
Cortical Parcellation and
Classification using PageRank

Clustering and the Small-Worldness of
ADHD

Master’s Thesis

Niels Arjan van Galen Last





Cortical Parcellation and
Classification using PageRank

Clustering and the Small-Worldness of
ADHD

THESIS

submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE

in

COMPUTER SCIENCE

by

Niels Arjan van Galen Last
born in Naarden, the Netherlands

Man-Machine Interaction Group
Department of Mediamatics
Faculty EEMCS, Delft University of Technology
Delft, the Netherlands
http://www.mmi.tudelft.nl

ABabcdfghiejkl
Stanford University

Institute for Computational and
Mathematical Engineering

Stanford, CA, USA
http://icme.stanford.edu

http://www.mmi.tudelft.nl
http://icme.stanford.edu


© 2005 Niels Arjan van Galen Last. Cover picture: Axial slice at 0mm of a subject di-
agnosed with ADHD, left: anatomical image, right: result of functional clustering in 71
partitions with k-prmeans algorithm.



Cortical Parcellation and
Classification using PageRank

Clustering and the Small-Worldness of
ADHD

Author: Niels Arjan van Galen Last
Student id: 1533096
Email: n.a.vangalenlast@student.tudelft.nl

Abstract

Networks and graphs are all around us and can represent a variety of models:
from airline connections, the World Wide Web to the way people are connected on
Facebook. There are are a few classes of networks with interesting properties such as
structured and random networks. One particular interesting class is the small-world
network, with a short path length between nodes and a high degree of clustering.
This network emerges in many (real-world) phenomena, like the models mentioned
above, as well as biological models such as protein-protein interaction and neu-
ronal connections in the human brain. We discuss the differences in small-world
properties in the anatomical brain for typically developing children and children
diagnosed with Attention-Deficit/Hyperactivity Disorder. Using the differences we
investigate the possibilities for classification between the populations. Secondly, we
propose a clustering algorithm that is based on spectral clustering and uses the im-
portance of nodes in a network to find clusters. This algorithm is similarly applied
to fMRI data and used to reduce the dimensionality before classification.
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1
INTRODUCTION

This chapter provides an informal introduction to this thesis. In the following section we
describe the underlying motivation for performing this research and which problems we
are targeting. In Section 1.2 we formulate the research questions that drive this thesis.
Finally, Section 1.3 lays the outline for the sequence of chapters.

1.1 Motivation / Problem Description

Recent studies show that attention-deficit/hyperactivity disorder (ADHD) is now the most
frequently diagnosed neurological disorder for children in the USA [2000]. The disor-
der shows the first symptoms in childhood and many children, who are diagnosed with
ADHD, continue to experience the effects of the disorder throughout the rest of their
life. ADHD is mostly diagnosed in children and young adolescents. Sometimes adults
are diagnosed with ADHD but they oftentimes show slightly different symptoms, such as
restlessness instead of hyperactivity.

The symptoms of ADHD, as the name implies, include inattention and/or hyperac-
tivity and impulsivity. Most of the children who are diagnosed with ADHD display one or
more of these traits. There are three different types of ADHD:

combined ADHD, in which all symptoms (inattention, hyperactivity and impulsivity)
are present

inattentive ADHD, which requires the attention and concentration issues.

hyperactive-impulsive ADHD, marked by hyperactivity without inattentiveness or con-
centration problems.

For the diagnosis of ADHD, the symptoms need to be present before the age of 7 and
in different settings. For example, children have to be inattentive both at home and at

1



1.1 Motivation / Problem Description Introduction

school, and it seriously has to affect and influence the ability to function or the perfor-
mance. The diagnosis must be done at a young age because the disease can seriously
affect the academic performance, influence the social relationships or may lead to other
psychiatric disorders when untreated [2000].

The diagnosis of attention-deficit/hyperactivity disorder in children has been mono-
tonically increasing over the past 10 years [Davis and Williams, 2011]. More boys are
diagnosed with the disease than girls of the same age. As a matter of fact, boys are about
3 to 4 times more often found positive for ADHD than girls. Recent research however,
shows that this ratio has decreased during the past few years [2010]. This report de-
scribes an increase from 7.8% to 9.5% of children (age 4 to 17) diagnosed with ADHD
between 2003 and 2007, which is a substantial 21.8% increase in just 4 years. Research by
Mandell et al. [2005] showed an increase of 39% between 1989 and 2000 in diagnosis of
several psychiatric disorders. They found an increase of 381% of ADHD diagnosis during
this timespan.

Although some might think the increase is solely due to overzealous doctors who
make the diagnosis and parents who have their children labeled with ADHD because
they are restless, it is almost certain that ADHD is indeed over-diagnosed. The rapid
increase in ADHD diagnosis does therefore not necessarily reflect a true increase of such
a magnitude. The second argument to support the increase in diagnosed ADHD cases is
more awareness and an increased understanding of the symptoms. The diagnosis is now
set by the physician, based on his interpretation of the information he receives from the
parents and the behavior of the child.

Because the diagnosis of attention-deficit/hyperactivity disorder is based on opin-
ions and interpretation we are going to explore a novel approach for the diagnosis of
ADHD based on the structure of the a child’s brain derived from a functional Magnetic
Resonance Image.

With the ever-increasing creation and generation of data and the emergence of mas-
sive information networks, many algorithms are often no longer feasible. This is largely
due to the prohibitive time and space complexity of the algorithms. For example, com-
puting the shortest path between each set of pages on the internet would take, even when
all computers in the world would be used at the same time, too long to be meaningful.
Instead of applying algorithms to a large network there is a more recent research area
that focusses on local algorithms, applied to a subset of the data. Graph partitioning
and finding local communities in a network is a well-studied problem that is relevant in
many areas. The partition algorithms are typically developed using divide-and-conquer
approaches and because exact solutions for graph partitioning is known to be NP-hard,
various approximations have been developed. There are many examples of networks
that turn out to belong to a special class known as the small-world, one of the most re-
markable and interesting that belongs to this class is the neuronal network and the in-
ternet. For finding local communities or clusters on the internet, algorithms used to rely
on the Euclidean distance between nodes. However, this fails to capture the underlying
structure and properties of a small-world network such as the short characteristic path
length between nodes and the high cluster coefficient. Page et al. [1998] then introduced
the PageRank algorithm, to find order in the web using a form of spectral clustering. In

2



Introduction 1.2 Research Question

this thesis we investigate whether it is possible to combine the idea of PageRank with a
clustering algorithm. We will determine the performance of this algorithm with graphs
that exhibit small-world characteristics similar to the ones found in the brain.

1.2 Research Question

This project is centered around the question:

Are there significant differences in small-world properties in a graph representation of
the brain between normal children and children diagnosed with attention-deficit/hyperactivity
disorder?

This question is supported by several smaller questions which we will explore in the
following chapters of this thesis, such as:

• What is the ‘small-world’ phenomenon and how does it relate to the brain?

• Can we use a cluster algorithm like k-means to partition a graph irrespective of the
structure?

• Is it possible to built a classifier for fMRI data?

• Can we detect differences in fMRI data for children with ADHD?

• Are there differences between properties between normal children and children
who are diagnosed with ADHD? If so, what are the differences and are they signifi-
cant?

• If there are differences, can we utilize them to classify whether somebody has ADHD
based solely on these characteristics?

1.3 Outline

This thesis is divided in four parts, hereafter we give a brief overview of the contents of
each part.

Theory

In the first part we provide the foundations for the topics discussed in the sequence of
parts. We start with an overview of graph theory in Chapter 2. In this chapter we discuss
a number of metrics to ‘measure’ different properties of graphs and various topologies
such as the small-world network and some derived models. In Chapter 3 we introduce
the PageRank, a simple algorithm that drastically changed the way we search and retrieve
relevant information on the internet. An introduction to computational neuroscience is
given in Chapter 4. The discussion starts with the human brain, using functional mag-
netic resonance imaging to create an anatomical or functional image of the brain and
explore some research that combines graph theory and the brain.

3



1.3 Outline Introduction

Clustering the brain

The second part of this thesis is about clustering the brain. In Chapter 5 we introduce
the k-means algorithm, one of the most, if not the most, used cluster algorithm as well
as a recent improvement known as k-means++. Then we explain two methods for ap-
proximating a personal PageRank for a vertex in a graph and use this to define a new dis-
tance metric: the pagerank-distance. We propose a new cluster algorithm, k-prmeans,
that uses this distance metric and provides good results in small-world graphs where
the Euclidean distance fails. Finally we provide an algorithm called stable-k-prmeans to
find a ‘good’ partitioned graph using repeated clustering and the conductivity of clus-
ters. Experimental results of this algorithm are shown in Chapter 6, in which we apply
this algorithm to the small-world network and several derivations.

The Small-Worldness of ADHD

In the third part we investigate the small-world properties of children with and without
attention-deficit/hyperactivity-disorder. Chapter 7 explains the data and how it is pre-
processed. Then we explain how we derive a graph from the fMRI data in which the
nodes correspond to anatomical regions and the edges to activity between them. We use
these graphs to investigate the small-world properties between these groups of children
and provide an extensive physiological analysis of our findings.

We use the small-world properties derived from an anatomical template to classify
the groups of children in Chapter 8. Different types of dimension reduction are explored
and classification results are presented. In Chapter 9 we explore classification using clus-
ter coefficients derived from fMRI data clustered with the stable-k-prmeans algorithm.

Conclusions

In the final part of this thesis we present the conclusions. In Chapter 10 we provide a
summary of this thesis, present our findings and give suggestions for future research.
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2
GRAPH THEORY

In the year 1735, the eminent mathematician and physicist Leonard Euler (1707-1783)
solved the ‘Seven Bridges of Königsberg’ problem. The old city of Königsberg was set
around two islands in the Pregel River. The islands were connected by a total of seven
bridges to each other and to the shores of the mainland. The original map of Köningsberg
with depicted bridges and river is shown in Fig. 2.1. The problem can be formulated as
follows: find a walk through the city, across each of the seven bridges where every bridge
is to be crossed once and only once, and a bridge can only be crossed in its entirety. Euler
came up with a negative resolution by representing the problem as an abstract network:
a ‘graph’. This is now considered as the first proof in the field that is now known as graph
theory.

This chapter lays the graph theoretical foundations of this thesis. Section 2.1 de-
scribes the representation of graphs and the most important topologies. Then in Sec-
tion 2.2 several graph metrics are discussed. Lastly, Section 2.1.3 presents several other
derivations and characteristics of other network topologies.

2.1 Measuring Graphs

In this section we explore the representation of graphs, the structure of graphs and small-
world networks.

2.1.1 The Definition of a Graph

As explained in the introduction, many models that involve connections or relations can
be represented in an abstract form, a network, known as a graph. For example, the graph
representation of the problem is shown in Fig. 2.2. The green circles can be considered

7



2.1 Measuring Graphs Graph Theory

Figure 2.1: Original map of Köningsberg with the river and seven bridges

as the mainland, the blue circles represent the islands and the lines between the circles
represent the bridges.

Figure 2.2: Abstract representation of the Seven Bridges of Köningsberg problem

Formally, we will consider a graph G , consisting of a vertex (node) set V = {v1, . . . , vn}
and an edge (connection) set E , denoted as G(V ,E). Depending on the problem, the pres-
ence of an edge between two nodes indicates a certain relationship between two vertices,
e.g. in Euler’s case, an edge represents a bridge. The connections between every node can
be modeled as an adjacency matrix A. If and only if there is a connection between two
vertices vi and v j , the entry in the adjacency matrix is: Ai , j = 1. The number of edges of
a given vertex is called the degree, denoted by d(vi ). From the degree of each vertex we
can construct a diagonal matrix D , where Di ,i = d(vi ). Every vertex has a certain degree
and we can model this for the graph by the degree distribution P (d(vi )), this describes
the likelihood that a randomly chosen vertex vi has degree d(vi ).

When it comes to the edges there are more characteristics than the degree of a ver-
tex. A graph can be undirected, in this case information can flow from vi via the edge

8



Graph Theory 2.1 Measuring Graphs

to v j and in the other way around. In a directed graph information can only flow in the
direction that the vertices are connected. For a directed graph it is possible to differen-
tiate between the in degree and out degree distribution. This is defined by the number
of edges pointing to a vertex and from this vertex, respectively. Furthermore, a graph
in which all edges are considered as equally important is called a unweighted graph. A
graph in which some edges are of higher importance, or indicating a stronger connection
between vertices, is called a weighted graph.

Basic examples of the different types of graphs are shown in Fig. 2.3. Fig. 2.3a displays
an undirected and unweighted graph. In this graph one can traverse from each set of
edges in both directions and each edge has the same importance. The edges in Fig. 2.3b
are also of equal importance but one can only traverse the edges in the direction the
arrow is pointing. That is, one can go from either node two or node three to node four,
but once one is in node four it is impossible to traverse to another edge since there are no
edges out of the node. Finally, Fig. 2.3c shows a graph in which the nodes can be traversed
in both directions but are assigned a ‘weight’, which gives some numerical information
about an edge. For example, the value can express the cost of traversing the edge or the
distance between two edges.

As explained before, we can summarize the a graph using an adjacency matrix. The
adjacency matrices corresponding to the example graphs of Fig. 2.3 are shown below in
equation 2.1. The left matrix is a symmetric matrix for which each edge is represented
by a 1. The middle matrix is asymmetric because the edges cannot be traversed in both
directions by default. If there is an edge adjoining two edges in the weighted graph, the
entry in the matrix on the right shows the associated weight.

1

2

4

3

(a) Undirected

1

2

4

3

(b) Directed

1

2

4

3

1

1

2 3
2

(c) Weighted

Figure 2.3: Different Graph Structures

F i g 2.3a


0 1 1 0
1 0 1 1
1 1 0 1
0 1 1 0

 F i g 2.3b


0 0 0 0
1 0 1 0
1 0 0 0
0 1 1 0

 F i g 2.3c


0 1 1 0
1 0 2 2
1 2 0 3
0 2 3 0

 . (2.1)
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2.1.2 The Structure of a Graph

Small graphs such as shown in Fig. 2.3 are easily to visualize and interpret. This holds for
graphs consisting of tens or hundreds of vertices for which it is easy to draw the graph.
Then, with our visual perception ability we can get a good understanding of the structure
of the network. However, as the graph becomes larger with thousands up to billions of
vertices, it becomes impossible to visualize it. When analyzing a graph of this size, it is
convenient to fall back to statistical methods to make useful statements about the graph.

The first, and simplest, type of graph is the random graph. It was first discussed
by Rapoport [Rapoport, 1957], who especially focussed on the degree distribution, and
Erdös and Rényi [1959], who proved many important theorems. Rapoport [Rapoport,
1957] were the first to define a model for large random networks, called the “random
net”. Nearly a decade later Erdös and Rényi independently published a similar model
what they called the “random graph”. Their model of the random graph used a Poisson
process for the random wiring of the edges. It is utterly simple to construct a model of
a random graph. Start by considering n vertices and connect each vertex to every other
vertex with probability p and the random graph is complete. Random graphs are exten-
sively studied and a many properties have been proved by Erdös and Rényi [Erdös and
Rényi, 1959, 1960, 1961].

When varying the degree distribution of a graph from one to zero, the rewiring proba-
bility decreases and the structure goes from random to an ordered, regular lattice, graph.
Every vertex in an ordered graph is connected to its k nearest neighbors. How the notion
of nearest neighbors is defined, depends on the underlying network that is to be modeled
by this graph. It does not come as a surprise that there are not many natural phenomena
that can be modeled using either a lattice or random graph. When researchers attempted
to model real networks they stumbled upon one phenomenon that they could not ex-
plain using these networks: the calculated ‘distances’ in sparsely connected networks
turned out to be much smaller than estimated.

2.1.3 Small-World Networks

The implications of the short distances between entities was first recognized in 1929 by
the Hungarian writer Frigyes Karinthy in his experiment ‘Chains’, [Karinthy, 1929]. In
this article, he argues that it is unlikely for a graph consisting of all connections between
people in the world, the average ‘distance’ between any two people to be larger than five
persons. His estimate turned out to be very accurate and let to the discovery and intro-
duction of a new class of networks. The empirical evidence of this phenomena came
from Stanley Milgram, who studied behavior of social networks. In one of his, now most-
famous, experiments, he sent out letters to random selected people in the USA in which
he asked them to forward the letter to a specific person located in Boston. If they didn’t
know that person, he asked them to forward the letter to only one person, who are either
living closer to Boston or had a large likelihood of sending the letter in the right direc-
tion. Many letters reached the designated endpoint and the letters were sent only 5.5
times. This seemed to correspond to Karinthy’s expectations that the social connections
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in the world are very tightly coupled. These phenomena was coined the ‘small-world’
phenomenon and is also known as the ‘six degrees of separation’ [Milgram, 1967; Travers
and Milgram, 1969]. Several other experiments confirmed the existence of the ‘small-
world’ phenomena in natural networks, but for a long time nobody could give any valid
explanation for this. The neuronal network of the Caenorhabditis elegans exhibits small-
world properties [Watts and Strogatz, 1998], world-wide airport networks [Guimera and
Amaral, 2004], metabolic networks [Jeong et al., 2000; Kaiser and Hilgetag, 2004] and col-
laborations between actors [Collins and Chow, 1998] are all examples of networks that
exhibit these characteristics. These networks also have shown to be more persistent to
random ‘attacks’ and a higher synchronizability.

