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Abstract

Detecting vulnerabilities in smart contracts is critical due

to their immutability and the billions of dollars they secure.

Industrial tools like Slither rely on hardcoded rules, often

missing rare bugs or producing excessive false positives. Re-

cent work with large language models (LLMs) such as GPT-5

have been applied to this task, but these models favor pre-

cision while failing to recall many true issues, especially

in multi-label settings. We first fine-tune a 220M CodeT5+

model on 67,000+ real-world Ethereum contracts to establish

a per-class detectability baseline, revealing which SWC vul-

nerabilities are intrinsically easier or harder to detect. We

then study scaling effects, showing that the 770M variant

improves majority-class precision but loses rare-class sen-

sitivity. To reconcile this trade-off, we propose BreachT5, a

soft-voting ensemble of both scales with tuned thresholds to

balance recall and precision. BreachT5 achieves 0.556 Macro-

F1 and 0.612 Micro-F1, outperforming standalone models,

Slither, and GPT-5 on multi-label vulnerability detection in

smart contract security.
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1 INTRODUCTION

High Stakes, Weak Defenses. Smart contracts on platforms like

Ethereum secure billions of dollars across decentralized finance,

infrastructure, and autonomous protocols. The combination of im-

mutability and growing complexity makes even a single vulnera-

bility cause irreversible loss [3]. As seen in the DAO hack—where

a recursive call bug drained US$60M in 2016
1
—and the Poly Net-

work exploit—where attackers stole over US$610M in 2021
2
—the

financial stakes have escalated, where a single overlooked bug can

collapse entire ecosystems and leave millions of users exposed to

catastrophic loss [25]. By 2025, total reported blockchain exploit

losses exceeded US$15.31 billion, including US$6.72 billion from

1
In the end, the DAO hack triggered a controversial hard fork that split the Ethereum

community and gave rise to Ethereum Classic.

2
At the time, the Poly Network exploit was the largest hack in DeFi history, severely

damaging user trust and exposing the fragility of cross-chain protocols.
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DeFi protocols [7]. Despite this, current tools fall short. Static ana-

lyzers like Slither rely on rule-based pattern matching and cannot

capture high-level semantic information, often producing many

false positives [10, 24]. Meanwhile, general-purpose LLMs have

shown promise, but recent evaluations show frequent failures in

detecting rare vulnerabilities and inconsistent performance across

vulnerability types, typically with high recall but low precision [5].

This paper addresses these gaps by fine-tuning CodeT5+ mod-

els on a dataset of over 67,000 real-world smart contracts across 12

SWC vulnerability classes, and introducing BreachT5, a targeted en-
semble that leverages complementary strengths of different model

scales to balance rare-class recall with majority-class precision.

The Imbalance Challenge. Multi-label vulnerability detection

is severely class-imbalanced: some vulnerability types occur far

more frequently than others. In the dataset we use—BCCC-SCsVuls-

2024, which consolidates multiple sources of real-world contracts,

reentrancy (SWC-107) and integer overflow/underflow (SWC-101)

each exceed 16k instances, whereas weak access control (SWC-105)

appears in fewer than 1k [14]. This imbalance reflects both real-

world prevalence and dataset construction biases, and it directly

impacts how easily different classes can be detected. Moreover,

SWC categories exhibit distinct lexical and contextual signatures,

as effective detection often requires capturing high-level semantic

information that differs across vulnerability types [24].

Intrinsic Detectability. We therefore profile which vulnera-

bility types are intrinsically easy or hard to catch by evaluating a

fixed CodeT5+220𝑀 model under a consistent training setup, ensur-

ing that observed differences reflect vulnerability-specific difficulty

rather than confounders. This leads to our first research question:

RQ1: How accurately can a fine-tuned CodeT5+220𝑀 model detect
different SWC vulnerabilities, and which remain most difficult to
capture?

From this controlled evaluation, we observed clear detectability

patterns tied to SWC semantics (e.g., cue specificity and context

locality), even after accounting for class imbalance.

ScalingModelCapacity.Having establishedwhich SWC classes

are easy or hard for a fixed-capacity model, we next ask whether

capacity alone changes this picture. Holding the training setup con-

stant, we scale the model to 770M parameters and examine both

overall metrics and shifts in per-class precision/recall patterns.

RQ2: How does scaling from CodeT5+220𝑀 to CodeT5+770𝑀 affect
overall performance and the relative detectability of different SWC
vulnerabilities under an identical training setup?

Scaling revealed a trade-off: larger models improved frequent-

class detection, while smaller ones preserved rare-class sensitivity.

Ensembling for Complementarity. Having observed com-

plementary strengths across model scales, we next ask whether

combining them yields more balanced performance. To this end,

we design BreachT5, a soft-voting ensemble of CodeT5+220𝑀 and

CodeT5+770𝑀 with tuned thresholds to balance recall and precision.

Beyond internal gains, it is essential to ask whether these bene-

fits hold in practice. We therefore benchmark BreachT5 not only

against its components, but also against external baselines—namely

Slither (a widely used static analyzer based on rule-matching pat-

terns) and ChatGPT (GPT-5) as a representative general-purpose

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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LLM—chosen for their prominence in both industry and recent

academic evaluations.

RQ3: How does BreachT5 compare to its standalone models and ex-
ternal baselines (Slither, GPT-5) in overall and per-class vulnerability
detection?

Limitations and Validity.While RQ3 establishes BreachT5’s
advantages over components and baselines, it is equally important

to acknowledge the limits of our evaluation. We therefore examine

potential threats to validity—including dataset representativeness,

annotation noise, and metric choice—to clarify the conditions under

which our results may or may not generalize.

Contributions. Our contributions are:

• We fine-tune CodeT5+220𝑀 on a dataset of 67,000+ real-

world smart contracts, addressing severe class imbalance

with weighted loss.

• We provide a systematic analysis of per-class detectability

(RQ1), identifying which SWC vulnerabilities are intrinsi-

cally easier or harder to detect.

• We study the effect of scaling model capacity (RQ2), an-

alyzing how larger models reshape overall and per-class

performance.

• We introduce BreachT5, a soft-voting ensemble that unifies

complementary strengths of different model scales (RQ3),

and evaluate it against both standalone models and external

baselines (Slither, GPT-5).

• We discuss threats to validity, clarifying the conditions

under which our results may or may not generalize.

Structure. The remainder of this paper is organized as follows.

Section 2 reviews smart contract vulnerabilities and the CodeT5+

model. Section 3 presents BreachT5 and the ensembling method-

ology. Section 4 reports experimental results and comparisons

with existing tools. Section 5 reviews related work. Section 6 dis-

cusses threats to validity. Finally, Section 7 concludes the paper

and outlines future directions.

2 BACKGROUND

Smart contracts are self-executing programs deployed on blockchains,

where the logic of agreements is directly encoded in code. Each

execution propagates state changes across thousands of Ethereum

nodes worldwide, ensuring consistency without any central author-

ity [4]. But this decentralization comes with a critical trade-off: once

deployed, contracts are immutable—bugs cannot be patched, and

failures often result in irreversible financial loss. Hence, security

has become a primary concern in both research and practice.

