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Summary

Credit Value Adjustment for Multi-Asset Options

Yanbin SHEN

As one of the influential models in finance and economics, the Black-Scholes-
Merton model (1973) [7, 46] which was originally used for European stock op-
tions pricing, has been extended to value different kinds of derivatives with
different underlying asset price processes. One fundamental assumption in
the Black-Scholes-Merton model is that the two sides of a derivatives trans-
action will respect their payment obligations. However, it is now recognized
that default risk of a counterparty is an important consideration in derivative
valuation. The research on valuation of options with default risk started quite
early (such as ‘vulnerable options’ in Johnson and Stulz (1987) [42]), a topic
which seemed to be more popular in academics than in industry. With the
financial (credit) crisis of 2007 came opportunities, for the exploration of dif-
ferent aspects of counterparty credit risk. One of the challenging problems is
the quantification of counterparty credit risk.

Generally, the quantification of credit risk starts from three basic compo-
nents,

1. the probability of counterparty’s default (PD) within a fixed time hori-
zon.

2. the credit exposure at default (EAD), the amount the bank may poten-
tially lose if the counterparty defaults.

3. loss given default (LGD), the proportion of the exposure that will be lost
if a default occurs, which is equal to one minus the recovery rate.

It has become standard that EAD is assumed to be deterministic. The LGD
is random but often replaced by its expectation for simplification. And the
default probability will be modelled stochastically. However, for derivative
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vi Summary

transactions, the market price (and EAD) may change dramatically because of
the stochastic behavior of underlying asset prices. Then, methods for appro-
priate modeling and quantification of derivative transaction’s credit exposure
are required.

One of the main tasks in this thesis is to quantify future credit exposure for
over-the-counter (OTC) exotic and multi-asset options. In principle, two basic
steps are involved in quantifying counterparty credit exposure. First, simu-
lation paths of underlying asset prices have to be generated according to the
specified models for the underlying asset price processes. Second, on each sim-
ulated state (grid point), the value of a derivative transaction has to be calcu-
lated. Particularly, in the second step of instrument price computation, when
the valuation does not admit a closed form formula, appropriate approxima-
tion methods have to be proposed. A typical example is the approximation
of the continuation value in American option pricing problems by using least
squares regression.

Our starting point is the one-dimensional Bermudan option, which is inter-
mediate between a European option and an American option. As a classical
option pricing problem, the main challenging problem in Bermudan options is
to find an efficient approximation of the continuation value on early exercise
opportunities. Different from option pricing, in exposure calculation, we need
an accurate computation of option values at each time step, from which we can
further estimate quantities such as expected exposure (EE) and potential future ex-
posure (PFE). PFE for a given date is the maximum of exposure at that date
with a high degree of statistical confidence. EE for a given date is the average
of exposure at that date.

We show that in the one-dimensional case, the credit exposure of Bermudan
options can be calculated efficiently based on Monte Carlo simulation com-
bined with a Fourier inversion option pricing method which is named the
Monte Carlo-COS method [58]. The underlying asset price process is assumed
to be a Lévy process and can be simulated appropriately. An accurate contin-
uation value on early exercise opportunities is obtained by using the Fourier
COS method instead of a least squares regression approximation. We compare
the exposure profiles (PFE and EE) under the real world measure P and risk
neutral measure Q.

We then extend the one-dimensional case into multi-asset instruments. When
the dimension of the problem becomes higher, numerical integration methods
become computationally expensive. Although the standard regression method
(SRM) [31] has the advantage of fast computation for high-dimensional prob-
lems, the accuracy of exposure calculations is typically not very good. This
can be seen from a comparison of one-dimensional Bermudan option expo-
sure profiles generated by SRM and the Monte Carlo-COS method. To make
an improvement, we investigate different regression based methods, including
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the standard regression bundling method (SRBM) and the stochastic grid bundling
method (SGBM) [39]. We analyze each method in terms of computation speed,
accuracy and standard deviation of estimates.

Note that both PFE and EE are quantities calculated for measuring the coun-
terparty credit risk based on the exposure empirical distribution under the real
world measure P. To price the counterparty credit risk, the risk neutral mea-
sure Q comes in. The market price of counterparty credit risk is termed as
credit value adjustment (CVA). The second task of the thesis is to find efficient
computation methods for CVA.

We again consider the simple (but not trivial) example of one-dimensional
Bermudan (put) options, where the option is written on the counterparty’s
stock price. Since the counterparty is subject to default risk, the investor in
the Bermudan option has to value the default risk which should be taken into
account in the option price. This problem is reduced to calculating CVA of
Bermudan options. Based on the risk neutral pricing technique, a risk neu-
tral pricing formula of CVA can be derived. Particularly, a practical formula
for CVA in which the credit exposure is assumed to be independent of de-
fault probability, is just based on the multiplication of expected exposure (EE)
and default probability under measure Q. This can be done straightforwardly
because we have already developed an efficient calculation method (Monte
Carlo-COS method) for EE in the one-dimensional case.

The problem can become more interesting if we use more realistic assump-
tions. While several contributions in the literature have tried to measure the
dependence between the default probability and LGD process, the same argu-
ment can be applied to model the dependence between the default probability
and credit exposure. The positive (negative) dependence between the credit
exposure and default probability is termed as wrong (right) way risk. We use
a hazard rate approach for wrong way risk modeling. More precisely, in the
empirical analysis approach (EAA), the hazard rate is assumed to be a func-
tion of the counterparty’s equity price. And in another hazard rate approach,
which is termed as portfolio value approach (PVA), the hazard rate is assumed
to be a function of the derivative transaction value. Based on the modeling
of wrong way risk, to show the effect of wrong way risk on CVA computa-
tion, we compare the value of CVA when wrong way risk is taken into account
(CVAW ) to the value of CVA when wrong way risk is not taken into account
(CVAI ). The relationship between the wrong way risk and the early exercise
feature embedded in Bermudan options is analyzed. Numerical experiments
show that the effect of wrong way risk on CVA of Bermudan options depends
on its early exercise features. With a high exercise intensity, which is caused by
high volatility of the stock price process, high strike price, or large number of
possible early exercise dates, CVAW could be smaller in value than CVAI . This
result is different from the conclusion if one uses the α multiplier approach in
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the Basel III accord to take into account the wrong way risk effect, where the
value of α is greater than one.

We further consider two extensions of the one-dimensional problem above.
First, the assumption of the option written on the counterparty’s stock price
is replaced by a more flexible one, i.e., the option is written on an underly-
ing asset which is different from the counterparty’s stock, while the (positive
or negative) correlation between the two assets can be added. We investigate
the relationship between the correlation and wrong (right) way risk. Second,
we extend the one-dimensional underlying asset into the multi-asset case. We
investigate different simulation based methods for the efficient CVA compu-
tation of multi-asset instruments. These methods include SRM, SRBM and
SGBM which were already discussed for the efficient calculation of exposure
profiles. We focus on the efficiency comparison of different methods, includ-
ing the computation speed, accuracy, and standard deviation of estimates of
option prices and CVA.
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Credit Value Adjustment for Multi-Asset Options

Yanbin SHEN

Een van de invloedrijke modellen in finance en economie is het Black-Scholes-
Merton-model (1973) [7, 46] . Dit model, oorspronkelijk gebruikt voor het
waarderen van Europese aandelenopties, is uitgebreid om verschillende soorten
derivaten te kunnen waarderen met verschillende onderliggende processen als
model voor de aandeelprijs. Een fundamentele aanname in het Black-Scholes-
Merton-model is dat de twee partijen in een derivatentransactie altijd hun
betalingsverplichtingen zullen nakomen. Het wordt echter nu algemeen in-
gezien dat het risico op wanbetaling (faillissement) door een tegenpartij een
belangrijke rol speelt bij het waarderen van derivaten. Het onderzoek naar de
waardering van opties met het risico op wanbetaling begon heel vroeg (zoals
‘vulnerable options’ in Johnson en Stulz (1987) [42]), maar dit onderwerp leek
meer populair in academische kring dan in de financië industrie. Met de fi-
nanciële (krediet) crisis van 2007 kwamen kansen, voor de exploratie van de
verschillende aspecten van het tegenpartijkredietrisico. Een van de uitdagende
problemen is het kwantificeren van kredietrisico van de tegenpartij.

In het algemeen gaat men bij de kwantificering van het kredietrisico uit van
drie basiscomponenten,

1. de kans op wanbetaling (PD) van de tegenpartij binnen een bepaalde
tijdshorizon.

2. de krediet exposure at default (EAD), het bedrag dat de bank mogelijk
zou kunnen verliezen als de tegenpartij in gebreke blijft.

3. Loss Given Default (LGD), het deel van de exposure, dat verloren gaat
bij faillissement. Dit verlies is gelijk aan één minus de recovery rate.

Het is standaard gebruik geworden om ter vereenvoudiging aan te nemen dat
de EAD deterministisch is. De LGD is stochastisch, maar wordt vaak vervan-
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gen door zijn verwachte waarde. En de kans op wanbetaling zal stochastisch
worden gemodelleerd. Echter, de marktprijs en de EAD voor derivatentrans-
acties kunnen als gevolg van het stochastisch gedrag van de onderliggende
aandeelprijzen grote schommelingen vertonen. Als dit het geval is, dan zijn
methoden voor een geschikte modellering en kwantificatie van de krediet ex-
posure van derivaten transacties vereist.

Een van de belangrijkste taken in dit proefschrift is om toekomstig krediet-
exposure voor over-the-counter (OTC) exotische en multi-asset opties te kwan-
tificeren. In principe zijn twee fundamentele stappen nodig voor het kwan-
tificeren van tegenpartijkredietrisico. Ten eerste, simulatie van paden van on-
derliggende aandeelprijsprocessen volgens van tevoren opgegeven modellen.
Ten tweede, een benadering van de waarde van het derivaat op elke gesimuleerde
toestand (roosterpunt). Een karakteristiek voorbeeld is de benadering van de
continueringswaarde van een Amerikaanse optie met behulp van de kleinste
kwadraten regressie.

Ons uitgangspunt is een één-dimensionale Bermuda optie, die het midden
houdt tussen een Europese optie en een Amerikaanse optie. Het prijzen van
de optie is een klassiek probleem, waarvan de grootste uitdaging bij Bermuda
opties bestaat uit het vinden van een efficiënte benadering van de continuer-
ingswaarde op de tijdstippen waarop vervroegd mag worden uitgeoefend.
Anders dan bij het prijzen van opties is bij het berekenen van de exposure
op iedere tijdstap een precieze berekening van de optiewaarden nodig. Hieruit
kunnen verder grootheden zoals de verwachte exposure (EE) en potentieel toekom-
stig risico (PFE) geschat worden. Onder de PFE voor een bepaalde datum
wordt hierbij de maximale exposure op die datum verstaan met een hoge mate
van statistische betrouwbaarheid. EE voor een bepaalde datum is het gemid-
delde van de exposure op die datum.

We laten zien dat in voor één-dimensionale Bermuda opties, het kredietrisico
efficiënt berekend kan worden uit Monte Carlo simulatie in combinatie met
een Fourier-inversie methode om optieprijzen te berekenen. We duiden deze
methode aan als de Monte Carlo-COS methode [58]. Aangenomen wordt dat
het onderliggende aandeelprijsproces een Lévy proces is dat geschikt is om te
simuleren. Een nauwkeurige methode om de continueringswaarde te bereke-
nen op uitoefentijdstippen wordt verkregen door de Fourier COS methode toe
te passen in plaats van een kleinste kwadraten regressie. De exposure profie-
len (PFE en EE) onder de ‘echte wereld’ en de risico-neutrale kansmaat P en Q

worden vergeleken.
We breiden vervolgens het één-dimensionale geval uit tot multi-aandeel-

instrumenten. Wanneer de dimensie van het probleem groter wordt, worden
numerieke integratie methoden kostbaar qua rekentijd. Hoewel de standaard
regressie methode (SRM) [31] het voordeel heeft van snelle rekentijd in hoogdi-
mensionale problemen is de nauwkeurigheid van exposure-berekeningen gewoon-
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lijk niet hoog genoeg. Dit blijkt al uit een vergelijking van exposure profie-
len bij één-dimensionale Bermuda opties die gegenereerd zijn via SRM en de
Monte Carlo-COS methode. Om een verbetering te maken, onderzoeken we
verschillende op regressie gebaseerde methoden, met inbegrip van de stan-
daard regressie bundelingsmethode (SRBM) en de stochastisch grid bundelingsmeth-
ode (SGBM) [39]. Wij analyseren elke methode in termen van rekensnelheid,
nauwkeurigheid en de standaarddeviatie van de schattingen.

Merk op dat zowel de PFE als de EE maten zijn voor kredietrisico van de
tegenpartij op basis van de empirische verdelingsfunctie van de exposure on-
der de ‘echte wereld’ kansmaat P. Waardering van het kredietrisico van de
tegenpartij gebeurt ten opzichte van de risico-neutrale kansmaat Q. De markt-
prijs van het tegenpartijkredietrisico wordt aangeduid met kredietwaardeveran-
dering (CVA). De tweede taak van het proefschrift is om efficiënte bereken-
ingsmethoden voor de CVA vinden.

We beschouwen opnieuw het eenvoudige (maar niet triviale) voorbeeld van
één-dimensionale Bermuda (put) opties, geschreven op de aandeelprijs van
de tegenpartij. Omdat de tegenpartij is onderworpen aan het risico op fail-
lissement, moet de investeerder in de Bermuda optie rekening houden met de
waarde van dit risico bij het bepalen van de optieprijs. Dit probleem wordt
gereduceerd tot het berekenen van de CVA van Bermuda opties. Op basis
van de risico-neutrale waarderingstechnieken, kan een risico-neutrale prijsfor-
mule worden afgeleid voor de CVA. In het bijzonder, is een praktische formule
voor de CVA, waarbij de krediet exposure onafhankelijk is verondersteld van
de kans op faillissement, alleen gebaseerd op een vermenigvuldiging van de
verwachte exposure (EE) met de kans op faillissement onder Q. Omdat we
in het één-dimensionale geval al een efficiënte methode (Monte-Carlo COS)
voor de berekening van de EE hebben kan dit in dit geval eenvoudig gedaan
worden.

Het probleem zal interessanter worden als we uitgaan van meer realistische
veronderstellingen. Terwijl in verschillende bijdragen in de literatuur gepoogd
is om de afhankelijkheid van de kans op faillissement en het LGD proces te
meten, kan dezelfde redenering worden toegepast om de afhankelijkheid van
de kans op faillissement en krediet exposure te modelleren. De positieve (negatieve)
afhankelijkheid van krediet exposure en kans op faillissement wordt wrong
(right) way risico genoemd. We maken gebruik van een hazard rate aanpak
om wrong way risico te modelleren. Preciezer geformuleerd, in de empirische
analyse benadering (EAA) nemen we aan dat de hazard rate een functie is van
de aandeelprijs van de tegenpartij. En in een andere hazard rate benadering, de
zogeheten portfolio waarde aanpak (PVA), wordt aangenomen dat de hazard
rate een functie is van de transactiewaarde van het derivaat. Om het effect te
bestuderen van wrong way risico op de CVA vergelijken we op basis van een
model voor wrong way risico de CVA waarde met (CVAW ) en zonder wrong
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way risico (CVAI ). De relatie tussen wrong way risico en de vervroegde uitoe-
feningsfunctie ingebed in Bermudan opties wordt onderzocht. Numerieke
experimenten tonen aan dat het effect van wrong way risico op de CVA van
Bermuda opties afhangt van zijn vervroegde uitoefeningsmogelijkheden. Met
een hoge uitoefenintensiteit, die kan worden veroorzaakt door een hoge volatiliteit
van de koers van het aandeelproces, hoge uitoefenprijs, of groot aantal mogeli-
jke uitoefendata, kan CVAW ook kleiner in waarde zijn dan CVAI . Dit resul-
taat verschilt van de conclusie is als de α multiplier benadering gebruikt met
α > 1, die wordt voorgesteld in het Basel III akkoord om wrong way risico
mee te rekenen.

Verder beschouwen we twee uitbreidingen van het één-dimensionale prob-
leem hierboven. Eerst wordt de aanname dat de optie is geschreven op de
tegenpartij’s aandelenkoers vervangen door een meer flexibeleaanname dat de
optie geschreven is op een onderliggend aandeel dat verschillen kan van het
aandeel van de tegenpartij, terwijl de (positieve of negatieve) correlatie tussen
de twee aandelen kan worden toegevoegd. We onderzoeken de relatie tussen
de correlatie en het wrong (right) way risico. Ten tweede breiden we het één-
dimensionale geval uit tot het multi-aandeel geval. We onderzoeken verschil-
lende op simulatie gebaseerde methoden voor een efficiënte CVA berekening
van multi-aandeel-instrumenten. Deze methoden omvatten SRM, SRBM en
SGBM die reeds werden besproken bij de efficiënte berekening van exposure
profielen. Wij richten ons nu op het vergelijken van de efficiëntie van de ver-
schillende methoden, met inbegrip van de rekensnelheid, nauwkeurigheid, en
de standaarddeviatie van de schattingen van de optieprijzen en CVA.
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Chapter 1

Introduction

1.1 Background

“During the financial crisis, however, roughly two-thirds of losses attributed
to counterparty credit risk were due to CVA losses and only about one-third
were due to actual defaults ” is a statement from the Bank for International
Settlements (BIS).

High-profile defaults that happened during the financial crisis of 2007 to
2009 (collapse of Bear Stearns, Lehman Brothers, Wachovia) have emphasized
the importance for financial institutions to measure and manage counterparty
credit risk. According to the Basel II and Basel III accords, counterparty credit
risk is the risk that a counterparty in an over-the-counter (OTC) derivatives
transaction will default before the expiration of the instrument and will not
make current and future payments required by the contract. Only contracts
privately negotiated between the counterparties, such as OTC derivatives, are
subject to the counterparty credit risk. Derivatives traded on an exchange are
normally considered to have no counterparty risk since the payments promised
by the derivatives are guaranteed by the exchange.

Since OTC derivatives represent a large part of financial transactions world-
wide, which includes a wide variety of asset classes, the management of coun-
terparty credit risk in OTC derivatives market becomes crucial. The develop-
ment of the OTC derivatives markets for different asset classes is shown in
figure 1.1. Beginning from 1998, although the increase in notional amounts has
stopped at the peak of the financial crisis, the overall growth is still impres-
sive. In table 1.1, we can see clearly the gross notional values of different asset
classes during June 2007 ( the beginning of the crisis) and June 2010.

Counterparty credit risk is similar to other types of credit risk (such as lend-
ing risk) in the sense that the reason of economic loss is an obligor’s default.

1
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Figure 1.1: Notional amounts outstanding in OTC derivatives markets, in tril-
lions USD, cited from R. Cont and T. Kokholm (2014) [25]. Original source:
BIS.

However, counterparty credit risk has two unique features which are different
from lending risk:

1. Uncertainty of credit exposure. Credit exposure of one counterparty to
another is determined by the market value of all the contracts between
these counterparties. One can obtain the current exposure from the cur-
rent contract values, however, the future exposure is uncertain because
the future contract values are not known at present.

2. Bilateral nature of credit exposure. Since both counterparties can default
and the value of many financial contracts (such as swaps) can change
signs, the direction of future credit exposure is uncertain. Counterparty
A may be exposed to default of counterparty B under one set of future
market scenarios, while counterparty B may be exposed to default of
counterparty A under another set of scenarios.

Because of the uncertainty and bilateral nature of credit exposure, the quan-
tification of counterparty credit risk becomes a challenging problem. The pur-
pose of this thesis is to find efficient computation methods for the quantifica-
tion of the counterparty credit risk, especially in the field of exotic and multi-
asset derivatives.
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Table 1.1: Gross notional values in OTC derivatives markets in billions as of
June 2007 and June 2010, cited from Rama Cont and Thomas Kokholm (2014)
[25]. Original source: BIS

Asset Class 2007 2010
Commodity 8, 255 3, 273

Equity Linked 9, 518 6, 868
Foreign Exchange 57, 604 62, 933

Interest Rate 381, 357 478, 093
Credit Derivatives 51, 095 31, 416

Other 78 72
total 507, 907 582, 655

1.2 CVA and wrong way risk

Some basic definitions and the risk-neutral pricing technique for the quantifi-
cation of counterparty credit risk are introduced here and will be used in the
rest of the thesis.

1.2.1 Credit exposure

The credit exposure on an OTC derivative position is the amount that would
be lost on that position in the event of default by the counterparty, assuming
no recovery. For example, assuming that there is no collateral or other offset-
ting positions with the counterparty, the credit exposure on a purchased equity
option is its market value.

Depending on market conditions, some positions, such as swaps and for-
wards, can have negative market values. In that case, the exposure is zero
because default by the counterparty would, under the standard settlement pro-
cedures of the International Swaps and Derivatives Association (ISDA), result
in immediate settlement at market value and, thus, zero loss. In general, at a
given time t, for an uncollateralized position with a market value of V (t), the
exposure is max(0, V (t)), see figure 1.2. We can give the definition of credit
exposure in the following way,

Definition 1. The counterparty credit exposure of a derivative security, Et, is defined
as the non-negative part of the derivative security’s value, V (t), at time t,

Et = max
(
V (t), 0

)
= V (t)+, 0 ≤ t ≤ T

When there is collateral C(t),

Et = max
(
V (t)− C(t), 0

)
=

(
V (t)− C(t)

)+
, 0 ≤ t ≤ T
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Figure 1.2: Portfolio Market Value and Counterparty Credit Exposure. Source:
M. Pykhtin (2011) [48].

Because of the complexity of banks’ portfolios, the probability distribution
(or empirical distribution) of credit exposure at future time points is usually
obtained by Monte Carlo simulation. Given the mathematical models (such
as geometric Brownian motion dynamics) of the underlying market risk fac-
tors (e.g., stock price, interest rates, foreign exchange rates, etc.), the Monte
Carlo modeling framework is widely used to calculate the credit exposure in
practice. Typically, it has two major steps,

1. Scenario generation. Dynamics of market risk factors are specified by
stochastic processes. These processes are calibrated either to historical
or to market implied data. Future values of the market risk factors are
simulated for a fixed set of future time points.

2. Portfolio valuation. For each simulation time point and for each realiza-
tion of the underlying market risk factors, valuation is performed for the
portfolio of interest.

1.2.2 Credit exposure profiles

The most complete characterization of future credit exposure is given by its
probability distribution at each future time point. However, for many risk
management applications, a single deterministic quantity characterizing expo-
sure at a given time point is needed. For example, in deciding whether to have
additional OTC positions with a given counterparty, a single number charac-
terizing the exposure would be useful. A collection of such numbers obtained
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Figure 1.3: PFE (97.5%) for payer and receiver swap under the Hull-White
interest rate model

by applying the same procedure to exposure distributions at all simulation
time points is known as an exposure profile. Two types of exposure profiles
are widely used in practice: potential future exposure (PFE) and expected ex-
posure (EE).

A potential future exposure profile is obtained by calculating a high confi-
dence level (e.g., 97.5 percent) quantile of exposure at each simulation time
point,

Definition 2. The potential future exposure (PFE) at time t is defined as

PFEα,t = inf{x : P(Et ≤ x) ≥ α)}, 0 ≤ t ≤ T,

where α is the given confidence level, and P is the real-world measure.

In figure 1.3, we give an example of PFE (97.5%) for a payer and a receiver
swap under the Hull-White interest rate model.

An expected exposure profile is obtained by calculating the sample mean of
the simulated exposure realizations at each simulation time point,

Definition 3. The expected exposure (EE) at time t is defined as

EEt = EP
[
Et

]
, 0 ≤ t ≤ T.

1.2.3 Market-implied default probabilities

To quantify the counterparty credit risk, besides the credit exposure compo-
nent discussed above, another critical component is the default probability of
the counterparty. The introduction of various methods to determine the de-
fault probability, such as historical estimation and equity-based approaches
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(i.e., Merton approach, KMV approach 1), can be found in the literature, see
Gregory (2009). To focus the discussion, we will only review the market-
implied default probabilities method which will be used in our work.

Let Sur(t) denote the risk neutral survival function of the counterparty. If
we use the concept of hazard rate λt to represent the survival function, then
Sur(t) can be written as,

Sur(t) = EQ[exp(−
∫ t

0

λudu)].

The default probability during a time interval, for example,
(
tm−1, tm

)
, reads,

Sur(tm−1)− Sur(tm) = EQ[exp(−
∫ tm−1

0

λudu)]− EQ[exp(−
∫ tm

0

λudu)].

If we use a one year average hazard rate to approximate λt, then λt can be
estimated by a well known formula, i.e.,

λt ≈
c(t)

1− δ
,

with c(t) the one year par credit spread, which is embedded in the one year
CDS prices. The estimation results of λt are then used to calculate the counter-
party’s default probability during the time period of interest.

1.2.4 Pricing counterparty credit risk

Consider a simple case where only one side of the counterparties is default-
able. For example, we assume that the bank holding the portfolio has no de-
fault risk, while the bank’s counterparty is subject to default risk. To price the
portfolio, the bank should ask for a risk premium to be compensated for the
counterparty’s default risk. The market value of this risk premium is named
unilateral credit value adjustment (CVA).

A risk neutral pricing framework is used for pricing counterparty credit risk.
In the default event, the bank’s loss due to the counterparty’s default at time
τ , discounted to time 0, can be written as,

1{τ≤T}(1− δ)D(0, τ)Eτ , (1.1)

where 1{τ≤T} is the default indicator function (takes value 1 when default oc-
curs before maturity and a value of 0 otherwise.); δ is the fraction of the ex-
posure that the bank recovers in the counterparty default event; D(0, τ) is the

1KMV Corp., now Moody’s KMV, develops and distributes credit risk management products.
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discount factor from τ to 0; T is the maturity of the transaction. Then the uni-
lateral CVA is obtained by taking the risk neutral expectation of equation (1.1),

CVA(0, T ) = EQ[1{τ≤T}(1− δ)D(0, τ)Eτ ]

Generally, the risk neutral pricing formula of unilateral CVA is given by the
following proposition,

Proposition 1.2.1. (Risk neutral pricing formula of CVA) At valuation time s, pro-
vided the counterparty has not defaulted before s, i.e., at {τ > s}, the risky value of

the derivative security under counterparty credit risk, Ṽ (s), reads,

Ṽ (s) = V (s)− CVA(s, T ),

where

CVA(s, T ) = EQ[1{τ≤T}(1− δ)D(s, τ)Eτ | Fs].

