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l.Introduction 

On the ageing of supersaturated solid solutions, elastic strains develop as a result of the volume misfit between the 
precipitating disperse (non-equilibrium) phase(s) and the, continuous, matrix phase, This is the basis of the well known, 
but not fully understood, precipitation hardening of alloys. Knowledge of the development of internal strain distributions 
may be of great use for the understanding of the macroscopic mechanical properties of multiphase materials. 

Consider a specimen composed of a matrix A and homogeneously distributed panicles B. Elastic strains in such an 
assembly occur if the B-particles do not fit without deformation into the holes provided by the A-matrix. The origin of 
such a misfit can be various, e.g. atomic volume changes caused by precipitation of the B-particles or differences in 
shrinkage between the A-matrix and the B-particles on cooling after a heat treatmem. 

From an experimental point of view, one can distinguish macro- and microstrains. By definition, a macrostraln is 
related to the average lattice spacing of a phase, whereas a rnicrostrain corresponds to an average of the variations in the 
lattice spacing. Therefore, both macro- and microstrains can be detected by X-ray diffraction: macrostrains cause shifts of 
the diffraction lines and microstrains induce broadening of the diffraction lines. 

The occurrence of macrostrains in a matrix containing misfitting second phase panicles was investigated earlier 
(1,2). On the basis of a theory developed by Eshelby (3) for the elastic strains in a continuous isotropic matrix due to 
misfitting inclusions and originally applied to crystals containing point imperfections, a relation was derived (see Section 
2) between the macrostrain, the volume fraction Yn of B-particles, a misfit parameter s and a constant C A reflecting the 
elastic properties of both the matrix and the inclusions (1,4). In the case of point imperfections the theory has its 
limitations (5). However, these may be less significant for inclusions composed of a number of atoms. 

An experimental test was performed on two-phase AISi and FeN alloys. Because precipitation stresses due to 
differences in molar volume were completely relaxed in the fully aged A1Si alloys (Al-matfix + Si-particles) (1,4), the 
misfit solely stemmed from the difference in shrinkage between the Al-matrix and the precipitated Si-particles on cooling 
from the ageing temperature T a to room temperature T r and the misfit parameter s could be quantified easily (see Section 
4). A.fair agreement between theory and experiment was established (1). A very good agreement between theory and 
experiment was obtained for the fully aged two-phase FeN alloys (c~-Fe mauix + a"-Fel6N 2 particles), where the misfit 
was solely due to differences in molar volume (2). 

To our knowledge a quantitative interpretation of microstrains, i.e. of diffraction line broadening, in a matrix 
containing misfitting particles has not been given before. The aim of the present study is to describe the microstrain 
quantitatively and to perform an experimental test on fully aged A1Si alloys. 

2. Theory 

In Eshelby's theory the distinction between an infinite and a finite A-matrix is essential. 
Inserting a misfitting spherical B-particle into a cavity of an infinite, continuous and isotropic A-mau'ix causes 

stresses in all directions. Taking the origin in the centre of the B-particle and considering only the displacements in the A- 
matrix it can be shown that, in polar coordinates (r,9,e), the mutually perpendicular local strain components are given 
by (5): 

roA)3/r 3 oA)3/r 3 A e = - 2 C a (  ; e = e  = C e ( r  ( r>ro)  [1] 
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where C = 3KB/(3K B + 41.tA) with kt and K denoting the shear and the bulk modulii and where-  with ro A ar}.d rBo as the 
radii ~f th~ UnAdeformed cavity in the A-matrix and of the undeformed B-particle - the misfit parameter e is given by: 
e = (r o - r o)/r o . The B-particle is only subjected to a uniform hydrostatic stress, implying the absence of microstrains. As 

the relative volume change of the matrix AVA/V A equals err + e ,~  + Co0, it follows directly from eq. [1] ~hat for an infinite 
A-matrix no volume change, and therefore no macrostram, occurs at all on inserting a misfitting B-pa_,kicle. Hence, the 
stress components for the A-matrix can be written in terms of the shear modulus rtA: 

X rr = ' 4 g A  C e  (roA)3/r 3", X99 =X00 = 211A C e(roA)3/r3 (r > r:) [21 

A finite spherical assembly of an A-matrix with a spherical B-particle has a traction-free bounding surface. To 
fulfil this requirement, the stress along the radius vector r has to be compensated by a hydrostatic stress equal to-  
Xrr (r = R) where R is the radius of the assembly. This hydrostatic stress changes the volume of the matrix (1,4) and 
therefore macrostresses occur in a finite matrix. For a cubic matrix with lattice parameter a A the macrostrain e u = AaA/a A 
follows, via AVA/V A = 3aaA/a A = -Xrr (r = R)/K A, from eq. [2]: 

e u = 4 C A e(roA)3/R 3 = 4 C A - ~ .  3 YB [3] 
(i+e) 

where C A = C liA/3K A and YI3 is the volume fraction of B. Equation [3] also holds for a matrix containing a, number of B- 
particles whose strain fields are independent. 

