
Master of Science Thesis

Fatigue life prediction of carbon
fibre-reinforced epoxy laminates
using a single S-N curve

A.A.R. Broer

Faculty of Aerospace Engineering · Delft University of Technology





Fatigue life prediction of carbon
fibre-reinforced epoxy laminates

using a single S-N curve

Master of Science Thesis

For obtaining the degree of Master of Science in Aerospace
Engineering at Delft University of Technology

A.A.R. Broer

23 May 2018

Faculty of Aerospace Engineering · Delft University of Technology



Copyright © A.A.R. Broer
All rights reserved.



Delft University of Technology
Faculty of Aerospace Engineering

Department of Aerospace Structures and Materials

GRADUATION COMMITTEE

Dated: 23 May 2018

Chair holder:
Prof.dr.ir. R. Benedictus

Committee members:
Dr. D. Zarouchas

Dr. C.D. Rans

Dr.ir. W.J.C. Verhagen





Abstract

Fatigue life prediction is key in design and analysis of cyclic loaded structures such as
wind turbines or aircraft. For this purpose, prediction models have been developed
that require experimental data in order to interpolate or extrapolate fatigue behaviour
to different loading conditions. Multiple Stress-Life (S-N) curves are often required as
input to the fatigue life prediction models. Moreover, due to the anisotropic nature of
Fibre-Reinforced Plastic (FRP) laminates, several complex damage mechanisms occur
during fatigue loading, resulting in large scatter. Therefore, multiple fatigue tests are
required to eliminate the influences of scatter and to obtain a representative S-N curve.
Hence, fatigue life prediction is expensive in terms of cost and time. In this work,
a method is presented for the fatigue life prediction of carbon fibre-reinforced epoxy
laminates, subjected to T-T or T-C constant amplitude loading. Predictions are based
solely on static strength data and fatigue life data corresponding to one conventional
stress ratio (i.e., either R = 0.1 or R = −1). Thereby, experimental efforts related to
fatigue life prediction are reduced and, due to the simplicity of the model, fatigue life
predictions are easily obtained.

The presented approach consists of two models that, when combined, allow for the pre-
diction of any carbon-epoxy lay-up. One model is applicable to laminates characterised
by a static strength larger than the absolute compressive strength (i.e., UTS>|UCS|)
while the other is applicable to laminates showing the opposite (i.e., |UCS|>UTS). The
Constant Life Diagram (CLD) models were derived from the anisomorphic CLD model
and also show a dependency on the critical stress ratio. However, no longer experimental
data is required at this uncommonly used stress ratio.

Each of the two proposed CLD models was evaluated by looking at its predictive ac-
curacy for several carbon-epoxy laminates. For the first model, applicable to laminates
characterised by UTS>|UCS|, three laminates from literature were evaluated with lay-
ups [45/90/−45/0]2S , [0/60/−60]2S , and [0/90]3S . In addition, an experimental campaign
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was conducted on a carbon-epoxy (AS4/8552) laminate with lay-up [90/0/90]2S . It
was found that, in general, the predicted fatigue lives were located in similar fatigue life
scales as the experimental validation data. For the second model, applicable to laminates
characterised by |UCS|>UTS, similar conclusions were drawn for laminates with a lay-
up of [±60]3S and [45]16 found in literature: the model-based predictions were in vicinity
of the experimental data. For both models, the size of the input dataset showed large
influence on the final fatigue life predictions.

In addition, a comparison was made with the two-, three-, and four-segment aniso-
morphic model. It was seen that a similar or improved predictive performance can
be obtained as that of the anisomorphic model, even with datasets of limited size.
Compared to the two-segment anisomorphic model, this allows for the use of fatigue
life data at a more conventional stress ratio while maintaining a similar sized input
dataset and similar accuracy in the fatigue life predictions of carbon-epoxy laminates
characterised by UTS>|UCS|. For fatigue life predictions of carbon-epoxy laminates
showing |UCS|>UTS, not only a more conventional stress ratio is employed, also less
input data is required for fatigue life predictions of a similar accuracy. Hence, reductions
in experimental efforts are obtained when employing the presented model while providing
fatigue life predictions in similar scales as the experimental validation data.



Contents

List of Figures xvii

List of Tables xix

List of Abbreviations xix

List of Symbols xxiii

Preface xxv

1 Introduction 1

2 Basics of Fatigue Loading 3
2.1 Fatigue Loading Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Graphical Representation of Fatigue Life: S-N curve . . . . . . . . . . . . . . 6

2.2.1 Including Static Strength Data in S-N Curve Estimation . . . . . . . 7
2.2.2 Effects on Fatigue Life . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2.3 S-N Curve Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3 Graphical Representation of Fatigue Life: Constant Life Diagram . . . . . . . 11
2.3.1 Definition of Constant Life Diagram . . . . . . . . . . . . . . . . . . 11
2.3.2 Constant Life Diagram Models . . . . . . . . . . . . . . . . . . . . . 13

2.4 Experimental Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.4.1 Number of Fatigue Tests . . . . . . . . . . . . . . . . . . . . . . . . 18
2.4.2 Run-outs and Censoring of Data . . . . . . . . . . . . . . . . . . . . 19
2.4.3 Type of Fatigue Tests . . . . . . . . . . . . . . . . . . . . . . . . . . 19



x Contents

3 Anisomorphic Constant Fatigue Life Diagrams 21
3.1 General concept of the anisomorphic CLD . . . . . . . . . . . . . . . . . . . 21
3.2 Two-Segment Anisomorphic CLD . . . . . . . . . . . . . . . . . . . . . . . . 24
3.3 Three-Segment Anisomorphic CLD . . . . . . . . . . . . . . . . . . . . . . . 28
3.4 Four-Segment Anisomorphic CLD . . . . . . . . . . . . . . . . . . . . . . . . 31
3.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4 Fatigue Life Prediction Model for UTS>|UCS| 37
4.1 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.1.1 Input Data (Step 1 and 2) . . . . . . . . . . . . . . . . . . . . . . . 40
4.1.2 Determination of χ and σB (Step 3 and 4) . . . . . . . . . . . . . . 40
4.1.3 S-N Curve Expression (Step 6) . . . . . . . . . . . . . . . . . . . . . 40
4.1.4 Constant Life Lines (Step 7) . . . . . . . . . . . . . . . . . . . . . . 41
4.1.5 Determination of CLL Peaks and Peak S-N Curve (Step 5) . . . . . . 41
4.1.6 Constant Life Diagram (Step 8) . . . . . . . . . . . . . . . . . . . . 42
4.1.7 S-N Curve Prediction (Step 9) . . . . . . . . . . . . . . . . . . . . . 43

4.2 Validation using Datasets from Literature . . . . . . . . . . . . . . . . . . . 43
4.2.1 Error Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.2.2 [45/90/− 45/0]2S . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.2.3 [0/60/− 60]2S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.2.4 [0/90]3S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.3 Validation using an Experimental Campaign . . . . . . . . . . . . . . . . . . 56
4.3.1 Experimental Campaign: Process . . . . . . . . . . . . . . . . . . . . 56
4.3.2 Experimental Campaign: Results . . . . . . . . . . . . . . . . . . . . 59
4.3.3 Fatigue life Predictions . . . . . . . . . . . . . . . . . . . . . . . . . 61

5 Fatigue Life Prediction Model for |UCS|>UTS 65
5.1 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.1.1 Input Data (Step 1 and 2) . . . . . . . . . . . . . . . . . . . . . . . 68
5.1.2 Determination of χ and σB (Step 3 and 4) . . . . . . . . . . . . . . 68
5.1.3 S-N Curve Expression (Step 5.1.b) . . . . . . . . . . . . . . . . . . . 69
5.1.4 Constant Life Lines (Step 6) . . . . . . . . . . . . . . . . . . . . . . 69
5.1.5 Determination of CLL Intersections with the Segment Boundary Ra-

dials (Step 5) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
5.1.6 Constant Life Diagram (Step 7) . . . . . . . . . . . . . . . . . . . . 76



Contents xi

5.1.7 S-N Curve Prediction (Step 8) . . . . . . . . . . . . . . . . . . . . . 76
5.2 Validation using Datasets from Literature . . . . . . . . . . . . . . . . . . . 76

5.2.1 [±60]3S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
5.2.2 [45]16 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
5.2.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

6 Conclusions 87

7 Recommendations 89

Bibliography 93

A S-N Curves 99
A.1 S-N Curve Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
A.2 Curve Fitting Technique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

A.2.1 Derivation Maximum Likelihood Function . . . . . . . . . . . . . . . 100
A.2.2 Estimates of the Fitting Parameters . . . . . . . . . . . . . . . . . . 103

B Material Data: HexPly AS4/8552 105

C Test Data Results: Experimental Campaign 107

D Test Data Results: Literature 109



xii Contents



List of Figures

2.1 S-N curve showing the effects of different cyclic loading stresses on the lifetime. 4
2.2 Cyclic constant amplitude loading including standard terms. . . . . . . . . . 4
2.3 Cyclic loading types. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.4 Example of an S-N curve for R = −1 including the low-cycle plateau, fatigue

limit, and run-outs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.5 Examples of S-N curve models. . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.6 CLD example showing constant life curves for different values of fatigue life

for an E-Glass ortho-polyester laminate. . . . . . . . . . . . . . . . . . . . . 11
2.7 CLD example visualising the four different loading regions. . . . . . . . . . . 12
2.8 Examples of CLD models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.1 Flowchart depicting the general approach used by all anisomorphic models. . 23
3.2 Two-segment anisomorphic CLD for a carbon-epoxy laminate. . . . . . . . . 24
3.3 Three-segment anisomorphic CLD for a carbon-epoxy laminate. . . . . . . . . 28
3.4 Four-segment anisomorphic CLD for a carbon-epoxy laminate. . . . . . . . . 32

4.1 Flowchart depicting the proposed model for carbon-epoxy laminates charac-
terised by UTS>|UCS|. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.2 Proposed CLD model describing the fatigue behaviour of carbon-epoxy lam-
inates characterised by UTS>|UCS|. . . . . . . . . . . . . . . . . . . . . . . 39

4.3 Constant fatigue life diagram for [45/90/− 45/0]2S carbon-epoxy laminate,
obtained using the proposed model with a) R = 0.1 and b) R = −1.0 fatigue
life data as input. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47



xiv List of Figures

4.4 Fatigue life predictions for [45/90/− 45/0]2S by the proposed model (input
R = 0.1 or R = −1.0) and the two-segment CLD (input R = χ). In addition,
experimentally obtained fatigue lives are depicted. Fitted and predicted S-N
curves are shown for a) R = 0.5, b) R = 0.1, c) R = −1.0, and d) R = χ.
The legend is the same for all figures. . . . . . . . . . . . . . . . . . . . . . 48

4.5 Constant fatigue life diagram for [0/60/− 60]2S carbon-epoxy laminate, ob-
tained using the proposed model with a) R = 0.1 and b) R = −1.0 fatigue
life data as input. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.6 Fitted S-N curve to R = 0.1 experimental validation data containing outlier
(σmax, 2Nf )=(748.5MPa, 1818), including experimental validation data and
a 90% confidence band. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.7 Fatigue life predictions for [0/60/ − 60]2S by the proposed model (input
R = 0.1 or R = −1.0) and the two-segment CLD (input R = χ). In addition,
experimentally obtained fatigue lives are depicted. Fitted and predicted S-N
curves are shown for a) R = 0.5, b) R = 0.1, c) R = −1.0, and d) R = χ.
The legend is the same for all figures. . . . . . . . . . . . . . . . . . . . . . 52

4.8 Constant fatigue life diagram for [0/90]3S carbon-epoxy laminate, obtained
using the proposed model with a) R = 0.1 and b) R = −1.0 fatigue life data
as input. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.9 Fatigue life predictions for [0/90]3S by the proposed model (input R = 0.1
or R = −1.0) and the two-segment CLD (input R = χ). In addition,
experimentally obtained fatigue lives are depicted. Fitted and predicted S-N
curves are shown for a) R = 0.5, b) R = 0.1, c) R = −1.0, and d) R = χ.
The legend is the same for all figures. . . . . . . . . . . . . . . . . . . . . . 55

4.10 Experimental fatigue life data for R = 0.1, χ = −0.60, and −1. Thick lines
represent the fitted mean S-N curves. . . . . . . . . . . . . . . . . . . . . . 60

4.11 Constant fatigue life diagram for [90/0/90]2S carbon-epoxy laminate, ob-
tained using the two-segment anisomorphic model with R = χ = −0.60
fatigue life data as input. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.12 Constant fatigue life diagram for [90/0/90]2S carbon-epoxy laminate, ob-
tained using the proposed model with a) R = 0.1 and b) R = −1.0 fatigue
life data as input. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.13 Fatigue life predictions for [90/0/90]2S by the proposed model (input R =
0.1 or R = −1.0) and the two-segment CLD (input R = χ). In addition,
experimentally obtained fatigue lives are depicted. Fitted and predicted S-N
curves are shown for a) R = 0.1, b) R = −1.0 and c) R = χ. The legend is
the same for all figures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.1 Flowchart depicting the proposed model for carbon-epoxy laminates charac-
terised by |UCS|>UTS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.2 Proposed CLD model describing the fatigue behaviour of carbon-epoxy lam-
inates characterised by |UCS|>UTS. . . . . . . . . . . . . . . . . . . . . . . 68

5.3 Proposed CLD model for carbon-epoxy laminates characterised by |UCS|>UTS,
divided into three segments. . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.4 Constant fatigue life diagram for [±60]3S carbon-epoxy laminate, obtained
using the proposed model with a) R = 0.1 and b) R = −1.0 fatigue life data
as input. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78



List of Figures xv

5.5 Fatigue life predictions for [±60]3S by the proposed model (input R = 0.1
or R = −1.0) and the four-segment CLD (input R = 0.1, χ, and 10).
In addition, experimentally obtained fatigue lives are depicted. Fitted and
predicted S-N curves are shown for a) R = 0.5, b) R = −3.0, and c) R =
−5.0. The legend is the same for all figures. . . . . . . . . . . . . . . . . . . 80

5.6 Constant fatigue life diagram for [45]16 carbon-epoxy laminate, obtained using
the proposed model with a) R = 0.1 and b) R = −1.0 fatigue life data as
input. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.7 Fatigue life predictions for [45]16 by the proposed model (input R = 0.1 or
R = −1.0) and four-segment CLD (input R = 0.1, χ, and 10). In addition,
experimentally obtained fatigue lives are depicted. Fitted and predicted S-N
curves are shown for a) R = 0.5, b) R = −10.0, and c) R = −1.0. The
legend is the same for all figures. . . . . . . . . . . . . . . . . . . . . . . . . 84

B.1 Autoclave curing cycle for monolithic parts. . . . . . . . . . . . . . . . . . . 106



xvi List of Figures



List of Tables

2.1 Aspects of different CLD models. . . . . . . . . . . . . . . . . . . . . . . . . 16

3.1 Overview of the different anisomorphic CLD models. . . . . . . . . . . . . . 22

4.1 Model fitting parameters for the S-N curve describing the fatigue life under
the critical R-ratio χ, determined using different input datasets (i.e., R = 0.1
and R = −1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.2 Error metrics for the fatigue life prediction of [45/90/− 45/0]2S by means of
the proposed (input of R = 0.1 and R = −1.0) and two-segment anisomor-
phic CLD. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.3 Model fitting parameters for the S-N curve describing the fatigue life under
the critical R-ratio χ, determined using different input datasets (i.e., R = 0.1
and R = −1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.4 Error metrics for the fatigue life prediction of [0/60/ − 60]2S by means of
the proposed model (input of R = 0.1 and R = −1.0) and two-segment
anisomorphic CLD. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.5 Model fitting parameters for the S-N curve describing the fatigue life under
the critical R-ratio χ, determined using different input datasets (i.e., R = 0.1
and R = −1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.6 Error metrics for the fatigue life prediction of [0/90]3S by means of the
proposed model (input of R = 0.1 and R = −1.0) and two-segment ani-
somorphic CLD. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.7 Performed tests with corresponding geometry and number of tests. . . . . . . 57
4.8 Tensile and compressive static strength test results. . . . . . . . . . . . . . . 59
4.9 Model fitting parameters for the S-N curve describing the fatigue life under

the critical R-ratio χ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61



xviii List of Tables

4.10 Error metrics for the fatigue life prediction of [90/0/90]2S by means of the
proposed model (input of R = 0.1 and R = −1.0) and two-segment aniso-
morphic CLD. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.1 Model fitting parameters for the S-N curve describing the fatigue life under
the critical R-ratio χ, determined using different input datasets (i.e., R = 0.1
and R = −1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.2 Model fitting parameters for the S-N curves fitted to the fatigue life data
under the R-ratio R = χ, R = 0.1, and R = 10. . . . . . . . . . . . . . . . . 78

5.3 Error metrics for the fatigue life prediction of [±60]3S by means of the
proposed model (input of R = 0.1 and R = −1.0) and four-segment aniso-
morphic CLD (input of R = 0.1, R = χ, and R = 10). . . . . . . . . . . . . 79

5.4 Model fitting parameters for the S-N curve describing the fatigue life under
the critical R-ratio χ, determined using different input datasets (i.e., R = 0.1
and R = −1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.5 Model fitting parameters for the S-N curves fitted to the fatigue life data
under the R-ratio R = χ, R = 0.1, and R = 10. . . . . . . . . . . . . . . . . 81

5.6 Error metrics for the fatigue life prediction of [45]16 by means of the proposed
model (input of R = 0.1 and R = −1.0) and four-segment anisomorphic CLD
(input of R = 0.1, R = χ, and R = 10). . . . . . . . . . . . . . . . . . . . . 83

B.1 Physical and mechanical properties at dry conditions and room temperature
(25°C) of AS4/8552 unidirectional carbon prepregs. . . . . . . . . . . . . . . 106

C.1 Experimental fatigue life test data for [90/0/90]2S at R = 0.1, resulting from
the conducted experimental campaign. Run-outs have been indicated with
(!). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

C.2 Experimental fatigue life test data for [90/0/90]2S at R = χ, resulting from
the conducted experimental campaign. Run-outs have been indicated with
(!). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

C.3 Experimental fatigue life test data for [90/0/90]2S at R = −1.0, resulting
from the conducted experimental campaign. Run-outs have been indicated
with (!). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

D.1 Mean static strength test data (both tension and compression) for three
laminates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

D.2 Experimental fatigue life test data for three laminates. . . . . . . . . . . . . 110
D.3 Mean static strength test data (both tension and compression) for three

laminates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
D.4 Experimental fatigue life test data for three laminates. . . . . . . . . . . . . 111



List of Abbreviations

ε-N Strain-Life

ABD Anti-Buckling Device

ASTM American Society for Testing and Materials

C-C Compression-Compression

CA Constant Amplitude

CFRP Carbon-Fibre Reinforced Plastic

CLC Combined Loading Compression

CLD Constant Life Diagram

CLL Constant Life Line

DOF Degrees Of Freedom

FRP Fibre-Reinforced Plastic

GFRP Glass-Fibre Reinforced Plastic

HCF High-Cycle Fatigue

ISO International Organization for Standardization

LCF Low-Cycle Fatigue



xx List of Abbreviations

LS Least Squares

LSPR Least Squares Percentage Regression

MAPE Mean Average Percentage Error

MNB Mean Normalised Bias

P-S-N Probabilistic S-N

R-ratio Stress Ratio

RMSPE Root Mean Squared Percentage Error

S-N Stress-Life

SSE Sum of Squared Errors of Prediction

T-C Tension-Compression

T-T Tension-Tension

UCS Ultimate Compressive Strength

UD Unidirectional

UTS Ultimate Tensile Strength

VA Variable Amplitude



List of Symbols

Symbol Description Unit

Greek
χ Critical stress ratio [-]
χL Left auxiliary stress ratio [-]
χR Right auxiliary stress ratio [-]
χS Sub-critical stress ratio [-]
∆σ Stress range [MPa]
ε Strain [-]
µ Mean of the normal distribution [-]
ψ Fatigue strength ratio [-]
ψχ Critical fatigue strength ratio [-]
ψLχ Fatigue strength ratio describing the fatigue limit [-]
ψχL Fatigue strength ratio related to χL [-]
ψχR Fatigue strength ratio related to χR [-]
σ Stress [MPa]

σ
(i)
a Amplitude stress at R-ratio equal to (i) [MPa]
σIa Amplitude stress datapoint from the input dataset [MPa]
σB Extrapolated maximum applied stress at a fatigue cycle of [MPa]
σm Mean applied stress [MPa]



xxii List of Symbols

σ
(i)
m Mean applied stress at R-ratio equal to (i) [MPa]
σ0 Model fitting parameter [-]
σ2 Variance of the normal distribution [-]
σmax Maximum applied stress [MPa]
σa Amplitude stress [MPa]
σIm Mean stress datapoints from the input dataset [MPa]
σmin Minimum applied stress [MPa]

σ
(i)
min Minimum stress at R-ratio equal to (i) [MPa]

Roman
A Model fitting parameter [-]
a Model fitting parameter [-]
B Model fitting parameter [-]
b Model fitting parameter [-]
C Model fitting parameter [-]

(n− p) Degrees of freedom of a model [-]
E Error/deviation [-]
e Log-normal error [-]
f Frequency [Hz]
I Relative improvement [-]
i Integer [-]
k Model fitting parameter [-]
kC Constant life line exponent [-]
kT Constant life line exponent [-]
Kχ Model fitting parameter [-]
L Likelihood [-]
l Log-likelihood [-]
M Integer [-]
m Model fitting parameter [-]
Mi Model (predicted) value of datapoint [-]
N Number of fatigue cycles [-]
n Model fitting parameter [-]
N̄ Average number of fatigue cycles to failure [-]
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Nf Number of fatigue cycles to failure [-]
P Probability of failure [-]
R Stress ratio [-]
r Residual [-]
S Stress [MPa]
s Standard normalised error [-]
s2 Bias-corrected estimator of σ2 [-]
T Temperature [◦]
Ti True value of datapoint [-]
yi Value y for the ith datapoint [-]
z Constant life line exponent [-]
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Chapter 1

Introduction

Structures such as wind turbines or aircraft are continuously subjected to cyclic loading.
This results in a deterioration of the structure’s properties and, eventually, to failure.
Therefore, it is key to predict the fatigue life of these structures during both their design
and usage. The focus of this thesis lies on fatigue life prediction models that rely on
experimental tests, namely static strength tests, as well as fatigue life tests in which a
constant amplitude load is applied to a specimen and the number of cycles to failure is
measured. These experimental results are then used for interpolation or extrapolation
to different loading conditions related to T-T or T-C constant amplitude loading. Most
models require several S-N curves as input which results in the need for conducting large
numbers of experimental tests. However, fatigue life tests are both time-consuming and
costly. Therefore, it is of interest to minimise the number of tests required as input to
these models and thereby allow for faster and easier, yet accurate, fatigue life predictions.

Several authors have developed approaches minimising the required size of the input
dataset while providing an acceptable predictive accuracy, such as Sendeckyj (1981)
and Kawai and Koizumi (2007). Others rely on an entirely different approach, such as
Kassapoglou (2007), who determines the fatigue life curve based on only static strength
test data. The most simple version of the anisomorphic model by Kawai and Koizumi
(2007) requires only one S-N curve as input while providing fatigue life predictions for
carbon fibre-reinforced epoxy laminates in similar fatigue life scales as experimentally
obtained results. The employed S-N curve is related to an unconventional stress ratio,
namely the critical stress ratio. Employing the critical stress ratio allows for influence
of both the tensile and compressive damage mechanisms. However, testing under this
critical stress ratio is rare, and thus, when employing this approach for predicting fatigue
behaviour, new fatigue life tests are often required. Moreover, for some carbon fibre-
reinforced epoxy laminates, additional S-N curves (two and three for the three- and



2 Introduction

four-segment anisomorphic model by Kawai and Murata (2010) and Kawai and Itoh
(2014), respectively) are required as input, leading to increased experimental efforts.

In this work, two CLD models are presented that are adapted from the anisomorphic
model. Each model is applicable to a different lay-up for a carbon fibre-reinforced
epoxy laminate, for which distinctions are made based on the values of the tensile and
compressive static strength. Namely, one model is applicable to laminates characterised
by UTS>|UCS| while the other is applicable to those showing |UCS|>UTS. Both models
only employ fatigue life data related to one S-N curve that corresponds to a more
conventional stress ratio R: either R = 0.1 or R = −1. These two stress ratios are more
frequently used than the critical stress ratio, thereby allowing for a wider applicability
and easier use of the model.

Two main research questions will be answered in this work, which are defined as:

How to adapt the anisomorphic fatigue life prediction model such that a
different input dataset can be used to minimise the number of required
S-N curves and allow for a more conventional stress ratio?

What is the relative predictive performance of the proposed models with
respect to the anisomorphic fatigue life model when comparing similar
laminates tested in constant amplitude loading at different stress ratios
(T-T and T-C)?

This thesis commences with a general introduction into fatigue loading in Chapter 2.
Focus lies on the used definitions, an explanation of both S-N curves and CLDs, as
well as the challenges seen in fatigue life testing. Chapter 3 covers the basics of the
anisomorphic model, from which the models proposed in this work are derived. Chapter 4
and 5 present a fatigue life prediction model for carbon-epoxy laminates characterised by
UTS>|UCS| and |UCS|>UTS, respectively. In addition, the predictive accuracy of the
models is assessed by means of fatigue datasets found in literature and an experimental
campaign. Finally, Chapter 6 and 7 provide the conclusions and recommendations of this
work.



Chapter 2

Basics of Fatigue Loading

In this chapter the basics of fatigue loading are covered. The chapter commences with a
description of fatigue loading, including the main definitions employed in the remainder
of this report. Section 2.2 illustrates the use of S-N curves while Section 2.3 introduces
the CLD concept. Lastly, in Section 2.4, focus lies on challenges and considerations
regarding experimental testing and their implication on the obtained test results.

2.1 Fatigue Loading Definitions

Fatigue of a material can occur when a repetitive or cyclic load, with stress values below
Ultimate Tensile Strength (UTS) and Ultimate Compressive Strength (UCS), is applied
to a structure. Fatigue is a damage mechanism causing a permanent deterioration of
the material with an increasing number of load cycles, leading to a reduction in load
bearing capabilities. The stress values during cyclic loading directly impact the lifetime
of the structure: lower stresses lead to a longer lifetime, i.e. more load cycles that can
be applied until the structure fails. On the other hand, higher stresses in the load cycle
that are close to UTS or UCS lead to fatigue failure after only a small number of cycles,
as shown in Figure 2.1. The relation between the applied stress level during Constant
Amplitude (CA) loading and the number of fatigue cycles until failure is often presented
using S-N curves, which are discussed in more detail in Section 2.2.
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Figure 2.1: S-N curve showing the ef-
fects of different cyclic loading stresses
on the lifetime, reprinted from Vas-
silopoulos and Keller (2011).

Figure 2.2: Cyclic constant amplitude
(CA) loading including standard terms,
reprinted from Vassilopoulos and Keller
(2011).