2.1 Security Taxonomies

To systematize recurring flaws, the community has proposed tax-

onomies for smart contract security. The most prominent are the

DASP Top 10 [21] and the SWC registry [2]. While DASP highlights

only ten broad categories of vulnerabilities, the project neither de-

fines the listed vulnerabilities nor explains how the vulnerabilities

were selected and ranked. By contrast, the SWC registry relates

vulnerabilities to the broader CWE typology and provides reference

contracts and remediation guidelines, and it remains the de facto

standard for benchmarking tools and datasets in both academia

and industry [23]. In this work, we adopt SWC as our taxonomy, as

it remains the most widely used and better aligned with automated

analysis.

Subset of SWC Classes. In this work we focus on six SWC classes

that are most critical for our evaluation and illustrate different

patterns of vulnerability:

1 mapping(address => uint256) public balances;
2 function withdraw(uint _amount) public {
3 msg.sender.call{value: _amount }("");
4 balances[msg.sender] -= _amount; // state

update after external call
5 }

Listing 1: Reentrancy via external call before state update

(SWC-107)

SWC-107 (Reentrancy). This weakness arises when a contract

makes an external call before updating its own state. In Listing 1, the

vulnerability stems from the ordering of lines 3 and 4: the external

call is made before the state update. Because the balance is only

reduced afterward, a malicious contract can re-enter during the

call and repeatedly invoke withdraw(), draining funds before the

deduction is applied.

SWC-101 (Integer Overflow and Underflow). Arithmetic

overflows/underflows may wrap around silently in legacy Solidity,

corrupting balances or counters.

1 address [] public users;
2 function refundAll () public {
3 for (uint i = 0; i < users.length; i++) { //

unbounded loop
4 payable(users[i]).transfer (1 ether);
5 }
6 }

Listing 2: Unbounded loop over storage array (SWC-128)

SWC-128 (DoS with Block Gas Limit). Patterns such as un-

bounded loops over storage arrays can consume excessive gas,

causing transactions to run out of gas and revert. In Listing 2, the

loop in line 6 iterates over the entire users array. As the array

grows, refundAll() may exceed the block gas limit, preventing

the function from completing and effectively locking user funds.

1 function execute(address _target , bytes memory
_data) public {

2 (bool success , ) = _target.delegatecall(_data)
;

3 require(success);
4 }

Listing 3: Delegatecall to untrusted callee (SWC-112)

SWC-112 (Delegatecall toUntrustedCallee).The delegatecall
instruction executes code from another contract in the caller’s stor-

age and balance context. In Listing 3, the target address is user-

supplied, allowing an attacker to craft a malicious contract that over-

writes critical state or drains funds. This risk is context-dependent:

fixed or library addresses are typically safe, while user-controlled

targets are unsafe.

1 contract Relayer {



Conference’17, July 2017, Washington, DC, USA

2 function relay(address target , bytes memory
data) public {

3 target.call(data); // no check for
sufficient gas

4 }
5 }

Listing 4: Relayer forwarding call without gas guarantee

(SWC-126)

SWC-126 (Insufficient Gas Griefing). This weakness arises

when a contract forwards a call without ensuring sufficient gas. In

Listing 4, the relayer in line 3 performs a low-level call without

any guarantee of available gas. A malicious sender may provide

just enough gas for the relayer itself, but not for the callee, causing

repeated failures and enabling griefing attacks. The pattern (a call

forwarding data) looks very similar in both safe and unsafe cases,

and there is no simple universal fix — remediation depends on the

contract’s intended trust model and gas-handling logic.

1 contract Vault {
2 function withdraw () public {
3 function withdraw() public onlyOwner {

4 payable(msg.sender).transfer(address(this)
.balance);

5 }
6 }

Listing 5: Withdrawal function without and with access

control (SWC-105)

SWC-105 (Unprotected Ether Withdrawal). Ether withdrawal

functions must enforce access control to prevent arbitrary users

from draining funds. In Listing 5, the withdraw() function in line 3

transfers the entire contract balance to the caller without any re-

striction. The underlined version with onlyOwner is the correct fix

and needed for withdraw().
The natural next step is to examine the tools that practitioners

rely on—static analyzers and symbolic executors—which promise

automated detection of these issues.

2.2 Traditional Tools

Tools like Slither [10], Mythril [1], and Oyente [19] were developed

to detect such issues. Slither relies on static pattern matching, while

Mythril and Oyente apply symbolic execution.

However, Slither lacks semantic depth. As shown in Listing 1, it

flags the syntactic “call-before-effect” pattern without reasoning

about nonReentrant guards (e.g., OpenZeppelin’s ReentrancyGuard),
equivalent mutexes, or restricted callbacks. Such protection in mod-

ifiers, inherited bases, or libraries is often ignored, producing fre-

quent false positives and requiring manual triage.

Symbolic analyzers face different challenges, most notably path

explosion when exploring execution traces [19], and difficulty mod-

eling real-world behaviors. They struggle with obfuscation, dy-

namic dispatch, and deep nesting—features common in modern

smart contracts.

In our evaluation (Section 4), we therefore benchmark BreachT5

against Slither, the most widely used and actively maintained static

analyzer. This choice emphasizes the contrast between rule-based

pattern detection and our learning-based generalization. Mythril

and Oyente, while historically influential, are included only for

background.

Other approaches, including abstract interpretation [26], fuzzing-

based tools [12, 15] further enrich the landscape but fall outside the

scope of our evaluation.

As blockchain systems evolve—handling billions in value, adopt-

ing proxy architectures, and embedding DSL—traditional tools in-

creasingly fall short. Pattern matchers miss nuance, symbolic en-

gines stall, and both ultimately require human review to distinguish

signal from noise. In a landscape where exploits advance faster than

detection rules, security must go beyond syntax and simulation; it

must learn to reason, generalize and scale.

Hence, we next turn to large language models.

2.3 LLMs as Generalizable Detectors

Bridging this gap requires detectors that learn semantics beyond

fixed rules. Large language models (LLMs) fit this role: trained

on diverse code, they can generalize to unseen vulnerabilities by

reasoning over structure rather than syntax alone.

This can be seen in the following example. Consider a contract

with a nested conditional that, only under specific inputs, bypasses

balance checks and drains funds. Rule-based tools, lacking pattern

coverage for such cases, would likely miss it. Empirical studies (e.g.,

GPTScan [24]) demonstrate that LLM-based methods can catch

logic flaws that static tools overlook. In-keeping with this, fine-

tuned LLMs can be designed to reason over structure, rather than

rely on syntax—illustrating the promise that “LLMs infer, not just

match.”

However, these systems have their limits. Prompt-based use

(e.g., ChatGPT) has been shown to produce hallucinated bugs or

contradictory outputs in general vulnerability detection tasks [6].

Even in the smart contract domain, fine-tuned and guided models

show tradeoffs. Du et al. [8] benchmarked GPT-3.5, GPT-4, CodeT5+,

and CodeBERT on Solidity contracts, finding that larger models

like GPT-4 achieved high precision (up to 96%) but low recall (often

below 38%), reflecting a tendency to predict the dominant “non-

vulnerable” class.