Proof. The proof can be found in [9, 33].

If we take a set of discrete time grid points for [0, T ], π = {t1, ..., tM}, where
0 = t0 ≤ t1 < ... < tM = T , m = 1, ...,M , then the discretization of the CVA
formula reads,

CVA(0, T ) =
M∑

m=1

EQ[(1 − δ)D(0, τ)Eτ1tm−1<τ≤tm ]

≈
M∑

m=1

EQ[(1 − δ)D(0, tm−1)Etm−1
| tm−1 < τ ≤ tm]Q(tm−1 < τ ≤ tm).

For ease of exposition, we assume the discount factor D(0, t) to be determin-
istic and there is no dependence between δ (constant) and either the exposure
or default event, then the discretization form reads,

CVA(0, T ) ≈ (1− δ)

M∑

m=1

D(0, tm−1)E
Q[Etm−1

| tm−1 < τ ≤ tm]Q(tm−1 < τ ≤ tm)

= (1− δ)

M∑

m=1

D(0, tm−1)EE∗
tm−1,tm

(
Sur(tm−1)− Sur(tm)

)
,

whereEE∗
tm−1,tm

denotes the expected exposure conditional on default,EQ[Etm−1
|

tm−1 < τ ≤ tm]. In practice, the dependence between exposure and default is
often ignored, then CVA can be calculated approximately as,

CVA(0, T ) ≈ (1− δ)

M∑

m=1

D(0, tm−1)EEtm−1

(
Sur(tm−1)− Sur(tm)

)
.
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1.2.5 CVA with wrong way risk

In the previous section, we have mentioned the dependence between expo-
sure and the counterparty’s default. A typical example of this dependence is
known as wrong way risk, which describes the market behavior that exposure
tends to increase when the counterparty credit quality becomes worse. And if
the exposure tends to decrease when the counterparty credit quality becomes
worse, then it is called right way risk.

To incorporate the dependence between exposure and default, one can use
the concept of stochastic hazard rate to derive an analytical approximation
of the expected exposure conditional on default. Suppose the counterparty’s
credit quality is characterized by a stochastic hazard rate process λt, with-
out specifying its dynamics. The expected exposure conditional on default,
EE∗

tm,tm+1
, can be approximated by [49],

EE∗
tm,tm+1

≈
∑P

p=1 Etm(xm(p)) exp
(
−

∑m

i=1 λti(p)∆t
)
λtm(p)

∑P
p=1 exp

(
−
∑m

i=1 λti(p)∆t
)
λtm(p)

,

where P is the number of scenarios, xm(p) is the realisation of underlying mar-
ket risk factors at time tm, on scenario p, and λti(p) denotes the realisation of
the stochastic hazard rate at time ti, on scenario p.

In the simulation, the market risk factors (or the credit exposure) and stochas-
tic hazard rate are simulated jointly for P scenarios for a set of time points
t0 = 0, t1, ..., tM . All possible dependences between the market risk factors (or
the credit exposure) and the hazard rate are taken into account in the simula-
tion.

To model the dependence between the hazard rate and the underlying mar-
ket risk factors, one approach is to assume the hazard rate to be a function of
the market risk factors, i.e., λ(X(t)), where X(t) denotes the risk factors. A
simple example is an equity option written on the counterparty’s equity price
S(t), for which the hazard rate of the counterparty is assumed to be a negative
power function of S(t), i.e.,

λ(S(t)) = AS(t)B ,

where A and B are constant parameters which can be estimated by a least
squares linear regression method. This functional form assumes that the coun-
terparty’s equity price contains sufficient information to estimate its credit
quality.

One can also model the dependence between the hazard rate and the port-
folio value V (t). As suggested by J. Hull and A. White (2012) [37], the haz-
ard rate is assumed to be a function of the portfolio value V (t). We further
assume that V (t) at state (t,X(t)) is a function of X(t), i.e., V (t) = g(X(t))
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or X(t) = g−1(V (t)), where function g is invertible, and denote λ(X(t)) =

λ
(
g−1(V (t))

)
= λ̃(V (t)). The functional form of the hazard rate is given as

follows,

λ̃(V (t)) = exp
(
a(t) + bV (t)

)
,

where a(t) is a function of time, b is a constant parameter that measures the
amount of wrong or right way risk in the model. In the case of wrong (right)

way risk, b is positive (negative) and λ̃(V (t)) is an increasing (decreasing) func-
tion of V (t).

The calibration of the Hull-White wrong way risk model involves two major
steps: (1) first, b has to be estimated properly; (2) second, a(t) is determined
by incorporating the credit spreads observed today into the model.

In summary, CVA with wrong way risk can be calculated by the following
formula,

CVAW ≈ (1− δ)

M∑

m=1

D(0, tm−1)EE∗
tm−1,tm

(
Sur(tm−1)− Sur(tm)

)
,

where the expected exposure conditional on default, EE∗
tm−1,tm

, and the de-
fault probability Sur(tm−1) − Sur(tm) are estimated via a specific model of
hazard rate λt.

1.3 Setup of the thesis

The thesis is organized as follows.
In chapter 2, we explain the application of Monte Carlo simulation and an ef-

ficient Fourier inversion method, the COS method, to the exposure calculation
of Bermudan options. Risk measures such as PFE and EE can then be obtained
based on the empirical distribution of exposures. Different from the Longstaff-
Schwartz method (LSM) which uses the least squares approximation in the
computation of the continuation value at early exercise opportunities, a nu-
merical integration method based on Fourier cosine expansions is used in our
approach. For the one-dimensional case, this approach can calculate the ex-
posures at each simulated state fast and accurately. The accuracy of exposure
computation at each simulated state is important for an accurate estimation of
the exposure profiles. The exposure profiles generated by our approach can
serve as a benchmark to analyse the error of American Monte Carlo methods
(LSM, etc.). In practice, PFE and EE should be calculated under the real world
measure P. We show the difference of exposure profiles under different mea-
sures (risk neutral measure Q and real world measure P). We point out that the
efficient computation of EE forms the basis for the computation of CVA.
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In chapter 3, we study efficient computation methods for exposure profiles
when the underlying is high-dimensional. In the case of multi-asset instru-
ments, numerical integration methods (such as the approach introduced in
chapter 2) are computationally expensive. The approach considered here is
named Stochastic Grid Bundling Method (SGBM) [39]. The method is based
on the ‘regression later’ technique [32] used for conditional expectation ap-
proximation and the bundling (or binning) technique used for state space par-
titioning [30, 31, 41]. To investigate the efficiency of SGBM, we focus on a nu-
merical comparison (accuracy, computation speed and standard deviation of
estimates) of SGBM, the standard regression method (SRM), and the standard
regression bundling method (SRBM). Compared with the other two methods,
it shows that SGBM has the advantage of smaller standard deviation for the di-
rect estimates of option prices. Compared with SRM, the bundling technique
used in SGBM and SRBM can significantly improve the accuracy of the expo-
sure profiles.

In chapter 4, the risk neutral pricing of counterparty credit risk is discussed.
An efficient computation method is provided for the CVA computation of
Bermudan options when wrong way risk (positive dependence between de-
fault risk and exposure) exists. We use the approach described in chapter 2
to calculate the expected exposure (EE) of Bermudan options. To model the
wrong way risk, we consider two approaches based on the hazard rate of the
counterparty. In one approach, named portfolio value approach (PVA), the
hazard rate is assumed to be a function of the portfolio value. In another ap-
proach, named empirical analysis approach (EAA), the hazard rate is assumed
to be a function of the counterparty’s stock price. Then we calculate the ex-
pected exposure conditional on default. We show that the effect of wrong way
risk on the expected exposure and CVA can be significant. We also analyse
the relationship between wrong way risk and the early exercise features via
numerical examples.

In chapter 5, we give two extensions of the work of chapter 4. First, instead
of Bermudan options written on the counterparty’s stock, in this chapter, the
underlying asset is not the counterparty’s stock. We add (positive or negative)
correlation between these two different stocks and investigate the wrong way
risk effect under different values of correlation. Second, by using the compu-
tation methods introduced in chapter 3, we consider the CVA computation of
multi-asset instruments. An efficiency comparison of different computation
methods (SRBM, SGBM, SRM) for the computation of the option price and of
CVA is also provided here. We show the effect of correlation between default
risk and exposure on the results of the expected exposure profiles and CVA.
We point out that the application of the bundling technique can improve the
accuracy of exposure profiles and CVA of multi-asset instruments.



Chapter 2

A Benchmark Approach for
the Counterparty Credit
Exposure of Bermudan
Options under Lévy Process:
the Monte Carlo-COS Method

2.1 Introduction

The computation of counterparty credit exposure of exotic instruments with-
out analytical solution is a challenging problem. According to Basel II and
Basel III, counterparty credit risk is the risk that a counterparty in a derivatives
transaction will default prior to the expiration of the instrument and will not
therefore make the current and future payments required by the contract. For
quantification of counterparty credit risk of exotic instruments with no analyt-
ical solution, such as calculation of potential future exposure (PFE), expected
exposure (EE), and credit value adjustment (CVA), an efficient computation
method for counterparty credit exposure is required.

In this chapter, we propose an advanced approach, which we call Monte
Carlo-COS method (MCCOS), to give accurate results of the exposure profiles
of a single asset Bermudan option under a Lévy process. Different from the
American Monte Carlo method1 [1, 22, 56], in the Monte Carlo-COS method,

1we call the Longstaff-Schwartz method, stochastic mesh method and other methods which are
used for pricing Bermudan option and American option American Monte Carlo algorithms.

11
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one can calculate the exposure profile without using any change of measure.
Combined with the computational advantages of the COS method on accu-
racy and speed of option pricing, the exposure profile produced by the Monte
Carlo-COS method can serve as a “benchmark” for analysing the reliability of
American Monte Carlo methods.

The literature on the subject is quite rich. Canabarro and Duffie [17] and
Duffie and Singleton [26] discuss techniques for measuring and pricing coun-
terparty credit risk; Lomibao and Zhu [44] present a “direct jump to simulation
date” method, and derive analytic expressions to calculate the exposure on a
number of path-dependent instruments, except on Bermudan and American
options; In Pykhtin and Zhu [51, 52], a modeling framework for counterparty
credit exposure is proposed.

Based on this modeling framework, the American Monte Carlo method is
proposed for exposure calculation in some literature. In Schöftner [56] a mod-
ified least squares Monte Carlo algorithm is applied; Cesari [22] combines the
bundling technique [60] with the Longstaff-Schwartz method for exposure cal-
culation; Ng [47] applies the stochastic mesh method to the credit exposure
calculation.

The chapter is structured in the following way. Section 2.2 provides the def-
inition of the exposure profiles of counterparty credit exposure, and describes
the modeling approach for exposure calculation of exotic options. Section 2.3
shows the connection between dynamic programming and exposure calcula-
tion. Section 2.4 explains the application of the Monte Carlo-COS method to
get a benchmark result for the Bermudan option. Section 2.5 gives numeri-
cal experiments and analyses the difference of exposure profiles and exercise
intensity under different measures. Section 2.6 concludes the presented ap-
proach to calculate the exposure profiles.

2.2 Exposure valuation: the modeling framework

Let (Ω,F ,P) be a probability space, let T be a fixed positive number, and let
Ft, 0 ≤ t ≤ T , be a filtration of sub-σ-algebras of F . We define the value
of a derivatives security under the risk-neutral measure Q [59] over time as a
stochastic process V (t), 0 ≤ t ≤ T , which is driven by the stochastic process of
risk factors X(t), 0 ≤ t ≤ T , such as stock prices, foreign exchange rates, and
interest rates[33]. We call (t,X(t)) the state of the economy at time t. Denote
the derivative’s discounted net cashflow between t and T as Cf (t, T ) (i.e., all
of the cashflows are discounted back to time t), then

V (t) = EQ
[
Cf (t, T )|Ft

]
.

In chapter 1, the credit exposure Et is defined as the positive part of V (t).
According to the definition of PFE and EE given in chapter 1, the main prob-
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lem to calculate PFEα,t and EEt is to calculate the probability distribution of
Et (or V (t)) under the real-world measure P. The exact probability distribu-
tion, which usually has no explicit solution, can be approximated by an empir-
ical distribution of the sample results of Et (or V (t)) on each simulated state
(t,X(t)).

Assuming one has a model describing the stochastic process of risk factors
X(t), 0 ≤ t ≤ T , which is already calibrated to the market data at time zero,
then two basic steps are involved in the modelling framework [1, 22]:

1. Simulate the model under the real-world measure P (i.e., the market price
of risk has to be incorporated into the model) to get the scenarios of risk
factors X(t), t ∈ [0, T ].

2. Calculate the option price for every simulated state (t,X(t)), under the
risk-neutral measure Q. The option can be seen as a newly issued one
from a future state (t,X(t)), with time to maturity T − t.

2.3 Dynamic Programming and Exposure Calcula-

tion

In contrast to European options, which can only be exercised at maturity, a
Bermudan option can be exercised at a fixed set of exercise opportunities, T =
{t1, ..., tM},0 = t0 ≤ t1, tM = T . Assume the exercise dates are equally spaced,
i.e., ti − ti−1 = ∆t, i = 1, ...M . If a put option is exercised at ti, the option
holder gets the exercise value h(ti, Sti) = (K − Sti)

+, where K is called the
strike price 2.

To determine V0(S0), the Bermudan option value at initial time 0, with ini-
tial stock price S0, one needs to solve the following dynamic programming
recursion:

VM (SM ) = h(tM , SM ), (2.1)

c(tm−1, Sm−1) = exp(−r∆t)EQ
[
Vm(Sm)|Ftm−1

]
,m = M, ..., 1, (2.2)

Vm−1(Sm−1) = max{h(tm−1, Sm−1), c(tm−1, Sm−1)}, (2.3)

V0(S0) = c(t0, S0), (2.4)

where we use the simplified notation Xm for Xtm . We assume a constant in-
terest rate r, so exp(−r∆t) denotes the discount factor for time interval ∆t, c is
the continuation value of the option and V the value of the option immediately

2We have written the exercise value as h(ti, Sti
) = (K−Sti

)+ rather than h(ti, Sti
) = K−Sti

so that exercising an out-of-the-money option produces a zero payoff rather than a negative payoff.
This allows us to include the possibility that the option expires worthless within the event {τ = T}
rather than writing, e.g., τ = ∞ for this case, see [31].
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before the exercise opportunity. As indicated in (2.1), the continuation value c
at terminal time tM equals 0.

Note that t0 is not included in the exercise dates. If one issues a new Bermu-
dan option from an intermediate state (tm−1, Sm−1), with possible exercise
dates [tm, ..., tM ] (Here tm−1 is not an exercise date.), then the price of this new
option is equal to the continuation value c(tm−1, Sm−1) in (2.2) [31]. Based on
this observation, we can calculate the credit exposure for each exercise date,
T = {t1, ..., tM}, as a by-product of the option pricing procedure, which there-
fore yields estimated distributions of credit exposure, on each possible exercise
date.

In an ordinary option pricing procedure of an American Monte Carlo method,
such as LSM, the stock price St is usually simulated under the risk-neutral
measure Q. However, in risk management, industries are interested in val-
ues under the real-world measure P, i.e., asset price processes evolve under
the real-world measure P. In [22, 56], the authors use the change of measure
method to get the P-distribution. In contrast to the American Monte Carlo
method used in [22, 56], in the Monte Carlo-COS method, one can efficiently
compute the option prices on all the grid points which are simulated under
measure P, without using any change of measure. The algorithm is explained
in the following section.

2.4 A Benchmark Approach: The Monte Carlo-COS

Method

The Monte Carlo-COS method is based on the work of [27, 28, 22]. We assume
the underlying stochastic process is a Lévy process.

For a Bermudan option, regression-based approximation methods, such as
the LSM method, are used to approximate the following conditional expecta-
tion on possible exercise dates:

c(tm−1, sm−1(p)) = exp(−r∆t)EQ
[
Vm(Sm)|Sm−1 = sm−1(p)

]
, (2.5)

with p = 1, ..., P, the simulated sample paths, sm−1(p) the realization of ran-
dom variable Sm−1. If we define X = log

(
Sm−1/K

)
, x = log

(
sm−1(p)/K

)
,

Y = log
(
Sm/K

)
, with K the strike price, and denote Ṽm(Y ) = Vm(K exp(Y )) =

Vm(Sm), then it can be represented as,

c(tm−1, x) = exp(−r∆t)EQ
[
Ṽm(Y )|X = x

]
= exp(−r∆t)

∫

R

Ṽm(y)fY |X=x(y)dy,

(2.6)
where fY |X=x(y) is the probability density function of y given x under risk-
neutral measure Q.
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An alternative way for efficient calculation of (2.6) is by numerical integra-
tion, particularly we choose the COS method developed in [27] as the main
component of our algorithm.

Different from the option pricing problem in [27], for the exposure profile
problem, the option price on every grid point simulated under measure P has
to be calculated. And the early exercise event has to be taken into account for
each simulated path, since the option price should be floored to zero after the
exercise event happens. This is done by finding the earliest exercise time, τp,
for each path p and set the value after τp to zero.

There are three main components in the Monte Carlo-COS method for expo-
sure profile calculation:

1. Scenario generation for the future economic state under measure P;

2. Instrument valuation on all the simulated paths by the COS method;

3. Exposure profile calculation.

2.4.1 Fourier cosine expansions

In this section, we explain the COS method for instrument valuation on all the
simulated grid points. The following proposition[27] gives another represen-
tation of (2.6):

Proposition 2.4.1. Let the underlying stochastic process of stock price St be a Lévy
process, then the continuation value at grid point (tm−1, sm−1(p)), c(tm−1, sm−1(p)),
can be approximated by,

ĉ(tm−1, x) = exp(−r∆t)

N−1∑′

k=0

Re{ϕlevy

( kπ

b− a
; ∆t

)
exp(−ikπ

x− a

b− a
)}Vk(tm),

(2.7)
where ϕlevy(ω; ∆t) = φlevy(ω; 0,∆t), and φlevy is the characteristic function of a

Lévy process. The Vk(tm) represent the Fourier-cosine series coefficients of Ṽm(y) on
[a, b],

Vk(tm) =
2

b− a

∫ b

a

Ṽm(y)cos
(
kπ

y − a

b− a

)
dy. (2.8)

Here [a, b] is the truncation interval of the integration of the risk-neutral evaluation
formula in (2.6). c(tm−1, sm−1(p)) is equivalent to the value of a Bermudan option
newly issued at grid point (tm−1, sm−1(p)), with maturity time tM and possible ex-

ercise dates, tm, ..., tM .
∑′

indicates the first term in the summation is weighted by

1/2.

Proof. The main proof can be found in [27].
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2.4.2 Recovery of Vk(tm)

To compute (2.7), one needs to know the Fourier cosine coefficients, Vk(tm),
given in (2.8). The derivation of an induction formula for Vk(tm) for Bermudan
options, backwards in time, was the basis of the work in [28]. It is briefly
explained here.

First, the early exercise point, x∗(tm), at time tm, which is the point where
the continuation value equals the payoff, i.e., c(x∗(tm), tm) = h(x∗(tm)), is
determined by Newton’s method.

Second, based on x∗(tm), Vk(tm) is split into two parts: one on the interval
[a, x∗(tm)], and another on (x∗(tm), b], i.e.,

Vk(tm)=

{
Ck(a, x

∗(tm), tm) +Gk(x
∗(tm), b), for a call,

Gk(a, x
∗(tm)) + Ck(x

∗(tm), b, tm), for a put,

for m = M − 1, ..., 1, and at tM = T ,

Vk(tM )=

{
Gk(x

∗(0, b), for a call,
Gk(x

∗(a, 0), for a put.

Here Ck and Gk are the Fourier coefficients for the continuation value and
payoff function, respectively, which read,

Gk(x1, x2) =
2

b − a

∫ x2

x1

h(x)cos
(
kπ

x− a

b− a

)
dx,

and

Ck(x1, x2, tj) =
2

b − a

∫ x2

x1

c(x, tj)cos
(
kπ

x− a

b− a

)
dx.

For k = 0, 1, ..., N−1 and m = 1, 2, ...,M , Gk(x1, x2) has an analytical solution,
and the challenge is to compute the Ck efficiently. The following proposition
from [28] claims that Ck(x1, x2, tm), k = 0, 1, ..., N − 1, can be recovered from
Vl(tm+1), l = 0, 1, ..., N − 1, with O(N log2 N) complexity.

Proposition 2.4.2. For m = M , Vk(x1, x2, tm) (and Ck(x1, x2, tm)) has an ana-
lytical solution; for m = M − 1, ..., 1, Gk(x1, x2) has an analytical solution, and

Ck(x1, x2, tm) can be approximated by Ĉk(x1, x2, tm), i.e.,

Ĉk(x1, x2, tm)=





exp(−r∆t)Re{
∑′N−1

l=0
ϕlevy

(
lπ
b−a

; ∆t
)
Vl(tm+1) · Mk,l(x1, x2)}

for m = M − 1

exp(−r∆t)Re{
∑′N−1

l=0
ϕlevy

(
lπ
b−a

; ∆t
)
V̂l(tm+1) · Mk,l(x1, x2)}

for m = M − 2, . . . , 1
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with Mk,l(x1, x2) defined as

Mk,l(x1, x2) =
2

b − a

∫ x2

x1

exp(ilπ
x− a

b− a
)cos

(
kπ

x− a

b− a

)
dx,

and i =
√
−1 being the imaginary unit. V̂l(tm+1) is the approximation of Vl(tm+1)

by replacing Ck(x1, x2, tm+1) with Ĉk(x1, x2, tm+1).

Proof. The derivation of the result can be found in [28].

2.4.3 Application for exposure calculation

Denote the integration interval for grid point (tm−1, sm−1(p)) by [am−1,p, bm−1,p],
m = 1, ...,M, p = 1, ..., P , where

am−1,p = ξ1 − L

√
ξ2 +

√
ξ4 + log

(
sm−1(p)/K

)

bm−1,p = ξ1 + L

√
ξ2 +

√
ξ4 + log

(
sm−1(p)/K

)

with L ∈ [6, 12] depending on a user-defined tolerance level, TOL, and ξ1, ..., ξ4
being the cumulants of Lévy process3, with time interval ∆t. The error in the
pricing formula connected to the size of the domain decreases exponentially
with L, and in most cases, as shown in [27], with L = 10 the option price
converges well for Lévy processes to accuracy of 10−9 or less.

The common truncation interval for all the grid points is chosen as [a, b] in
the following way,

a = min{am−1,p : m = 1, ...,M, p = 1, ..., P},
b = max{bm−1,p : m = 1, ...,M, p = 1, ..., P}.

Consider the sample vector at time tm−1,

SVm−1 = [sm−1(1), ..., sm−1(P )].

For a vector xvm−1 = [log
(
sm−1(1)/K

)
, ..., log

(
sm−1(P )/K

)
], the COS for-

mula (2.7) can be written as a vector form,

ĉ(tm−1,xvm−1) = exp(−r∆t)

×
N−1∑′

k=0

Re{ϕlevy

( kπ

b− a
; ∆t

)
exp(−ikπ

xvm−1 − a

b− a
)}Vk(tm),

(2.9)

3For example, if the stochastic process is geometric Brownian motion, then ξ1 = (µ− 1

2
σ2)∆t,

ξ2 = σ2∆t, ξ4 = 0, with µ the drift coefficient, and σ the diffusion coefficient.
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which is useful for exposure calculation on all the grid points in a sample vec-
tor.

According to the proposition 2.4.2, for the case of Lévy processes, the Fourier
cosine coefficients, Vk(tm), k = 0, 1, ..., N − 1, can be recovered from Vl(tm+1),
l = 0, 1, ..., N − 1, without knowing the option price for each time step. Once
the Fourier cosine coefficients for each time step are calculated, one just inserts
them into formula (2.9) to get the continuation value (or the Bermudan option
price), i.e., ĉ(tm−1,xvm−1).

2.4.4 The Monte Carlo-COS algorithm

We list the Monte Carlo-COS algorithm for exposure profile calculation of
Bermudan options as follows,

1. Simulate sample paths for the stock price, s0(p), ..., sM (p), at time steps
0 = t0, ..., tM = T , with indices of paths p = 1, ..., P , under the real-world
measure P.

2. Calculate the common truncation interval for all simulated grid points,
[a, b].

3. For each time step, calculate the Fourier cosine coefficients, Vk(tm), k =
0, 1, ..., N − 1,m = 1, ...,M .

4. At terminal date tM = T , set

VM (sM (p)) = max(h(tM , sM (p)), 0),

for p = 1, ..., P , and define the stopping time τM = T .

5. Apply backward induction, i.e., m → m− 1 for m = M, ..., 1,

(a) Calculate the continuation value, ĉ(tm−1, Sm−1(p)), by inserting the
Fourier cosine coefficients into formula (2.9).

(b) Define a new stopping time according to the stopping rule for Bermu-
dan options,

τpm−1 = min{k ∈ {m− 1, ...,M}|h(tk, sk(p)) ≥ c(tk, sk(p))}.

(c) For each sample path p = 1, ..., P , set

Vm−1(sm−1(p)) = max(h(tm−1, sm−1(p)), c(tm−1, sm−1(p))),

and Vt(st(p)) = 0 for t > τpm−1.
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Figure 2.1: (A), The exposure profiles of Bermudan options under different
measures. (B), The exercise intensity of Bermudan options under different
measures.