In fact, why such diverse networks all show these properties remained a mystery for
a long time. This all changed when Watts and Strogatz [1998] published an article in
Nature, proposing a very simple model to explain this behavior. Their model is based on
the phase transitions using a rewiring procedure when interpolating between a regular
and random network. They start with an ordered graph shaped in a ring with n vertices
and k edges per vertex, shown in Fig. 2.4. For a given probability p, each edge is rewired at
random. As p varies from 0, the ring lattice, to 1, a random graph, it allows for probing the
structures in the intermediate region 0 < p < 1. The structural properties of the graphs
are then quantified using two metrics known as the characteristic path length and the
clustering coefficient, which will be explained in the sequent section.

Figure 2.4: Rewiring a network from a lattice to a random network with the intermediate
small-world network [Stam and Reijneveld, 2007]
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2.2 Graph Metrics

Now that we introduced some different topologies, we can define some metrics for each
type. There are two characteristics that are oftentimes used to explain the local or global
structure of the graph [Watts and Strogatz, 1998; Newman, 2003b]. These characteristics
are the clustering coefficient C and the characteristic path length L.

The clustering coefficient is a statistic that gives some information about the local
clustering, when it is calculated for a vertex, or about the density of the entire graph. To
amount of local clustering for some vertex is based on the number of edges between the
direct neighbors of that vertex.

The idea of the clustering coefficient is based on triplets, i.e. connection between
three nodes. A triplet is a set of three nodes that are connected by a number of edges
ranging from zero to three, and was first introduced by Luce and Perry [1949]. A greater
number of triangles, sets of three edges between three neighboring vertices, between
the neighbors of a vertex indicate a higher clustering coefficient. Formally, the cluster-
ing coefficient Ci of vertex i with degree ki is defined by the ratio of edges between its
neighbors to the possible number of edges between them. The vertices directly adjacent
or connected to a vertex vi are said to be in the neighborhood of that vertex, defined by
Ni = {v j : ei , j ∈ E ∧ e j ,i ∈ E }. The clustering coefficient is defined slightly different for
undirected and directed graphs. In the undirected model, for each edge ei , j there is also

an edge e j ,i , and therefore maximum number of edges is ki (ki−1)
2 .

The clustering coefficient for an undirected graph can thus be defined as [Watts and
Strogatz, 1998]1:

Ci =
2 | {e j } |

ki (ki −1)
: e j ∈ Ni . (2.2)

For a directed graph, the maximum number of edges that could exist between directly
adjacent to vi is ki (ki −1), and the cluster coefficient is given by:

Ci =
| {e j } |

ki (ki −1)
: e j ∈ Ni . (2.3)

It is immediately clear that for each vertex the clustering coefficient is in the range be-
tween zero and one. This allows us to use the local clustering coefficient to obtain the
mean clustering coefficient of the entire graph:

C = 〈c〉 = 1

N

N∑
i=1

ci . (2.4)

Another metric of interest is the path length, di , j , defined as the minimum number
of edges that have to be traversed when going from vi to v j . This path is also known as
the geodesic path between i and j . Using the geodesic distance we can formulate the
characteristic path length, a global metric of distances in the graph. The characteristic
path length is defined as the average path length between all vertices:

L = 1

N (N −1)

∑
i , j∈N ,i 6= j

di , j . (2.5)

1Newman [2003b] introduces a slightly different formulation for the clustering coefficient.
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As discussed in the previous section, the characteristic path length and clustering
coefficient are of great importance when trying to investigate the structure of a graph.
Oftentimes, the (natural) networks of interest consist of many vertices with sparse con-
nections. In this case ‘sparse’ implies that the network consist of a low number of edges,
but sufficiently more than whenever an edge at random would be removed the graph
would be disconnected. Hence this means that n À k À ln(n) À 1, where k À ln(n)
guarantees the graph to be connected. Staring with a lattice (p → 0), we find the theoret-
ical values of Lor der ed ∼ n/2k À 1 and Cor der ed ∼ 3/4, indicating a highly clustered, large
network where Lor der ed grows linearly with n. On the other hand, for a random graph
as (p → 1), we find Lr andom ∼ ln(n)/ ln(k) and Cr andom ∼ k/n ¿ 1, a poorly clustered,
small world (in terms of vertex popularity), where Lr andom only grows logarithmically
with n. These extreme cases hint that a large characteristic path length is associated with
a high cluster coefficient and a small characteristic path length with a low cluster coeffi-
cient. Then what about the range of networks that lie between the ordered and random
graph as 0 < p < 1? Watts and Strogatz [1998] showed that there is a whole range of
networks, the small-world networks, for which L is almost as small as Lr andom but with
C À Cr andom . The graphs thus have a very short path length between any two nodes,
but with a high clustering coefficient. Small-world networks exhibit these characteristics
especially for 0.001 < p < 0.1. However, to date there is no known analytical solution of L
and C as functions of p [Newman, 2003a].

Finally, there is another type of network that we should include in this analysis: the
scale-free network. This network follows, at least asymptotically, a power law degree dis-
tribution, for which the ratio P of nodes in the network with k connections follows:

P (k) ∼ ck−γ, (2.6)

where c is a normalization constant and γ a model parameter. It can be created when
starting with a very sparse lattice and growing it using preferential attachment [Barabasi
and Albert, 1999] or other models [Boccaletti et al., 2006]. A growth model such as pref-
erential attachment is analogous to the rich get richer model and will be explained in the
subsequent section.

It is important to point out that a small-world network is not a scale-free network, for
the latter has a very small path length in the order of lnln(n), but not necessarily a high
clustering coefficient like a small-world network [Cohen and Havlin, 2003].

2.3 Miscellaneous Topologies

The subsequent sections discuss several other topologies, similar or derived from the
small-world network.

2.3.1 Preferential Attachment

In the previous section we briefly touched upon the preferential attachment network. It
was proposed by Barabasi and Albert [1999], and the basic idea is to model a random
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network with a scale-free degree distribution. A preferential attachment model can be
created as follows. First, the edge degree d for each node is specified and we start out
with a single node and let the network grow by adding nodes up to n. Each new node
added to the network is connected to d other nodes. The nodes to which a new vertex vi

is connected is determined by a probability p that is proportional to the current degree
of the nodes that are already in the network. In other words, the nodes which are added
in the beginning are better connected than the node which has be added last. This is
analogous to the ‘rich get richer model’, for the nodes which are added at the beginning
tend to become the nodes with the highest edge degree.

2.3.2 Range Dependent Model

Another biological-inspired network, which is actually a generalization of the Watts-
Strogatz small-world model, is the range dependent network. It was first described by
Xenarios et al. [2000], who used it to model a protein-protein interaction (PPI) network.
These interactions can be translated into a network where an edge (interaction) between
two proteins is presented if the proteins have been observed, by experimentation, to
interact. The ordering of nodes in proteins are always fixed, and as such, each pair of
nodes (vi , v j ) is connected with an edge with probability αλ| j−i |−1, where α regulates
the number of connections and the geometric λ controls the ratio of long-range edges
over short-range edges. That is, if vi and v j are far apart, the probability of having an
edge joining the vertices is small. An example of such a graph is shown in Fig. 2.5.

Figure 2.5: An example of a diagram of interacting proteins functioning in cell cycle [Xe-
narios et al., 2000]

Grindrod [2002] proposes a class of range dependent networks for modeling pro-
teome networks. He explores the reordering property of range dependent graphs, that is,
such as how to reorder a graph such that most vertices are closely connected and only
few long paths exists. A numerical analysis based on this work is presented in Higham
[2003]. Another application for the range dependent network is percolation theory [Xe-
narios et al., 2000].
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2.3.3 Geometric Graph

The two-dimensional, non-periodic, geometric random graph with n nodes is generally
defined as follows. Initially, each of the nodes are placed in a unit squared according to
a uniformly random distribution. Formally, this implies that vertex vi is placed at (xi , yi )
where the every set of coordinates are independent and identically distributed with a
U (0,1) distribution. Next a radius r is specified, and each node is connected by an edge
to every other node that is within a squared distance of the node. That is, given r , vi and
v j are connected if and only if

(vi (x)− v j (x))2 + (vi (y)− v j (y))2 ≤ r 2. (2.7)

We now have a graph with connections which can be represented by an adjacency matrix,
hereby ignoring the positions of the nodes since they are only required while the network
is constructed. Note that the Euclidean distance can be replaced by another norm which
is necessary to model the network. The network can be used to model many biologi-
cal networks as shown by Przulj et al. [2004]. A very in-depth analysis and overview of
geometric networks is presented in Penrose [2003].

2.3.4 Kleinberg Graph

In [Kleinberg, 2000] another variation of the Watts-Strogatz model is proposed. This
model is called the Kleinberg model and particularly exploits the short-cuts in a net-
work. In contrast to the geometric model which is non-periodically distributed in a two-
dimensional space, the vertices in a Kleinberg model are equally spaced in the grid. Each
vertex is placed at position (vi (x), vi (y)) equidistant from each of the nodes in each of the
directions from it. Every vertex is then connected to every other vertex which are at most
a Manhattan distance p away. To create short-cuts in the network, each node is then con-
nected to m nodes of at least a distance p away with a probability uniformly proportional
to r−α, where r is the distance and α are controls the probability.

2.4 Summary

This chapter provided a thorough review of graphs. We explored the conversion of a
model into the abstract notion of a graph and how to ‘measure’ a graph. Several impor-
tant metrics were then discussed such as the cluster coefficient, a metric that describes
the ‘connectedness’ of direct neighbors for a given vertex, and the characteristic path
length, the mean distance one needs to traverse between each set of nodes. These two
metrics characterize an important class of networks known as the small-world networks;
networks with a high clustering coefficient and a low characteristic path length. Finally,
we discussed several networks which are generalizations, derivations or closely related
to the small-world networks.
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3
PAGERANK

In this chapter we explore the PageRank algorithm. Why such an algorithm is necessary
is given in Section 3.1. We then explore the computation of the PageRank vector of a
matrix in Section 3.2. Finally Section 3.3 gives a brief introduction to the personalized
PageRank, which will be further discussed in Chapter 5.

3.1 Introduction

For nearly three decades, the continuous growth of information on the world-wide web
has been unprecedented. The current indexed size of the web is estimated to be at least
14.17 billion pages [de Kunder, 2011]. This number sounds even more dramatic when
compared to the volume of the web in 1999, when the size was estimated at 800 mil-
lion pages [Lawrence and Giles, 1999]. This shows a 17-fold increase of the volume that
search engines are indexing in just 12 years. When the volume of the web exceeded sev-
eral 100 million pages, two problems became apparent. First, there is the issue of the
heterogeneous nature of content on the web. Whether it is somebody on the far end of
the world who wrote a tweet or posted a video on YouTube about his breakfast or the
latest news about natural disasters, you can find information about it on the web. Due
to the changes in content on the web, from plain text to hypertext and other semantics,
it became clear that search engines had to start looking for other information retrieval
methods than simply the content of a website when responding to a user’s search query
for information. The second problem is the volume of the web. When the web reached
several 100 million pages it became significantly more complex for search engines to
index the entire web [Chakrabarti et al., 1999]. This problem is as relevant now as it
was back then, considering the exponential growth of the web [LivingInternet]. Take the
growth of Twitter for example [Twitter, 2011]. It took 3 years, 2 months and 1 day until
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the billionth Tweet was sent on May 22, 2009. Now it takes less the 1 week for the users to
send a billion Tweets. Another example is YouTube [ReelSEO, 2011], which was founded
in February 2005. Currently, every minute there is 35 hours of video footage uploaded to
the website. All this information has to be indexed by search engines before it can show
up in search results.

The growth of the web forced the search engines to start relying on client-side filter-
ing and analysis of results, and thus personalized search results became essential. In the
late 1990’s, Page et al. [1998] presented PageRank, a novel technique to identify what the
important pages are on the web. PageRank became the foundation and the key factor
resulting in the success of Google’s search engine and a shift in discovering qualitative
and personalized information on the web.

3.2 PageRank

In their well-known paper Page et al. [1998] presented the novel idea of the PageRank,
a ranking method for every web page on the World Wide Web using the graph-structure
of the web itself, with applications to browsing, traffic-estimation and of course search.
PageRank is inspired by work in analysis of citations [Garfield, 1995] and research fo-
cussed on spectral clustering. Now looking back at these separate research efforts it is
only natural that eventually one would combine these and develop a search engine. The
question to ask would be: "What would we need to build a personalized search engine?".

A search engine has to perform several tasks. To start with, it needs to collect and
maintain information available in the multitudinous pages on the web. Obtaining infor-
mation from websites is known as crawling.

3.2.1 The PageRank Matrix

We can view the web as a very large network, or directed graph, where the pages can be
represented by nodes and a link from one page to another is analogous to an edge in the
graph. In this representation we can denote each page v , corresponding to a node (v ∈V )
and every link on that page to another page as an edge e, (e ∈ E). The goal is to give ev-
ery page in the web a PageRank value, which is a measure (or score) of importance. This
score of a page is based on the links that are pointing to this web page. A link from page
vi to page v j is called the backlink for page v j . This can be viewed in the context of the
academic citations: the importance of a publication is depended on the number of cita-
tions. Each citation indicates a vote of confidence in a publication and hence increases
the importance score of the paper.

Let us consider a small web of n pages where each page is indexed by an integer k,
where 1 ≤ k ≤ n, like the one depicted in Fig. 3.1, for which there are five pages {v1, . . . , v5}
and eight links. Obviously, not every page has a link to every backlink and therefore we
can consider the web as a directed graph. The corresponding adjacency matrix to this
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5

3 4

1 2

Figure 3.1: A small web consisting of five nodes and eight edges

graph is shown equation 3.1.

P =



0 0 1 0 1

1 0 0 0 0

0 1 0 0 0

1 0 1 0 0

0 0 0 1 0

 . (3.1)

We will denote the importance score of each page k in the web by xk . The importance
of a page is non-negative and x j ≥ xi implies page x j is at least if note more important
than page xi . To define the score of a page we can start by considering the number of
backlinks:

xk = ∑
j∈B

x j , (3.2)

where B is the set of nodes linking to page xk , i.e. the backlinks for page k. Then the
network in Fig. 3.1 would produce a PageRank vector with the following scores:

x = [
1 2 2 2 1

]>
. (3.3)

This would imply that for this network the pages two, three and four are equally most
important, whereas pages one and five are least important.

Obviously this is not a very good idea because it fails to take into account two proper-
ties. First, this ignores an intuitive property of an importance score: it is better to have a
backlink from an important page than from an unimportant page Second, a person with
bad intentions could easily create thousands of pages all linking to one page to improve
its importance score.
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The first problem can easily be solved when the importance of a page vi is based on
the importance scores of the backlinks. This yields the following set of equations:

x1 = x3

x2 = x1 +x4

x3 = x2 +x5

x4 = x1 +x3

x5 = x4

(3.4)

As such, every page will propagate a part of its importance through the network. Each of
the equations corresponds to a row in the adjacency matrix (3.1).

The second problem can be solved when the PageRank value of page vi is defined by
the sum of the PageRank values for all pages linking to vi normalized with respect to the
total number of outgoings links for each page. This slightly changes the notation of 3.2,
which now becomes:

xk = ∑
j∈B

x j

n j
, (3.5)

where n j is the number of outgoing links from page v j . This is reflected in the adjacency
matrix:

P =



0 0 1
2 0 1

1
2 0 0 0 0

0 1 0 0 0
1
2 0 1

2 0 0

0 0 0 1 0

 (3.6)

Each of the columns sums up to exactly one. Such a matrix is called a column stochastic
matrix, which has convenient properties for the computation of the PageRank. Several
propositions and theorems with proofs are given in [Bryan and Leise, 2006]. In fact, ev-
ery column in a stochastic matrix sums up to 1, this formally implies that Pi , j ≥ 0 and
eT P = eT , where e is a vector consisting of ones. Now, we want to find the vector x with
importance scores that solves the equation

Ax = x. (3.7)

This is apparently an easy eigenvalue problem, for which there are many mathematical
tools available. We compute the eigenvalues of A and the eigenvector corresponding to
eigenvalue equal to one (i.e., for which λ equals 1). After solving these equation and nor-
malizing the eigenvalues, such that they sum up to one, we find the following importance
scores, or PageRank values:

x = [
0.154 0.192 0.307 0.230 0.115

]>
. (3.8)

We can see that page three is the most important, or influential, page in this network with
a PageRank value of 0.307, whereas page five is the least important page with a PageRank
value of 0.115.
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This seems like a nice accomplishment, for we are able to find an, apparent, valid
set of PageRank values for our network. The real problem, however, is the enormous
computation required to find the eigenvector of a matrix corresponding to the actual
web with billions of entries. This procedure will also fail when there are dangling nodes
in the graph, i.e., nodes which have an edge to themselves {∃e ∈ E : (vi , vi )}. Even when
we would assume that there are no dangling nodes (which we will for the remainder of
this section), there is the problem of solving the eigenvector problem when the graph is
disconnected, which is obviously the case when computing the eigenvector for the real
web (cf. [Langville and Meyer, 2004] for a broad discussion on the structure of the web
and implications on the PageRank algorithm).