The strain e u is uniform throughout the finite matrix and therefore does not contribute to the broadening of matrix 
reflections.The breadth of an X-ray diffraction line is connected with <e2>, i.e. the volume average of the square of the 
position-dependent part of the strain in the direction perpendicular to the diffracting planes (hkl) (6). For an elastically 
isotropic matrix in which the strain field has spherical symmetry it holds that (i) <e2> is the same for all (hkl) and (ii) the 
average over a sphere of radius r around the origin of the squared position-dependent strains perpendicular to the diffracting 
planes, <e2(r)>, is equal to the average over all directions (~,0) of the squared strains at a point (r,%0). Then it follows: 

< e 2 ( r ) > = l (  + e  + e  + ( e e  +e  e ~ r r  oo + e~eoo)  [4] 

Substitution of eq. [1] yields: 

4 C2e2(roA)6/r 6 <e2(r)> = ~- [5] 

By averaging over the total volume, i.e. over all distances r B < r < R, one obtains (see also eq. [3]): 

4 C 2 2 
YB <e2> = -~ (l+e)6 [6] 

Eq.[ 6] also holds for a matrix containing a number of B-particles, whose strain fields in the matrix are independent (see 
eq. [3]). 

This result can also be obtained in an indirect way from the energy EA, associated with the strain field in an infinite 
matrix (no uniform strain). From eqs. [1] and [2] it is obtained (of. Ref. 5): 

E 2 
E A = 6~ A C 2 ~ 6 y  B [7] 
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According to the reasoning by Fanlkner (7), it follows for the present symmetry: 

E A = ~ ~tA < e2> [8] 

From eqs. [7] and [8], eq. [6] follows directly. 
The integral breadth of a strain-broadened line profile, i.e. integral intensity divided by maximum intensity, is 

related to the mierostrain <e2> 1/2 by: 

<e2> 1/2 = k 15 cot 0 B [9] 

where 0 B is Bragg's angle and k is a proportionality constant, which, as usual, is taken here as 1/4 (6). 

3. Experimental Procedures 

Ribbons (thickness 20-50 ram) of A1Si alloys with 0, 2.3, 4.2, 5.9, 11.9 and 18.2 at% Si were prepared by 
meltspinning from 99.998 wt% A1 and 99.99 wt% Si (8). According to dendrite arm spacing measurements the cooling rate 
was in the range of 106 - 107 Ks -1. To be sure of a completed silicon precipitation ((9);see also Section 4), sections of the 
ribbons were (fully) aged during 1841 h at 447 + 2 K in an oil bath and cooled in air. The preparation of specimens for X- 
ray diffractometry consisted of placing pieces of ribbon parallel to each other on a flat plastic turntable with the aid of 
adhesive tape, alternating up- and wheelsides. So, the data obtained are averages for the up- and wheelsides (10). 

The X-ray diffraction line profiles were chosen on the following grounds: (i) high 20 B reflections to improve 
accuracy, (ii) different crystallographic directions to investigate effects due to a possible lack of isotropy, and (iii) minimal 
disturbance by neighbouring diffraction lines from Si-pardcles. The Al{400}-, A1{331 }- and Al{420}-line profiles were 
selected; only the Si { 531 }-reflection was situated between the A1 { 331 }- and the A1 { 420 }-line profiles. The profiles were 
recorded using a Siemens m-diffractometer employing CuKa-radiation (45 kV, 25 mA). The profiles were measured by the 
preset-time method with steps of 0.02°20. Large portions of the background at both sides of the peak were recorded. 

To remove the so-called instrumental broadening and the broadening due to the X-ray wavelength distribution the 
corresponding line profiles of co-aged pure aluminium ribbons served as references (10). The background was linearly 
interpolated between the extremities of the profile measured. The analysis of the line profiles was performed by the so- 
called single-line Voigt method, assuming that both the reference profile and the line profile to be analysed could be 
described by a Voigt-function (11). As the recorded profiles were relatively sharp, no corrections for the angle dependence 
of the Lorentz-polarisation and the absorption factors were considered to be necessary. Before applying the single-line 
Voigt method, the .aZ-components of the profiles were eliminated. 

In practice it is often considered that a finite crystallite size results in Cauchy-shaped profiles and that microstrains 
result in Gaussian-shaped profiles (11). In the present case, it appeared that the Al-matrix line profiles corrected for 
instrumental effects were almost entirely of Gaussian shape. Therefore, the structural line broadening of the Al-matrix line 
profiles investigated was interpreted as only caused by microstrains. 