CA loading is a repetitive cyclic loading in which the amplitude and mean stress remain
constant, as shown in Figure 2.2. The figure shows a sinusoidal load often used in
fatigue testing. Several terms can be identified for each stress cycle, which are shortly
summarised next.

• σmin [MPa] The minimum stress σmin is the lowest stress value reached during
the loading cycle.

• σmax [MPa] The maximum stress σmax is the highest stress value reached during
the loading cycle.

• σa [MPa] The amplitude stress σa is defined as σa = σmax−σmin
2 .

• σm [MPa] The mean stress σm is defined as σm = σmax+σmin
2 .

• ∆σ [MPa] The stress range ∆σ is defined as the difference between the
maximum and minimum applied stresses: ∆σ = σmax − σmin.

• R [-] The stress ratio R is defined as the ratio of the minimum to the
maximum applied stress: R = σmin

σmax
.

• f [Hz] The frequency f defines the number of repeated cycles occurring
per unit time: f = 1

T .



2.1 Fatigue Loading Definitions 5

Three cyclic loading types can be identified based on the minimum and maximum stress,
as shown in Figure 2.3, which are defined as

• Tension-Tension (T-T) loading,

• Tension-Compression (T-C) loading,

• Compression-Compression (C-C) loading.

T-C loading with a positive mean stress is also called tension-dominated loading, whereas
a negative mean stress is called compression-dominated loading. The boundary between
the two is defined by reversed loading where R = −1 (i.e., σmax = σmin).

Figure 2.3: Cyclic loading types, reprinted from Vassilopoulos and Keller (2011).

The previously considered loading cycles are uni-axial CA loads. However, uni-axial
CA loading is uncommon when a structure is in-service. Instead, multi-axial Variable
Amplitude (VA) loading and spectrum loading are more typical. Fatigue life prediction
models are different for CA and VA loading, as well as those for uni-axial and multi-
axial loading, and those combining multi-axial and VA loading are often most complex.
However, models predicting the effects of multi-axial VA loading are frequently based
or derived from models proposed for uni-axial CA loading. Therefore, the focus in
this report will merely lie on the prediction of uni-axial CA loading cases and possible
adaptations for other loading types are provided in the recommendations.
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2.2 Graphical Representation of Fatigue Life: S-N curve

The stress-life (S-N) curve visually presents fatigue life data and can be used as an aid
in the design and analysis of FRPs. A wide range of S-N curve models exist, of which
some merely describe experimental fatigue life data and interpolate between datapoints,
while others, the so-called Master S-N curves, also extrapolate fatigue behaviour to other
loading conditions (e.g., different Stress Ratio (R-ratio) or loading frequency). Besides
the S-N curve, some authors employ a Strain-Life (ε-N) curve (e.g., Kensche (1995) and
Ronold and Echtermeyer (1996)). However, this requires additional testing equipment
to measure strains. Therefore, the focus of this work remains on S-N curves rather than
ε-N curves.

An S-N curve, sometimes also called Wöhler curve, depicts the applied stress S versus
the number of fatigue cycles N until failure for a constant R-ratio. The applied stress
is often given as the amplitude or peak stress of the CA loading cycle. An example of
an S-N curve, with the amplitude stress on the y-axis, is provided in Figure 2.4. Even
though the stress amplitude is plotted on the y-axis, it is the independent variable and
the number of cycles to failure is the dependent variable. In order to construct an S-N
curve, only fatigue life data consisting of the applied fatigue loads and measured fatigue
life is needed. However, fatigue life data is required at several stress levels in order
to allow for interpolation between datapoints. Moreover, due to potential presence of
scatter, especially for FRPs, multiple datapoints are often required per stress level to
eliminate the influence of outliers.

Figure 2.4: Example of an S-N curve including the low-cycle plateau, fatigue limit, and
run-outs, reprinted from Schijve (2009).
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The S-N curve depicted in Figure 2.4 is for a constant R-ratio, a constant loading fre-
quency, similar specimens, and comparable testing conditions. Only the amplitude and
mean stress are varied per specimen in order to obtain the fatigue life at different CA
loading cycles. Two or three regions can be identified in the S-N curve. For this work,
these regions are defined as:

1. Low-Cycle Fatigue (LCF): N < 103

2. Intermediate cycle range: 103 < N < 106

3. High-Cycle Fatigue (HCF): 106 < N

Occasionally, the intermediate cycle range is discarded or very small, and only LCF and
HCF regimes are defined, as shown by Schijve (2009). Whereas the first two regions are
often distinguishable, the fatigue or endurance limit, associated with HCF, is usually not
clearly observable for continuous FRP laminates (Kawai, 2010). This implies the need
for many fatigue life tests to provide accurate estimations of HCF. However, HCF tests
consume more time compared to the other two regions since cycles above N > 106 are
reached. Therefore, in case HCF is not of particular importance for the application, often
only conservative predictions are made based on the fatigue lives of higher stress levels.
In this work, the main focus is on the intermediate cycle range, where 103 < N < 106.

2.2.1 Including Static Strength Data in S-N Curve Estimation

S-N curves are used to describe changes in fatigue life for different CA loads at constant
R-ratios. A fatigue cycle of N = 1 equals quasi-static loading. However, the inclusion
of static strength data in S-N curves can be disputed. Foremost, different failure modes
are seen in quasi-static and fatigue loading. Therefore, proposing one predictive curve
for different failure and loading mechanisms seems illogical. Yet, as shown by Nijssen
(2006), including static strength data can significantly improve fatigue life predictions in
the low-cycle regime. Hence, its inclusion should be considered when LCF is of interest.

Besides different failure modes, another difference exists between static strength and
fatigue life data. Namely, static strength data is often obtained at lower strain rates. It
was shown by a number of authors (e.g., Naito (2014), Nijssen (2005), Taniguchi et al.
(2007), Xia et al. (2007)) that when a tensile static strength test is conducted at higher
strain rates, similar to those in fatigue loading, the static strength of a laminate can
significantly increase. However, it is difficult to select an appropriate strain rate for the
static strength loading because the strain rate varies during fatigue loading; a constant
strain rate implies a varying test frequency during fatigue loading (Vassilopoulos, 2010).

Another reason to debate the inclusion of static strength data in S-N curves is its effect on
other cycle regions. Static strength data can influence S-N curve estimations significantly
as shown by, for example, Nijssen et al. (2004) and Nijssen (2005, 2006). Often, all
regions of the S-N curve are affected when static strength data is included. For example,
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HCF predictions can differ due to a change in slope of the S-N curve (Nijssen et al., 2004).
Only in methods consisting of a separated LCF prediction approach or methods that
have been constructed as such to include static strength data, the slope is unaffected.
However, many curve fitting methods, e.g. linear regression methods, show different
results when including static strength data and it is difficult to describe both LCF
and HCF using a single curve (Nijssen, 2006). For that reason, Nijssen et al. (2004)
recommends to only include static strength data when LCF is of importance for the
application and to exclude it where possible for improved predictions of other S-N curve
regimes. In this work, the static strength will be included in the S-N curve due to the
nature of the employed curve fitting function (Chapter 4), which minimises the influence
on fatigue life predictions of other S-N curve regions.

2.2.2 Effects on Fatigue Life

Multiple aspects can affect the fatigue life of an FRP, which are summarised next. In
addition, changes in fatigue life are related to the change in shape and location of the
S-N curve.

• R-ratio: The R-ratio affects the fatigue life and thereby the form of the S-N curve.
It was shown by Kawai and Yano (2016b) that, for a Carbon-Fibre Reinforced
Plastic (CFRP) laminate, T-T (0 < R < 1) and T-C (R < 0) loads lead to steeper
S-N curve slopes than C-C loads (R > 1). Thus, dependent on the loading type,
the fatigue sensitivity of a CFRP laminate changes.

• Loading Frequency: Fatigue loading can lead to energy dissipation in the lam-
inate causing heating of the laminate. When the loading frequency is sufficiently
high such that the laminate does not have time to cool down and temperatures
reach the glass transition temperature Tg, the fatigue performance can be affected
negatively, leading to lower fatigue lives (Vassilopoulos, 2010). Moreover, at lower
frequencies, hysteresis effects can influence the fatigue life significantly because
they can lead to localised stress redistribution processes. Thereby, the matrix
crack propagation rate os reduced and the fatigue life is increased, as shown by
Reifsnider et al. (1977) and Barron et al. (2001).

• Testing temperature: When increasing the testing temperature, a similar effect
on the fatigue life is seen. Kawai and Matsuda (2012) and Kawai et al. (2012)
show that elevated testing temperatures lead to a downward shifted S-N curve, i.e.
a reduction in fatigue life for similar stresses. In this work, the influence of testing
temperature on the final results is not considered.

• Water absorption: Kawai et al. (2013) explored the influence of water absorption
on the fatigue life. A similar reduction of the fatigue life occurred due to water
absorption as was seen for high load frequencies and temperatures: the fatigue
life reduces and the S-N curve shifts downward with an increasing level of water
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absorption. In this work, the influence of water absorption and humidity on the
final results is not considered.

• Materials: A different material will affect the fatigue life and thereby lead to
a different S-N curve. For example, a material that is more sensitive to fatigue
loading will have a steeper fatigue curve. In other words, for the same loading
conditions, the material will have a lower fatigue life than a material with a lower
fatigue sensitivity.

• Interrupted loading: Loading that is not continuously applied can be beneficial
for the fatigue life. An interrupted load cycle is common when structures are in-
service, for example for aircraft and wind turbines. It was shown by Vassilopoulos
and Keller (2011) that an interrupted fatigue cycle can cause an increase in fatigue
life of up to 41%. In this work, only continuous applied CA loads are considered.

2.2.3 S-N Curve Models

Several S-N curve models can be identified that differ in, for example, their description
of the fatigue life curve or predictive capabilities under different loading conditions. The
S-N curve models can be classified into two categories. Firstly, the empirical fitted S-N
curves merely describe the relation of the experimental data variables. These cannot
be used for extrapolation of fatigue performance predictions to other loading conditions
or laminates. Secondly, the so-called master S-N curves are capable of extrapolating
predicted fatigue behaviour to other loading conditions. These extrapolations are often
related to different R-ratios or loading frequencies. Both model categories require exper-
imental static strength data and/or fatigue life data as input. Examples of these model
categories are shown in Figure 2.5 and each category is shortly discussed next.

(a) Example of curve-fitting using linear re-
gression on experimental fatigue life data,
reprinted from Nijssen et al. (2004).

(b) Example of the concept of the Master
S-N curve methods, reprinted from Nijssen
(2010).

Figure 2.5: Examples of S-N curve models.
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Empirical Fitted S-N curves
Empirical fitted S-N curves are merely descriptive functions used to describe exper-
imental fatigue life data, specifically, the relation between applied stress and fatigue
life. The methods in this category are relatively simple because they do not involve
any extrapolation and can be seen as curve-fitting methods. Several curve expressions
have been suggested, most commonly the power-law and exponential formulation. These
are discussed in more detail in AppendixA. More elaborated functions have also been
proposed, for example, by Jarosch and Stepan (1970) who include the possibility to
describe the fatigue limit. Kohout and Vĕchet (2001) identify three fatigue life regions
(low-cycle, mid-range, and the high-cycle region) and propose three inter-dependable
functions to describe a complete S-N curve. All S-N curve functions employ model
fitting parameters that are estimated based on experimental input data using regression
analysis techniques such as Least Squares (LS).

Master S-N curves
Master S-N curves are a type of fatigue life prediction models that extrapolate fatigue
behaviour to other loading conditions than those of the input data. Most commonly, an
S-N curve at a different R-ratio is predicted. For example, Mandell (Bach, 1992) proposes
a function for the S-N curve that depends on the R-ratio. For a changing R-ratio, the
slope of the curve changes accordingly. Epaarachchi and Clausen (2003) adapted the
master S-N curve model by Caprino and D’Amore (1998) to include, besides the R-ratio
dependency, the fibre direction and loading frequency. This results in an extended
equation in which two fitting parameters are present that are based on experimental
static strength and fatigue life data corresponding to one S-N curve.

Some of the models in this category only employ static strength data and no experimental
fatigue life data, such as the model proposed by Kassapoglou (2007). When only static
strength data is employed as input, all S-N curves are de facto extrapolations. On the
other hand, when also fatigue life data is included as input, one S-N curve forms the
base from which other S-N curves are extrapolated.

Applicability to this Study
None of the methods from the first model class, the empirical fitted S-N curves, are
of interest in this research. Primarily because no predictive capabilities are present,
thereby requiring new experimental fatigue life data for each considered S-N curve. On
the other hand, the master S-N curves do provide predictions. Moreover, they do this
based on limited numbers of experimental data. However, some of the models have only
been validated for Glass-Fibre Reinforced Plastic (GFRP)s (e.g., that of Epaarachchi and
Clausen (2003)) or, as shown by Vassilopoulos et al. (2010a) for the model of Kassapoglou
(2007), the accuracy diminishes in most evaluated cases due to the simplicity of the
model. Therefore, the master S-N curves are also not be further considered in this
study. Instead, the focus will lie on CLDs, which are discussed in Section 2.3.
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2.3 Graphical Representation of Fatigue Life: Constant Life
Diagram

Constant life diagrams (CLD) are frequently used in fatigue life predictions of FRPs
for R-ratios different than those evaluated during experimental testing. CLDs allow for
interpolation between fatigue life data obtained at different R-ratios and thereby for
a straightforward prediction of S-N curves for a wide range of R-ratios. Several CLD
models are available, varying in amount of experimental data required, as well as shape
of the Constant Life Line (CLL) and validity to different materials. This section begins
with a basic definition of a CLD, followed by an overview of different CLD models.

2.3.1 Definition of Constant Life Diagram

The CLD is a two-dimensional graph showing, in its most common form, the amplitude
stress σa versus the mean stress σm. An example of a CLD is shown in Figure 2.6. Each
curve (called CLL) relates to a different constant fatigue life: closer to the origin means
a longer fatigue life due to the lower applied stresses while the fatigue life reduces when
moving away from the origin.

Figure 2.6: CLD example showing constant life curves for different values of fatigue life
for an E-Glass ortho-polyester laminate, reprinted from Post and Case (2008).

Radial (linear) lines arising in the origin and moving outward correspond to constant
R-ratios. The radial lines can be used to derive S-N curves at these different R-ratios.
In order to retrieve an S-N curve for a constant R-ratio, use must be made of fatigue life
data located on one radial: different combinations of amplitude and mean stress lead
to different values of the fatigue life. The procedure involved in deriving the S-N curve
predictions is discussed in more detail in Chapter 3.
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The CLD can be split into four regions based on the value of R, as seen in Figure 2.7:

1. Compression-compression (C-C) region: R > 1

2. Compression-dominated (T-C) region: R < −1

3. Tension-dominated (T-C) region: −1 < R < 0

4. Tension-tension (T-T) region: 0 < R < 1

Correspondingly, the scale of the applied mean stress changes for each region. Note that
a singularity is present when moving from the compression-dominated T-C region to the
C-C region: a jump occurs from R = −∞ to R =∞.

Figure 2.7: CLD example visualising the four different loading regions, reprinted from
Philippidis and Vassilopoulos (2002).

The boundaries of the CLD are given by the CLL corresponding to N = 1, i.e. static
strength, which is described by two linear lines intersecting the x- and y-axis in the UTS
or UCS value. The design space is given inside the triangle, whereas the considered
structure will fail outside the design space before reaching the maximum absolute stress
value in the fatigue cycle (i.e., before reaching either σmax or σmin).

The x-axis, where σa = 0, relates to R = 1 (σmin = σmax), whereas the y-axis, where
σm = 0, relates to R = −1 (σmin = −σmax). For most CLD models, CLLs converge to the
UTS or UCS value on the x-axis. However, some CLD models differ from this assumption
such as the parallel Goodman CLD, where CLLs do not converge. Furthermore, some
authors (e.g., Nijssen (2006) and Vassilopoulos et al. (2010a)) state that CLLs should
not converge to the UTS or UCS value because R = 1 does not correspond to static
strength but instead to creep (static fatigue). For example, Andersons and Paramonov
(2011) adhere to the view that CLLs should converge to creep rupture strength rather
than UTS or UCS, where the time to rupture equals fatigue life (Owen, 1970). Note
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that this discussion is similar to that for the S-N curve on whether static data, LCF or
creep must be considered in fatigue analyses.

In this work, the assumption is made that the CLLs converge to the UTS or UCS value
on the x-axis and R = 1 is not considered in the fatigue life predictions. The cause of this
assumption is found in the employed CLD method. The CLD model on which this study
is based, as will be seen in Chapter 3, makes a similar assumption for convergence to
UTS and UCS, leading to acceptable fatigue life results for R 6= 1. Moreover, it neither
covers the description or prediction of creep. In addition, if it is assumed that the
CLLs converge to, for example, creep rupture strength, creep tests must be conducted.
These tests, which require more experimental efforts than static strength tests, must be
performed even when creep is not of interest. For these reasons, it is assumed that the
CLLs converge to UTS and UCS and the prediction of R = 1 is not considered.

2.3.2 Constant Life Diagram Models

Several CLD models have been proposed in literature, yet all methods require static
strength and fatigue life data as input. However, they differ in CLL shape, the location
of intersection with the x- and y-axis, and the required size of the input dataset. Several
methods are introduced in the following paragraphs. For details regarding each approach,
the reader is referred to the corresponding literature. Examples of the presented CLD
models are shown in Figure 2.8.

Goodman Diagrams
The Goodman CLDs1 are linear diagrams constructed using static strength data and
either one or multiple S-N curves. Several variations from the classic Goodman diagram
exist that vary in, for example, shape of the CLD (symmetry versus asymmetry), location
of the stress amplitude peaks, or convergence of the CLLs on the x-axis. However, each
model is consistent in the use of linear-defined CLLs. Kawai (2010) has identified five
variants of the Goodman diagram, classified as:

1. Classic symmetric Goodman,

2. Classic asymmetric Goodman,

3. Shifted Goodman,

4. Inclined Goodman,

5. Parallel Goodman.
1 Note that CLDs are often referred to as Goodman or Gerber diagrams. However, as clarified by

Sendeckyj (2001), accreditation issues have originated in the past 150 years. In this work, the Goodman
and Gerber diagrams and their variants will be treated as a type of CLD rather than used as a synonym
for CLD.



14 Basics of Fatigue Loading

Piecewise Linear CLD
The piecewise linear CLD is constructed using static strength data and several S-N
curves. Subsequently, between datapoints corresponding to a similar fatigue life, lines
are constructed to obtain linear CLLs. The number of employed S-N curves can be
varied. Increasing the number of S-N curves results in more accurate fatigue predictions
than the previously discussed Goodman diagrams. However, the latter is a disadvantage
of this method because it increases the required experimental efforts.

Gerber Diagrams
The Gerber CLDs are non-linear diagrams constructed using static strength data and
either one or multiple S-N curves. They are similar to the Goodman diagrams but
assume a parabolic function rather than a linear function for the CLLs. Again, several
variations of this CLD exist, each varying a different aspect (e.g., size of the input dataset
or (a)symmetry). Kawai (2010) has classified the models into four categories as:

1. Symmetric Gerber,

2. Asymmetric Gerber,

3. Shifted Gerber,

4. Inclined Gerber.

Piecewise Non-Linear CLD
The piecewise non-linear CLD has been proposed by Vassilopoulos et al. (2010b) and
is constructed using static strength data and either two or three S-N curves (R = −1,
R = 10 and/or R = 0.1). The CLLs converge to the values of UTS and UCS on the
x-axis and have a non-linear shape. The model parameters in the CLL functions can
be obtained directly from fatigue life data, thereby no optimisation process is required.
Another advantage of the piecewise non-linear model is its high accuracy and good
performance with respect to other CLD models, as shown by Vassilopoulos et al. (2010b).

Harris’ Bell-Shaped CLD
The bell-shaped CLD has been proposed by Harris and his colleagues (Beheshty and
Harris, 1998, Beheshty et al., 1999, Gathercole et al., 1994, Harris, 2003, Harris et al.,
1997) and is based on static strength and fatigue life data consisting of at least 20
test results. The CLLs are constructed using three model parameters to optimise the
curves. These model parameters are either derived using fatigue test data or empirical
values from similar materials. However, the latter will negatively impact the predictive
accuracy. The bell-shaped CLD is computationally inexpensive due to the lack of op-
timisation procedures required. Overall, the model is capable of providing reliable and
relatively accurate predictions for both CFRP and GFRP laminates while not requiring
large computational efforts, though it requires a relative large fatigue dataset as input.
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Kawai’s Anisomorphic CLD
Kawai and Koizumi (2007) have proposed the anisomorphic CLD for carbon-epoxy lam-
inates, which is a non-linear CLD constructed using only static strength data and one
experimental S-N curve. The employed S-N curve is related to the critical R-ratio, which
is defined as the ratio of the static compressive strength (UCS) to the static tensile
strength (UTS). By requiring little experimental input data, the method is limiting
time-consuming and expensive testing procedures. Moreover, the proposed method is
computationally inexpensive. Kawai and Murata (2010) and Kawai and Itoh (2014)
have proposed expansions of the original two-segment CLD, namely the three- and four-
segment anisomorphic model, respectively, to predict the fatigue life of carbon-epoxy
laminates with a lay-up characterised by |UCS|>UTS. The latter two models require
additional input data with respect to the two-segment model by employing two and three
S-N curves as input, respectively. Thereby, the accuracy of the fatigue life predictions is
improved but the involved experimental efforts are increased.

Boerstra’s Multislope CLD
Boerstra (2007) has proposed the multislope CLD to predict the fatigue life of E-glass
laminates. A notable distinction with the previously introduced CLD models is the
use of sparse fatigue life data besides static strength data. No longer one or multiple
complete S-N curves are required as input but any fatigue life data can be employed. The
multislope model employs five model parameters that are determined using a LS method
based on the input data. On the one hand, this makes the model more computationally
expensive. On the other hand, it reduces the standard deviation compared to the
Goodman diagram, as shown by Boerstra (2007).

Applicability to this Study
In the previous paragraphs, several CLD models were presented of which one must be
selected as a basis for further adaptation in this study. The purpose of this work is
to minimise the size of the experimental input data dataset while providing an accept-
able predictive accuracy in fatigue life for a carbon fibre-reinforced epoxy laminates,
as discussed in Chapter 1. The fatigue life predictions must be in the same order as
the experimentally obtained results. Based on these requirements, a comparison can
be made between all CLD models. For this purpose, an overview of the three most
important aspects of each model is provided in Table 2.1.

Immediately, the Goodman, Gerber, and piecewise linear CLDs can be discarded. These
models are either not accurate due to their simplicity or require large amounts of ex-
perimental data. For the latter reason, Harris’ bell-shaped CLD is also not relevant to
this study. Boerstra’s multislope CLD contains a rather complex prediction model with
respect to the other models by employing five model parameters. Moreover, it is only
validated for GFRPs while CFRPs are considered in this work. Therefore, Boerstra’s
multislope model cannot be selected for further adaptation. This leaves two remaining
models for consideration: Kawai’s anisomorphic CLD and the piecewise non-linear CLD.
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Table 2.1: Aspects of different CLD models.

CLD model Accuracy Amount of required Validated for
fatigue life data CFRPs

required

Goodman Variant-dependent Variant-dependent Yes
Piecewise Linear Same scale order Large fatigue life dataset Yes
Gerber Variant-dependent Variant-dependent Yes
Piecewise Non-Linear Same scale order 2 or 3 S-N curves Only GFRP
Bell-Shaped Same scale order Large fatigue life dataset Yes
Anisomorphic Same scale order 1, 2 or 3 S-N curves Yes
Multislope Same scale order Sparse fatigue life data Only GFRP

The piecewise non-linear CLD requires a minimum of two S-N curves as input while
the most simple version of the anisomorphic CLD (i.e., two-segment) only requires one
S-N curve. Moreover, the anisomorphic model has been validated for CFRPs while
the piecewise non-linear model was proposed for GFRPs. In terms of accuracy, the
models were compared by Vassilopoulos and Keller (2011) for three GFRP laminates.
In general, the piecewise non-linear model showed a higher accuracy. However, the input
to the anisomorphic model was different than the critical R-ratio and the evaluation was
performed for GFRPs rather than CFRPs. Based on the previous aspects, the aniso-
morphic model is of most interest in this study. Yet, they have one major disadvantage;
the use of the critical R-ratio. Testing at this critical R-ratio is rare and when employing
this approach, often new fatigue life tests must be conducted. Therefore, it is of interest
to use the anisomorphic model as a basis to develop a method that also only uses one
S-N curve but instead corresponds to a more conventional R-ratio (e.g., R = 0.1 or
R = −1). In this work, two adapted models are proposed (Chapter 4 and 5) that have
been derived from the anisomorphic model. For this purpose, an in-depth description of
Kawai’s anisomorphic model is provided in Chapter 3.
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(a) Goodman diagram (inclined), reprinted
from Kawai (2010).

(b) Piecewise linear CLD, reprinted
from Vassilopoulos et al. (2010a).

(c) Gerber diagram (asymmetric), reprinted
from Kawai (2010).

(d) Piecewise non-linear CLD, reprinted
from Vassilopoulos et al. (2010b).

(e) Harris’ bell-shaped CLD, reprinted from Be-
heshty and Harris (1998).

(f) Kawai’s anisomorphic CLD, reprinted
from Kawai and Murata (2010).

(g) Boerstra’s multislope CLD, reprinted
from Boerstra (2007).

Figure 2.8: Examples of CLD models.
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2.4 Experimental Testing

Experimental testing is key for predicting and analysing fatigue behaviour of composites
and the results are used as input to the predictive models. The anisomorphism of
composite laminates and the complex damage mechanisms under cyclic loading lead
to large variety in performance under fatigue loading and difficulty in prediction of
fatigue life. Large scatter is seen for similar CFRPs consisting of the same material and
lay-up, and manufactured under similar conditions, and its variability can be up to two
decades for fatigue life (Nijssen, 2010). Small variations in test conditions and set-up can
aggravate these differences, thus, in order to construct fatigue life prediction models, it is
of importance to minimise any changes between tests. Several test standards have been
defined, of which the standards by the International Organization for Standardization
(ISO) and the American Society for Testing and Materials (ASTM) are most known.
These standards will not be discussed in detail, instead the focus in this section lies on
three main aspects involved the design of fatigue experiments.

Firstly, the number of fatigue life tests required for construction of one S-N curve will
be established. A minimum number of fatigue life tests is required to take into account
the variability of fatigue life data. Secondly, censoring of data and run-outs are shortly
discussed. Lastly, different types of fatigue life tests and their individual considerations
are covered. For information regarding other testing aspects, the reader is referred to
the information provided by Nijssen (2010). Note that only small-scale coupon testing,
with no initial damages or open holes, is considered, used either as input to predictive
models or for verification and validation purposes.