6. Calculate the exposure at initial time, V0(s0) = c(0, s0), because exercise
is not allowed at time zero.

7. Set Ep
tm

= max(Vm(sm(p)), 0) for the credit exposure.

8. The measure P-exposure profiles of PFEα,tm and EEα,tm can be calcu-
lated directly by the empirical distribution of Ep

tm
. Since the scenario is

simulated under measure P, no change of measure needed.

2.5 Numerical Experiments: Exposure Profiles un-

der Different Measures

In this section, we investigate the difference between the exposure profiles
calculated under different measures, i.e., Q and P. For comparison, we take
the same parameters as in [56] for the Bermudan option, with initial price
S0 = 100, strike price K = 100, constant interest rate r = 0.05, real world
drift µ = 0.1, volatility σ = 0.2 and 50 exercise dates. The underlying stochas-
tic process is the geometric Brownian motion process (GBM). We take 18000
paths and 50 time steps for the underlying value. Only the exposures on the
possible exercise dates are considered.

We investigate the exposure profiles calculated under different measures by
two settings:
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Time 0.1 0.2 0.3 0.4 0.5
P 5.8983 5.5188 4.7929 4.0037 3.2563
Q 6.1020 5.8501 5.1485 4.3417 3.5437

Table 2.1: Expected Exposure (EE) under different measures.

Time 0.6 0.7 0.8 0.9 1
P 2.5100 1.8140 1.2148 0.6762 0.1654
Q 2.7390 1.9942 1.3643 0.7519 0.1799

Table 2.2: Expected Exposure (EE) under different measures.

1. Q-exposure profile, i.e., the stock prices are simulated under measure Q.
The exposure profiles are obtained based on the Q-probability distribu-
tion of credit exposure.

2. P-exposure profile, i.e., the stock prices are simulated under measure P.
The exposure profiles are obtained based on the P-probability distribu-
tion of credit exposure.

The difference between the Q-exposure profile and the P-exposure profiles
is illustrated in figure 2.1a. Note that in this parameter setting, µ > r, and
we find the P-exposure profiles are lower than Q-exposure profiles. The initial
prices V0 for both settings coincide, because the risk-neutral pricing formula is
independent of the different measures.

When µ > r, at each time step t, the stock price St simulated under measure
P tends to be higher than St simulated under measure Q. For a Bermudan
put option issued at time t, with maturity T and initial stock price St, a higher
initial stock price St (i.e., simulated under measure P) implies a lower option
price, and a lower P-exposure profile.

Tables 2.1 and 2.2 provide the expected exposure calculated under different
measures, which can be further used in the computation of credit value adjust-
ment (CVA).

Figure 2.1b shows the percentage of paths that has already been exercised at
time t. In the example, the exercise intensity under measure Q is higher than
that under measure P. This significantly influences the future exposure values,
since after exercise, the contract does not exist any more and the exposure is
floored to zero.

Although paths are exercised more often under measure Q than under mea-
sure P (figure 2.1b), the Q-exposure profile is still higher than the P-exposure
profile (figure 2.1a).
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2.6 Conclusion

This chapter proposes an advanced method, named the Monte Carlo-COS method
to calculate the exposure profile of single asset Bermudan options that have no
analytical solutions, under Lévy processes. The result can serve as a bench-
mark for analysing the error from American Monte Carlo methods [1, 22, 56].
The difference of exposure profiles and exercise intensity under different mea-
sures(i.e., P and Q) is also discussed.
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Chapter 3

Algorithmic Counterparty
Credit Exposure for
Multi-Asset Bermudan
Options

3.1 Introduction

The efficient quantification of counterparty credit risk of high-dimensional ex-
otic options is an important and challenging problem both in academics and
in the industry. For quantification of counterparty credit risk, two approaches
are considered, which are associated with Basel II and Basel III, respectively.

The approach in Basel II consists of computing the counterparty credit ex-
posure, which defines the loss in the event of a counterparty defaulting. Basel
II proposes a number of risk measures. In this chapter we will concentrate on
the potential future exposure (PFE) and the expected exposure (EE).

The approach in Basel III consists of computing the credit value adjustment
(CVA), which is an adjustment to the price of financial instruments due to the
possible default of a counterparty. CVA calculation requires the computation
of counterparty credit exposure as well [8] [33].

Many authors have discussed the efficient quantification of counterparty
credit risk. Canabarro and Duffie [17] and Duffie and Singleton [26] discuss
techniques for measuring and pricing counterparty credit risk. The applica-
tion of PFE and EE exposure profile in credit line limits and credit risk valua-
tion (CVA) is also presented.

Lomibao and Zhu [44] present a “direct jump to simulation date” method,

23
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and propose a methodology to account for the possibilities of particular prior
events (i.e., exercising an option, etc.) that may affect the exposure. By using
the properties of the Brownian Bridge, they derived analytic expressions to
calculate the exposure on a number of path-dependent instruments such as
barrier options, average options, variance swaps, and swap-settled swaptions.

Pykhtin and Zhu [51] present a treatment of the counterparty credit risk of
over-the-counter derivatives under Basel II. The calculation of the minimum
capital requirement, which is related to the calculation of the counterparty
credit exposure, is also discussed. In [51, 52], the modeling framework for
counterparty credit exposure is explained, and in [52], the calculation of CVA
is also presented based on the modeling framework.

In Schöftner [56] a modified least squares Monte Carlo algorithm is applied
which fits into the context of credit exposure modeling. The algorithm incorpo-
rates a change of measure from the risk-neutral probability Q to the real-world
probability measure P, and, if appropriate, it partitions the state space of the
payout function into continuous and discontinuous parts using multinomial
regression techniques to allow for a more robust estimation. The author gives
a benchmark result for the European option, however, benchmark results for
Bermudan and American options are not discussed.

Cesari [22] combines the bundling technique, which is used to partition the
state space, with the Longstaff-Schwartz method for exposure calculation. In
[22], the scenarios are generated under the risk-neutral measure Q, and the
probability distribution of exposure under measure P is obtained by using a
change of measure to the exposure distribution under measure Q.

Ng [47] applies the stochastic mesh method into the credit exposure calcula-
tion for multi-asset cross currency products, especially for power reserve dual
coupon swaps (PRDCs).

Antonov [1] presents an algorithmic approach for credit exposure calcula-
tion, such that the exposure calculation can be done during the backward pric-
ing without changing the pseudo-code structure. The algorithmic approach
is designed in the modeling framework and suitable for the American Monte
Carlo algorithm. The purpose of the algorithmic approach is to avoid the cum-
bersome modifications of the pricing routines: for exposure calculation, the
exercise conditions, or the possibilities of particular prior events have to be
taken into account. The author discusses the application of the algorithmic
approach for the barrier option, Bermudan swaption, and autocap.

This chapter contributes to the literature as follows.

1. To obtain accurate exposure profiles for multi-asset portfolios, an effi-
cient simulation-based approach, the Stochastic Grid Bundling Method (SGBM)
[39], is applied. In the case of high-dimensional underlying asset pro-
cesses, by using a bundling technique, the accuracy of exposure profiles
is improved significantly, and the computation speed is kept reasonably
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high.

2. A detailed analysis of the bundling technique and regression approxima-
tion technique used in SGBM is provided via various numerical exam-
ples: assuming that closed-form formulas or analytical approximations
exist for the conditional expectations of the basis functions, then

- Compared with the Standard Regression Bundling Method (SRBM),
when the same number of simulation paths, basis functions and
bundles are used, the discontinuity of the conditional expectations
appearing on the boundaries of bundles in SGBM is smaller. And
this discontinuity in SGBM can become very small by increasing the
number of simulation paths and bundles appropriately.

- Compared with the Standard Regression Method (SRM) and SRBM,
the numerical examples show that SGBM has the advantage of smaller
standard deviation for the direct estimates of option prices. This re-
sult is consistent with the conclusion of Glasserman and Yu (2004)
[32], in which they theoretically prove the advantage of ‘regression
later’ (used in SGBM) compared with ‘regression now’ (used in SRBM
and SRM) under some conditions (such as martingale basis functions,
etc.). Generally, the estimates of option prices of SGBM are closer to
the reference results than SRM and SRBM.

3. We also show that for discontinuous payoffs, such as digital options, by
using the bundling technique appropriately, SGBM can get accurate and
stable results of option prices and exposure profiles.

4. A numerical error analysis is provided by using benchmark results of
one-dimensional European and Bermudan options via the Monte Carlo-
COS method (MCCOS) [58]. It shows that with an appropriate choice of
basis functions and application of the bundling technique, SGBM can get
very accurate results of the exposure profiles. In addition, the difference
between the P-exposure and Q-exposure profiles is also discussed.

The chapter is structured in the following way. Section 3.2 specifies the mod-
els of underlying asset prices and discusses the exposure of different instru-
ments. Section 3.3 explains the computation methods, including SRM, SGBM,
and SRBM. The bundling method is introduced in detail. The example of single
asset options (European, Bermudan and digital options) is given. The disconti-
nuity of the conditional expectation on the bundles boundaries is discussed. In
section 3.4 we benchmark the result for the single asset European and Bermu-
dan option by using MCCOS method, and provide an error analysis for SGBM.
In section 3.5 we give a numerical comparison (accuracy and speed of compu-
tation) of different computation methods, including SGBM, SRM, and SRBM,
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via several multi-asset instruments. Section 3.6 concludes the presented ap-
proach by solving the credit exposure problem.

3.2 Model specification and different instruments

To get the sample results of Et (or V (t)) on each state, one possibility is by
using a simulation approach. We will use the modeling framework introduced
in chapter 2. Assuming one has a model describing the stochastic process of
risk factors X(t), 0 ≤ t ≤ T , then two basic steps are involved in the modelling
framework:

1. Simulate the model under the real-world measure P to get the scenarios
of risk factors X(t), t ∈ [0, T ].

2. Evaluate the instrument price for each simulated state (t,X(t)).

To work under the modeling framework, we need to specify the model for
the underlying asset prices. The exposure of different instruments will also be
discussed in this section.

3.2.1 Multi-dimensional Models

Consider the exposure evaluation of exotic instruments with multi-dimensional
underlying assets. For a derivative security with multiple underlying assets
St =

(
S1
t , ..., S

d
t

)
, we assume that each asset price is driven by a geometric

Brownian motion (GBM),

dSi
t

Si
t

= (r − qi)dt+ σidW
i(t), i = 1, ..., d, (3.1)

where each asset pays a dividend at a continuous rate of qi, r is the risk free
interest rate, and σi are the volatility coefficients. The multi-dimensional pro-
cess

(
W 1(t), ...,W d(t)

)
is d-dimensional Brownian motion under measure Q.

The instantaneous correlation coefficients between the increments W i and W j

are ρi,j , i, j = 1, ..., d. The increment of this process for time interval ∆t is joint
normally distributed,

(
W 1(∆t), ...,W d(∆t)

)
= L

(
Z1, ..., Zd

)
,

where Z1, ..., Zd are independent standard normal random variables. LL⊤ =
Σ is the Cholesky decomposition of the symmetric positive definite d×d matrix
Σ, with Σi,j = ρi,j∆t, i, j = 1, ..., d.

The multi-dimensional model (3.1) admits analytical conditional moments

of several functions of underlying assets Si
t , such as

(∏d

i=1 S
i
t

) 1
d and 1

d

(∑d

i=1 S
i
t

)
,
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which are used in the payoff functions of geometric and arithmetic basket op-
tions (see the following section). For some functions, such as max(S1

t , ..., S
d
t ),

the Clark algorithm [23, 39], can be applied to calculate the first four exact mo-
ments of the maximum of a pair of jointly normal variables (d = 2). However,
for d ≥ 3, the Clark algorithm can only be used to approximate the moments
of max(S1

t , ..., S
d
t ). These formulas of conditional moments are listed in table

3.1 and will be used in the application of the multi-dimensional model.

Remark 3.2.1. For one-dimensional models, more general stochastic processes, such
as the jump-diffusion model, can be found with analytical conditional moments. For
high-dimensional models, since many random variables are involved (complicated cases
including stochastic interest rate, stochastic volatility, etc.), the analytical conditional
moments of functions of underlying assets may become very complicated or may not
exist, for which one has to find an accurate approximation, then.

3.2.2 Exposure of Different Instruments

To calculate the exposure on time interval [0, T ], we first set up the vector of
observation dates as T = {t1, ..., tM}, with 0 = t0 ≤ t1 and tM = T , which are
assumed to be equally spaced, tm − tm−1 = ∆t,m = 1, ...M . For an accurate
computation of CVA, the observation dates should be dense enough (such as
monthly or weekly).

Given the multi-dimensional model of the underlying assets, the exposure
of a European option at time tm−1 can be calculated based on its option value
Vtm−1

(Stm−1
),

VtM (StM ) = h(tM ,StM ),

Vtm−1
(Stm−1

) = exp(−r∆t)EQ
[
Vtm(Stm)|Stm−1

]
,m = M, ..., 1,

(3.2)

We assume a constant interest rate r, so exp(−r∆t) denotes the discount factor
for time interval ∆t. h(tM ,StM ) is the non-negative payoff function at maturity
time T . For basket options, the following three types of payoff functions are
considered (geometric average, arithmetic average and max options),

h1(tM ,StM ) =
(
K −

( d∏

i=1

Si
tM

) 1
d
)+

,

h2(tM ,StM ) =
(
K − 1

d

( d∑

i=1

Si
tM

))+
,

h3(tM ,StM ) =
(
max(S1

tM
, ..., Sd

tM
)−K

)+
,

where K is the strike price.
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Function h(·) can also be discontinuous. A typical example is a digital op-
tion, for which the payoff function at maturity reads (in the case of geometric
basket put options),

h(tM ,StM )=

{
Q,

(∏d

i=1 S
i
tM

) 1
d ≤ K,

0,
(∏d

i=1 S
i
tM

) 1
d > K,

where Q is a constant amount received if the geometric average value of un-
derlying assets finishes below the strike price. Another typical example is a
gap option.

When the underlying asset is one-dimensional and also follows a GBM pro-
cess, European vanilla options, digital options and gap options have analytical
solutions for their option values (exposure) at the observation dates. How-
ever, if the underlying assets are multi-dimensional and the payoff function is
basket type (such as arithmetic average or max options), even for European
vanilla options with the underlying asset prices following a GBM process, the
exposure has to be computed approximately 1.

A more complicated example is a Bermudan option. Recalling from chapter
2, the exposure of Bermudan options can be calculated by following a dynamic
programming recursion:

VtM (StM ) = h(tM ,StM ), (3.3)

c(tm−1,Stm−1
) = exp(−r∆t)EQ

[
Vtm(Stm)|Stm−1

]
,m = M, ..., 1, (3.4)

Vtm−1
(Stm−1

) =

{
max{h(tm−1,Stm−1

), c(tm−1,Stm−1
)}, possible exercise date,

c(tm−1,Stm−1
), extra date,

(3.5)

Vt0(St0) = c(t0,St0). (3.6)

Remark 3.2.2. The extra dates are the time grid points between two consecutive possi-
ble exercise dates. Since the observation dates should be dense enough (such as monthly
or weekly) in exposure profiles and CVA calculation, we need more time grid points
than possible Bermudan option exercise dates. Taking into account the extra dates
significantly influences the results of Bermudan options’ exposure profiles, which is
illustrated in the numerical examples part of this chapter.

Let stm(p) be the realized value of random variable Stm , i.e., the stock price
at observation date tm, on sample path p, m = 1, ...,M , p = 1, ..., P . For each
path p, the earliest exercise time τp can be written as,

τp = min{k ∈ {1, ...,M}|h(tk, stk(p)) ≥ c(tk, stk(p))}, (3.7)

1In this model assumption, however, the geometric basket options can be priced via one di-
mensional BS formula [54].
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where we simply set h(tk, stk(p)) = 0 if time tk is an extra date.
The exposure of the Bermudan option on path p is then obtained by setting

the option value after τp to zero, which can be written as,

Ep
tm

=

{
max(Vtm(stm(p)), 0) tm ≤ τp,

0 tm > τp.

In the framework of American Monte Carlo methods, such as LSM, the
stock price St is usually simulated under the risk-neutral measure Q, which
implies that the credit exposure distribution is generated under measure Q,
i.e., a Q-exposure profile. However, in risk management, industries are more
interested in exposure distribution under the real-world measure P, i.e., a P-
exposure profile, because asset price processes evolve in the real-world mea-
sure P [22, 33, 37, 56]. In [22, 56], the authors use different strategies based
on the change of measure method to get the P-exposure profile, as explained
in appendix 3.7.1. We discuss the difference of the Q-exposure profile and P-
exposure profile in section 3.3.4.

3.3 Computation of Exposure Profiles for Multi-Asset

Instruments

For multi-asset instruments (European or Bermudan), an efficient computation
method is needed for the continuation value,

c(tm−1, stm−1(p)) = exp(−r∆t)EQ
[
Vtm(Stm)|Stm−1

= stm−1
(p)

]
, (3.8)

Based on the well known least squares approximation of conditional expecta-
tions [45], the standard regression method (SRM) is proposed in [31]. In SRM,
the conditional expectation EQ[Vtm(Stm) | Stm−1

] is approximated as a linear

combinations of basis functions, f̃i : R
d → R, i = 1, ...,K,

EQ[Vtm(Stm) | Stm−1
] ≈ β⊤

tm−1
f̃(Stm−1

),

where βtm−1
= (βtm−1

(1), ..., βtm−1
(K))⊤ is a vector of constants, and f̃ =

(f̃1, ..., f̃K)⊤. To minimize the expected squared error in the approximation w.r.t
the coefficient βtm−1

, we differentiate the expression

EQ
(
EQ[Vtm(Stm) | Stm−1

]− β⊤
tm−1

f̃(Stm−1
)
)2
,

w.r.t. βtm−1
and set the result to zero. This gives us the solution [31],

βtm−1
=

(
EQ[f̃(Stm−1

)f̃(Stm−1
)⊤]

)−1
EQ[f̃(Stm−1

)Vtm(Stm)].
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The coefficient βtm−1
can be further estimated by Monte Carlo simulation.

Starting with initial grid point st0 , suppose we have generated P indepen-
dent simulation paths stm(p),m = 1, ...,M, p = 1, ..., P . The K × K matrix

EQ[f̃(Stm−1
)f̃(Stm−1

)⊤] can be approximated as

1

P

P∑

p=1

f̃(stm−1
(p))f̃(stm−1

(p))⊤,

and the K-vector EQ[f̃(Stm−1
)Vtm(Stm)] can be approximated as

1

P

P∑

p=1

f̃(stm−1
(p))Vtm(stm(p)),

where we assume that Vtm(stm(p)), p = 1, ..., P , is known (or it has been esti-
mated). The least squares estimation of βtm−1

reads,

β̂tm−1
=

( P∑

p=1

f̃(stm−1
(p))f̃ (stm−1

(p))⊤
)−1

P∑

p=1

f̃(stm−1
(p))Vtm(stm(p)), (3.9)

and the least squares approximation of EQ[Vtm(Stm) | Stm−1
] reads,

EQ[Vtm(Stm) | Stm−1
] ≈ β̂⊤

tm−1
f̃(Stm−1

).

Generally, the following SRM algorithm can be used for the exposure calcu-
lation of multi-asset instruments (European and Bermudan type),

1. Simulate sample paths for the underlying assets, st0(p), ..., stM (p), at time
steps 0 = t0, ..., tM = T , with indices of paths p = 1, ..., P , under the risk-
neutral measure Q.

2. At terminal nodes, set VtM (stM (p)) = h(tM , stM (p)).

3. Apply backward induction, for m = M − 1, ..., 1:

- Given values Vtm+1
(stm+1

(p)), p = 1, ..., P , use least squares regres-
sion to estimate the continuation value, c(tm, stm(p)), p = 1, ..., P .

- – If tm is a possible exercise date (see remark 3.2.2 for an explana-
tion of the distinction between possible exercise date and extra
date.), set

Vtm(stm(p)) = max
(
h(tm, stm(p)), c(tm, stm(p))

)
.

For exposure calculation, if h(tm, stm(p)) > c(tm, stm(p)), set

Vtm+1
(stm+1

(p)) = 0, ..., VtM (stM (p)) = 0.



3.3. COMPUTATION METHODS 31

– If tm is an extra date, set Vtm(stm(p)) = c(tm, stm(p)).

4. Set Vt0(st0) =
(
Vt1(st1(1))+...+VtM (st1(P ))

)
/P ; set Ep

tm
= max(Vtm(stm(p), 0),

m = 0, 1, ...,M, p = 1, ..., P .

Remark 3.3.1. In implementation, since the true value of Vtm+1
(stm+1

(p)) is un-
known, it has to be replaced by estimated values [31].

Remark 3.3.2. For ease of comparison, all of the exposure algorithms in this section
are presented under the risk neutral measure. To get the exposure profiles under the real
world measure, two possible methods can be used: (i) Based on the Q-probability dis-
tribution of Ep

tm
(i.e., approximated by the empirical distribution of samples obtained

from the algorithm.), the P-probability distribution of Ep
tm

can be estimated by using
change of measure [22]. (ii), the risk factors have to be simulated under the measure
P instead of Q, and the continuation value has to be calculated under the measure P
instead of Q, by using change of measure [56]. A short review is given in the appendix
3.7.1 for these methods.

To obtain an efficient computation of the exposure profiles, one has to have
an accurate result for the option value at time tm, m = 0, . . . ,M , not only
at time t0. Particularly, in SRM, when the dimension of problem increases, it
could become problematic to obtain accurate exposure profiles because of the
following observations:

1. The computation may become inefficient since lots of basis functions are
required in an accurate regression. The problem becomes more involved
when the payoffs is non-smooth or discontinuous.

2. The SRM suggests a regression to the whole data set. This may generate
a bigger approximation error, compared with more sophisticated regres-
sion methods, such as localized regression.

Before making an improvement of SRM, we first give a short review of sev-
eral related attempts in the literature. In Glasserman and Yu (2004), the regres-
sion method of SRM is termed as ‘regression now’, because the basis functions
are chosen at tm−1 instead of tm. Another regression method, for which the
basis functions are chosen at tm, is termed as ‘regression later’. Through theo-
retical analysis, Glasserman and Yu (2004) [32] prove that the ‘regression later’
technique has two attractive features: under appropriate conditions, (i) it re-
sults in less-dispersed estimates, and (ii) it provides a dual estimate (an upper
bound) with modest additional effort. Note that these features are based on
using martingale basis functions, i.e., in their comparison study, they impose
martingale property to the basis functions,

EQ[f(Stm) | Stm−1
] = f(Stm−1

),m = 1, . . . ,M,
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thus it is not a comparison for a general set of basis functions. Based on the
work of Glasserman and Yu (2004), in Firth (2005) [29], the author gives a gen-
eral formula of martingale basis functions under the one-dimensional GBM
model. This is applied in several numerical experiments to compare the results
of regression now and later. The results indicates that ‘regression later’ gives
more accurate option price estimates than ‘regression now’. Based on these lit-
erature conclusions, it is natural to consider the advantages and disadvantages
of ‘regression later’ compared with ‘regression now’ when the choice of basis
functions is not as restrictive as the martingale basis functions requirement.

Another direction to reduce the regression error is by using localized regres-
sion, i.e., regressing on part of the data set instead of the whole data set. A
typical example is to use a bundling technique to partition the state space [60].
In Fries (2007) [30], it is referred to as ‘binning’. Intuitively, when the data set
is partitioned into different small groups, one could expect that the regression
in a group will generally become better.

In the following sections, we focus on a numerical comparison of different
computation methods, particularly, for the purpose of multi-asset exposure
profiles computation. A method of combining the ‘regression later’ technique
with bundling, which is called Stochastic Grid Bundling Method (SGBM), can be
found in Jain and Oosterlee (2013) [39]. To give a comparison, we also propose
another method, named Standard Regression Bundling Method (SRBM), in which
a ‘regression now’ technique is combined with bundling. A similar method can
be found in [22]. A theoretical analysis of the comparison is put to future work.

3.3.1 Option Value Approximation via Regression Later

In contrast to SRM (‘regression now’), the approximation of EQ[Vtm(Stm) |
Stm−1

] in SGBM (‘regression later’) starts with approximating the option value
Vtm(Stm) as linear combination of basis functions fi : R

d → R, i = 1, ...,K,

Vtm(Stm) ≈ α⊤
tm

f(Stm),

whereαtm = (αtm(1), ..., αtm(K))⊤ is a vector of constants, and f = (f1, ..., fK)⊤.
By using the same methodology as SRM, the coefficient αtm can be estimated
by generatingP independent simulation paths stm(p), m = 1, ...,M , p = 1, ..., P ,
starting from an initial grid point st0 ,

α̂tm =
( P∑

p=1

f(stm(p))f(stm(p))⊤
)−1

P∑

p=1

f(stm(p))Vtm(stm(p)), (3.10)

where we assume that Vtm(stm(p)) is known or has been estimated. The least
squares approximation of Vtm(Stm) reads,

Vtm(Stm) ≈ α̂⊤
tm

f(Stm),
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fk(Stm), Stm = (S1
tm

, ..., Sd
tm

), k ≥ 1 EQ[fk(Stm) | Stm−1
= stm−1

(p)](
Si
tm

)k−1 (
sitm−1

(p) exp((ri +
k−2
2 σ2

i )∆t)
)k−1

(
(
∏d

i=1 S
i
tm

)
1
d

)k−1 (
(
∏d

i=1 s
i
tm−1

(p))
1
d exp((µ̂ + k−1

2 σ̂2)∆t)
)k−1

(
1
d

∑d
i=1 S

i
tm

)k−1
1

dk−1

∑
k1+...+kd=k−1

(
k − 1

k1, ..., kd

)

×EQ[
∏

1≤i≤d

(Si
tm

)ki) | Stm−1
= stm−1

(p)]

(
log(max(S1

tm
, ..., Sd

tm
))
)k−1

Clark’s algorithm

Table 3.1: Basis functions and the corresponding conditional expectations
[39]. Each asset price Si

t is driven by a geometric Brownian motion, with

the model assumptions in section 3.2.1. Here: µ̂ = 1
d

∑d

i=1(r − qi − σ2
i

2 ),

σ̂ =
√

1
d2

∑d
j=1

∑d
k=1 ρj,kσjσk. The expression EQ[

∏
1≤i≤d

(Si
tm

)ki) | Stm−1
=

stm−1
(p)] can be seen as the moments of the geometric average of the assets, as

listed in the third row.

and the conditional expectation will be approximated as,

EQ[Vtm(Stm) | Stm−1
] ≈ α̂⊤

tm
EQ[f(Stm) | Stm−1

]. (3.11)

The last expression enables us to reduce the calculation problem into the
computation of conditional expectations of basis functions. Note that a sim-
ilar expression can be found in Glasserman and Yu (2004), in which the au-
thors show that a weighted Monte Carlo technique for American option pric-
ing problem developed by Broadie, Glasserman, and Ha (2000) (BGH) [13] is
equivalent to the regression later method. More precisely, proposition 2 in [32]
shows that the conditional expectation estimator of BGH admits the represen-
tation (3.11).