These limitations highlight the need for models that are not only

powerful but also stable and well-suited to classification. Rather

than relying on decoder-only LLMs optimized for text genera-

tion—which are often used in the above examples—we turn to en-

coder–decoder architectures such as CodeT5+, which are designed

to process code holistically and produce calibrated predictions.

2.4 CodeT5+ for Vulnerability Detection

LLMs pretrained on code are increasingly explored for smart con-

tract analysis, yet their underlying architectures differ in suitability

for classification tasks. To be precise, decoder-only transformers

(e.g., OpenAI’s GPT-4/GPT-5 or Anthropic’s Claude Opus) gener-

ate text autoregressively, predicting the next token from left to

right. They excel at code synthesis and interactive reasoning, but

their reliance on prompt engineering and unidirectional context

makes them poorly aligned with structured multi-label classifica-

tion. By contrast, encoder–decoder architectures process the entire
input bidirectionally (via the encoder) before producing outputs

through a decoder or classification head. This holistic view enables
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more stable and calibrated predictions. In practice, this flexibility

allows encoder–decoder models to be adapted for multi-label clas-

sification, where calibrated probabilities can be produced through

a classification head to predict vulnerabilities.

We selected CodeT5+ [27] as our base model because it rep-

resents the state of the art—and the largest publicly available en-

coder–decoder architecture—designed for code understanding. It

extends the original CodeT5 with improved pretraining objectives

and larger-scale training. Although its pretraining spans diverse

programming languages (e.g., Python, Java, C++), it does not include

Solidity. This gap makes CodeT5+ an instructive testbed for domain

transfer: any ability to detect smart contract vulnerabilities must

emerge through fine-tuning. In our setup, we fine-tune CodeT5+

for multi-label classification, mapping each output dimension to a

specific SWC vulnerability class. A remaining limitation, however,

is the restricted input length (512tokens), which risks truncating

contracts where vulnerabilities span multiple functions (see §3.2).

3 BreachT5

Detecting vulnerabilities at the contract level is a uniquely difficult

problem. Unlike single-label tasks, each Solidity contract may con-

tain several co-occurring weaknesses drawn from the SWC registry,

which creates a highly imbalanced, multi-label distribution. Rare

classes are easily overlooked, while dominant ones bias predictions

and depress macro-level metrics. These challenges make optimiz-

ing Micro-F1 and Macro-F1 substantially harder than in balanced

classification settings.

BreachT5 addresses this gapwith a structured ensemble of CodeT5+

220M and CodeT5+ 770M. The system combines the rare-class sensi-

tivity of smaller models with the precision of larger ones, balancing

recall on infrequent vulnerabilities against precision on common

ones.

We selected CodeT5+ as the backbone for three reasons. First, it

is fully open source, enabling transparent fine-tuning and repro-

ducibility. Second, CodeT5+, with its flexible encoder–decoder archi-

tecture and mix of pretraining objectives, achieves state-of-the-art

performance across a broad set of code benchmarks—including code

generation, completion, math programming, and retrieval—and

notably surpasses its predecessor CodeT5 [28, 29]. Third, recent

work has demonstrated the adaptability of CodeT5-family mod-

els to software testing domains. For example, AsserT5 fine-tunes

CodeT5-large for the task of assertion generation, achieving up to

59.5% exact-match and 90.5 BLEU, and outperforming prior ap-

proaches [22]. Although this is a generation task rather than clas-

sification, it underscores the effectiveness of CodeT5 models in

specialized, security-relevant program analysis settings.

These results suggest that CodeT5models transferwell to security-

critical tasks, making them a strong potential candidate for advanc-

ing contract-level vulnerability detection.

3.1 Dataset

Overview. We train and evaluate BreachT5 on BCCC-SCsVul-

2024 [14], a benchmark of 111,897 Solidity contracts annotated at

the contract level with SWC vulnerabilities. To our knowledge, it is

the largest dataset with structured SWC annotations. Larger corpora

exist (e.g., DISL [20]), but they lack fine-grained SWC labeling.

BCCC-SCsVul-2024 covers diverse domains such as DeFi protocols,

wallets, oracles, and governance DAOs, and preserves complete

Solidity source code, ensuring that cross-function semantics are

not lost.

Sources. The corpus is aggregated from heterogeneous sources:

Etherscan-verified contracts, SmartBugs, the Ethereum Smart Con-

tracts dataset, Slither-audited corpora, and SmartScan—capturing

variation in style, domain, and quality.

Annotation. Vulnerabilities were assigned through SCsVulLyzer

(v2.0) and verified manually to reduce false positives and negatives.

All contracts originate from open repositories, ensuring that no

proprietary code is included.

3.2 Preprocessing and Splitting

Deduplication. Raw aggregation produced 111,897 entries, but

many were duplicates: the same contract was duplicated for each

vulnerability label it carried. After de-duplication, the dataset con-

tained 67,474 unique contracts. This step was critical: without dedu-

plication, the model could appear to generalize while in fact memo-

rizing duplicate contracts across splits.

Normalization. We applied lightweight normalization to remove

spurious textual artifacts while preserving full semantic content.

Specifically, we stripped SPDX license headers, inline and block

comments, byte-order markers (BOM), trailing whitespace, and

collapsed empty lines. This prevented textual leakage (e.g., license

headers or formatting quirks) without altering program semantics.

Filtering. We then discarded incomplete or malformed sources

missing core Solidity constructs (contract, interface, library,
function, assert), ensuring only valid and analyzable code en-

tered training.

Label Binarization. Vulnerability annotations were transformed

into 12-dimensional binary vectors, representing 11 SWC classes

plus the non_vulnerable label.

Tokenization. Contracts were tokenized using the CodeT5+ tok-

enizer with a maximum length of 500 tokens; longer contracts were

segmented with a stride of 250 tokens to preserve continuity across

windows. This sliding-window chunking strategy follows prior

work on code LLMs, where segmentation is commonly adopted to

mitigate input length limitations [29].

Splitting. To avoid data leakage, splitting was performed strictly

at the contract level: all segments of a contract remain in the same

split. We applied stratified sampling to preserve label distribution,

resulting in three sets: 48,000 contracts for training (≈ 72% of the

data), 12,000 for validation (≈ 18%, an 80/20 ratio relative to training,

used during training for model selection and later for threshold tun-

ing), and 7,474 for testing (≈ 10%). The test set was kept completely

unseen and reserved exclusively for final benchmarking.

3.3 Model Composition and Training

BreachT5 integrates CodeT5+ 220M and CodeT5+ 770M. The goal

was to test whether principled fine-tuning and ensembling alone

could achieve state-of-the-art performance. Both models are trained
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under an identical setup—same data splits, loss formulation, op-

timization schedule, and early stopping criteria—so that any per-

formance difference stems solely from model capacity rather than

training variation.

Class Weights. We experimented with several weighting schemes

to address label imbalance.Weighted Binary Cross-Entropy (WBCE)

was first applied. We set the positive weight per class as

𝑟𝑐 =
𝑁 − 𝑛𝑐

𝑛𝑐
(negative:positive ratio on the training split),

and define

𝛼𝑐 =
(
log(1 + 𝑟𝑐 )

)
1/𝑇

, 𝑇 = 0.6.