2.4.1 Number of Fatigue Tests

Due to the large scatter seen in fatigue life test results for CFRP laminates, it is of impor-
tance that a representative dataset is obtained that describes the fatigue life behaviour.
It is very well possible that an acceptable test result is obtained that, if the same test is
repeated several times under the same conditions, turns to be an outlier located in the
lower or upper tail of a probability distribution. If, for example, only three fatigue life
tests are conducted to construct an S-N curve, of which two datapoints are outliers, a
non-representative sample of the mean fatigue life behaviour for the considered laminate
will be obtained. Therefore, it is of importance that a sufficient number of fatigue life
tests are performed.

ASTM (1980 (2015)) have provided recommendations on the minimum number of fatigue
life tests for S-N curve establishment based on its purpose. For preliminary and ex-
ploratory research or research and development testing of specimens, a minimum number
of 6 to 12 specimens should be tested to construct an S-N curve. For design allowables
or reliability data, a larger number of specimens should be tested, namely a minimum
of 12 to 24 specimens. Furthermore, it is of importance that these fatigue life tests are
spread over several stress levels to describe all fatigue life scales. These recommendations
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have been made based on those given by Little and Jebe (1975). They have stated that
when the shape of the S-N curve is unknown, data at six stress levels is required to
describe a potential curve consisting of a LCF plateau, straight middle region, and a
fatigue limit. Once the S-N curve shape is established, additional testing should only be
focused on replication. Note that the provided recommendations are general and have
not been tailored to CFRP laminates. Hence, a larger number of tests might be required
to obtain a representative sample.

2.4.2 Run-outs and Censoring of Data

Run-outs are tests that are stopped before reaching final failure. Stopping of a fatigue
life test might be done after reaching a set number of fatigue cycles (e.g., 1,000,000
cycles). The results from these tests should not always be discarded because they contain
information on the fatigue behaviour at lower stress levels. Their inclusion in and effect
on the S-N curve depend on the remainder of the dataset.

In some cases, test results have to be censored from the dataset because they are invalid.
For example, if failure inside clamping of the specimen occurs (i.e. tab failure), causing
the test to be unrepresentative of the fatigue behaviour. Furthermore, slipping of the
specimen in the clamp might occur, also leading to censoring of the test result. Other
potential cases for censoring are misalignment of the test set-up causing, for example,
twisting of the specimen, or an interrupted loading of the specimen. The latter might
enhance the obtained fatigue life until failure, as discussed in Section 2.1 on aspects
affecting the fatigue life. The previously mentioned aspects are only examples but should
be kept in mind because each will influence the obtained test result and thereby the
estimated S-N curve.

2.4.3 Type of Fatigue Tests

Three types of fatigue tests can be identified based on their applied loading, i.e. 1) T-T,
2) T-C, and 3) C-C tests. Of these three tests, T-T loading is most straightforward and
has the least amount of considerations. For the latter two types of tests, the main aspect
to consider is the occurrence of buckling during compression-loading. Buckling must be
avoided because it will influence final results and can lead to premature failure. Two
options are available to minimise the risk of buckling. Firstly, one can minimise the gauge
length (distance between clamped areas) to reduce the risk of buckling and premature
failure. For example, ASTM (2001) recommends a gauge length of 12mm for determining
compressive properties using a Combined Loading Compression (CLC) test fixture. A
second option is to employ an Anti-Buckling Device (ABD) during (partial) compressive
tests. An ABD limits out-of-plane deformations of the specimen. However, these are
imminent when matrix failure occurs. By preventing these type of deformations, fatigue
life test results might be altered. For example, this can result in the specimen being
capable of sustaining higher absolute compressive stresses during fatigue life when an
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ABD is used than the UCS value obtained without an ABD. Consequently, this can
result in an S-N curve showing increasing stresses for longer lives. Therefore, it is not
recommended to include ABDs in the test set-up if not required. Because the use of an
ABD can influence the obtained test results considerably and it is not always indicated
whether or not an ABD was included during testing, this work will only consider fatigue
life prediction of T-T and T-C loading, and no C-C loading, without the use of an ABD
in the T-C loading type.



Chapter 3

Anisomorphic Constant Fatigue Life
Diagrams

The anisomorphic CLD for carbon fibre-reinforced epoxy laminates, first proposed by
Kawai and Koizumi (2007), is a non-linear model capable of constructing a CLD based
on a limited amount of experimental fatigue life data. The most simple version of the
anisomorphic model requires only tensile and compressive static strength values and a
so-called critical S-N curve as input. This critical S-N curve describes the fatigue life
under the critical R-ratio χ: the static compressive over the static tensile strength. The
method is limiting time-consuming and expensive testing procedures normally required
for predicting fatigue lives by reducing the input size. This section commences with
an explanation of the general concept of the anisomorphic CLD and an overview of
the different model versions. The subsequent sections cover the two-, three-, and four-
segment versions of the anisomorphic CLD. Lastly, a discussion on the different models
is provided, including a consideration of their limitations and possible improvements.

3.1 General concept of the anisomorphic CLD

An overview of the different models is provided in Table 3.1. The table presents an
overview of the lay-ups for which each model has been validated and the corresponding
paper in which the model was first introduced. Generally, the two-segment CLD is
applicable to laminates showing UTS>|UCS| while the more elaborated three- and
four-segment CLDs are also applicable to laminates showing |UCS|>UTS. The latter
laminates require a more extensive prediction model due to large distortions seen in
the CLD, especially in the T-C and C-C region left of the R = χ radial. In order to
describe these distortions, additional input data is required by the anisomorphic models,



22 Anisomorphic Constant Fatigue Life Diagrams

as shown in Table 3.1. On the one hand, the two-segment anisomorphic model is the most
simple anisomorphic model, employing only static strength data (UTS and UCS) and
fatigue life data at R = χ. On the other hand, the three- and four-segment anisomorphic
model require additional input fatigue life data at the so-called sub-critical R-ratio χS or
the left and right auxiliary R-ratio χL and χR, respectively. Accordingly, the three- and
four-segment anisomorphic model require two and three S-N curves as input, respectively.
Note that the three- and four-segment CLDs counteract the simplification initially offered
by the two-segment anisomorphic CLD (i.e., fewer input data required with respect to
other available prediction methods while keeping an acceptable predictive accuracy).
Nonetheless, the increase in complexity is compensated by the improved accuracy in
fatigue life predictions.

Table 3.1: Overview of the different anisomorphic CLD models.

Anisomorphic model Initially proposed by Input data Considered lay-ups

Two-segment CLD Kawai and Koizumi (2007) UTS, UCS, [45/90/−45/0]2s
S-N curve under R = χ [0/60/−60]2s, [0/90]3S

Three-segment CLD Kawai and Murata (2010) UTS, UCS, [±30]3S , [±45]3S
S-N curve under R = χ and χS [±60]3S

Four-segment CLD Kawai and Itoh (2014) UTS, UCS, [0]16, [10]16
S-N curve under R = χ, χL, χR [15]16, [30]16

[45]16, [90]16

All three models (partially) base the predicted CLD on the so-called critical R-ratio χ,
which is defined as (Kawai and Koizumi, 2007)

χ = UCS

UTS
, (3.1)

where χ obtains a value in the range −∞<χ<0. For CFRP laminates, it was shown by
Kawai and Koizumi (2007) that the sensitivity to fatigue loading is largest at, or in the
vicinity of, R = χ. For lay-ups characterised by UTS>|UCS|, this results not only in an
S-N curve with the steepest slope of all R-ratios but also in CLL peaks near the R = χ
radial. In T-C loading, fatigue behaviour of both T-T and C-C loading is combined
since the failure modes and damage mechanisms differ in these loading types (Rotem
and Nelson, 1989). Kawai and Koizumi (2007) assume that under R = χ loading, the
laminate is equally influenced by both tension and compression fatigue behaviour, and
thereby that the probability of occurrence of either type of failure mode is equal. For
T-C loads related to R < χ, the fatigue behaviour and failure modes are more similar
to C-C fatigue loading. For T-C loads related to R > χ, the fatigue behaviour and
failure modes are similar to those seen in T-T type loading. Therefore, it was assumed
by Kawai and Koizumi (2007) that a transition of the dominant failure mode occurs at
R = χ. Note that for lay-ups characterised by |UCS|>UTS, the assumption of largest
fatigue sensitivity near R = χ still seems to be valid (Kawai and Itoh, 2014). However,
it no longer results in CLL peaks at R = χ, as shown in Section 3.3 and 3.4.
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1. Perform tensile and
compressive static

strength tests to obtain
UTS and UCS

2. Determine the critical  
R-ratio    as the ratio

between UCS and UTS. 

3. Perform fatigue life
tests under the required  

R-ratios 

4. Convert the fatigue life
test data to    -N format 

5. Fit a normalised  
S-N curve to the fatigue

life test data 

6. Construct constant life
curves (CLL) for different
values of the fatigue life 

7. Plot several CLLs in
one diagram to obtain the

CLD 

8. Predict the S-N curve
for a certain R-ratio by

finding the intersections
between the radial and

CLLs

  

Figure 3.1: Flowchart depicting the general approach used by all anisomorphic models.

General method
The anisomorphic models follow a general procedure in constructing the CLD and pre-
dicting S-N curves using static strength and fatigue life input data. A flowchart depicting
this general method is included in Figure 3.1 and the different steps are shortly explained
next. Each model version applies changes to the the general method by, for example,
including additional input data or adapting the CLL functions. The details of each
model are discussed in the corresponding sections.

1. Static strength test data, in the form of UTS and UCS, is required as input to the
model.

2. The critical R-ratio χ can be calculated as the ratio between UCS and UTS
(Equation 3.1).

3. CA fatigue life tests are performed at R = χ. For the three- and four-segment
CLDs, additional fatigue life tests at R = χS or R = χL and R = χR are required,
respectively.

4. Fatigue life data is converted from (σmax, Nf ) to (ψ, Nf ), where ψ is defined as
ψ = σmax/σB (Kawai and Koizumi, 2007) and σB is the extrapolated stress value
at Nf = 1.

5. A normalised curve ψ = f−1 (2Nf ) is fitted to fatigue life test data in order to
describe an S-N curve.

6. CLLs for different values of fatigue life Nf can be constructed using the fitted
normalised S-N curve.
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7. The CLD is obtained by depicting several CLLs in the same diagram.

8. An S-N curve at a different R-ratio than the input R-ratio can be predicted by
determining intersections of the CLLs with the radial corresponding to the R-ratio
of interest.

3.2 Two-Segment Anisomorphic CLD

The two-segment anisomorphic CLD proposed by Kawai and Koizumi (2007) is an
adapted version of the inclined Goodman diagram, where the CLL expressions have been
slightly altered to include an exponent. The CLLs peak at the radial corresponding to
R = χ, thereby essentially dividing the CLD into two segments. CLLs in each segment
are described using a different expression that merge on the radial. An example of the
two-segment anisomorphic CLD is presented in Figure 3.2 for a carbon-epoxy laminate
with lay-up [45/90/−45/0]2S .

Figure 3.2: Two-segment anisomorphic CLD for a carbon-epoxy laminate with lay-up
[45/90/−45/0]2S showing constant life curves for different values of the fatigue life cycles,
as well as radial lines corresponding to a constant R-ratio, reprinted from Kawai and Koizumi
(2007).

The two-segment model is based on three main assumptions:

1. The fatigue behaviour of carbon-epoxy laminates under CA loading at any R-ratio
can be predicted based on the behaviour under fatigue loading at R = χ.

2. Amplitude stress peaks of the CLL for a constant value of the fatigue life are
located at the radial related to R = χ.

3. The shape of CLLs gradually changes from a straight line to a parabola for an
increasing fatigue life.
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The procedure of constructing a CLD and predicting S-N curves for different R-ratios
using the two-segment anisomorphic model is presented next.

Step 1-3
Firstly, the static tensile and compressive strength of the laminate are required as input
to the model. Based on the static tensile and compressive strength, the value of χ can be
determined using Equation 3.1. Next, an S-N curve for this critical R-ratio is constructed
by performing fatigue life tests at R = χ.

Step 4
On the fatigue life test datapoints for R = χ, a normalised S-N curve expression is fitted
defined by the fatigue strength ratio ψχ, where ψχ is defined as (Kawai and Koizumi,
2007)

ψχ = σχmax
σB

, (3.2)

which is the ratio between the maximum applied stress σχmax (at R = χ) and strength σB.
σB is obtained by extrapolating the S-N curve for R = χ to Nf = 1 (static strength
point) and evaluating which stress value fits the extrapolated curve. Its value often
corresponds to either UTS or UCS. Consequently, this implies that fatigue life data,
often in the form of (σmax, Nf ), must be transformed to (ψχ, Nf ). Then, the value of
ψχ ranges between 0 ≤ ψχ ≤ 1.

Step 5
To the transformed fatigue life data, a curve can be fitted and the function parameters
can be obtained. Different normalised S-N fitting curves are available, each employing
different function parameters. However, all curves suggested by Kawai and his colleagues
fit the fatigue life data to a function in the form of (Kawai, 2010)

2Nf = f (ψχ) . (3.3)

For the two-segment CLD, Kawai and Koizumi (2007) suggested an equation given as

2Nf = 2
Kχ

(1− ψ)a

ψn
, (3.4)

where Kχ, a, and n are fitting parameters (laminate-specific constants). A discussion
on the manner of fitting is provided in more detail in AppendixA.
Step 6
Next, the fitted critical S-N curve can be used to determine corresponding stress ampli-
tude peaks in the CLD. Note that all peaks lie on the radial related to R = χ, defined
as fatigue life stress combinations in the form of (Nf , σχm, σχa ). The R = χ radial is also
the radial dividing the CLD in two segments. The general formulation for a CLD radial
is given as

σa
σm

= 1−R
1 +R

, (3.5)
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where σa and σm are the amplitude and mean stress, respectively. Once the peaks of the
CLD are defined, other stress combinations (σm, σa) on the CLL for the same fatigue
life Nf can be calculated using the equations given as (Kawai and Koizumi, 2007)

−σa − σ
χ
a

σχa
=
(
σm − σχm
UTS − σχm

)2−ψχ
if σχm ≤ σm ≤ UTS, (3.6)

−σa − σ
χ
a

σχa
=
(
σm − σχm
UCS − σχm

)2−ψχ
if UCS ≤ σm < σχm. (3.7)

These CLL expressions are modified equations of the CLLs used in the inclined Goodman
diagram by including an exponent in the form of (2−ψχ), where the value of ψχ falls in
the range 0 ≤ ψχ ≤ 1. For ψχ = 1, the inclined Goodman diagram with linear-shaped
CLLs is obtained while for smaller values of ψχ (i.e., an increasing fatigue life), the CLLs
are parabolas.

Step 7
A CLD can be established by evaluating Equations 3.6 and 3.7 for different values of the
fatigue life Nf and plotting the obtained curves in the same diagram. An example of
a CLD established using the two-segment anisomorphic model was previously presented
in Figure 3.2 for a carbon-epoxy laminate with lay-up [45/90/−45/0]2S .

Step 8
Once a CLD has been obtained, it can be used to predict S-N curves for different R-ratios.
It is known that all stress combinations of one S-N curve lie on one radial corresponding
to the R-ratio of interest. Therefore, in order to derive an S-N curve prediction from
the CLD, it is required to find intersections of the radial with different CLLs because
each CLL corresponds to a constant value of Nf . To find the (σm, σa)-combination at
which a radial and CLL intersect, it is required to solve a set of equations composed
of Equation 3.5 and Equations 3.6 and 3.7. In this set of equations, the location of the
stress peak (σχm, σχa ) for a specified Nf is known from the curve fitted to the input fatigue
life data. Moreover, the value ψχ is a function of these peak stresses (ψχ = f(σmax))
and UTS and UCS are required as input to the anisomorphic model. Solving the set of
equations results in values for σm and σa where the radial and CLL intersect. Repeating
this procedure for different values of Nf and combining the found intersections, results
in a predicted S-N curve for the R-ratio of interest.

Applicability
The two-segment anisomorphic CLD was validated by Kawai and Koizumi (2007) by
applying it to three different carbon-epoxy (T800H/3631 and T800H/2500) laminates.
The lay-ups of the considered laminates are [45/90/−45/0]2s, [0/60/−60]2s, and [0/90]3s.
Kawai and Koizumi (2007) provide a comparison between test results and the predicted
CLD and S-N curves. The error of the predictions was not quantified and results were
only compared qualitatively. Furthermore, the size of the datasets used for validation is
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limited with small amounts of test results. Therefore, some predictions were extrapolated
beyond the available test data. Due to a lack of sufficient amounts of test data, the
predictions in these regions cannot be assessed. Moreover, any obtained conclusions must
be seen as preliminary until more evaluations with additional test results are performed.

Kawai and Koizumi (2007) concluded that a “good agreement” is seen for the considered
laminates between the predictions and test results for both the CLD and S-N curves and
that results were acceptable for all loading regimes (T-T, T-C, C-C). Even though Kawai
and Koizumi (2007) report a “good agreement” between predictions and the validation
dataset, some comments can be made when evaluating the presented diagrams. From
most diagrams presented by Kawai and Koizumi (2007), it can be concluded that the
predictions seem to be in agreement with experimental data for T-T and T-C loading.
However, for C-C loading with R = 2 and R = 10, predictions seem to be less reliable
with larger differences and a different S-N curve slope than test results indicate. These
inaccurate predictions can be caused by a variety of sources. For example, an inaccurate
assumption on the CLL function in the left segment for T-C loading at R < χ and C-C
loading. Another source can be the large scatter naturally present in C-C fatigue life
data. Large variability in fatigue life is also seen in the datasets evaluated by Kawai
and Koizumi (2007). However, due to the limited amount of performed tests, it cannot
be assessed whether the employed test datapoints are outliers or whether indeed large
variability is present in the results. Additional validation, also of other laminates, is
required to evaluate the applicability of the model and the sources of these inaccuracies.

In addition to the previously mentioned laminates, the two-segment CLD was also
applied to angle-ply carbon-epoxy (T800H/2500) laminates with lay-ups [±30]3S and
[±45]3S by Kawai and Murata (2010). They describe the agreement between the pre-
dicted CLD and test data for the laminates as “good” while the S-N curve agreements
are evaluated as “reasonably good”. The predictions for R = 10 again show a lower
accuracy. Furthermore, the datasets used for validation are again limited in their size
and thus only preliminary conclusions can be drawn. It is recommended to perform
additional evaluations of these laminates with more fatigue life data to evaluate the
predictions. Besides these two lay-ups, the two-segment model was also applied to
a carbon-epoxy (T800H/2500) laminate with lay-up [±60]3s (Kawai and Murata, 2010)
and off-axis Unidirectional (UD) carbon-epoxy (T700S/2592) laminates (Kawai and Itoh,
2014). However, the predictions for these laminates were less accurate and sometimes
even “poor” (Kawai and Murata, 2010). Therefore, an altered version of the CLD model
is required to describe these laminates. The adapted versions of the anisomorphic model
(three- and four-segment CLD) are presented in the next sections (Section 3.3 and 3.4).
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3.3 Three-Segment Anisomorphic CLD

The three-segment anisomorphic CLD, proposed by Kawai and Murata (2010), is derived
from the two-segment anisomorphic CLD and an example is shown in Figure 3.3 for a
carbon-epoxy laminate with lay-up [±60]3S . The CLD is defined by three segments
bounded by the critical R-ratio χ and the sub-critical R-ratio χS . The model was com-
posed based on the evaluation of three angle-ply carbon-epoxy (T800H/2500) laminates
with lay-ups of [±30]3S , [±45]3S , and [±60]3S . It was found that the [±60]3S-laminate,
in contrast to the [±30]3S- and [±45]3S-laminates, shows a distortion in the CLD left
of the R = χ radial and that the peaks of the CLD are no longer located on or in the
vicinity of R = χ but instead are located at lower R-ratios. The two-segment CLD
model cannot accompany this change in CLL shape. For this reason, a sub-critical
R-ratio χS was introduced by Kawai and Murata (2010), resulting in a CLD consisting
of three segments. Consequently, no longer only static strength data and fatigue life
data at R = χ is required but also fatigue life data at R = χS is needed. The manner of
constructing a CLD and derivation of an S-N curve using the three-segment anisomorphic
model will be discussed in this section.

Figure 3.3: Three-segment anisomorphic CLD for a carbon-epoxy laminate with lay-up
[±60]3S showing constant life curves for different values of the fatigue life cycles, as well as
radial lines corresponding to a constant R-ratio, reprinted from Kawai and Murata (2010).

For the three-segment anisomorphic model, three assumptions were made in addition to
those for the two-segment model:

1. The fatigue behaviour of carbon-epoxy laminates under CA loading at any R-ratio
can be predicted based on the behaviour under fatigue loading at both the critical
R-ratio χ and the sub-critical R-ratio χS .
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2. The CLLs in the centre segment can be defined using linear interpolation by
connecting similar fatigue life datapoints on the critical and sub-critical radials.

3. The CLLs in the left and right segment can be described in a similar manner as
for the two-segment model.

Next, the model steps of the three-segment anisomorphic model are provided.

Step 1-3
The method for establishing the three-segment CLD is similar to that for the two-
segment anisomorphic model. However, additional fatigue life tests must be performed at
R = χS to establish a second input S-N curve. The sub-critical R-ratio χS can be chosen
arbitrarily but must fall within either of the two ranges defined by χ: −∞ < χS < χ or
χ ≤ χS < 0. However, based on the evaluated laminates by Kawai and Murata (2010)
and Kawai and Itoh (2014), the value of χS for laminates showing |UCS|>UTS can best
be selected as χS < χ in order to describe the most noteworthy distortions in the CLD.
On the other hand, the value of χS for laminates characterised by UTS>|UCS|, to which
also the two-segment anisomorphic model can be applied, should not influence the final
predictions significantly.

Step 4
Similar to the two-segment model, fatigue life input data must be converted to a (ψ, Nf )
form after which a curve can be fitted to the test data. Note that this procedure must
be performed twice: once for R = χ and once for R = χS . Furthermore, two fatigue
strength ratios are identified: 1) a critical ratio ψχ and 2) a sub-critical ratio ψχS .

Step 5
For fitting of a curve to experimental data, Kawai and Murata (2010) suggest a dif-
ferent, more elaborated fitting curve compared to that used for the two-segment CLD
(Equation 3.4), given as

2Nf = 1
Kχ

1
(ψχ)n

(1− ψχ)a(
ψχ − ψLχ

)b , (3.8)

where ψLχ describes the (potential) fatigue limit for HCF. In addition to the laminate-
specific fitting parameters Kχ, a, and n defined in Equation 3.4, a fourth fitting param-
eter b can be identified. Kawai and Murata (2010) recommend Equation 3.8 and do not
consider the use of Equation 3.4 for the S-N curve description of the angle-ply laminates.
However, the author of this work, as will be further argued in Chapter 4, recognises
possibilities for the use of the two-segment S-N curve expression in the three-segment
CLD approach. The selection of an S-N curve expression should not rely on the used
CLD model but instead should be based on the appropriateness of an expression to the
observed fatigue life trends. Nevertheless, this section will closely follow the method
proposed by Kawai and Murata (2010) and only Equation 3.8 will be considered.



30 Anisomorphic Constant Fatigue Life Diagrams

Step 6
The S-N curves fitted to input fatigue life data can be used to define CLL expressions.
For each CLD segment, a corresponding CLL expression can be defined as (Kawai and
Murata, 2010)

−σa − σ
χ
a

σχa
=
(
σm − σχm
UTS − σχm

)2−(ψχ)kT
if σχm ≤ σm ≤ UTS, (3.9)

− σa − σχa
σχa − σχsa

= σm − σχm
σχsm − σχm

if σχsm ≤ σm < σχm, (3.10)

−σa − σ
χs
a

σχsa
=
(
σm − σχsm
UCS − σχsm

)2−(ψχ)kC
if UCS ≤ σm < σχsm . (3.11)

Now, three expressions instead of two describe the CLLs and the transitional region
is described using linear interpolation. In addition, two parameters (kC and kT ) are
added to the functions for the compressive and the tensile segment, respectively. These
parameters are constants involved in describing the transition from a straight line to
parabolas for a changing fatigue life. In the given approach, one should first assume kT
and kC equal to 1.0 and then “adjust the values of these exponents manually taking into
account the accuracy of prediction using the three-segment anisomorphic CFL diagram.”
However, it is the author’s opinion that the procedure suggested by Kawai and Murata
(2010) might not be appropriate. The advised method seems to employ datapoints
used for validation purposes to determine the values of the exponents. In essence, it is
no longer a predictive method but is instead a descriptive method of fatigue life data.
Hence, it is not possible to guarantee the accuracy of predictions merely using data under
R = χ and χS because the value of kT and kC must be assumed while the appropriate
description of the CLL shape is still unknown. In this work, an improved method, not
relying on validation data, is proposed in Chapter 5.

Step 7
CLL expressions for each segment can be combined to form a CLL over the entire mean
stress range. Plotting several CLLs for different fatigue lives in one diagram leads to
establishment of the CLD.

Step 8
Once CLL expressions have been established and a CLD has been constructed, S-N
curves for different R-ratios can be predicted. This is done in a similar way as in the
two-segment model by finding the intersection of the radial for the R-ratio of interest with
CLLs for different values of Nf . The proper CLL expression from Equation 3.9 to 3.11
is selected based on the value of the mean stress. The radial is given by Equation 3.5.



3.4 Four-Segment Anisomorphic CLD 31

Applicability
The three-segment anisomorphic model was evaluated using carbon-epoxy (T800H/2500)
laminates with angle-ply lay-ups, namely [±30]3s, [±45]3s, and [±60]3s. As discussed in
the previous section, the two-segment CLD is applicable to the former two laminates
but not to the latter laminate. Kawai and Murata (2010) demonstrated that the three-
segment CLD is applicable to all three laminates. Based on the obtained CLD and
predicted S-N curves, it was concluded by Kawai and Murata (2010) that the predictive
accuracy increases when using a CLD with three segments. Yet, some comments can be
made. Firstly, the CLD for the [±60]3s-laminate shows an underprediction of the fatigue
life for compression-dominated loading (R < χ, i.e. σm < σχm) and an overprediction for
tension-dominated loading at R = 0.1. In addition, similar to the two-segment CLD,
fatigue life predictions for C-C loading show larger disagreements with test data. More-
over, the employed datasets for validation are again small in size. Therefore, additional
tests and evaluations must be performed for a valid conclusion on the predictive accuracy
of the three-segment anisomorphic model for carbon-epoxy angle-ply lay-ups.

Kawai and Itoh (2014) evaluated the predictive performance of the three-segment CLD
using UD carbon-epoxy (T800H/2500) laminates at different off-axis angles. A compari-
son with the two- and three-segment CLD was made and it was concluded that the use of
the three-segment CLD “greatly” (Kawai and Itoh, 2014) improves the predictions. The
predictions show an acceptable agreement with validation test datapoints but sometimes
slightly under-predict the fatigue life of different R-ratios. To improve the predictive
accuracy, Kawai and Itoh (2014) introduced a four-segment anisomorphic model that
will be discussed in the next section.