3.2.2 The PageRank Equation

It is, however, possible to solve the problem (proof can be found in Bryan and Leise
[2006]) of having a disconnected web (under the assumption that there are no dangling
nodes). Let S denote a square matrix of length n for which all entries are 1/n. Like the
matrix A, this matrix is column stochastic, and we replace matrix A in equation 3.7 by

M =αA+ (1−α)S. (3.9)

The α parameter is known as the ‘teleportation’ parameter, and is oftentimes set to 0.85,
which is the same value as Google reportedly used [Langville and Meyer, 2004]. A com-
prehensive discussion on the influence of this parameter can be found in Gleich [2009].
The matrix M is now a weighted average of A and S and is always column stochastic
[Bianchini et al., 2005] and hence can be used to compute a PageRank vector with unique
scores. If we let α be 0.85 we can solve our original problem using this method. This will
yield the final PageRank values:

x = [
0.157 0.192 0.301 0.225 0.124

]>
. (3.10)

Even though the values are not the same as in equation 3.8, the ranking is maintained,
but the algorithm no longer has the shortcoming of failure when the network is disjoint.

3.3 Personalized PageRank

The output of the original PageRank algorithm for computation of a ranking of Web pages
for search-query results, is a single PageRank vector that represents the ‘importance’ for
all pages. This PageRank vector is independent of the query and the output will be the
same for whoever the query enters and irrespective of the query itself. Haveliwala [2002,
2003] proposed an algorithm to compute a set of PageRank vectors, each biased in a way
such that it captures a different notion of importance with respect to a particular search
query. Using these PageRank vectors, they generate topic-sensitive importance scores
for pages that belong to the same category as the query. Using query-specific PageRank
vectors is known as personalization. This was first suggested, however not explored, by
Brin et al. [1998]. The main idea is to use a non-uniformly distributed vector s, to bias the
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computation of the PageRank vector. This yields the following, frequently used, formula
for computing a personalized PageRank vector:

prα(s) = (1−α)s+αprα(s)W. (3.11)

W is the lazy random walk transition matrix W = 1
2 (I −D−1 A), where D is the diagonal

edge degree matrix. Chung and Zhao [2008] examine the relationship between PageR-
ank and random walks on graphs. They propose a generalized version of personalized
PageRank with an additional parameter that controls the rate of diffusion in the graph.

A more in-depth analysis of the computation of personalized PageRank vectors is
presented in chapter 5. There we will give two algorithms to compute the vectors and
how to use them to cluster a graph.

3.4 Summary

In this chapter we introduced the PageRank algorithm. We showed how it is derived and
can be computed and what it means as a metric for a graph. Finally, we briefly touched
upon the personalized PageRank.
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GRAPH THEORETICAL NEUROSCIENCE

We present a brief overview of the biological structure of the human brain 4.1, followed
by a short introduction to fMRI 4.2 and how fMRI data can be transformed into the notion
of structural and functional connectivity and how we can apply graph theory to get a
better insight in the structure of the brain 4.3.

4.1 The Human Brain

The brain is the center and the most important part of the nervous system in animals. It
is generally considered as the most complex organ in the human body. Although most
of the time people talk about ‘the brain’ as a unified whole, neuroscientist identified sev-
eral areas with specific functions within the brain. The brain can be considered at three
different levels: micro, mesa and macro. Inasmuch as at the micro-scale individual neu-
ronal connections are considered, at the macro level we are concerned with functional
regions of the brain.

The brain is symmetrically divided in a left and right hemisphere. Both hemispheres
are organized in three major, interconnected, components: the central core, the lim-
bic system and the cerebral cortex. The first two are inside the cerebral cortex. These
three components are shown in Fig. 4.1 and control almost all aspects of our daily life,
whether it is movement, thinking or emotions. Every vertebrate’s brain contains a central
core, which, as the name implies, controls the basic functions that are required to stay
alive. Examples include the control of basic and subconscious functions like breathing,
arousal, managing the sleep process, moving and it is also the first stop for processing
stimuli.

The central core (shown in Fig. 4.2) can be further divided in five different regions.
The medulla rhythmically stimulates the diaphragm allowing us to breathe without think-
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Figure 4.1: The three major parts of the cerebrum [Psychology]

ing about it. Next to that, it also regulates the blood flow and the heartbeat. The pons is
some kind of intermediate station which carries sensory signals from the cerebral cortex
to the cerebellum. The reticular formation receives sensory input (e.g., sound) and relays
the signals to the thalamus and cerebral cortex. It is also allows us to dream when we
sleep and being in a state of arousal. The thalamus is the first step in processing and re-
laying sensations and motor signals. It classifies stimuli in categories such as good/bad,
then sends the signal to the cerebral cortex. Finally, the cerebellum, Latin for ‘little brain’,
plays an important role in motor control. The cerebellum does not regulate movement
but provides a support role to fine movement, equilibrium and motor learning. While it
is very similar to the cerebral cortex, in that it has two hemispheres and a highly folded
surface, its size is only 10% of the cerebral cortex. Nevertheless, the number of neuronal
connections are about the same.

Figure 4.2: The five main regions in the central core [Psychology]

The limbic system (Fig. 4.3) is only found in mammals and, like the central core,
buried in the cerebral cortex. The limbic system is often referred to as the ‘emotional
brain’, because it allows mammals to express emotions. On the other hand it is respon-
sible for regulation of important life processes such as the body temperature and blood
pressure. The hypothalamus is involved in emotions that oftentimes lead to actions such
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as emotions, thirst and hunger. The amygdala is responsible for emotional states such
as anger and fear. The hippocampus manages the task of transforming the short term
memory into a more permanent memory. The hippocampus also stores information re-
garding spatial relationships in the world around us.

Figure 4.3: The three important regions in the limbic system [Psychology]

The cerebral cortex as shown in Fig. 4.4, the outer layer of the brain, is highly folded.
This makes the brain more efficient because it significantly increases the surface area of
the brain and therefore the number of neurons that it can contain. The cerebral cortex
can be divided into two, anatomically almost symmetrically, hemispheres. It has, how-
ever, been shown that the functions of the left and right hemisphere are not equal. The
left hemisphere is associated with logic abilities, whereas the right hemisphere has been
shown to be associated with creativity.

The cerebral cortex can be subdivided into four lobules: the Frontal Lobe, the Pari-
etal Lobe, the Occipital Lobe and the Temporal Lobe. Each of these lobules are known
to control different functions. The frontal lobe contains the most dopamine-sensitive
neurons of the cerebral cortex, which is associated with short-term memory, reward, at-
tention and planning. In the parietal lobe are various sensory information systems inte-
grated which allows us to make sense of spatial information and help us to navigate and
manipulate objects. One of the most important functions of the occipital lobe is the pro-
cessing of visual information and it therefore is the part where the dreams come from.
Finally, the temporal lobe is the region in the cerebral cortex that is involved in auditory
perception and processing. It contains the hippocampus and plays a very important role
in the transformation of short-term information to long-term memories and knowledge.

Now that we have some idea of the different regions in the brain, we can discuss a
technique to measure activity in the brain. More specifically, we will discuss functional
Magnetic Resonance Imaging, a specialized technique that can measure neural activity
in the brain.
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Figure 4.4: The cerebral cortex with the four important lobules [Psychology]

4.2 Functional Magnetic Resonance Imaging

Functional Magnetic Resonance Imaging (fMRI) is a relatively recent technique which
can create functional brain maps in humans. In this section we will first discuss what
fMRI is, followed by the procedure and techniques to create fMRI scans.

4.2.1 What is fMRI

In 1890, Roy and Sherrington [1890] performed experiments leading to the idea that cere-
bral blood flow (CBF) could reflect neuronal activity. This seminal publication is the ba-
sis for all of todays hemodynamic-based brain imaging research and techniques. Simply
put, an increase in CBF can be considered as a relation to increased neuronal activity be-
cause the CBF and glucose metabolism are closely related [Raichle, 1987]. Hence when
we measure the changes in CBF, we can create a mapping of regions in the brain which
are activated during particular tasks.

Researchers at AT&T Bell Laboratories reported that functional brain mapping is pos-
sible using the venous blood oxygenation level-dependent (BOLD) Magnetic Resonance
Imaging (MRI) contrast Ogawa et al. [1990b]. Changes in deoxyhemoglobin (dHb) re-
sult in an endogenous paramagnetic contrast which is the key for the BOLD contrast
[Ogawa et al., 1990a]. The BOLD contrast is basically the difference in magnetic prop-
erties between oxygenated (diamagnetic) and deoxygenated (paramagnetic) blood. In
other words, brain mapping using MRI relies on the localization of changes in the, by
neural activity induced, magnetic environment. The area of functional brain mapping
with MRI is continuously growing ever since it emerged about two decades ago. FMRI
uses MRI equipment to detect changes in the cerebral metabolism or oxygenation while
the subject is performing a specific task. At a neuronal level, it is known that neurons
do not store glucose or oxygen, and therefore, whenever there is neural activity it re-
quires glucose and oxygen to be delivered to the blood stream. In a process called the
hemodynamic response, blood releases the glucose to the neurons, which results in a
overabundance of oxyhemoglobin in the blood vessels. The contrast, or difference, in
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oxyhemoglobin at the specific region of the brain which required the glucose for a spe-
cific activity, is measurable and is the key to MRI.

4.2.2 Processing and analysis

A single fMRI scan generates a vast amount of four-dimensional data which needs to be
processed in order to make some sense of it. Most of the research that uses fMRI data
is hypothesis-driven and voxel-based. That is, the researchers start out with a certain
hypothesis and perform voxel-based group-comparison to determine whether different
activation response exist. An analysis is always preceded by a multi-step pre-processing
scheme which routinely consists of a number of typical steps [Nielsen et al., 2006]: spa-
tial realignment of individual scans to correct for head motion, coregistration between
the high resolution anatomical and low resolution functional scans, normalization of
scans for all subjects, such that the scans are of the same size. Then the data is gener-
ally smoothened using a Gaussian filter, whereafter for each group a ‘summary image’ is
generated. Finally, a statistical test can be performed on the voxels to determine whether
there are any significant differences between the groups. There are numerous packages
and tools publicly available for preprocessing and testing hypotheses, such as SPM, FSL,
AFNI, LIPSIA and BrainVoyager.

The goal of voxel-based analysis is to identify activated brain regions for a given stim-
ulus. The data is almost always gathered using the BOLD contrast. The block design or
block-scheme is the most common experimental setup. In this setup the participant per-
forms, for a fixed time, a task or is subjected to a stimuli. Then the participant is scanned
while in a resting state. This scan is used as a baseline to which the scans acquired dur-
ing the task or stimuli can be compared to. Statistical parametric mapping or multi-voxel
pattern analysis is then performed to detect small, significant differences in activations
that correspond to the regions being used in the brain.

4.3 Functional and Structural Connectivity

The brain can be analyzed from two broad categories: from a structural and a functional
point of view. Structural brain imaging aims to map the coarse structure of the brain and
is used for the diagnosis of large-scale intracranial pathophysiological diseases, such as
tumors, hemorrhages and blunt traumas. Structural, or anatomical, brain images are
static images of the anatomy and generally of a much higher resolution than the func-
tional images. The structural images can also be used to measure the diffusion with a
recently developed technique called Diffusion Tensor Imaging (DTI). Functional imag-
ing is used to measure brain functions with the goal of understanding the relationship
or correlation between activity in a specific brain area and a specific task or stimuli. An
example of two structural images is shown in Fig. 4.5. The left image shows the central
axial slice of a typically developing male. The right image displays the slice of a male who
has been diagnosed with attention deficit hyperactivity disorder. However, in this thesis
we are specifically interested in the functional imaging.
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(a) Typically Developing (b) ADHD

Figure 4.5: Structural Brain Images

In contrast to structural imaging, functional imaging creates images of the ‘activity’
(the hemodynamic response) of the brain over time. This response is actually rather slow,
and it may be lagging for a period as long as four or five seconds. The lag is, however, rel-
atively stable and can be compensated using a linear time-invariant filter during prepro-
cessing. The temporal resolution of a scan is limited by the number of measurements a
scanner can make (this is called the repetition time, TR) and bounded by the volume that
needs to be scanned. The TR is typically between one and three seconds. With standard
scanners the voxels in which the brain is segmented can be as small as 1 millimeter and
the state of the art scanners even have a higher spatial resolution. The BOLD changes
generally cover a larger area than the specific neural activity which is one of the limita-
tions for the spatial resolution. Similarly to the anatomical images shown above, we can
create an activity map for the typically developing and ADHD subject, shown in Fig. 4.6.
The regions which are colored according to the ‘hot’ color table (left), show an positive
hemodynamic response, whereas the regions colored with the ‘winter’ scheme show a
negative response.

One of the questions explored in this thesis is whether it is possible to classify the
diagnosis of children based on their functional brain connectivity maps.
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(a) Typically Developing (b) ADHD

Figure 4.6: Functional Brain Images (left colorbar indicates an increase in hemodynamic
response, whereas the right indicates a decrease for that region)

4.4 The Brain and Graph Theory

The area of computational neuroscience is becoming increasingly popular over recent
years. In order to get a better understanding and more insight into the organization of
the brain and the functions, understanding the development of the brain is critical. Un-
derstanding the functional and structural brain is especially important when investigat-
ing disorders such as attention-deficit/hyperactivity disorder (ADHD), autism spectrum
disorders (ASD), Alzheimer’s and Parkinson. These disorders have in common that the
normal developmental process is disrupted.

The goal of this section is to give a brief overview of recent applications of graph
theory to neuroscience. In chapter 2 we discussed the class of networks known as small-
world networks. These networks can relay information very fast because of the short
path length and the high cluster coefficient. This suggest that this type of network is very
beneficial for information processing in neural networks. There are three approaches
to get a better understanding of the human neuronal network: simulations, real neu-
roanatomical networks using in-vitro and in-vivo analysis and functional networks. The
analysis using simulations is outside the scope of this thesis and will not be discussed.
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4.4.1 Neuroanatomical Networks

Coincidentally, the paper by Watts and Strogatz [1998] was also the first paper to explore
the brain from a graph theoretical point of view. They created a complete graph of the
anatomical connectivity in the nervous system of the Caenorhabditis elegans. This graph
consists of 282 vertices connected by an average of 14 edges per vertex. The characteristic
path length is L = 2.65 and has a cluster coefficient C = 0.28.

After this initial evidence for the existence of small-world networks in the nervous
system, researchers investigated the nervous systems in vertebrates and primates. Hilge-
tag et al. [2000] studied the compilations of corticocortical connections in the visual,
somatosensory and whole cortex from the macaque and the cat. They found the com-
plex networks to be organized into densely intra-connected clusters of areas and con-
cluded that the networks processes all properties of small-world networks. Sporns and
Zwi [2004] studied the datasets also explored datasets of the macaque and cat cortex.
They found little evidence that the graph has a scale-free degree distribution and noted
that the small-world architecture must play an important role in information processing
in the cortex.

4.4.2 Functional Networks

Supekar et al. [2009] explored the development of small-world properties, including the
path length and cluster coefficient, in children and young adults. In both groups they
found a similar small-world organization at the global level and significant differences
in hierarchical organization and interregional connectivity. The efficiency of the brain
using small-world properties was investigated by Achard and Bullmore [2007] and found
that the efficiency decreases as the age increases.

4.5 Summary

This chapter provided a general top-down overview of different anatomical regions in
the brain. How we can make functional images of the brain using fMRI was then intro-
duced, followed by an explanation of the differences between functional and structural
connectivity. Finally we provided some references to research that use graph theory to
analyze the brain from a functional or structural perspective.
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5
PAGERANK CLUSTERING ALGORITHM

The problem of finding a cut in a graph or network where the ratio between the number
of edges crossing the cut and the volume of the smaller side of the cut is small is one of
the main problems in algorithm design in network theory. There is much literature pub-
lished on this topic with applications in many areas. In this chapter we first explain the
traditional k-means algorithm and the initial seeding improvements of k-means++ in
Section 5.1. Section 5.2 presents two algorithms to approximate the personalized pager-
ank for a node in a graph. Then in Section 5.3 a novel algorithm coined K-prmeans is
presented, that uses the personalized pageranks to cluster data represented by a (small-
world) network.

5.1 Traditional K-means

K -means is the most frequently used method for unsupervised cluster analysis. The ba-
sic objective of the algorithm is to partition a set of observations into different clusters
where each observation is assigned to the nearest ‘mean’, represented by a centroid (clus-
ter center). Formally, given a set of n observations {x1, x2, . . . , xn} in a m-dimensional
space represented by the features in each of the observations, the goal of the k-means
algorithm is to partition the observations into k different sets. The number of sets, or
clusters, C = {C1,C2 . . . ,Ck } is at most equal to the number of observations (k ≤ n) such
that it minimizes the sum of squares within each of the clusters. That is, it minimizes

argmin
C

k∑
i=1

∑
x j∈Ci

∣∣∣∣x j −µi
∣∣∣∣2 , (5.1)

where µi is mean of all points assigned to cluster Ci . The traditional k-means algorithm
was first suggested by Seth Loyd in 1957, never formally published until 1982, [Lloyd,
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1982]. The algorithmic procedure for traditional k-means is shown in Algorithm 1.

