framework

In this section, the proposed framework is evaluated for Net 42-A. First, the task of generating
pseudo-measurements is addressed, assessing the GAN. Second, the TapSEGNN model is
evaluated using DSE under the assumption of a fully observable network.
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Figure 4-1: Workflow diagram for dataset generation process. Steps 1 and 2 of this workflow are
shown in the top and bottom cells, respectively. The shapes used in the flowchart follow standard
conventions.

Soham Prajapati Master of Science Thesis



4-2 Performance of the Proposed Framework 53

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42

Buses

−0.5

0.0

0.5

1.0

1.5

M
W

Variability of load P (if present) at each bus

(a): Variability of load Pload (if present)
at each bus

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42

Buses

−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

V
al

ue

Variability of angle at each bus

(b): Variability of voltage angle θ (de-
grees) at each bus

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42

Buses

1.02

1.03

1.04

1.05

1.06

1.07

1.08

V
al

ue

Variability of voltage at each bus

(c): Variability of voltage magnitude |V |
(per unit) at each bus

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42

Buses

−3

−2

−1

0

1

V
al

ue

Variability of active power at each bus

(d): Variability of active power magnitude
P (MW) at each bus

Figure 4-2: Variability (spread) of power flow results for σload = 10−1 (MW) with box-plots.
The spread of |V |, P , and θ is comparable, allowing the neural networks to learn a one-to-one
mapping for supervised learning. The colour coding differentiates the buses.

4-2-1 Performance of GAN

The models GΦ and DΥ are trained on DGAN dataset. It is a standard practice to balance the
capacity of GΦ and DΥ models to ensure a fair adversarial game [67]. If the DΥ becomes too
accurate, the gradient of generator model parameters: ∇Φ may vanish. This could saturate
the learning of parameters in GΦ. To prevent this, the capacity of the two models is carefully
balanced. The configuration of both these models is given in Table 4-1.

Given the comparable model capacity of both models, the training dynamics of GAN are
more stable. This allows the discriminator to closely approximate its theoretical optimum, as
discussed in Proposition 1 of [68]. Theoretically, at this optimum point (or Nash equilibrium
from a game-theoretic perspective), the discriminator output satisfies DΥ(·) = 0.5 for both the
real and fake data, perfectly replicating the real data distribution. This idea is incorporated to
examine the training of the GAN in this work. Therefore, in this work, the GAN is considered
to be successfully trained if the following empirical criteria are met:

1. The discriminator accuracy stabilises around ≈ 0.5, indicating that it can no longer
reliably distinguish between real and generated samples.
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Figure 4-3: Variability of voltage magnitude |V | (per unit) at each bus for σload = 10−1 (MW)
and perturbing all transformer tap positions uniformly within their operational ranges. The colour
coding differentiates the buses.

2. The generator and discriminator losses–defined in (3-7) and (3-8), respectively–plateau
and no longer show improvement over time.

Note that these criteria are heuristic indicators used for this work, due to a lack of universal
convergence guarantees for GANs [69, 70].

Experiments were conducted on the defined criteria and selected models, wherein the training
process was executed. The corresponding hyperparameters utilised for configuring the train-
ing are summarised in Table 4-2. To ensure reproducibility of training outcomes, a range of
random seed values was used for model initialisation and data shuffling involved in preparing
the training set of DGAN. A random seed serves as an initial value for pseudo-random gener-
ators working in the backend of the processes. By fixing the seed, the randomness becomes
deterministic, allowing for the consistent comparison of performances for various seeds and
replicating results.

In this work, it was observed that the training dynamics were highly volatile and dependent
on the initialisation of the model and data, a common characteristic of GANs. Therefore, the
training was performed for 100 random seed values to evaluate diverse outputs. Figure 4-4
shows this volatility for generator loss from (3-7), discriminator loss from (3-8) and discrim-
inator accuracy computed over 100 experimental runs. The average performance supports
the viability and effectiveness of the GAN training configuration with accuracy converging to
about ≈ 0.6 in 100 epochs.

Next, to evaluate the performance of the GΦ model in these experiments, it is essential
first to clarify the basis of comparison. The generator aims to learn the real measurement
distribution; thus, quantifying the difference between the generated and real distributions
provides a meaningful measure of its performance. Two distributions can be compared by
metrics like Jensen–Shannon (JS) Divergence [71] and Kullback–Leibler (KL) Divergence [72].
Consider pdata denotes the real distribution and pmodel the generator output distribution, then
these divergences are given by
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Table 4-1: Model Configuration for GΦ and DΥ. The number of parameters in both models is
similar: 7363 for GΦ and 7243 for DΥ.

Model Parameter Value

GΦ

Input channel for GCNN 2
Hidden layer dimension for GCNN 64
Filter order for GCNN 3
Output channel for GCNN 32
Input channel for SCNN 6
Hidden layer dimension for SCNN 128
Filter order for SCNN 1
Output channel for SCNN 1
Output channel for GAT 32
Number of heads in GAT 1

Total parameters in GΦ (|Φ|) 7363

DΥ

Input channel for GNNembed 2
Hidden layer dimension for GNNembed 64
Output channel for GNNembed 32
Hidden two-layer dimension for GNNpool [21, 11]

Total parameters in DΥ (|Υ|) 7243

Table 4-2: Training configuration and hyperparameters for GAN models

Hyperparameter Value
Number of epochs 100
Discriminator update steps per generator step (kD) 2
Learning rate (Discriminator) 10−5

Learning rate (Generator) 10−3

L2 regularisation decay (Generator) 10−3

L2 regularisation decay (Discriminator) 10−3

KL(pdata||pmodel) =
∑

x

pdata(x) log pdata(x)
pmodel(x) , and (4-5)

JS(pdata||pmodel) = 1
2KL(pdata||pmix) + 1

2KL(pmodel||pmix), (4-6)

as KL and JS divergence, respectively. Here pmix = 1
2(pdata+pmodel) is referred to as a mixture

distribution and log is with base 2. A comprehensive discussion on theoretical justification
for the success of GANs being linked to the minimisation of JS divergence rather than KL
divergence can be found in [68, 69]. This topic lies beyond the scope of the present work.
However, the main takeaway is that JS divergence offers more interpretable insights for eval-
uating the generator performance, primarily because it is bounded: 0 ≤ JS(pdata||pmodel) ≤ 1.
For this reason, JS divergence is used in this work as a metric of comparison across the 100
experiments. The generator performance corresponding to the run with the lowest JS diver-
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(a) Discriminator loss curve with confidence
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(c) Discriminator accuracy with confidence
interval given by ±1 standard deviation.

Figure 4-4: Loss curves and accuracy from GAN training initialised with 100 unique seeds. The
high standard deviation for losses and accuracy displays the vulnerability of GAN to suboptimal
performance. On average, the losses diminish and the discriminator accuracy converges to 0.6
(close to 0.5), indicating a balanced adversarial training.

gence is reported in Figure 4-5. Here, the distribution in X is compared with that in X̄, and
similarly, the distribution of P + in X1 is compared with that in X̄1. The distributions are vi-
sualised using kernel density estimation (KDE), a non-parametric method for estimating the
probability density function of a continuous variable, allowing for a smooth approximation of
the underlying data distribution. The contours in Figure 4-5a are 2-D KDE of the underlying
scatter plots.

Remark 4.1 In this work, normalised KDE1 is used as a visualisation tool–it does not model
or learn the relationship between the inputs and outputs. As such, it cannot capture complex,
high-dimensional dependencies or be used for tasks like imputing missing measurements.

Figure 4-5a shows that the GΦ successfully captures the underlying distribution of active
power P , while its approximation of the voltage magnitude distribution |V | is comparatively
less accurate. Nevertheless, GΦ demonstrates an ability to identify the major modes of the
distributions, albeit with some bias. This shows that the model avoids mode collapse, a
prevalent issue observed in GANs [67], thereby confirming a balance of the model capacity of
both the GΦ and DΥ. The contour plots in the lower-right area of Figure 4-5a indicate that
the model exhibits some sensitivity to outliers. Furthermore, the closeness of the real and
generated two-dimensional means in Figure 4-5a suggests an effective learning by GΦ. This
closeness is quantified by JS divergence of 0.0636 and 0.3032 (out of 1.00) for active power

1Area under the curve is equal to 1.
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Figure 4-5: Normalised KDE-based comparison of real and generated distributions of |V |, P ,
and P + for Net 42-A, including JS divergence measure.

and voltage magnitude, respectively.