3.4 Four-Segment Anisomorphic CLD

The four-segment anisomorphic CLD, proposed by Kawai and Itoh (2014), is an extended
version of the two- and three-segment CLD to describe and predict fatigue lives of
laminates showing large differences in mean stress sensitivity for different R-ratios. An
example of a four-segment anisomorphic CLD is shown in Figure 3.4 for a carbon-epoxy
laminate with lay-up [30]16. The difference in mean stress sensitivity is clearly seen when
comparing this CLD with that for the [45/90/−45/0]2S-laminate shown in Figure 3.2.
Large variations are seen on both the left and right side of the radial for R = χ. The
four-segment anisomorphic model is capable of describing these changes and was designed
using on- and off-axis carbon-epoxy (T800H/2500) laminates with lay-ups [0]16, [10]16,
[15]16, [30]16, [45]16, and [90]16.

Several additional assumptions are made for the four-segment anisomorphic model:

1. The fatigue behaviour of carbon-epoxy laminates under CA loading at any R-
ratio can be predicted based on the behaviour under fatigue loading at the critical
R-ratio χ, left auxiliary R-ratio χL, and the right auxiliary R-ratio χR.
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Figure 3.4: Four-segment anisomorphic CLD for a carbon-epoxy laminate with lay-up [30]16
showing constant life curves for different values of the fatigue life cycles, as well as radial
lines corresponding to a constant R-ratio, reprinted from Kawai and Itoh (2014).

2. The CLLs in the centre segments can be defined using linear interpolation by
connecting similar fatigue life datapoints on the critical radial with those on the
left and right auxiliary radials.

3. The predicted CLLs in the most left and right segments can be determined in a
similar manner as for the three-segment model.

The four-segment CLD consists of four segments that are bounded by three radials.
Consequently, additional fatigue life tests must be performed under two additional R-
ratios besides the critical R-ratio, namely at 1) the left auxiliary R-ratio χL and 2) the
right auxiliary R-ratio χR. Constructing the CLD and predicting S-N curves occurs
in a similar manner as for the two- and three-segment CLD. Nonetheless, the specific
procedure and the validation of the method are discussed next.

Step 1-3
The CLD is constructed using three input S-N curves at R = χ, χL, and χR, where the
following must hold:

−∞ < χL ≤ χ ≤ χR < 0.
Both a left and a right auxiliary R-ratio were selected because, in contrast to the val-
idation laminate ([±60]3S) for the three-segment CLD, the UD off-axis laminates show
CLL distortions on both the left and right side of the R = χ radial. Including additional
input data in both regions allows for an improved description of the CLLs. Kawai and
Itoh (2014) suggest a value for the left and right auxiliary R-ratio as χL = −∞ and
χR = 0, respectively, or R-ratios that are in close vicinity of the suggested values (e.g.,
R = 10 and R = 0.1, respectively).
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Step 4
Input fatigue life data under all three R-ratios (χ, χL, χR) must be converted in terms
of the fatigue strength ratio (ψ, Nf ). Note that three different strength ratios exist: one
for each R-ratio, namely ψχ, ψχL and ψχR .

Step 5
To the transformed data, an S-N curve function can be fitted. Kawai and Itoh (2014)
suggest a normalised S-N curve expression similar to that used in the three-segment
anisomorphic model, i.e. Equation 3.8. Here, a similar remark can be made as in the
previous section concerning the application of this S-N curve function or a different
function. This view will not be further debated in this section and the reader is referred
to Chapter 4 for a more elaborate discussion.

Step 6
Input fatigue life data and fitted S-N curves can be used to define CLL expressions and
subsequently the CLD. Four CLL expressions are defined, one for each CLD segment,
where the CLLs in the centre two segments are defined using linear interpolation. The
four CLL expressions are given as (Kawai and Itoh, 2014)

−σa − σ
χR
a

σχRa
=
(
σm − σχRm
UTS − σχRm

)2−(ψχR)kT
if σχRm ≤ σm ≤ UTS, (3.12)

−σa − σ
χR
a

σχRa − σχa
= σm − σχRm
σχm − σχRm

if σχm ≤ σm < σχRm , (3.13)

− σa − σχa
σχa − σχLa

= σm − σχm
σχLm − σχm

if σχLm ≤ σm < σχm, (3.14)

−σa − σ
χL
a

σχLa
=
(
σm − σχLm
UCS − σχLm

)2−(ψχL)kC
if UCS ≤ σm < σχLm . (3.15)

These CLL functions can be combined to create a CLL over the entire mean stress range
in the CLD. Note that the parameters kT and kC are similar to those used in the three-
segment anisomorphic model. The method of obtaining the values for these exponents
is not described in detail by Kawai and Itoh (2014). Instead, it is suggested to assume
a value of 1.0 for the parameters in case of a standard four-segment anisomorphic CLD.
Comparable remarks can be made concerning the method of obtaining kT and kC as for
the three-segment CLD, especially because no estimation method has been suggested
for the four-segment CLD. However, this evaluation will not be restated in this section
and the reader is referred to Section 3.3 for a more detailed assessment.

Step 7
To establish the CLD, CLLs for different fatigue lives must be plotted in the same
diagram. This requires merging of the CLL expressions of each segment for constant
values of the fatigue life.



34 Anisomorphic Constant Fatigue Life Diagrams

Step 8
Similar to the previously described anisomorphic model versions, an S-N curve prediction
can be made by finding the intersections of the radial for a specific R-ratio (Equation 3.5)
with the appropriate CLLs for the considered mean stress (Equations 3.12 to 3.15).

Applicability
The four-segment CLD was validated by Kawai and Itoh (2014) using six UD carbon-
epoxy (T800H/2500) laminates with different off-axis angles (0°, 10°, 15°, 30°, 45°,
and 90°). Only the standard four-segment anisomorphic model was applied in which
kT = kC = 1.0. The predicted CLD and S-N curves were compared with validation test
data and it was found that the four-segment anisomorphic CLD is capable of making
acceptable predictions for the fatigue life, thereby closely following the experimentally
obtained datapoints. However, most predictions are slightly conservative, independent
of the considered laminate, stress level or R-ratio. Note that, similar to the datasets
used for validation of the two- and three-segment CLD, the datasets employed for the
validation of the four-segment anisomorphic model are limited in their size (on average
four specimens per S-N curve). Due to the small size of the datasets, which makes
the S-N curve prone to errors, conclusions on the applicability of the model are only
preliminary. Moreover, Kawai and Itoh (2014) have only provided a qualitative rather
than a quantitative evaluation. For the latter, additional fatigue life tests must be
performed.

3.5 Discussion

Three anisomorphic models have been identified in this chapter, namely the two-, three-,
and four-segment CLD model. The two-segment CLD is the most simple model to
implement and requires the least amount of test data as input (one S-N curve at R = χ).
The three- and four-segment CLD request a more extensive procedure, depending on two
and three S-N curves as input, respectively (R = χS , and R = χL and χR, respectively,
in addition to R = χ). Thereby, the latter two models directly counteract the initial
advantage offered by the two-segment anisomorphic model: the small amount of fatigue
life data needed as input because it results in the need to perform additional experimental
fatigue life tests to obtain two and three S-N curves, respectively. This increases the
expenses related to fatigue life predictions in terms of both time and costs. In Chapter 5,
a CLD model is presented that resolves this aspect of the three- and four-segment CLDs
by requiring only one S-N curve as input to provide fatigue life predictions.

All three anisomorphic models are based on the fatigue behaviour under the critical
R-ratio χ. However, χ is not an R-ratio conventionally used for fatigue life tests and,
consequently, experimental data is often not available at R = χ. More conventional
R-ratios applied during testing are R = −1, 0.1 or 10. Therefore, when implementing the
anisomorphic model, experimental data at a different R-ratio than the critical R-ratio
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is often used as input (often at R = −1 because it is closest to the real value of χ),
which directly affects the predictive accuracy of the model. Thus, it can be seen as a
disadvantage that the anisomorphic models are based on experimental data at R = χ
because it makes them less widely and less easily applicable. For accurate predictions, it
almost always implies that fatigue life tests must be performed, even when experimental
fatigue life data at a different R-ratio is readily available. Chapter 4 and 5 each present
a fatigue life prediction model that mitigates this aspect by allowing for input of fatigue
life data obtained at either R = 0.1 or R = −1.

A third point of consideration, as previously discussed in the corresponding sections
for each CLD model, is that the two-segment anisomorphic CLD is solely a fatigue life
prediction model while this aspect is questionable for the three- and four-segment CLDs.
The three- and four-segment CLD models include two additional exponents in the CLL
functions, namely kT and kC , without providing a computational method to determine
their values. If one assumes a value for these parameters solely based on the input
fatigue life data, the model is a predictive fatigue life model but its predictive accuracy
is unclear. The manner of determining the exponent values, as proposed by Kawai
and Murata (2010), indicates a more descriptive method of the fatigue life behaviour
because the values are selected by “taking into account the accuracy of prediction using
the three-segment anisomorphic CFL diagram.” This implies the use of other fatigue life
test results in addition to the two S-N curves at R = χ and χS . Thereby, a necessity
arises to conduct additional fatigue life tests on top of the two and three S-N curves
already needed. Consequently, both time and cost expenses are further increased when
employing the three- and four-segment CLD models. The CLD model presented in
Chapter 5 diminishes the need for additional fatigue life tests by adapting the CLL
expressions and removing exponents kT and kC from the function. Instead, another
parameter is introduced whose value is directly dependent on the input static strength
data rather than validation datasets.

Lastly, the anisomorphic models might not be fully applicable to C-C loading cases. Each
model showed difficulty in fatigue life predictions of the C-C loading cases, specifically
for R = 2 or 10. This can be caused by a variety of sources, for example, an inaccurate
CLL definition or the large scatter seen in C-C fatigue life data. An improvement of the
C-C predictive accuracy is of interest but will not be included in this work. Combined
with concerns raised in Chapter 2 on C-C loading, it is decided to exclude these types of
loadings in the adaptation of the anisomorphic model and instead focus on the fatigue
life prediction of T-T and T-C loading cases using a single S-N curve.

In order to address the previously mentioned issues, except the prediction of C-C loading
cases, two new CLD models are presented in this work. Chapter 4 suggests a fatigue
life prediction model for laminates characterised by UTS>|UCS|, which is an adapted
version of the two-segment model. For laminates characterised by the opposite, i.e.
|UCS|>UTS, a CLD model is presented in Chapter 5, which allows for a reduction of
the required input data compared to the three- and four-segment anisomorphic model.
Both models only employ fatigue life data of one S-N curve related to a conventional
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R-ratio of R = 0.1 or R = −1.0. In addition, no validation data is required for the
model in Chapter 5 to obtain an estimation of the model parameters, which are solely
based on static strength and fatigue life input data. Note that in this work, no CLD
model is presented for carbon-epoxy laminates with UTS=|UCS| because no datasets
are available to the author to verify which of the two models is applicable.



Chapter 4

Fatigue Life Prediction Model for
UTS>|UCS|

The two-segment anisomorphic model, presented by Kawai and Koizumi (2007) for car-
bon fibre-reinforced epoxy laminates characterised by UTS > |UCS|, has been adapted
such that experimental data obtained at a conventional R-ratio of either R = 0.1 or −1
can be employed rather than data obtained at the uncommon R = χ. The proposed
model does not distinguish between input data obtained at R = 0.1 or −1; the employed
method is similar. This chapter commences with a section covering the methodology of
the proposed model and discusses the adaptations made to the two-segment anisomorphic
model. Each step of the model is discussed in detail and the differences with the two-
segment anisomorphic model are stated for each model aspect. The second section of
this chapter presents several datasets used to analyse the performance of the proposed
model. Moreover, its predictive accuracy with respect to the two-segment anisomorphic
model is evaluated. Section 4.3 provides a similar evaluation but instead by means of an
experimental campaign.

4.1 Method

The general method of the proposed model will be presented in this section. First, an
overview of the model and its assumptions are given and the method is illustrated by
means of a flowchart. Next, every subsection provides details on different aspects of the
method such as the required input or CLL expressions. Moreover, the differences with
the two-segment anisomorphic by Kawai and Koizumi (2007) are discussed.
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The proposed model is based on similar assumptions as the two-segment CLD, given
in Section 3.2. Only the first assumption is altered, which is a direct consequence of a
changing input R-ratio:

1. The fatigue behaviour of carbon-epoxy laminates under CA loading at any R-ratio
(T-T and T-C) can be predicted based on the behaviour under fatigue loading at
an R-ratio of either R = 0.1 or −1.

1. Perform tensile and

compressive static

strength tests to obtain

UTS and UCS

2. Perform fatigue life

tests under either  

R=0.1 or R=-1.0 

3. Calculate the radial of

the constant life curve

(CLL) peaks, i.e.  

as the ratio between UCS

and UTS 

4. Set the value of  

5. Obtain the stress 

 values (    ,     ) of the 

CLL peaks 

7. Construct constant life

curves (CLL) for different

values of the fatigue life 

8. Plot several CLLs in

one diagram to obtain the

CLD 

9. Predict the S-N curve

for a certain R-ratio by

finding the intersections

between the radial and

CLLs

 

 

6. Fit a normalised  

S-N curve to the fatigue

life test data 

Figure 4.1: Flowchart depicting the proposed model for carbon-epoxy laminates charac-
terised by UTS>|UCS|.

A flowchart of the steps taken to construct a CLD and predict S-N curves using the
proposed model is shown in Figure 4.1. Next, a short explanation of each different
step is provided. For a detailed description of each step, the reader is referred to the
corresponding subsections. An example of the proposed CLD is shown in Figure 4.2

1. Static strength test data, in the form of UTS and UCS, is required as input to the
model. (Subsection 4.1.1)

2. CA fatigue life tests are performed at either R = 0.1 or R = −1.0. The R-ratio can
be chosen by the user. (Subsection 4.1.1)

3. The value of the critical R-ratio χ can be calculated as the ratio between UCS and
UTS (Equation 3.1).

4. The value of σB must be defined in order to determine ψχ in the next step.
(Subsection 4.1.2)
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5. The peak stress values on the R = χ radial are determined using the CLL expres-
sions and fatigue life input data at R = 0.1 or −1. (Subsection 4.1.5)

6. A normalised S-N curve expression ψχ = f−1 (2Nf ) is fitted to the calculated peak
stress values forR = χ in order to describe the critical S-N curve. (Subsection 4.1.3)

7. CLLs for different values of the fatigue life Nf can be constructed using the fitted
critical S-N curve. (Subsection 4.1.4)

8. The CLD is obtained by combining several CLLs in the same diagram. (Subsec-
tion 4.1.6)

9. An S-N curve at a different R-ratio than the input R-ratio can be predicted by
determining intersections of the CLLs with the radial corresponding to the R-ratio
of interest. (Subsection 4.1.7)

Figure 4.2: Proposed CLD model describing the fatigue behaviour of carbon-epoxy lami-
nates characterised by UTS>|UCS|.

Note that there are large similarities between the proposed model and the two-segment
model by Kawai and Koizumi (2007), presented in Chapter 3. Therefore, similar model
aspects will not be explained in large detail, instead the reader is referred to Chapter 3
for additional clarification. The main differences between the models can be found in
the used input data and the additional step to predict CLL peaks. Especially the second
difference is large: where the two-segment anisomorphic model obtains the stress values
for the CLL peaks directly by fitting a curve to fatigue life data at R = χ, the proposed
model requires solving of a set of equations, consisting of the CLL expression and the
radial function for R = χ in order to find the CLL peaks. This additional model step is
explained in detail in Subsection 4.1.5.
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4.1.1 Input Data (Step 1 and 2)

The proposed model requires two experimental datasets as input. Firstly, similar to the
two-segment CLD, it requires the values of UTS and UCS. Secondly, different from the
two-segment CLD, experimental fatigue life data obtained at either R = 0.1 or −1 must
be available. The required size of experimental datasets was discussed in Chapter 2.

4.1.2 Determination of χ and σB (Step 3 and 4)

Static strength and fatigue life input data can be used to determine the value for R = χ
and σB in step 3 and 4, respectively. Similar to the two-segment anisomorphic model,
the proposed method assumes that CLLs show an amplitude stress peak at the radial
corresponding to the critical R-ratio χ and that the CLD can be defined using two
segments bounded by the R = χ radial. Therefore, as will be seen in Subsection 4.1.5
for step 5, it is required to determine the exact location of these peaks. Consequently,
it is required to determine the value of χ.

In addition to the critical R-ratio χ, the value of σB must be defined. This is also
required for step 5 (Subsection 4.1.5), where the critical fatigue strength ratio ψχ is used
in the CLL expressions. ψ is defined as in Equation 3.2. The value for σB is set as
σB =UTS, independent of the input R-ratio and solely dependent on static strength
data. Note that this is different from the two-segment anisomorphic model where σB is
obtained using extrapolation of the S-N curve.

4.1.3 S-N Curve Expression (Step 6)

Several S-N curve functions are available of which several examples are provided in
AppendixA. An S-N curve expression should provide an accurate description of the
dataset. For example, if the experimental data shows a strong non-linearity, the use of a
linear curve is not suitable. A detailed trade-off between different S-N curve expressions
will not be conducted. Instead, in order to remain close to the anisomorphic model
and allow for a straightforward comparison with the model proposed in this chapter,
Equation 3.4 will be employed in the remainder of this work. This expression was
preferred over Equation 3.8 because the latter employs five model parameters which
implies the need of at least five experimental datapoints for fitting. An underdetermined
system is obtained if less datapoints than fitting parameters are available (i.e., more
equations than unknowns). Because a limited amount of experimental data is available
for evaluation purposes (Section 4.2 and 4.3), Equation 3.4 was selected to avoid fitting
difficulties. Nonetheless, note that for some laminates an improved description of the
fatigue life test data might be obtained using a different S-N curve expression. These
can be easily implemented by the reader since this will not alter any other steps of the
model.
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Note that in order to fit the curve to a dataset, it is required to transform fatigue life
datapoints to the ratio ψ (Equation 3.2). After converting fatigue life data to the (ψ, Nf )
format, Equation 3.4 can be fitted using a Least Squares Percentage Regression (LSPR)
technique, discussed in detail in AppendixA. Once the values for the fitting parameters
Kχ, a, and n are obtained, an S-N curve describing the fatigue life is obtained.

Note that, in the proposed model, it is not required to fit the curve to the input fatigue
life data under R = 0.1 or R = −1.0. Yet, it is possible if one wants to describe test data.
Instead, the curve must be fitted to the CLL amplitude stress peaks corresponding to
R = χ, as explained in more detail in Subsection 4.1.5.

4.1.4 Constant Life Lines (Step 7)

The CLLs are defined similar to the two-segment anisomorphic model and given by
Equation 3.6 and 3.7. The CLL peaks are again located on the radial for R = χ. Note
that σχa and σχm, describing the peak stresses, are unknown because there is no fatigue
life test data available under R = χ. In order to construct the CLL, it is required to
determine their values, for which the procedure is presented in the next subsection.

4.1.5 Determination of CLL Peaks and Peak S-N Curve (Step 5)

The two CLD segments are bounded by the radial corresponding to R = χ at which the
CLL peaks are located. This is also shown in Figure 4.2. A range of related mean and
amplitude stress combinations (σχm, σχa ) on the R = χ radial can be determined as

σχa
σχm

= 1− χ
1 + χ

. (4.1)

However, the fatigue life Nf corresponding to each (σχm, σχa )-combination is unknown:
each CLL for a constant value of Nf intersects the radial, but its exact location of
intersection is unknown. The intersection point of the CLL with the radial for R = χ,
and thus the location of the CLL peak (Nf , σχm, σχa ), can be determined by combining
the formulas for the CLL and the radial. Then, the set of equations that must be solved
to obtain the peak locations is given as

σIa = σχa

1−
(
σIm − σχm
UTS − σχm

)2−ψχ
 if σχm ≤ σIm ≤ UTS, (4.2)

σIa = σχa

1−
(

σIm − σχm
UCS − σχm

)2−ψχ
 if UCS ≤ σIm < σχm, (4.3)

σχa = σχm
1− χ
1 + χ

. (4.4)
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The set of equations can now be solved for σχm and σχa using the experimental data input.
Both UTS and UCS are known from static strength tests and fatigue life data for either
R = 0.1 or R = −1 is available. The fatigue life test datapoints can be used to define a
range of unique combinations of (Nf , σIm, σIa). Note that all stress value combinations for
different Nf are located on one radial related to either R = 0.1 or R = −1. The critical
fatigue strength ratio ψχ is related to the stress level at the CLL peak and defined as
Equation 3.2. In this equation, σB equals UTS and σχmax is a function of σχm and σχa ,
given as

• σχmax = σχm + σχa if σχm > 0, i.e. if −1 < χ < 1,

• σχmax = σχm − σχa if σχm < 0, i.e. if χ < −1,

• σχmax = σχa if σχm = 0, i.e. if χ = −1.

Summarising, in order to find the locations of the CLL peaks located on the radial
related to R = χ, the set of Equations 4.2 to 4.4 must be solved. The variables UTS,
UCS, and (σIm, σIa) stresses corresponding to the considered Nf are known from the input
dataset. The ratio ψχ is a function of UTS, σχm, and σχa . Thereby, it becomes possible
to solve the set of equations for σχm and σχa corresponding to Nf , resulting in a range of
(Nf , σχm, σχa )-combinations. Note that the values of Nf are equal to those found during
the fatigue life tests but that the corresponding stresses are different since they relate to
a different R-ratio. Combining the stresses at R = χ for different fatigue lives, an S-N
curve can be described for R = χ and the S-N curve expression defined in Subsection 4.1.3
can be fitted to the obtained peak stress combinations. Now, a continuous S-N curve
for R = χ has been predicted. In the next subsection, an explanation is provided how
to employ this newly obtained S-N curve to construct CLLs and a CLD.

4.1.6 Constant Life Diagram (Step 8)

Next, it is possible to construct CLLs and a CLD using the predicted CLL peaks. In
the previous subsection, an S-N curve expression was fitted to the predicted CLL peaks,
thereby obtaining a continuous function describing fatigue life-stress combinations on
the R = χ radial. Now, for each value of Nf , it is possible to obtain the correspond-
ing peak mean and amplitude stress combination (Nf , σχm, σχa ). Consequently, using
Equations 3.6 and 3.7, it is possible to construct several CLLs for different fatigue lives.
Combining these CLLs results in the CLD for the laminate. Note that, similar to the
two-segment anisomorphic model, all CLLs converge to either σm =UTS or σm =UCS
on the x-axis for σa = 0 (i.e., R = 1). The CLLs for Nf = 1, defining the CLD boundary,
are reduced to linear curves, given as

σa = UTS − σm if σχm ≤ σm ≤ UTS,
σa = UCS + σm if UCS ≤ σm < σχm.

(4.5)
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4.1.7 S-N Curve Prediction (Step 9)

After the CLLs have been established, the mean S-N curves for different R-ratios can be
predicted. This occurs in a similar manner as for the two-segment anisomorphic model
by finding the intersection of the CLL with the radial corresponding to the R-ratio of
interest. Details on the exact procedure of deriving an S-N curve from a CLD can be
found in Section 3.2.

4.2 Validation using Datasets from Literature

To evaluate the performance of the model presented in this chapter, test data from several
carbon-epoxy laminates found in literature is used. Each subsection discusses the results
from the proposed model for one laminate separately. Moreover, each subsection includes
a quantitive comparison between the predictive accuracies of the proposed model and
the two-segment anisomorphic model by Kawai and Koizumi (2007).

Three carbon-epoxy laminates are employed to evaluate the predictive performance. In
order to allow for a comparison with the two-segment anisomorphic model, evaluations
can only occur using laminates for which fatigue life test results at R = χ, 0.1, and
−1 loading are available. Test results of an R-ratio close to R = χ (e.g., in some cases
the value of χ approaches −1) can also be used to substitute for R = χ. However, this
might affect fatigue life predictions by the two-segment anisomorphic model. In order to
perform a straightforward comparison of both models, this option will not be considered
and only laminates for which test results at R = χ are available will be evaluated.
However, these are not commonly available for laminates considered in literature and
therefore the datasets of three laminates, presented by Kawai and Koizumi (2007), are
employed. Their lay-ups are given as:

1. [45/90/−45/0]2S

2. [0/60/−60]2S

3. [0/90]3S

Kawai and Koizumi (2007) did not only present the experimental datasets but also the
fatigue life predictions by the two-segment anisomorphic model. In the next subsec-
tions, these will be employed in the comparison of the predictive accuracies. First, in
Subsection 4.2.1, the employed error metrics will be considered.
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4.2.1 Error Metrics

In order to compare the models, it is required to evaluate the fatigue life predictions made
using each model with test results and subsequently compare their predictive accuracy.
This subsection will commence with an explanation of the manner of comparison, after
which each error metric is defined.

The most straightforward comparison is between the predicted S-N curve and individual
test results. However, single datapoints, especially outliers, can largely influence the
obtained quantitative errors, which can result in a misleading impression of the predic-
tive accuracy. An improved evaluation can be obtained by fitting an S-N curve to the
validation dataset. Subsequently, a comparison between the best-fit and the predicted
S-N curve can be performed at each stress level corresponding to a test datapoint. This
will minimise the influence of outliers on the obtained quantitative errors. Note that the
difference in fatigue life must be compared for a given applied stress level rather than
the stress level for a given fatigue life because the stress level is the independent variable
while the corresponding fatigue life is the dependent variable (Chapter 2).

The difference between the predicted and true (following the best-fit S-N curve) fatigue
life can be quantified by means of the relative difference. It is of importance to look at
the relative rather than the absolute error because the latter will lead to an incorrect
judgement of the predictive accuracy. For instance, a difference of 10 cycles at a true
value of Nf = 100 will have a larger impact than a misprediction of 10 cycles on a true
fatigue life of Nf = 106. Therefore, relative errors will be used, which will provide a
comprehensible result of the true implications on all fatigue life scales (i.e., for 2Nf = 103

to 2Nf = 106).