This log-scaled scheme upweights rare classes while moderating

extreme weights. However, WBCE alone occasionally collapsed

on certain rare classes, producing degenerate predictions with no

positive detections.

Loss Function. To address this instability, we adopted a class-

weighted Focal Loss. Originally proposed for dense object detec-

tion [17], Focal Loss extends binary cross-entropy with per-class

weights 𝛼𝑐 and a modulating factor (1 − 𝑝𝑡 )𝛾 that down-weights

easy examples. For each label 𝑐 with prediction probability 𝑝𝑐 and

ground truth 𝑦𝑐 ∈ {0, 1}, the loss is

L
focal

= −
𝐶∑︁
𝑐=1

𝛼𝑐 · (1 − 𝑝𝑡 )𝛾 · log(𝑝𝑡 ),

where

𝑝𝑡 =

{
𝑝𝑐 if 𝑦𝑐 = 1,

1 − 𝑝𝑐 if 𝑦𝑐 = 0.

We set 𝛾 = 1.5 and reuse the 𝛼𝑐 defined above. This choice consis-

tently improved recall on rare vulnerabilities while maintaining

precision on frequent ones.

Optimization. Optimization used AdamW with a linear learning

rate schedule, 10% warmup, bfloat16 mixed precision, a batch size

of 128, and early stopping on validation BCE loss. The training

budget was capped at 12 epochs, though in practice early stopping

intervened much earlier: the 220M model converged after 4 epochs,

while the 770M model reached its lowest validation loss after 4.5

epochs.

Inference. During inference, the model outputs class–probability

vectors over the 12 labels. Unless noted otherwise, we use a single
global decision threshold 𝑡∗ tuned on the validation split to max-
imize Macro-F1 (equal weight per class) and keep 𝑡∗ fixed for all

test-time evaluations.Why Macro-F1 with one global 𝑡∗ (vs. Micro-F1
or per-class thresholds)? Macro-F1 treats all SWC classes equally

under imbalance; a Micro-F1–tuned threshold is dominated by fre-

quent labels and suppresses rare-class recall. We also avoid per-class

thresholds: they introduce 12 extra knobs that overfit the validation

split and mask the model’s intrinsic per-class calibration/behaviour.
Per-class thresholding is better suited to benchmarking end-to-end

systems (e.g., RQ3) where each model is tuned to its own best

operating point; for RQ1 it obscures innate detectability making

cross-class comparisons less meaningful. After thresholding we

enforce a mutual-exclusion rule: if any SWC label is predicted posi-

tive, non_vulnerable is set to 0. Long contracts are segmented into

overlapping windows and processed independently; per-window

predictions are aggregated to the contract level via max pooling
over probabilities so that a vulnerability detected in any chunk is

propagated to the entire contract.

3.4 Ensembling Strategy

To unify the complementary strengths of CodeT5+220 andCodeT5+770,

we adopt a per-class weighted soft voting ensemble. As detailed in

Section 3, each contract is represented by a probability vector over

the SWC labels. The motivation is to reduce variance and mitigate

systematic errors from individual models: instead of treating both

equally, the ensemble emphasizes whichever model demonstrates

higher discriminative ability for a given vulnerability class. This

ensures that rare but difficult vulnerabilities benefit from the model

that handles them best, while frequent classes remain stable.

Ensemble Weighting. Weights are proportional to the threshold-

tuned per-class F1 scores of each model, so that the ensemble favors

the stronger model for a given vulnerability type. Formally, for

model𝑚, contract 𝑛, and class 𝑐:

𝑝𝑛,𝑐 =

𝑀∑︁
𝑚=1

𝑤𝑚,𝑐 · 𝑝𝑚,𝑛,𝑐 ,

where 𝑤𝑚,𝑐 is derived from validation-set F1 and normalized

across models (with smoothing to avoid collapse on low-F1 classes).

Inference. The resulting ensemble probabilities are post-processed

with per-class thresholds (tuned on the validation split and frozen

for test) and the same mutual-exclusion rule for non_vulnerable.
We use per-class thresholding here (in contrast to the global Macro-

F1 𝑡∗ used in RQ1) for two reasons: (i) Calibration drift under

ensembling. Weighted soft voting shifts margins unevenly across

labels (the 220M and 770M models specialize differently), so a sin-

gle global cutoff is systematically suboptimal; per-class thresholds

recover each label’s best operating point. (ii) End-to-end bench-

marking. For the ensemble (used in RQ3-style comparisons/deploy-

ment), it is standard to tune the operating point per label rather than
use a single global cutoff; prior work shows that adjusting per-label

thresholds in binary-relevance multi-label classifiers significantly

improves performance [9].

3.5 Implementation Details

All experimentswere implemented in Python 3.10 using PyTorch 2.6.0

and HuggingFace Transformers 4.55.2. We fine-tuned CodeT5+

models with a custom HuggingFace Trainer (class-weighted fo-

cal loss, early stopping, bfloat16). GPU runs were executed on

NVIDIA H100 PCIe for the 770M model and RTX 6000 Ada for

the 220M model. Our replication package—preprocessing, train-

ing/evaluation scripts, and dataset artifacts—is available at https:

//github.com/vaultmind/BreachT5-Ensemble-SC.

4 EVALUATION

We evaluate the performance of our models and ensemble through

four research questions, each probing a distinct dimension of vul-

nerability detection—specialization, synergy, benchmarking, and

robustness.

https://github.com/vaultmind/BreachT5-Ensemble-SC
https://github.com/vaultmind/BreachT5-Ensemble-SC
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4.1 Vulnerability-Specific Detectability

RQ1: How accurately can a fine-tuned CodeT5+220𝑀 model
detect different SWC vulnerabilities, and which remain most
difficult to capture?

To assess which vulnerabilities are inherently easier or harder to

detect, we begin with the 220M model as a baseline lens. This step

isolates vulnerability-specific patterns without yet considering the

effect of scaling. By examining precision and recall per SWC class,

we identify which vulnerabilities can be flagged reliably and which

remain ambiguous or context-dependent.

Experimental Setup. We evaluate the CodeT5+220 model under

the training configuration of Section 3. The model outputs prob-

ability vectors over 12 SWC labels, and predictions are assessed

with per-class precision and recall in addition to aggregate Micro-

/Macro scores. Micro-F1 aggregates true/false positives and neg-

atives across all classes before computing precision and recall,

thereby reflecting overall performance weighted by class frequency.

Macro-F1, in contrast, computes the F1 score independently for

each class and averages them, giving equal weight to rare and fre-

quent vulnerabilities alike. This design highlights not just overall

performance, but the detectability of each vulnerability class in

practice. The evaluation set was stratified from the full dataset,

so the reported distributions are directly proportional to the class

priors; normalizing them yields the exact prior probabilities, which

provide a natural baseline for judging whether the model detects

classes better than frequency alone would predict.

Reading the table. Horizontal rules group SWC classes by training-

weight bands (log1p of class priors). This controls for imbalance:

within-band precision/recall differences reflect cue specificity and

context rather than frequency. See the caption for the color scale.