As seen in Figure 4-5b, GΦ also identifies the dominant mode of P + distribution, though
with some observable bias. Note that the model also captures a subtle feature near 0.5MW,
indicating its sensitivity to finer details. The JS divergence of less than 0.5 for all distributions
supports the notion that the GAN is learning in the right direction. However, comparatively
higher divergence for |V | and P + suggest improvement for this setup.

Given a trained GΦ, the generator outputs (X̄, X̄1) can be fed into the MΨ model for joint
SPE. However, given the inadequate performance of GΦ model, instead of (X̄, X̄1) sampled
from DISE, the real data (X, X1) sampled from DSE is used to independently assess the
performance of MΨ model as discussed in the next section.

4-2-2 Performance of TapSEGNN model

This section examines the performance of the MΨ model for joint SPE using DSE dataset.
The configuration of MΨ is given in Table 4-3 for predicting the tap positions of all 18 MV/LV
transformers in Net 42-A. This model is trained to minimise the loss function in (3-20) with
λreg = 0.001 for 500 epochs with a learning rate scheduler having a minimum learning rate of
10−4. A high number of epochs is observed in similar contexts [42] due to slow learning of the
GNNs. Using this training configuration, in addition to the standard practices, to ensure that
the training does not suffer from suboptimal learning rates or vanishing/exploding gradients,
the gradient norm was monitored with respect to epochs as shown in Figure 4-6. Over time,
the finite and gradually diminishing gradient norm suggests convergence of model parameters
to either a local or a global minimum. The possibility of convergence to a saddle point is
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unlikely, given that training employed the Adam optimiser with momentum, as discussed in
Section 3-5.

Table 4-3: Model Configuration for MΨ including readout layers for 18 MV/LV Transformers

Parameters Value
Input channel for GCNN 2
Hidden layer dimension for GCNN 64
Filter order for GCNN 3
Output channel for GCNN 32
Input channel for SCNN 6
Hidden layer dimension for SCNN 128
Filter order for SCNN 1
Output channel for SCNN 64
Output channel for GAT 32
Number of heads in GAT 1
Transformer edge neighbourhood (h) 1

Total parameters in MΨ (|Ψ|) 17,857
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Figure 4-6: Gradient norm evolution in log-scale, training TapSEGNN model for Net 42-A over
500 epochs. Gradient explosion detected at epochs 0, 17 and 18, which commonly occurs due
to initial parameter weights. Early gradient explosions are not catastrophic to model training,
thereby supporting the proposed training configuration.

Moreover, for LTapSE in (3-20), to study the over or under emphasis of LTap in LTapSE,
experiments are conducted over three values of the hyperparameter λtap = [0.01, 0.1, 1.0]
for various transformer deployment levels. The training results are presented in Table 4-4,
quantifying the LSE performance with root mean square error (RMSE) metric and that of
LTap with prediction accuracy. A comparative analysis reveals that:

1. For λtap = 0.01: The RMSE values are lower for up to only 50% transformers indicating
better SE. Accounting for more transformers results in higher RMSE than λtap = 0.1.
Tap prediction accuracy is consistent across all deployment levels, achieving a 100%
accuracy.
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2. For λtap = 0.1: Better SE when considering more than 50% transformers. This indicates
that tap loss becomes increasingly important as more transformers are accounted for in
the network. Notably, the tap prediction accuracy is 100% for all cases.

3. For λtap = 1.0: Both SE and tap position prediction are significantly degraded in
this setting. This behaviour highlights the critical influence of SE performance on
the accuracy of tap position predictions, as it suggests that the model is not simply
memorising tap classes through the transformer read-out layers. Instead, it is learning
to map the complex, nonlinear relationships between the global topology–captured by
the core model–and the local topology around the transformers. This supports the
interpretability of the joint SPE formulation.

Table 4-4: TapSEGNN model performance for Net 42-A as a function of λtap across a single, 25%,
50%, 75%, and 100% of total 18 MV/LV transformers. The average tap prediction accuracy is a
batch-wise average. Transformer coverage-wise, the minimum RMSE is highlighted in bold. For
transformer coverage ≤ 50% (approximately 9 MV/LV transformers), the model achieves better
SE performance with λtap = 0.01. When coverage exceeds 50%, λtap = 0.1 yields improved SE.
In contrast, λtap = 1.0 consistently results in poor performance for both SE and tap prediction.

Transformer
Coverage

Loss Tap
Weight

λtap

RMSE |V |
×10−5

[p.u.]

RMSE θ
×10−4 [deg]

Average Tap
Prediction

Accuracy [%]

Single transformer
0.01 2.113 2.811 100
0.1 3.531 5.404 100
1.0 30.551 6.187 25

25% transformers
0.01 2.346 2.916 100
0.1 2.882 4.472 100
1.0 30.775 87.428 98.438

50% transformers
0.01 2.5811 3.157 100
0.1 2.683 3.838 100
1.0 36.421 10.270 41.146

75% transformers
0.01 2.987 3.782 100
0.1 2.812 3.462 100
1.0 33.614 7.832 49.279

100% transformers
0.01 3.146 5.800 100
0.1 3.028 4.437 100
1.0 40.939 18.696 28.906

These experiments analyse the effect of varying λtap values. However, since this study aims to
obtain optimal performance for predicting tap positions for all transformers in the network,
λtap = 0.1 is selected as the final configuration, resulting in better RMSE as compared
to λtap = 0.01 and 1.0. In addition to the effect of λtap, Table 4-4 also shows that the
RMSE θ is consistently poor as compared to RMSE |V |. Upon visualising the predicted
distributions in Figure 4-7a, it is observed that the model captures the underlying structure
of the probability distribution, albeit with some bias, corresponding to high RMSE θ. Despite
Figure 4-6 indicating a moderately stable training configuration, such suboptimal fitting of
the angle distribution suggests a room for improvement in modelling MΨ.
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(a) Predicted and label voltage magnitude
(in p.u) and angle (in degrees) for Net 42-A.
A bias of 0.2 degrees is observed in the angle
prediction.
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(b) Predicted and label voltage magnitude
(in p.u) and angle (in degrees) for Net
320 testing scalability of TapSEGNN model.
Some variation is observed in voltage mag-
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Figure 4-7: Normalised KDE-based comparison of true and predicted |V | and θ for Net 42-A
and Net 320. Note that the KDE density on the y-axis scales with the range of x-axis values so
that the area under the curve equals 1, as expected for a normalised KDE.

In the next section, with this model and training configuration tuned for Net 42-A, training
is performed on a larger network to study the scalability of the TapSEGNN model.

4-3 Scalability Analysis

In this section, the scalability of the proposed TapSEGNN model is evaluated on a larger
power system network consisting of 320 buses: Net 320. The model architecture and training
configuration, tuned for Net 42-A with λtap = 0.1, are employed to test scalability. The
scalability results, tested across five cases, are presented in Table 4-5, aligning with the case
setup in Table 4-4.

To illustrate the SE performance of TapSEGNN, the voltage magnitude and angle predictions
for the final case (100% transformers accounted) are visualised in Figure 4-7b using KDE plots.
It is important to note that the higher RMSE θ for Net 320 as compared to Net 42-A is due to
a higher range of angle magnitude–the range of Net 42-A is about [-1.4,0.2] degrees, whereas
that of Net 320 is [-200,100] degrees. Despite this expected increase in RMSE θ, RMSE |V |
and tap prediction accuracy are comparable with those of Net 42-A, indicating promising
scalability of the TapSEGNN model for bigger distribution grids.

The next section demonstrates the transferability of the core model in TapSEGNN, where it
is trained on one network and tested on a similar network.
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Table 4-5: TapSEGNN model performance for Net 320 across a single, and 100% of the total
141 MV/LV Transformers. The performance for SE and batch-wise average tap prediction shows
minimal degradation from single to 100% transformer coverage. Column-wise best results high-
lighted in bold.