Four error metrics will be employed, namely:

1. Mean Average Percentage Error (MAPE),

2. Mean Normalised Bias (MNB),

3. Root Mean Squared Percentage Error (RMSPE),

4. Sum of Squared Errors of Prediction (SSE).

MAPE provides an indication on the magnitude of the average percentage relative dif-
ference between the predicted and true mean fatigue life. It is defined as

MAPE = 100%
n

n∑
i=1

∣∣∣∣Ti −Mi

Ti

∣∣∣∣ , (4.6)

where Mi and Ti are the predicted and true fatigue life, respectively, and n is the size
of the test dataset.
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MNB indicates whether the model over- or under-predicts the true fatigue life. Its value
can be calculated using

MNB = 100%
n

n∑
i=1

Ti −Mi

Ti
. (4.7)

The third error metric, RMSPE, is defined as

RMSPE =

√√√√ 1
n

n∑
i=1

(
Ti −Mi

Ti
· 100%

)2
. (4.8)

Lastly, the SSE will be employed to provide an indication on the performance of the
model. The previously introduced relative percentage errors have a disadvantage that
the errors are biased (Shcerbakov et al., 2013). Under-predictions always lead to better
results than over-predictions because for under-predictions the percentage error cannot
exceed 100% (Tofallis, 2015). Since a comparison will be made of both models, also the
logarithmic error measure SSE is introduced. This error measure provides an opposite
effect: it penalises an under-prediction more than an over-prediction of the fatigue life.
If a difference is seen between the models based on the SSE and the percentage errors,
the models should be analysed more closely to judge which one results in more accurate
predictions. The SSE is defined as

SSE =
n∑
i=1

(log (Ti)− log (Mi))2 . (4.9)

A few additional remarks must be made before evaluating the models. Firstly, only
fatigue life predictions are compared for the stress levels corresponding to experimental
datapoints. This also implies that no comparison of the static strength prediction occurs.
Secondly, in order to provide a forthright comparison of both models, the model by
Kawai and Koizumi (2007) was slightly adapted by applying a LSPR method to fit
Equation 3.4 rather than ‘visual fitting’ as originally employed by Kawai and Koizumi
(2007) (AppendixA). This ensures that only the effect of a changing input dataset is
compared. Moreover, the determination of σB for the two-segment CLD model was kept
similar to the manner described by Kawai and Koizumi (2007). The last made remark
relates to the employed errors; it is of importance to recognise that their values do not
provide a decision on whether or not predictions made by each model are accurate.
They merely provide an indication on the performance of the models with respect to one
another. Moreover, note that it is only an indication; all error measures are biased and
should only be evaluated in correspondence with the presented S-N curve figures.
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4.2.2 [45/90/− 45/0]2S

The first laminate used for validation is a carbon-epoxy (T800H/3631) laminate with lay-
up [45/90/−45/0]2S for which the experimental data was presented by Kawai and Koizumi
(2007). The reader is referred to the corresponding paper for details on manufacturing
and testing. The experimental data has also been included in AppendixD. Note that the
dataset used for input and validation are limited in size; the smallest datasets corresponds
to R = χ and consists of five fatigue life datapoints. The other three datasets (R = 0.1,
0.5, and −1) each contain six datapoints. A discussion on the risks related to small-sized
datasets was provided in Chapter 2 and should be taken into account when assessing
the provided evaluation. The focus in this subsection lies on the S-N curve and CLD
predictions made using the proposed model, as well as its predictive accuracy compared
to that of the two-segment CLD.

The critical stress ratio χ was found to equal −0.68. For the model proposed in this work,
the critical S-N curve for R = χ was predicted using either input fatigue life data at
R = 0.1 or −1 and Equation 3.4 was fitted to the obtained critical datapoints. For the two-
segment anisomorphic CLD, Equation 3.4 was fitted directly to the experimental fatigue
life datapoints. The values for the fitting parameters for both models are presented in
Table 4.1.

Table 4.1: Model fitting parameters for the S-N curve describing the fatigue life under the
critical R-ratio χ, determined using different input datasets (i.e., R = 0.1 and R = −1).

Input R-ratio Kχ a n
R = 0.1 1.39 0.018 13.58
R = −1 0.024 0.22 9.02
R = χ 0.0084 0.27 9.14

The predicted CLDs by the proposed model are shown in Figure 4.3a and 4.3b when using
the fatigue life datasets for R = 0.1 and −1 as input, respectively. Small differences are
seen in the predicted CLDs. For example, when R = −1 is used as input, fatigue lives
are over-predicted for most load cases, while both over- and under-predictions are seen
when R = 0.1 is used as input. Especially a large variation is seen in the predicted
CLLs corresponding to 2Nf = 103 and 2Nf = 104: the predicted CLLs by means of
R = 0.1 input data show lower stresses and are less accurate than those obtained using
the R = −1 dataset.

Next, the predicted S-N curves for different R-ratios will be discussed in more detail.
The S-N curves, predicted using both models, are presented in Figure 4.4 for a) R = 0.5,
b) R = 0.1, c) R = −1, and d) R = χ = −0.68. In addition, the best-fit S-N curve
(Equation 3.4) to the test dataset is shown by means of a dashed line. The error measures
were determined for each predicted S-N curve and are included in Table 4.2.
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b)	

a)	

Figure 4.3: Constant fatigue life diagram for [45/90/ − 45/0]2S carbon-epoxy laminate,
obtained using the proposed model with a) R = 0.1 and b) R = −1.0 fatigue life data as
input.

Evaluating the results, it can be concluded that fatigue life predictions for R = 0.5
and 0.1 by means of the proposed model are slightly less accurate than the original
two-segment CLD model. Yet, all predicted curves are in vicinity of the experimental
data. The S-N curve predictions for R = 0.5 are similar by all models, showing a slight
tendency to over-prediction. The predicted curves by R = 0.1 and χ are indicating a
similar trend for 2Nf < 104 but deviate for higher fatigue cycles; R = 0.1 predicts a less
fatigue sensitive behaviour than R = χ but remains closer to the best-fit curve. R = −1
shows larger over-predictions for lower values of Nf , which is also penalised by the error
measures, as seen in Table 4.2. However, for higher fatigue lives, the curve intersects the
best-fit curve and predicts lower fatigue lives. Evaluating Figure 4.4c for R = −1, the S-N
curve predictions by R = χ and 0.1 intersect one another at approximately 2Nf = 3 ·104.
For lower fatigue cycle values, R = χ provides closer predictions, while R = 0.1 provides
better predictions for higher fatigue cycles. From Table 4.2, it is clear that the bias for
R = 0.1 is more than six times smaller than R = χ. This effect can also be seen in
Figure 4.4c in the predicted S-N curves: while the curve by R = χ underpredicts the
fatigue life for all scales, the curve by R = 0.1 shows both under- and over-predictions,
intersects the best-fit curve, and is in closer vicinity to the experimental data.
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Table 4.2: Error metrics for the fatigue life prediction of [45/90/ − 45/0]2S by means of
the proposed (input of R = 0.1 and R = −1.0) and two-segment anisomorphic CLD.

Input R-ratio MAPE [%] MNB [%] RMSPE [%] SSE [-]
R=0.5

R = 0.1 330.85 330.85 344.7 12.6
R = −1 423.1 423.1 534.27 15.16
R = χ 113.3 100.7 150.5 3.93

R=0.1
R = −1 113.3 108.9 141.4 3.76
R = χ 26.5 -9.86 31.4 1.02

R=-1.0
R = 0.1 66.8 7.33 78.2 5.06
R = χ 45.4 -45.4 45.9 2.35

R=χ
R = −1 99.86 99.86 100.0 2.40
R = 0.1 91.2 48.50 142.7 3.09

a)	 b)	

c)	
R=-1.0	

R=0.5	 R=0.1	

R=χ	
d)	

Figure 4.4: Fatigue life predictions for [45/90/ − 45/0]2S by the proposed model (input
R = 0.1 or R = −1.0) and the two-segment CLD (input R = χ). In addition, experi-
mentally obtained fatigue lives are depicted. Fitted and predicted S-N curves are shown for
a) R = 0.5, b) R = 0.1, c) R = −1.0, and d) R = χ. The legend is the same for all figures.
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4.2.3 [0/60/− 60]2S

The carbon-epoxy (T800H/3631) laminate with lay-up [0/60/−60]2S can be used to
validate the proposed model. Experimental test results for this laminate were presented
by Kawai and Koizumi (2007) and the reader is referred to the corresponding paper for
details on manufacturing and testing. The employed test datapoints have been included
in AppendixD. Note that the employed fatigue life datasets are limited with the dataset
corresponding to R = −1 consisting of five test results (including 1 run-out) and the
datasets for the other R-ratios consisting of six datapoints. This can influence the
conclusions made on the predictive accuracy of the models in this subsection.

The critical R-ratio χ is −0.53 with UTS= 880.5MPa and UCS= −465.1MPa. The
model fitting parameters for Equation 3.4, fitted to the predicted R = χ fatigue life
datapoints using the model proposed in this chapter, are presented in Table 4.3. The
fitting parameters are shown for both cases: when R = 0.1 and when R = −1 fatigue
life data is used as input. In addition, the values of the fitting parameters are included
when fitting Equation 3.4 directly to experimental datapoints obtained at R = χ.

Table 4.3: Model fitting parameters for the S-N curve describing the fatigue life under the
critical R-ratio χ, determined using different input datasets (i.e., R = 0.1 and R = −1).

Input R-ratio Kχ a n
R = 0.1 0.0042 0.30 13.27
R = −1 5.34 ·10−5 0.51 3.67
R = χ 0.0019 0.34 9.88

The predicted CLDs by the proposed model are presented in Figure 4.5a and 4.5b when
R = 0.1 and −1 data is used as input, respectively. Datapoints representing fatigue lives
for different R-ratios, derived by fitting an S-N curve expression through the experimental
dataset, have also been included in the CLD. Small differences are seen between the two
CLDs: where the CLD in Figure 4.5a shows equally spaced CLLs, the CLD in Figure 4.5b
indicates a large LCF plateau, followed by a rapid decrease in stress for higher Nf values.
Next, the CLDs can be used to predict S-N curves for different R-ratios, as discussed
next. The S-N curves are also predicted using the two-segment anisomorphic model, of
which the CLD is presented by Kawai and Koizumi (2007), and a comparison between
both models is provided.

The S-N curve fitting to the R = 0.1 fatigue life dataset initially posed challenges caused
by an outlier. This outlier, i.e. (σmax, 2Nf )=(748.5MPa, 1818), greatly influenced the
fitted curve as shown in Figure 4.6. Consequently, this also impacted CLD and fatigue
life predictions by the proposed model. An improved fitting is presented in Figure 4.7b,
of which the fitting parameters have been included in Table 4.3. Note that the improved
fitting was employed for the previous presented CLD prediction in Figure 4.5a.
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b)	

a)	

Figure 4.5: Constant fatigue life diagram for [0/60/ − 60]2S carbon-epoxy laminate,
obtained using the proposed model with a) R = 0.1 and b) R = −1.0 fatigue life data
as input.

Figure 4.7 presents the predicted S-N curve for a) R = 0.5, b) R = 0.1, c) R = −1, and
d) R = χ = −0.53 by the model proposed in this work and the two-segment anisomorphic
CLD. The corresponding error measures are determined for each predicted S-N curve
and included in Table 4.4. Instantly, the shape of the predicted S-N curves by R = −1
stands out. It is different from the other S-N curves, both predicted and fitted, and the
predictions are less accurate than those obtained using R = 0.1 and R = χ. This effect
is caused by the R = −1 dataset from which these predictions where derived. As seen in
Figure 4.7c, four datapoints are concentrated in one fatigue life region and one run-out is
present. This leads to a best-fit S-N curve with a large LCF plateau followed by a large
fatigue life sensitivity. Employing the R = −1 dataset leads to an extrapolation of the
predictions to lower and higher fatigue lives of which the accuracy is not guaranteed by
the proposed model. It is expected that when additional fatigue life tests are performed
at R = −1 for different stress levels, thereby obtaining an input dataset describing a
larger fatigue life range, improved prediction results will be acquired.

Noticeable in Table 4.4 are the error measures for the R = 0.1 fatigue life predictions
which indicate a slightly better prediction when R = −1 is used as input rather than
R = χ. When evaluating Figure 4.7b, one would expect a better performance by R = χ.
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Figure 4.6: Fitted S-N curve to R = 0.1 experimental validation data containing out-
lier (σmax, 2Nf )=(748.5MPa, 1818), including experimental validation data and a 90%
confidence band.

The conclusion based merely on the error measure is caused by the validation dataset
of R = 0.1. The R = 0.1 dataset consists of applied stress levels that are in close range
of one another, only the corresponding fatigue lives describe a slightly wider range but
lack in values for 2Nf < 5 · 104. Remember that the error measures are calculated
by evaluating the difference in fatigue life on each stress level of the dataset. In the
applied stress range, both predicted S-N curves are in vicinity of one another and the
best-fit curve. This results in low values of the error measures and a conclusion that
R = 0.1 results in better predictions. Evaluating Figure 4.7b, a different conclusion
should be drawn. This again demonstrates the importance of a good and wide-ranged
experimental dataset, not only those used as input but also for those used for validation
purposes.
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Table 4.4: Error metrics for the fatigue life prediction of [0/60/ − 60]2S by means of the
proposed model (input of R = 0.1 and R = −1.0) and two-segment anisomorphic CLD.

Input R-ratio MAPE MNB RMSPE SSE
R=0.5

R = 0.1 448.3 433.7 611.7 13.04
R = −1 1813 1774 2884 32.95
R = χ 340.1 292.6 487.8 12.32

R=0.1
R = −1 37.98 -22.24 46.65 2.82
R = χ 57.57 -57.57 58.53 3.50

R=-1.0
R = 0.1 96.70 -8.23 108.6 9.07
R = χ 60.70 -60.70 68.67 8.85

R=χ
R = −1 307.6 289.3 448.6 11.29
R = 0.1 156.5 153.6 219.0 5.60

a)	 b)	

c)	
R=-1.0	

R=0.5	 R=0.1	

R=χ	
d)	

Figure 4.7: Fatigue life predictions for [0/60/−60]2S by the proposed model (input R = 0.1
or R = −1.0) and the two-segment CLD (input R = χ). In addition, experimentally ob-
tained fatigue lives are depicted. Fitted and predicted S-N curves are shown for a) R = 0.5,
b) R = 0.1, c) R = −1.0, and d) R = χ. The legend is the same for all figures.
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4.2.4 [0/90]3S

The third laminate used for validation of the proposed model is a carbon-epoxy
(T800H/2500) laminate with a cross-ply lay-up [0/90]3S of which the experimental test
results for this laminate were presented by Kawai and Koizumi (2007). The datasets
are included in AppendixD. The datasets for each R-ratio are limited in size. The
smallest dataset corresponds R = 0.1 and consists of only two datapoints while the
largest available dataset corresponds to R = χ and contains six datapoints. Except
for R = χ, datasets do not contain a sufficient number of test results considering
the recommendations by ASTM (1980 (2015)) (Chapter 2). Conclusions based on the
validation provided in this subsection are only preliminary and it is recommended to
include additional test data. Yet, the evaluation is performed using this laminate to
allow for a comparison with the two-segment anisomorphic model.

The critical stress ratio χ equals −0.44 with UTS = 1414.1MPa and UCS = −618.0MPa.
Note that UTS and UCS were determined by Kawai and Koizumi (2007) using only
one specimen for each test. For more reliable results, it is recommended to perform
additional static strength tests. Equation 3.4 is fitted to the experimental data and the
predicted fatigue lives for R = χ, for which the fitting parameters are presented in
Table 4.5.

Table 4.5: Model fitting parameters for the S-N curve describing the fatigue life under the
critical R-ratio χ, determined using different input datasets (i.e., R = 0.1 and R = −1).

Input R-ratio Kχ a n
R = 0.1 0.12 0.13 10.91
R = −1 2.29 1.0 ·10−6 14.49
R = χ 1.27 0.022 12.97

The CLLs, predicted using fatigue life data at R = 0.1 or R = −1 as input to the model
presented in this chapter, are shown in Figure 4.8a and 4.8b, respectively. In addition,
fatigue lives derived from S-N curves fitted through the experimental datasets have been
included. For both CLDs, it is seen that the model predicts fatigue lives similar to the
experimental data and between the two CLDs only minimal differences can be found.
The CLD predicted using the two-segment anisomorphic model has been presented by
Kawai and Koizumi (2007). Next, the S-N curve predictions for different R-ratios derived
from the CLDs are compared with experimental test results.
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b)	

a)	

Figure 4.8: Constant fatigue life diagram for [0/90]3S carbon-epoxy laminate, obtained
using the proposed model with a) R = 0.1 and b) R = −1.0 fatigue life data as input.

Fatigue life predictions for the [0/90]3S-laminate are shown in Figure 4.9. The S-N
curves are predicted for four R-ratios, namely a) R = 0.5, b) R = 0.1, c) R = −1, and
d) R = χ = −0.44, using three different R-ratios as input, i.e. R = χ, R = 0.1, and
R = −1. In Table 4.6, the corresponding error measures are presented. In Figure 4.9a) it
is seen that the S-N curves for R = 0.5 all provide predictions in close correspondence
with the two experimental datapoints corresponding to fatigue life cycles in the range
of 105 < 2Nf < 106 while for lower fatigue lives an over-prediction occurs. For R = 0.1,
the S-N curve predictions by R = −1 are in closer proximity to the best-fit curve than
R = χ, as also confirmed by the error measures in Table 4.6. The predicted S-N curves
for R = −1 (Figure 4.9c) show small differences and are in proximity of the best-fit curve
to the validation dataset. Table 4.6 indicates a slightly better predictive performance by
R = 0.1, most likely caused by the more accurate prediction of the three datapoints in
the range: 3 · 105 < 2Nf < 8 · 105.
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Table 4.6: Error metrics for the fatigue life prediction of [0/90]3S by means of the proposed
model (input of R = 0.1 and R = −1.0) and two-segment anisomorphic CLD.

Input R-ratio MAPE MNB RMSPE SSE
R=0.5

R = 0.1 749.6 749.6 1057 15.34
R = −1 347.5 347.5 429.8 8.50
R = χ 223.1 207.0 302.4 5.56

R=0.1
R = −1 37.16 -21.57 42.96 0.80
R = χ 56.14 -56.14 57.45 1.66

R=-1.0
R = 0.1 63.95 5.28 78.28 1.76
R = χ 48.28 -42.88 53.34 2.85

R=χ
R = 0.1 150.5 150.5 184.1 5.13
R = −1 88.81 88.81 105.1 2.69

a)	 b)	

c)	
R=-1.0	

R=0.5	 R=0.1	

d)	
R=χ	

Figure 4.9: Fatigue life predictions for [0/90]3S by the proposed model (input R = 0.1 or
R = −1.0) and the two-segment CLD (input R = χ). In addition, experimentally obtained
fatigue lives are depicted. Fitted and predicted S-N curves are shown for a) R = 0.5, b)
R = 0.1, c) R = −1.0, and d) R = χ. The legend is the same for all figures.
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4.2.5 Conclusion
Fatigue life predictions made using the model proposed in this chapter for three carbon-
epoxy laminates found in literature, characterised by UTS>|UCS|, have been compared
with predictions made using the two-segment anisomorphic CLD by Kawai and Koizumi
(2007). Based on the presented evaluations, it can be concluded that the fatigue life
prediction model proposed in this chapter is capable of providing a similar accuracy as the
two-segment anisomorphic CLD model by Kawai and Koizumi (2007) for the considered
carbon-epoxy laminates. Moreover, the predictions for the evaluated laminates lie in the
same order of magnitude as the experimental fatigue life data.
Evaluating the results in detail, a general trend can be discovered for the prediction of
R = 0.5 loading. This loading ratio is always slightly over-predicted, independent of
which model is employed. For the other three considered R-ratios, no clear trend can
be identified among the models and S-N curve predictions are always centrally located
through the experimental data. Note that these conclusions are based on experimental
datasets of which some consisted of less datapoints than the prescribed minimum of
six by (Chapter 2), which might have influenced the results significantly, as seen for the
[0/60/−60]2S-laminate. Therefore, the analysis provided in this subsection can only be
seen as preliminary and it is strongly recommended to perform additional evaluations
of the predictive accuracy by reviewing additional laminates as well as larger datasets.
Only in such a way, a reliable conclusion on the predictive accuracy of the proposed
model with respect to the two-segment anisomorphic model can be obtained.

4.3 Validation using an Experimental Campaign

In order to further validate the proposed model, an experimental campaign was designed
and executed. Several carbon-epoxy specimens of the same lay-up were manufactured
and tested to assess the predictive accuracy of the model. The first subsection concisely
outlines the main steps taken in the experimental campaign. This is followed by a sub-
section providing an evaluation of the results using both the two-segment anisomorphic
and the adapted CLD model.

4.3.1 Experimental Campaign: Process

This subsection outlines the steps taken during the experimental campaign; starting at
laminate manufacturing up to the testing procedures that were followed.

Material

The material used for manufacturing of the specimens is a Hexcel AS4/8552 UD prepreg
ply. The AS4 fibres are continuous carbon fibres while the 8552 resin is an amine cured
epoxy resin. Even though the material had passed its expiration date at the time of
manufacturing, its tackiness was judged as sufficient for usage.
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Laminate and specimen manufacturing

A laminate with an average thickness of 2.285mm and a [90/0/90]2S lay-up was man-
ufactured from the AS4/8552 prepreg. A hand lay-up was conducted and a debulking
procedure was performed after every three plies. After lay-up, the laminate was cured
in an autoclave following a cycle recommended by the manufacturer. The curing cycle
has been included in AppendixB.

After curing, the laminate was roughly cut using a Carat liquid-cooled diamond saw,
followed by more precise cutting using a Proth Industrial liquid-cooled saw to obtain
the rectangular specimens. Specimens of two different nominal sizes were cut. On the
one hand, for the static strength and T-T tests, specimens with a length of 250mm
and a width of 25mm were cut according to ASTM standard D3039/D3039M and
D3479/3479M (ASTM, 1971 (2017)) (ASTM, 1976 (2012)). On the other hand, for
the compressive strength and T-C tests, specimens with a length of 140mm and a width
of 12mm were cut following ASTM standard D6641/D6641M (ASTM, 2001).1 The
specimens for compressive strength and T-C tests are smaller in order to reduce the
chance of buckling during compressive loads because it was decided to not include an
ABD during testing since this will likely alter the test results (Chapter 3). To avoid
buckling during compressive loading, ASTM standard D6641/D6641M (ASTM, 2001)
recommends a gauge length of 12mm. However, due to limitations of the fatigue testing
machine, the minimum gauge length during testing equals 17mm. Any specimen showing
buckling failure was omitted from the final results. An overview of the specimen geometry
and number of specimens for each type of test is shown in Table 4.7. Note that the
number of specimens depends on the considered R-ratios. The selection of R-ratios for
testing is discussed in more detail in the paragraphs on the testing procedure.

After cutting of the specimens, their sizes were measured and inspected for any damage
visible to the naked-eye. In addition, paper tabs with a thickness of approximately
0.15mm were glued on both ends of each specimen for an increased clamping grip during
testing. The adhesive used for this purpose is cyanoacrylate (also known as super glue).

Table 4.7: Performed tests with corresponding geometry and number of tests.

Test type Number of tests Specimen geometry

Tensile strength test 4 250x25mm
Compressive strength test 6 140x12mm
Fatigue life test (T-T): R = 0.1 8 250x25mm
Fatigue life test (T-C): R = −1.0 22 140x12mm
Fatigue life test (T-C): R = χ 14 140x12mm

1 A more recent version of this standard (ASTM, 2001 (2016)) suggests a nominal width and gauge
length of 13mm. However, a cutting plate for the Proth Industrial tool was available that was based on
the previous version of the standard. Due to the small difference in width, it was chosen to follow the
earlier version of the standard rather than the most recent version.
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Testing Procedure

Two types of tests were performed during the experimental campaign: 1) static strength
and 2) fatigue life tests. All tests were performed using an in-house developed 60kN
fatigue machine with hydraulic grip. No attempt was made to control temperature or
humidity during testing. All tests were performed at room temperature (∼ 23°C).

Tensile and compressive static strength tests were displacement controlled at a nom-
inal rate of 2.0 and 1.3mm/min following ASTM standard D3039/D3039M (ASTM,
1971 (2017)) and D6641/D6641M (ASTM, 2001 (2016)), respectively. The tensile and
compressive tests were repeated for four and six samples, respectively.

Contrary to the static strength tests, fatigue life tests were load controlled. Testing
occurred at three R-ratios: 0.1, −1.0, and χ and at a testing frequency of 10Hz. Data
for the first two R-ratios is needed as input to the model. The latter R-ratio can be used
for validation purposes of the CLD and S-N curve predictions, as well as a comparison
with the two-segment anisomorphic model. Tests were performed at several stress levels
for each R-ratio. Testing at each stress level was repeated with up to four specimens to
guarantee an appropriate sample and representative description of the fatigue behaviour
for the considered laminate. In such manner, the effect of a possible outlier or run-out
on the final S-N curve can be reduced. Note that small variations in in the applied stress
might exist between specimens at the same level due to the fact that the testing machine
is load controlled and minimal variations in geometry exist between specimens.

Fatigue life tests were terminated at Nf = 106 cycles. After reaching one million cycles,
tests are stopped and the specimen is considered as a run-out. Fatigue life testing is
only performed under T-T and T-C loading conditions and not under C-C loading.
C-C loading was omitted from testing based on issues related to these type of tests, as
discussed in more detail in Chapter 2.

The total number of tests performed at each R-ratio is summarised in Table 4.7. Note
that for R = 0.1, a smaller number of fatigue life tests was performed in comparison
with the other two R-ratios. This is a result from issues originating during testing.
For example, several specimens failed in the clamp region or failed prematurely. This
led to an unexpected large number of censored test results and, consequently, a lower
number of accepted test results for S-N curve establishment. Due to time constraints
and machine availability, it was not possible to perform additional fatigue life tests for a
more representative sample of the fatigue behaviour at R = 0.1. However, the minimum
number of tests for one S-N curve, as prescribed by ASTM (1980 (2015)), was reached.
On the other hand, for R = −1, a large number of fatigue life tests were performed due
to testing at several frequencies other than 10Hz. Note that these test results have
been included in AppendixC but are not considered in the evaluation of the fatigue life
prediction models.
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4.3.2 Experimental Campaign: Results

The results of the experimental campaign are discussed in this subsection. First, the
static strength test results are presented for both the tensile and compressive tests. This
is followed by fatigue life test results which are presented by means of S-N curves.

Static Strength Tests

Four static tensile tests have been performed to determine UTS, whose value is, on
average, 684.6MPa. Furthermore, six compressive static tests have been performed to
determine UCS. On average, UCS equals 411.5MPa. Table 4.8 provides an overview
of the static strength test results, as well as the mean failure stress value, standard
deviation, and coefficient of variation, where the latter two provide an indication of the
uniformity of both specimens and testing process.

Table 4.8: Tensile and compressive static strength test results.

Tensile Static Strength Compressive Static Strength

Specimen Failure Stress [MPa] Specimen Failure Stress [MPa]
S03 662.4 S36 405.1
S04 672.5 S39 402.5
S11 688.0 S43 411.5
S13 715.5 S44 414.9

S45 422.8
S46 412.4

Mean Failure Stress 684.6MPa Mean Failure Stress 411.5MPa
Sample Standard Deviation 23.14MPa Sample standard Deviation 7.24MPa
Coefficient of Variation 3.38% Coefficient of Variation 1.76%

Fatigue Life Tests

Fatigue life tests have been performed at three R-ratios, namely at one T-T type loading
(i.e., R = 0.1), and two T-C type loadings (i.e., R = χ = −0.60, and R = −1). The fatigue
life test results are presented by means of S-N curves and a CLD. The test data has been
included in AppendixC.