For the presence of overlapping tails of the Si{ 531 } reflection the following correction procedure was applied to the 
AI{ 331 } and A1 {420 } profiles. For the alloy with the highest silicon content the overlapping Si{ 531 } tails were eliminated 
by an educated guess, which gave an increase of 10% of the microstrain as compared to the microstrain obtained without 
elimination. Then for the remaining alloys the microstrain values obtained from the A1{331 } and A1{420} reflections, 
without elimination of the overlapping Si{531 } tails, were increased in proportion to the silicon content of the alloy 
concerned. 

4. Resuks and Discussion 

In fully aged AISi alloys, consisting of an Al-matrix and dispersed Si-particles, a contribution to the broadening of 
the Al-matrix line profiles can be expected from (i) composition variations in the Al-matrix, (ii) lattice defects as 
dislocations, and (iii) misfit phenomena. Composition variations in decomposing alloys would generally result in 
asymmetrical Al-matrix line profiles (12). However, the observed Al-matrix profiles are symmetrical. Further, at the ageing 
temperature applied the silicon equilibrium solubility in the Al-matrix is negligible (13). So, it is concluded that cause (i) 
does not contribute to the line broadening observed. A substantial density of lattice defects as dislocations in the Al-matrix 
is not expected since the motion of dislocations is not much obstructed in the matrix of almost pure AI at the relatively high 
ageing temperature applied: 447 + 2 K, which is almost half the melting point of A1. Further, one should expect about the 
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same lattice defect density in the pure AI reference specimen (see Section 3) and by the line profile analysis technique 
applied here (relative determinations, see Ref. 14), a possible presence of lattice defects is not reflected in the values for the 
microstrains Obtained. 

Misfit phenomena can be caused by: 
a. the difference in atomic volume between silicon dissolved and silicon precipitated; 
b. the difference in thermal shrinkage between the Al-matrix and the Si-particles on cooling from the ageing temperature 

T a to room temperature T r. 
The difference in atomic volume causes strains during silicon precipitation (4,9), that relax during and after precipitation 
(15). At about 450 K this process of silicon precipitation and stress relaxatibn in melt-spun A1Si alloys has been completed 
after 32 h of ageing (4,9). The applied ageing treatment in this investigation was 1841 h at 447 + 2 K. So, the only origin 
of Al-matrix line broadening is the difference in thermal shrinkage between the Si-parficles and the surrounding M-matrix. 

The misfit parameter ~ then reads (1): 

¢ = (c~A1 - aSi)(Ta - Tr) = Aot4T [10] 

where aAl and aSi are the thermal linear expansion coefficients of the Al-matrix and the Si-pardcles. 
The fully aged melt-spun AISi alloys can be regarded as a model system for the study of the elastic effects due to the 

presence of misfitfing second phase particles since: 
(i) the large difference in thermal expansion coefficients of the Al-matrix and the Si-particles (act = 20.5 xl0 -6 K -1 (4)) 

yields a large misfit parameter. 
(ii) the M-matrix can be regarded as elastically isotropic (16). 
(iii) the Si-particles in melt-spun A1Si alloys can be considered as small spheres (1). 

In Fig. 1 the theoretical and experimental values of <e2>I/2/AT as obtained for the fully aged melt-spun A1Si alloys 
from the different Al-ma~x reflections are plotted as a function of (YSi) 1/2 (The volume fraction YSiWas calculated from the 
overall composition Of the alloy concerned; the value of C in eqs. [1] and [6] was obtained from the elastic constants of the 
elements (16), giving a theoretical value of C th = 0.73). For the ageing temperature applied the value of (1 + e) can be put 
equal to one. As prescribed by eq. [6], the experimental data lie on a stTaight line through the origin, the slope of which is 
only slightly different from the predicted value. As a function of YSi (the alloy composition) no distinct differences occur 
between the values of <e2>l/Z/aT obtained from the different Al-matrix line profiles {400}, {331} and {420}. This 
justifies the assumption of elastic isotropy. 

The value for C in eqs. [1] and [6] as deduced from the straight line through the experimental data in Fig. 1 equals 
Cexp = 0.67 which is about 10% smaller than C th = 0.73. The proportionality constant C A in eq. [3] for the macrostrain as 
deduce~, from experiments was about 30% larger than the one calculated from literature data: C~ xp = 0.112 to compare 
with C~," = 0.086 (4). 

"Considering the simplicity of the model applied, the compatibility of the used literature data for the elastic constants 
with the model and the uncertainties in the line profile analyses, e.g. about the value of k in eq. [9], a satisfactory 
correspondence occurs between theory and experiment, not only for the macrostrain (1,2), but also for the microstrain 
(present work). 
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FIGURE 1- The microstrain in the/d-matrix of fully aged A1Si alloys per Kelvin difference between ageing and room 
temperature, <e2>I/'2/AT, as a function of the square root of the volume fraction of Si-phase, (YSi) 1/2. 
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