Key Findings.
• Chunk-dependence. SWC-107 (Reentrancy) and SWC-101 (In-

teger Overflow/Underflow) have similar training weights (1.45

vs. 1.49) and achieve comparable detectability (recall 0.7893 vs. 0.7762),
yet reliability (precision) diverges by +28.1pp (0.7192 vs. 0.4383).

We attribute this gap to chunk-dependence: detecting SWC-101 of-

ten requires cross-chunk context (e.g., using SafeMath, .add/.sub,
or pragma >=0.8) that is split from the arithmetic site, inflat-

ing false positives when the safeguard is unseen. Reentrancy, by

contrast, is largely captured within a single chunk (external call

before state update), making its detection more reliable.

• Syntactic salience vs. semantic ambiguity. SWC-128 (DoS

with Block Gas Limit) and SWC-112 (Delegatecall to Untrusted

Callee) have nearly identical training weights (2.21 vs. 2.26),

yet detectability (recall) diverges sharply: 0.9964 vs. 0.6431 (Δ
= +35.3pp in favor of SWC-128). This reflects a structural differ-

ence in how the two vulnerabilities manifest. SWC-128 produces

highly distinctive syntactic patterns—such as unbounded loops

over storage arrays or bulk clearing operations—whose shapes

are rarely benign. The model therefore learns to flag these aggres-

sively, which explains the very high detectability, but this same

generalization lowers reliability (precision 0.7575) since some

benign loops are also misclassified. SWC-112, by contrast, de-

pends on semantic context: the same delegatecall syntax can

Table 1: Per-class precision and recall of CodeT5+220 on the

test set with a global threshold 𝑡∗. Precision is color-coded by

reliability (green = high ≥0.8, yellow =moderate 0.6–0.79, red

= low <0.6), while recall is color-coded by detectability/sensi-
tivity (green = high ≥0.8, yellow = moderate 0.6–0.79, red =

low <0.6).

SWC-ID Dist. (%) (occ) Weight Precision Recall

non_vuln
Non-vulnerable 24.26 (26,914) 1.23 0.8305 0.7199

SWC-107
Reentrancy 15.95 (17,698) 1.45 0.7192 0.7893

SWC-101
Integer Overflow/Underflow 15.09 (16,740) 1.49 0.4383 0.7762

SWC-128
DoS With Block Gas Limit 11.17 (12,394) 2.21 0.7575 0.9964

SWC-112
Delegatecall to Untrusted Callee 10.03 (11,131) 2.26 0.9073 0.6431

SWC-126
Insufficient Gas Griefing 6.20 (6,879) 3.51 0.2951 0.6378

SWC-113
DoS with Failed Call 4.65 (5,154) 4.34 0.1935 0.5394

SWC-120
Weak Randomness from Chain Attr. 3.25 (3,604) 5.46 0.1704 0.3584

SWC-114
Transaction Ordering Dependence 3.21 (3,562) 5.58 0.1456 0.2835

SWC-104
Unchecked Return Value 2.91 (3,229) 5.74 0.1454 0.4553

SWC-116
Block Values as Randomness 2.41 (2,674) 6.63 0.2648 0.3480

SWC-105
Unprotected Ether Withdrawal 0.86 (959) 10.64 0.6752 1.0000

be either safe (self-delegate) or dangerous (attacker-controlled).

Because this distinction is not visible from surface syntax alone,

the model behaves conservatively—firing less often, which low-

ers detectability, but with high reliability (precision 0.9073) when

it does predict. Compared to SWC-128’s clear syntactic signature,

SWC-112 remains harder to detect.

• Context dependence. SWC-112 (Delegatecall to Untrusted Callee)

and SWC-126 (Insufficient Gas Griefing) achieve comparable de-
tectability (recall 0.6431 vs. 0.6378), yet diverge strongly in relia-
bility: 0.9073 vs. 0.2951 (Δ = +61.2pp in favor of SWC-112). This

asymmetry stems from how the vulnerabilities are expressed syn-

tactically. SWC-112 is triggered by the rare and security-salient

keyword delegatecall, where local context often hints at safety
(e.g., self-delegate vs. user-controlled target). The model there-

fore fires cautiously, yielding moderate detectability but high

reliability when it does predict. SWC-126, by contrast, typically

arises in relayer/proxy patterns where a sub-call can be starved

of gas (e.g., address(target).call(...), call{gas: g}(...)
or callee logic gated by gasleft()). These surface cues also oc-

cur in benign forwarding code; without explicit evidence that

the caller controls gas or that a minimum gas is enforced, the

model overgeneralizes—leading to similar detectability but many

false positives and thus low reliability. Compared to SWC-126’s

generic and context-dependent syntax, SWC-112 is more reliably

recognized.

• Lexical cues. SWC-105 (Unprotected Ether Withdrawal) is rare

(0.86%; 959 occ.) with the highest training weight (10.64), yet at-

tains maximal detectability (recall 1.0000) but only moderate relia-
bility (precision 0.6752).We attribute this to strong lexical cues for

withdrawals (e.g., msg.sender.transfer(...) or transferring
this.balance) that the model almost never misses, while access-

control evidence (e.g., onlyOwner, require(msg.sender==owner),
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correct constructor) is often outside the current chunk or absent,

inflating false positives and depressing precision.

Summary. Across SWC classes, performance is governed

by cue specificity and context locality. Chunk-local, highly
syntactic cues (e.g., unbounded loops in SWC-128; explicit

withdrawals in SWC-105) drive near-saturated detectabil-

ity, with reliability limited by benign look-alikes or miss-

ing access-control evidence. Semantically conditioned cues

(e.g., trust of delegatecall in SWC-112) yield the oppo-

site—conservative firing and high precision. Where the

signal is generic or cross-chunk (e.g., relayer gas patterns

in SWC-126; safeguards for SWC-101), precision drops due

to overfiring when disambiguating context is outside the

snippet.

4.2 Scaling Effects on Detectability

RQ2: How does scaling from CodeT5+220𝑀 to CodeT5+770𝑀
affect overall performance and the relative detectability of dif-
ferent SWC vulnerabilities under an identical training setup?

To examine how model capacity impacts detection, we compare

CodeT5+220 and CodeT5+770 under the same training and evalua-

tion regime. Where RQ1 focused on vulnerability-specific difficulty,

here we ask whether scaling improves aggregate accuracy or simply

reinforces frequent-class patterns.

Experimental Setup. Both models are fine-tuned with the config-

uration of Section 3, producing probability vectors over 12 SWC

labels. Predictions are thresholded globally to maximize Micro-F1

on validation data and evaluated on the stratified test set. We re-

port per-class and aggregate F1, highlighting ΔF1 to reveal whether
scaling yields systematic gains, rare-class sensitivity, or trade-offs.

Table 2: Aggregate (Micro/Macro) and per-class F1 compar-

ison. Green indicates 220M performs better; red indicates

770M performs better. ΔF1 is reported in percentage points

as (F1220 − F1770) × 100.