Transformer Coverage RMSE
|V |
×10−5

[p.u.]

RMSE
θ [deg]

Average Tap
Prediction

Accuracy [%]

Single transformer 2.408 0.373 100
100% transformers 6.778 0.467 99.955

4-4 Generalisability Analysis

The work in [73] and [5] emphasises that for two networks with the same number of nodes and
similar spectral density of the graph Laplacian, the signal propagation characteristics tend
to be preserved. Keeping this in mind, a real network, Net 42-B, is selected with the same
number of buses as Net 42-A. And the spectral radius of graph Laplacian for Net 42-A and Net
42-B are similar in magnitude: ρ(L0,A) = 5.099 and ρ(L0,B) = 6.332, respectively. Moreover,
from a graph frequency response perspective [5], since ρ(L0,B) > ρ(L0,A), a model trained on
Net 42-B should show better transferability on Net 42-A, instead of the other way around.
Furthermore, the similarity between Net 42-A and Net 42-B can be analysed by studying
the distribution of line and transformer parameters in the networks as shown in Figure 4-8
and Figure 4-9, respectively. The specific types of lines and transformers used in these two
networks, highlighting the common types, are displayed in Table 4-6. It can be observed that
the line parameters have more similar distributions than those for the transformer parameters.
Since the simplicial complex neural network (SCNN) component in the TapSEGNN model (see
(3-2)) relies on these parameters as edge features, the similar distribution of line parameters
shows potential for generalisability.

To quantitatively analyse the generalisability, the focus is limited to state estimation only,
discarding transformer tap position prediction. This is because the TapSEGNN model relies
on Nt; it is not theoretically transferable from one network to another with different trans-
former terminal bus indexing. However, the architecture of TapSEGNN up to training LSE

(in (3-17)) is theoretically transferable–inherently independent of the specific number of nodes
and edges in a graph (not the topology itself). This part of the TapSEGNN model, discarding
the transformer readout layers, is hereby referred to as the SEGNN model. Using this model,
several experiments are carried out with varying σload = [10−4, 10−3, 10−2, 10−1, 1.0] MW as
shown in Table 4-7. In that table, Case 1 refers to deploying the SEGNN model trained on
Net 42-A to Net 42-B, while Case 2 refers to deploying the model trained on Net 42-B to Net
42-A. Several observations emerge from Table 4-7:

1. Across nearly all levels of σload, Case 2 results in better generalisation performance
than Case 1. This could be attributed to the previously highlighted property, ρ(L0,B) >
ρ(L0,A), suggesting that the broader spectral content of Net 42-B enables the model to
learn more expressive and transferable representations.
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Figure 4-8: Statistical distribution of line parameters for Net 42-A and Net 42-B in p.u. values.
Diagonal: normalised KDE plots show similar marginal distributions for series resistance (rs),
series reactance (xs), and shunt susceptance (bc); shunt conductance (gc) is zero. Off-diagonal:
Scatter plots with regression lines show positive statistical correlations among rs, xs, and bc.

2. Higher loading perturbations, σload, tend to improve the generalisability of voltage mag-
nitudes. For example, at σload = 1.0, the lowest RMSE for |V | (1.489×10−5) is achieved.
This supports the hypothesis that higher input variation enables the model to capture
the underlying nonlinearities of power flow more effectively.

Although the RMSE θ show less consistent improvements on deployment, up to σload =
0.1MW, RMSE θ remains in a narrow range for all Case 2s, e.g., 19.400, 19.738, 20.021
and 26.399 ×10−4, indicating reasonably good generalisability, albeit not as good as for
voltage magnitude.

These observations warrant further investigation to draw sound conclusions regarding the
generalisability of the SEGNN model. To address this, the next section trains the individual
sub-components of the SEGNN model as standalone baselines, alongside other methods, to
identify which parts of the model are responsible for learning the underlying data distributions.
For instance, if the trained parameters weigh the node-embeddings more than the edge-
embeddings, then the edge-level information is implicitly ignored. This indicates that the
model is not leveraging the similarity in distribution of line parameters, as shown in Figure 4-
8. These aspects are analysed in detail in the following sections.
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Figure 4-9: Statistical distribution of effective transformer parameters for Net 42-A and Net
42-B in p.u. values keeping the nominal tap position. Diagonal: normalised KDE plots show
distinct marginals for rs, xs, gc, and bc. Apart from some mode alignment for xs and bc, these
distributions show no real similarity. Off-diagonal: scatter plots with regression lines indicate
positive correlation between xs and rs, negative correlation of bc with all other parameters, and
weak correlation of gc with rs and xs. Note that these trends are statistical, as rs and xs depend
on winding design, while gc and bc relate to core losses.

4-5 Comparison of Baseline Methods

In this section, the proposed core model architecture is empirically compared with a few
baseline methods to evaluate the theoretical advantages it offers. The focus is limited to SE
performance using SEGNN model, because this part of the model contains the largest number
of parameters, and the transformer readout layers in Tap(Xo) (from (3-13)) can be flexibly
concatenated or reused across different core architectures. Additionally, SE performance
strongly impacts tap position prediction accuracy, as shown in Figure 4-4 for λtap = 1.0,
making it the primary basis for comparing the core model with baseline methods. From
a learning standpoint, since the GAN framework relies on implicit density modelling, which
reduces interpretability, baseline methods are not used for comparison for the task of imputing
missing measurements. Along this line, since the GΦ model in this work inherently uses
the core model architecture, the regression performance should positively correlate with the
generative capabilities. However, this relationship may not always hold.

Some baseline methods are selected as sub-models of the SEGNN to investigate whether
other components–particularly the SCNN layer from (3-2)–contribute to enhancing the overall
performance of the SEGNN model. The configuration of these sub-models is kept as proposed
in Table 4-3 unless otherwise specified. To ensure a rigorous evaluation of these models,
experiments were designed to assess the aspect of scalability and generalisability in addition
to SE. The baseline methods selected in this work are:
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Table 4-6: Line and transformer types used in Net 42-A and Net 42-B. The common labels in
both networks are highlighted in bold. Line label, for example, 3×1*240 AL XLPE 12/20 trefoil,
means 3-phase single-core cables with a cross-section of 240mm2 and an aluminium conductor
insulated with cross-link polyethene, with voltage ratings of 12kV phase-to-ground and 20kV
phase-to-phase. And 23/0.420 V - 630 kVA indicates an MV/LV transformer stepping down
voltage from 23 kV to 420 V with a power rating of 630 kVA.

Component Net 42-A Net 42-B

Lines
3×1*240 AL XLPE 12/20 trefoil
3×1*400 AL XLPE 18/30 trefoil
3×1*150 AL XLPE 12/20 trefoil

3×1*240 AL XLPE 12/20 trefoil
3×1*400 AL XLPE 18/30 trefoil
3×1*400 AL XLPE 12/20 trefoil

Transformers

23/0.420 kV – 630 kVA
23/0.420 kV – 1000 kVA
23/0.420 kV – 1600 kVA
23/0.420 kV – 2000 kVA
23/0.420 kV – 2500 kVA

23/0.420 kV – 400 kVA
23/0.420 kV – 630 kVA
23/0.420 kV – 1000 kVA
23/0.420 kV – 1600 kVA

1. Conventional Weighted Least Squares (WLS): Using the Gauss-Newton method as dis-
cussed in Section 2-2-1.

2. Topology-agnostic fully connected neural network (FCNN): This architecture contains
21,716 model parameters.

3. Topology-aware neural networks:

(a) Graph Attention Network (GAT): This model directly captures the node and edge
features to calculate attention. It contains 450 parameters.

(b) Graph Convolutional Neural Network followed by GAT (GCNN+GAT): This model
first uses the GCNN architecture to get high-dimensional node-embeddings, and
then these node-embeddings are used by GAT along with the edge-features. The
model architecture contains 4,194 parameters.

(c) GCNN and Edge-regression with Linegraph Laplacian followed by GAT (GCNN +
LGL + GAT): This architecture builds on top of GCNN+GAT, where it calculates
the high-dimensional edge-embeddings from edge-features, which are then input
to the GAT architecture. In this architecture, the SCNN layer in the core model
architecture can be replaced by introducing the linegraph Laplacian instead of the
Hodge-Laplacian. The linegraph Laplacian is the graph Laplacian of the edge-
to-node dual graph of the original undirected graph G [34]. This model contains
15,970 parameters using configuration from Table 4-3.