The S-N curves for R = 0.1, R = χ, and R = −1 are presented in Figure 4.10. Equa-
tion 3.4 was fitted to the experimental data to describe the S-N curve. Note that for the
R = 0.1 data, also two datapoints obtained under f = 5Hz were included to expand the
size of the dataset.

The considered laminate shows a large fatigue insensitivity, resulting in large scatter in
the obtained fatigue life results, especially for R = 0.1. This is as expected based on the
results by Nijssen (2010), who showed that larger scatter in fatigue life data is seen for
FRPs insensitive to fatigue, as discussed in detail in Chapter 2. The laminate is most
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a)	

b)	 c)	
R=χ=-0.60	 R=-1.0	

R=0.1	

Figure 4.10: Experimental fatigue life data for R = 0.1, χ = −0.60, and −1. Thick lines
represent the fitted mean S-N curves and the dashed lines represent a 90% confidence band.

sensitive to fatigue loading at an R-ratio of R = χ while the lowest sensitivity is seen for
R = 0.1: the S-N curve for R = 0.1 describes a rather horizontal linear line while the
curve is more steep for R = χ and R = −1. However, the data for the T-C load types is
mostly located in the mid-cycle range while data in the fatigue life scale of Nf > 105 or
LCF is limited. This results in fitted curves showing a large LCF plateau, followed by a
more steeply decreasing curve. Preferably, additional tests are performed at higher and
lower stress levels to obtain test results in all fatigue life scales. However, due to time
constraints and test machine availability, this was not possible in the scope of this work.

All samples under R = −1 loading failed in a compressive failure mode while all samples
under R = 0.1 failed in a tensile failure mode. For R = χ, the final failure modes were
mixed; some specimens showed tensile failure while others showed compressive failure.
This can be an indication that a hypothesis made by Kawai and Koizumi (2007) that a
failure mode transition occurs at or near R = χ is true. Moreover, if the latter is true,
it is a confirmation of the reliability of the static tensile and compressive tests, which
resulted in a good approximation of the critical R-ratio χ. The focus of this thesis is not
on the different damage mechanisms seen in fatigue loading and therefore this aspect
will not be further discussed in this work
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4.3.3 Fatigue life Predictions

Fatigue life data for the carbon-epoxy laminate with lay-up [90/0/90]2S under R = χ
loading, presented in the previous subsection and in AppendixC, was used as input
to the two-segment anisomorphic model by Kawai and Koizumi (2007) to predict the
fatigue behaviour at R = 0.1 and R = −1. Moreover, fatigue life data for R = 0.1 and
R = −1 was used as input to the model proposed in this chapter to predict R = χ and
R = −1, and R = 0.1 and R = −1, respectively. The results are used for a comparison of
the predictive accuracy of the two models.
The critical stress ratio for the considered laminate equals χ = −0.60. For the two-
segment anisomorphic model, Equation 3.4 was fitted to the experimental dataset for
R = χ and its model fitting parameters are presented in Table 4.9. The table also
shows the model fitting parameters for the predicted critical S-N curve by means of the
proposed model with R = 0.1 or R = −1 as input.

Table 4.9: Model fitting parameters for the S-N curve describing the fatigue life under the
critical R-ratio χ.

Input R-ratio Kχ a n
R = χ = −0.60 0.0020 0.34 14.50
R = 0.1 4.92 1.00 ·106 25.70
R = −1 1.59 ·10−4 0.46 8.05

Figure 4.11: Constant fatigue life diagram for [90/0/90]2S carbon-epoxy laminate, ob-
tained using the two-segment anisomorphic model with R = χ = −0.60 fatigue life data as
input.

The CLD predicted using the two-segment anisomorphic model is shown in Figure 4.11.
It can be seen that the R = 0.1 datapoints are located closely together, as expected
from the experimental dataset. Moreover, they are located in the predicted CLL range
corresponding to 105 < Nf < 106, which means that for lower fatigue lives, higher
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stresses are predicted by the model. For R = −1, an over-prediction is seen for the
fatigue lives corresponding to the higher fatigue life scales (Nf = 106) while an under-
prediction is expected for the lower fatigue lives (Nf = 103 ∼ 104). For Nf = 105, the
predicted CLL intersects with the fitted datapoint at R = 0.1. Based on the obtained
CLD, it can be seen that a relative long and flat LCF plateau can be expected for R = −1,
as well as a gradual S-N curve slope because the CLLs are located close to the static
strength line.

b)	

a)	

Figure 4.12: Constant fatigue life diagram for [90/0/90]2S carbon-epoxy laminate, ob-
tained using the proposed model with a) R = 0.1 and b) R = −1.0 fatigue life data as
input.

The CLDs, including the predicted CLLs, are shown in Figure 4.12a and 4.12b when
using fatigue life data corresponding to R = 0.1 and −1 as input to the proposed model,
respectively. For the first case, where R = 0.1 data is used as input, an under-prediction
is seen for R = χ and R = −1. Only for Nf = 106, the CLL curve intersects the datapoint
at R = −1. The CLD predicted by means of fatigue life data for R = −1, results in a
large LCF plateau, visible by means of the CLLs for Nf = 103 and Nf = 104 which are
close to the static strength line. This results in an over-prediction of the fatigue lives at
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R = χ for the lower fatigue life scales. In addition, an under-prediction is seen for the
higher fatigue life values at R = χ. For R = 0.1, both under- and over-predictions are
seen when R = −1 is used as input to the proposed model, as seen in Figure 4.12b. The
datapoints are located closely together while the predicted CLLs show a wider range.
The concentration of the validation data for R = 0.1 is caused by the input dataset
for R = 0.1, which showed large scatter for similar stress levels, resulting in an almost
linear horizontal curve with low fatigue sensitivity. This affects the estimated fatigue
lives for R = 0.1 and therefore also the validation dataset used to evaluate the predictive
accuracy of the proposed model, as seen in Figure 4.12.
The presented CLDs can be used to derive S-N curve predictions for R = 0.1, R = χ, and
R = −1. These are shown in Figure 4.13a, 4.13b, and 4.13c, respectively, and the values of
the error metrics are included in Table 4.10. Due to the limited size of the experimental
campaign, only two curves can be compared for each R-ratio. Moreover, the datasets
showed large scatter, which influences the conclusions made in this subsection.
When evaluating Table 4.10 and Figure 4.13, it is instantly clear that all three models
seem to have difficulties predicting the fatigue behaviour under different R-ratios. The
predicted curve by the two-segment anisomorphic model for R = −1 seems closest to
the experimental data, followed by the prediction for R = χ by the proposed model
using R = −1 as input. For the latter case, the error measures in Table 4.10 indicate
poor predictions compared to when R = 0.1 is used as input. However, one has to
keep in mind that the MAPE, MNB, and RMSPE penalise over-predictions more than
under-predictions. When R = 0.1 is employed as input, the predicted fatigue life is
under-predicted, resulting in lower error measures. This is confirmed by the value of the
SSE, which indicates improved results when R = −1 is employed. Moreover, note that
the error measures are calculated based on all available experimental datapoints, even
though this requires an extrapolation of the predictions when R = −1 data is used as
input. Improved results will thus be obtained when only interpolation is considered.
The fatigue life for R = −1 is under-predicted when R = 0.1 is used as input to the
proposed model and the two-segment anisomorphic model will lead to better results.
The under-predictions by R = 0.1 for R = −1 are likely caused by the nature of the
R = 0.1 dataset. The predicted S-N curves for R = 0.1 are not describing the fatigue
behaviour, independent of the used model, as is also confirmed by the error measures.
The shape of the S-N curve with respect to the fitted curve seems most similar using the
two-segment anisomorphic model but it results in large over-predictions of the higher
stress levels. Moreover, the predictions by the proposed model, using R = −1 data as
input, are affected by the limited fatigue life scale in the R = −1 dataset.
Overall, based on the results for the carbon-epoxy (AS4/8552) laminate obtained by
means of an experimental campaign, no general conclusion can be made on which model
results in more accurate predictions with respect to the experimental data. This is
mostly caused by the fatigue life datasets used as input and validation, which show large
scatter or do not contain datapoints on all fatigue life scales, thereby affecting the made
predictions and the obtained predictive accuracy.
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Table 4.10: Error metrics for the fatigue life prediction of [90/0/90]2S by means of the
proposed model (input of R = 0.1 and R = −1.0) and two-segment anisomorphic CLD.

Input R-ratio MAPE MNB RMSPE SSE
R=0.1

R = −1 5.41 ·103 5.41 ·103 6.30 ·103 88.98
R = χ 4.07 ·103 4.07 ·103 4.50 ·103 79.52

R=-1.0
R = 0.1 98.89 -98.89 98.90 432.6
R = χ 50.30 -47.88 55.02 13.00

R=χ
R = 0.1 98.06 -98.06 98.07 256.8
R = −1 134.7 134.7 167.5 10.09

a)	 b)	

c)	
R=-1.0	

R=0.1	 R=χ=-0.60	

Figure 4.13: Fatigue life predictions for [90/0/90]2S by the proposed model (input R = 0.1
or R = −1.0) and the two-segment CLD (input R = χ). In addition, experimentally ob-
tained fatigue lives are depicted. Fitted and predicted S-N curves are shown for a) R = 0.1,
b) R = −1.0 and c) R = χ. The legend is the same for all figures.



Chapter 5

Fatigue Life Prediction Model for
|UCS|>UTS

The model presented in this chapter is applicable to carbon fibre-reinforced epoxy lam-
inates characterised by |UCS| > UTS. It only requires static strength data in the form
of UTS and UCS and fatigue life data at one R-ratio corresponding to either R = 0.1
or −1. Similar to the model proposed in Chapter 4, the method does not distinguishes
whether fatigue life test data for R = 0.1 or −1 is used as input. The same procedure for
fatigue life predictions, as outlined in this chapter, can be employed.

The set-up of this chapter is similar to that of Chapter 4, thereby allowing for a straight-
forward comparison of both models. The first section outlines the proposed model,
the steps to be taken for fatigue life prediction and the made assumptions. Each step
of the model is discussed, as well as any differences with the three- and four-segment
anisomorphic model by Kawai and Murata (2010) and Kawai and Itoh (2014) discussed
in Section 3.3 and 3.4, respectively. Section 5.2 provides an evaluation of the predictive
accuracy of the presented model compared to that of the anisomorphic models by means
of fatigue life datasets for carbon-epoxy laminates found in literature.

5.1 Method

This section presents a fatigue life prediction model for carbon fibre-reinforced epoxy
laminates characterised by |UCS|>UTS. First, an overview of the method is given by
means of a flowchart and each step is shortly described. Each subsection provides a
detailed explanation of one model procedure, as well as the differences with the three-
and four-segment anisomorphic model.
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The proposed model is based on four main assumptions, which are different from the
three- and four-segment anisomorphic models:

1. The fatigue behaviour of carbon-epoxy laminates under CA loading at any R-ratio
can be predicted based on the behaviour under fatigue loading at an R-ratio of
either R = 0.1 or −1.

2. The shape of the CLLs in the right segment is dependent on the ratio between
UCS and UTS.

3. The CLLs in the middle segment can be determined using linear interpolation
between datapoints on the radials of R = χ and R = ±∞ for similar fatigue lives.

4. All CLLs intersect the left radial boundary (R = ±∞) in the top tenth percentile.

The first assumption is a consequence of a change in the input R-ratio with respect to
the three- and four-segment anisomorphic CLD. The source and validity of the second
to fourth assumption relates to the definition of the CLLs, which is further discussed in
Section 5.1.4.

A flowchart illustrating the methodology of the presented model is shown in Figure 5.1
and each step is concisely described next. For a detailed description of each model step,
the reader is referred to the corresponding subsections. An example of the proposed
CLD shape is provided in Figure 5.2

1. Static strength test data, in the form of UTS and UCS, is required as input to the
model. (Subsection 5.1.1)

2. CA fatigue life tests are performed at either R = 0.1 or R = −1.0. The R-ratio can
be chosen by the user. (Subsection 5.1.1)

3. The critical R-ratio χ can be calculated as the ratio between UCS and UTS.

4. The value of σB must be defined in order to determine ψχ in the next step.
(Subsection 5.1.2)

5. A function describing stress values on the radial segment boundaries (i.e., R = χ
and R = ±∞) must be defined based on the static strength and fatigue life input
data. (Subsection 5.1.5)

5.1. The critical S-N curve (R = χ) must be determined in order to describe the
intersections of the CLLs with the radial.

5.1.a The stress values (σχm, σχa ) on the radial R = χ are calculated using the
CLL expressions and fatigue life input data.

5.1.b A normalised S-N curve ψχ = f−1 (2Nf ) is fitted to the stress values
(σχm, σχa ) for R = χ in order to describe the critical S-N curve. (Subsec-
tion 5.1.3)
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Figure 5.1: Flowchart depicting the proposed model for carbon-epoxy laminates charac-
terised by |UCS|>UTS.

5.2. The S-N curve for R = ±∞ must be determined in order to describe the
intersections of the CLLs with the radial. (Subsection 5.1.5)

5.2.a Stress values (σ±∞m , σ±∞a ) on the radial R = ±∞ are calculated in order
to describe the stress interval in which all CLLs are located. This interval
is defined as the upper tenth percentile of the radial.

5.2.b The stress values (σ±∞m , σ±∞a ) are used to obtain a function describing
the location of intersection of each CLL with the R = ±∞ radial.

6. CLLs for different values of the fatigue life Nf can be constructed for each CLD
segment using the functions defining the stress values at which the CLLs intersect
the two boundary radials (i.e., R = χ and R = ±∞). (Subsection 5.1.4)

7. The CLD is obtained by depicting several CLLs for each segment in the same
diagram. (Subsection 5.1.6)



68 Fatigue Life Prediction Model for |UCS|>UTS

8. An S-N curve for a different R-ratio than the input R-ratio can be predicted by
determining intersections of the CLLs with the radial corresponding to the R-ratio
of interest. (Subsection 5.1.7)

Figure 5.2: Proposed CLD model describing the fatigue behaviour of carbon-epoxy lami-
nates characterised by |UCS|>UTS.

5.1.1 Input Data (Step 1 and 2)

Similar to the model presented in Chapter 4, applicable to laminates showing
UTS>|UCS|, the model proposed in this chapter employs static strength data and CA
fatigue life data. Test data on both tensile and compressive ultimate static strength is
required. In addition, a sufficient number of fatigue life datapoints at either R = 0.1 or −1
are needed in the form of the applied CA stresses and numbers of cycles to failure. Note
the difference with the three- or four-segment anisomorphic model that require fatigue
life datasets for R = χ and R = χS or R = χ, R = χL, and R = χR, respectively. Thus,
less fatigue life datasets are required, namely one versus two and three, respectively.

5.1.2 Determination of χ and σB (Step 3 and 4)

As discussed in Sections 3.3 and 3.4, the CLLs for laminates characterised by |UCS|>UTS
no longer show an amplitude stress peak in the vicinity of the R = χ radial. The method
in this chapter adheres to this, as can be seen in Figure 5.2. However, one of the two
CLD segment boundaries (between the middle and right segment) has been defined at
the R = χ radial. Therefore, it is required to establish the value of χ, which is defined
similar as for previously discussed models (Equation 3.1). Note that no experimental
data is required to establish the stress values at this radial; these will be determined in
step 5.1 (Subsection 5.1.5).
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The value of σB must also be defined to establish the fatigue strength ratio ψ, as defined
in Equation 3.2. For the laminates considered in this model, where |UCS|>UTS, σB is
set equal to σB =|UCS|. Note that this definition of σB is different from that in the
anisomorphic models where σB is obtained using S-N curve extrapolation to Nf = 1.

5.1.3 S-N Curve Expression (Step 5.1.b)

Similar to the method proposed in Chapter 4, an LSPR technique is employed to fit
Equation 3.4 to the datapoints. Again, it is not required to fit the function to the input
data but only has to be fitted to the critical datapoints for R = χ (Step 5.1.b) as shown
in the flowchart (Figure 5.1). Note that the employed S-N curve expression is different
than that of the three- and four-segment anisomorphic approach. For these models, an
elaborated function was suggested by Kawai and Murata (2010) and Kawai and Itoh
(2014), namely Equation 3.8. As discussed in Chapter 4, Equation 3.4 is preferred over
Equation 3.8, mainly due to the size of the validation datasets used in this work that do
not allow for the combined use of Equation 3.8 and LSPR. However, the model allows for
implementation of a different S-N curve function which does not require the adaptation
of any other model steps.

5.1.4 Constant Life Lines (Step 6)

The CLD is divided into three segments as seen in Figure 5.3:

1. σχm ≤ σm ≤ UTS (T-T and T-C fatigue loads),

2. σ−∞m ≤ σm ≤ σχm (T-C fatigue loads),

3. UCS ≤ σm ≤ σ∞m (C-C fatigue loads),

where σm is the varying mean stress and σχm and σ±∞m are the mean stresses corresponding
to R = χ and R = ±∞, respectively. For the first two segments, expressions for the
CLLs can be constructed. Note that the proposed fatigue life prediction model is not
applicable to the 3rd segment consisting of C-C fatigue loads due to concerns raised in
Chapter 2 and 3. Therefore, no CLL suggestions for this segment are made in this work.

The definition of the CLD segments is different from the three- or four-segment ani-
somorphic CLD. The three-segment anisomorphic CLD also consists of three segments,
however, the segment boundaries are only equal when χS is assumed as χS = ±∞. Then,
CLL definitions can be compared directly, as will be shown in the discussion of each CLL
expression. The four-segment anisomorphic CLD consists of one additional CLD segment
and thus one additional segment boundary. As discussed in Section 3.4, the segment
boundaries are defined by the radials corresponding to R = χ, χL, and χR. However,
when χL is assumed as χL = ±∞, as in the standard four-segment anisomorphic model,
similarities in segment definitions can be found. The first, most right, segment of the
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CLD in this study is similar to the combination of the two right segments of the four-
segment anisomorphic model (defined by R = χ, and χR). Moreover, the definition of
the centre segments is equal, as well as that of the most left segment. This allows for
a simplification in the CLL comparison. Next, an overview of the CLL expressions is
provided, followed by a detailed description of the CLL derivations and a comparison
with the CLL definitions employed in the three- and four-segment anisomorphic models.

2	

1	3	

Figure 5.3: Proposed CLD model for carbon-epoxy laminates characterised by |UCS|>UTS,
divided into three segments.

Overview of CLLs
For the first two CLD segments, CLL expressions have been established. Only two
CLLs are given since the CLD segment for C-C loading is not considered in this work.
Summarising, based on the value of σm, the CLLs are given as

−σa − σ
χ
a

σχa
=
(
σm − σχm
UTS − σχm

)(2−ψχ)z

if σχm ≤ σm ≤ UTS, (5.1)

σa − σχa
σχa − σ±∞a

= σm − σχm
σχm − σ±∞m

if σ−∞m ≤ σm ≤ σχm. (5.2)

By combining the two expressions, a CLD can be established for the laminate of interest.
This procedure is explained in more detail in the next subsection. First, a detailed
description of the derivation of each CLL is provided, as well as a definition of the
function variables.
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CLL formulation for σχm ≤ σm ≤ UTS (Segment 1)
The right segment is bounded by the radial corresponding to R = χ, the static strength
CLL (Nf = 1), and the x-axis. The CLL in this segment is expressed as Equation 5.1,
where the exponent z is defined as

z = 1.0 if −1.0 < χ < 0.0,

z = 1
4 (χ+ 1) if −∞ ≤ χ < 1.0.

(5.3)

The definition of the CLL in the right segment of the CLD is comparable to that of
the model presented in Chapter 4. The CLLs converge to σm = UTS on the x-axis
and intersect the radial of R = χ in (σχm, σχa ). However, a slight adaptation has been
made by including exponent z. This exponent provides a shape transformation of the
CLLs based on the value of χ. From the CLDs published by Kawai and Murata (2010)
and Kawai and Itoh (2014), it can be concluded that for a decreasing value of χ, the
shape of the CLLs changes accordingly. For |UCS| ≈ UTS (χ = −1.0), the CLLs can be
closely described using a linear curve, i.e. z = 0.0. If the value of χ further decreases
(i.e., |UCS|�UTS), the CLLs start to follow a convex shape. The proposed expression
for z describes this shape transition of the CLLs based on the value of R = χ. For
laminates showing UTS>|UCS| (i.e., −1.0 < R < 0.0) the value of z equals 1.0. This
suggests a discontinuity in the value of z at χ = −1.0. However, due to large differences
seen in the CLDs for laminates showing |UCS|>UTS with respect to laminates showing
UTS>|UCS|, this discontinuity was deemed acceptable.

The proposed CLL definition (Equation 5.1) can be compared with that of the three-
segment anisomorphic model (Equation 3.9) since the definition of the right CLD segment
is equal for both models. The expressions for the CLL are similar and the only variation
is seen in the exponent; where Kawai and Murata (2010) apply an exponent kT to ψχ,
this study applies an exponent z to (2−ψχ) to control the shape of the CLL. In addition,
Kawai and Murata (2010) select the value of kT based on the predicted CLD while the
value of z in this study is based on experimentally found values for UTS and UCS.

Comparison of the CLL expression with that of the four-segment anisomorphic model
is less straightforward. When employing the standard four-segment anisomorphic CLD
as proposed by Kawai and Itoh (2014), the two most right CLD segments, confined by
R = χ and R = χR, are similar to the first segment in this study. Thus, the CLL
proposed in this study for the first segment (Equation 5.1) can be compared with two
CLL expressions (Equation 3.12 and 3.13). Equation 3.12 is comparable to Equation 5.1,
however, small differences arise. The main distinction is the inclusion of the exponent kT
by Kawai and Itoh (2014), similar to the three-segment CLD, while this study applies z,
dependent on UTS and UCS. Moreover, Equation 3.12 is only valid until the radial for
R = χR while Equation 5.1 is applicable until R = χ. To define the CLL in the range
χ < R < χR in the four-segment anisomorphic model, Equation 3.13 is employed, which
is a linear curve.
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CLL formulation for σ−∞m ≤ σm ≤ σχm (Segment 2)
The middle segment of the CLD is bounded by two radials corresponding to R = χ
and R = ±∞ and the static strength CLL (Nf = 1). The CLL intersects the R = χ
radial at (σχm, σχa ), which is the same location as the CLL defined for the first segment.
The intersection of the CLL and the R = ±∞ radial on the left side of the CLD
segment is less obvious. From fatigue life data published by Kawai and Murata (2010)
and Kawai and Itoh (2014) on laminates characterised by |UCS|>UTS, it was judged
that all CLLs intersect the radial corresponding to R = ±∞ in the top region of the
radial. Closer evaluation allows for concluding that this narrow region can be described
as approximately the upper 10% of the R = ±∞ radial.

In order to define an expression for the CLL in the middle segment, it is required to
first define an expression for the upper 10% of the radial. The radial corresponding to
R = ±∞ and the static strength CLL (i.e., ψ = 1.0, Nf = 1) intersect at (σ100%

m , σ100%
a ).

The static strength CLL is known to intersect the x-axis in σm = UCS and peak at the
R = χ radial in (σχm, σχa ). Note that the latter also describes the peak of the complete
CLD. The static strength CLL can be described by

σψ=1.0
a = σχa

σχm − UCS

(
σψ=1.0
m − UCS

)
, (5.4)

where (σψ=1.0
m , σψ=1.0

a ) is a variable mean and amplitude stress combination located on
the CLL. The values for σχm and σχa can be determined using UTS and UCS, by defining
σχm in Equation 4.1 as

σχm = UCS + UTS

2 . (5.5)

Using the static strength CLL, the intersection with the radial corresponding to R = ±∞
can be found, where the radial for R = ±∞ is defined as

σa = σm
1− (±∞)
1 + (±∞) . (5.6)

When σψ=1.0
a in Equation 5.4 equals σa in Equation 5.6, the intersection of the two curves

is found and consequently (σ100%
m , σ100%

a ) is obtained by solving

σψ=1.0
a = σ100%

a , (5.7)

σm
1− (±∞)
1 + (±∞) = σχa

σχm − UCS

(
σ100%
m − UCS

)
. (5.8)

The top of the radial corresponding to R = ±∞, i.e. (σ100%
m , σ100%

a ), defines the upper
bound of the 10% top of the R = ±∞ radial. The lower bound can be described as 90%
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of the mean and amplitude stress of the upper bound, i.e. (σ90%
m , σ90%

a ), given as

σ90%
m = 0.9 · σ100%

m , (5.9)
σ90%
a = 0.9 · σ100%

a . (5.10)

The top tenth percentile of the R = ±∞ radial is now defined by the lower bound
(σ90%
m , σ90%

a ), upper bound (σ100%
m , σ100%

a ), and Equation 5.6. A set of equations,
describing the intersection stresses of a CLL and the radial, is given as Equation 5.6
and

σ±∞a = 0.1 · σ100%
a

log10 (106) log10 (Nf ) . (5.11)

In Equation 5.11, Nf is the fatigue life of the considered CLL, σ90%
a and σ100%

a describe
the top tenth percentile of the R = ±∞ radial, and (σ±∞m , σ±∞a ) is the mean and
amplitude stress combination for which a CLL corresponding to a certain value of Nf

intersects the R = ±∞ radial.

This assumed expression takes several aspects into account. Firstly, it is given that the
static strength CLL intersects the radial of R = ±∞ in (σ100%

m , σ100%
a ). Secondly, it

is assumed that the CLL for Nf = 106 intersects the R = ±∞ radial in (σ90%
m , σ90%

a ).
Note that this assumption directly relates to the applicability boundary of the model of
not considering HCF predictions (i.e., Nf > 106). Lastly, it is assumed that CLLs for
different values of Nf do not intersect one another. Consequently, σ±∞m and σ±∞a must
always be decreasing for an increasing Nf . A condition that is met by the proposed
fatigue life prediction model.

Both the left and right bound of the CLLs in the middle segment of the CLD have
been defined. The right bound of a CLL is defined as the intersection of the CLL with
the radial corresponding to R = χ, i.e. (σχm, σχa ) while the left bound is defined as
(σ±∞m , σ±∞a ) on the R = ±∞ radial. Next, the shape of the CLLs between these two
points can be defined. The CLL is described using linear interpolation between the lower
and upper bound, of which its validity will be demonstrated in Section 5.2. Equation 5.2
is used to describe the CLLs in the middle segment, where σm and σa are the mean and
amplitude stress on the CLL for a certain value of Nf , σ±∞m and σ±∞a are the mean and
amplitude stress, respectively, at which the CLL intersects the R = ±∞ radial, and σχm
and σχa are the mean and amplitude stress, respectively, at which the CLL intersects the
R = χ radial.

The differences between the middle segments of the model proposed in this chapter
and of the three-segment anisomorphic CLD by Kawai and Murata (2010) are minimal;
the expressions for the CLL are similar since both models assume a linear relation
(Equation 3.10 versus Equation 5.2). The main difference between the models lies in
the determination of the left bound of the CLL. The model proposed in this chapter
assumes that the left segment boundary is always defined by the R = ±∞ radial while
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the three-segment anisomorphic model by Kawai and Murata (2010) defines it by the
sub-critical R-ratio χS which can be chosen arbitrarily. When χS is assumed to equal
χS = ±∞, the segments and CLL definitions become equal.