Label Distrib. (%) F1 (220M) F1 (770M) Better ΔF1 (pp)

Micro-F1 – 0.5908 0.6122 770M -2.14

Macro-F1 – 0.5114 0.4955 220M +1.59

non_vulnerable 24.26 0.7712 0.8142 770M -4.30

SWC-107 15.95 0.7526 0.7833 770M -3.07

SWC-101 15.09 0.5602 0.5806 770M -2.04

SWC-128 11.17 0.8606 0.8752 770M -1.46

SWC-112 10.03 0.7527 0.7570 770M -0.43

SWC-126 6.20 0.4035 0.3694 220M +3.41

SWC-113 4.65 0.2848 0.1941 220M +9.07

SWC-120 3.25 0.2310 0.2451 770M -1.41

SWC-114 3.21 0.1924 0.1917 220M +0.07

SWC-104 2.91 0.2204 0.1555 220M +6.49

SWC-116 2.41 0.3007 0.2417 220M +5.90

SWC-105 0.86 0.8061 0.7387 220M +6.74

Key Findings.

• Aggregate metrics. Scaling has mixed effects: Micro-F1 im-

proves for 770M (0.6122 vs. 0.5908; Δ = –2.14pp), while Macro-F1

favors 220M (0.5114 vs. 0.4955; Δ = +1.59pp). This indicates that

larger scale boosts frequency-weighted performance but reduces

balance across classes.

• Frequent classes. On high-distribution labels (non_vulnerable,

SWC-107, SWC-101, SWC-128, SWC-112), 770M consistently per-

forms better, with margins up to 4.3pp. Scaling therefore en-

hances detectability on common patterns.

• Rare classes. For minority vulnerabilities (SWC-126, SWC-113,

SWC-104, SWC-116, SWC-105), 220Moutperforms 770Mby larger

margins (+3–9pp). The smaller model retains sensitivity where

the larger model tends to smooth over rare signals.

• Saturation effects. Some classes such as SWC-128 are nearly

saturated (>0.86 F1 for both models), leaving little headroom for

scaling. This aligns with RQ1, where SWC-128 exhibited very

high recall due to its clear syntactic patterns, making it easy for

both models to detect regardless of scale.

• Trade-off. Scaling does not yield uniform gains: 770M improves

majority-class detection, while 220M safeguards rare-class recall.

This complementarity motivates structured ensembling (RQ3) to

reconcile both strengths.

Summary. Scaling from 220M to 770M yields modest aggre-

gate gains but introduces a clear trade-off: the larger model

improves frequency-weighted performance and detects

common vulnerabilities more reliably, while the smaller

model retains sensitivity to rare classes. Certain vulner-

abilities (e.g., SWC-128) saturate due to strong syntactic

cues, yielding very high recall across both models and mak-

ing them easy to detect regardless of scale. These findings

motivate structured ensembling (RQ3) to combine comple-

mentary strengths.

4.3 Performance of BreachT5

RQ3: How does BreachT5 compare to its standalone models
and external baselines (Slither, GPT-5) in overall and per-class
vulnerability detection?

To assess whether ensembling yields practical benefits, we eval-

uate BreachT5 against two categories of baselines: (i) its own com-

ponent models (CodeT5+220 and CodeT5+770), and (ii) external

analyzers representing current practice—namely the rule-based

static tool Slither and the zero-shot commercial LLM GPT-5. This
design tests whether BreachT5 merely averages its components or

provides measurable advantages over both internal and external

alternatives.

Experimental Setup. For the internal comparison, we evaluate

BreachT5 on the held-out test set using the soft-voting ensemble

strategy with per-class threshold tuning described in Section 3. We

compare its performance against the stronger of 220M or 770M for

each label. Table 3 reports Micro-/Macro-F1 and per-class results,
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Table 3: Aggregate (Micro/Macro) and per-class F1 compar-

ison. Best Single F1 values are taken from the stronger of

220M or 770M (green = 220M, red = 770M). ΔF1 is reported in

percentage points (blue = gain, gray = drop/no change).

Label Dist. (%) Best Single F1 F1 (Ensemble) ΔF1 (pp)

Micro-F1 – 0.6122 0.6153 +0.31

Macro-F1 – 0.5114 0.5563 +4.49

non_vulnerable 24.26 0.8142 0.7872 -2.70

SWC-107 15.95 0.7833 0.8268 +4.35

SWC-101 15.09 0.5806 0.6453 +6.47

SWC-128 11.17 0.8752 0.9982 +12.30

SWC-112 10.03 0.7570 0.7657 +0.87

SWC-126 6.20 0.4035 0.3983 -0.52

SWC-113 4.65 0.2848 0.2765 -0.83

SWC-120 3.25 0.2451 0.2560 +1.09

SWC-114 3.21 0.1924 0.2525 +6.01

SWC-104 2.91 0.2204 0.2153 -0.51

SWC-116 2.41 0.3007 0.3115 +1.08

SWC-105 0.86 0.8061 0.9422 +13.61

allowing us to check whether the ensemble matches or exceeds the

“best single F1” achievable by either model.

For external benchmarking, we adapt evaluation to the con-

straints of each tool. Slither was run on all test contracts, but

compilation succeeded only for 5,172 of 7,440 contracts due to

syntax errors and unsupported Solidity versions. We report Micro-

/Macro-F1 on this subset for both Slither and BreachT5. For GPT-5,
API limitations required a smaller evaluation: we sampled 1,000

contracts stratified by SWC distribution. GPT-5 was constrained

to output labels strictly from the SWC set (e.g., [’SWC-107’] or

[’non_vulnerable’]) using a robust prompt and fallback parser.

For reproducibility, we include the exact prompt template used to

query GPT-5 during benchmarking in Appendix. Table 4 summa-

rizes results against both baselines.

Key Findings (Internal Benchmarking).

• Aggregate gains. BreachT5 improves over the best single model

on both aggregate metrics (Macro-F1 +4.49pp, Micro-F1 +0.31pp),
confirming that structured ensembling offers benefits beyond

scaling.

• Majority-class stability. Frequent vulnerabilities (e.g., SWC-

107, SWC-101, SWC-128) see consistent improvements (+4–12pp),

showing that the ensemble unifies precision from the larger

model with recall from the smaller one.

• Rare-class recovery. Some minority classes improve signifi-

cantly (e.g., SWC-105 +13.6pp, SWC-114 +6.0pp), demonstrating

that the ensemble can preserve rare-signal sensitivity rather than

smoothing it out.

• Localized regressions.A few classes (non_vulnerable, SWC-126,

SWC-113, SWC-104) regress slightly (–0.5 to –2.7pp), indicating

that when component predictions diverge strongly, threshold

tuning cannot always reconcile them.

Key Findings (External Benchmarking).

• Macro-F1 shift (Slither subset). The ensemble’s Macro-F1 on

the Slither benchmark subset (0.3714) is lower than in the main

Table 4: Per-class and aggregate F1 comparison between

Slither vs. BreachT5 and GPT-5 vs. BreachT5.