1: Place k centroids C = c1, . . . ,ck at random in the n-dimensional space
represented by the objects being clustered.

2: repeat
3: {Assign each object to the nearest centroid according to some distance

metric}
4: C (t )

i =
{

x j :
∣∣∣∣∣∣x j −m(t )

i

∣∣∣∣∣∣≤ ∣∣∣∣∣∣x j −m(t )
i∗

∣∣∣∣∣∣ for all i∗ = 1, . . . ,k
}

5: {Move the clusters to the center of the objects assigned to it}
6: m(t+1)

i = 1
|C (t )

i |
∑

x j∈C (t )
i

x j

7: until positions of the clusters do not change

Algorithm 1: Traditional k-means algorithm

While the algorithm is very easy to implement, efficient and applicable to many dif-
ferent datasets, there are several drawbacks that make it less than perfect. Even in this
simple algorithm we can identify three major drawbacks: (1) algorithmic complexity, (2)
Distance metric and (3) location of the clusters. The algorithm is an NP-hard problem in
Euclidean space even for two clusters [Dasgupta, 2008] and for any number of clusters
even in the two-dimensional plane [Mahajan et al., 2009]. The algorithm is implicitly
based on spherical clusters that are separable such that the centroids converge towards
the cluster centers. For some datasets the algorithm works well, whereas it fails com-
pletely on others. Due to the random initialization of the cluster centers, the clustering
can be arbitrarily bad compared to optimal clustering.

The third problem was addressed by Arthur and Vassilvitskii [2007]. They proposed
a modified version of k-means algorithm know as k-means++, an approximation for the
NP-hard problem of finding the right clusters. The selection of the initial clusters now
works under the assumption that the spread between cluster centers is likely to be large.
The first data point is uniformly chosen from all data points to be the cluster center.
Every subsequent cluster center is then chosen with a probability proportional to the
squared distance to the previously selected centroids. The full algorithm is shown in
Algorithm 2. K-means++ has been shown to be a huge improvement and to outperform
traditional k-means.

The k-means++ algorithm can also be used to cluster graphs or meshes. The algo-
rithm works reasonable when using normal graphs or networks but fails to produce good
clusters when the network is a small-world network because the path length tends to be
very small and the cluster coefficient high. In other words, the (Euclidean) distance met-
ric fails because the distance between each pair of nodes is generally very short. To over-
come this problem we need to come up with a new distance metric that is not vulnerable
to this problem.
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1: Assign the first centroid c1 from the centroids C = {c1, . . . ,ck } uniformly at
random to one of the objects.

2: for i = 2 → k do
3: choose ci = x ′ ∈ X as the next center with probability D(x ′)2∑

x∈X D(x)2

4: end for
5: repeat
6: {Assign each object to the nearest centroid according to a distance metric}

7: C (t )
i =

{
x j :

∣∣∣∣∣∣x j −m(t )
i

∣∣∣∣∣∣≤ ∣∣∣∣∣∣x j −m(t )
i∗

∣∣∣∣∣∣ for all i∗ = 1, . . . ,k
}

8: {Move the clusters to the center of the objects assigned to it}
9: m(t+1)

i = 1
|C (t )

i |
∑

x j∈C (t )
i

x j

10: until positions of the clusters do not change

Algorithm 2: K-means++ algorithm

5.2 Approximating Personalized PageRank

In Section 3.2 we described how to compute the PageRank vector for a graph; a metric to
describe the ‘importance’ of each page (vertex) in each graph. Intuitively we can expect
the nodes with many incoming links to have a higher PageRank value than a vertex with
few incoming links. As a consequence when the graph is visualized, the pages with a high
PageRank are probably in the center of many nodes, surrounding it with many incoming
edges.

We briefly described the possibility of computing a personalized PageRank vector for
a graph in Section 3.3. The computation of a personalized PageRank requires a non-
uniformly distributed initial PageRank value for each node in the graph. The vector s in
equation 5.2 shows an example of an initial personalized PageRank vector. The first node
in this graph is initially assigned a higher PageRank than the other vertices.

s = [
0.5 0.1 0.2 0.1 0.1

]>
. (5.2)

Having a non-uniform distribution of s allows the bias according to a user-specified set
of important pages. Another example 5.3 shows an initial PageRank vector for node v2.

s = [
0 1 0 0 0

]>
. (5.3)

This initial vector has a special property: upon convergence of the PageRank computa-
tion, the result is a PageRank vector representing the relative importance for each node
in the graph with respect to v2.

Jeh and Widom [2003] first introduced a technique for approximating a PageRank
vector. [Andersen et al., 2006] showed an algorithm based on Jeh and Widom [2003] to
compute a PageRank vector with a teleport probabilityα for finding a local cut in a graph.

The easiest way to do approximate a PageRank vector is by means of a geometrical
sum. Consider a graph G (V ,E) with n vertices, V = {v1, . . . , vn} and k edges between the
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vertices. All the connections can be described by a (undirected1) connection matrix A,
where ai , j = 1 if there is an edge joining vi and v j . Let D be the diagonal matrix where
di ,i = dk , the degree of vertex vi . From Section 3.2 we know that we can compute the
PageRank as

prα(si ) = (αA+ (1−α)si )prα.

This is equal to a personalized PageRank vector for a vertex vi which can be computed
by the geometrical sum:

prα(si ) =α
∞∑

k=0
(1−α)k si W k , (5.4)

where α is the ‘teleportation parameter’, which is in general set to 0.85, s is a zero vec-
tor of length n with si = 1 and W is the random walk transition matrix W = D−1 A. An
implementation example and proofs of several propositions can be found in Andersen
et al. [2006]. Another way to approximate the personalized PageRank vector uses the heat
kernel, with a temperature parameter t ≥ 1 instead of α.

prt (si ) = e−t
∞∑

k=0

t k

k !
si W k . (5.5)

The difference comes down to the computation of the geometric sum in 5.4 versus the
exponential sum in 5.5. The heat-kernel PageRank formula consists of two parameters
t and the initial PageRank distribution si . Basically, the heat-kernel PageRank algorithm
computes the exponential sum of random walks from the initial distribution (si ), regu-
lated by the temperature t . The advantage of the heat-kernel PageRank is the satisfac-
tion of the heat-kernel equation (5.6) and that a subset of vertices S satisfies the Dirichlet
boundary conditions. Proofs of derivations, the Dirichlet boundary conditions and other
properties can be found in [Chung, 2009].

∂

∂t
ρt ,si =−ρt ,si (I −W ). (5.6)

5.3 K-PRMEANS

Now that we have two approaches for computation of a personalized PageRank vec-
tor, we will discuss how we can use them to obtain a partitioned graph. Consider the
computation of a personalized PageRank matrix P , where the pi is the personalized
PageRank vector computed using either the geometric or heat-kernel approximation
algorithm. We can now introduce a new distance metric which we call the pagerank-
distance. Pagerank-distance is defined as the ‘distance of two personalized PageRank
vectors’, i.e., given two personalized PageRank vectors, pi and p j we compute the dis-
tance l as:

1the graph can also be directed, but for sake of simplicity we assume an undirected graph.
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l = ∣∣∣∣pi ·d(vi )−1 −p j ·d(v j )−1
∣∣∣∣ , (5.7)

where d(vi )−1 is the inverse edge degree of vertex vi . Iterating over all sets of vertex
pairs (vi , v j ) yields the symmetric distance matrix L, where li , j is the pagerank-distance
between vertices i and j . The major advantage of the pagerank-distance matrix is that
the importance of vertices is preserved.

Combining this procedure with the k-means++ algorithm, using the advantageous
initial cluster seeding, gives the following algorithm 3 which we call k-prmeans.

Require:
A: n ×n connection matrix
k: number of clusters.

1: for all vi ∈V do
2: {compute a personalized pagerank vector using the geometrical sum or heat

kernel}
3: pi ← pag er ankα(vi ) or pi ← pag er ankt (vi )
4: P = [

p1|p2| . . . |pn
]

5: end for
6: for all pi , p j ∈ P do
7: {compute the pagerank distance matrix L}
8: li , j =

∣∣∣∣pi ·d(vi )−1 −p j ·d(v j )−1
∣∣∣∣

9: end for
10: Assign the first centroid c1 from the centroids C = {c1, . . . ,ck } uniformly at

random to one of the objects.
11: for i = 2 → k do
12: choose ci = x ′ ∈ X as the next center with probability proportional to

D(x ′)2∑
x∈X D(x)2

13: end for
14: repeat
15: {Assign each object to the nearest centroid according to the pagerank

distance}
16: C (t )

i =
{

x j :
∣∣∣∣∣∣x j −m(t )

i

∣∣∣∣∣∣≤ ∣∣∣∣∣∣x j −m(t )
i∗

∣∣∣∣∣∣ for all i∗ = 1, . . . ,k
}

17: {Move the clusters to the center of the objects assigned to it}
18: m(t+1)

i = 1
|C (t )

i |
∑

x j∈C (t )
i

x j

19: until positions of the clusters do not change
20: return C, the vector with cluster assignments for all vertices.

Algorithm 3: K-prmeans algorithm

Although the novel seeding algorithm of k-means++ is incorporated in k-prmeans,
we are still dealing with a probabilistic selection of initial cluster centers. We can make
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two observations. First, if the algorithm starts with a very inconvenient set of cluster
means, the likelihood of producing a good clustering C is low. Second, if there is some
intrinsic structure in the graph, there is a higher probability that, when the algorithm
is run several times, the number of different outcomes are lower than when a random
graph is clustered. Third, if there exists natural clusters in the data, the number of edges
that are in the cut are low. With these remarks in mind, we propose the stable-k-prmeans
algorithm that bridges these issues. This algorithm can be build as a wrapper with a
function call to the k-prmeans algorithm.

We will constructively introduce the stable-k-prmeans algorithm. The first issue can
be partially solved by repeated clustering, i.e., performing the k-prmeans algorithm sev-
eral times. The second problem can be solved by computing the probability distribution
for each unique outcome. Algorithm 4 addresses both these issues.

Require:
A: n ×n connection matrix
k: number of clusters
h: number of k-prmeans iterations

1: for i = 1 → h do
2: ci ← k −pr means(A,k)
3: C = [c1|c2| . . . |ch]
4: end for
5: {Determine the unique set of cluster outcomes (D) and the corresponding

probability distribution p.}
6: D ← uni que(C )
7: for i = 1 → leng th(D) do

8: pi ← frequencyDi∈C
h

9: end for

Algorithm 4: First version of the stable-k-prmeans algorithm

We approach the third problem separately using the notion of conductivity. First we
define the volume of a subset S ⊆V as

vol(S) = ∑
vi∈S

d(vi ). (5.8)

Obviously, the volume of an undirected graph is vol (V ) = 2m, where m is the number of
edges in the graph. The edge boundary of a subset S ⊆V is defined as the set:

∂(S) = {{x, y} ∈ E |x ∈ S, y 6= S}. (5.9)

Then the conductance of a set is:

Φ(S) = |∂(S)|
min(vol(S),2m −vol(S))

. (5.10)
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Basically the conductance of a set describes the ratio of edges in the cut to the lesser of
the total number of edges in the set and its complement. A lower conductance implies
that there are less edges in the cut and hence means that the vertices in the set are better
connected. Therefore to find well-structured clusters, the cluster Ci needs to have a low
average conductivity and has to occur frequently. The complete algorithm is shown in Al-
gorithm 5. The next chapter discusses experimental results using the stable-k-prmeans
algorithm.

Require:
A: n ×n connection matrix
k: number of clusters
h: number of k-prmeans iterations

1: for i = 1 → h do
2: ci ← k −pr means(A,k)
3: C = [c1|c2| . . . |ch]
4: end for
5: {Determine the unique set of cluster outcomes (D), corresponding probability

distribution p and the conductivity E for each cluster.}
6: D ← unique(C )
7: t ← length(D)
8: for i = 1 → t do
9: pi ← frequencyDi∈C

h
10: for j = 1 → k do
11: E j ,i ←Φ(Di ( j ))
12: end for
13: end for
14: C ← min{Ē1 ×p1, . . . , Ēt ×pt }
15: return C, the vector with cluster assignments for all vertices.

Algorithm 5: Improved version of the stable-k-prmeans algorithm

5.4 Summary

In this chapter we provided an introduction to the k-means algorithm and the improve-
ment known as k-means++. These algorithms can produce good results, although it
depends a lot on the domain. The algorithms fail when the data is a network of the
small-world class, for which the average path length is very short. We noted that ver-
tices which are the cluster centers oftentimes have many edges and are likely to have a
high PageRank (cf. chapter 3). With this in mind we introduced a new distance metric:
the PageRank-distance between two vertices based on the two corresponding person-
alized PageRank vectors. Using this distance we proposed the k-prmeans algorithm, to
cluster a graph using PageRank distances with (better) initial seeding. Finally, to over-
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come the disadvantage of probabilistic initial seeding of the cluster means and to define
a ‘good’ cluster numerically we suggested the stable-k-prmeans algorithm. This algo-
rithm clusters a network repeatedly and uses the frequency and conductivity of clusters
to determine the best output.
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6
K-PRMEANS EXPERIMENTS

In this chapter we use the k-prmeans algorithm, as described in the previous chapter,
to cluster several different graph models that belong to the small-world class. For each
model, we let the cluster coefficient and the characteristic path length be in the same
range as for small-world networks. Visual inspection sometimes reveals what clusters
would be good clusters and we test this using the cluster algorithm. To investigate the
advantage of initial seeding with k-prmeans, we compare the frequency of the ‘optimal’
partitioning outcome for each graph to the frequency of the ‘optimal’ outcome with ran-
dom seeding.

6.1 Small-World

Consider the artificial small-world network depicted in Fig. 6.1. It consists of 3 small-
world graphs with a total of 30 nodes, each node is connected to its immediate two
neighbors and each connection is randomly rewired with probability 0.2. The cluster
coefficient of this graph is 0.45 and the characteristic path length is 2.98.

We are interested in how often the algorithm would cluster this graph in the three
correct partitions. We found that after 200 iterations the k-prmeans algorithm found 11
different solutions of which 177 times the ‘correct’ solution, shown in Fig. 6.1b. The aver-
age conductivity when the graph would be partitioned in this way is 0.0448. The second
most frequently occurring solution is shown in Fig. 6.1c. The algorithm only resulted five
times in this partitioning, which has a mean conductivity of 0.2263.

These results show a big improvement when we compare the frequency of the op-
timal solution to the frequency when the initial seeding was chosen at random. That
way the optimal clustering is ‘only’ found 137 times out of 200 test runs and the second
best solution 13 times. Without the improved seeding, the algorithm also found a larger

41



6.2 Preferential Attachment K-PRMEANS Experiments

(a) Unclustered Graph (b) Clustered Graph (c) Suboptimal Solution

Figure 6.1: Small-World Network (n = 30)

number of different solutions, namely 16.

6.2 Preferential Attachment

The second model we tested is the preferential attachment model as described in Sec-
tion 2.3.1. A graph was generated with 50 nodes and an average path length is 2.1880,
much lower than the small-world network. It has a cluster coefficient of 0.5075. The
cluster coefficient is slightly higher than that of the small-world network because it is a
scale-free graph, for which the nodes are added successively. The unclustered graph is
shown in Fig. 6.2a.

(a) Unclustered Graph (b) Clustered Graph (c) Suboptimal Solution

Figure 6.2: Preferential Attachment (n = 50)

The k-prmeans algorithm found 39 different solutions of which the most frequent
solutions were found after 53 and 30 iterations. They are shown in Fig. 6.2b and Fig. 6.2c,
respectively. The mean conductivity of these clusters are very close together, 0.3252 and
0.3203, but it is clear from the figures that the most frequent solution is also the best so-
lution because the number of nodes is more evenly distributed throughout the clusters.
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When clustering the graph without initial seeding, we obtain similar results. The
algorithm then finds 35 different solutions, of which the best solution is found 69 times
and the second-best 21 times. This implies that in a scale-free graph the initial seeding
is not necessarily better than random seeding.

6.3 Renga

We also tested the algorithm on a graph generated using the RENGA algorithm (cf. 2.3.2).
The λ parameter (base for edge probability) was chosen to be 0.6 and theα parameter as
0.9. These settings yield a graph with an average cluster coefficient of 0.44 (similar to the
previously discussed Small-World Network), but with a higher characteristic path length
of 6.54. The higher path length is clearly visible in Fig. 6.3a.

(a) Unclustered Graph (b) Clustered Graph (c) Suboptimal Solution

Figure 6.3: Renga Network (n = 60)

After 200 iterations the best clustering out of the 16 different solutions found with
k-prmeans is shown in Fig. 6.3b. It has an average conductivity of 0.0254 and occurred 73
times. The second best solution, Fig. 6.3c appeared 51 times and has an average conduc-
tivity of 0.0876. Visual inspection supports that the most occurring solution is intuitively
a better one, because (1) it cuts through less edges and (2) the size of the clusters are
more balanced.