The third segment in the four-segment anisomorphic model by Kawai and Itoh (2014) is
similarly defined as the second segment of the CLD in this study. The former is bounded
by the radials for R = χL and R = χ while the latter is bounded by radials for R = ±∞
and R = χ. If χL is set equal to ±∞, as is assumed in the standard four-segment
anisomorphic model, the segments become equal and the CLLs can be compared. Both
models assume a linear shaped CLL (Equation 3.14 versus Equation 5.2). The main
difference is seen in the determination of the stress coordinates on the boundary radials:
where the four-segment anisomorphic model determines the intersections of the CLLs
with the radials by means of experimental data, the proposed model calculates these by
means of a set of equations.

5.1.5 Determination of CLL Intersections with the Segment Boundary Ra-
dials (Step 5)

The static strength and fatigue life input data can be combined with the CLL definitions
to construct the CLD, as will be discussed in the next subsection. However, before the
CLD can be established, it is required to determine the location of intersection of the
CLLs with the R = χ and R = ±∞ radials in order to define the CLL expressions. The
steps required to find the stress values of the intersections are described in this subsection.
The method is different from the three- and four-segment anisomorphic models where the
stresses on the segment boundaries are obtained by means of an experimental campaign.

The first intersection of the CLL is with the R = χ radial: (σχm, σχa ). The R = χ
radial defines the boundary between the middle and right segment. The exact location
of intersection can be determined based on the input fatigue life datapoints for either
R = 0.1 or −1. It is known that all input fatigue life datapoints lie on one radial
described by Equation 3.5, where R equals 0.1 or −1.0, dependent on the input data.
Each datapoint describes an applied CA fatigue load, characterised by its mean σm and
amplitude σa stress and corresponding fatigue life: (Nf , σm, σa). The input fatigue life
datapoints always lie in the right CLD segment (σχm ≤ σm ≤ UTS), irrespective of
whether it corresponds to R = 0.1 or R = −1.0. The intersection of a CLL with these
datapoints must be found in order to allow for derivation of the values for (σχm, σχa ). The
CLL in the right segment can be used for this purpose and is defined as Equation 5.1.

The CLL expression (Equation 5.1) is based on the values of the mean and amplitude
stress where the curve intersects the radial for R = χ (i.e., (σχm, σχa )). Moreover, the
equation contains the ratio ψχ, whose value was previously defined in Equation 3.2 and
is directly dependent on the values for (σχm, σχa ). In addition, the value of the exponent z
(Equation 5.3) is dependent on the value of χ and thus on both UTS and UCS values.
Lastly, the CLL expression contains variable mean and amplitude stress coordinates
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located on the CLL (σm, σa). By combining the CLL expression (Equation 5.1) with the
equation for the radial (Equation 4.1), a set of equations is obtained that is defined as

σIa = σχa

1−
(
σIm − σχm
UTS − σχm

)(2−ψχ)z
 if σχm ≤ σIm ≤ UTS,

σχa = σχm
1− χ
1 + χ

.

(5.12)

In this set of equations, z and UTS are known quantities while σIm and σIa are the test
datapoints used as input to the model (i.e., (Nf , σm, σa)). Next, it is possible to solve for
(σχm, σχa ) when ψχ is written as a function of the stresses under R = χ. Then, the fatigue
life-stress combinations located on the R = χ radial are obtained as (Nf , σχm, σχa ) and
each found combination corresponds to a datapoint from the input dataset (Nf , σm, σa).
This procedure is repeated for each input datapoint. Once all datapoints (Nf , σχm, σχa )
for R = χ are obtained, it is possible to fit Equation 3.4 through the datapoints following
a LSPR method (of which the derivation is outlined in AppendixA). Using the fitted
ψ-2Nf curve, a continuous function of (Nf , σχm, σχa )-combinations is obtained describing
the intersection of the CLL with the R = χ radial.

Note that it is also possible to fit Equation 3.4 to the datapoints of the input dataset,
and to solve the set of Equations 5.12 for each value of Nf using the corresponding stress
values of the fitted curve. Consequently, this method will lead to a more computationally
expensive model than the first proposed method because the set of Equations 5.12 has
to be solved more often. Moreover, it does not provide a higher predictive accuracy and
the predicted S-N curves are similar for both methods. Therefore, the former method is
suggested, resulting in a less computationally expensive model.

Next, it is possible to establish the CLL boundary between the middle and left CLD
segment, defined as the radial corresponding to R = ±∞. Firstly, it is required to
determine the boundaries of the top 10% segment of the R = ±∞ radial by means
of the procedure outlined in Subsection 5.1.4. This results in two mean and amplitude
stress combinations, namely 1) (σ100%

m , σ100%
a ) and 2) (σ90%

m , σ90%
a ). Then, a continuous

function describing the location of intersection (σ±∞m , σ±∞a ) of CLLs for different Nf

values with the R = ±∞ radial is obtained using Equation 5.6 and 5.11.

The functions describing the CLL intersections with the segment boundary radials can
be used to finalise the CLL definitions (Equation 5.1 and 5.2). Subsequently, these can
be used to establish a CLD for the laminate. The next subsection covers the CLL and
CLD construction in more detail.
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5.1.6 Constant Life Diagram (Step 7)

The establishment of functions defining the intersections of the CLLs with the segment
boundary radials (R = χ and R = ±∞) in terms of the mean and amplitude stresses
((σχm, σχa ) and (σ±∞m , σ±∞a )), as discussed in the previous subsection, allows for construc-
tion of CLLs and consequently a CLD. For each Nf , the intersections are determined
by means of Equation 5.6, and 5.11, which are used to define the CLL expressions for
each segment (Equation 5.1 and 5.2). Combining the CLLs of each segment allows for
establishment of the complete CLD. All CLLs converge to σm =UCS or σm =UTS on
the x-axis for σa = 0 (i.e., R = 1). Moreover, the CLD is bounded by means of the
x-axis and two linearly shaped CLLs corresponding to Nf = 1, given as Equation 4.5.
Note that the main aspects of the CLD are similar to that in the three- and four-segment
anisomorphic CLDs; differences are seen in the segment and CLL definitions, as well as
the input datasets employed for the latter.

5.1.7 S-N Curve Prediction (Step 8)

Combining the CLD segments and the corresponding CLL definitions allows for con-
struction of the complete CLD as shown in the previous subsection. Consequently, S-N
curves can be predicted for different R-ratios. This occurs in a similar manner as in the
three- and four-segment anisomorphic model. All datapoints of the R-ratio of interest
are known to lie on one radial corresponding to this R-ratio, where the radial is defined
as Equation 3.5. If the intersection of a CLL for a specified value of Nf with this radial is
found and this is repeated for a wide range of Nf values, it is possible to derive the S-N
curve of interest. The set of equations that must be solved is given as Equations 5.1, 5.2,
and 3.5 where the appropriate CLL expression must be chosen based on the considered
value for σm and thereby on the R-ratio of interest. Note that only (σm, σa) is unknown
in this set of equations. The points of intersection (σχm, σχa ) and (σ±∞m , σ±∞a ) with
segment boundary radials have been determined previously while ψχ is a function of
(σχm, σχa ). Lastly, UTS and UCS are required as input and the exponent z is a function
of these two variables (Equation 5.3).

5.2 Validation using Datasets from Literature

The previously proposed model is validated in this section by evaluating its predictive
performance using two carbon-epoxy laminates. The employed datasets for these lam-
inates originate from literature, more specifically: they were presented by Kawai and
Murata (2010) and Kawai and Itoh (2014). Due to time constraints of this work, no
experimental campaign was conducted as in Chapter 4. The lay-ups of the considered
laminates are [±60]3S and [45]16. A quantitative comparison of its performance with
respect to the four-segment CLD by Kawai and Itoh (2014) is included as well. Only
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a comparison with the four-segment CLD model is provided and not with the three-
segment CLD model due to its similarity with the four-segment CLD. Predictions using
the four-segment CLD model are made using several S-N curves and thereby using more
fatigue life data than the proposed model. The use of additional input data can enhance
the predictive accuracy, however, should be minimal for the acceptance of the proposed
model. The R-ratios used for comparison are different from the input R-ratios, i.e.
either R = 0.5, −3, −5, or −10. Each subsection will present a comparison for a different
laminate lay-up, namely [±60]3S and [45]16 in Subsection 5.2.1 and 5.2.2, respectively.
The employed error measures are similar to those discussed in Section 4.2.1.

5.2.1 [±60]3S

A carbon-epoxy laminate (T800H/2500) with lay-up [±60]3S is used for validation of
the model proposed in this chapter. Its experimental data was presented by Kawai and
Murata (2010) and is also included in AppendixD. For details on manufacturing and
testing, the reader is referred to the corresponding paper. The datasets are limited in size
with on average five datapoints per R-ratio. Fatigue life tests were performed at two T-T
R-ratios (R = 0.1 and R = 0.5) and four T-C R-ratios (R = −1, R = χ = −1.98, R = −3,
and R = −5). The absolute value of UCS is almost twice the size of UTS (−164.8MPa
versus 83.3MPa), resulting in a value for χ of −1.98. The values of the fitting parameters
for the critical S-N curve, predicted using R = 0.1 and −1 as input to the proposed
model, are presented in Table 5.1. Moreover, in the four-segment anisomorphic model,
input data at R = 0.1, R = −1, and R = χ is employed to which Equation 3.4 is fitted.
The corresponding fitting parameters are presented in Table 5.2. Note that the four-
segment anisomorphic model was not yet applied by Kawai and Murata (2010) or Kawai
and Itoh (2014) to this laminate. However, improved results with the standard four-
segment anisomorphic model were obtained compared to the standard1 three-segment
anisomorphic model.2 For that reason, the four-segment anisomorphic model, rather
than the three-segment CLD, will be employed for comparison with the proposed model.

Table 5.1: Model fitting parameters for the S-N curve describing the fatigue life under the
critical R-ratio χ, determined using different input datasets (i.e., R = 0.1 and R = −1).

Input R-ratio Kχ a n
R = 0.1 0.011 0.27 9.04
R = −1 9.40 ·10−3 0.28 9.47

1 The standard three-segment anisomorphic model has been assumed as R = χ = −1.98 and
R = χS = 10, with kT = kC = 1.

2 The results of the comparison have not been included in this report because it is not the focus of
this work to compare the two-, three-, and four-segment anisomorphic models.
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Table 5.2: Model fitting parameters for the S-N curves fitted to the fatigue life data under
the R-ratio R = χ, R = 0.1, and R = 10.

R-ratio Kχ a n
R = χ 0.41 0.083 15.37
R = 0.1 4.59 ·10−3 0.33 18.24
R = 10 2.02 1.00 ·10−6 87.69

The CLDs predicted by the proposed model are shown in Figure 5.4a and 5.4b using
fatigue life data at R = 0.1 and −1 as input, respectively. Both CLDs show similarities,
with fatigue life predictions for R > χ close to experimental data while those for R < χ
show larger inconsistencies. In the next two paragraphs, the S-N curves predicted using
the CLDs are presented and discussed in more detail with respect to the experimentally
obtained data. Moreover, a comparison is made with the predictions by the four-segment
anisomorphic CLD.

b)	

a)	

Figure 5.4: Constant fatigue life diagram for [±60]3S carbon-epoxy laminate, obtained
using the proposed model with a) R = 0.1 and b) R = −1.0 fatigue life data as input.
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The predicted S-N curves are shown in Figure 5.5 for a) R = 0.5, b) R = −3, and
c) R = −5. Only these three R-ratios can be used for comparison because the four-
segment CLD model requires input of fatigue life data of the other three R-ratios.
Moreover, the proposed model requires the input of either R = 0.1 or R = −1 fatigue
life data. Besides the predicted S-N curves, each diagram includes a best-fit S-N curve
(Equation 3.4) to the test data, obtained using a LSPR method (AppendixA) and shown
by means of a dashed line. The error measures for all models are presented in Table 5.3.

From Figure 5.5 and Table 5.3, it can be seen that the predictions by the model proposed
in this chapter are stable and show only small differences for a changing input R-ratio.
The differences with the four-segment anisomorphic model are larger. For R = 0.5,
fatigue life predictions by the three models are adjacent and describe the best-fit curve
closely. For both R = −3 and −5, all predicted S-N curves show larger deviations from
the best-fit S-N curve and do not seem to represent the fatigue behaviour under this T-C
type loading. However, the proposed model (both input of R = 0.1 and −1) outperforms
the four-segment anisomorphic model predictions for both R-ratios. Note that the values
of MAPE, MNB, and RMSPE are similar for all three models (Table 5.3). However, this
is caused by the under-prediction of the fatigue life by the four-segment anisomorphic
model. Evaluating the SSE values, larger differences are seen since SSE penalises under-
predictions more than over-predictions.

Table 5.3: Error metrics for the fatigue life prediction of [±60]3S by means of the proposed
model (input of R = 0.1 and R = −1.0) and four-segment anisomorphic CLD (input of
R = 0.1, R = χ, and R = 10).

Input R-ratio MAPE [%] MNB [%] RMSPE [%] SSE [-]
R=0.5

R = 0.1 71.66 -71.66 74.83 13.37
R = −1 64.64 -50.60 67.13 8.25
Four-segment 83.28 -12.27 97.13 6.12

R=-3.0
R = 0.1 73.60 -73.60 74.35 6.53
R = −1 62.74 -62.74 64.14 3.75
Four-segment 90.42 -90.42 90.42 16.53

R=-5.0
R = 0.1 73.60 -73.60 74.35 6.53
R = −1 114.1 77.71 149.6 3.93
Four-segment 79.01 -79.01 80.12 16.13
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a)	 b)	

c)	
R=-5.0	

R=0.5	 R=-3.0	

Figure 5.5: Fatigue life predictions for [±60]3S by the proposed model (input R = 0.1
or R = −1.0) and the four-segment CLD (input R = 0.1, χ, and 10). In addition,
experimentally obtained fatigue lives are depicted. Fitted and predicted S-N curves are
shown for a) R = 0.5, b) R = −3.0, and c) R = −5.0. The legend is the same for all
figures.

5.2.2 [45]16

The second laminate used for validation of the proposed model is an off-axis UD carbon-
epoxy laminate (T700S/2592) with lay-up [±45]16. Experimental fatigue life data for
different R-ratios was presented by Kawai and Itoh (2014). Note that fatigue life data
was presented by means of diagrams and the presumed values have been included in
AppendixD. Datasets are again limited in size with some datasets only consisting of
three tests. Datasets for five R-ratios are available, namely R = 0.1, 0.5, −1, χ, and −10.
Note that for R = −10, the datapoints show a large variability in fatigue life, which does
not allow for a close fitting of an S-N curve through the data. It is expected that some
of these datapoints are outliers and that an improved image of the fatigue behaviour at
R = −10 can be achieved when additional fatigue life tests are performed. Note that
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the nature of the R = −10 dataset influences the evaluations made in this subsection.
The critical R-ratio for the [45]16-laminate equals R = χ = −2.46 with UTS= 61.6MPa
and UCS= −151.6MPa. Both R = 0.1 and R = −1 were used as input to evaluate the
predictive accuracy of the model presented in this chapter and the fitting parameters for
the critical S-N curve are included in Table 5.4. For the four-segment anisomorphic CLD,
Equation 3.4 is fitted to experimental data at R = χ, 0.1, and 10. Its fitting parameter
values are included in Table 5.5.

Table 5.4: Model fitting parameters for the S-N curve describing the fatigue life under the
critical R-ratio χ, determined using different input datasets (i.e., R = 0.1 and R = −1).

Input R-ratio Kχ a n
R = 0.1 0.23 0.11 9.48
R = −1 2.95 ·10−3 0.35 5.04

Table 5.5: Model fitting parameters for the S-N curves fitted to the fatigue life data under
the R-ratio R = χ, R = 0.1, and R = 10.

R-ratio Kχ a n
R = χ 0.029 0.22 7.82
R = 0.1 0.056 0.20 18.16
R = 10 1.22 ·10−3 0.19 24.18

The CLDs predicted using R = 0.1 and −1 as input to the model considered in Section 5.1
are presented in Figure 5.4a and 5.4b, respectively. The CLD predicted by the four-
segment anisomorphic CLD has been presented by Kawai and Itoh (2014). CLLs for
fatigue lives corresponding to 2Nf = 104 ∼ 106 are alike, independent of input R-ratio,
and resemble the trend of the fatigue life test data. Even though both diagrams shown
in Figure 5.4 are similar, a prominent contrast is seen in the CLL for 2Nf = 103, which
is largely different for both T-T and T-C loading. For higher stress values, slight under-
predictions of fatigue life are seen for R = −1 and R = χ when R = 0.1 is used as
input, while an over-prediction is seen for R = 0.1 and R = 0.5 when R = −1 is used as
input. This difference becomes more clear in the discussion on the S-N curve predictions
provided next, where also a comparison with the predictions made by the four-segment
anisomorphic model is included.

The error metrics for both models are shown in Table 5.6. The predicted S-N curves, as
well as the best-fit curve (Equation 3.4), for a) R = 0.5 and b) R = −10 are shown in
Figure 5.7. Predictions at only two R-ratios can be compared for all models because of
the difference in input R-ratio. In addition, to enrich the evaluation, a comparison is
made between two models for R = −1, shown in Figure 5.7c, and for R = χ, shown in
Figure 5.7d, between the different inputs for the proposed model. Note that predictions
made using the proposed model with R = −1 as input might be influenced by the limited
size of the R = −1 dataset, which only consists of three test datapoints.
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b)	

a)	

Figure 5.6: Constant fatigue life diagram for [45]16 carbon-epoxy laminate, obtained using
the proposed model with a) R = 0.1 and b) R = −1.0 fatigue life data as input.

Firstly, the predictions by each model for loading at R = 0.5, shown in Figure 5.7a, can
be compared. All three models over-predict fatigue lives on all scales. On the one hand,
the S-N curves by the four-segment CLD and the proposed model using R = 0.1 data
as input are almost parallel to the best-fit curve to the experimental data. On the other
hand, the predicted S-N curve using R = −1 fatigue life data as input to the proposed
model shows a more sensitive fatigue behaviour. However, the fatigue life prediction
made by the four-segment anisomorphic model shows the largest inaccuracies, as seen
in Table 5.6 while the predictions based on R = 0.1 fatigue life data result in the most
accurate predictions. This is also seen in Figure 5.7, where the curve is located closest
and parallel to the best-fit curve.

A second comparison can be made by evaluating predictions for R = −10. The prediction
made by the proposed model using R = 0.1 fatigue life data results in an S-N curve
located in vicinity of the best-fit curve. The other two S-N curves, predicted using the
four-segment CLD model and the proposed model using R = −1 as input, result in S-N
curve shapes that are not in correspondence with the experimental validation data. Note
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that this conclusion cannot be made when merely looking at the values given in Table 5.6,
which indicate that the four-segment CLD results in the best predictions. The size of
the error measures is caused by two aspects, namely 1) the validation dataset and 2) the
nature of the error metrics. Firstly, the validation dataset shows large variability in
fatigue life for similar applied maximum stresses. Secondly, the error metrics are biased
by penalising over- and under-predictions differently. This demonstrates the importance
of evaluating both the error measures and the obtained curves simultaneously.

The third and fourth comparison for R = −1 and χ, respectively, are only made between
two predictions. The predicted curves are shown for R = −1 in Figure 5.7c, and show
small variations. The four-segment model is capable of providing more accurate predic-
tions than the proposed model (using R = 0.1 fatigue life data as input) for the stress
levels of the validation datapoints, which is confirmed by the error metrics in Table 5.6.
Note that for lower stress levels, the proposed model seems to provide more accurate
predictions, however, the best-fit curve in this fatigue life scale has been extrapolated.
The predictions for R = χ by the proposed model using a different input R-ratio, i.e.
R = 0.1 and −1, are shown in Figure 5.7d. Both curves are in vicinity of the best-fit curve
and the experimental datapoints but show a different fatigue sensitivity. This results in
reversed over- and under-predictions of fatigue life by the two curves. The latter is also
quantified by the SSE error measure which is almost equivalent for both models.

Table 5.6: Error metrics for the fatigue life prediction of [45]16 by means of the proposed
model (input of R = 0.1 and R = −1.0) and four-segment anisomorphic CLD (input of
R = 0.1, R = χ, and R = 10).

Input R-ratio MAPE [%] MNB [%] RMSPE [%] SSE [-]
R=0.5

R = 0.1 604.0 604.0 618.8 15.10
R = −1 1.65·103 1.65·103 2.19·103 27.09
Four-segment 1.55·104 1.55·104 2.66·104 90.05

R=-10.0
R = 0.1 947.6 974.6 979.0 28.14
R = −1 377.0 354.7 594.9 10.84
Four-segment 74.19 -25.61 81.27 9.89

R=-1.0
R = 0.1 80.79 -80.79 81.38 10.81
Four-segment 35.65 -35.65 43.86 1.42

R=χ
R = 0.1 42.31 -37.91 46.38 4.01
R = −1 59.34 7.73 74.72 4.11
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a)	 b)	

c)	
R=-1.0	

R=0.5	 R=-10.0	

R=χ	
d)	

Figure 5.7: Fatigue life predictions for [45]16 by the proposed model (input R = 0.1 or
R = −1.0) and four-segment CLD (input R = 0.1, χ, and 10). In addition, experimentally
obtained fatigue lives are depicted. Fitted and predicted S-N curves are shown for a)
R = 0.5, b) R = −10.0, and c) R = −1.0. The legend is the same for all figures.

5.2.3 Conclusion

The predictive accuracy of the proposed model has been evaluated in this section.
Moreover, a comparison with the standard four-segment anisomorphic model was made.
Two cases were used for comparison, namely 1) a carbon-epoxy (T800H/2500) laminate
with angle-ply lay-up of [±60]3S and 2) a carbon-epoxy (T700S/2592) laminate with an
off-axis UD lay-up of [45]16. All made fatigue life predictions using the proposed and four-
segment anisomorphic model were in vicinity of experimental data. Predictions are either
similar between the models or show improvements when employing the proposed model.

One general trend in fatigue life predictions can be observed. Namely, for R-ratios related
to T-C loading at R < χ, both models show difficulties in predicting the fatigue life
behaviour. An under-prediction is seen for lower stress values while an over-prediction
is seen for higher stress values and the four-segment anisomorphic model has a stronger
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tendency to under-predict fatigue life. For the model proposed in this work, these results
can be an indication that one of the made assumptions might not be completely valid.
Firstly, an assumption was made on the intersection of the CLLs with the R = ±∞
radial. Based on the S-N curve predictions, the CLL intersection with the ±∞ radial
should occur at lower stress values for lower fatigue lives while those for higher values
of Nf should intersect the ±∞ radial at higher stresses. However, when also taking into
account the predictions by the four-segment anisomorphic model, another conclusion
can be drawn. The four-segment anisomorphic model shows a slightly lower predictive
accuracy in the T-C fatigue life predictions for R < χ than the proposed model while
the four-segment anisomorphic CLD employs fatigue life data in the vicinity of R = ±∞
(namely R = 10). Since also inaccurate fatigue life predictions have been obtained using
experimental data, this might be an indication that the assumed linear CLL shape,
employed in both models for T-C loading at R < χ, is inaccurate. Instead, based on the
obtained results, CLLs for lower values of Nf should have a more convex shape, resulting
in lower stress values for a similar Nf , while CLLs for higher fatigue lives should have
a concave shape. Whether the assumption of a linear-shaped CLL is valid can only be
confirmed by performing more tests to obtain additional S-N curves for R < χ.
The predictive accuracy of the proposed model with respect to the four-segment aniso-
morphic CLD is either similar or improved. This is unexpected because it was anticipated
that the four-segment anisomorphic CLD would perform better in all cases. The four-
segment anisomorphic CLD employs more experimental data which is related to all
fatigue life scales: while the proposed model makes additional assumptions on the CLL
curve shape, the four-segment anisomorphic CLD employs three S-N curves in each
fatigue loading type region (T-T, T-C, and C-C). The difference in predictive accuracy
might be caused by the use of an LSPR method (AppendixA), which is different from
the visual method employed by Kawai and Itoh (2014). Moreover, a less elaborate
curve fitting function (Equation 3.4) was employed in this section than that proposed
by Kawai and Itoh (2014) (Equation 3.8) because the datasets, due to their size, do not
always allow for the use of the latter equation in combination with the LSPR method.
However, the fitting of the S-N curve function to the input data was deemed acceptable
and therefore its influence is expected to be minimal. Lastly, the use of the standard
four-segment anisomorphic CLD, where kT = kC = 1, might not be applicable for
the considered laminates and the values of these exponents might require adaptation.
However, for arguments described in Chapter 3, this results in a descriptive model rather
than a predictive model and is deemed not appropriate.
Each of the previously described aspects can be a source for the lower than expected pre-
dictive accuracy of the four-segment anisomorphic CLD. However, for an unambiguous
comparison with the proposed model, these alterations had to be made to the four-
segment anisomorphic CLD. Moreover, the perception is that the effect of these aspects
on the final outcome, except in case of the exponents, should be minimal. Therefore, even
though this result was unforeseen, one can conclude that, for the two considered carbon
fibre-reinforced epoxy laminates, the predictive accuracy of the proposed model is similar
or improved with respect to that of the standard four-segment anisomorphic model.
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Chapter 6

Conclusions

In this work, two fatigue life prediction models were presented for carbon fibre-reinforced
epoxy laminates characterised by either UTS>|UCS| or |UCS|>UTS. Predictions are
made for T-T and T-C loading cases based on a single S-N curve. These models have been
proposed based on the research questions formulated in Chapter 1. The first research
question is restated and addressed next.

How to adapt the anisomorphic fatigue life prediction model such that a
different input dataset can be used to minimise the number of required
S-N curves and allow for a more conventional stress ratio?

The adaptation of the two-segment anisomorphic model resulted in the proposed model
applicable to carbon-epoxy laminates characterised by UTS>|UCS|. An additional
model step was included, which allowed for the derivation of the critical S-N curve from
input fatigue life data obtained at either R = 0.1 or R = −1. This resulted in a model
that predicts the fatigue life of carbon-epoxy laminates based on a single experimental
S-N curve related to R = 0.1 or R = −1. The amount of experimental input data was
not reduced with respect to the two-segment anisomorphic model. However, a more
conventional stress ratio than the critical R-ratio can now be employed.

The adaptation of the three- and four-segment anisomorphic model resulted in the pro-
posed model applicable to carbon-epoxy laminates showing |UCS|>UTS. Experimental
results, presented by Kawai and Murata (2010) and Kawai and Itoh (2014), were reviewed
and the anisomorphic model was adapted to include an assumption concerning the shape
of the CLLs near the segment boundary between T-C and C-C loading. Moreover,
an additional CLL-shape dependency on the UTS and UCS value was included. This
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resulted in a model that predicts the fatigue life of carbon-epoxy laminates based on a
single experimental S-N curve related to R = 0.1 or R = −1. The amount of experimental
input data was reduced compared to the three- and four-segment anisomorphic model,
which require two and three S-N curves, respectively, of which one related to the critical
R-ratio. Thus, not only a more conventional R-ratio can be employed as input to the
models but also less experimental tests are required.