Dist. (%) Slither BreachT5 Dist. (%) GPT-5 BreachT5

Dataset (5,172) 5,172 5,172 (1,000) 1,000 1,000

Micro-F1 – 0.1917 0.5037 – 0.1629 0.6035

Macro-F1 – 0.1168 0.3714 – 0.1425 0.5594

non_vuln 56.5 0.3892 0.7913 40.1 0.0240 0.7555

SWC-107 11.3 0.1773 0.1818 26.8 0.2767 0.8166

SWC-101 34.0 0.2531 0.6581 24.9 0.2682 0.6248

SWC-128 0.8 0.0093 0.9351 18.5 0.4121 1.0000

SWC-112 8.7 0.0000 0.1044 16.6 0.3311 0.7224

SWC-126 11.7 0.1351 0.3413 10.2 0.0208 0.3782

SWC-113 10.2 0.1677 0.3074 7.7 0.0538 0.2733

SWC-120 7.2 0.0663 0.2606 5.4 0.0737 0.2685

SWC-114 7.3 0.1188 0.2735 5.3 0.0919 0.2834

SWC-104 6.5 0.0847 0.2420 4.8 0.0587 0.2451

SWC-116 5.5 0.0000 0.3612 4.0 0.0542 0.3448

SWC-105 0.0 0.0000 0.0000 1.4 0.0449 1.0000

test set. This is due to distributional changes: Slither only pro-

cessed 5,172 contracts (69% of the test set), excluding harder

classes (e.g., SWC-105) and skewing class balance. The reduced

diversity of classes depresses Macro-F1, even though BreachT5

still outperforms Slither substantially.

• Aggregate gains. BreachT5 outperforms both baselines substan-

tially. Against Slither, Macro-F1 improves from 0.1168 to 0.3714

(+25.5pp), Micro-F1 from 0.1917 to 0.5037 (+31.2pp). Against

GPT-5, Macro-F1 rises from 0.1425 to 0.5594 (+41.7pp) and Micro-

F1 from 0.1629 to 0.6035 (+44.1pp).

• Frequent classes. On dominant labels BreachT5 delivers strong

gains: vs. Slither, non_vuln (+40.2pp), SWC-101 (+40.5pp), SWC-128
(+92.6pp). vs. GPT-5, non_vuln (0.7610 vs. 0.0240), SWC-107 (0.8168
vs. 0.2767), SWC-128 (1.0000 vs. 0.4121).

• Rare/difficult classes. Where baselines collapse, BreachT5 sus-

tains measurable F1. Slither reports 0.0000 F1 on SWC-112 and

SWC-116, while BreachT5 achieves 0.1044 and 0.3612. GPT-5

yields near-zero F1 on SWC-126 (0.0208) and SWC-113 (0.0538),

while BreachT5 maintains 0.3782 and 0.2719. Note: SWC-105 was

excluded from the Slither subset due to compilation failures.

• Coverage. Slither failed on 31% of contracts from unsupported

Solidity or syntax errors, limiting scope. GPT-5 was restricted to

1,000 contracts due to API constraints and often defaulted to pre-

dicting non_vuln, hurting recall on minority classes. BreachT5

runs consistently across the full test set.

• Overall. BreachT5 unifies complementary strengths and clearly

outperforms both traditional analyzers and zero-shot LLMs, achiev-

ing higher aggregate scores, stronger per-class detection, and

broader applicability for real-world smart contract vulnerability

detection.
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Summary (External Benchmarking). Across external

baselines, BreachT5 delivers large improvements. Against

Slither, it raises Macro-F1 from 0.1168 to 0.3714 and

Micro-F1 from 0.1917 to 0.5037. Against GPT-5, it raises
Macro-F1 from 0.1425 to 0.5594 and Micro-F1 from 0.1629

to 0.6035. These results confirm that domain-specific ensem-

bling substantially outperforms both rule-based analyzers

and zero-shot LLMs for real-world vulnerability detection.

5 Related Work

5.1 Static and Symbolic Analysis of Smart

Contracts

The first generation of smart contract analyzers relied on static

heuristics and symbolic execution. Tools such as Slither and

Oyente identify known vulnerability patterns through handcrafted

rules or symbolic traces [10, 19]. While effective for certain bug

classes, these approaches suffer from limited coverage, high false

positives, and frequent failures on contracts using modern So-

lidity constructs. Dynamic approaches such as fuzzing (Echidna,
ContractFuzzer) [12, 15] improve path exploration but still rely

on hard-coded oracles and struggle with semantic vulnerabilities.

Compared to these rule-drivenmethods, our approach learns vulner-

ability patterns directly from data, allowing it to generalize across

diverse coding styles and capture subtle cues not easily encoded in

static rules.

5.2 Learning-Based Vulnerability Detection

Machine learning has recently been explored for smart contract

analysis. Earlier work applied graph neural networks or token-

based classifiers to detect specific classes of vulnerabilities [18, 30],

but most efforts treat detection as a single-label task or target nar-

row vulnerability subsets. By contrast, real contracts often contain

multiple flaws, motivating a multi-label framing. Our work builds

on this perspective, evaluating detection across 12 SWC categories

and explicitly analyzing trade-offs between frequent and rare vul-

nerabilities. In doing so, we show that smaller fine-tuned models

can act as rare-class specialists, complementing larger models that

prioritize frequent vulnerabilities.

5.3 Large Language Models for Code

General-purpose code models such as CodeBERT, GraphCodeBERT,

and StarCoder [11, 13, 16] have been evaluated on program un-

derstanding and code generation tasks, but their effectiveness for

security-critical vulnerability detection remains underexplored.

CodeT5 and its successor CodeT5+ [28, 29] introduce encoder–decoder

architectures with multi-task pretraining, achieving state-of-the-

art results on standard code benchmarks. Recent work such as As-

serT5 [22] demonstrates the adaptability of CodeT5-family models

to software testing tasks, but no prior work systematically investi-

gates their use in contract-level vulnerability detection. Our study

extends this line of research by showing that CodeT5+ models

can be fine-tuned to capture SWC vulnerabilities and that care-

fully structured ensembles outperform both standalone LLMs and

traditional analyzers.

5.4 Positioning of BreachT5

To our knowledge, BreachT5 is the first ensemble of pretrained

code LLMs tailored for multi-label smart contract vulnerability

detection. Unlike prior static tools, it does not rely on fixed rules;

unlike earlier ML approaches, it treats vulnerability detection as

a multi-label problem; and unlike general-purpose LLM baselines,

it is fine-tuned specifically for security tasks. By combining the

rare-class sensitivity of smaller models with the majority-class

precision of larger ones, BreachT5 advances both the methodology

and practical performance of automated vulnerability detection.

6 THREATS TO VALIDITY

No empirical study is free of limitations.We discuss themain threats

to the validity of our findings and the steps taken to mitigate them.

6.1 Internal Validity

Our experiments depend on the correctness of the BCCC-SCsVul-

2024 dataset. While the dataset is large and standardized, it inherits

noise from automated labeling pipelines: certain contracts may be

mislabeled, and some mappings between dataset labels and SWC

categories are ambiguous (e.g., ambiguous mappings such as Call
to Unknown, which may correspond either to SWC-104 (unchecked

call return) or SWC-112 (delegatecall to untrusted callee)). To reduce

leakage, we stratified splits at the contract level so that all chunks

of a contract remain within the same partition.