When the initial cluster locations are chosen at random, the algorithm finds 15 dif-
ferent solutions. Only 52 iterations result in the best outcome. The second best solution
is found 26 times. All the other solutions of lesser quality appear more frequent, which
shows the clear advantage of the initial seeding.

6.4 Geometric Network

The next model we will discuss is the geometric graph. The simulated model consists of
50 nodes. The characteristic path length is 2.6568 and the cluster coefficient is 0.5579.
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These values are slightly below and above the values of the small-world network respec-
tively.

(a) Unclustered Graph (b) Clustered Graph (c) Suboptimal Solution

Figure 6.4: Geometric Network (n = 50)

The best solution, shown in Fig. 6.4b, was found 34 times by k-prmeans and has a
mean conductivity of 0.1810. The partitioning shown in Fig. 6.4c is the second-best so-
lution. This solution, however, has a mean conductivity of 0.1496. Visual inspection tells
us why the best solution is slightly the better of the two: the graph is more balanced.

Running the algorithm with random cluster seeding resulted 38 different solutions
after 200 iterations. Both the best and the second best solutions were found 28 times.
Such an output isn’t completely surprising given the large number of different solutions
and because they are both pretty good. Non-random initial seeding shows again the
better results.

6.5 Kleinberg Graph

The next graph we examined is the Kleinberg model consisting of 50 nodes. This model
contains much more edges than a traditional small-world network, but also explores the
short path length between nodes far apart. In this example there are 284 edges with an
average path length of 2.4856 and a mean cluster coefficient of 0.2252. The dense graph
is shown in Fig. 6.5a.

In this graph the clusters are not very clear and after 200 iterations of the k-prmeans
algorithm there are 79 different solutions found. However, the particular partitioning
shown in Fig. 6.5b was the outcome of 26 iterations, which is significantly more frequent
than the other solutions. Not unexpected, this solution also has the lowest conductivity
0.2795. The second frequent occurring solution, 14 times, is shown in Fig. 6.5c, which
might seem better, but has a much higher conductivity of 0.3544.

The algorithm with random seeding yields 83 different results of which 23 iterations
yielded the best results and 14 times the second-best result.
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(a) Unclustered Graph (b) Clustered Graph (c) Suboptimal Solution

Figure 6.5: Kleinberg Network (n = 50)

6.6 Summary

In this chapter we investigated the experimental results of the k-prmeans cluster algo-
rithm with and without initial seeding. In many cases the output of the stable-k-prmeans
algorithm corresponded to visual inspection of the graph. In each experiment we found
better results when we used the initial seeding advantage, because the initial positions
of the cluster means are less likely to be close together. The fact that the frequency of
the best clusters are not coming from a uniform distribution and the combination of
frequency and conductivity show the advantage of the stable-k-prmeans algorithm.
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Part III

The Small-Worldness of ADHD
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7
GRAPH THEORETICAL PROPERTIES OF ADHD

In this chapter we will investigate the graph theoretical properties of ADHD. The chapter
starts with a brief description of the data in Section 7.1. In Section 7.2 we explain and
exemplify how we transform fMRI data into a graph. One of the parameters the transfor-
mation depends on is a threshold parameter, which influence is explored in Section 7.3.
Finally, Section 7.4 provides an in-depth physiological analysis of the cluster coefficient.

7.1 Data

The NeuroBureau1 is an initiative that is trying to get more people involved in compu-
tational Neuroscience by releasing pre-processed datasets. Over the past few months
they have been releasing parts of a large dataset of fMRI scans of children and teenagers.
These scans are part of the ADHD 200 Sample2, an initiative dedicated to accelerating
the understanding of the neural basis of ADHD through open data-sharing. This is sup-
ported by the unrestricted public release of 776 resting-state fMRI and anatomical scans.
These scans were recorded at eight different sites such as universities (Brown University,
New York University and Peking University), and research institutes (Kennedy Krieger
Institute). Out of the 776 scans, there are 491 obtained from typical developing young
adolescents (TD) and 285 from children and teenagers with ADHD. Every scan from each
site was pre-processed in the same way, using scripts and tools that are publicly available.
Processing every scan in the same way allows for easier comparison between scans. Be-
sides the scans, they also released phenotypic information about the participants such
as the diagnostic status, ADHD symptoms, age and gender.

1http://neurobureau.projects.nitrc.org/NeuroBureau/Welcome.html
2http://fcon_1000.projects.nitrc.org/indi/adhd200/
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7.2 Functional and Anatomical Parcellations Graph Theoretical Properties of ADHD

A few months ago, the ADHD 200 Global Competition was announced. This is an
open competition for researchers across all disciplines. The results presented in the next
chapter of this thesis are submitted to the contest of The Highest Performance Imaging-
Based Diagnostic Classification Algorithm for ADHD.

The results of this chapter are produced using the data made publicly by New York
University. Preprocessing was performed with scripts3 developed by Cameron Craddock
using AFNI and FSL. The following steps were performed to preprocess the data3. The
first 4 EPI volumes were removed and the timing for each slice was corrected. The dataset
was deobliqued and reoriented to RPI orientation. All EPI volumes were corrected such
that the fifth volume was set as the first image of the time series. A mask was created
to exclude non-brain data and an ‘average brain’ image was computed using the aver-
age of the volumes. The mean EPI image was co-registered to the corresponding high-
resolution anatomic image. The fMRI data and mean image were written into template
space at 4 mm x 4 mm x 4 mm resolution. The White Matter and Cerebral Spinal Fluid
masks were matched to EPI resolution and the time-courses were extracted. Finally, the
slices were band-pass filtered (0.009 < f < 0.08 Hz) to exclude frequencies that are not
part of the resting state functional connectivity and blurred using a 6mm Full Width-Half
Maximum Gaussian filter.

7.2 Functional and Anatomical Parcellations

After preprocessing each of the fMRI scans, the time courses can be extracted from fil-
tered resting state data using different functional and anatomical atlases. Examples of
anatomical atlases are the automated anatomical labeling (AAL), Eickhoff-Zilles (EZ), Ta-
lairach and Tournoux (TT), and Harvard-Oxford (HO). To create a functional parcellation
the time series are typically parcellated into k clusters using the ncut cluster algorithm.
In this chapter we use the AAL template, a parcellation of an anatomical brain [Tzourio-
Mazoyer et al., 2002]. This template allows us to create a mapping from the voxel-space
to 116 anatomical defined regions using the Statistical Parametric Mapping Package.

Using this atlas we obtain the time courses for each of the individuals in the dataset.
The time courses consist of a time×ROI matrix, or an m×n matrix. The number of ROI’s
(n) depends on the parcellation scheme and the number of time steps (m) depends on
the site where the scan was recorded.

The values of an m×n time series matrix are the MRI signals measured at each voxel
location at each sampling epoch. These are the BOLD values and are all relative to each
other. This makes it difficult to compare between scans, because the values have no
physiological meaning and can vary substantially between subject or scanner. Even the
room temperature or the number of times the MRI scanner has been used that day can
be of influence to the measured values. We solved this problem by normalizing each of
the signals with respect to the variance, hence we compute the z-score for each of the

3Further information can be found at http://www.nitrc.org/plugins/mwiki/index.php/
neurobureau:AthenaPipeline
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ROI’s:
z = x −µ

σ
. (7.1)

Because our goal is to extract a connectivity matrix between regions in the brain, we
have to know which of the areas are connected to each other. In other words, we want
to know which areas show related behavior over time and hence are likely influenced by
each other. We can do this by computing the correlation matrix P where each entry ρi , j

shows the correlation between region i and region j .
The values in the correlation matrix are in the range [−1,1] and indicate the degree of

relationship between the functional or anatomical regions i and j . We can now make two
observations. First, the correlations on the diagonal are always 1; ρi ,i = 1. Second, we can
treat negative correlations in the same way as if the correlation was zero, because both
imply that there is no positive influence between the regions. This gives some sugges-
tions on how to extract a connectivity graph from this matrix: it can be done by choosing
a threshold that determines the minimal required correlation we need to conclude that
there is a strong enough connection between those regions. Hence, we set each entry of
the matrix as follows:

ρi , j =
{

1 when ρi , j ≥ θ,

0 when ρi , j < θ.
(7.2)

This process is shown in the example below.

Example: From correlation matrix to connection matrix

The following, partial, time series data is obtained from a participant at the NYU site. The
participant is an 11.8 year old, typically developing, male. In this example the fMRI data
was parcellated using the AAL template into 116 anatomical regions and for each region
we have 172 measurements.

T =



−0.1799 −0.0281 −0.0742 0.0802 · · · t1,116

−0.1709 0.0768 0.0277 0.0279 · · · t2,116

−0.0096 0.0051 0.0712 0.1386 · · · t3,116

0.0418 0.0984 −0.0015 0.0936 · · · t4,116
...

. . .
...

t172,1 · · · · · · t172,116


. (7.3)

The next step is to normalize each of the columns using the z-score. Then we compute
the column wise correlations between each of the anatomical regions. This results in a
correlation matrix P of 116×116 correlations.

P =



1.0000 0.4690 −0.2959 −0.0096 · · · ρ1,116

0.4690 1.0000 −0.1745 −0.0342 · · · ρ2,116

−0.2959 −0.1745 1.0000 0.0634 · · · ρ3,116

−0.0096 −0.0342 0.0634 1.0000 · · · ρ4,116
...

. . .
...

ρ116,1 · · · · · · ρ116,116


. (7.4)
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Then the matrix is thresholded according to a threshold θ to create a binarized verion of
correlations. Let the threshold θ be 0.2 to obtain the following matrix Pb.

Pb =



1 1 0 0 · · · ρ1,116

1 1 0 0 · · · ρ2,116

0 0 1 0 · · · ρ3,116

0 0 0 1 · · · ρ4,116
...

. . .
...

ρ116,1 · · · · · · ρ116,116


. (7.5)

When this threshold is selected, only regions one and two are connected. Also, every
region is connected to itself, because the correlation of a region with itself is always 1.
Because it is inconvenient to have self-loops in a network and they do not add informa-
tion to the graph, it is safe to remove them and we obtain the final graph.

Pb =



0 1 0 0 · · · ρ1,116

1 0 0 0 · · · ρ2,116

0 0 0 0 · · · ρ3,116

0 0 0 0 · · · ρ4,116
...

. . .
...

ρ116,1 · · · · · · ρ116,116


. (7.6)

Important and interesting questions that arise are how do we choose the ‘best’ thresh-
old and what is the influence of the threshold? These questions are the topic of discussion
of the next section.

7.3 Influence of the threshold

In this section we have a look at the process of thresholding the correlation matrix. In
section 7.3.1 the implications on the graph properties will be discussed, followed by the
changes in small-world properties in section 7.3.2. Besides the discussion of general
properties we they are also compared when the subjects are divided in groups such as
TD/ADHD, Male/Female, Male TD/ADHD and Female TD/ADHD.

7.3.1 On network properties

Now that the process of extracting a network from fMRI time series data is explained we
can inspect the properties of such a network. The chosen threshold is quite important
because it determines how strong the network is connected. Intuitively, we can assume
that the connectivity of the network is inversely proportional to the threshold. Inasmuch
as setting the threshold higher will only allow the regions with a higher correlation to be
connected and hence less connection will be in the final model.

Let’s have a look at the final graph described in the example of the previous section.
The graph is shown in Fig. 7.1a. This also is a good example why it is more convenient
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to look at numerical properties of graphs than just to rely on visual inspection because
even with such a, relatively, low number of nodes and edges, it looks very cluttered.

There are several properties of a graph we can analyse by simple inspection or com-
putation. Since the graph is parcellated using the AAL anatomical template, we have 116
regions, or nodes, and using θ = 0.2 yields a network of 2230 connections (the network is
only for 17% saturated). The least connected region is only connected to two other areas,
whereas the maximum is 37. The average number of edges per node is 19.22. A histogram
of the edge distribution is shown in Fig. 7.1b and follows a normal distribution.

(a) Extracted Network Graph
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(b) Edge Distribution Graph

Figure 7.1: Extracted Network

Even though the properties of one participant are interesting, the changes in param-
eters measured over all participants could tell us much more. We start by preprocessing
all 202 participants, irrespective of gender, from the NYU site to get the correlation matri-
ces. The plot is shown in Fig. 7.2a, and, not surprisingly, the mean edge degree decreases
monotonically when the correlation threshold θ increases.

One may wonder whether there are differences in the mean edge degree between
male or female participants, male participants with ADHD or males who are typically
developing. The NYU dataset consists of 73 female and 129 male participants. For bet-
ter comparison only the first 73 male participants are selected to create two balanced
groups. The two graphs are shown in Fig. 7.2b. It shows that for a low correlation thresh-
old the mean edge degrees are nearly identical, but as the threshold becomes higher,
the means start to deviate. Even though they are different, statistical tests allow to con-
clude whether the data between two groups are significantly different. It turned out that
the apparent differences between mean edge degree between males and females is not
significantly different when examined with a t-test and ANOVA, for any of the correlation
values. For each case, the p-value is higher than 0.05 (the minimum was 0.18), and hence
it is not possible to conclude whether they are significantly different.

In a similar way, balanced groups of typically developing and ADHD males and fe-
males can be created and compared. Comparison of the mean edge degree of 45 males
in both groups is shown in Fig. 7.3a. The comparison of 25 females in each group is
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(a) All NYU Participants
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(b) Male - Female Comparison

Figure 7.2: Mean Edge Degree

shown in Fig. 7.3b. Not surprisingly, the differences between male TD and ADHD are
not significant. Even though the means of the female groups are apart, statistical testing
does not give support for rejection of the null hypothesis.
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(a) Male TD / ADHD
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(b) Female TD / ADHD

Figure 7.3: Mean Edge Degree between male and female populations

These experiments are performed for each of the scan sites and all anatomical and
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functional parcellation atlases. Unfortunately, none of the statistical tests have shown
a significant difference between the mean edge degree. However, we are still looking
for a property that is significantly different between typically developing children and
children with ADHD that can give more insight in their brain structure. This would allow
us to explain such a disease based on the properties of the brain. In the subsequent
section similar comparisons are made but then based on the small-world properties of
the brain.

7.3.2 On small world properties

Whereas we looked in the previous section at the edge degree of functional and anatom-
ical parcellations of the brain, we will now turn to small-world properties calculated in
the extracted graphs. In section 2.2, we discussed several small-world metrics of which
two are the most important and characterizing for small-world networks. These are the
characteristic path length and the clustering coefficient. We will first discuss the charac-
teristic path length followed by the clustering coefficient. In this section we, again, use
the NYU dataset but the results obtained hold for other sites.

Characteristic Path Length

Let’s ponder for a moment what we know about the characteristic path length and the
brain to try to predict the outcome based on the observations. First, the CPL gives a
measurement of distance in the brain computed as the number of steps it takes from
each node, i.e. functional or anatomical region, to every other node. Second, in theory,
when computing the path length between disconnected edges, the distance is infinity.
Then, as the characteristic path length is defined as the average of each nodes to every
other node, the mean path length becomes infinity. This is inconvenient so we define
each infinite path as zero and have to take into account that for disconnected graphs the
CPL is prone to be lower. Third, because we found differences in edge distribution, albeit
not significant, we can reasonably expect this to influence the CPL and therefore might
have a physiological influence on the individual. Now, when taking these remarks into
account, we can expect the CPL to be short when the correlation threshold is low and it
will be longer as the threshold becomes higher because the graph becomes more discon-
nected. However, setting the path length to zero when there is no real path between two
regions might introduce a peculiarity when the graph becomes very disconnected. Inas-
much as there are many zeros in the mean path length, the average path length might
not increase anymore or could even decrease.

In Fig. 7.4 the between group comparisons are shown. On the left, Fig. 7.4a, shows
the comparison of path length between individuals with TD and ADHD, irrespective of
their gender. The trend is somewhat like we predicted: the means are very close together
with a low standard deviation when θ is low, both group means tend to be higher as θ
increases until the network starts to fall apart. This is evident when the group means
are decreasing and the standard deviations are becoming very large. The first column of
Table A.1, listed in Appendix A, shows the p-values for each of the paired t-tests of the
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(b) Male / Female

Figure 7.4: Mean CPL between male and female populations

hypothesis that the two groups come from distributions with equal means. For various
values of θ the mean characteristic path length is significantly different, i.e., for each en-
try where the value is lower than 0.05. There are also entries where the p-value is even
lower than 0.02, the 98% confidence interval, giving even more support to the hypothesis
that they are significantly different. There are many cases, for both a low as well as a high
threshold, indicating significance. For the high threshold it is not surprising that they
are different for the means are very much apart and both have high standard deviations.
However, apparently there is also a significant difference between mean path length be-
tween children with ADHD and TD children when the threshold is set to a low value and
the graphs are fully connected.