Using these models, Table 4-8 presents a comparison for SE under two levels of load variability
σload = [0.1, 1.1] MW. Although σload = 1.1 MW will not represent the practical operating
conditions, it serves as a more rigorous benchmark to assess the capability of the models to
learn the underlying nonlinear relationships. Another test to investigate whether the model is
learning the nonlinear relationship underlying the data is to compare the generalisability (as
discussed in Section 4-4) of the models, which is presented in Table 4-9. In addition to these
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Table 4-7: Performance of SE model for generalizability. Column-wise minimum RMSE is high-
lighted in bold.

σload Case Training Deployment
RMSE |V |
×10−5 [p.u.]

RMSE θ
×10−4 [deg]

RMSE |V |
×10−5 [p.u.]

RMSE θ
×10−4 [deg]

0.0001 1 1.759 2.855 33.684 320.862
2 1.153 1.738 4.417 19.400

0.001 1 1.745 2.600 35.175 328.640
2 1.179 2.284 6.795 19.738

0.01 1 1.221 3.144 28.488 315.720
2 1.369 2.861 12.712 20.021

0.1 1 1.695 13.236 24.946 369.531
2 1.145 4.994 1.725 26.399

1.0 1 2.045 111.507 2.377 102.180
2 1.564 66.463 1.489 128.907

tests, the scalability factor for practical large-scale networks is also evaluated. Table 4-10
presents this comparison using Net 320 as the network. A method-specific evaluation across
these three tests is discussed next.

The Gauss-Newton method-based WLS consistently shows poor performance in terms of SE
and scalability compared to other models due to linearisation errors. Moreover, the reliance
of WLS on an accurate network model constrains its applicability for joint SPE as discussed
in Section 2-2 with other aspects. And since the WLS approach relies on a model-specific
Jacobian matrix, it does not permit assessing the generalisability.

The FCNN model inherently lacks inductive biases such as parameter sharing, which are
leveraged in graph convolution operations (see Section B-0-1). As a result, the FCNN relies
entirely on dense matrix operations to learn the explicit mappings between input and out-
put. This enables a high representational capacity, which, under low variability conditions
(σload = 0.1 MW), allows the FCNN to achieve the lowest RMSE for both voltage magni-
tude and angle. However, this same capacity becomes a liability in terms of generalisation.
Under higher variability (σload = 1.1MW), a degradation in RMSE for voltage magnitude is
observed. Further evidence supporting the lack of generalisability of FCNN is provided in
Table 4-9. Despite achieving low RMSE values when trained on Net 42-B, the model shows a
sharp degradation in performance when deployed for Net 42-A, resulting in one of the worst
generalisation results among all other models.

Across all three tests, the graph attention neural network (GAT) consistently demonstrates
poor performance compared to other baseline models. An initial hypothesis attributes this
underperformance to the limited capacity of the model, reflected in the relatively low number
of trainable parameters–only 450–as compared to other baseline models, which contain pa-
rameters in the order of 103. To verify this, the number of attention heads and hidden units
in the GAT architecture was increased to match the parameter count with the GCNN+GAT
model, resulting in 5,378 parameters. Despite this adjustment, no notable improvement was
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Table 4-8: Comparison of baseline models for SE. Column-wise minimum RMSE is highlighted
in bold. (∗) indicates that all models are trained for 200 epochs due to the slow learning rate
observed from the gradient norm over time.

σload
[MW]

Model RMSE |V |
[p.u.] ×10−5

RMSE θ [deg]
×10−4

0.1

WLS 13.098 161.351
FCNN 0.348 3.002
GAT 2.198 19.672
GCNN+GAT 1.588 11.920
GCNN+LGL+GAT 1.485 12.254
Proposed 1.760 11.925

1.1∗

WLS 14.408 126.187
FCNN 3.755 35.980
GAT 2.540 200.527
GCNN+GAT 1.528 101.056
GCNN+LGL+GAT 1.714 104.078
Proposed 1.599 105.994

observed in its performance, suggesting that the issue lies not in model capacity but in its
structural design. Reconsidering Section 2-4-2, the attention weights in GAT are computed
from terminal nodes only. This design inherently restricts the ability of the model to capture
1-hop and multi-hop neighbourhood information. This is conceptually complemented by the
graph convolutional neural network (GCNN) architecture.

The GCNN architecture effectively captures spatial dependencies by aggregating information
from deeper neighbourhoods to compute high-dimensional node embeddings. When these
enriched embeddings are subsequently fed into the GAT layer, they implicitly provide the GAT
with access to multi-hop neighbourhood information, thus addressing the inherent limitation
of the standalone GAT. This combination enables the GCNN+GAT model to benefit from
both global and local contexts of the network. As a result, the GCNN+GAT architecture
consistently outperforms the standalone GAT model, as demonstrated in Table 4-8, Table 4-9,
and Table 4-10.

While the node-level embeddings capture spatial dependencies effectively, Section 2-3-2 moti-
vates extending this to edge-level representations using frameworks such as line graph Lapla-
cians and simplicial complexes to model edge interactions, such as power flows. However, em-
pirical results show that architectures incorporating these embeddings–GCNN+LGL+GAT
and the proposed model–do not outperform the simpler GCNN+GAT model. This sug-
gests that either the node embeddings already capture sufficient spatial structure or the edge
embedding methods fail to align with the underlying spatial dynamics of power networks,
resulting in limited utility. Another possible explanation is that, since SE is inherently a
node-level task, the advantages of edge-level embeddings may remain untapped unless ap-
plied to an edge-specific learning objective. A physics-aware soft constraint over the edge
encodings could potentially warrant an improved performance of GCNN+LGL+GAT or the
proposed model.
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Table 4-9: Comparison of baseline models for generalisability. Column-wise minimum RMSE
is highlighted in bold. (∗) indicates that all models are trained for 200 epochs due to the slow
learning rate observed from the gradient norm over time.

Training on Net 42-B Deploying on Net 42-A
σload
[MW]

Model RMSE |V |
[p.u.]
×10−5

RMSE θ
[deg]
×10−4

RMSE |V |
[p.u.]
×10−5

RMSE θ
[deg]
×10−4

1.1∗

FCNN 2.133 10.974 6.635 179.392
GCNN+GAT 1.762 77.313 1.562 131.778
GAT 2.641 222.509 2.730 205.292
GCNN+LGL+GAT 1.940 77.118 1.733 132.607
Proposed 1.952 77.104 1.908 132.156

Table 4-10: Comparison of baseline models for scalability. Column-wise minimum RMSE is
highlighted in bold. (∗) indicates that all models are trained for 200 epochs due to the slow
learning observed from the gradient norm over time.

σload
[MW]

Model RMSE |V |
[p.u.] ×10−5

RMSE θ [deg]
×10−4

0.3∗

WLS 16.673 869.749
FCNN 13.491 3.021
GCNN+GAT 3.945 66.781
GAT 4.734 198.702
GCNN+LGL+GAT 4.052 71.095
Proposed 4.010 80.075

The next section sums up the main insights from all the experiments discussed in this chapter.

4-6 Summary and Discussion

The proposed framework is evaluated through various experiments that assess the models
from multiple perspectives. It begins with generating snapshots of the system states. These
snapshots are then classified into separate datasets used by different models in the framework.
Next, the performance of the generative model is evaluated employing balanced adversarial
training of the GAN setup. The generative model successfully captures the underlying distri-
bution of active power, but shows less accuracy for the voltage magnitude and active power
flow at the edges, identifying the major modes with some bias.