While in Glasserman and Yu (2004) and Firth (2005), the authors impose the
martingale property to the basis functions f(Stm), in our comparison study,
we restrict the choice of basis functions such that the expression EQ[f(Stm) |
Stm−1

] has an analytical formula or approximation formula. This condition makes
the choice of basis functions more flexible than martingale basis functions, es-
pecially in high-dimensional problems. In table 3.1, we list the basis functions
and the corresponding formulas of conditional expectations which are used
frequently in the later numerical comparison study.
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3.3.2 Bundling Methods

In order to get an accurate computation of

EQ[Vtm(Stm) | Stm−1
= stm−1

(p)],

for which the integration representation can be written as

∫

Rd

Vtm(x)Q[Stm ∈ dx | Stm−1
= stm−1

(p)], (3.12)

one has to find a regression approximation of Vtm(Stm) as accurate as possible
for the region where Stm has ‘most’ probability mass, originating from the grid
point stm−1

(p). Given a set of basis functions, this is equivalent to getting an

accurate estimate of the regression coefficient α̂tm in SGBM (or β̂tm−1
in SRM).

However, the estimation formulas of α̂tm (and β̂tm−1
) given in the last sec-

tion are based on a Monte Carlo simulation starting from initial grid point st0 ,
not from stm−1

(p). These coefficient estimations may generate significant er-
ror in the computation of the conditional expectation EQ[Vtm(Stm) | Stm−1

=
stm−1

(p)].
One observation is that the probability distribution of grid points originally

from grid point stm−1
(p) can be approximated by the probability distribution

of grid points originating from the ‘neighbourhood’ of stm−1
(p) (see figure 3.1).

Intuitively, since the grid points in the neighbourhood of stm−1
(p) are close to

each other, grid points Stm , which are originally from different grid points in
the neighborhood of stm−1

(p), can be approximated as being from the same
origin.

Based on this observation, in the calculation of EQ
[
Vtm(Stm)|Stm−1

= stm−1
(p)

]
,

we use the option value Vtm(Stm) on the grid points originating from the ‘neigh-
bourhood’ of stm−1

(p) to find a regression approximation of function form
of Vtm(Stm) (or the coefficient α̂tm ), which we call ‘localized regression’. By
separately considering the points that originate from the ‘neighbourhood’ of
stm−1

(p), intuitively the regression is forced to be precise around values for
Vtm(Stm) where the conditional density,

Q
[
Stm ∈ dx | Stm−1

= stm−1
(p)

]
,

has most of its probability mass.
In order to define the ‘neighbourhood’ of stm−1

(p), we apply the bundling
method. Bundling is a method to partition the state space into non-overlapping
regions, so that any point in the space can be identified to lie in exactly one of
the regions, see [22, 39, 41, 60]. If we denote the ‘neighbourhood’ of stm−1

(p)
as bundle Bh

m−1, where h = 1, ..., H represent the indices of the bundles, then
stm−1

(p) ∈ Bh
m−1.
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Figure 3.1: Paths Stm(p) are originally from bundle Bh
m−1; Ihm−1 is the set of

path indices in bundle Bh
m−1.

To explain the method, we take a two-dimensional example, i.e., St = (S1
t , S

2
t ).

Suppose we want to bundle P grid points stm(p) = (s1tm(p), s2tm(p)), p =
1, 2, .., P at time step tm for some m = 1, ...,M . The following steps need to
be performed recursively.

1. Estimate the mean value for each stock at time tm, i.e.,

µ̂i
m =

1

P

P∑

p=1

sitm(p), i = 1, 2.

2. Define the following subsets of grid points:

Gi
m =

{
stm(p) : sitm(p) > µ̂i

m

}
, G

i

m = {stm(p) : stm(p) /∈ Gi}

3. Four (i.e., 22) unique bundles are obtained through combinations of dif-
ferent groups, i.e.,

B1
m = G1

m ∩G2
m, B2

m = G
1

m ∩G2
m,

B3
m = G1

m ∩G
2

m, B4
m = G

1

m ∩G
2

m.

4. If more bundles are required, the same procedure, from (1) to (3), can be
performed, either for each bundles, B1

m, ...,B4
m or some of them.

The number of partitions, or bundles, after q iterations, where each of the
bundles is involved, would be equal to 4q (i.e., in the case of 2 assets).
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Remark 3.3.3. The approach described above could be problematic when some of the
subsets do not have enough grid points or even become empty because of the probability
distribution of the grid points; it will also become computationally expensive for high-
dimensional problems, since the number of bundles obtained after each iteration would
be very large. Rather than partitioning the actual state space, an alternative method
is to bundle the grid points on a dimensionally reduced state space [3, 39]. A
mapping function, such as (in the case of geometric average, arithmetic average and
max option, for example.)

g1(t,St) =
( d∏

i=1

Si
t

) 1
d ,

g2(t,St) =
1

d

( d∑

i=1

Si
t

)
,

g3(t,St) = max(S1
t , ..., S

d
t ),

can be used to map the d-asset state space into a one-dimensional state space. The same
bundling scheme of the two asset example (or generally for d-dimensional case) above
can be applied now into the one-dimensional case (i.e., function g(·)), and the number
of bundles obtained after q iterations will be 2q. We give an example of this bundling
method on the dimensionally reduced state space via the numerical example of max
options with five stocks.

Assuming that the state space at tm−1 has been partitioned into H distinct
bundles, Bh

m−1, h = 1, ..., H . For the grid points stm−1
(p) ∈ Bh

m−1, the continu-
ation value can be written as

ch(tm−1, stm−1
(p)) ≈ exp(−r∆t)EQ

[
f(Stm)⊤α̂h

tm
|Stm−1

= stm−1
(p)

]
. (3.13)

Here α̂h
tm

represents the coefficients estimated by using formula (3.10), based
on observations of pairs

(
stm(p), Vtm(stm(p))

)
, p = 1, ..., P,

for which stm(p) is the consecutive grid point of stm−1
(p) ∈ Bh

m−1. We can also
write it as, for a general grid point stm−1

(p),

c(tm−1, stm−1
(p)) ≈ exp(−r∆t)EQ

[ H∑

h=1

1
stm−1

(p)∈Bh
m−1

(
f(Stm)⊤α̂h

tm

)
|Stm−1

= stm−1
(p)

]
.

3.3.3 Algorithm

In summary, the SGBM algorithm [39] for exposure of multi-asset instruments
(European and Bermudan type) reads,
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1. Simulate sample paths for the stock price, st0 , st1(p), ..., stM (p), at time
steps 0 = t0, ..., tM = T , with indices of paths p = 1, ..., P , under the
risk-neutral measure Q.

2. At terminal date tM = T , set

VtM (stM (p)) = h(tM , stM (p)),

for p = 1, ..., P .

3. Apply backward induction, i.e., m → m− 1 for m = M, ..., 1.

(a) i. Bundle the grid points at tm−1, into H distinct bundles (except
at t0, where there is only one grid point.), using the bundling
algorithm in section 3.3.2.

ii. For each bundle Bh
m−1, calculate the option value approxima-

tion,

f(Stm)⊤α̂h
tm

.

iii. For each grid point stm−1
(p) ∈ Bh

m−1, calculate the continuation
value,

ch(tm−1, stm−1
(p)) ≈ exp(−r∆t)EQ

[
f(Stm)⊤α̂h

tm
|Stm−1

= stm−1
(p)

]
.

(b) For each sample path p = 1, ..., P ,

- If tm−1 is a possible exercise date, set

Vtm−1
(stm−1

(p)) = max(h(tm−1, stm−1
(p)), c(tm−1, stm−1

(p)));

if h(tm−1, stm−1
(p)) > c(tm−1, stm−1

(p)), set

Vtm(stm(p)) = 0, Vtm+1
(stm+1

(p)) = 0, ..., VtM (stM (p)) = 0.

- If tm−1 is an extra date, set

Vtm−1
(stm−1

(p)) = c(tm−1, stm−1
(p)).

4. The initial option price reads Vt0(st0) = c(0, s0) (exercise is not allowed
at t0.).

5. The exposure for each grid point reads Ep
tm

= max(Vtm(stm(p)), 0).

Following the methodology above, the standard regression bundling method
(SRBM) (‘regression now’), which combines the bundling method and SRM,
can also be applied for the computation of exposure profiles. In SRBM, similar
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as SGBM, for the grid points stm−1
(p) ∈ Bh

m−1, the continuation value can be
written as

ch(tm−1, stm−1
(p)) ≈ exp(−r∆t)f̃ (Stm−1

)⊤β̂h
tm−1

. (3.14)

Here β̂h
tm−1

is the coefficients estimated by using formula (3.9), based on obser-
vations of pairs

(
stm−1

(p), Vtm(stm(p))
)
, p = 1, ..., P,

for which stm(p) is the consecutive grid point of stm−1
(p) ∈ Bh

m−1.
In the numerical example part, we will call Vt0(st0) the direct estimator of the

initial option price; another estimator of the initial option price, which is ob-
tained based on simulating a new set of paths and finding the optimal exercise
policy, is called path estimator Vt0(st0) [12, 39]. These two estimators are used
in the efficiency comparison of SRM, SGBM, and SRBM.

3.3.4 Examples of Single Asset Options

An example of single asset Bermudan options was already given in chapter
2, in which we have already looked at the difference of the Q-exposure and
P-exposure profiles.

The difference between the Q-exposure and P-exposure profiles of the Eu-
ropean put option is illustrated in figure 3.2. In this example we assume that
µ > r. With this condition, at each time step t, the stock price St simulated
under measure P tends to be higher than St simulated under measure Q. For a
European put option issued at time t, with maturity T and initial stock price St,
a higher initial stock price St (i.e., simulated under measure P) leads to a lower
option price, thus a lower P-exposure profile. Particularly, in this example, we
observe that P-EEt decreases w.r.t t, and Q-EEt increases w.r.t t.

In the situation of discontinuous payoffs, such as digital options and gap
options, because many basis functions are needed for an accurate regression,
the regression-based methods (including SGBM, SRBM, SRM, LSM) may be
problematic. However, for the simple cases, increasing the number of bundles
is helpful to get an accurate and stable result of PFE and EE. In figure 3.3a and
figure 3.3b, we show the PFE generated by SGBM with different strike prices
K in the case of one-dimensional European type digital put options.

Recalling that the payoff function at maturity reads,

h(tM ,StM )=

{
Q, StM ≤ K,
0, StM > K,

where Q is a constant amount received if StM is below the strike price K . Note
that in this case an analytical solution exists for the option price. Because the
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Method K = 25 K = 30

SGBM (direct est.)
0.2023 1.9091
(0.0039) (0.0085)

Analytical solution 0.2029 1.9087

Table 3.2: Comparison of digital put option price with different strike prices.
Parameters: Q = 40, s0 = 40, r = 0.06, q = 0, T = 1, σ = 0.2, observation dates
=12, number of bundles=32. The numbers in the parentheses are the standard
deviation of estimates.
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Figure 3.2: European put option, single asset, by SGBM (o) with 16 bundles
and BS formula(*). Parameters: s0 = 100, K = 100, r = 0.05, real world drift
µ = 0.1, σ = 0.2, T = 10.

digital option’s payoff at maturity depends on the comparison of StM and K ,
the PFE and EE can change substantially when choosing two different strike
prices (for example, K = 25 in figure 3.3a and K = 30 in figure 3.3b). With K =
25, since the probability of StM > K is high, the payoffs at tM on most of the
simulation paths are equal to zero and the 97.5% PFE at tM is zero. With K =
30, since the probability of StM > K becomes lower, the payoffs at maturity
on some of the simulation paths are equal to Q and the 97.5% PFE at maturity
tM becomes Q (Q = 40 in the example). Compared with the analytical results,
with 32 bundles, the results from SGBM are quite accurate and stable. The
results of option prices can be seen from table 3.2.

3.3.5 Discontinuity On the Bundle Boundaries

Consider a grid point stm−1
(p) which crosses the boundary of two consecutive

bundles Bh
m−1 and Bh+1

m−1, h = 1, ..., H . In the implementation of the bundling
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Figure 3.3: European digital put options, by SGBM (o) and analytical solution
(△). In SGBM, 32 bundles are used. In all of the examples, 100000 simulation
paths are generated to get the profiles. (A) Strike price K = 25. (B) Strike price
K = 30. The other parameters can be found in the caption of table 3.2.

technique, the bundles do not overlap. In order to investigate the property of
grid points at the boundaries, here we assume that Bh

m−1∩Bh+1
m−1 = {stm−1

(p)}.
According to equation (3.13), in bundle Bh

m−1, the continuation value

c(tm−1, stm−1
(p))

can be approximated as

exp(−r∆t)EQ[f(Stm)⊤α̂h
tm

| Stm−1
= stm−1

(p)],

while in bundle Bh+1
m−1 it can be approximated as

exp(−r∆t)EQ[f(Stm)⊤α̂h+1
tm

| Stm−1
= stm−1

(p)].

Apparently the difference of coefficients α̂h
tm

and α̂h+1
tm

will lead to a disconti-
nuity of c(tm−1,Stm−1

) at grid point stm−1
(p), which could make difference in

the exposure distribution and risk profiles.
The discontinuity of continuation value at the boundary is illustrated via

numerical experiments in tables 3.4 and 3.5. The example is taken from sin-
gle asset European type digital put options, for which we consider the option
price (it is equivalent to the continuation value in the case of European type op-
tions) at time step t = 0.75 and the parameters are taken from table 3.3. In the
example, the basis functions are specified as fk(Stm) = (Stm)k−1, k = 1, 2, 3, 4.

In table 3.4, the state space is partitioned by two bundles (one boundary).
The number in the table is the mean absolute value of the difference between two
option price estimates on the same boundary, which is based on 500 indepen-
dent simulation trials, i.e., if we denote V1 and V2 to be two different option
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s0 = 40 K = 25 r = 0.06 q = 0
σ = 0.6 T = 1 observation dates = 12 Q = 40

Table 3.3

price estimates for the same grid point on the boundary, then the mean absolute
value of the difference reads,

1

500

500∑

i=1

| V1(i)− V2(i) |,

where i denotes different simulation trials. With the same number of simula-
tion paths, the discontinuity of SGBM is less than of SRBM. If we increase the
number of simulation paths, in the case of two bundles, the discontinuity does
not decrease.

In table 3.5, the number of bundles increases to four (three boundaries).
Compared with the results of two bundles from table 3.4, both for SGBM and
SRBM the discontinuity decreases significantly. If we increase the number of
simulation paths, the discontinuity decreases. With the same number of sim-
ulation paths, the discontinuity of SGBM is generally smaller than of SRBM.
Though it is risky to extrapolate from limited numerical results, this exam-
ple suggests that using enough simulation paths and bundles, especially for
SGBM, the discontinuity at the boundaries can become very small.

In figures 3.4a and 3.4b, by using SGBM, we give a histogram of the differ-
ence between two different option price estimates for the same grid point on
the boundary, based on 500 independent simulation trials at time step t = 0.75.
In figure 3.4a two bundles (one boundary) are used, while in figure 3.4b four
bundles (three boundaries) are used. From these two figures, we see that in-
creasing the number of bundles can significantly decrease the differences.

3.4 Benchmark

To analyse the reliability of the SGBM method, we employ the Monte Carlo-
COS method (MCCOS) to benchmark the exposure profile of the Bermudan
option under the GBM model. The algorithm is explained in chapter 2.

There are three main components in MCCOS for exposure profile calcula-
tion:
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Method 6000 paths 60000 paths 120000 paths
SGBM 0.9435 1.0615 1.0900
SRBM 2.4941 2.6396 2.6673

Table 3.4: Two bundles (one boundary), at time step t = 0.75. The numbers
are the mean absolute value of the difference between two different option price
estimates for the same grid point on the boundary, which is based on 500 in-
dependent simulation trials. Different numbers of simulation paths are used
to compare the performance of both SGBM and SRBM. For each comparison,
the same number of basis functions is used in SGBM and SRBM. Since the grid
point at the boundary will change if we use different number of simulation
paths, the option value at the boundary is around 4.88.

Method 6000 paths 60000 paths 120000 paths
SGBM (0.0747, 0.0506, 0.0821) (0.0344, 0.0181, 0.1021) (0.0316, 0.0135, 0.1080)
SRBM (0.9701, 0.7534, 0.1680) (0.4882, 0.2262, 0.1373) (0.4617, 0.1736, 0.1358)

Table 3.5: Four bundles (boundary I, II and III), at time step t = 0.75. The vector
of numbers in parentheses are the mean absolute value of the difference between
two different option price estimates for the same grid point on boundary I, II
and III, which is based on 500 independent simulation trials. Different num-
bers of simulation paths are used to compare the performance of both SGBM
and SRBM. For each comparison, the same number of basis functions is used
in SGBM and SRBM. The option values at boundaries I, II, III are around 19.56,
4.80, and 0.36, respectively.
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Figure 3.4: The distribution (histogram) of the difference between two differ-
ent option price estimates for the same grid point on the boundary by SGBM at
time step t = 0.75, based on 500 independent simulation trials. For each sim-
ulation trial, 60000 simulation paths are used to get the PFE and option price.
(A), the option value at the boundary is around 4.88. (B), the option values at
boundaries I, II, III are around 19.56, 4.80, and 0.36, respectively.

1. Scenario generation for the future economic state (risk factors);

2. Instrument valuation of all the simulated grid points by the COS method;

3. Exposure profile calculation.

3.4.1 Numerical Error Analysis

In this section we analyse the error of the approximation by the SGBM method,
by using benchmark results. We use the examples of single asset options from
section 3.3.4, including the European put and Bermudan put option. For a
European put option, the Black-Scholes formula is available for a benchmark
result; for a Bermudan put option, which has no analytical solution, we use
the Monte Carlo-COS method to get the benchmark result. In the example of
the Bermudan option, we set the number of exercise dates M = 50, and only
the exposure on exercise dates is considered. To focus the discussion, all of the
analysis is based on the results of Q-exposure profiles as explained in section
3.3.4.

To verify the performance of the SGBM method, we use the error criteria es-
tablished in [56]. For a grid point at time tm and simulation path p, (tm, stm(p)),
m = 1, ...,M , p = 1, ..., P , let Vtm(stm(p)) be the benchmark result for the

option value. And let V̂tm(stm(p)) be the approximated result by the SGBM
method. Note that in case of Bermudan options, the option value after exercise
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Number of bundles AMAE AMSE
23 0.0063 2.1950× 10−4

24 0.0027 1.9424× 10−5

25 0.0030 1.5337× 10−5

26 0.0053 4.4199× 10−5

Table 3.6: Error measure results for the Q-exposure profile of the European put
option.

time are set to be zero. The mean absolute error (MAE) and the mean squared
error (MSE) are defined as follows,

MAEtm =
1

P

P∑

p=1

|Vtm(stm(p))− V̂tm(stm(p))|,

MSEtm =
1

P

P∑

p=1

|Vtm(stm(p))− V̂tm(stm(p))|2.

And the corresponding total average errors over time are defined as,

AMAE =
1

M

M∑

m=1

MAEtm ,

AMSE =
1

M

M∑

m=1

MSEtm .

3.4.2 European Options

We calculate the above formulated exposure errors for a European put option
with the same parameter set as in section 3.3.4. In the example, we specify the
basis functions as fk(Stm) = (Stm)k−1, k = 1, 2, 3, 4 and analyse the depen-
dence of accuracy on different numbers of bundles.

The results summarized in table 3.6 show that, the approximation error with
24 and 25 bundles is smaller than the ones with 23 and 26 bundles. A smaller
number of bundles can generate larger approximation error, and the extreme
case is without bundles, i.e., the vanilla regression method; on the other hand,
excessive bundles will also produce significant error, since there may be not
enough simulation paths in some bundles for an accurate regression. Com-
pared with the best result shown in the same example from [56], with AMAE =
0.2099 and AMSE = 0.1025, the error in SGBM method is much smaller.
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Figure 3.5: (A), The MAEtm of European put option. (B), The MAEtm of Bermu-
dan put option. (C), The MSEtm of European put option. (D), The MSEtm of
Bermudan put option.
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Number of bundles AMAE AMSE
23 0.0203 0.2256
24 0.0054 0.0502
25 0.0041 0.0360
26 0.0053 0.0473

Table 3.7: Error measure results for the Q-exposure profile of the Bermudan
put option.

3.4.3 Bermudan Options

For Bermudan put options, a similar conclusion can be obtained. We specify
the basis functions as fk(Stm) = (Stm)k−1, k = 1, 2, 3, 4. In table 3.7, the ex-
periment with 25 bundles gives the best results. We can see that increasing
the number of bundles does not necessarily yield better performance results,
while decreasing the number of bundles can yield worse performance results.
Figure 3.5 depicts the MAEtm and MSEtm over time.

3.5 Results and Efficiency Comparison

An efficiency comparison of different computation methods, SGBM, SRBM
and SRM, is given in this section via several numerical examples of multi-asset
options. Each example follows the model assumptions given in section 3.2.1.
To focus the discussion on efficient computation of exposure, we will not list
the results for CVA, although it is quite straightforward. A practical formula
of CVA in the case of no wrong way risk can be found in [33], for which the
main component is the multiplication of expected exposure and counterparty’s
default probability.

The efficiency comparison includes comparison of computation speed and
accuracy for exposure profiles (PFE and EE) and option prices. The initial op-
tion prices are provided for the reason that an accurate result for the option
prices (especially the path estimator of the option price) represents a good es-
timate of the early exercise policy, which can significantly influence the expo-
sure profile in the case of Bermudan options. To compare with the reference
literature in which the option prices are usually obtained under the risk neu-
tral measure, we concentrate on the numerical comparison of PFE, EE and op-
tion prices generated under the risk-neutral measure. To obtain the exposure
profiles and the direct estimator of the option price, we use 60000 simulation
paths in SGBM, SRBM and SRM; and for the path estimators, 240000 simula-
tion paths are generated. The standard deviations of the estimates (the num-
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si0 = 40 K = 40, d = 2 r = 0.06
σ = 0.2 T = 1, M = 10 observation dates = 20
q = 0 ρi,j = 0.25, i 6= j, i, j = 1, ..., d

Table 3.8

bers in the parentheses) are based on 100 independent simulation trials. All
of the computations are implemented in Matlab on Intel (R) Core (TM) i5-2400
CPU 3.10 GHz with 4 GB memory.

3.5.1 Geometric Basket Options

As a special case of basket options, the geometric basket options can be re-
duced to a one-dimensional problem [5], for which we have shown in section
3.4 that SGBM can give accurate results for PFE and EE. The exercise value for
d-asset geometric basket Bermudan options is given by,

h(Stm) =
(
K −

( d∏

i=1

Si
tm

) 1
d
)+

.

Given the model assumptions for the underlying assets, we specify the pa-
rameters of the model in table 3.8. For the regression approximation at time
step tm, basis functions

fk(Stm) =
(
(

d∏

i=1

Si
tm

)
1
d

)k−1
, k = 1, ..., 5,

are used in SGBM, while basis functions

fk(S̃tm−1
) =

(
(

d∏

i=1

Si
tm−1

)
1
d

)k−1
, k = 1, ..., 5,

are used in SRBM and SRM. The formulas of the conditional expectations of
fk(Stm) can be found in table 3.1.

In table 3.9, the CPU time scale shows us that SRM is the fastest method. In
this relatively low-dimensional case, since the moments of the basis functions
are simple, we find that the computation speed of SGBM is a bit faster than
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Method CPU time (secs) Direct est. Path est.

SGBM
3.8299 1.7558 1.7554

(0.000184) (0.0033)

SRBM
4.6696 1.7596 1.7497

(0.0040) (0.0029)

SRM
1.4710 1.8100 1.7507

(0.0044) (0.0036)

Table 3.9: Geometric basket Bermudan option with two stocks. The CPU time
represents the computation time of PFE and EE. The direct estimator and path
estimator represent the different estimates of option prices. The reference op-
tion price is 1.7557 [5].

SRBM 2. The results of option prices from different methods are quite close,
however, compared with the reference result, the estimates of SGBM seem to
be better than the other two results. Particularly, for the direct estimator, SGBM
has the lowest standard deviation of estimates, which is the contribution of the
moment computation in each bundle. This is consistent with the conclusion
from Glasserman and Yu [32]. The standard deviation of option price estimates
from SRBM and SRM is quite similar.

The effect of the bundling technique on the exposure computation can be
seen in figure 3.6a. For both PFE and EE, the results of SGBM are close to the
results of SRBM. The results of SRM are higher than both SGBM and SRBM.
Particularly, in the case of only one bundle, SRBM is equivalent to SRM. The
computation time of SGBM and SRBM with different numbers of bundles is
illustrated in figure 3.6b. In figure 3.6c, we also show the CPU time scale of
SGBM, SRBM, and SRM with respect to different numbers of simulation paths.