In Fig. 7.4b the comparison between males and females is shown, without taking the
diagnostics into account. If the means follow a trend similar to that shown on the left,
i.e., means close together with low standard deviations and the graphs breaking apart
as θ increases. The second column in A.1 shows the p-values for the paired t-test that
the mean path length of males and females are equal. There are only two values of theta
giving support that the means are not equal, hence supporting rejection of the null hy-
pothesis. In all other cases the null hypothesis cannot be rejected, it can be the case that
the number of samples is not large enough or that there really is not a difference. Also,
when considering that there are only two cases that show support in favor of rejection, it
might also just be the case that they are different because the sample size is only 73.

The within group comparisons are shown in Fig. 7.5. The comparison between male
participants is shown in Fig. 7.5a. The graph also follows the same trend as the graphs
previously discussed. However, as can be seen in the third column of Table A.1, none
of the differences are significant. This is likely the case due the low number of scans
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available for males. Finally, the comparison between females with and without an ADHD
diagnosis are shown in Fig. 7.5b. The graph is again similar to the others and like the
male comparison, none of the t-tests, the fourth column of Table A.1 show a significance
in favor of rejection that the two groups come from distributions with equal means.
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Figure 7.5: Mean CPL within male and female populations

Clustering Coefficient

From Section 2.2 we know that the clustering coefficient is a metric that describes the
degree of clustering of the neighbors for a given node. In this case it describes the extend
to which adjacent functional regions are connected for a given region. We know that the
graph is reasonably well-connected and that it becomes less connected as the correlation
coefficient is set higher. Hence we can expect the mean clustering coefficient to start out
at a certain point and decrease as the the correlation coefficient increases.

Fig. 7.6a shows the mean cluster coefficient between TD children and children with
ADHD. The trend is similar to what we expected: the mean cluster coefficient decreas-
ing as the threshold increases. When the threshold is higher than 0.4, the means are
diverging from this trend and tend towards each other. This is probably due to the graph
becoming more disconnected. The first column of Table A.2 shows the significant val-
ues for the t-test of the hypothesis that the means come from the same distribution. We
find the first 23 values all to be significant (p < 0.05) and the rest is all not significant
(p ≥ 0.05). We can see that as the means in the graph are starting to diverge from the
expected trends the p-values are also becoming very high.

The comparison between male and female participants is shown in Fig. 7.6b. Again,
a similar trend is clearly visible, with odd behavior as the threshold becomes high. In
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the second column of Table A.2 we find the p-values for the male / female comparison.
Even though the means are seemingly as far apart as in the TD / ADHD comparison,
none of the t-tests show a significant support for rejection of the hypothesis that they are
statistically different.
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Figure 7.6: Mean cluster coefficient between groups

The comparison between males with and without ADHD is shown in Fig. 7.7a. We
see that the means are starting out closer together and start to diverge whenever the
threshold is higher. In the third column of Table A.2 we see that none of the p-values are
significant. This time it could be due to the small number of samples available.

Finally, in Fig. 7.7b we can see the within group comparison for females. This time
the means follow a more similar trend, however, although none of the p-values are sig-
nificantly different. This is not surprising because the sample size is even smaller than
that of the males.

An overview is shown in Fig. 7.8. Here the differences between means within the var-
ious populations are clearly visible. Unfortunately, none of the means are significantly
different, possibly due to the small population size.

7.4 Physiological Analysis of the Cluster Coefficient

In the previous section we found an indication that the mean cluster coefficient is a
might be a good metric to differentiate between children with ADHD and normal de-
veloping children. In this section we are going to explore the physiological implications
of this metric. Even though no statistical significant differences were found within the
male participants or the female participants, we will still perform an analysis for each
region within those groups to see if we find anything interesting.
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Figure 7.7: Mean cluster coefficient within male and female populations
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Figure 7.8: Mean cluster coefficient within populations

The mean cluster coefficients turned out to be statistically significantly different for
a large number of correlation thresholds. Fig. 7.9 shows a plot of the p-values for the
mean cluster coefficient comparison for TD/ADHD children. We can see that for the first
22 values of the correlation threshold, the means are statistically significantly different
between groups. For each of the subsequent values, the results are not significant. This
could either be the result of the graphs are becoming too disconnected or having too few
samples.
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Figure 7.9: T-test p-values for mean cluster coefficient comparison of TD/ADHD

Now that we know that the means of the cluster coefficients are different, it is very
interesting to investigate which of the brain regions are causing this. We can perform a
t-test for each of the 116 regions to inspect if any of the regions are significantly different
or whether only the overall means are different. Whereas we used a 95% confidence
level when comparing the means, we will use a 99% confidence level when rejecting the
null hypothesis that the two groups are coming from distributions with the same means.
Also, instead of using all the correlation threshold values, we will restrict ourselves to only
the first 22 for which we rejected the null hypothesis. After performing t-tests for each
of the regions and for each of the 22 correlation values we find the 23 different regions
which occur at least two times. We chose the minimum frequency of two to leave the
regions out which occur only once, because this might be caused by the sample size.
Table 7.1 shows the frequency of each region which has a significantly different cluster
coefficient. The next thing we have to do is to find the corresponding regions in the AAL
atlas and determine for each of the regions whether they are regions that are known to
‘cause’ ADHD. We can look up each of the labels in the second column of Table 7.1 in the
corresponding paper which describes the AAL template by Tzourio-Mazoyer et al. [2002].
Each of the labels has a matching corresponding anatomical description, and the -D and
-G at the end of labels indicate the right and left hemisphere, respectively. Next we will
discuss each of the regions in order of appearance in Table 7.1. The first 13 regions are
located in the cerebrum, whereas the last 10 regions are in the cerebellum.

7.4.1 Anatomical Regions

First, the superior frontal gyrus, dorsolateral (F1G and F1D) are part of the lateral surface
of the frontal lobe. Cognitive control, such as the ability to suppress thoughts and actions
is known to be different in children with ADHD compared to typically developing chil-
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TABLE 7.1: Frequency table of significant regions

AAL Template Region Label Frequency
3 F1G 5
4 F1D 5
7 F2G 6

19 SMAG 2
21 COBG 3
22 COBD 2
31 CIAG 4
32 CIAD 6
39 PARA_HIPPOG 4
40 PARA_HIPPOD 2
61 P2G 4
76 PALLD 3
89 T3G 3
93 CER 7
97 CER4_5G 4

101 CER7BG 6
102 CER7BD 2
103 CER8G 19
104 CER8D 2
105 CER9G 15
106 CER9D 10
107 CER10G 3
114 VER8 18

dren. Durston et al. [Durston et al., 2003] examined the neural basis of these differences.
They found differences in the network of regions between these groups, more specifically
the activations in frontostriatal regions are different. ADHD children rely on a more dif-
fuse network of regions in specific trials, including more the dorsolateral frontal regions.

The middle frontal gyrus (F2G) is also located in the lateral surface of the frontal lobe.
In the same study by Durston et al. the MFG has also been shown to respond different
for people with ADHD [Durston et al., 2003].

The supplemental motor area (SMAG) is part of the medial surface of the frontal lobe.
This area is also different in children diagnosed with ADHD according to various stud-
ies. Differences in physical behavior in terms of response-time to actions is localized to
the supplementary motor area in the studies by Suskauer et al. [Suskauer et al., 2008b].
Suskauer et al. [2008a] show that children with ADHD show greater prefrontal activation
than TD children, adding evidence that dysfunction of premotor systems may contribute
to impaired response inhibition in children with ADHD.

Differences in the olfactory cortex (OCG and OCD), located in the orbital surface of
the temporal lobe, between TD and ADHD adults is shown in [Schecklmann et al., 2011].
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The studies suggest an association of cortical olfactory processing with hyperactivity and
impulsitivity in ADHD, i.e., patients with ADHD revealed a diminished activation in ol-
faction associated brain regions. Significantly (p < 0.01) poorer olifaction is also shown
in children with ADHD by [Karsz et al., 2008].

The previously discussed anatomical regions are all located in the frontal lobe, for
which it is also known to be significantly different for children with ADHD compared to
TD children. [Rosack, 2004] shows a reduction of the size of the frontal lobe for children
with ADHD.

The anterior cingulate and paracingulate gyri (CIAG and CIAD) are located in the
limbic lobe and play a central role in attentional processing. This is done by modulating
stimulus selection (i.e., focussing and managing attention) and mediating the response
selection. It is not surprising to find differences in these areas between populations, for it
intuitively makes sense that anterior cingulate disfunction might contribute to produce
one of the core features of ADHD: inattentive and impulsive behavior. This hypothesis is
significantly supported as shown in [Bush et al., 1999] who used fMRI and the Counting
Stroop experiment. There are many more papers showing support for this hypothesis,
such as [Qiu et al., 2010] focussing both on the structural and functional differences be-
tween the brains of children, Seidman et al. [2011] use voxel-based morphology to look
at alterations in the gray matter in adults with and without ADHD.

The parahippocampal gyrus (PARA_HIPPOG and PARA_HIPPOD) is also located in
the limbic lobe. The limbic structures are implicated by the origin of ADHD by the pres-
ence of mood and cognitive changes or elevations and have been suggested to be in-
volved in the pathophysiology of ADHD. Carmona et al. [2005] show a decrease of about
5.4% in volume of the whole brain in children and adolescents. They localized the dif-
ferences to various regions, such as the cingulate cortex and the parahippocampal gyrus
and the cerebellum. A significant difference is also found using DTI in children [Peter-
son et al., 2011]. Plessen et al. [2006] also found a significant (p < 0.002) difference in the
morphology in the (para)hippocampal gyrus for children with ADHD.

The inferior parietal lobule (P2G) is part of the parietal lobe and is involved in the
perception of facial stimuli and interpretation of sensory information. Abnormalities in
this area is common in disorders involving inhibitory control, such as ADHD. Research
has shown that this part of the brain is different for children with ADHD. The study of
[Rubia et al., 2010] focusses on ADHD and obsessive-compulsive-disorder (OCD) and
found increased activation caudate, cingulate and parietal regions, specifically in the in-
ferior parietal lobe. Cao et al. [2008] studied the neurophysiological deficits of TD and
ADHD children and found less activation in the frontal (middle and superior gyrus) and
inferior parietal lobe, regions in which we also found significant differences.

The lenticular nucleus pallidum (PALLD) is located in the sub-cortical gray nuclei.
More specifically, it is part of the basal ganglia, which is associated with functions such
as voluntary motor control and procedural learning related to behavior and emotions. A
large number of brain-imaging evidence supports the role for the basal ganglia in ADHD.
Four major studies of the pallidum have shown children with ADHD to have smaller vol-
umes in either the left (PALLG) or right part (PALLD): Castellanos et al. [2001, 1996, 2002];
Aylward et al. [1996]; Overmeyer et al. [2001]. Seidman et al. [2005] provide a comprehen-
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sive literature overview on various regions, including all previous mentioned areas.
Finally, the inferior temporal gyrus (T3G) is part of the temporal lobe. Cao et al. [2007]

found abnormal neural activity, using the recent regional homogeneity (ReHo) approach,
in resting state fMRI in children with ADHD compared to TD children. A similar differ-
ence in temporal lobe was found by [Rosack, 2004].

Traditionally the cerebellum (entries 14 to 23 in Table 7.1) has been thought to be in-
volved only in support for motor control. However, clinical and research experiments
have shown that the cerebellum is also involved in cognitive and affective processes.
Middleton and Strick [2001] have demonstrated that the cerebellum influences the pre-
frontal cortex via connections in the thalamus which provides a substrate in the patho-
physiology of ADHD. Recently, Durston et al. [2004] performed volumetric measure-
ments on the cerebellum and showed a significant volume reduction in the right part
of the cerebellum in children with ADHD of 4.9% (p = 0.026). Berquin et al. [1998] also
performed a volumetric study, solely with male participants, and found a similar signifi-
cant decrease in volume. Hill et al. [2003] found, amongst others, a significantly smaller
total brain, superior prefrontal (F1G, F1D) and cerebellar lobules.

Conclusions

We found significant differences in clustering coefficient for 14 different anatomical re-
gions, counting the cerebellum as one region. Many of the regions are directly associ-
ated with the characteristics of ADHD, because they control the important roles such as
the focus of attention, behavior or emotional control. Each of the regions we found is
supported by (statistical) findings in other studies based on children with and without
ADHD that it influences and characterizes the disease. Based on all this support we can
conclude that the cluster coefficient is a remarkable metric for localizing the important
areas that are important in diagnosis of ADHD.

Male Group Analysis

We can do a similar analysis for the regions between typical developing male participants
and participants with ADHD. Each region was tested between groups using the t-test.
The regions which were found statistically significantly different (p < 0.01) are shown in
the Table 7.2 below. The right column shows the number of times the test found a certain
region different between groups.

We can immediately identify several regions that match with the anatomical regions
found in the TD/ADHD comparison as shown in Table 7.1. Namely, the superior frontal
gyrus (F1D) and the olfactory cortex (COBG) in the temporal frontal lobe, the inferior
temporal gyrus (T3G) in the temporal lobe and the lenticular nucleus, pallidum in the
sub cortical grey nuclei (PALD). Also we see that several areas in the cerebellum are
matching (CERCRU2G, CER7BG, CER8G, CER9G, CER9D, VER8).

In the lateral surface we also found differences in the middle frontal gyrus and the
opercular part of the inferior frontal gyrus (F2G and F3OPD, respectively). A study by
Sasayama et al. [2010] showed some results that the middle frontal gyrus was different
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TABLE 7.2: Frequency table of significant regions in males

AAL Template Region Label Frequency
4 F1D 6
7 F2G 14

10 F2OD 3
12 F3OPD 3
21 COBG 4
33 CINMG 7
37 HIPPOG 2
42 AMYGDD 2
76 PALLD 2
82 T1D 3
89 T3G 3
93 CERCRU2G 18

101 CER7BG 5
103 CER8G 15
105 CER9G 4
106 CER9D 8
114 VER8 2
116 VER10 4

in amplitude of low-frequency fluctuation. However, they only found significant results
for the right part of the F2, whereas we found differences in the left part. In another
studies, Yang et al. [2011] found significantly smaller volumes of gray matter in children
with ADHD in regions such as the bilateral amygdala and the left middle frontal gyrus.
Grey matter reductions and differences in cortical development in the inferior frontal
gyrus is more well-known and found in several studies, such as [Shaw et al., 2011; Batty
et al., 2010]. Depue et al. [2010] are specifically focussed on reductions in the inferior
frontal gyrus in the right hemisphere.

In the orbital surface we found significant differences in both the orbital part of the
middle and inferior frontal gyrus (F2OD and F3OPD, respectively). Unfortunately, there
are no papers (yet) that support this finding. Hence it might very well be the case that
this finding is incorrect, due to the small sample size.

The temporal lobe is known to be different, volumetrically, in children with ADHD
[Rosack, 2004]. At the moment there is only one recent paper [Cao et al., 2009] that sup-
ports the differences which were found in the superior temporal gyrus (T1D).

The hippocampus (HIP) in the limbic lobe is also known to be different for children
or adults with ADHD. This finding is supported by several studies such as [Plessen et al.,
2006; Verkhlyutov et al., 2010; Amico et al., 2011]. The study of [Verkhlyutov et al., 2010]
found differences in the volume of cerebral ventricles. Inasmuch as most studies are
focussed on children, Amico et al. [2011] confirmed abnormalities in various areas like
the prefrontal cortex, the cingulate cortex, the hippocampus and the amygdala in adults.
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Finally, the amygdala (AMYG) is located in the sub cortical gray nuclei and is known
to play a part in ADHD. This is shown by several studies such as [Amico et al., 2011;
Sasayama et al., 2010; Perlov et al., 2008]. Alas, all of the mentioned studies are performed
on adults and this makes it more difficult to confirm that our findings are correct.

Conclusions

We found several regions when doing the within group analysis for males that corre-
spond to regions found in the between group analysis. However, there are also regions
that we did not find before, but for which we could find support in the literature. We also
found several regions which were only weakly supported, or not supported at all, mak-
ing the findings not as strong as for the TD/ADHD comparison. This is likely because the
total sample size was less than half TD/ADHD comparison, making it more vulnerable
to more variance in the data which can lead to wrong conclusions and findings (such as
regions with no support). Results might be better supported when using a larger sample
size.

Female Group Analysis

Table 7.3 lists an overview of all regions which we found significantly different (p < 0.01)
for females with and without ADHD. Because we only have a small number of samples
(N = 50), it is much harder to find regions that are different, which can be concluded from
the low number of regions found. There are a few regions in agreement with our previous
findings. The pallidum (PAL) found in both the TD/ADHD comparison as well as the
male TD/ADHD comparison. The opercular part of the inferior frontal gyrus (F3OPD)
was also found in the male comparison, there are, however, no papers yet published with
findings of the influence of this part on ADHD.

TABLE 7.3: Frequency table of significant regions in females

AAL Template Region Label Frequency
12 F3OPD 3
16 F3OD 3
26 FMOD 2
58 PAD 5
59 P1G 10
75 PALLG 4
76 PALLD 3
87 T2AG 8

113 VER7 3

There is no literature available on our findings in differences in the orbital part of
the inferior frontal gyrus (F3OPD), the medial orbital part of the superior frontal gyrus
(FMOD) and the middle temporal pole (T2AG). We did find some weak support for two
other regions.
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The postcentral gyrus in the central region was also found to be significantly dif-
ferent. There is a study by Dibbets et al. [2010] who observed differences in activity in
several regions including the postcentral gyrus. However, the participants in their study
were only adults and hence we have to be extra careful with concluding that this is a valid
result.