Following that, the performance of TapSEGNN is investigated, with a focus on its accuracy
and scalability. Its training demonstrates convergence with diminishing gradients, indicating
that the model likely reaches a local or global minimum. Notably, when the tap position
prediction objective is over-emphasised compared to the SE objective, the accuracy of both
tap predictions and SE declines. This shows that the transformer readout layers do not
memorise the class labels and are highly influenced by the performance of SE to optimise the
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overall performance. The scalability of TapSEGNN for a larger network with 141 MV/LV
transformers is tested, demonstrating promising performance with approximately 99.95% tap
prediction accuracy. Furthermore, the generalisability of TapSEGNN for the objective of SE
is evaluated by examining the spectral properties of the graph Laplacians and the distribution
of line and transformer parameters across the two networks. The findings suggest that GNNs
generalise better when they’re learned on networks with higher spectral density (in terms of
the graph Laplacian) and then applied to networks with lower spectral density.

Finally, a comparison of the core model with alternative architectures reveals that all the
GNN-based models perform similarly, except for GAT, which lags behind. Among these, the
combined GCNN+GAT model achieves slightly better results. This marginal improvement
suggests that the model either places greater emphasis on node-level information or that node-
level features alone are sufficient to capture the spatial dynamics of power flow across the
network. Despite all this, the core model consistently outperforms the traditional weighted
least squares (WLS) method by 10 times, further justifying the motivation for adopting
emerging graph-based approaches, as discussed in Section 2-2-2.

These findings inform the conclusions, address the limitations, and guide future recommen-
dations discussed in the next chapter.
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Chapter 5

Conclusion

This is the final chapter of this report, providing a concise summary of all the work undertaken
and highlighting the main takeaways. Based on these insights, it addresses the research
question posed in Section 1-3. Finally, it offers recommendations for future work to address
the limitations of this study and proposes directions that could complement and extend this
research.

5-1 Summary

This thesis project aimed to address the problem of SPE in unobservable DGs with a focus
on data-driven topology-aware machine learning techniques. The primary motivation for this
work stems from both academic and industrial perspectives, highlighting the need for an
efficient and scalable approach.

The first chapter sets the stage by explaining the global challenges caused by the ongoing
congestion, underlining the critical impact on the situational awareness of the DGs. It in-
troduces the recent developments in machine learning and explains how these advances can
help tackle the issue of state and transformer tap position estimation in unobservable DGS.
By separating the main issue into two parts–addressing the challenges of an unobservable
grid and predicting accurate state and tap position estimates–this chapter proposes the use
of generative models and GNNs, given their recent success in related domains. It then frames
the problem as a clear research question and outlines the main contributions that this thesis
aims to make.

The second chapter establishes the theoretical foundations, supported by an analysis of prac-
tical networks, to provide an understanding of the contributions of this work. It employs
standard mathematical modelling practices for components in the power grid, resulting in the
formulation of the PF problem and measurement model for SPE. Based on the measurement
model, the reader is then introduced to both conventional and emerging approaches for SPE.
By highlighting the limitations of conventional Gauss-Newton methods and physics-agnostic
neural networks, the discussion motivates a shift towards physics-informed neural networks,
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with a particular emphasis on topology-aware architectures, namely GNN. Finally, the chap-
ter addresses the observability challenges in the DG by proposing the use of generative models,
with major emphasis on the generative adversarial network (GAN) architecture, to impute
missing measurements across the grid.

Chapter 3 proposes a framework utilising the twin forces of generative models and GNNs to
address the unobservability and improve SPE. It introduces a hybrid graph representation
that captures both node and edge-level spatial dependencies. This graph not only models
the physical structure of the network but also incorporates the practical measurement setup.
Using this graph representation, the core model architecture is designed, which applies convo-
lution operations on nodes and edges with GCNN and SCNN, respectively. This core model is
refined as a generative model to generate or impute missing measurements as node and edge
features in the graph representation. This generative model is trained through an adversarial
setup against a discriminative model that classifies real graphs from fake ones.

Beyond imputation, the same core model is extended by adding transformer readout layers.
This extension, referred to as the TapSEGNN model, enables joint state estimation and
transformer tap position prediction. Each of these setups–one for GAN and the other for
TapSEGNN–has its specific objective function. This chapter concludes by justifying the
training strategies proposed to optimise these objective functions.

In Chapter 4, the proposed framework is evaluated through experiments that generate system
state snapshots, classify them into datasets, and assess each model’s performance. The gener-
ative model, trained with balanced adversarial learning, accurately captures the active power
distribution but shows slight bias in voltage magnitude and edge power flow. TapSEGNN
demonstrates good accuracy, convergence, and scalability, with results showing that over-
emphasising tap position prediction degrades overall performance, highlighting the benefit of
balanced objectives. Its generalisability is supported by the properties of the graph Laplacian
and analyses of line and transformer parameters. Finally, core model comparisons show that
all GNN-based models perform similarly, with GCNN+GAT slightly better than others, and
all outperform the traditional WLS method, reinforcing the value of adopting graph-based
approaches discussed in Section 2-2-2.

5-2 Answer to the Research Question

Reconsidering the central research question:

How can graph-based methods effectively leverage topological information to perform general-
izable, computationally efficient, and joint state and transformer tap position estimation in
electric networks with limited observability?

To address this question, the limited observability aspect is treated as a separate solution.
It is independently developed from the method for joint state and transformer tap position
estimation, maintaining both solutions graph-based.

The challenge of limited observability is addressed through the integration of a state-of-the-
art generative framework of GANs. Since the real grids have sparse measurements, deriving
virtual or pseudo-measurements from the known quantities becomes solving an underdeter-
mined problem. The GAN framework constrains the infinite solution space by leveraging the
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synthetic data and network topology using a graph-based core model architecture in the GΦ
model. As a result, the trained GΦ performs reasonably well in learning the full distribution
of active power injection at buses and capturing the modes in the bus voltage magnitudes
and active power flows in the network.

For joint state estimation and predicting transformer tap positions, the proposed work demon-
strates that graph-based methods can indeed exploit network topology to achieve more accu-
rate state estimation compared to the conventional WLS method. Moreover, it shows superior
performance in generalisability across a similar network as compared to the physics-agnostic
FCNN architecture. The inherent properties of GCNN and GAT architectures, such as pa-
rameter sharing and localised neighbourhood aggregation, ensure that the computational cost
scales linearly with the network size–specifically, with the number of edges–thereby maintain-
ing computational efficiency.

5-3 Recommendations for Future Work

This section outlines the limitations of this work and proposes a few future recommendations
to address them. Tracing back the suboptimal performance of the GANs in Figure 4-5 at
learning the distribution of voltage magnitude |V | and active power flow P +, the author
suggests complementing the current GAN setup by:

• Adding feature-specific loss functions and independently weighing them for both the
generator and discriminator models. This allows the models to prioritise and better fit
the marginal distributions of |V | and P + separately.

• Incorporating moment matching losses or Maximum Mean Discrepancy (MMD) mea-
sures for |V | and P + within the objective functions of both the generator and discrimina-
tor. For example, an L2 norm penalising the discrepancy between the first and second
order moments (mean and standard deviation) of the generated versus real distribu-
tions of |V |, inspired by the approach in [74], can be effective in improving statistical
alignment.

In addition to the suggested improvements to the current GAN formulation, other ideas can
be explored to enhance physical consistency in the generated snapshots, as outlined below.

1. Physics-informed Uncertainty Quantification (UQ): As the name suggests, UQ
is the technique to quantify the uncertainty in the quantity of interest for any math-
ematical model. With deep learning, UQ is assessed by propagating the uncertainties
in the input parameters through a model. Combining UQ with physics-informed objec-
tives in GANs could enable the generator model to learn the underlying distribution of
data, rather than relying on point estimates. This not only ensures producing physically
consistent and generalisable solutions, but also theoretically resolves the imbalance of
gradients in GANs. A seminal work by Daw et al. in [75] tests these ideas on real-world
datasets with both ideal and imperfect physics, as well as benchmark datasets involving
partial differential equations. Complementing the proposed work with PID-GANs can
make the adversarial training more balanced and accurate.
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2. Objective-Reinforced GANs for Foundation Models: In addition to generating
physically consistent network snaphots, as discussed in the previous idea, it is also valu-
able to generate snapshots that meet specific operational criteria, such as N-1 contin-
gency compliance, acceptable short-circuit levels, balanced line-loading, and adherence
to thermal limits, among others. Evaluating these operational properties is straightfor-
ward and more reliable when performed using specialised external tools, such as PSS
([76]) and PowerFactory ([77]). Although these tools cannot be directly embedded into
machine learning models, they can still be interfaced as non-differentiable metrics by
employing a reward network within a reinforcement learning framework. In this ap-
proach, a sample generated by the model is assessed externally, and the reward network
learns to align its evaluations with the scores provided by the external tools. A similar
concept has been successfully applied in the context of graph-based GANs for molec-
ular synthesis, as demonstrated by Cao et al. in MolGAN [78]. Extending this idea
could help develop more robust and realistic foundation models for electrical grids, as
proposed in [79].