Remark 3.5.1. The saw-toothed shape of PFE and EE comes from the early exercise
feature, since the exposure becomes zero after exercise. It is important to take into
account more dense time grid points than only possible exercise dates for accuracy
reasons. Otherwise the exposure profiles will be quite different, which can significantly
influence the computation of CVA.

3.5.2 Arithmetic Basket Options

In this section, we give an efficiency comparison of SGBM, SRBM, and SRM
for the exposure computation of d-asset arithmetic basket Bermudan options,

2Generally, the computation speed of SRBM should be faster than SGBM because no moment
calculation is needed in SRBM. However, in this simple two-dimensional case, since lots of basis
functions are used, the regression computation step in the implementation of SRBM can be rank
deficient, which makes the computation slower than SGBM.
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Figure 3.6: Geometric basket Bermudan option with two stocks. (A) Compar-
ison of SGBM with 64 bundles (o), SRM (*), and SRBM (△) with 64 bundles.
High profile: 97.5% PFE. Low profile: EE. (B) CPU time scale of PFE and EE
computation in number of bundles. (C) CPU time scale of PFE and EE compu-
tation in number of simulation paths.
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s10 = 90, s20 = 110 K = 100, d = 2 r = 0.04
σ1 = 0.2, σ2 = 0.3 T = 1, M = 10 observation dates = 20

q = 0 ρi,j = 0.25, i 6= j, i, j = 1, ..., d

Table 3.10

for which the exercise value reads,

h(Stm) =
(
K − 1

d

( d∑

i=1

Si
tm

))+

Given the model assumptions of the underlying assets and counterparty’s stock
price, the parameters in table 3.10 are used for the numerical examples. For the
regression approximation at time step tm, basis functions

fk(Stm) =
(1
d

d∑

i=1

Si
tm

)k−1
, k = 1, ..., 4,

are used in SGBM, while basis functions

fk(S̃tm−1
) =

(1
d

d∑

i=1

Si
tm−1

)k−1
, k = 1, ..., 4,

are used in SRBM and SRM. The formulas of the conditional expectations of
fk(Stm) can be found in table 3.1.

According to the results reported in table 3.11, the CPU time scale shows us
that SRM is the fastest method, and SRBM the middle. For the direct estima-
tor of the option price, SGBM has the lowest standard deviation of estimates,
whereas the standard deviation of the option price estimates from SRBM and
SRM is similar. For the standard deviation of path estimator, all of the three
methods seem to be similar. Compared with the option prices estimated by
SRM and SRBM, the results generated by SGBM are closer to the reference re-
sult.

Similar as for the geometric basket options, the application of the bundling
technique improves PFE and EE significantly, which can be seen from figure
3.7a. For both PFE and EE, the results of SGBM are close to the results of
SRBM. The results of SRM, which is the special case of SRBM with one bundle,
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Method CPU time (secs) Direct est. Path est.

SGBM
3.7233 6.6108 6.6096

(0.000809) (0.0103)

SRBM
3.1158 6.6280 6.5990

(0.0184) (0.0090)

SRM
1.0863 6.8508 6.5796

(0.0128) (0.0078)

Table 3.11: Arithmetic basket Bermudan option with two stocks. The CPU time
represents the computation time of PFE and EE exposure profiles. The direct
estimator and path estimator represent the different estimates of option prices.
The reference option price is 6.6109 [54].

are higher than both SGBM and SRBM. The computation time of SGBM and
SRBM with different numbers of bundles is shown in figure 3.7b. Because of
the moment calculation, SGBM needs more time for computation. For SRBM,
since no moment computation is needed, the CPU time is kept almost the same
for both geometric and arithmetic basket options. In figure 3.7c, we also show
the CPU time scale of SGBM, SRBM, and SRM with respect to different num-
bers of simulation paths.

3.5.3 Max Options

Given the model assumptions of the underlying assets, one common feature
shared by the numerical examples discussed (single-asset options, geomet-
ric basket options and arithmetic basket options) is that in the application of
SGBM, all of the option payoffs allow for closed-form solutions of the condi-
tional expectations of the basis functions fk. Particularly, in the case of rela-
tively low-dimensional problems, as we have discussed for the two stock ex-
amples, the closed-form formula of the moments is quite simple which makes
the CPU time for geometric and arithmetic basket options quite similar, even
with different computation methods (i.e., SGBM and SRBM).

Although the property of closed-form formulas of the conditional expecta-
tions of basis functions fk is relatively rare in quantitative finance calculation,
especially for high-dimensional problems when many random variables are
involved, if we can find an approximation formula, it is very helpful for an
efficient computation. In this section, the example of multi-asset max options
with five stocks is given, for which an approximation of the conditional expec-
tation is obtained by Clark’s algorithm [23, 39].

The exercise value of d-asset Bermudan max options is given by,

h(Stm) =
(
max(S1

tm
, ..., Sd

tm
)−K

)+
.
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Figure 3.7: Arithmetic basket Bermudan option with two stocks. (A) Compar-
ison of SGBM with 64 bundles (o), SRM (*), and SRBM (△) with 64 bundles.
High profile: 97.5% PFE. Low profile: EE. (B) CPU time scale of exposure pro-
file computation in number of bundles. (C) CPU time scale of exposure profile
computation in number of simulation paths.
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si0 = 100 K = 100, d = 5 r = 0.05
σ = 0.2 T = 3, M = 9 observation dates = 36
q = 0.1 ρi,j = 0, i 6= j, i, j = 1, ..., d

Table 3.12

Under the model assumption of multi-dimensional geometric Brownian mo-
tion, the parameters are given in table 3.12.

As already discussed in section 3.3.2, the bundling method used for two
stocks becomes computationally expensive in the case of five stocks. In this
section, we apply the bundling method on a dimensionally reduced state space,
for which the mapping function reads

g(t,St) = max(S1
t , ..., S

d
t ).

For the regression approximation at time step tm, basis functions

fk(Stm) =
(
log(max(S1

tm
, ..., Sd

tm
))
)k−1

, k = 1, ..., 5,

f6(Stm) =
( d∏

i=1

Si
tm

) 1
d ,

f6+i(Stm) = Si
tm

, i = 1, ..., d,

are used in SGBM as in [39], while basis functions

f̃k(Stm−1
) =

(
log(max(S1

tm−1
, ..., Sd

tm−1
))
)k−1

, k = 1, ..., 5,

f̃6(Stm−1
) =

( d∏

i=1

Si
tm−1

) 1
d ,

f̃6+i(Stm−1
) = Si

tm−1
, i = 1, ..., d,

are used in SRBM and SRM. By using the Clark algorithm [23, 39], an exact
formula of EQ[fk(Stm) | Stm−1

= stm−1
(p)], k = 1, ..., 5, exists for two assets (the

first four moments). For more than two assets, Clark’s algorithm can provide
an accurate approximation.

In table 3.13, the CPU time scale shows us that SRM is the fastest method,
and SRBM the middle. For the direct estimator of option price, SGBM has the
lowest standard deviation of estimates. For the standard deviation of the path
estimator, all of the three methods are similar. If we use the reference as the
benchmark, SGBM seems to have the best estimates of option prices among
theses three methods.
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Method CPU time (secs) Direct est. Path est.

SGBM
18.5511 26.1673 26.0871

(0.0127) (0.0320)

SRBM
8.4731 26.3164 26.0474

(0.0607) (0.0335)

SRM
2.9839 26.4223 26.0049

(0.0413) (0.0361)

Table 3.13: Max options with 5 stocks. 16 bundles are used in SGBM and SRBM.
The CPU time represents the computation time of the PFE and EE profiles. The
direct estimator and path estimator represent the different estimates of option
prices. The literature reference of the option price is [26.115, 26.164], with 95%
CI [11].

Similar as for the geometric and arithmetic basket options, the application
of bundling method changes PFE and EE significantly, which can be observed
from figure 3.8a. For both PFE and EE, the results of SGBM are close to the
results of SRBM. The results of SRM are higher than both SGBM and SRBM.
The computation time of SGBM and SRBM with different numbers of bundles
is shown in figure 3.8b. Because of the moment calculation, SGBM needs more
time for computation. Compared with the geometric and arithmetic basket op-
tions, since more basis functions are used for max options (11 basis functions
for five assets), and the conditional expectation of basis functions have more
complicated formulas, the corresponding CPU time of SGBM is higher. How-
ever, for SRBM, since no moment computation is needed, the CPU time is kept
relatively low. In figure 3.8c, we show the CPU time scale of SGBM, SRBM, and
SRM with respect to different numbers of simulation paths. Although SRM is
the fastest one, the exposure profile and option price estimates are not as accu-
rate as SRBM and SGBM. While the computation speed of SRBM is faster than
SGBM, the exposure profiles and option price estimates are quite similar. The
standard deviation of option price estimates by SGBM is the lowest among the
three methods, although merely an approximation of conditional expectation
of basis functions is used in computation.

3.6 Conclusion

This chapter provides an efficient simulation-based method, SGBM from [39],
to estimate the counterparty credit exposure profiles of multi-asset options. In
the one-dimensional case, by using a benchmark of European and Bermudan
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Figure 3.8: Max Bermudan option with 5 stocks. (A) Comparison of SGBM
with 16 bundles (o), SRM (*), and SRBM (△) with 16 bundles. High profile:
97.5% PFE. Low profile: EE. (B) CPU time scale of exposure profiles computa-
tion in number of bundles. (C) CPU time scale of exposure profile computation
in number of simulation paths, with 16 bundles in SGBM and SRBM.
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options via MCCOS, it shows that with an appropriate choice of basis func-
tions and application of bundling, SGBM achieves high accuracy. Particularly,
for discontinuous payoffs, such as digital options, by using the bundling tech-
nique, SGBM can get an accurate and stable result for the option price and
exposure profiles. The numerical experiments show that the discontinuity of
conditional expectations on the boundary of bundles can be reduced signif-
icantly by increasing the number of simulation paths and bundles appropri-
ately. In addition, compared with SRBM, when the same number of simulation
paths, basis functions and bundles are used, the discontinuity on the bound-
ary of bundles in SGBM is less pronounced. In the case of multi-asset instru-
ments (two stocks and five stocks in the examples), the numerical comparison
of SGBM, SRBM and SRM shows that SGBM has the advantage of lower stan-
dard deviation for the direct estimates of the option prices. This is consistent
with the conclusion of Glasserman and Yu (2004), in which they have a theo-
retical proof of the advantage of ‘regression later’ (used in SGBM) compared
with ‘regression now’ (used in SRBM and SRM) under some conditions. Gen-
erally, the estimates for the option prices of SGBM are closer to the reference
results than SRM and SRBM. Even though the computation speed of SGBM
will be generally slower than the other two methods, it is still reasonably fast.
The bundling method is shown to be quite useful in improving the accuracy
of exposure profiles. The exposure profiles generated by SGBM and SRBM are
similar when the same number of bundles are used. And the exposure profiles
generated by SRM are not as accurate as SGBM and SRBM. We conclude that
SGBM is an efficient method for exposure calculation, and the efficient calcu-
lation of the expected exposure (EE) [33] for multi-asset options can be further
applied to the computation of the credit value adjustment (CVA) [22, 33].

3.7 Appendix

3.7.1 P-Probability Distribution of Credit Exposure: Change
of Measure

We simulate the scenario of risk factors under measureQ, and we use an Amer-
ican Monte Carlo method to go through the dynamic programming procedure
for Bermudan options. The algorithm results in samples of the exposure proba-
bility distribution under Q. To get the exposure probability distribution under
measure P, we need to use the change of measure technique [22].

Define the Randon-Nikodym derivative of P relative to Q on Ft as,

z(t) =
dP

dQ
|Ft

. (3.15)

Particularly, if the stochastic process of stock price St is geometric Brown-



3.7. APPENDIX 57

ian motion, with µ the drift part under measure P, σ the diffusion part, r the
constant risk-free interest rate, then z(t) has the following explicit formula,

z(t) =
dP

dQ
|Ft

= exp(θWQ
t − 1

2
θ2t),

with θ = (µ− r)/σ, the market price of risk and WQ
t =

∫ t

0
dWQ

s .
By a change of measure, EEt can be calculated as,

EEt = EP
[
Et

]

= EQ
[
Etz(t)

]
.

From the samples of Et obtained from the algorithm, EEt can be calculated
empirically, i.e.,

ÊEt =
1

P

P∑

p=1

Ep
t z

p(t),

with p denotes the p-th sample path, p = 1, ..., P .
The quantity PFEα,t is closely related to the empirical distribution of Et

under measure P. Denote the exact distribution of Et under P at time t as
F P
t (x), which can be written as,

F P
t (x) = EP

[
1Et≤x

]

= EQ
[
1Et≤xz(t)

]
.

From the estimated samples of the algorithm, F P
t (x) can be approximated by

an empirical distribution function, i.e.,

F̂ P
t (x) =

1

P

P∑

p=1

1Et
p≤xz

p(t), x ∈ R.

Given a confidential level α, we can calculate the PFEα,t by inverting the em-

pirical function F̂ P
t , which can be obtained by an interpolation procedure, i.e.,

PFEα,t =
(
F̂ P
t

)−1(
α
)
.

If the risk factors are simulated under the real world measure P, the condi-
tional expectation (and the exposures) has to be computed under measure P

by using a change of measure [56],

c(tm−1,Stm−1
) = exp(−r∆t)EP

[ z(tm)

z(tm−1)
Vtm(Stm)|Stm−1

]
,m = M,M − 1, ..., 1.

In practice, an approximation such as z(tm)
z(tm−1)

≈ 1 can be used in implementa-

tion, when the drift µ is close to r. The exposure distribution resulting in this
case is under measure P.
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Chapter 4

Credit Value Adjustment with
Wrong Way Risk for
Bermudan Options

4.1 Introduction

High-profile defaults of important financial institutions during the financial
crisis of 2007 to 2009 highlight the importance of counterparty credit risk in
over-the-counter (OTC) derivative contracts. According to the Basel II and III
accords, counterparty credit risk is the risk that a counterparty in a financial
OTC derivative contract will default prior to the expiration of the contract and
will fail to make all the payments required by the contract. The market value of
counterparty credit risk is called credit value adjustment (CVA): the difference
between the risk free portfolio value and the true portfolio value that takes into
account the counterparty’s default risk.

Many authors have discussed the challenges of intensive computation in
CVA calculations. In [33], the author discusses the bilateral nature of credit
exposure imbedded in many derivative portfolios, which makes the pricing of
counterparty risk more difficult than in the unilateral situation. For many OTC
exotic options, because of the exotic features and complicated underlying as-
set processes, no explicit pricing formulas exist, which makes the calculation of
expected exposure (one component that is required for CVA calculation) even
more complicated and time-consuming. In addition, one also has to be careful
regarding the proper modeling of positive (negative) correlation between ex-
posure and counterparty’s default risk, which is called wrong (right) way risk,
because the effect of this correlation on CVA could be significant [10, 33, 37].

59
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The purpose of this chapter is to propose an efficient calculation method for
CVA of exotic options when wrong way risk exists, and investigate the rela-
tionship between the wrong way risk effect on CVA and the exotic features.
Particularly, considering a simple but nontrivial example of exotic options, we
focus on the efficient calculation for CVA of Bermudan equity options with
counterparty credit risk. For ease of exposition, we assume the option is writ-
ten on the counterpary’s own stock. By using the proposed method, we are
able to analyse the effect of the early exercise feature and wrong way risk on
CVA, and the relationship between the wrong way risk effect and the early
exercise feature in general.

The calculation problem of CVA originates from the pricing problem of ‘vul-
nerable options’ (i.e., an option with credit risk) in Johnson and Stulz (1987)
[42]. Johnson and Stulz (1987) studied the pricing of European options and
American options with default risk, where the underlying asset follows a pure
jump process or a lognormal diffusion process. Hull and White (1995) [36] and
Jarrow and Turnbull (1995) [40] generalized the ideas of Johnson and Stulz
(1987), and the impact of default risk on the price of an American option was
also discussed in Hull and White (1995). Since then many authors have been
working on this topic. In addition, because of the financial crisis and risk man-
agement requirements from the Basel committee, Monte Carlo methods have
been developed in practice for the CVA computation of large portfolios. Can-
abarro and Duffie (2003) [17] provided a general Monte Carlo algorithm to
obtain an estimation of the market value of counterparty credit risk in bilat-
eral OTC portfolios. Pykhtin (2011) [48] gives an overview of approaches for
managing counterparty credit risk and reviews different aspects of modeling
of counterparty credit risk. Differently from the aforementioned work, here
we study the ‘vulnerable’ Bermudan options. We are interested in the effect of
the wrong way risk and the early exercise feature on CVA, and the relationship
between the wrong way risk effect and the early exercise feature.

A closely related paper is Hull and White (2012) [37], in which the authors
propose a model to incorporate wrong way risk into CVA calculations. In the
model, the hazard rate of the counterparty is postulated to be an increasing
function of the bank’s portfolio value, while it becomes a decreasing function
in the case of right way risk. This model is named “portfolio value approach”
(PVA) in Ruiz (2013) [55]. Hull and White (2012) focuses on the study of the
effect of wrong way risk on CVA and the Greeks letters of CVA. They also find
that the effect depends on the collateral arrangements. Here we consider a dif-
ferent but related hazard rate model in which the counterparty’s hazard rate is
negatively related to its stock price. This model is named “empirical analysis
approach” (EAA) in Ruiz (2013) to stress the empirical evidence background.
We show the mathematical equivalence of PVA and EAA, and provide a com-
parison of the calibration. Our study shows that the effect of wrong way risk
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on CVA of a Bermudan option depends on its early exercise features. These
issues are not discussed in Hull and White (2012).

To take into account the correlation between the credit exposure and default
risk, Rosen and Saunders (2012) [53] proposed a joint market-credit model
by building a co-dependence structure between the exposures and the credit
events. Brigo and Pallavicini (2008) [10] proposed a stochastic intensity jump
diffusion model for the default event, and a short-rate Gaussian shifted two-
factor process for the interest rate. The two processes are coupled by correlat-
ing their Brownian shocks. Both papers assume specific models for the coun-
terparty’s default event and add correlation between the default event and the
market variables of the portfolio. Differently from their work, we use the haz-
ard rate approach to incorporate the correlation, where the hazard rate is as-
sumed to be a function of the counterparty’s stock price. The specific functional
form of the hazard rate is estimated by using empirical data which shows a
negative relationship between counterparty’s hazard rate and its stock price,
see also Duffie and Singleton (2003, p. 206) [26] and Ruiz (2013) [55].

Duffie and Singleton (2003, p. 206) [26] model the risk-neutral hazard rate as
a (negative power) function of the equity price of the counterparty, and give an
equity derivative pricing algorithm with default and recovery in the binomial-
tree model. In Linetsky (2006) [43], Carr and Linetsky (2006) [18] and Carr and
Madan (2010) [19], the authors use a negative power function of the equity
price to model the hazard rate, and give a solution for European options with
credit risk under different models for volatility (i.e., constant, constant elastic-
ity of variance, and local volatility). Here we use this negative relationship to
model the wrong way risk embedded in Bermudan put options.

The main issues contained in the current chapter are the following:

1. By using the concept of stochastic hazard rate, we derive an approxima-
tion of the expected exposure conditional on default, which is applicable
for the calculation of expected exposure and CVA with wrong way risk;

2. Regarding the wrong way risk modeling, we compare the empirical anal-
ysis approach (EAA) and the portfolio value approach (PVA), and show
the advantages of EAA in our problem setting;

3. Based on Monte Carlo simulation and a Fourier inverse option pricing
method, an efficient calculation method for Bermudan options’ CVA is
proposed. The method is also applicable when the underlying stock price
follows a Lévy process;

4. The numerical results show that the wrong way risk has significant ef-
fect on the expected exposure (EE) and CVA of Bermudan options, how-
ever, this effect depends on the Bermudan option’s early exercise fea-
ture. More precisely, a high exercise intensity (i.e., high volatility, high
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strike price, or high number of possible early exercise dates) may lead to
CVAW < CVAI (see formulas (4.1) and (4.5) and the explanations in the
corresponding sections.), which is different from the conclusion if one
uses the α multiplier approach with α > 1 (see formula (4.8) and the
explanation.).

This chapter is structured in the following way. Section 4.2 introduces the
problem of interest. Section 4.3 describes the computation of Bermudan op-
tions’ CVA when the wrong way risk is not considered. In section 4.4 we
mainly discuss the hazard rate approach to model the wrong way risk imbed-
ded in the Bermudan equity put options, and provide an analytical approxima-
tion of the expected exposure conditional on default. In section 4.5 we propose
an efficient calculation method for the credit exposure of Bermudan options.
After that we provide the computation method for Bermudan options’ CVA
when wrong way risk exists. In section 4.6, through several numerical exam-
ples, we study the effect of wrong way risk on Bermudan options’ CVA, and
the relationship between the wrong way risk effect and the early exercise fea-
ture. Section 4.7 gives a conclusion of the current research.

4.2 Problem Formulation

Consider a bank (the contract holder) holding a derivative security with a
given counterparty which has default risk. Following the same notation as
in chapter 3, let (Ω,F ,P) be a probability space, let T be a fixed positive num-
ber, and let Ft, 0 ≤ t ≤ T , be a filtration of sub-σ-algebras of F , representing
the information available up to time t. We define the risk free value (i.e., no
counterparty risk) of the derivative security under the risk-neutral measure Q

[59] over time as a stochastic process V (t), 0 ≤ t ≤ T , which is driven by the
stochastic process of risk factors X(t), 0 ≤ t ≤ T , such as stock prices, for-
eign exchange rates, and interest rates[33]. We call (t,X(t)) the state of the
economy at time t. Denote the derivative’s discounted net cash flow between t
and T as Cf (t, T ) (i.e., all of the cashflows are discounted back to time t), then
V (t) = EQ

[
Cf (t, T )|Ft

]
.

For the counterparty’s default risk, denote the counterparty’s default time
by τ . Let Sur(t) denote the risk neutral survival (no default) function of the
counterparty,

Sur(t) = Q[τ > t]

We are interested in the value of the bank’s derivative security traded with

the counterparty subject to default risk, which is denoted as Ṽ (t). Ṽ (t) is al-

ways smaller than V (t) and the difference V (t) − Ṽ (t) is named credit value
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adjustment (CVA). Particularly, in this chapter, we analyse in detail the CVA of
Bermudan equity options when the underlying asset is one-dimensional.

4.3 Simulation Approach for CVA Valuation

In some simple cases (such as European options, when the exposure process
and counterparty’s default are independent.), one can obtain analytical solu-
tion for CVA; however, in practice, CVA is almost invariably calculated using
Monte Carlo simulation [37].

Consider a Bermudan equity option which can be exercised at a fixed set
of equally spaced time points (possible early exercise dates), T = {t1, ..., tM},
0 = t0 ≤ t1, tM = T , tm − tm−1 = ∆t,m = 1, ...M . We choose the set of time
points T for discretization 1. Based on the risk neutral pricing formula of CVA
introduced in chapter 1, if the exposure is independent of the default risk, then
CVA of Bermudan options can be approximated as follows,

CVAI ≈ (1 − δ)

M∑

m=1

D(0, tm−1)EEtm−1

(
Sur(tm−1)− Sur(tm)

)
(4.1)

HereD(0, tm−1) is the deterministic discount factor from tm−1 to 0, and EEtm−1

is the expected exposure, as defined in chapter 1. Note that EEtm−1
is calcu-

lated under the risk neutral measure Q. We use CVAI to denote that exposures
and counterparty’s defaults are independent, and use the simplified notation
CVA for CVA(0, T).

Formula (4.1) implies that two terms, the expected exposure EEtm−1
and the

default probability Sur(tm−1) − Sur(tm), have to be calculated efficiently. We
explain it in the following section.

4.3.1 Valuation of Expected Exposure

By using the modeling framework introduced in chapter 2, we can get the sam-
ple results of Bermudan option’s credit exposure under the measure Q. Then
EEtm can be obtained directly by averaging the exposures Etm over all scenar-
ios, xm(p), p = 1, ..., P,

1A smaller time interval can be used for discretization; for ease of exposition, we use the set of
time points which represents the possible early exercise dates of Bermudan option.
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EEtm = EQ[Etm ]

≈ 1

P

P∑

p=1

Etm(xm(p)).

Here (and below) we use the simplified notation Xm for X(tm) and xm(p)
denotes the realization of underlying variables X(t) at time tm, on scenario p.
One can also write it in another form2,

EEtm = EQ[Etm ]

≈
P∑

p=1

Etm(xm(p))Q(Xm = xm(p)).
(4.2)

Here Etm(xm(p)) denotes the exposure at the simulated state (tm, xm(p)), and
Q(Xm = xm(p)) is the probability mass of Xm = xm(p).

4.3.2 Counterparty’s Default Probability

If we use the concept of hazard rate λt to represent the survival function of a
counterparty, then the survival function Sur(t) can be written as,

Sur(t) = EQ[exp(−
∫ t

0

λudu)]. (4.3)

The default probability during the time interval
(
tm−1, tm

)
reads,

Sur(tm−1)− Sur(tm) = EQ[exp(−
∫ tm−1

0

λudu)]− EQ[exp(−
∫ tm

0

λudu)].

(4.4)

4.4 Hazard Rate Approach for Wrong Way Risk Mod-

eling

Based on the simulation approach discussed above, we further consider a more
complicated situation where the counterparty’s default probability is positively
dependent on credit exposure, which is termed as ‘wrong way risk’ (WWR).

2For a continuous probability distribution, no overlap sample results exist, so at time step tm,
the total number of sample results is equal to the number of scenarios P .
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4.4.1 Wrong Way Risk in Put Options

Assume that a bank buys a put option from a counterparty which has default
risk, and the option’s underlying asset S is highly correlated to the counter-
party’s credit quality (an example is that S is the counterparty’s own stock).
The put option will only be valuable if the stock S goes down, in which case the
counterparty is expected to be underperforming (i.e., credit quality decreases).
This means that as the bank’s counterparty exposure (the option value) in-
creases, the counterparty is more likely to default. This positive dependence
between the exposure and default risk is called wrong way risk.