Tamm et al. [2006] collected behavioral and brain activation data on a small group of
adult participants while they performed a visual oddball task. The subjects with ADHD
showed significantly less activation in the bilateral parietal lobes, including the superior
parietal gyrus (P1). This may support our finding of differences in the P1G. Again, we
have to be extra careful because we only found differences in the left hemisphere and
our dataset consists of only of young females in contrast to their mixed adult subjects.

Conclusions

While we did find a few regions that are in agreement with both our findings in the
TD/ADHD as well as the male TD/ADHD comparison, there was almost no support for
our other findings. This makes it hard to conclude that we found strong evidence that
the cluster coefficient is a good metric to find the regions that are specifically important
for differentiating between TD/ADHD children. It does not come as a surprise because
we have only 25 participants per group.

7.4.2 Typical Developing Group Analysis

Now that we performed the within group analysis for males and females, it is also inter-
esting to explore the existence of possible gender differences between the groups. There-
fore we created two balanced male and female groups (n = 25, per group). Below we will
explore the existence of differences in cluster coefficient between typically developing
males and females and in the subsequent section (7.4.3) we will look into the gender
differences for children with ADHD.

TABLE 7.4: Frequency table of significant regions in TD males and females

AAL Template Region Label Frequency
1 FAG 5
2 FAD 2

57 PAG 4
58 PAD 2
86 T2D 3
87 T2AD 3

An overview of the significantly different regions is shown in Table 7.4. Surprisingly,
a total of six regions are different between the typically developing males and females.
The question is if these observed differences are real differences, i.e. the clustering coef-
ficient of the brains are really different, or are these results depending on the threshold
that we choose? If the former is true, when looking at the significant regions for each
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threshold separately we would find these regions spread through the table. In case the
latter hypothesis is true, we would find the regions not to be randomly distributed in
such a table.

Table A.3 shows which regions are significantly different for the thresholds 0.15 up to
0.34. Except for the 4th and 9th entry the table shows that for low thresholds the cluster
coefficients are not different for typically developing males and females. As the thresh-
old is set higher, the extracted networks start to become disconnected and more regions
are becoming significant. Because the frequency of each of the regions which are signif-
icantly different is low, we can assume that the difference arise because the graphs are
falling apart differently and not because of real gender differences. Using a larger popu-
lation would allow us to make stronger conclusions regarding the gender differences in
typically developing children.

7.4.3 ADHD Group Analysis

We performed a similar analysis as described in the previous section, but this time we
compared the males and females with ADHD. Because last time we were unable to find
strong evidence for gender differences, except for a few regions for high thresholds, we
can expect the same thing to happen in the analysis for children with ADHD. The Ta-
ble 7.5 below shows the regions which are different for children with ADHD. Only the
orbital part of the superior frontal gyrus was found different. This could again be the
case that it is not a real difference, but only occurs because the threshold is set too high
or the population is too small.

TABLE 7.5: Frequency table of significant regions in ADHD males and females

AAL Template Region Label Frequency
17 F1OG 5

Table A.4 shows for thresholds 0.15 up to 0.34 the regions that are significantly differ-
ent. Again we find that when the threshold is low, there are no differences between the
cluster coefficient per region. The region that differs only shows up in the last five entries
of the table, when the threshold is high. In conclusion, it could be the case that there are
differences between males and females with ADHD but that these are not significant due
our small sample size, or that there are no real differences and our observations are cor-
rect.

7.5 Conclusions

In this chapter we performed a graph analysis and comparison using different metrics.
Only for the cluster coefficient we found statistically significant differences for both typ-
ical developing children and children with ADHD, for males with and without ADHD as
well as for diagnosed females. We traced the differences back to the anatomical regions
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and found for every significant region other studies that confirmed differences in these
regions for children with ADHD.
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8
ANATOMICAL CLASSIFICATION OF ADHD

In this chapter we will investigate and report the results on the classification of children
with ADHD and typically developing children. Whereas many studies are performing
voxel-based classification, we are using the cluster coefficient as features. In this section
we will first look at the classification of TD / ADHD children in Section 8.1, irrespective
of their gender This is followed by within-group classification of males (8.2) and then the
results of the TD and ADHD female population (8.3). Concluding remarks are given in
Section 8.4.

8.1 TD / ADHD Classification

In this section we will look at the classification of typical developing children and chil-
dren with ADHD. The dataset that we will construct is based on 186 children, equally
balanced with 93 TD children and 93 children who are diagnosed with ADHD. For each
individual we compute the cluster coefficient for each of the 116 regions in the AAL tem-
plate as described in the previous chapter 7. Hence, for each participant we get a vector
of 116 values in the range of zero to one. We use these values as features for the classifiers
that we are using to classify the children. The dataset is thus represented as a 186×116
matrix, where each row is the vector of 116 cluster coefficients.

Let us start by using the whole dataset and training and testing the classifiers using
10-fold cross validation. Cross validation is used to estimate the error of the untrained
classifier. The dataset is randomly ordered and split in 10 sets of approximately the same
size. The classifier is then trained on nine sets and tested on the other one. This is then
leaving each of the parts out only once and the classification error is computed as the
average of all errors obtained.

For classification we used PRTools. PRTools [Duin et al., 2007] is a toolbox written for
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MATLAB which includes many classification algorithms. The dataset with features was
converted to the PRTools standard format. The classifiers are listed in Table 8.1

TABLE 8.1: Classification results using the cluster coefficient of all anatomical regions in
the AAL template as features

Classifier Classifier
Quadratic Discriminant Classifier (QDC) Support Vector Machine (SVM (p=2))
Parzen Classifier (PC) Support Vector Machine (SVM (p=2))
Logistic Linear Classifier (LogL) Support Vector Machine (SVM (p=2))
Linear Bayes Normal Classifier (LD) Support Vector Machine (SVM (r=5))
Nearest Mean Classifier (NM) Support Vector Machine (SVM (r=10))
Fisher’s Linear Classifier (FL) Support Vector Machine (SVM (r=15))

TABLE 8.2: Classification results using the cluster coefficient of all anatomical regions in
the AAL template as features

Classifier Min Error Classifier Min Error
QDC 0.4086 SVM (p=2) 0.3978
PC 0.3817 SVM (p=3) 0.3710
LogL 0.4140 SVM (p=4) 0.3656
LD 0.4140 SVM (r=5) 0.3387
NM 0.3548 SVM (r=10) 0.3978
FL 0.4032 SVM (r=15) 0.3871

Table 8.2 lists the error for each of the classifiers tested on the entire dataset. With
the lowest, or ‘best’, classification error only being 0.3387, it is obvious that some form
of feature reduction is necessary to improve the results, even though classifying about
two-thirds of the children correct based on the cluster coefficient is not a bad start. The
results are only slightly better than the expected error, for an error of 0.5 would be ran-
dom guessing. This can be explained because the means of the data are very close to-
gether (see Fig. 7.6a). As a matter of fact, they are even closer together than one standard
deviation of the data. Hence, it is not surprising that the classifiers are having problems
seeing the forest for the trees.

All classifiers for each correlation threshold are shown in Fig. 8.1. The top-left Fig. 8.1a
shows the Quadratic, Parzen en Logistic classifiers. We can see that the classification er-
ror for each of the classifiers is not dependent on the correlation threshold because none
of the classifiers seem to improve or worsen for a varying threshold. Also, none of the
classifiers seem to be much better than the others. In the top-right Fig. 8.1b are the plots
of the Linear, Nearest Mean and Fisher’s Linear classifier. It is clear that the NMC almost
consistently outperforms the LD and FC classifier and that also for these classifiers the
correlation threshold is not of much influence to the classification error. Support Vector
classifiers with a polynomial kernel are shown in the bottom left Fig. 8.1c. Oftentimes the
error is around 0.45 and is not determined by the correlation coefficient. Finally, the sup-
port vector classifiers with a radial basis kernel are shown in the bottom right in Fig. 8.1d.
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fiers

0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

0.3

0.35

0.4

0.45

0.5

0.55

0.6

Correlation Coefficient θ

C
la

s
s
if
ic

a
ti
o
n
 E

rr
o
r

 

 
SVM (p=1)

SVM (p=2)

SVM (p=3)

(c) SVM with polynomial kernels
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(d) SVM with radial basis kernels

Figure 8.1: First classification results using all anatomical regions as features

The best performance is shown when using a radial basis with r = 5, otherwise the radius
is set too large and too many objects are misclassified.

Because the correlation threshold is not of any significant influence, it is set it to
0.2 for the remainder of this chapter unless stated otherwise. There are two reasons for
this, first, we found in the previous section that the mean cluster coefficients are still
significantly different and, second, the graphs are still connected. The errors obtained
for each of the classifiers are shown in Table 8.3 for easier comparison to the errors we
get when using some form of feature reduction.

We will next explore three different types of feature reduction: Principal Component
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TABLE 8.3: Errors obtained for each of the classifiers (θ = 0.2)

Classifier Error Classifier Error
QDC 0.5000 SVM (p=2) 0.4731
PC 0.4624 SVM (p=3) 0.4301
LogL 0.4462 SVM (p=4) 0.4409
LD 0.4624 SVM (r=5) 0.4785
NM 0.4140 SVM (r=10) 0.4462
FL 0.4839 SVM (r=15) 0.4785

Analysis, Feature Selection and the Fisher Linear Mapping.

8.1.1 Principal Component Analysis

We explored classification and feature reduction using Principal Component Analysis
(PCA). PCA is a technique to identify patterns in data, and to transform the data such
that the differences between features are maximized while minimizing the similarities.
More specifically, it is a mathematical technique that uses orthogonal transformations
to convert a dataset with a set of possible correlating features to a set of uncorrelated
features. The uncorrelated features are called the principal components. In its simplest
form, the data is transformed to a new coordinate system such that the greatest variance
of any projection of the data is on the first principal component, the feature with the
second-greatest variance is projected on the second coordinate, and so forth. Because
the data is transformed in such a way the number of resulting features are always equal
or less than in the initial dataset. Good introductions to the mathematics that drive PCA
can be found in [Jolliffe, 2002; Smith, 2002].

The dataset can be viewed as 186 points in a 116 dimensional space, one point for
each participant and one dimension for each region in the atlas. Using PCA we want to
find a projection to a lower dimension while retaining a large enough percentage of the
original variance in the data that still allows to discriminate between the classes. That is,
we want to select the first k out of the n principal components and train a classifier on
it, such that we remove n −k features with the lowest variance that are contributing the
least to the discrimination. We trained and tested classifiers up to the first 20 principal
components, that is for each set of components in {{p1}, {p1, p2}, . . . , {p1, . . . , p20}}. The
number of 20 was selected because this all allowed us to reduce the 116 dimensional
space to ‘only’ 20 dimensions while still retaining 70% of the variance of the data in the
original space.

Fig. 8.2 shows the four panels with classifiers trained and tested on the dataset where
feature reduction is done using PCA. In the first Fig. 8.2a we see some improvement when
using PCA over the initial classification using the entire dataset. The lowest errors at-
tained are 0.3817, 0.4086, 0.4032 for the QDC, PC and LOG classifiers, respectively. For
the QDC and PC there is no visible relationship between the number of principal com-
ponents and the error. As for the LOG, it seems that the error is going up when more
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(b) Linear, Nearest Mean and Fisher’s Linear Classi-
fiers
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(c) SVM with polynomial kernels

0 2 4 6 8 10 12 14 16 18 20

0.3

0.35

0.4

0.45

0.5

0.55

0.6

Selected Features (Principal Component Analysis)

C
la

s
s
if
ic

a
ti
o
n
 E

rr
o
r

 

 
SVM (r=5)

SVM (r=10)

SVM (r=15)

(d) SVM with radial basis kernels

Figure 8.2: Classification using Principal Component Analysis

features are selected. There is definitely an overall improvement since independent of
the number of features selected, the error does not go over 0.5.

Fig. 8.2b shows that the performance of the NN classifier is not served by using PCA.
This is in contrast to the LD which seems also to be unaffected by the number of features,
but the error varies much more. The error of the Fisher’s classifier seems to go up as more
principal components are selected.

Fig. 8.2c and Fig. 8.2d show the classification errors of the SVM with a polynomial
and radial basis kernel, respectively. The selection of more principal components does
neither improve or make the classification error much worse.
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We can now determine whether feature selection using PCA is advantageous and if
so, how much does it improve the classification? Table 8.3 shows the average and ‘best’
errors obtained when PCA is used, compared to classification using all features in the
dataset. First we compare the first and second column: the error for classifying the
dataset when the threshold is set at 0.2 against the minimum error for each of the classi-
fiers over all principal components used. Here we find that the best errors using PCA are
about 0.05 lower than when classifying using all features. When comparing the former
against the mean error we find that also the mean error is in almost all cases better or the
performance is about equal, but never much worse.

The lowest error obtained is still very high: 0.3817. This might seem very high but it
makes more sense when considering Fig. 8.3. It shows how the data looks when we re-
duce the dataset to two dimensions. The red and blue dots represents the typical devel-
oping children and children with ADHD, respectively. The green line is the NM classifier
and the black lines are the support vector machine with a radial basis (r = 5). The data
points are mixed and very hard to separate, whether linearly or using a polynomial or
radial kernel without overtraining the classifier.
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Figure 8.3: Scatterplot of the first and second principal components

8.1.2 Feature Selection

Feature selection, also known as feature reduction or subset selection, is a technique for
selecting a subset of features from a dataset. It is widely used in areas such as artificial
intelligence, statistics and bio-informatics. By selecting the ‘best’ k out of n features, it
removes the most irrelevant features that do not provide much discriminatory power for
classification. As such, feature selection, like PCA, enhances the discriminatory capabil-
ities of a classifier and it improves both the learning process. In contrast to PCA, it gives
the user a better understanding in the model, because it allows for easier interpretation
of the model.
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Various algorithms are available for the evaluation and selection of subsections of the
data. There are two major categories in which the algorithms could fall: subset selection
and feature ranking. The former performs a (possible exhaustive) search for possible
features to be added to the optimal subset. The latter ranks each of the features using a
specific metric and remove all the features from the data set that did not receive a score
over the baseline.

We inspected the results of feature selection with the nearest-neighbor criterion for
the following algorithms: best-k, forward-selection and backward-selection. Like PCA,
we chose the number of features in the range of one up to 20. We obtained the best
results using the individual feature selection and will discuss the results below.

Fig. 8.4a and Fig. 8.4b show a nearly consistent, slightly better than chance, perfor-
mance for each of the classifiers. Each of the classifiers seem to perform better when
they are only using one feature than when more features are added to the subset, albeit
there is not much difference.

We can make the same observation for the first two selected features when using
support vector machines, see Fig. 8.4c and Fig. 8.4d. The performance of the support
vector machines with a first or second order polynomial kernel are similar to the linear or
quadratic classifiers as shown in Fig. 8.4a and 8.4b. When a third order polynomial kernel
is chosen in combination with more than three features, the classifier performs even
worse than assigning each of the children to a class by random chance. Using a radial
basis kernel does not improve the performance either, when more than two features are
selected.

The best error obtained using a logistic linear classifier was 0.4086 using 13 features.
It is again not very impressive, which suggest that even feature selection is not a very
good method to reduce the dimensionality of the data. This is confirmed when a scat-
terplot was made of the first and second best features, shown in Fig. 8.5. It shows the
data and two classifiers (green for the nearest mean classifier and black for the support
vector machine with a radial basis kernel (r = 5)). It is obvious why the classifiers have
this much trouble finding a linear or polynomial separation of the data points.

8.1.3 Fisher Linear Mapping

Whereas the Principal Component Analysis is applied to the covariance of the complete
data set, the Fisher’s Linear Mapping (FLM) is used to optimize the linear class separa-
bility. That is, PCA gives the user the opportunity to choose k out of the n principal com-
ponents (with k ∈ [1, . . . ,n]). The goal of the FLM is to find a mapping, not necessarily
orthogonal, for a dataset to a k-dimensional subspace, where k is less than the number
of classes. Hence, in this case it maps the data to a 1-dimensional space.