A second research question was defined in Chapter 1 related to the predictive accuracy
of the proposed models. This research question is restated and answered as follows.

What is the relative predictive performance of the proposed model with
respect to the anisomorphic fatigue life model when comparing similar
laminates tested in constant amplitude loading at different stress ratios
(T-T and T-C)?

The relative predictive performance of the proposed model with respect to the two-
segment anisomorphic model was evaluated by means of experimental data of three
laminates from literature characterised by UTS>|UCS|. Moreover, an experimental
campaign was conducted on a fourth laminate. For these laminates, the proposed model
was capable of providing a similar predictive accuracy as the two-segment anisomorphic
model. Moreover, the CLD model allowed for fatigue life predictions in similar fatigue
life scales as experimental results. However, S-N curves for R = 0.5 were slightly over-
predicted for all considered laminates, independent of whether the adapted model or the
original two-segment anisomorphic model was used. The previously presented conclusion
is only preliminary; the datasets employed in this study were limited in size. Chapter 7
provides a recommendation concerning additional evaluations of the predictive accuracy
of the presented model.

The relative predictive performance of the proposed model for laminates characterised
by |UCS|>UTS was assessed with respect to the four-segment anisomorphic model. A
comparison was made using experimental data of two laminates from literature. For
the two considered laminates, the model presented in this work allows for a similar or
improved accuracy in the fatigue life prediction of T-T and T-C loading with respect to
the four-segment anisomorphic model. This was not foreseen since the proposed model
employs only one S-N curve as input compared to three by the four-segment anisomorphic
CLD. Most likely, this is caused by an improvement in the assumed CLL shape. Thus,
employing more experimental data does not necessarily lead to improved fatigue life
predictions. Noticeable was the reduction in predictive accuracy of both models for T-C
loads at R < χ. This is seemingly caused by a linear assumed CLL which might not be
suitable. Similar to the first model, the datasets employed for evaluation were limited
in size. The conduction of additional evaluations will result in a strengthened verdict of
the predictive accuracy, as recommended in Chapter 7.
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Recommendations

Several recommendations can be made related to the presented models. The most
important recommendation regards the establishment of the predictive accuracy of the
proposed models. Datasets employed in this work were mainly found in literature and are
limited in their size: the size of the datasets was often smaller than the minimum number
of tests results recommended by the ASTM standard (ASTM, 1980 (2015)). This can
have greatly affected the obtained results. By performing additional evaluations, both for
the same laminates with an extended dataset, as well as for carbon-epoxy laminates with
different lay-ups, a better indication of the applicability of the models can be obtained.

The current set-up of both models allows for the use of an S-N curve related to either
R = 0.1 or R = −1 without adapting the employed methodology. In theory, if the
assumed CLL functions are accurate, the set-up of the model allows for the input of
fatigue life data related to any R-ratio for the first model (applicable to UTS>|UCS|) and
of any R-ratio in the range χ ≤ R < 1 for the second model (applicable to |UCS|>UTS).
In both models, the critical S-N curve is derived directly from the input fatigue life
data before establishing the complete CLL functions, which allows for the input of a
different R-ratio. It can be of interest to investigate the predictive accuracy when other
R-ratios are used as input. Moreover, in a similar manner also the simultaneous input
of experimental data of several S-N curves can be evaluated; since it is always required
to first predict the critical S-N curve, input datapoints obtained under different R-ratios
can be employed. Then, the predicted critical fatigue lives can be combined and a curve
can be fitted through the datapoints to obtain a critical S-N curve based on experimental
input data from different R-ratios. This can be of interest when more than one S-N curve
is readily available.
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The previous recommendation relies on the assumption that the assumed CLL functions
are suitable. However, as discussed in Chapter 6, slight over-predictions, by both the
proposed and two-segment anisomorphic model, are obtained in the fatigue life prediction
of R = 0.5 for laminates showing UTS>|UCS|. A further evaluation of the fatigue life
behaviour for R > 0.1, as well as a study into an appropriate CLL shape for this region,
can be of interest in future work.
For the second model, it has been assumed that all CLLs intersect the R = ±∞ radial
in the top tenth percentile for 2Nf < 106. However, since not much fatigue life data
is available in literature for carbon-epoxy laminates showing |UCS|>UTS, it is unclear
whether this assumption is true for all cases. Additional laminates should be evaluated to
assess whether this assumption is valid. Moreover, it needs to be addressed whether the
assumed CLL shapes are applicable. As discussed in Chapter 6, S-N curve predictions
for R < χ show less correspondence with experimental results. Based on the presented
results, improved predictions might be obtained using a convex CLL shape for low fatigue
lives and a concave CLL shape for higher fatigue lives rather than a linear CLL for all
fatigue life scales (Section 5.2).
Large scatter is often seen in fatigue life data of FRPs. To assess the influence of this
variability, the set-up of a confidence band around the estimated S-N curves can be
considered, as well as the influence of scatter in the input data on the final fatigue life
predictions. In future work, it is possible to expand this concept to Probabilistic S-N
(P-S-N) curves and, consequently, P-CLD curves, thereby allowing for an assessment of
the uncertainty seen in fatigue life predictions.
The proposed fatigue life prediction models only consider uni-axial CA T-T and T-C fa-
tigue loading. Firstly, the models can be expanded to include the prediction of C-C loads,
however, this will require additional considerations regarding C-C testing. Secondly,
multi-axial VA loading is more common than uni-axial CA loading when a structure is
in-service. The models proposed in this work for uni-axial CA loading can be used as
a base for the development of more elaborated fatigue life predictions models, taking
into account different loading types while employing the benefits of limited experimental
efforts required for the input.
Related to different loading types, the effects of changing environmental conditions, such
as temperature and humidity on the fatigue life, can also be considered, as well as the
prediction thereof. Potentially, the methods can be expanded to include predictions on
these aspects.
The current work has focussed on carbon fibre-reinforced epoxy laminates. However,
in future work the applicability of the models for different CFRP or even other FRP,
such as GFRP laminates, should be investigated. For both the first and second model,
an initial assumption has been made regarding the influence of the critical R-ratio. So
far, this critical R-ratio has only been considered for carbon-epoxy laminates and it is
unclear whether its impact is similar for other materials. For example, the first model
assumes that the CLLs peak at the critical R-ratio; it can be of interest to evaluate
whether this is true for other FRP materials as well.
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The last made recommendation relates to the number of fatigue life data in one S-N
curve. Currently, large numbers of fatigue life tests are required for the establishment of
one reliable S-N curve. Research should be focussed on minimising experimental efforts
related to one S-N curve. If this can be minimised, even further reductions in the required
number of tests can be obtained when combining it with the models proposed in this
work. This will result in a CLD model that is capable of providing predictions of the
fatigue life for carbon-epoxy laminates in T-T or T-C loading based on less experimental
datapoints at one conventional S-N curve.
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Appendix A

S-N Curves

S-N curves can be fitted to fatigue life experimental datapoints to describe the change in
fatigue life for different applied CA stresses. Both the expression used to describe these
curves and the manner of fitting are of importance and are discussed in this appendix.
SectionA.1 considers four different S-N curve functions. Thereafter, SectionA.2 intro-
duces a curve fitting technique. Kawai and his colleagues did not specify the method
used for curve fitting the ψ-2N relation to experimental data at the critical R-ratio χ.
However, it is presumed by the author of this work that the values of the curve fitting
parameters (Kχ, a, n) have been identified by means of visual fitting1. Visual fitting
will inherently not lead to the most optimal values for the curve fitting parameters.
Instead, a regression analysis can result in a better descriptive function. Therefore, a
new procedure to estimate the values for Kχ, a, and n will be proposed in SectionA.2.

A.1 S-N Curve Functions

Several expressions can be employed to describe the S-N curve. Two expressions most
commonly used are the 1) power and 2) exponential S-N curve, of which the use has
been recommended by ASTM (1980 (2015)). The power-law relation (also known as the
Basquin relation) is a log-log function and defined as (Vassilopoulos and Keller, 2011)

σ = σ0N
− 1
k , (A.1)

Nσm = C, (A.2)

1 Kawai and Yano (2016a) present a similar curve fitting procedure to that used in the two-segment
anisomorphic model, where the values of the model parameters “were identified by visually fitting” the
function to experimental fatigue life data.
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where C, k, m, and σ0 are model parameters that are estimated based on fatigue life
data by performing a linear regression.

When use is made of a lin-log diagram rather than a log-log diagram, the exponential
formulation is often employed, given as

σa = A−B
(
log

(
N̄
))C

, (A.3)

σa = A−B log
(
N̄
)
. (A.4)

It employs three curve fitting parameters A, B, and C, while N̄ is the average number
of cycles to failure. A simplified version is obtained when C = 1 (i.e., EquationA.4).

For the two-, three-, and four-segment anisomorphic CLD model, different S-N curve
expressions have been proposed. Kawai and Koizumi (2007) introduced an equation for
the two-segment CLD, defined as

2Nf = 2
Kχ

(1− ψ)a

ψn
, (A.5)

which consists of three model fitting parameters Kχ, a, and n. For the three-, and
four-segment anisomorphic CLD, an elaborated S-N curve expression was proposed by
Kawai and Murata (2010) and Kawai and Itoh (2014), given as

2Nf = 1
Kχ

1
(ψχ)n

(1− ψχ)a(
ψχ − ψLχ

)b , (A.6)

which employs five model parameters rather than three, namely Kχ, a, b, n, and ψLχ .

A.2 Curve Fitting Technique

In this section, a curve fitting technique to estimate the fitting parameters Kχ, a, and
n is presented. In this work, EquationA.5 is employed for reasons discussed in detail
in Chapter 4. Therefore, the curve fitting technique presented in this appendix is shown
only for EquationA.5. However, the presented method can be adapted for other S-N
curve functions. In SubsectionA.2.1, a maximum likelihood function is established that
can be used to find estimates for the fitting parameters. Next, the maximum likelihood
approach is combined with a LS regression technique to obtain values for the estimates
in SubsectionA.2.2.

A.2.1 Derivation Maximum Likelihood Function

EquationA.5 is fitted to a dataset and is considered to describe the mean fatigue life for
each stress level. The variation in fatigue life data around the curve can be described
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using a representative probability distribution. It is assumed that fatigue life data at
a constant stress level follows a log-normal distribution around the best-fit curve. The
errors are independent log-normal errors e that can be added to the S-N curve equation as

2Nf = 2
Kχ

(1− ψ)a

ψn
· e. (A.7)

A log-normal distribution will provide a normal distribution on the log-scale. When the
previous equation is rewritten by taking the logs, the errors become additive:

ln(2Nf ) = ln(2)− ln(Kχ)− n ln(ψ) + a ln(1− ψ) + ln(e). (A.8)

For the derivation of this equation it has been assumed that all three fitting parameters
(Kχ, a, and n) are real and positive. In addition, it is given that both ψ and Nf are
real and positive numbers, and that the range is of ψ is given as

0 ≤ ψ ≤ 1.

Because it was assumed that the independent errors e follow a lognormal distribution, it
can be concluded that the independent errors ln(e) follow a normal distributionN

(
0, σ2).

Consequently, Nf also follows a normal distribution per stress level since ln(2Nf ) is
described by the best-fit curve and independent errors, and is given as

ln(2Nf ) = m(ψ, a,Kχ, n) + ln(e), (A.9)

where m(ψ,Kχ, a, n) describes the best-fit curve model. As previously mentioned, it
has been assumed that the best-fit curve describes the mean of the normal distribution.
Thus, the errors ln(e) will describe the variance of the normal distribution. In other
words, ln(2Nf ) follows a normal distribution with a mean µ = m(ψ,Kχ, a, n) and
variance σ2 (N

(
µ, σ2)).

Next, a maximum likelihood function L can be expressed that has to be minimised to
obtain an estimate for the model fitting parameters and variance. As aforementioned, it
has been assumed that the fatigue life for a constant stress level can be described using
a normal distribution N(µ, σ2) on the log-scale. Accordingly, the maximum likelihood
function is defined as

L =
M∏
i=1

fµ,σ (ψi, a,Kχ, n) =
M∏
i=1

1
σ
√

2π
e
− 1

2

(
ln(2Nfi )−m(ψi,a,Kχ,n)

σ

)2

. (A.10)

The likelihood function L can be rewritten by taking the logs of EquationA.10, resulting
in the log-likelihood function l defined as

l = lnL = −M ln(σ)−M ln(
√

2π)− 1
2σ2

M∑
i=1

(
ln(2Nfi)−m (ψi, a,Kχ, n)2

)
. (A.11)
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An estimate for each fitting parameter, as well as for the mean and variance of the
normal distribution, is obtained by taking the partial derivatives of the log-likelihood
function with respect to a, Kχ, n, µ, and σ. The manner of taking the partial derivatives
is shown next.

Partial derivative w.r.t. mean µ
First, the partial derivative of the log-likelihood function l with respect to the mean µ is
evaluated. The mean µ of the normal distribution was previously defined as the best-fit
curve through the fatigue life dataset as:

µ = m (ψi, a,Kχ, n) ,
= ln(2)− ln(Kχ)− n ln(ψ) + a ln(1− ψ).

(A.12)

The partial derivative of l (EquationA.11) with respect to µ is then given as

∂l

∂µ
= M

σ2

(
ln(2Nf )− µ

)
= 0, (A.13)

where M is the total number of datapoints. For this equation to equal zero, the expres-
sion in the brackets must approach zero. Therefore the following must hold, which is
also the definition of the mean:

∂l

∂µ
= 0 if µ = ln(2Nf ). (A.14)

Partial derivative w.r.t. variance σ
The partial derivative with respect to the variance σ is presented as

∂l

∂σ
= −M

σ3

(
σ2 − 1

M

M∑
i=1

(ln(2Nf )− µ)2
)

= 0. (A.15)

For the partial derivative to equal zero, the expression in the brackets must approach
zero. This provides an estimator for the variance σ2 of the normal distribution, given as

∂l

∂σ
= 0 if σ2 = 1

M

M∑
i=1

(ln(2Nf )− µ)2 . (A.16)

However, the obtained expression for σ2 is biased, which must be corrected for. A
bias-corrected estimator for σ2 is given by

s2 = 1
M − p

M∑
i=1

(ln(2Nf )− µ)2 , (A.17)

where (M − p) is the Degrees Of Freedom (DOF) of the model and µ is described by
the best-fit curve through the datapoints.
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Partial derivative w.r.t. fitting parameters Kχ, a, n
The partial derivatives of the log-likelihood function with respect to each fitting param-
eter (Kχ, a, and n) are given by

∂l

∂Kχ
= 0 if

M∑
i=1

(ln(2Nf )−m (ψi, a,Kχ, n)) ∂m (ψi, a,Kχ, n)
∂Kχ

, (A.18)

∂l

∂a
= 0 if

M∑
i=1

(ln(2Nf )−m (ψi, a,Kχ, n)) ∂m (ψi, a,Kχ, n)
∂a

, (A.19)

∂l

∂n
= 0 if

M∑
i=1

(ln(2Nf )−m (ψi, a,Kχ, n)) ∂m (ψi, a,Kχ, n)
∂n

. (A.20)

The three derived equations cannot be solved analytically. Instead, an estimate for the
fitting parameters must be obtained numerically using a LS method. Using LS, the
residual between the fitted curve and each datapoint of the dataset must be minimised.
Minimising the residuals provides estimates for the fitting parameters. Once the esti-
mates for Kχ, a, and n are obtained, the results can be employed to obtain estimates
for µ and σ using EquationsA.14 andA.17, respectively. The employed LS approach is
discussed in more detail in the next subsection.

A.2.2 Estimates of the Fitting Parameters

An estimation of the model parameters can be obtained using LS. However, a classical
LS method will lead to inaccurate estimations for higher stress values because each
residual has an equal effect on the final estimation. For example, an increase of 10 in the
residual for a fatigue life estimation of N = 100 has a similar effect as an increase of 10
for a fatigue life of N = 106. It is thus of interest to take into account the logarithmic
scale of the fatigue life range during the estimation of the model parameters in order
to reduce the influence of large fatigue life values. Therefore, it is proposed to fit the
ψ-2N function using a LSPR method, introduced by Tofallis (2008), which considers the
percentage error rather than the absolute error.
LSPR is an adapted form of the weighted least squares method where the weights are
equal to 1

ŷi
. In order to obtain values for the model fitting parameters, the residual

between the experimental data and the estimations must be minimised. This is similar
to minimising the sum of squared normalised deviations given as

E =
M∑
i=1

(
ŷi − yi
ŷi

)2
, (A.21)

where M is the total number of experimental datapoints, ŷi is the fatigue life for the
ith experimental datapoint, and yi is the estimated fatigue life for the ith datapoint
using EquationA.5. Minimising the residual will lead to retrieval of the model fitting
parameters and thereby of the best-fit function to experimental fatigue life data.
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Appendix B

Material Data: HexPly AS4/8552

This appendix provides additional information on the continuous unidirectional car-
bon fibre-reinforced epoxy prepreg plies (HexPly AS4/8552 unidirectional prepreg plies
(Hexcel, 2016)) used during the experimental campaign. Only information of direct
interest to this study is provided here. For additional information on the material used
and the curing cycle, the reader is referred to the information provided by Hexcel (2016).

An overview of the mechanical properties of the material is given in TableB.1. Note
that only the properties of interest are provided here (i.e., those corresponding to dry
conditions and room temperature (25°C)). In order to determine the lay-up of the man-
ufactured laminate, more information was required in addition to the values provided
by the manufacturer. The values for these additional properties (G12, ν12, and Yc) were
taken from Lopes et al. (2009).
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Table B.1: Physical and mechanical properties at dry conditions and room temperature
(25°C) of AS4/8552 unidirectional carbon prepregs (Hexcel, 2016, Lopes et al., 2009)

Property Unit Value

Laminate density kg/m3 1580
E1 GPa 141
E2 GPa 10
G12 GPa 4.9
ν12 - 0.32
ν23 - 0.487
Xt MPa 2207
Xc MPa 1531
Yt MPa 81
Yc MPa 200
S12 MPa 115

The autoclave curing cycle employed during the experimental campaign is similar to
the cycle recommended by the manufacturer Hexcel for monolithic parts (Hexcel, 2016).
The curing cycle is also presented in FigureB.1.

Figure B.1: Autoclave curing cycle for monolithic parts as recommended by Hexcel,
reprinted from Hexcel (2016).
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Test Data Results: Experimental
Campaign

Fatigue life test values obtained from the conducted experimental campaign are presented
in TablesC.1 toC.3. Fatigue life tests were conducted on a carbon-epoxy (AS4/8552)
laminate with cross-ply lay-up of [90/0/90]2S at R-ratios of 0.1, −1, and χ = −0.60 and
testing frequencies of f = 10Hz, but also f = 5, 20, and 40Hz. For each stress value,
fatigue lives have been indicated, as well as the corresponding testing frequency and
specimen number. The material properties from literature and autoclave cycle for the
laminate have been included in AppendixB.

Table C.1: Experimental fatigue life test data for [90/0/90]2S at R = 0.1, resulting from
the conducted experimental campaign. Run-outs have been indicated with (!).

R-ratio [90/0/90]2s
0.1 σmax [MPa] Nf f [Hz] Specimen ID

612.0 77 10 S16
610.5 773 5 S05
610.2 56 10 S12
599.8 171,617 10 S09
593.4 300 10 S14
590.0 446,827 10 S15
580.3 853,203 (!) 10 S17
522.9 1,520,046 (!) 5 S06
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Table C.2: Experimental fatigue life test data for [90/0/90]2S at R = χ, resulting from
the conducted experimental campaign. Run-outs have been indicated with (!).

R-ratio [90/0/90]2s
χ σmax [MPa] Nf f [Hz] Specimen ID

606.5 2,891 10 S85
603.6 5,792 10 S58
603.4 3,204 10 S57
547.4 41,733 10 S50
546.4 200 10 S35
546.4 16,267 10 S47
546.4 38,249 10 S74
546.4 45,214 10 S54
484.0 215,077 10 S52
483.3 73,327 10 S83
483.3 133,400 10 S75
483.3 148,183 10 S38
482.0 73,427 10 S60
420.8 1,013,785 (!) 10 S62

Table C.3: Experimental fatigue life test data for [90/0/90]2S at R = −1.0, resulting from
the conducted experimental campaign. Run-outs have been indicated with (!).

R-ratio [90/0/90]2s
−1 σmax [MPa] Nf f [Hz] Specimen ID

390.0 7,885 10 S49
390.0 9,223 10 S84
390.0 15,433 10 S68
382.4 14,262 10 S73
382.2 57,274 10 S69
381.8 50,838 10 S76
374.7 13,388 10 S53
372.5 59,045 10 S81
361.6 74,299 10 S48
357.3 33,558 10 S22
356.1 34,940 10 S19
346.8 1,028,232 (!) 10 S70
345.7 35,898 10 S86
345.7 72,843 10 S72
329.1 145,997 10 S30
218.1 2,225,742 (!) 10 S65

380.6 6,039 5 S34
367.6 19,044 5 S40
365.3 20,542 5 S41
366.4 27,932 20 S33
362.5 80 40 S25
360.3 75 40 S31



Appendix D

Test Data Results: Literature

Fatigue life test values obtained from literature are presented in TableD.2 andD.4
for laminates characterised by UTS>|UCS| and |UCS|>UTS, respectively. Moreover,
in TableD.1 andD.3, the static strength values (UTS and UCS) have been included.
In TableD.1 andD.2, data for the carbon-epoxy (T800H/3631) laminates with lay-up
[45/90/−45/0]2S and [0/60/−60]2S has been included, for which testing was performed
at 10Hz. In addition, test data has been included for a carbon-epoxy (T800H/2500)
laminate with a cross-ply lay-up of [0/90]3S , also with a test frequency of 10Hz. All
data was presented by Kawai and Koizumi (2007). Note that some of the values have
been adapted with respect to those given by Kawai and Koizumi (2007) due to found
inconsistencies between the provided table and figures.

In TableD.3 andD.4, data for two laminates is presented, namely a carbon-epoxy
(T800H/2500) laminate with lay-up [±60]3S , for which the data was presented by Kawai
and Murata (2010), and a carbon-epoxy (T700/2592) laminate with lay-up [45]16, for
which the data was presented by Kawai and Itoh (2014). For the first laminate, testing
was performed at both 2 and 10Hz, while the testing frequency for the second laminate
was 5Hz. Note that for the latter laminate no actual values were published by Kawai
and Itoh (2014) but that the presented values have been determined from the published
figures.

Table D.1: Mean static strength test data (both tension and compression) for three
laminates, as published by Kawai and Koizumi (2007).

[45/90/−45/0]2s [0/60/−60]2s [0/90]3s
UTS [MPa] 781.9 880.6 1414.1
UCS [MPa] -532.4 -465.1 -618.0
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Table D.2: Experimental fatigue life test data for three laminates, as published by Kawai
and Koizumi (2007). Run-outs have been indicated with (!). Note that some fatigue
lives do not correspond with those given by Kawai and Koizumi (2007) due to found
discrepancies between values provided in Table 4 and the corresponding S-N curve plots
in the corresponding article. The experimental data values were adjusted accordingly and
are indicated in italic form.

R-ratio [45/90/−45/0]2s [0/60/−60]2s [0/90]3s
σmax [MPa] 2Nf σmax [MPa] 2Nf σmax [MPa] 2Nf

0.1 625.5 2,128 748.5 1,818 1,060.6 6,614
609.9 5,716 739.7 53,594 848.5 200,220
586.5 15,414 730,9 142,964
563.0 14,696 704.5 250,840
532.9 225,080 678.0 2,000,000 (!)
508.3 146,602 660.4 1,008,260

0.5 680.3 2,920 854.4 374 1,244.4 260
664.6 5,612 836.5 3,442 1,202.0 498
641.2 39,712 810.1 21,272 1,102.9 175,112
625.5 52,604 792.5 411,480 1,060.6 255,160
609.9 198,228 774.9 584,040
594.3 716,200 766.1 2,000,000 (!)

χ 469.2 3,852 748.5 5,366 989.9 130
430.1 6,856 704.5 3,236 777.8 7,782
391.0 24,532 616.4 23,370 707.1 9,858
351.9 65,152 528.3 61,986 636.3 29,692
273.7 574,060 528.3 118,540 565.6 182,550

440.3 1,225,840 530.3 774,300
−1 372.7 8,288 441.6 23,220 432.6 7,324

346.1 12,234 418.6 59,000 389.3 368,480
292.8 84,936 395.3 78,000 370.8 767,080
266.2 259,500 395.3 78,000 370.8 595,380
239.6 419,520 348.8 169,896
223.6 1,341,460 302.3 2,000,000 (!)

Table D.3: Mean static strength test data (both tension and compression) for three
laminates, as published by Kawai and Murata (2010) and Kawai and Itoh (2014).

[±60]3S [45]16
UTS [MPa] 83.3 61.6
UCS [MPa] -164.8 -151.6
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Table D.4: Experimental fatigue life test data for three laminates, as published by Kawai
and Murata (2010) for [±60]3S and Kawai and Itoh (2014) for [45]16. Run-outs have been
indicated with (!). Note that some fatigue lives do not correspond with those given by
Kawai and Murata (2010) due to found discrepancies between values provided in Table 3
and the corresponding S-N curve plots in the corresponding article. The experimental data
values were adjusted accordingly and are indicated in italic form. For the [45]16 lay-up, no
exact values were provided, but these were derived from the published diagrams.

R-ratio [±60]3S [45]16
σmax [MPa] 2Nf σmax [MPa] 2Nf

0.1 73.4 2,560 46. 3,000
69.0 7,350 44.5 9,800
61.9 42,400 42.5 62,000
58.0 229,676 37.0 220,000
55.0 709,950 30.0 2,000,000 (!)

0.5 81.3 2,790 54.0 450
79.6 4,330 51.5 800
77.8 21,900 46.0 1,900
76.0 12,800 40.0 2,000,000 (!)
70.7 90,400

−1 67.5 1,840 47.5 2,100
64.1 3,630 40.0 12,000
58.3 12,300 36.0 15,000
55.8 17,800
53.3 19,700
48.0 169,179

χ 61.6 445 99.0 750
57.5 1,230 83.0 5,000
53.7 4,060 75.0 50,000
41.7 186,000 63.0 44,000
33.3 200,000 (!) 58.0 110,000

61.0 110,000
50.0 200,000
41.0 1,600,000

−3 123.6 8,610
115.4 67,400
107.2 137,000

−5 140.1 255
136.0 2,930
131.9 12,100
123.6 87,700

−10 123.0 300
117.0 600
113.0 1,300
111.0 300,000
105.0 370,000

10 153.3 4,000 149.0 200
151.7 394 142.0 570
150.0 2,250 137.0 48,000
148.4 40,000
145.1 64,000
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