To capture the wrong way risk, one has to model the dependence between
the exposure and the counterparty’s default. Recalling from chapter 1, the
following formula can be used for the computation of CVA with wrong way
risk CVAW ,

CVAW ≈ (1− δ)

M∑

m=1

D(0, tm−1)EE∗
tm−1,tm

(
Sur(tm−1)− Sur(tm)

)
, (4.5)

where

EE∗
tm−1,tm

= EQ[Etm−1
| tm−1 < τ ≤ tm]

≈
P∑

p=1

Etm−1
(xm−1(p))Q(Xm−1 = xm−1(p) | tm−1 < τ ≤ tm).

(4.6)

The dependence between the credit exposure and the default risk is embed-
ded in the conditional expectation, EE∗

tm−1,tm
. A simple way of dealing with

wrong way risk is the ‘α multiplier approach’, which is used by the Basel Com-
mittee for the calculation of regulatory capital. In this approach, EE∗

tm−1,tm
is

obtained by multiplying a constant factor α to EEtm−1
,

EE∗
tm−1,tm

= αEEtm−1
. (4.7)

The effect of this is to increase CVA by the α multiplier,

CVAW = αCVAI . (4.8)

Basel II sets α equal to 1.4 or allows banks to use their own models, with a floor
for α = 1.2. Estimation of α reported by banks range from 1.07 to 1.10.

We will use a different approach. Instead of multiplying by a constant α, we
propose a more sophisticated model which uses the concept of hazard rate to
model the wrong way risk. The following proposition gives an approximation
of EE∗

tm,tm+1
:
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Proposition 4.4.1. (Hazard rate approach) The expected exposure conditional on de-
fault, or the expected exposure with wrong way risk (WWR EE), EE∗

tm,tm+1
, can be

approximated as,

EE∗
tm,tm+1

≈
∑P

p=1 Etm(xm(p)) exp
(
−∑m

i=1 λ(xi(p))∆t
)
λ(xm(p))

∑P

p=1 exp
(
−∑m

i=1 λ(xi(p))∆t
)
λ(xm(p))

, (4.9)

where P is the number of scenarios, xm(p) is the realization of underlying variables
at time tm, on scenario p, and the hazard rate at time tm is a function of xm(p), i.e.,
λ(xm(p)).

Proof. The conditional expectation EE∗
tm,tm+1

can be written as

EE∗
tm,tm+1

= EQ[Etm | tm < τ ≤ tm+1]

= EQ[Etm

Q(tm < τ ≤ tm+1 | Xs, s ≤ tm)

Q
(
tm < τ ≤ tm+1

) ].

The expectation above can also be estimated (in an unbiased way) by aver-
aging over all of the scenarios,

EE∗
tm,tm+1

≈ 1

P

P∑

p=1

Etm(xm(p))
Q(tm < τ ≤ tm+1 | Xs = xs(p), s ≤ tm)

Q
(
tm < τ ≤ tm+1

) .

(4.10)

If we assume the stochastic hazard rate is a function of Xm, λ(Xm), then we
can derive the following approximation,

Q(tm < τ ≤ tm+1 | Xs = xs(p), s ≤ tm) = EQ[exp(−
∫ tm

0

λ(Xu)du)

− exp(−
∫ tm+1

0

λ(Xu)du) | Xs = xs(p), s ≤ tm]

= exp(−
∫ tm

0

λ(xu(p))du)

× EQ[1− exp(−
∫ tm+1

tm

λ(Xu)du) | Xs = xs(p), s ≤ tm]

≈ exp
(
−

m∑

i=1

λ(xi(p))∆t
)
λ(xm(p))(tm+1 − tm),
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and

Q(tm < τ ≤ tm+1) = EQ[Q(tm < τ ≤ tm+1 | Xs, s ≤ tm)]

≈ 1

P

P∑

p=1

exp
(
−

m∑

i=1

λ(xi(p))∆t
)
λ(xm(p))(tm+1 − tm),

then we have the following equation,

Q(tm < τ ≤ tm+1 | Xs = xs(p), s ≤ tm)

Q
(
tm < τ ≤ tm+1

) ≈ exp
(
−
∑m

i=1 λ(xi(p))∆t
)
λ(xm(p))P

∑P
p=1 exp

(
−∑m

i=1 λ(xi(p))∆t
)
λ(xm(p))

.

(4.11)

Substitute (4.11) into formula (4.10), we can get,

EE∗
tm,tm+1

≈
∑P

p=1 Etm(xm(p)) exp
(
−∑m

i=1 λ(xi(p))∆t
)
λ(xm(p))

∑P

p=1 exp
(
−∑m

i=1 λ(xi(p))∆t
)
λ(xm(p))

.

The numerical tests show us that, compared with the approximation in the
proposition above, the following simplified approximation makes little differ-
ence for the results of CVA,

EE∗
tm,tm+1

≈
∑P

p=1 Etm(xm(p))λ(xm(p))
∑P

p=1 λ(xm(p))
, (4.12)

which can be easily used in practice. For ease of exposition, in the later section
with numerical examples, we will use this simplified approximation to explain
the numerical results. Formula (4.12) represents an average value of Etm over
all of the paths, but with different weights

λ(xm(p))
∑P

p=1 λ(xm(p))
,

for different paths p. The path with a higher hazard rate will get a larger
weight, which leads to the difference between EE∗

tm,tm+1
and EEtm .

Remark 4.4.1. In the trivial case of no wrong way risk (and right way risk), where
the hazard rate λ is not related to xm(p), we have

EE∗
tm,tm+1

≈ 1

P

P∑

p=1

Etm(xm(p))

which is equal to EEtm .
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4.4.2 Empirical Analysis Approach

The computation of EE∗
tm,tm+1

in (4.9) requires the knowledge of function
λ(X(t)). In this section, we consider possible methods to find an explicit func-
tion form of the hazard rate, λ(X(t)). The hazard rate represents the relation-
ship between the hazard rate of the counterparty and the underlying variable
(or variables) X(t). To find an analytical approximation formula of λ(X(t)),
the following two approaches can be used,

- Empirical analysis approach (EAA) [55]. In the case of Bermudan equity
put options, X(t) is the counterparty’s stock price. The functional form
of λ(X(t)) is estimated by empirical data of hazard rate and the stock
price of the counterparty.

- Portfolio value approach (PVA) [37]. Note that the portfolio value V (t)
at state (t,X(t)) is a function of X(t), i.e., V (t) = g(X(t)) or X(t) =
g−1(V (t)). Instead of finding the relationship between hazard rate and
X(t), one can also try to find the relationship between hazard rate and
V (t), i.e.,

λ(g−1(V (t))) = λ̃(V (t)).

Here we use a simplified notation λ̃(V (t)) to denote that λ(g−1(V (t))) is a func-
tion of V (t).

Remark 4.4.2. An alternative approach mentioned in [37] is to find the relationship
between the hazard rate and the portfolio’s exposure Et = g̃(X(t)). However, as we
will see in the Bermudan option example, g̃ is not invertible, because in the case of
Et = 0, more than one X(t) exists. This may explain why this method does not work
as well as PVA [37].

We first consider PVA. PVA is a straightforward method in the sense that
it directly gives the dependence between a counterparty’s default probability
and the portfolio value which is closely related to the credit exposure. In [37],

the authors postulate a functional form of λ̃(V (t)),

λ̃(V (t)) = exp
(
a(t) + bV (t)

)
, (4.13)

where a(t) is a function of time. b is a constant parameter that measures the
amount of wrong or right way risk in the model. In the case of wrong way risk,

b is positive and λ̃(V (t)) is an increasing function of V (t).
The calibration method of model (4.13) is given in [37]: first of all, b has

to be estimated properly; secondly, a(t) is determined by incorporating the
credit spreads observed today into the model. Particularly, parameter b can be
estimated by two different approaches,
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- collecting historical data of V (t) and credit spreads of the counterparty.
The credit spread can be converted into a hazard rate and b then can be
estimated. However, for different portfolios (such as Bermudan option
V1(t), barrier option V2(t), lookback option V3(t), etc.), different data is
needed, which makes the estimation inconvenient; and if data with high
quality is not available, the estimation will be unstable.

- or giving a subjective judgement about the amount of right way or wrong
way risk the counterparty has [37]. Although this method is straightfor-
ward and easy to implement, it may be difficult to justify the subjective
judgment which is just a manager’s view.

To have a convenient and stable calibration and get rid of subjective judg-
ment as much as possible, while, importantly, taking into account the market
data and observed market behaviour, particularly in the set up of the Bermu-
dan option example, EAA could be a suitable alternative.

The fundamental reason of using EAA is that, the evidence of a clear (neg-
atively related) dependence structure between the equity price S(t) and the
default probability is quite rich both in academics and in industry. When the
stock price of the counterparty falls, its return volatility σ often increases [20].
A traditional explanation that dates back to Black (1976) is the leverage ef-
fect [6]. So long as the face value of debt is not adjusted, a falling stock price
increases the company’s leverage and hence its risk, which shows up in the
stock return volatility 3. As the return volatility increases, the credit spread of
the company will also increase; This is because credit spreads of a company
are positively related to the equity return volatilities of the same company 4.
The conclusion is that, if we convert the credit spread into a hazard rate, then
the stock price is negatively related to the hazard rate. Evidence from industry
also confirms this dependence, see [55]. In figure 4.1, we give an example of
Allianz SE-REG from [55]. The application of this relationship can be found in
Duffie and Singleton (2003, p. 206) [26], Linetsky (2006) [43], Carr and Linetsky
(2006) [18], and Carr and Madan (2010) [19].

This dependence between S(t) and the default probability can be described
in the hazard rate function λ(S(t)). To describe the counterparty’s default
probability, we use the one year average hazard rate, which represents the mar-
ket’s view on the short term default probability. The one year average hazard
rate can be estimated by a well-known formula,

3Various other explanations have also been proposed in the literature; for example, Haugen,
Talmor, and Torous (1991) [34], Campbell and Hentschel (1992) [14], Campbell and Kyle (1993)
[15], Bekaert and Wu (2000) [4], and Carr and Wu (2011) [21].

4In [20], the authors use this issue for modeling; the evidence of this issue from literature can be
found in, for example, Collin-Dufresne, Goldstein, and Martin (2001) [24], Campbell and Taksler
(2003) [16], Baskshi, Madan, and Zhang (2006) [2], and Zhu, Zhang, and Zhou (2005) [61].



70 CHAPTER 4. CVA FOR BERMUDAN OPTIONS

Figure 4.1: Empirical data from [55]: dependence between one year hazard rate
and equity price of Allianz SE-REG

λt ≈
c(t)

1− δ
,

with c(t) the one year par credit spread, which is embedded in the one year
CDS prices.

Here we use a negative power functional form of λ(S(t)), i.e.,

λ(S(t)) = AS(t)B ,

where A and B are constant parameters that can be estimated by a least
squares linear regression method. In the case of Allianz SE-REG, the calibra-
tion results given in [55] give us,

λ̂(S(t)) = 230S(t)−2.3. (4.14)

Using formula (4.14), the hazard rate for each simulated state can be calcu-
lated. After knowing Etm for each simulated state, the calculation of the ex-
pected exposure with wrong way risk EE∗

tm,tm+1
is completed by substituting

the hazard rate of each simulated state into formula (4.9).

4.4.3 Counterparty’s Default Probability in EAA

In the example of Allianz SE-REG, let λmp denote the hazard rate λ(sm(p))
calculated by formula (4.14), where sm(p) is the simulated stock price on the
pth path, at time tm, p = 1, ..., P,m = 1, ...,M . Then the survival function (4.3)
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Sur(tm) = EQ[exp(−
∫ tm

0

λudu)],

can be approximated by

Sur(tm) ≈ 1

P

P∑

p=1

[exp
(
−

m∑

i=1

λip∆t
)
]. (4.15)

Given the simulation results of the hazard rate, the default probability,

Sur(tm−1)− Sur(tm),

during the time interval
(
tm−1, tm

)
can be estimated by formula (4.15).

4.4.4 Comparison of EAA and PVA

It is interesting to have a comparison of EAA and PVA. It is reasonable to ex-
pect that, for the same portfolio and the same counterparty, the results of CVA
from EAA and PVA should be the same. In appendix 4.8.1, we find an ‘ob-
jective estimation’ of b in the PVA approach, by using the equivalence of CVA
results from EAA and PVA. This objective estimation can be used to compare
with a manager’s ‘subjective judgement’ of b (if it is not estimated by empirical
data). In the example of Allianz SE-REG, through our approach, we find the
value of b ≈ 0.0598.

4.5 Computation Method

In this section, we first calculate the credit exposure of a Bermudan option
under a GBM process by a combination of Monte Carlo simulation and the
Fourier COS method [27], which is named Monte Carlo-COS method (MC-
COS) in chapter 2. Based on the results of credit exposure, the WWR EE is then
calculated by EAA. In the end, the calculation of CVA of the Bermudan option
is completed by combining the results of WWR EE with the default probability
estimated by EAA.

There are three main components in the Monte Carlo-COS method for WWR
EE and CVA calculation:

1. Scenario generation for the future economic state under measure Q (For
CVA computation, the expected exposure is proposed to be calculated
under the risk neutral measure Q, see formula (4.6) and [9].);
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2. Computation of portfolio value (and credit exposure) for each simulated
state by the COS method;

3. Computation of WWR EE and CVA.

The technical details of MCCOS can be found in chapter 2.
In summary, the following formula

CVAW ≈ (1− δ)

M∑

m=1

D(0, tm−1)EE∗
tm−1,tm

(
Sur(tm−1)− Sur(tm)

)
, (4.16)

will be used for the CVA computation of Bermudan options with wrong way
risk.

First of all, we use the hazard rate approach of proposition 4.4.1 to calculate
EE∗

tm−1,tm
, which reads

EE∗
tm−1,tm

≈
∑P

p=1 Etm−1
(sm−1(p)) exp

(
−∑m−1

i=1 λ(si(p))∆t
)
λ(sm−1(p))

∑P
p=1 exp

(
−∑m−1

i=1 λ(si(p))∆t
)
λ(sm−1(p))

,

or the simplified one,

EE∗
tm−1,tm

≈
P∑

p=1

Etm−1

(
sm−1(p)

) λ
(
sm−1(p)

)
∑P

p=1 λ
(
sm−1(p)

) ,

where the hazard rate function λ
(
S(t)

)
is estimated by EAA. The exposure of

each state, Etm−1

(
sm−1(p)

)
, is calculated by the Monte Carlo-COS method.

Secondly, the counterparty’s default probability in time interval (tm−1, tm],

Sur(tm−1)− Sur(tm),

can be estimated as,

1

P

P∑

p=1

[exp
(
−

m−1∑

i=1

λip∆t
)
]− 1

P

P∑

p=1

[exp
(
−

m∑

i=1

λip∆t
)
],

with λip the hazard rate λ(si(p)).

4.6 Numerical Examples

In this section, we use several numerical examples to show the impact of the
early exercise feature and wrong way risk on CVA of Bermudan options.
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Recalling the α multiplier approach in section 4.4.1 suggested by the Basel
Committee, which is used as a basic way of taking into account the wrong way
risk for the calculation of expected exposure and CVA,

EE∗
tm−1,tm

= αEEtm−1
. (4.17)

The effect of this is to increase CVA by the α multiplier, CVAW = αCVAI .
Note that a constant α > 1, which is usually used as a default value in a bank,
implies that EE∗

tm−1,tm
> EEtm−1

and CVAW > CVAI .
We want to show that, however, if we use a more sophisticated and realistic

method to model the wrong way risk, such as the hazard rate approach that
we have proposed, the situation EE∗

tm−1,tm
> EEtm−1

and CVAW > CVAI

may be reversed. More precisely, the effect of wrong way risk on EE and CVA
for Bermudan options depends on their early exercise features.

To expose the problem, in the example we assume the stochastic process of
the underlying asset follows geometric Brownian motion under measure Q,

dS(t)

S(t)
= rdt+ σdWQ(t). (4.18)

The generalization of the stochastic process to any Lévy process is straight-
forward since the Monte Carlo-COS method can be applied when the under-
lying asset follows a Lévy process and can be simulated accurately. In the fol-
lowing sections, we first explain the relationship between the wrong way risk
effect and the early exercise feature. Based on this explanation, we consider
three different variables which are closely related to the early exercise features
of the Bermudan option: (i) return volatility σ in formula (4.18), (ii) Bermudan
option’s strike price K , and (iii) the number of possible early exercise dates M ,
and investigate the impact of the change of these variables on the results of EE
and CVA when wrong way risk is modeled by EAA.

To focus on the main discussion, we will not list the impact of collateral,
although it is quite straightforward.

4.6.1 Wrong Way Risk and Early Exercise Feature

In this section, we show that the wrong way risk effect on CVA of a Bermudan
option depends on its early exercise features.

We first consider the effect of the early exercise feature and wrong way risk
on Bermudan option’s EE. Figure 4.2 shows the risk profiles of EE of a
Bermudan option by different approaches, i.e., the α multiplier approach and
the hazard rate approach (EAA and PVA). For comparison, the expected expo-
sure without wrong way risk of a European option (M = 1) is also provided.

The effect of the early exercise feature (M > 1) indicates that, compared with
the European option’s increasing EE,the Bermudan option’s EE is a decreas-
ing function of time t (see the risk profiles of Bermudan option’s EE without
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Figure 4.2: Different approaches for the expected exposure profile of a Bermu-
dan option with S0 = K = 100, T = 1, σ = 0.6,M = 50, r = 0.05: EE without
WWR (‘*’), WWR EE by hazard rate approaches (PVA (‘o’) and EAA (‘�’)),
WWR EE by α multiplier approach (‘+’), with α = 1.4. Compared with the
Bermudan option, the expected exposure profile of a European option (M = 1)
without wrong way risk is an increasing line (‘-’).

wrong way risk in figure 4.2). This can be explained by the increasing exer-
cise intensity (percentage of exercised paths) at each time step of Bermudan
options, see figure 4.3. When more paths are exercised and the exposures on
these paths become 0, the average value of the exposures on all of the paths,

EEtm ≈ 1

P

P∑

p=1

Etm(xm(p)),

becomes smaller and approaches to 0.
The wrong way risk can also affect the shape of the Bermudan option’s EE

risk profile. In the examples of figure 4.2, compared with the EE without
wrong way risk, the WWR EE which is calculated by EAA is higher at the
beginning and then becomes lower. This can be explained by the hazard rate
approach (EAA) for the calculation of WWR EE,

EE∗
tm,tm+1

≈
P∑

p=1

Etm

(
sm(p)

) λ
(
sm(p)

)
∑P

p=1 λ
(
sm(p)

) . (4.19)

At the beginning of the time period, for a fix time step, according to the
negatively related dependence structure of the stock price and hazard rate, a
simulated state with a low stock price implies a high hazard rate. However, the
option value and exposure at this state will be high because it is a put option.
It implies that a high (low) exposure Etm

(
sm(p)) will get a high (low) weight
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Figure 4.3: Exercise intensity of Bermudan option with different values of
volatility σ of stock price, S0 = K = 100, T = 1,M = 50, r = 0.05.

λ

(
sm(p)

)
∑

P
p=1

λ

(
sm(p)

) , which leads to EE∗
tm,tm+1

> EEtm .

At the end of the time period, however, because of the early exercise feature,
most of the paths have been exercised and the exposures on these paths be-
come 0. Note that on these exercised paths, the stock prices tend to be lower
than the ones on the non-exercised paths, which means that these exercised
paths (with 0 exposure) get higher weights. In this situation, the value of
EE∗

tm,tm+1
is pulled down and finally EE∗

tm,tm+1
< EEtm .

In summary, because of the Bermudan option’s early exercise feature, re-
garding the wrong way risk, if we use the hazard rate approach (EAA or
PVA), then EE∗

tm,tm+1
(or EE∗

tm−1,tm
) is not necessarily greater than EEtm

(or EEtm−1
), which implies that the result of CVA with wrong way risk for

a Bermudan option,

CVAW ≈ (1− δ)

M∑

m=1

D(0, tm−1)EE∗
tm−1,tm

(
Sur(tm−1)− Sur(tm)

)
,

is not necessarily greater than the one without wrong way risk,

CVAI ≈ (1 − δ)

M∑

m=1

D(0, tm−1)EEtm−1

(
Sur(tm−1)− Sur(tm)

)
.

On the other hand, if we use the α multiplier approach, with α > 1, then
EE∗

tm−1,tm
> EEtm−1

(see figure 4.2) and CVAW > CVAI always holds.

Remark 4.6.1. The analysis above works in the same way for PVA.

The following numerical examples show that the decrease of EE∗
tm,tm+1

is
faster with a higher exercise intensity, which may lead to CVAW < CVAI .
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Figure 4.4: Decrease of EE with different values of volatility σ: the expected
exposure profile of the Bermudan option with different values of σ = 0.2 or
0.6, S0 = K = 100, T = 1,M = 50, r = 0.05. Wrong way risk is modeled by
EAA.

4.6.2 Volatility σ

In this section, we explain the impact of the change of volatility σ (in formula
(4.18)) on the Bermudan option’s EE and CVA.

First, we consider the relation between volatility σ and the early exercise
feature of a Bermudan option. Figure 4.3 illustrates the exercise intensity of the
Bermudan option with different values of σ. When approaching to maturity
time, the exercise intensity with volatility σ = 0.6 becomes higher than the one
with volatility σ = 0.2. This implies that with σ = 0.6, we will get a higher
percentage of exercised paths and 0 exposures than in the case of σ = 0.2.

Figure 4.4 provides a comparison of the decrease of EE∗
tm,tm+1

with σ = 0.2
and 0.6. With σ = 0.6, because of a higher percentage of 0 exposures, the
decrease of EE∗

tm,tm+1
is faster than in the case of σ = 0.2, which increases the

part for which EE∗
tm,tm+1

< EEtm . The part of EE∗
tm,tm+1

< EEtm pulls down
the value of CVAW , which may lead to CVAW < CVAI .

Figure 4.5 illustrates the values of CVAW and CVAI with respect to the val-
ues of σ. Both CVAW and CVAI are increasing functions of σ. This is because
of the increase of EE with respect to the increase of σ 5, as shown in figure 4.4.
In this experiment, with volatility σ = 0.2, we have CVAW > CVAI . However,
when σ is increasing, we observe that CVAI increases faster than CVAW and
in the end we will get CVAW < CVAI (for example, when σ = 0.8).

5In EAA, the change of σ will also affect the default probability, however, the increasing effect
on EE will dominate the increasing of CVA.
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Figure 4.5: The wrong way risk effect (i.e., the difference between CVAW and
CVAI ) on Bermudan option’s CVA depends on volatility σ, where S0 = K =
100, T = 1,M = 50, r = 0.05. CVA is an increasing function of σ. We subdivide
the time interval in 100 time steps. The wrong way risk is modeled by EAA.

4.6.3 Strike Price K

The variation of strike price K can also affect the exercise intensity of Bermu-
dan options, and finally affects the results of EE and CVA as well.

As illustrated in figure 4.6, compared with the at-the-money option (K =
100), with the same initial stock price and all the other parameters identical,
an in-the-money put option (K = 110) has higher exercise intensity while an
out-of-the-money put option (K = 90) has lower exercise intensity. As shown
in figure 4.7, with the same initial stock price S0 = 100, the Bermudan option’s
EE∗

tm,tm+1
with K = 110 decreases faster than the one with K = 90, which

enlarges the part of EE∗
tm,tm+1

< EEtm .
In figure 4.8 we show the change of CVA w.r.t strike price K . Both CVAW

and CVAI are increasing when K is increasing; this is because of the increase of
EE with increasing K , see figure 4.7. Further more, with different strike price,
the relationship between CVAW and CVAI can change. In this example, if K =
90, CVAW > CVAI holds. When K = 110, since the part of EE∗

tm,tm+1
< EEtm

pulls down the value of CVAW , we will get CVAW < CVAI .

4.6.4 Early Exercise Rights M

Intuitively, a higher value of M provides the contract holder a more flexible
choice to exercise the contract and ‘hedge’ the counterparty’s default risk. In
the extreme case, when M = 1, the EE of a European option is always increas-
ing. When M > 1, because of the effect of the early exercise feature, EE is
decreasing.

In figure 4.9, we show the risk profiles of EE with M = 10. For discretiza-
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Figure 4.6: Exercise intensity of the Bermudan option with different values of
strike price K , with S0 = 100, σ = 0.6, T = 1,M = 50, r = 0.05.
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Figure 4.7: Comparison of EE without WWR and with WWR by EAA: the
expected exposure profile of a Bermudan option with different strike prices
(i.e., out-the-money and in-the-money) K = 90 or 110, S0 = 100, σ = 0.6,
T = 1,M = 50, r = 0.05.
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Figure 4.8: The wrong way risk effect on Bermudan option’s CVA depends on
the strike price K , where S0 = 100, σ = 0.6, T = 1,M = 50, r = 0.05. CVA is
an increasing function of K . We discretize the time interval by 100 time steps.
The wrong way risk is modeled by EAA.

M 1 2 5 10 20 25 50
CVAI 0.1724 0.1269 0.1070 0.1008 0.0980 0.0978 0.0967
CVAW 0.3190 0.1623 0.1159 0.1036 0.0983 0.0977 0.0958

Table 4.1: CVA w.r.t different values of M

tion, we use 50 time points. It is worth mentioning that a discretization with a
small time step is important for an accurate calculation of CVA. This is because
of the ‘zigzag’ shape of EE for Bermudan options (see figure 4.9). Particularly,
between two consecutive possible exercise dates, the option can be seen as a
European option which has an increasing EE; however, at the time point im-
mediately after one exercise date, because of the 0 exposures on the exercised
paths, a ‘jump’ to a lower EE occurs.