Now, recalling the discussion from the comparison of baseline models, it was observed that
the proposed core model in TapSEGNN and the GCNN+LGL+GAT architecture–which in-
corporates edge-level embeddings in the learning process–did not demonstrate improvements
compared to models relying solely on node-level learning, such as GCNN+GAT. A plausible
hypothesis is that since the primary objectives of SE are node-focused, specifically through
the loss term LSE defined in (3-17), the model primarily utilises node-level information during
training. Consequently, edge-level embeddings may not be effectively leveraged.

To investigate this hypothesis, the following approach is proposed:

3. Incorporate edge-level objectives during training: To encourage the model to
learn meaningful edge-level representations explicitly, soft constraints can be imposed
on the edge embeddings. For instance, the output edge embeddings may be designed to
match the dimensionality corresponding to the number of known parameters of lines or
transformers, which is equal to 4 in this work. These known physical parameters can
be incorporated as soft targets in the training objective, encouraging the core model
architecture to capture and utilise edge information explicitly. By imposing such soft
constraints on the edge embeddings, the overall performance can be potentially en-
hanced.

Finally, from an implementation perspective, several important considerations must be made
to compute the Hodge–Laplacians in SCNNs efficiently and to optimise the forward and
backward propagation of the transformer readout layers. These aspects are reiterated and
discussed in the project’s repository [[16]].

Summarising this work, given the growing importance of SE for DGs and the advent of
generative models, these ideas and improvements present exciting opportunities to advance
the field and unlock more reliable modelling approaches.
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Appendix A

Iterative Solution Methods

The nature of the PF equations is nonlinear due to the violation of the superposition principle,
indicating that the sum of the inputs does not result in the sum of their individual outputs.
This nonlinearity arises from the presence of second-order polynomial terms combined with
trigonometric functions in the equations. As a result, analytical solutions are not feasible,
and traditional methods such as graphical analysis, substitution, or elimination are unsuitable
due to the high number of variables involved. Therefore, iterative root-finding methods are
conventionally employed.
The general idea of these methods for a nonlinear vector-valued function g(q) = 0, involves
starting with an initial estimate q0, evaluating g(q0), and systematically refining q0 and
g(q0) to obtain subsequent estimate q1 that is closer to the true solution q∗ than q0. These
iterations continue until the distance between the estimate and the true solution is not below
some tolerance, which is defined by a stopping criterion. Of the many techniques used for
solving the power flow (PF) problem, the Gauss-Seidel (GS) and Newton-Raphson (NR)
methods are the most prominent and discussed below.

A-0-1 Gauss-Seidel Method

GS method is a fixed-point iteration algorithm. It formulates the PF equations such that it
solves for a fixed point as the solution of the equations.

Definition 2. ([80]) For a real vector-valued function g : D ⊂ Rn → Rn, if g(q) = q, for
some q ⊂ D, then q is said to be a fixed-point of g.

For this method, the steady-state state-vector can be defined with respect to each bus as,

q =


[q]1
[q]2

...
[q]n

 =


|V 1| θ1 P1 Q1
|V 2| θ2 P2 Q2
|V 3| θ3 P3 Q3

...
...

...
...

|V n| θn Pn Qn

 (A-1)
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• For PQ Bus: |V | and θ are unknown,

[q]i =
[
qi1 qi2 Pi Qi

]
• For PV Bus: θ and Q are unknown,

[q]i =
[
|V |i qi2 Pi qi4

]
• For Slack Bus: P and Q are unknown,

[q]i =
[
|V |i θi qi3 qi4

]
The structure of (2-15), (2-16), (2-17) and (2-18) allows to explicitly isolate each variable
(|V |, θ, P and Q) as q = g(q) with a vector-valued function g(·). For this method at each
bus, g(·) can be defined for:

• Bus i as PQ Bus: Using (2-15) and (2-16) only to update qi1 and qi2, keeping Pi and
Qi as it is; qk+1

i ← gi(qk)

• Bus i as PV Bus: Using (2-16) and (2-18) only to update qi2 and qi4, keeping |V i| and
Pi as it is; qk+1

i ← gi(qk)

• Bus i as Slack Bus: Using (2-17) and (2-18) only to update qi3 and qi4, keeping |V i|
and θi as it is; qk+1

i ← gi(qk)

Typically, the initial guess is |V | = 1.0 pu and θ = 0 for unspecified angles and voltages for
power flow analysis (PFA). Then they are iteratively updated until either the changes fall
below a specified tolerance or a maximum number of iterations is reached. If convergence
isn’t achieved within the limit, the algorithm reports failure.

A-0-2 Newton-Raphson Method

Tracing back to the general approach of iterative methods from the introduction of this
chapter, in NR method, the systematic refinement between q0 and g(q0) is performed by
using the first-order derivative of g(q0). For NR method, consider a network with n buses
with one slack bus (as a reference) having m PQ buses, therefore, n −m − 1 PV buses. In
this network with,

• bus 1 as Slack Bus: As voltage and angles are fixed, and typically defined |V 1| = 1 pu
and θ1 = 0◦.

• bus i as PQ Bus with 2 ≤ i ≤ (m + 1): The expression for known active and reactive
power equations can be rewritten to calculate the mismatch [18] as

∆Pi = P specified
i − |V i|

n∑
k=1
|V k| (gik cos θik + bik sin θik)

:= fi,P (|V 1|, θ1, |V 2|, θ2, ..., |V n|, θn) for 2 ≤ i ≤ (m + 1). (A-2)
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Similarly,

∆Qi = Qspecified
i − |V i|

n∑
k=1
|V k| (gik sin θik − bik cos θik)

:= fi,Q(|V 1|, θ1, |V 2|, θ2, ..., |V n|, θn) for 2 ≤ i ≤ (m + 1), (A-3)

• bus i as PV bus with (m+2) ≤ i ≤ n: The voltage is fixed and only expression of active
PF is used.

∆Pi = P specified
i − |V i|

n∑
k=1
|V k| (gik cos θik + bik sin θik)

:= gi,P (|V 1|, θ1, |V 2|, θ2, ..., |V n|, θn) for (m + 2) ≤ i ≤ n, (A-4)

Writing in matrix form,

f(θ, |V|) =



f2,P (θ, |V|)
f3,P (θ, |V|)

...
fm+1,P (θ, |V|)

f2,Q(θ, |V|)
f3,Q(θ, |V|)

...
fm+1,Q(θ, |V|)
gm+2,P (θ, |V|)
gm+3,P (θ, |V|)

...
gn,P (θ, |V|)



(A-5)

where f : R2n → Rn+m−1, θ = [θ1, θ2, . . . , θn]T and |V| = [|V 1|, |V 2|, . . . , |V n|]T . Now, the
goal of NR is to solve f(θ, |V|) = 0.
The NR method applies the Taylor series expansion to solve the problem by iteratively lin-
earizing the nonlinear PF equations around the current estimate using the Jacobian matrix,
J ∈ R(n+m−1)×(2n) [18]. At each step, it solves a linear system to update voltage magnitudes
and angles. Similar to GS, the process continues until the mismatch function is below a
specified tolerance or the maximum number of iterations is reached. If convergence is not
achieved, the method reports failure.

A-0-3 Limitations of Iterative Methods

One of the main limitations of iterative methods is convergence. The order of convergence
can be defined as,
Definition 3. Let qn be a sequence that converges to q∗, where qn ̸= q∗. If constants β, ν > 0
exist such that

lim
n→∞

|qn+1 − qn|
|qn − q|ν

= β. (A-6)

Then the sequence is said to converge with order ν and constant β.
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Definition 4. The sequence qn is said to be linearly convergent if qn converges to q∗ with
order ν = 1, for constant β < 1.