A further limitation arises from our chunking strategy: contracts

longer than 500 tokens were split into overlapping segments, and

both training and evaluation were performed on this chunked dis-

tribution. This prevents truncation and preserves local context, but

it also alters class balance relative to unchunked contracts, since

longer contracts contribute proportionally more training instances.

As a result, model behavior on chunked inputs may differ from its

performance on full, unsegmented contracts in deployment.

Nevertheless, residual noise may influence per-class results, and

our observations should be interpreted as properties of the dataset’s

mapping rather than absolute ground truth.

6.2 External Validity

Our evaluation is restricted to contracts from BCCC-SCsVul-2024

and twelve SWC categories. While this dataset covers many known

vulnerability types, it does not represent the full diversity of de-

ployed contracts or emerging weaknesses. Benchmarking against

Slither was further constrained by compilation failures (31% of

contracts) and against GPT-5 by a 1,000-contract API sample, which

may bias comparisons. Thus, while BreachT5 shows consistent

improvements in this setting, generalization to real-world deploy-

ments and new vulnerability classes remains an open question.

6.3 Construct Validity

We assess models primarily with F1 (micro and macro) alongside

per-class precision and recall. Micro-F1 emphasizes frequent classes,

while Macro-F1 balances rare and frequent ones. This design high-

lights detectability differences, but it does not fully capture the

asymmetric cost of errors: e.g., a false negative in SWC-112 may

be more damaging than one in SWC-120. Moreover, our analysis
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of scaling and ensembling assumes that per-class threshold tuning

reflects a “fair” operating point, yet alternative calibration strategies

might shift aggregate outcomes.

A further limitation is the reliance on the SWC taxonomy. While

widely used, SWC has not been updated to capture many recent

vulnerability types in the Ethereum and DeFi ecosystem (e.g., proxy

upgrade flaws, cross-chain bridge exploits, oracles). As a result, our

evaluation is bounded to a subset of vulnerabilities and does not

reflect the full spectrum of threats faced in practice.

We mitigate these issues by reporting both aggregate and per-

class metrics, and by highlighting trade-offs explicitly in the find-

ings.

6.4 Conclusion Validity

Our reported improvements rely on specific training configurations

(optimizer, learning rate schedule, early stopping) and ensembling

design choices (weighted soft voting, per-class thresholds). While

we tuned hyperparameters on validation data and observed stable

convergence across seeds, other settings could yield different re-

sults. In particular, calibration drift under ensembling means that

thresholding choices directly affect measured gains. To support re-

producibility, we release all code, preprocessing scripts, and trained

checkpoints in a public replication package.

7 CONCLUSION

This study introduced BreachT5, an ensemble of CodeT5+ models

designed for multi-label vulnerability detection in smart contracts.

Our evaluation across three research questions yields three key

insights.

First, not all vulnerabilities are equally detectable: performance

hinges on the locality and specificity of cues. Vulnerabilities ex-

pressed through distinctive syntactic patterns (e.g., SWC-128, SWC-

105) are flagged with near-perfect recall, though at the cost of false

positives, while semantically conditioned or context-dependent

flaws (e.g., SWC-112, SWC-126) remain inherently harder to detect.

Chunking further amplifies this effect, as safeguards or contex-

tual signals may be split across windows, reducing reliability for

cross-chunk vulnerabilities such as SWC-101.

Second, scaling from 220M to 770M improves aggregate perfor-

mance but introduces a trade-off: larger models reinforce frequent-

class detection, whereas smaller ones retain sensitivity to rare vul-

nerabilities. No single model dominates across the distribution.

Third, structured ensembling reconciles these opposing strengths.

BreachT5 consistently outperforms its components on both Micro-

and Macro-F1, while also surpassing established baselines. Com-

pared to Slither, it triples Macro-F1 despite compiler restrictions;

compared to zero-shot GPT-5, it maintains recall across rare classes

where the general-purpose LLM collapses.

Taken together, these findings suggest that progress in contract-

level vulnerability detection does not lie in scaling alone, but in

combining models that specialize differently. By balancing recall on

minority classes with precision on majority ones, BreachT5 demon-

strates that ensembles can provide more reliable and deployable

detectors than either large standalone models or existing tools.

Looking forward, two directions are especially promising. Ex-

tending beyond the SWC taxonomy would allow coverage of mod-

ern attack surfaces such as proxy upgrades, cross-chain bridges,

and DeFi-specific exploits. In parallel, integrating contract-level

reasoning with runtime analysis could help disambiguate context-

dependent vulnerabilities that remain elusive to static cues.

In sum, BreachT5 shows that carefully designed ensembles of

open, code-focused LLMs can advance vulnerability detection be-

yond the current state of the art. Crucially, our results demon-

strate that progress does not come from scaling alone: fine-tuned

smaller models can specialize on rare vulnerabilities and outper-

form larger counterparts, while ensembles reconcile these com-

plementary strengths. While challenges remain in taxonomy cov-

erage and context reasoning, our findings point to a clear path

forward—combining specialization with ensembling to close the

gap between academic benchmarks and the realities of smart con-

tract security.
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A APPENDIX

A.1 Dataset–SWC Mapping

We provide the mapping between the original dataset classes and their corresponding SWC Registry categories. Most mappings are exact; a

few are approximate where no perfect equivalent exists.

Table 5: Mapping between original dataset classes and SWC Registry categories. Most mappings are exact; a few are approximate

where no perfect SWC equivalent exists.

Dataset Class SWC-ID SWC Registry Name Mapping Accuracy

Class01:ExternalBug SWC-120 Weak Randomness from Chain Attr. 100%

Class02:GasException SWC-126 Insufficient Gas Griefing 100%

Class03:MishandledException SWC-113 DoS with Failed Call ∼90%
Class04:Timestamp SWC-116 Block Values as Randomness 100%

Class05:TransactionOrderDependence SWC-114 Transaction Ordering Dependence 100%

Class06:UnusedReturn SWC-104 Unchecked Return Value 100%

Class07:WeakAccessMod SWC-105 Unprotected Ether Withdrawal 100%

Class08:CallToUnknown SWC-112 Delegatecall to Untrusted Callee ∼85%
Class09:DenialOfService SWC-128 DoS with Unexpected Revert ∼95%
Class10:IntegerUO SWC-101 Integer Overflow/Underflow 100%

Class11:Reentrancy SWC-107 Reentrancy 100%

Class12:NonVulnerable – Non-vulnerable 100%

A.2 GPT-5 Prompt Template

For reproducibility, we include the exact prompt template used to query GPT-5 during benchmarking.

# === Prompt Template ===
def build_prompt(code: str) -> str:

labels_str = ", ".join(LABEL_COLS)
return f"""

You are an expert in smart contract security.
Analyze the following Solidity contract and identify **all applicable vulnerabilities**
from the following fixed label set:

{labels_str}

Important rules:
- You may ONLY output labels from the set above.
- If none apply, output exactly: ['non_vulnerable']
- Do NOT invent, guess, or output labels outside this list.
- Output strictly as a Python list of strings. No explanations, no extra text.

Example valid outputs:
['SWC-107', 'SWC-101']
['non_vulnerable']

---
Contract:
{code}
---
"""
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