With a fixed discretization of 100 time points6, we calculate the CVAW and
CVAI with different values of M . The change of CVAW and CVAI w.r.t to the
values of M is shown in figure 4.10 and table 4.1. Different from the case of σ
or K , both CVAW and CVAI are decreasing functions of M ; this is because of
the decrease of EE w.r.t the increase of M , see figure 4.9 for a comparison of
risk profiles of EE with M = 1 and M = 10. The comparison of CVAW and
CVAI is similar as in the case where σ or K changes. Our experiments show
that when M = 1, we have CVAW > CVAI ; it will become CVAW < CVAI

when M > 25.

6The possible exercise dates have been taken into account already.
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Figure 4.9: Comparison of EE without WWR and WWR EE by EAA: the ex-
pected exposure profiles of Bermudan options with different numbers of early
exercise opportunities, M = 1 (European option) or M = 10, K = S0 = 100,
σ = 0.6, T = 1, r = 0.05. We use 50 time points for discretization of [0, 1].
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Figure 4.10: The wrong way risk effect on Bermudan option’s CVA depends
on the number of possible early exercise dates M , where S0 = 95, K = 100,
σ = 0.6, T = 1, r = 0.05. CVA is a decreasing function of M . We discretize the
time interval by 100 time steps. The wrong way risk is modeled by EAA.
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Figure 4.11: Implied volatility skew of a defaultable European put option.

4.6.5 Change of Implied Volatility

When CVA is taken into account for pricing a European put option, the implied
volatility will change. Figure 4.11 plots the option implied volatilities against
different strike prices of an option under the GBM model, with S0 = 100,
σ = 0.6, T = 1, r = 0.05. We discretize the time interval by 100 time steps.
The implied volatilities are obtained by first computing the risky value of the

put option under counterparty credit risk, Ṽ (s) = V (s) − CVA(s, T ), for a
given strike price, with s = 0, and then implying the Black-Scholes implied
volatility. Compared with the trivial case of a no-default option, which has a
constant implied volatility under the GBM model, the defaultable option has
an implied volatility skew. Particularly, when wrong way risk is taken into ac-
count, the skew becomes lower and the impact is significant. The results imply
a connection between the implied volatility skew and counterparty’s default
risk.

4.7 Conclusion

To analyze the effect of wrong way risk on CVA, this chapter provides the
example of Bermudan options. Since no explicit pricing formula exists for
Bermudan options, we propose an efficient numerical method which is based
on Monte Carlo simulation and a Fourier inverse option pricing method. The
method is applicable for Lévy processes. To incorporate the wrong way risk,
we apply the technique from John Hull and Alan White and model the haz-
ard rate of the counterparty as a function of the counterparty’s equity price.
The analysis from the numerical experiments implies that, in the example of
Bermudan options, the wrong way risk effect depends on its early exercise fea-
tures. With a high exercise intensity for Bermudan options, which is caused by,
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for example, high volatility of the stock price process, high strike price, or high
number of possible early exercise dates, the value of CVA with wrong way
risk (i.e., CVAW ) can be smaller than the value of CVA when wrong way risk
is not considered (i.e., CVAI ). Note that if one uses the α multiplier approach,
with α > 1, then CVAW > CVAI always holds. We also have compared two
different methods for wrong way risk modeling.

The current work can be extended to the situation where the underlying
asset of the option is different from the counterparty’s stock. Apart from the
counterparty’s default risk, the default risk from the underlying asset can also
be considered. Another possible extension is to consider the high-dimensional
case, i.e., the option is written on multiple assets, see chapter 5.

4.8 Appendix

4.8.1 Comparison of Empirical Analysis Approach (EAA) and
Portfolio Value Approach (PVA)

In EAA, the explicit formula of λ(X(t)), where X(t) are the underlying risk
factors, is estimated by using empirical data of a counterparty’s hazard rate
λt and X(t). For a Bermudan equity put option written on the counterparty’s
stock, X(t) is the counterparty’s stock price St. We further assume a functional
form of λ(X(t)) as follows,

λ(St) = ASB
t , (4.20)

where A and B are constant parameters. Based on the empirical data of the
counterparty’s one-year hazard rate (estimated from one-year CDS prices) and
its historical stock prices, parameters A and B can be estimated by the least
squares linear regression method.

In PVA, the hazard rate is represented as a function of the portfolio value
V (t). Note that the portfolio value V (t) at state (t,X(t)) is a function of X(t),
i.e., V (t) = g(X(t)) or X(t) = g−1(V (t)), where g is invertible. The hazard rate
λ(X(t)) can be written as follow,

λ(X(t)) = λ(g−1(V (t))) = λ̃(V (t)).

Here we use a simplified notation λ̃(V (t)) to denote that λ(g−1(V (t))) is a func-

tion of V (t). In [37], the authors assume a functional form of λ̃(V (t)) in the
following way,

λ̃(V (t)) = exp
(
a(t) + bV (t)

)
, (4.21)
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where a(t) is a function of time; b is a constant parameter that measures the
amount of wrong or right way risk in the model, particularly, in the case of

wrong way risk, b is positive and λ̃(V (t)) is an increasing function of V (t).

The calibration of λ̃(V (t)) requires the estimates of parameters a(t) and b. In
the main text we have discussed the estimation of b. In the simulation frame-
work, we denote the simulation trials of hazard rate as follows,

λ̃m,p = exp
(
a(tm) + bVm,p

)
,

where λ̃m,p and Vm,p are simulation results of λ̃(V (t)) and V (t) at time step tm,
m = 1, ...,M , on simulation path p, p = 1, ..., P .

We further require [37] that

1

P

P∑

p=1

exp
(
−

k∑

m=1

λ̃m,p∆t
)
= exp

(
− cktk

1− δ

)
, for 1 ≤ k ≤ M, (4.22)

where ck is the credit spread for a maturity of tk. Equation (4.22) means that
the average survival probability up to tk, across all simulations, equals the
survival probability inferred from the term structure of the credit spreads [37].
The formula of CVA without wrong way risk can be written as,

CVAI ≈ (1− δ)
M∑

m=1

D(0, tm−1)EEtm−1

(
Sur(tm−1)− Sur(tm)

)

= (1− δ)

M∑

m=1

D(0, tm−1)EEtm−1

(
exp

(
− cm−1tm−1

1− δ

)
− exp

(
− cmtm

1− δ

))

= (1− δ)

M∑

m=1

D(0, tm−1)EEtm−1

(
exp

(
− ctm−1

1− δ

)
− exp

(
− ctm

1− δ

))
,

(4.23)

where the last equality comes from an assumption of the same credit spread c
for all maturities.

Credit spread c

It is reasonable to expect that for the same portfolio and the same counterparty,
the result of CVA from EAA and PVA should be the same. If we take the
Bermudan put option as an example and denote the results from EAA as CVAe

I

and CVAe
W , the results from PVA as CVAp

I and CVAp
W , then an equivalent

relationship between EAA and PVA should hold as follows,

CVAe
I = CVAp

I , (4.24)
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and
CVAe

W = CVAp
W . (4.25)

Equation (4.23) implies that CVAI is a function of c, i.e., CVAe
I = CVAp

I =
F (c), where F is a short notation for formula (4.23). Based on the values of
CVAe

I from EAA, we can estimate c by solving the equation CVAp
I = F (c).

Estimation of b

In order to provide an ‘objective estimate’ of b in (4.21), we assume that the
results of CVA by EAA (CVAe

I and CVAe
W ) are from an objective market point

of view. We are interested in the value of b if both (4.24) and (4.25) hold (or the
results are as close as possible).

Note that given a value of c, CVAp
W is actually a function of b, i.e., CVAp

W =
G(b; c). More precisely, if b and c are known, the values of a(tk) for 1 ≤ k ≤ M
can be determined sequentially. First, k is set to be 1. Based on the results of
V1,p, p = 1, ..., P , a(t1) can be determined by solving equation (4.22)with k = 1.

After a(t1) is known, λ̃1,p can be calculated. Second, k is set to be 2. Based on

the values of V2,p and λ̃1,p, a(t2) can be determined. It also determines the λ̃2,p,

and so on. When the values of λ̃m,p are determined, the value of CVAp
W can

be calculated. An example of this calibration procedure can be found in the
appendix of [37].

In summary, given a value of c, an ‘objective estimate’ of b can be obtained by
solving equation CVAp

W = G(b; c), where the values of CVAp
W are equal to the

values of CVAe
W obtained from EAA. Here we use G to denote the computation

of CVA based on the calibration procedure described above.

Numerical test

We take the empirical data of Allianz SE-REG as an example (see figure 4.1) for
the calculation of CVAe

I and CVAe
W . We choose the portfolio to be a Bermudan

put option, with M = 50 exercise rights, S0 = 100, σ = 0.6, T = 1, and we
discretize the time interval by 50 steps (i.e., the same as the possible exercise
dates). We use the calibration procedure discussed above for PVA. By using
equation (4.24), we first invert the credit spread c. Based on the results of c
and equation (4.25), we can estimate the value of b as explained above. In
table 4.2, we provide the estimates of c and b for options with different strike
prices K . If we take an average of all of the b-values, then b = 0.0598.
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K 80 85 90 95 100
c 0.00607 0.00602 0.005955 0.0059 0.00585
b 0.095 0.08 0.065 0.036 0.014

Table 4.2: Estimates of c and b for Bermudan options with different strike prices
K .

K 105 110 115 120
c 0.005795 0.00574 0.005685 0.005635
b 0.065 0.063 0.061 0.059

Table 4.3: Estimates of c and b for Bermudan options with different strike prices
K .
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Chapter 5

Credit Value Adjustment with
Wrong Way Risk for
Multi-asset Options

5.1 Introduction

This chapter is an extension of the work in the chapters 3 and 4. Recalling
that, in chapter 3, we have discussed efficient computation methods for the
exposure profiles of multi-asset instruments. And in chapter 4, we switched
from the exposure profiles computation to CVA in the one-dimensional case,
which is based on the risk neutral pricing technique of counterparty credit risk.
In this chapter, we combine the methods used in chapters 3 and 4 to provide
an efficient computation of CVA for multi-asset instruments, which is the final
task in this thesis.

A general risk-neutral Monte Carlo simulation approach for CVA computa-
tion (or the market value of credit risk) can be found in Canabarro and Duffie
(2003) [17]. As pointed out in [17], the traditional exposure framework dis-
cussed in chapter 3 takes a static buy-and-hold view of counterparty risk, with-
out incorporating the possibility of dynamic hedging of credit risk. However,
because of the expansion of the credit derivatives markets, ‘liquid’ counter-
party risk becomes hedgeable which causes a fundamental change in the per-
ception and management of these risks. To hedge the counterparty risk, an
accurate pricing is very important, and is the first line of defense in credit risk
management. For example, underestimation of the market value of a coun-
terparty’s default risk may bias prices which will accumulate larger risks with
that counterparty. Then potentially large hidden losses may come to light at

87
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unfavorable events. Thus, in order to provide proper incentives to traders, the
pricing of counterparty credit risk should be accurate.

However, because of the complexity of CVA, the computation can be very ex-
pensive, especially for multi-asset portfolios. Related literature, such as Pierre
Henry-Labordère (2012) [35], proposed a marked branching diffusion approach
which can deal with multi-asset portfolios. American options are also dis-
cussed. In addition, the author points out that accurate modeling of depen-
dence between the underlying risk factors and the counterparty’s hazard rate
(or stochastic intensity) is a key issue in CVA computation, however, it is not
addressed in [35].

This chapter aims to propose an efficient computation method for CVA of
multi-asset (European and Bermudan type) options, while the correlation be-
tween the exposure and default risk is also included. The credit exposure of the
multi-asset instruments is calculated by SGBM (see Jain and Oosterlee (2013)
[39], Shen et al. (2014) [57]) introduced in chapter 3, and the dependence be-
tween the credit exposure and default risk is modeled by the hazard rate ap-
proach introduced in chapter 4. We give an efficiency comparison (accuracy,
computation speed, and standard deviation of estimates) of different compu-
tation methods (SGBM, SRBM, and SRM) for CVA.

This chapter is structured in the following way. Section 5.2 gives the model
specification of underlying assets and the model of the counterparty’s default
risk. Section 5.3 gives the algorithm and an example for single asset options.
The effect of correlation between exposure and default risk on exposure pro-
files and CVA is also shown. Section 5.4 provides an efficiency comparison
between different computation methods via various examples of multi-asset
instruments. Section 5.5 discusses the effect of wrong way risk on CVA of
multi-asset options. Section 5.6 gives conclusions.

5.2 Modeling Assumptions

We need to specify the multi-dimensional models of the underlying asset price
processes of the derivative transaction. Different from the model assumptions
in chapter 3, in this chapter, the modeling of the counterparty’s default risk is
required for CVA computation.

5.2.1 Multi-dimensional Models

For a derivatives transaction with multiple underlying assets St =
(
S1
t , ..., S

d
t

)
,

and the counterparty’s stock price Sc
t , we assume that each asset price is driven
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by a geometric Brownian motion,

dSi
t

Si
t

= (r − qi)dt+ σidW
i(t), i = 1, ..., d,

dSc
t

Sc
t

= (r − qc)dt+ σcdW
d+1(t),

where each asset pays a dividend at a continuous rate of qi or qc, r is the
risk free interest rate, and σi and σc are the volatility coefficients. The multi-
dimensional process

(
W 1(t), ...,W d(t),W d+1(t)

)
is d + 1-dimensional Brown-

ian motion under measure Q. The instantaneous correlation coefficients be-
tween the increments of W i and W j are ρi,j , i, j = 1, ..., d, d+1. The increment
of this process for time interval ∆t is joint normally distributed,

(
W 1(∆t), ...,W d(∆t),W d+1(∆t)

)
= L

(
Z1, ..., Zd, Zd+1

)

where Z1, ..., Zd, Zd+1 are independent standard normal random variables.
LL⊤ = Σ is the Cholesky decomposition of the symmetric positive definite
(d+ 1)× (d+ 1) matrix Σ, with Σi,j = ρi,j∆t, i, j = 1, ..., d, d+ 1. For simplifi-
cation, we assume that ρd+1,i = ρc, for i = 1, ..., d, which means the correlation
coefficients between the counterparty’s stock price and each underlying asset
price are the same.

The credit exposure of the multi-asset instruments depends on the multi-
ple underlying asset processes St =

(
S1
t , ..., S

d
t

)
. In chapter 3, we had a de-

tailed discussion about the conditional expectations (or moments) calculation
of functions of the underlying assets Si

t , i = 1, ..., d. These results were found
in table 3.1 of chapter 3 and will be used in CVA computation.

5.2.2 Hazard Rate Model

Recalling from chapter 4, section 4.3.2, we use the concept of a hazard rate
process λt to represent the survival function and default probability of a coun-
terparty. To take into account the dependence between the credit exposure and
the counterparty’s default risk, based on the technique of John Hull and Alan
White (2012) [37], we need to specify the functional form of λt. We also have
introduced two different approaches, EAA and PVA, to specify λt. We choose
EAA and assume the functional form of the hazard rate as follows [26],

λt = λ(Sc
t ) = ASc

t
B,

where A and B are constant parameters, and Sc
t is the counterparty’s equity

price. This negative power functional form has been used by many authors to
model the hazard rate, see a detailed explanation in section 4.4.2. Note that
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by specifying the hazard rate as a function the counterparty’s stock price, be-
cause in the model setup Sc is correlated with the underlying asset prices of
the derivative transaction, the hazard rate is correlated with the credit expo-
sure which depends on the underlying asset prices. The calibration issue has
been described briefly in chapter 4.

We follow the practical example given in chapter 4 and specify the hazard
rate function as follows,

λ̂(Sc
t ) = 230Sc

t
−2.3.

5.3 Computation Method

To calculate the exposure on time interval [0, T ], we first set up the vector of
observation dates as T = {t1, ..., tM}, with 0 = t0 ≤ t1 and tM = T , which are
assumed to be equally spaced, tm − tm−1 = ∆t,m = 1, ...M . For an accurate
computation of CVA, the observation dates should be dense enough (such as
monthly or weekly).

Following the discussion of chapter 4, the computation of CVA requires an
calculation of the expected exposure conditional on default in time interval
(tm−1, tm), i.e., EE∗

tm−1,tm
. The approximation of EE∗

tm−1,tm
in the case of

multi-asset underlying assets can be written as follows,

EE∗
tm−1,tm

≈
∑P

p=1 Etm−1
(stm−1

(p)) exp
(
−
∑m−1

i=1 λ(scti(p))∆t
)
λ(sctm−1

(p))
∑P

p=1 exp
(
−∑m−1

i=1 λ(scti (p))∆t
)
λ(sctm−1

(p))
,

or the simplified version,

EE∗
tm−1,tm

≈
P∑

p=1

Etm−1

(
stm−1

(p)
) λ

(
sctm−1

(p)
)

∑P

p=1 λ
(
sctm−1

(p)
) . (5.1)

5.3.1 Algorithm

Generally, the following algorithm can be used for the CVA computation under
the multi-dimensional model assumptions:

1. Under the risk-neutral measure Q, simulate the underlying asset price
processes St and the counterparty’s stock price process Sc

t in the multi-
dimensional models.

2. Use an efficient computation method to get the sample results of ex-
posure Etm−1

(stm−1
(p)) on each simulated grid point (tm−1, stm−1

(p)),
m = 1, ...M.
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3. Calculate the expected exposure conditional on default and the default
probability in each time interval (tm−1, tm), by using the hazard rate of
the counterparty λ

(
sctm−1

(p)
)
;

4. Calculate CVAW .

In chapter 3, we have introduced the Stochastic Grid Bundling Method (SGBM)
[39] for an efficient computation of exposures of different multi-asset instru-
ments. We found that in the case of high-dimensional underlying asset pro-
cesses, by using a bundling technique, the accuracy of exposure profiles is im-
proved significantly, and the computation speed is reasonably fast. Via various
numerical examples, we showed the advantages of SGBM as follows: assum-
ing that closed-form formulas or analytical approximations exist for the condi-
tional expectations of the basis functions, then

- Compared with the Standard Regression Bundling Method (SRBM), when
the same number of simulation paths, basis functions and bundles are
used, the discontinuity of the conditional expectations at the boundaries
of bundles in SGBM is generally smaller. And this discontinuity in SGBM
can become very small by increasing the number of simulation paths and
bundles appropriately.

- Compared with the Standard Regression Method (SRM) and SRBM, the
numerical examples showed that SGBM has the advantage of smaller
standard deviation for the direct estimates of option prices. This result
is consistent with the conclusion of Glasserman and Yu (2004) [32], in
which they theoretically prove the advantage of ‘regression later’ (used
in SGBM) compared with ‘regression now’ (used in SRBM and SRM) un-
der some conditions (such as martingale basis functions, etc.). Generally,
the estimates of option prices of SGBM are closer to the reference results
than SRM and SRBM. Even though the computation speed of SGBM is
slower than SRBM and SRM, it is still efficient in practice.

In addition, we also show that for discontinuous payoffs, such as digital op-
tions, by using the bundling technique appropriately, SGBM can get accurate
and stable results of option prices and exposure profiles.

In the following sections, we concentrate on the efficient computation of
CVA for multi-asset Bermudan options and provide a comparison study of
SGBM, SRBM, and SRM for this purpose. Technical details of these methods
can be found in chapter 3.

5.3.2 Example of Single-asset Bermudan Options

To provide an efficiency comparison between SGBM and SRM, in this section,
we consider a simple example where the derivative transaction is based on a
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s0 = sc0 = 40 K = 40 r = 0.06 q = qc = 0 σ = σc = 0.2
ρc = 0.25 T = 1 M = 12 observation dates = 24

Table 5.1

single-asset Bermudan put option. Given the following model assumption,

dSt

St

= (r − q)dt+ σdW 1(t),

dSc
t

Sc
t

= (r − qc)dt+ σcdW
2(t),

where St represents the one-dimensional underlying asset of the Bermudan
option, and Sc

t is the counterparty’s stock price, we specify the parameters in
table 5.1.

To obtain the value of CVA (including CVAW and CVAI ) and the direct
estimator of the option price, we use 60000 simulation paths in both SGBM
and SRM; and for the path estimators, 120000 simulation paths are generated.
The standard deviations of the estimates (the numbers in the parentheses) are
based on 30 independent simulation trials. For the regression approximation
at time step tm, basis functions fk(Stm) = S

k−1
tm

, k = 1, ..., 4, are used in SGBM,

while basis functions f̃k(Stm−1
) = S

k−1
tm−1

, k = 1, ..., 4, are used in SRM. The

analytical formulas of EQ[fk(Stm) | Stm−1
= stm−1

(p)], which are used for the
continuation value computation in SGBM, can be found in table 3.1. The refer-
ence results of CVA and option price are provided by the Fourier COS method
combined with Monte Carlo simulation (20000 simulation paths) [28, 58].

As illustrated in table 5.2, by using the results of the COS method as a bench-
mark, the estimates of CVA (CVAW and CVAI ) and option prices (direct esti-
mator and path estimator) from SGBM are better than SRM, and the standard
deviations of the estimates of CVA and direct estimator are also smaller. Even
though the computation speed of SGBM is a bit slower than SRM, it is reason-
ably fast. The smaller standard deviation of the estimates in SGBM is because
of the moment computation in each bundle, which on the other hand makes
the computation speed of SGBM somewhat slower than SRM.

The differences of the CVA computations in SGBM and SRM can be seen
more explicitly from figure 5.1a, in which the expected exposures EEtm and
PFE are plotted as functions of time (i.e., risk profiles). Compared with SRM,
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Method CVAW CVAI CPU time (secs) Direct est. Path est.

SGBM
0.0389 0.0379 2.1318 2.2972 2.2979

(0.0000559) (0.0000460) (0.000146) (0.0055)

SRM
0.0437 0.0430 1.1319 2.3869 2.2922

(0.000404) (0.000365) (0.0061) (0.0053)

COS
0.0389 0.0379 4.2729 2.2973 −

(0.000105) (0.0000713) (1.8616× 10−14)

Table 5.2: CVA of single asset Bermudan options. Four basis functions are
used in SGBM and SRM. The results from Monte Carlo-COS method [28, 58]
(with 20000 simulation paths) are used as the reference numbers. CPU time
represents the computation time of CVA (including CVAW and CVAI ). The
number in the parentheses is the standard deviation of the estimates.

the profiles generated by SGBM (o) are closer to the benchmark results by the
COS method (*). This result gives evidence that a bundling technique can im-
prove the accuracy of exposure profiles significantly.

Figure 5.1b shows that when more bundles are used, the CPU time for the
CVA computation increases 1. Figure 5.1c plots CVAW as a function of the
bundles, from which one can observe that CVAW changes as the number of
bundles increases from one to 32. With no more than 16 bundles, the value of
CVAW is reasonably close to the reference result.

Figure 5.1d provides a comparison of EE∗
tm−1,tm

and EEtm−1
. The volatility

of the underlying stock price is σ = 0.9, while the volatility of the counter-
party’s stock price is σc = 0.8.

At the beginning of the time period, with a positive correlation, ρc = 0.6,
the value of EE∗

tm−1,tm
is greater than EEtm−1

. This is because of the positive
dependence between the exposure and counterparty’s default risk (i.e., wrong
way risk). As illustrated in formula (5.1), a higher probability weight (because
of higher hazard rate) will be given to the higher exposure, which leads to a
higher average value.

Then the value of EE∗
tm−1,tm

becomes smaller than EEtm−1
, which is caused

by the early exercise feature of the Bermudan options. As more paths have
been exercised and the exposures on these exercised paths become zero, the
expected exposure EEtm−1

decreases. The same holds for EE∗
tm−1,tm

, which
may decrease even faster because of the probability weight in formula (5.1).

The relationship between the correlation ρc and the value of CVA is shown
in figure 5.2a and figure 5.2b. With low volatility coefficients σ = 0.2, σc = 0.2,
the condition ρc < 0 implies right way risk, i.e., CVAW < CVAI , while the

1This will be different on a parallel computer, however, where computations in different bun-
dles can be performed in parallel.
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Figure 5.1: Single asset Bermudan options. (A) Comparison of SGBM with 16
bundles (o), COS (*), and SRM (△). Four basis functions are used in SGBM and
SRM. High profile: 97.5% PFE. Low profile: EE. (B) SGBM: CPU time scale of
CVA computation in number of bundles. (C) The value of CVAW as a func-
tion of bundles. (D) Comparison of expected exposure conditional on default
EE∗

tm−1,tm
and EEtm−1

, with volatility coefficients σ = 0.9, σc = 0.8, and the
correlation coefficient ρc = 0.6.
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Figure 5.2: CVA of single-asset Bermudan put option as a function of the cor-
relation ρc. The volatility coefficients of underlying asset and counterparty’s
equity price are (A) σ = 0.2, σc = 0.2 and (B) σ = 0.9, σc = 0.8.

condition ρc > 0 implies wrong way risk, i.e., CVAW > CVAI . However,
with high volatility coefficients σ = 0.9, σc = 0.8, when ρc is positive and high
enough, CVAW can be smaller than CVAI . This is because of the early exercise
feature which can reduce the wrong way risk effect when the volatilities are
high.

5.4 Results and Discussion for Multi-asset Instru-

ments

Following the efficiency comparison of different computation methods for ex-
posure profiles in chapter 3, in this section, we concentrate on the perfor-
mances of SGBM, SRBM and SRM for CVA of multi-asset options. In the exam-
ples of geometric and arithmetic basket options, instead of 2 stocks in chapter
3, 10 stocks are used for the underlying assets. And in the examples of max op-
tions, we keep using 5 stocks as the underlying assets. As explained in chapter
3, in the high-dimensional case, the bundling technique is applied on a dimen-
sionally reduced state space [39]. To obtain the value of CVA (including CVAW

and CVAI ) and the direct estimator of the option price, we use 60000 simu-
lation paths in SGBM, SRBM and SRM; and for the path estimators, 240000
simulation paths are generated. The standard deviations of the estimates (the
numbers in the parentheses) are based on 30 independent simulation trials.
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si0 = sc0 = 40 K = 40, d = 10 r = 0.06
σi = σc = 0.2, i = 1, ..., d T = 1, M = 10 observation dates = 20

q = qc = 0 ρi,j = 0.25, i 6= j, i, j = 1, ..., d ρc = 0.5

Table 5.3

5.4.1 Geometric Basket Options

The exercise value of a d-asset geometric basket Bermudan option is given by,

h(Stm) =
(
K −

( d∏

i=1

Si
tm

) 1
d
)+

,

Under the model assumptions of multi-dimensional geometric Brownian
motion, the parameters used are given in table 5.3.