Definition 5. The sequence qn is said to be quadratically convergent if qn converges to q∗

with order ν = 2, for constant β < 1.

In other words, if the update in the (n + 1)-th iteration is proportional to the error in
the n-th iteration, the convergence is considered linear. The GS method exhibits linear
convergence, requiring that g′(q∗) < 1. On the other hand, the NR method is quadratically
convergent, meaning the update in the (n + 1)-th iteration is proportional to the square
of the error in the n-th iteration. Consequently, the NR method converges faster than the
GS method. However, this faster convergence comes with increased complexity, as Newton’s
method requires calculating the Jacobian matrix at each iteration. Nonetheless, because the
Jacobian is sparse, utilising sparse matrix operations such as decomposition and forward-
backwards substitution [9] can provide better performance compared to the GS method. On
a final note, the solutions by these methods are approximate and only locally optimal because
of the non-convex nature of the equations.
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Appendix B

Graph-Signal Processing

graph signal processing (GSP) adapt methods such as filtering and the Fourier transform,
from algebraic signal processing to non-Euclidean domains [81]. The data indexed on nodes
(and sometimes edges) is referred to as a graph signal x ∈ R|V| and the space of all graph
signals on set V is defined as XV . The systems that process these signals, preserving or
extracting relevant information, are known as graph filters. Graph filters extend the concept
of filtering from discrete-time signals to graph-structured data, as discussed in [5]. The
animation in Figure B-1 illustrates how graph filters can serve as a generalisation of finite
impulse response (FIR) filters.

DSP GSP

Shift

Input sequence:
s𝑖𝑛 n = (s 0 , s 1 , s 2 ,… , s N − 1 )

FIR Filter: ℎ 𝑧 = σ𝑛=0
𝑁−1ℎ𝑛𝑧

−𝑛

Output sequence: 
sout n = ℎ 𝑧 sin n = (s N − 1 , s 0 , s 1 ,… , s[N − 2])

Input sequence:
s𝑖𝑛 n = (s 0 , s 1 , s 2 ,… , s N − 1 )

Graph Filter: H 𝐒 = 𝐒𝑐 =

0 0 ⋯ 0 1
1 0 ⋯ 0 0
0 ⋱ ⋱ ⋮ ⋮
⋮ ⋱ ⋱ 0 0
0 ⋯ 0 1 0

Output sequence: 
sout n = ℎ 𝑧 sin n = (s N − 1 , s 0 , s 1 ,… , s[N − 2])

Invariance 𝑧−1ℎ 𝑧 = ℎ 𝑧 𝑧−1 H 𝐒 𝐒𝑐 = 𝐒𝑐H(𝐒)

s[0] s[1] s[2] s[𝑁 − 3] s[𝑁 − 2] s[𝑁 − 1]

Figure B-1: Animation illustrating the equivalence between DSP and GSP for a finite impulse
response (FIR) filter: h(z) (with z-transform) and its graph filter counterpart H(S) (using a
circulant matrix Sc). The invariance demonstrates that a shift followed by filtering is equivalent
to filtering followed by a shift for h(z) and H(S) filter.

Further, within the graph domain, the discrete Fourier transform (DFT) can be interpreted
as a projection of the graph signal (as a temporal signal) onto the eigenvectors of the cyclic
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graph adjacency matrix Sc, similar to Figure B-1. This insight characterises the frequency
response of the graph filters and aids in tailoring the filter architecture for a desired spectral
response. Note that the frequency here can be viewed as the variability of the graph signal.
To quantify it, quadratic variation (QV) can be given as

QV(x) = xT Lx

= 1
2

∑
i∈V,j∈N (i)

[L]ij(xi − xj)2. (B-1)

It measures how much the signal at node i differs from the signals at its neighbouring nodes.
Smoother the signal x, lower the QV(x). Such a spectral perspective allows for designing
a filter by capturing the modes of variability present in a graph signal. Similar to how the
forward DFT decomposes signals into sinusoidal components, the graph Fourier transform
(GFT) decomposes a graph signal into the eigenvectors of a graph shift operator (GSO).
These eigenvectors, which act as orthonormal basis functions, represent different frequency
components of the graph signal. The GFT can be defined as below.

Definition 6. (Graph Fourier Transform). Given the eigen-decomposition of the GSO S =
VΛV−1 with eigenvectors V = [v1, ..., v|V|] and eigenvalues Λ = diag(λ1, ..., λ|V|), the GFT
of a signal x is defined as

xGFT = V−1x, (B-2)

and the inverse GFT is defined as x = VxGFT.

Thus, x̃ represents the coefficients of contribution for each frequency component to the graph
signal. Using L = VΛV−1, the QV of the eigenvector vi can be expressed as

QV(vi) = vT
i Lvi = λi.

Here, the eigenvalue λi represents one of the frequency components of the graph signal x. The
GFT xGFT

i indicates how much of this frequency component associated with λi contributes to
x. Similar to how the DFT decomposes a sinusoidal signal into amplitude and frequency, the
GFT represents the amplitude of the graph signal as xGFT

i and its frequency with eigenvalues
λi. Based on the spectral response, filters analogous to low-pass and high-pass filters in the
Fourier domain can be designed for graph signals. Alternatively, these filters can be learnt
using data-driven approaches, which is of primary interest in this context.

B-0-1 Graph Filters and their properties

Most of the graph filters rely on the shift-and-sum operation of the input signal: convolution
principle (see Figure B-2). These filters are referred to as the graph convolutional filter (GCF),
which are discussed next.
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Graph Convolutional Filters

Definition 7. (Graph Convolution Filter) A graph convolutional filter Hc : XV → XV is a
linear transformation with shifted signals of order K

y = Hc(x) =
K∑

k=0
hkSkx, (B-3)

with H(S) =
∑K

k=0 hkSk ∈ R|V|×|V| as a polynomial filtering matrix.

+ +

𝐒 𝐒 𝐒

+ +

ℎ0 ℎ1 ℎ2 ℎ3

𝐱𝑖 𝐒𝐱 𝑖 𝐒𝟐𝐱
𝑖

𝐒𝟑𝐱
𝑖

𝐻 𝐒 𝐱 𝑖

𝑖 𝑖 𝑖 𝑖

Figure B-2: Shift-and-sum operations in graph convolutional filter [5] using GSO as A

The frequency response of the filter output y can be given by substituting S = VΛV−1 in
(B-3), resulting in the filter frequency response relation as

ỹ =
K∑

k=0
hkΛkx̃. (B-4)

Note that (B-4) affirms the convolution theorem, stating that the shift-and-sum operation in
the nominal (vertex) domain acts as a pointwise multiplication between the filter frequency
response h(λ) =

∑K
k=0 hkΛk and x̃. Therefore, for the ith component of the filter output,

ỹi = h(λi)x̃i. (B-5)

Another insight here is that h(λi) = h0 + h1λi + h2λ2
i + · · ·+ hKλK

i represents a polynomial
function of the eigenvalue λi, where the coefficients h0, h1, h2, . . . , hK define the polynomial.
This relationship holds for all eigenvalues (graph frequencies) λi of the GSO. Therefore,
designing a graph filter in the spectral domain corresponds to learning the coefficients of the
polynomial h(λi), which effectively defines the filter response over the range of frequencies
[λmin, λmax], where λmin and λmax are the minimum and maximum eigenvalues of the GSO.

For the case when multiple features are attributed to the graph signal, i.e., X = [x1, x2, . . . , xF ]
∈ R|V|×F , the GCF architecture can be modified to output multiple filters (known as filter
banks), given as
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Y =
K∑

k=0
SkXHk, (B-6)

where Hk ∈ RF ×F and filter output Y = [y1, y2, . . . , yF ] ∈ R|V|×F .