For the regression approximation at time step tm, basis functions,

fk(Stm) =
(
(

d∏

i=1

Si
tm

)
1
d

)k−1
, k = 1, ..., 5,

are used in SGBM as in [39], while basis functions,

f̃k(Stm−1
) =

(
(

d∏

i=1

Si
tm−1

)
1
d

)k−1
, k = 1, ..., 5,

are used in SRBM and SRM. The analytical formulas of EQ[fk(Stm) | Stm−1
=

stm−1
(p)], which are used for the continuation value computations in SGBM,

can be found in table 3.1 of chapter 3.
As shown in table 5.4, the results of CVA generated by SGBM are quite close

to the results of SRBM, and the results of CVA from SRM are higher than SGBM
and SRBM. The standard deviation of the estimates from SGBM is smaller than
that from SRBM and SRM, because of the moment calculation for each bundle
in SGBM, which on the other hand makes the computation of SGBM more ex-
pensive. The CPU time scale shows us that SRM is the fastest method, and
SRBM the second fastest. Compared with the reference results for the option
prices, we see that SGBM gets accurate results, particularly, for the direct esti-
mator, it has the lowest standard deviation of the estimates.
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Method CVAW CVAI CPU time (secs) Direct est. Path est.

SGBM
0.0180 0.0181 5.2728 1.1779 1.1781

(0.0000324) (0.0000334) (0.000117) (0.0022)

SRBM
0.0180 0.0182 3.8427 1.1789 1.1778

(0.000215) (0.000211) (0.0033) (0.0020)

SRM
0.0198 0.0204 1.9457 1.2075 1.1732

(0.000153) (0.000161) (0.0031) (0.0029)

Table 5.4: Geometric basket Bermudan option with 10 stocks. The direct esti-
mator and path estimator represent the different estimates of the option prices.
CPU time represents the computation time of CVA (including CVAW and
CVAI ). The literature reference of the option price is 1.1779 [5].

The effect of the bundling technique on the exposure computation can be
seen in figure 5.3a. For both PFE and EE, the results of SGBM are close to
the results of SRBM. The computation time of SGBM and SRBM with differ-
ent numbers of bundles is shown in figure 5.3b. Compared with SRBM, even
though the increase of SGBM’s CPU time with respect to bundles is somewhat
higher, the computation speed of SGBM is reasonably fast. In figure 5.3c, we
also show the CPU time scale of SGBM, SRBM, and SRM with respect to dif-
ferent numbers of simulation paths. The convergence of the CVA value with
respect to the number of bundles can be seen in figure 5.3d. When the number
of bundles increases, the value of CVA from SGBM and SRBM decreases and
becomes stable.

5.4.2 Arithmetic Basket Options

The exercise value of a d-asset arithmetic basket Bermudan option reads

h(Stm) =
(
K − 1

d

( d∑

i=1

Si
tm

))+
.

Under the model assumptions of the underlying assets and the counter-
party’s stock price, the parameters in table 5.3 are used for the numerical ex-
amples. For the regression approximation at time step tm, basis functions,

fk(Stm) =
(1
d

d∑

i=1

Si
tm

)k−1
, k = 1, ..., 4,

are used in SGBM as in [39], while basis functions,

f̃k(Stm−1
) =

(1
d

d∑

i=1

Si
tm−1

)k−1
, k = 1, ..., 4,
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Figure 5.3: Geometric basket Bermudan option with 10 stocks. (A) Comparison
of SGBM with 16 bundles (o), SRM (*), and SRBM (△) with 16 bundles. High
profile: 97.5% PFE. Low profile: EE. (B) CPU time scale of CVA computation
in number of bundles. (C) CPU time scale of CVA computation in number of
simulation paths. (D) The value of CVAW as a function of bundles.



5.4. RESULTS AND DISCUSSION FOR MULTI-ASSET INSTRUMENTS 99

Method CVAW CVAI CPU time (secs) Direct est. Path est.

SGBM
0.0149 0.0151 9.3446 1.0625 1.0621

(0.000027) (0.000027) (0.000146) (0.0029)

SRBM
0.0150 0.0151 3.7306 1.0630 1.0616

(0.000134) (0.000133) (0.0027) (0.0020)

SRM
0.0166 0.0171 1.8510 1.0895 1.0586

(0.000158) (0.000164) (0.0033) (0.0022)

Table 5.5: CVA of arithmetic basket Bermudan options with 10 stocks. Four
basis functions are used in SGBM, SRBM and SRM. CPU time represents the
computation time of CVA (including CVAW and CVAI ). The number in the
parentheses is the standard deviation of the estimates. The estimate of the
option price by LSM is 1.0607(0.0021).

are used in SRBM and SRM. The analytical formulas of EQ[fk(Stm) | Stm−1
=

stm−1
(p)] that are used for the continuation value computations in SGBM, can

be found in table 3.1 of chapter 3.
According to the results reported in table 5.5, the values of CVA generated

by SGBM are close to the results of SRBM, and the results of CVA from SRM are
higher than both SGBM and SRBM. The standard deviation of CVA estimates
from SGBM is smaller than SRBM and SRM. For the direct estimates of the
option price, SGBM has the lowest standard deviation of estimation.

Similar as for the geometric basket options, the application of the bundling
technique can significantly improve the accuracy of PFE and EE, which can be
seen from figure 5.4a. For both PFE and EE, the results of SGBM are close to
the results of SRBM. The computation time of SGBM and SRBM with different
numbers of bundles is shown in figure 5.4b. Compared with the geometric
basket options, since the basis functions used for arithmetic basket options
have a more involved moment formula, the corresponding CPU time of SGBM
is now higher.

In figure 5.4c, we show the CPU time of SGBM, SRBM, and SRM with respect
to different numbers of simulation paths. The convergence of the CVA value
with respect to the number of bundles can be seen in figure 5.4d. We see the
same behavior as for the geometric basket options above.

5.4.3 Max Options

The exercise value of a d-asset Bermudan max option is given by,

h(Stm) =
(
max(S1

tm
, ..., Sd

tm
)−K

)+
.
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Figure 5.4: Arithmetic basket Bermudan option with 10 stocks. (A) Compar-
ison of SGBM with 16 bundles (o), SRM (*), and SRBM (△) with 16 bundles.
High profile: 97.5% PFE. Low profile: EE. (B) CPU time scale of CVA computa-
tion in the number of bundles. (C) CPU time scale of CVA computation in the
number of simulation paths, with 16 bundles in each method. (D) The value of
CVAW as a function of bundles.
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si0 = sc0 = 100 K = 100, d = 5 r = 0.05
σi = σc = 0.2, i = 1, ..., d T = 3, M = 9 observation dates = 36

q = qc = 0.1 ρi,j = 0, i 6= j, i, j = 1, ..., d ρc = 0.3

Table 5.6

For the multi-dimensional geometric Brownian motion, the parameters are
given in table 5.6.

For the regression approximation at time step tm, basis functions,

fk(Stm) =
(
log(max(S1

tm
, ..., Sd

tm
))
)k−1

, k = 1, ..., 5,

f6(Stm) =
( d∏

i=1

Si
tm

) 1
d ,

f6+i(Stm) = Si
tm

, i = 1, ..., d,

are used in SGBM as in [39], while basis functions,

f̃k(Stm−1
) =

(
log(max(S1

tm−1
, ..., Sd

tm−1
))
)k−1

, k = 1, ..., 5,

f̃6(Stm−1
) =

( d∏

i=1

Si
tm−1

) 1
d ,

f̃6+i(Stm−1
) = Si

tm−1
, i = 1, ..., d,

are used in SRBM and SRM. Since the analytical formulas of EQ[fk(Stm) |
Stm−1

= stm−1
(p)] only exist for d = 2, an approximation formula by the Clark’s

algorithm will be applied in the case of more than two assets (d > 2) [23, 39].
From table 5.7, we can see that the values of CVA generated by SGBM are

close to the results of SRBM, and the results of CVA from SRM are higher than
both SGBM and SRBM. The standard deviation of the CVA estimates from
SGBM is smaller than SRBM and SRM. For the direct estimation of option price,
SGBM has the smallest standard deviation of estimates. For the standard de-
viation of the path estimator, all three methods are similar. SGBM seems to
provide the best estimates of the option prices among theses three methods.
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Method CVAW CVAI CPU time (secs) Direct est. Path est.

SGBM
0.2871 0.2870 18.5511 26.1673 26.0871
(0.0011) (0.0011) (0.0127) (0.0320)

SRBM
0.2891 0.2893 8.4731 26.3164 26.0474
(0.0023) (0.0022) (0.0607) (0.0335)

SRM
0.3038 0.3014 2.9839 26.4223 26.0049
(0.0022) (0.0020) (0.0413) (0.0361)

Table 5.7: CVA of max options with 5 stocks. 16 bundles are used in SGBM
and SRBM. The direct estimator and path estimator represent the different es-
timates of option prices. CPU time represents the computation time of both
CVAW and CVAI . The literature reference of the option price is [26.115, 26.164],
with 95% CI.

Similar as for the geometric and arithmetic basket options, the application
of the bundling technique can improve the accuracy of PFE and EE, which can
be observed from figure 5.5a. The computation time of SGBM and SRBM with
different numbers of bundles is shown in figure 5.5b. Compared with the ge-
ometric and arithmetic basket options, since more basis functions are used for
max options (11 basis functions for five assets), and the conditional expecta-
tions of the basis functions have more involved formulas, the corresponding
CPU time of SGBM is higher.

In figure 5.5c, we also show the CPU time scale of SGBM, SRBM, and SRM
with respect to different numbers of simulation paths. The convergence of
CVA w.r.t. the number of bundles can be seen in figure 5.5d. When the number
of bundles increases, the value of CVA from SGBM and SRBM decreases and
becomes stable.

5.5 Effect of Wrong Way Risk

To show the effect of wrong way risk (WWR) on the CVA of multi-asset op-
tions, we take the example of the geometric basket Bermudan put option dis-
cussed in section 5.4.1. This example allows for an easy exposition, because the
computation of these options can be reduced to a one-dimensional problem. By

using Itô’s lemma, the process Yt = log
(∏d

i=1 S
i
tm

) 1
d follows the risk-neutral

process [5]

dYt = µ̂dt+ σ̂dW (t), (5.2)



5.5. EFFECT OF WRONG WAY RISK 103

0 0.5 1 1.5 2 2.5 3
0

10

20

30

40

50

60

70

Time

E
xp

os
ur

e

PFE

EE

(a)

0 5 10 15 20 25 30 35
0

5

10

15

20

25

30

35

Bundles
C

P
U

 ti
m

e 
(s

ec
s)

 

 

SGBM
SRBM

(b)

2 3 4 5 6 7 8 9 10
0

5

10

15

20

25

30

Number of simulation paths (104)

C
P

U
 ti

m
e 

(s
ec

s)

 

 

SGBM
SRM
SRBM

(c)

0 5 10 15 20 25 30 35
0.286

0.288

0.29

0.292

0.294

0.296

0.298

0.3

0.302

0.304

0.306

Bundles

C
V

A
w

 

 

SGBM
SRBM

(d)

Figure 5.5: Max Bermudan option with 5 stocks. (A) Comparison of SGBM
with 16 bundles (o), SRM (*), and SRBM (△) with 16 bundles. High profile:
97.5% PFE. Low profile: EE. (B) CPU time scale of CVA computation in the
number of bundles. (C) CPU time scale of CVA computation in the number of
simulation paths, with 16 bundles in SGBM and SRBM. (D) Value of CVAW as
a function of bundles.
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where

µ̂ = r − 1

d

d∑

i=1

qi −
1

2d

d∑

i=1

σ2
i , (5.3)

and

σ̂ =

√√√√ 1

d2

d∑

j=1

d∑

k=1

ρj,kσjσk. (5.4)

The geometric basket option is then equivalent to a single-asset option with

strike priceK , for which the underlying asset price process, S∗
t =

(∏d

i=1 S
i
tm

) 1
d ,

is given as follows,

dS∗
t

S∗
t

= (r − q∗)dt+ σ̂dW (t), (5.5)

with r the risk free interest rate, q∗ = 1
d

∑d
i=1 qi +

1
2d

∑d
i=1 σ

2
i − 1

2 σ̂
2 the contin-

uous dividend stream, and S∗
0 = exp(Y0) the initial value of S∗

t .
To simplify the analysis, we assume that σi = σ, qi = 0 for all i, and the

correlations ρi,j = ρ, i 6= j. Then the process S∗
t reads,

dS∗
t

S∗
t

=
(
r − σ2(1− ρ)(1 − 1

d
)

2

)
dt+ σ

√
ρ(1 − 1

d
) +

1

d
dW (t). (5.6)

To investigate the effect of WWR on CVA, we assume that the counterparty’s
stock price process Sc

t is positively correlated with each underlying asset of the
geometric basket options, i.e., ρc > 0. Particularly, in the following numerical
examples, we use a constant value of ρc = 0.5. We also assume that the volatil-
ity of Sc

t is constant, i.e., σc = 0.6. The initial stock price is sc0 = 40.
From equation (5.6), we see that the variation of σ and ρ will change the

dynamics of S∗
t and then influence the early exercise features of the Bermu-

dan options. Other factors that will affect the early exercise features include
the strike price K and the number of possible early exercise dates M . Re-
calling the discussion in chapter 4, the change of early exercise features will
influence the expected exposure profiles and CVA of single-asset Bermudan
options. Using a similar methodology, in the following examples, we show the
effect of WWR on CVA of geometric basket options by changing its early exer-
cise features (i.e., changing the value of σ, ρ, K , and M ). All of the results are
generated by SGBM, although SRBM can also produce good results, as shown
in the comparison study of different methods.
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Figure 5.6: (a), EE with WWR (‘△’) and EE without WWR (‘o’). (b), CVA w.r.t.
σ. Parameter setting: M = 10, observation dates=40, K = 40, si0 = 40, i =
1, ..., d.

5.5.1 Volatilities of Underlying Asset Prices σ

Given the correlations of the underlying asset price processes (ρ = 0.25), results
of EE and CVA with respect to different values of volatility σ are illustrated
in figures 5.6a and 5.6b. From figure 5.6a, we can see that with a relatively
low volatility (such as σ = 0.4 in the example), because of the early exercise
features, results of EE are decreasing w.r.t time t. Furthermore, the decrease of
EE with WWR is faster than EE without WWR, which leads to CVAW < CVAI

(see figure 5.6b).
In the case of relatively high volatility (such as σ = 0.7), however, EE be-

comes a straight line (see figure 5.6a). This is because the exercise intensity
(see the explanation in chapter 4, section 4.6.) with σ = 0.7 becomes lower
than in the case of σ = 0.4, which is caused by the change of the dynamics of
the underlying asset prices. More precisely, from the dynamics of S∗

t in equa-

tion (5.6), we find that the drift coefficient r − σ2(1−ρ)(1− 1
d
)

2 is positive when
σ = 0.4, however, it becomes negative when σ = 0.7. In the case of σ = 0.7,
most of the time, EE with WWR is greater than EE without WWR (see figure
5.6a), which leads to CVAW > CVAI (see figure 5.6b). The feature has a similar
effect as a large continuous proportional dividend payment for the S∗

t process.
Figure 5.6b also shows that CVAW and CVAI are increasing functions of σ.

5.5.2 Correlations of Underlying Asset Prices ρ

From equation (5.6), we can see that variation of ρ will also change the dynam-
ics of S∗

t and then influences the results of CVA.
When the volatility σ is relatively low (σ = 0.2 used in the example), the
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Figure 5.7: (a), EE with WWR (‘△’) and EE without WWR (‘o’). (b), CVA w.r.t.
ρ. Parameter setting: M = 10, observation dates=40, K = 40, si0 = 40, i =
1, ..., d.

drift coefficient of the dynamics of S∗
t , r− σ2(1−ρ)(1− 1

d
)

2 , is positive. Figure 5.7b
shows that CVAW and CVAI are increasing functions of ρ. This is because with
a higher correlation, the value of EE becomes higher in general (see figure 5.7a).
The effect of WWR on CVA is shown in figure 5.7b, i.e., with the early exercise
features, EE with WWR decreases faster than EE without WWR, which leads
to CVAW < CVAI .

However, if we use a relatively high volatility (σ = 0.8 used in the example),
the drift coefficient of the dynamics of S∗

t will be negative. In this case, CVAW

and CVAI will become decreasing functions of ρ, as shown in figure 5.8b. Fig-
ure 5.8a shows that compared with the case of ρ = 0.4, EE with ρ = 0.8 can be
much lower which affects the value of CVA. Figure 5.8b illustrates the effect of
WWR on CVA. When ρ is low, we have CVAW > CVAI , and a higher ρ leads
to a more active early exercise policy and CVAW < CVAI .

5.5.3 Strike Price K and Early Exercise Rights M

The variation of strike price K can also affect EE and CVA. Generally, increas-
ing K will increase EE and the CVA of put options, as shown in figure 5.9a.
With relatively low strike prices (such as K < 35 in this example), we have
CVAW > CVAI . With relatively high strike prices (such as K > 35), we will
have CVAW < CVAI .

Regarding the number of possible exercise dates M , although increasing M
will increase the option price, EE will decrease because of the early exercise
features. CVAW and CVAI are decreasing functions of M , see figure 5.9b. The
effect of WWR on CVA can be seen from the comparison of CVAW and CVAI .
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Figure 5.8: (a), EE with WWR (‘△’) and EE without WWR (‘o’). (b), CVA w.r.t.
ρ. Parameter setting: M = 10, observation dates=40, K = 40, si0 = 40, i =
1, ..., d.

With a low value of M (M < 5 in this example), we have CVAW > CVAI , and
if M is high, the value of CVAW can be smaller than CVAI .

5.6 Conclusion

For an efficient computation of CVA of multi-asset options, we concentrated
on an efficiency comparison of SGBM, SRM and SRBM. For the accurate com-
putation of CVA, exposure profiles and option prices, by using the bundling
technique, both SRBM and SGBM are better than SRM. Compared with SRBM,
one of the advantages of SGBM is that the standard deviation of the CVA es-
timates and the option price direct estimates is smaller. While the results of
CVA, exposure profiles and option prices are similar for SGBM and SRBM, the
computation speed of SGBM is slower than SRBM. The effect of wrong way
risk on exposure profiles and CVA for multi-asset options can be significant.
Because of the early exercise features of Bermudan options, the value of CVA
with WWR can be smaller than of CVA without WWR. The geometric basket
option offers useful insight in the effect of wrong way risk because of its ana-
lytical properties.
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Figure 5.9: (a), parameter setting: M = 10, observation dates=40, σ = 0.4,
ρ = 0.6, si0 = 40, i = 1, ..., d. (b), parameter setting: K = 40, observation
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Chapter 6

Conclusions and Outlook

6.1 Conclusions

In this thesis we have presented efficient computation methods for the quan-
tification of counterparty credit risk of multi-asset options.

We have described a new procedure to embed the Fourier cosine expan-
sions as a useful tool in counterparty credit exposure modeling of European
and Bermudan single-asset options. The Fourier cosine expansions are directly
connected to the characteristic function of the underlying asset process to pro-
duce accurate results of option prices. Combined with a Monte Carlo simu-
lation approach, we are able to obtain the risk profiles, such as PFE and EE.
Our approach is applicable for a Lévy process which can be simulated accu-
rately. We have also illustrated that the approach is different from regression-
based simulation approaches, such as the Longstaff-Schwartz Method (LSM),
in which a conditional expectation is approximated by using a least squares
regression method. And the results generated by our Fourier-based approach
can serve as a benchmark for analysing the error in American Monte Carlo
methods (LSM). We have shown the difference of risk profiles under different
measures (P and Q). We further point out that the results of EE form the basis
of CVA computations.

For the calculation of risk profiles in multi-dimensional models, we have
proposed algorithms based on a simulation approach, named the Stochastic
Grid Bundling Method (SGBM) [39]. To investigate the efficiency of SGBM, we
have examined different simulation approaches, including the Standard Re-
gression Method (SRM) and the Standard Regression Bundling Method (SRBM).
Although all of these methods can produce risk profiles, the results are dif-
ferent in accuracy, computation speed and standard deviation of option price
estimates. We find that compared with SRBM, when the same number of sim-
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ulation paths, basis functions and bundles are used, the discontinuity of the
conditional expectations at the boundaries of bundles in SGBM is generally
smaller. And this discontinuity in SGBM can become very small by increas-
ing the number of simulation paths and bundles appropriately. In this case,
the effect of this discontinuity on the results of risk profiles is limited. Com-
pared with SRM and SRBM, the numerical examples show that SGBM has the
advantage of the smallest standard deviation for the direct estimates of the op-
tion prices. This result is consistent with the conclusion of [32], in which the
authors theoretically prove the advantage of ‘regression later’ (used in SGBM)
compared with ‘regression now’ (used in SRBM and SRM) under some con-
ditions. Generally, the estimates of option prices of SGBM are closer to refer-
ence results than SRM or SRBM. We also show that for discontinuous payoffs,
such as digital options, by using the bundling technique appropriately, SGBM
can get accurate and stable results of option prices and exposure profiles. We
conclude that in the case of high-dimensional underlying asset processes, by
using a bundling technique, the accuracy of exposure profiles is improved sig-
nificantly, and the computation speed is kept reasonably high. We also point
out that SGBM can be further applied as an efficient computation method for
CVA of multi-asset portfolios.

We then switch to quantify the counterparty credit risk by using the risk-
neutral pricing technique, i.e., the computation of credit value adjustment (CVA).
Based on Monte Carlo simulation and the Fourier inverse option pricing method
introduced in chapter 2, an efficient calculation method for Bermudan options’
CVA is proposed. The method is applicable when the underlying stock price
follows a Lévy process which can be simulated accurately. By using the con-
cept of stochastic hazard rate, we derive an analytical approximation of the
expected exposure conditional on default, which is applicable for the calcula-
tion of expected exposure and CVA with wrong way risk. To model the wrong
way risk, we compare the empirical analysis approach (EAA) and the portfolio
value approach (PVA), and prefer EAA in our problem setting. The numeri-
cal results show that the wrong way risk has significant effect on the expected
exposure (EE) and CVA of Bermudan options, however, this effect depends
on the Bermudan option’s early exercise features. More precisely, a high exer-
cise intensity (i.e., high volatility, high strike price, or high number of possible
early exercise dates) may lead to CVAW < CVAI , which is different from the
conclusion if one uses the α multiplier approach with α > 1.

Finally, the efficient computation of CVA for multi-asset options is illustrated
in chapter 5. When the underlying asset of the derivative transaction is one-
dimensional, we show that this is an extension of the one-dimensional prob-
lem described in chapter 4. In the case of multi-asset instruments, an efficiency
comparison of SGBM, SRM and SRBM is given. By using the bundling tech-
nique, the accuracy of CVA produced by SGBM can be improved significantly,
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while the computation speed is kept reasonably fast. Compared with SRBM,
the standard deviation of CVA estimates in SGBM is smaller. We have also dis-
cussed the effect of correlation between exposure and default risk on CVA for
multi-asset options.

6.2 Outlook

In the problem formulation for the CVA computation, we have only consid-
ered the so-called one-sided default risk (unilateral), i.e., one counterparty
is defaultable and the other one is assumed to be default-free. A more re-
alistic version is the two-sided default risk (bilateral), i.e., both counterpar-
ties are defaultable. Related references such as Duffie and Singleton (2003)
[26], have provided a general Monte Carlo valuation approach for CVA un-
der these conditions. Based on the methods we have introduced in the case of
one-sided default risk, it is interesting to explore efficient computation meth-
ods in the situation of two-sided default risk. Important applications of such
methods include the quantification of counterparty risk of interest rate instru-
ments (swaps, Bermudan swaptions, etc.) and credit derivatives (CDS, etc.). In
addition, related probability problems such as simultaneous defaults are also
interesting for consideration.

Another interesting direction for further research is in the further modeling
of wrong way risk (WWR), which describes the dependence between exposure
to a counterparty and its default risk. In chapter 4, we have discussed different
approaches for a general WWR modeling. An extension is to take into account
the impact of systemically important counterparties (SICs), such as large finan-
cial institutions and sovereigns, see Pykhtin and Sokol (2013) [50]. An SIC is
defined as a counterparty whose default is likely to have a significant impact
on the whole financial market. The impact of an SIC’s default on risk factors
and, through them, on exposure is referred as systemic WWR. For the general
WWR, it arises when a counterparty’s credit spread and exposure share the
same risk factors. For systemic WWR, however, it arises from the default of
SICs.

A term closely related to the default risk is collateral. For ease of discussion,
in the examples given in the thesis, we assumed that no collateral was posted.
In practice, it is nowadays common to include a credit support annex (CSA)
in the transactions which are cleared bilaterally. The CSA typically provides
formulas governing the amount of collateral that is required by each side at
any given time. And the collateral posted for derivatives positions is usually
in the form of cash or liquidity securities. A detailed discussion of the impact
of collateral agreements on the price of derivative transaction can be found in
Hull and White (2014) [38].

The work in chapter 4 is closely related to the pricing of defaultable op-
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tions. It should be interesting to give a more general approach of equity-credit
modeling (see Carr and Wu (2010) [20]), for example, the GBM process of the
underlying asset can be extended into an affine jump diffusion process, etc.
The default process can be modeled by the reduced form or the structure form
framework. Under this model, we can consider the efficient valuation of credit-
sensitive derivatives such as defaultable European and Bermudan options, or
even credit default swaps (CDS), while the correlation between default risk
and underlying risk factors can also be taken into account.
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