The wide adoption of GCFs in the Graph ML literature can be attributed to properties like
linearity, shift-invariance, permutation equivariance, parameter sharing, linear cost of compu-
tation and Lipschitz continuity for changes in the S. These properties imply transferability
and scalability of the trained filter coefficients over other graphs bounded by some measure
[73]. Despite their advantages, GCFs struggle to balance descriptive power and stability,
where stability refers to a filter’s robustness to small graph perturbations [73]. Linear filters
cannot simultaneously ensure stability and strong high-frequency discrimination. This trade-
off can be alleviated by introducing pointwise nonlinearities and using filter banks that capture
information across multiple frequency bands. Together, these elements motivate the design of
graph convolutional neural network (GCNN) architectures. Now, similar to graphs, simplicial
complexes (SC) representation has simplicial convolutional filters (SCFs) as discussed next.

B-0-2 Simplicial Convolutional Filters

Using SC representation in Section 2-3-2 similar to the shift-and-sum operation used in GCFs,
convolutional filtering on SCs leverages the Hodge-Laplacian as a shift operator. Such filters
are known as SCFs. Following the notations in Section 2-3-2, a k−simplicial signal can be
given as a mapping, Xk : Sk → R|Sk|×Gk with Gk is the number of features on the k−simplicial
signal. This way, the graph signal is a 0−simplicial signal, X = X0, the 1− simplicial signal
on the edges can be given as X1 with G (for convenience rather than G1) as the cardinality of
edge-feature space. Leveraging the concept of convolution filters and Hodge Laplacian from
(2-35), a simplicial convolutional filter (SCF) for 1−simplicial signal on edges can be defined
as

Y1 = Hs(X1) =

 Q1∑
q1=0

(L1,l)q1X1Hl
q1 +

Q2∑
q2=0

(L1,u)q2X1Hu
q2

 , (B-7)

where Q1 and Q2 are the filter orders for lower Laplacian L1,l = BT
1 B1 and upper Laplacian

L1,u = B2BT
2 respectively, and Hl, Hu ∈ RG×G, [49]. The complexity of the filter is given by

O(|E|(Q1 + Q2)DG2) where D is the maximal number of edge-neighbours. This complexity
is linear in the number of edges.

Other filters like rational filters, node-varying and edge-varying filters enhance flexibility and
offer increased modelling power, but face limitations such as high computational cost, numer-
ical instability and poor generalizability. An extension to graph filters are graph regularizers
that incorporate prior knowledge like smoothness to refine noisy or incomplete signals. They
serve key functions like de-noising, imputation and node-classification, offering promising
tools to address network observability challenges.
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Glossary

List of Acronyms

DG distribution grid
TG transmission grid
SE state estimation
GNN graph neural network
SCNN simplicial complex neural network
SPE state and parameter estimation
PE parameter estimation
GAN generative adversarial network
RES renewable energy sources
PF power flow
EMS Energy Management System
HV high voltage
MV medium voltage
LV low voltage
GSP graph signal processing
SCADA Supervisory Control and Data Acquisition
PMU Phasor Measurement Unit
RMS root mean square
ML machine learning
WLS weighted least squares
DSOs distribution system operators
DGSPE distribution grid state and parameter estimation
PFA power flow analysis
MLE maximum likelihood estimation
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88 Glossary

GN Gauss-Newton
GS Gauss-Seidel
NR Newton-Raphson
NN neural network
PANNs physics-agnostic neural networks
PINNs physics-informed neural networks
FCNNs fully connected neural networks
CNNs convolutional neural networks
DGSE distribution grid state estimation
GSO graph shift operator
SC simplicial complexes
GCNN graph convolutional neural network
GAT graph attention neural network
NLP natural language processing
CNN convolutional neural network
FCNN fully connected neural network
GIS Geographic Information Systems
RMSE root mean square error
FIR finite impulse response
DFT discrete Fourier transform
GFT graph Fourier transform
GCF graph convolutional filter
SCF simplicial convolutional filter
SCFs simplicial convolutional filters

List of Symbols

δ Transformer Phase-Shifting Angle
λ Eigen-vector of graph shift operator
λPINN Hyperparameter for physics-informed loss function
λreg Regularisation weight on loss function
λtap Weight for tap-loss in SPE loss function
Ω Parameter matrix for transformer readout layer
ω Angular Frequency
Φ Parameter set of the generator model
ρ(Delegnn

v ) Spectral radii of a matrix
σ Standard deviation
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τ Transformer Tap-Ratio
θi Current Phase-Shift Angle
θv Voltage Phase-Shift Angle
Υ Parameter set of the discriminator model

aij Parameter vector to linearly combine node features in transformer readout layer
g Nonlinear Vector-Valued Function
u Sample of synthetic power flow results
v Sample from latent space
χ Distribution of synthetic power flow results
Ŷ Output node embeddings of graph convolutional neural network
Λ Diagonal matrix containing eigen-values
A Undirected graph adjacency matrix
ae Edge parameter vector in graph attention
as Source node parameter vector in graph attention network
at Target node parameter vector in graph attention network
Aα Attention-induced graph shift operator
B1 Node-edge incidence matrix
B2 Edge-triangle incidence matrix
D Graph Diagonal Matrix
Delegnn Diffusion matrix for Ele-GNN
e Measurement-error vector
Hl,k Graph convolutional neural network parameter matrix at lth layer and for kth order
Ibus Complex Current Vector for all Buses
L Graph Laplacian matrix
Mij Binary mask matrix for edge (i,j)
R Covariance matrix for state measurements
Rp Covariance matrix for parameter measurements
S Undirected graph shift operator
tij Output logit transformer readout layer
u State Vector
V Matrix of eigen-vectors of graph shift operator
Vbus Complex Voltage Vector for all Buses
W Weight matrix on individual node features
We Weight matrix on individual edge features
X Node feature matrix
x Node feature vector
x′ Output Graph Signal Embedding from the Graph Perceptron
X1 Edge feature matrix
x1 Edge feature vector
Ybus Bus-Admittance Matrix
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Z Node-label matrix
z Measurement Vector
B Set of Buses in the Network
Z Distribution of Latent Space
Ã Normalized graph adjacency
L̃ Normalized graph Laplacian
N Complex Tap-Ratio
S Complex Power Injection
Sij Complex Power Flow
y

s
Series Admittance

y
s

Series Admittance
y

sh
Shunt-Admittance

Ck Space of k chains
d Number of Branches
F Node feature dimension
G Edge feature dimension
GΦ Generative Model
h Hop for neighborhood
LSE Loss function for state estimation
LTap Loss function for tap position estimation
M Number of heads in multi-head graph attention network
N Number of training samples
n Number of Buses
P Active Power Injection
Pij Active Power Flow
Q Reactive Power Injection
Qij Reactive Power Flow
t Total tap positions in transformers
t Total transformer tap positions
L0 Graph Laplacian
L1 Hodge-Laplacian
L1,l Lower Hodge-Laplacian
L1,u Upper Hodge-Laplacian
X Graph Signal or Node Feature Matrix for Multiple Features
Xl Output Embedding Node Feature Matrix
∗ Conjugate Transpose

g Nonlinear vector valued function
E Expectation operator
G Gain Matrix
J Jacobian Matrix
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q State-vector for Gauss-Seidel method
r Residual vector in state estimation
A Hessian matrix in Gauss-Newton method
DGAN Dataset GAN
DSE Dataset SE
DTapSE Dataset TapSE
E Set of edges in the graph
Ed Set of directed edges in the graph
G Undirected unweighted graph
Gd Directed graph
HGCNN Graph convolutional neural network parameter set
HSCNN Parameter set for simplicial convolutional neural network
N (i) Neighbourhood set of node i
Nt Set of edges modelled as transformers
R Regularization term
Sk Subset of node-set consisting of k+1 unique elements
U Set of Branches
V Set of nodes in the graph
W Parameter Set of the Readout Layer in GNNs
XK Simplicial Complex of order K
Ψ Parameter set of TapSEGNN model
σ(x) Pointwise nonlinear activation function on x
a Generalized Circuit Constant
i Per-unit Complex Current
v Per-unit Complex Voltage
Z Complex Impedance
z Per-unit Complex Impedance
bik Magnetising Susceptance (Line Charging Susceptance) of Line connecting Bus i and

k
gik Magnetising Conductance of Line connecting Bus i and k
LPINN Physics-Informed Loss Function
p Dimension of space of synthetic power flow results
q Dimension of latent space
W Nonlinear weighted least squares objective function
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