The mapping is found by maximizing the between scatter over the within scatter.
Formally defined as:

J (w) = wT SB w

wT SW w
, (8.1)

where SB is the ‘between class scatter matrix’ and SW is the ‘within class scatter matrix’.
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(b) Linear, Nearest Mean and Fisher’s Linear Classi-
fiers
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(c) SVM with polynomial kernels
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Figure 8.4: Classification using Feature Selection

The class scatter matrices are defined as follows:

SB =∑
c

(µc − x̄)(µc − x̄)T . (8.2)

SW =∑
c

∑
i∈c

(xi −µc )(xi −µc )T . (8.3)

In two-class problems this corresponds to computing the scatter of one class relative
to the scatter of the other class and hence can be simply computed as:

SB = (µ1 −µ2)(µ1 −µ2)T .
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Figure 8.5: The two ‘best’ features with Feature Selection

So why does this work? The formula defines a good solution as one that separates
the class means as far as possible, relative to the sum of the variances of the data in each
class. Besides the fact that the object is supervised in comparison to PCA, it is also in-
variant with respect to scalings. Due to this invariance in scaling, we can choose w such
that we get wT SW w = 1. Therefore, we can transform our problem in the following opti-
mization problem:

minimize
w

− 1

2
wT SB w,

subject to wT SW w = 1.
(8.4)

Fig. 8.6 shows the result of mapping the dataset to a single dimension using Fisher’s
linear discriminant analysis. We can see that the data is very well separated, except for
some data points in the middle. The classification error can be expected to improve sig-
nificantly, but it is obvious that there will still exist an error. Table 8.4 shows the classifica-
tion error for all classifiers. It is not unexpected that many classifiers attain the same low
error, because the aforementioned figure showed that some participants were mapped
to the wrong side of the line. The best attained error is as low as 0.0753, which means
that a remarkable 93% of the 183 children can be classified correctly whether they are
normal or have ADHD based on the cluster coefficient of the different anatomical re-
gions in their brain. Finally, Table 8.4 also shows that, because the data is mapped to a
one dimensional space, simple linear classifiers outperform the complex classifiers.

8.1.4 Conclusion

In this section we explored and investigated the classification of children with and with-
out ADHD based on the cluster coefficient computed between the anatomical regions
from fMRI data. When all the cluster coefficients are used, the best error obtained was
0.41. Using the unsupervised principal components technique (for one up to 20 princi-
pal components) the error was slightly lowered to 0.3817. After that we explored feature
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Figure 8.6: The dataset mapped to one dimension

TABLE 8.4: Errors obtained using Fisher’s mapping (θ = 0.2)

Classifier Error Classifier Error
QDC 0.0753 SVM (p=2) 0.0753
PC 0.0753 SVM (p=3) 0.0806
LogL 0.0753 SVM (p=4) 0.0914
LD 0.0753 SVM (r=5) 0.0860
NM 0.0753 SVM (r=10) 0.0753
FL 0.0753 SVM (r=15) 0.0753

selection using different algorithms: best k out of n, forward selection and backward se-
lection. The first mentioned yielded the best results, albeit a mere ‘best’ error of 0.4086.
Finally, we used Fisher’s Linear Discriminant Analysis to find a supervised, optimal so-
lution to map the 116 dimensions to a one dimensional space where the between class
scatter is maximized while the within class scatter is minimized. This yielded a nearly
separable mapping and dramatically improved the correct classification rate: about 93%
of the children in balanced dataset were diagnosed correctly using the anatomical cluster
coefficients as features.

8.2 Male TD / ADHD Classification

Since Fisher’s Linear Mapping significantly outperforms the other feature reduction al-
gorithms, Principal Component Analysis and Feature Selection, we only perform classifi-
cation using FLM in this and the sequent section. Again, we set the correlation threshold
to 0.2, to make the results comparable.
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Figure 8.7: The male TD/ADHD dataset mapped to one dimension

Fig. 8.7 shows the male dataset mapped to one dimension using FLM. Visual inspec-
tion tells us that the data is slightly more distorted and will be harder to separate. Thus,
we can expect the error to be higher. This is confirmed with the results shown in Ta-
ble 8.5. The best classification results in an error of 0.11, which means that slightly more
than 88% of the data was classified correctly. The ‘worst’ classifier is still correct in 84%
of the cases. The higher classification error is likely to be caused by the lower number of
subjects in our dataset.

TABLE 8.5: Male TD/ADHD errors obtained using Fisher’s mapping (θ = 0.2)

Classifier Error Classifier Error
QDC 0.1333 SVM (p=2) 0.1222
PC 0.1444 SVM (p=3) 0.1111
LogL 0.1222 SVM (p=4) 0.1111
LD 0.1333 SVM (r=5) 0.1333
NM 0.1333 SVM (r=10) 0.1556
FL 0.1333 SVM (r=15) 0.1333

8.3 Female TD / ADHD Classification

For the small balanced dataset consisting of 25 females in each group we also tested the
classifiers using FLM. Fig. 8.8 shows even more distortion in the mapping to a one di-
mensional space. This results in a higher classification error as can be seen in Table 8.6.
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The best classifier assigns 78% to the right classes whereas the worst classifier only man-
ages to classify about two-thirds of the samples to the correct class.
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Figure 8.8: The female TD/ADHD dataset mapped to one dimension

TABLE 8.6: Female TD/ADHD errors obtained using Fisher’s mapping (θ = 0.2)

Classifier Error Classifier Error
QDC 0.2600 SVM (p=2) 0.2200
PC 0.2600 SVM (p=3) 0.3200
LogL 0.2400 SVM (p=4) 0.3400
LD 0.2400 SVM (r=5) 0.2600
NM 0.2200 SVM (r=10) 0.2800
FL 0.2600 SVM (r=15) 0.2600

8.4 Conclusions

In this chapter we put several classifiers to the test for classifying participants with and
without ADHD. As features we used the cluster coefficients for each of the 116 regions
as defined in the AAL template. Using all features didn’t yield any good performance
and it was clear that feature reduction had to be used. We found that both PCA as well
as individual feature selection were not the right methods in this case, for they did not
improve the performance of the classifier significantly. Fisher’s Linear Mapping, on the
other hand, did improve the classification error a lot. We found classification errors as
low as 7% when classifying between children with and without ADHD. As the dataset was
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much smaller when classifying males and females with and without ADHD we saw the
error go up to 0.11 and 0.22, respectively.
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9
ADHD CLASSIFICATION USING K-PRMEANS

CLUSTERS

This chapter describes the results from classification of ADHD using functional k-prmeans
clusters. The disadvantage of functional parcellation, in contrast to anatomical as de-
scribed in the previous chapter, is that it does not allow for physiological interpreta-
tion. We explored the idea of clustering the fMRI scans into k regions using the stable-k-
prmeans algorithm, compute the cluster coefficients using a threshold of 0.2 (such that it
allows for comparison with the previous described experiments), and then try to classify
the data into TD and ADHD children.

We start by clustering the fMRI scan of each participant in k = {190,191, . . . ,210} re-
gions. We repeated the clustering 100 times for each participant and looked for the ‘best’
clustering in terms of lowest conductivity inverse proportionally to the frequency of the
result. That is, the more frequent a result with a low conductivity is found, the better.
We found that clustering the brain into 194 regions yielded, on average, the best result.
There is no rationale for performing clustering in for 190 to 210 regions, besides that is
about twice as big as the AAL anatomical template. Similarly to the previous chapter we
used ‘PRTools’ for classification with the same classifiers (Table 8.1).

9.1 TD / ADHD Classification

In the previous chapter we discussed Fisher’s Linear Mapping. This the dimensionality
reduction algorithm that provided the best results over Principal Component Analysis
and Feature Selection.

For classification of the typical developing and ADHD populations we constructed a
dataset consisting of 194 cluster coefficients. That is, one feature for each of the clusters
we obtained using the stable-k-prmeans algorithm.
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Table 9.1 shows an overview of the classification errors. The best classifier is a Sup-
port Vector Machine with a third order polynomial kernel. This classifier is over 90%
accurate. We again see that many classifiers obtain the same error, which is because the
tested classifiers are linear and the data is mapped to a one-dimensional space. The de-
cision boundaries of the classifiers are overlapping and fail to classify the same items
correctly. When comparing these results to the errors obtained using anatomical parcel-
lation, we see that the order of the errors is similar.

TABLE 9.1: Errors obtained using Fisher’s mapping (θ = 0.2) and k-prmeans for the TD
and ADHD populations

Classifier Error Classifier Error
QDC 0.1075 SVM (p=2) 0.1075
PC 0.1129 SVM (p=3) 0.0968
LogL 0.1129 SVM (p=4) 0.1075
LD 0.1075 SVM (r=5) 0.1344
NM 0.1075 SVM (r=10) 0.1075
FL 0.1075 SVM (r=15) 0.1075

9.2 Male TD / ADHD Classification

We again split the male subjects in two balanced groups (typically developing and ADHD)
of 45 individuals each. We construct a dataset with 194 features for the cluster coefficient
of each functional region. The classification results are summarized in Table 9.2. In con-
trast to the between group classification, the Support Vector Machine with a third order
polynomial kernel is now performing the worst on this dataset. The error has gone up by
0.09 on average and from the total of 90 subjects we classify ‘only’ 82% correct.

TABLE 9.2: Errors obtained using Fisher’s mapping (θ = 0.2) and k-prmeans for the male
populations

Classifier Error Classifier Error
QDC 0.1889 SVM (p=2) 0.1889
PC 0.1778 SVM (p=3) 0.2111
LogL 0.1889 SVM (p=4) 0.1778
LD 0.1889 SVM (r=5) 0.1889
NM 0.1889 SVM (r=10) 0.1889
FL 0.1889 SVM (r=15) 0.1778
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9.3 Female TD / ADHD Classification

The dataset of the within group female population consists of only 25 subjects per group.
This is about half of the male within group comparison and can therefore expect the error
to go up. Table 9.3 shows a big increase in error. For this dataset, several classifiers are
tied for the ‘best’ error of 0.38, which implies that a mere 62% is classified correctly. The
Support Vector Machine with a fourth order polynomial kernel performs even worse than
by chance.

TABLE 9.3: Errors obtained using Fisher’s mapping (θ = 0.2) and k-prmeans for the fe-
male populations

Classifier Error Classifier Error
QDC 0.3800 SVM (p=2) 0.4000
PC 0.4800 SVM (p=3) 0.4800
LogL 0.3800 SVM (p=4) 0.5200
LD 0.3800 SVM (r=5) 0.3800
NM 0.4000 SVM (r=10) 0.3800
FL 0.3800 SVM (r=15) 0.4400

9.4 Conclusions

Apparently, when using a large sample size such for the TD and ADHD populations func-
tional parcellation using k-prmeans shows to be a promising alternative. Even though
we have different features as well as a different number it only performs slightly worse
than classification using the cluster coefficients derived from anatomical parcellation.
Because the error goes up significantly (to the level of performing at chance), it is clear
that a large dataset is required for this method to produce good results.
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10
CONCLUSIONS AND FUTURE WORK

At the introduction of this thesis we embarked on two problems. First, we noted that
recent research has shown a significant increase over the past few years in children diag-
nosed with ADHD. To date, every diagnosis is still performed per physicians’ interpreta-
tion of a child’s behavior. Second, the class of networks known as small-world networks
are occurring in many (natural) phenomena. What makes them so interesting is the short
average path length between each set of nodes and the high degree to which nodes in the
graph tend to cluster. Cluster algorithms relying on a Euclidean distance frequently fail
to produce a good partitioning because of the short path length.

These two, seemingly unrelated, problems were unified under the following research
question:
Are there significant differences in small-world properties in a graph representation
of the brain between normal children and children diagnosed with attention-deficit /
hyperactivity disorder?

In order to provide a more accurate and reliable method to establish whether a child
has ADHD, we attacked the problem from two perspectives. We proposed a method to
extract a graph from functional Magnetic Resonance Imaging data. Then a graph can
be derived using an anatomical parcellation template such as AAL or be based on func-
tional connectivity using a cluster algorithm. We investigated (section 7) the anatomical
differences in the small-world properties between a typical developing and ADHD pop-
ulation. For the cluster coefficient (section 7.3.2), we found significant differences in
several regions. Each of the regions corresponded to literature which also found differ-
ences between populations in those regions (section 7.4). This gave a lot of support to
consider the cluster coefficient as a indicative metric for identifying ADHD. To test the
hypothesis that we can diagnose whether a subject has ADHD, we tested several clas-
sifiers and dimensionality reduction methods (chapter 8). Success rates of about 94%
when classifying a total balanced population of 196 children using Fisher’s Linear Map-
ping (section 8.1.3).
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The second method is based on functional parcellation of fMRI data. Repeated clus-
tering of each scan was performed and classification using the cluster coefficient resulted
in errors of the same order as anatomical parcellation, albeit slightly higher.

Two different approaches to processing fMRI data and extracting the small-world
properties both resulted in performance over 90%. A clear indication that there might
be intrinsic differences in the neuronal structure for typically developing children and
children with ADHD.

10.1 Future Work

Unfortunately, there was only a limited amount of time that could be devoted to this
project and there are still many interesting open ideas to explore in the future. This
project constitutes of three parts: a cluster algorithm that uses the distance between per-
sonalized PageRank vectors, anatomical analysis of the small-world properties of ADHD
and disease classification. Each of the ideas improves one piece of the puzzle.

10.1.1 K-prmeans

The k-prmeans has only been tested on a limited number of networks. Networks which
are of the small-world class and for which we would expect this algorithm to work. It
would be very interesting to put the algorithm to the test on a variety of problems, such
as meshes and other esoteric or less common graph models.

10.1.2 Anatomical Analysis

In this thesis we investigated the differences in regions for the anatomical parcellation
between children with and without ADHD. The cluster coefficient turned out the be a
powerful indication for this particular brain disease. However, there are several other
neuronal abnormalities that might show similar differences in one or more of the small-
world properties, such as Alzheimer, Parkinson’s or dyslexia. A small sample of fMRI
scans from one of these diseases would enable preliminary investigation and for a large
population it is possible to determine whether there are significant differences between
properties which might then be related to literature.

10.1.3 Classification

Classification was only performed between typically developing children and children
with ADHD. There are, as discussed in the introduction, three different types of ADHD.
With these distinctions in mind, there are two interesting options to explore. First, the
physiological implications. It is possible to find differences in small-world properties in
regions between children with different types of ADHD and if so, can these differences
be related to the literature? Second, the classifiers are based on a nominal scale (a child
is classified as either typical developing or diagnosed with ADHD). Interesting would it
be to investigate the discriminative qualities of an ordinal classifier.
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Statistical Tables

TABLE A.1: p-values for between group t-test for the CPL

1 2 3 4 5 6
0.023 0.064 0.587 0.365 0.859 0.987
0.014 0.048 0.566 0.330 0.824 0.937
0.017 0.055 0.557 0.254 0.758 0.988
0.009 0.040 0.571 0.165 0.659 0.770
0.014 0.062 0.603 0.157 0.617 0.643
0.013 0.063 0.645 0.149 0.617 0.736
0.016 0.073 0.679 0.193 0.721 0.901
0.013 0.069 0.604 0.141 0.628 0.753
0.013 0.068 0.551 0.140 0.586 0.694
0.008 0.047 0.623 0.098 0.509 0.557
0.014 0.062 0.680 0.128 0.567 0.627
0.015 0.072 0.664 0.123 0.588 0.683
0.020 0.090 0.784 0.118 0.581 0.734
0.026 0.127 0.673 0.166 0.634 0.962
0.040 0.134 0.749 0.126 0.583 0.849
0.052 0.158 0.589 0.159 0.519 0.806
0.025 0.084 0.480 0.121 0.482 0.925
0.036 0.140 0.273 0.204 0.518 0.693
0.060 0.179 0.231 0.164 0.453 0.700
0.159 0.383 0.223 0.218 0.460 0.828
0.225 0.466 0.151 0.230 0.425 0.852
0.391 0.734 0.117 0.344 0.429 0.620
0.565 0.668 0.259 0.425 0.531 0.900
0.990 0.816 0.258 0.372 0.538 0.953
0.880 0.999 0.131 0.654 0.564 0.790
0.962 0.807 0.385 0.376 0.483 0.999
0.279 0.523 0.397 0.668 0.528 0.698
0.344 0.429 0.298 0.463 0.813 0.901
0.320 0.400 0.706 0.194 0.834 0.994
0.298 0.590 0.925 0.365 0.802 0.740
0.444 0.697 0.576 0.336 0.948 0.987
0.130 0.218 0.781 0.107 0.735 0.847
0.086 0.143 0.699 0.466 0.885 0.662
0.025 0.157 0.419 0.757 0.669 0.563
0.015 0.201 0.701 0.576 0.936 0.578
0.025 0.252 0.889 0.710 0.920 0.335

Columns:

1 TD / ADHD
2 Male / Female
3 Male TD / ADHD
4 Female TD / ADHD
5 Male TD / Female TD
6 Male ADHD / Female ADHD
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Statistical Tables

TABLE A.2: p-values for between group t-test for the clustering coefficient

1 2 3 4 5 6
0.019 0.222 0.364 0.399 0.986 0.555
0.022 0.213 0.337 0.379 0.981 0.549
0.022 0.197 0.288 0.370 0.972 0.567
0.026 0.204 0.261 0.351 0.987 0.511
0.032 0.195 0.231 0.316 0.997 0.475
0.034 0.210 0.214 0.315 0.996 0.472
0.028 0.182 0.155 0.402 0.902 0.491
0.023 0.193 0.135 0.455 0.847 0.456
0.033 0.234 0.144 0.426 0.866 0.455
0.042 0.240 0.148 0.419 0.884 0.434
0.032 0.252 0.148 0.374 0.868 0.478
0.036 0.276 0.180 0.363 0.848 0.606
0.029 0.332 0.183 0.364 0.785 0.680
0.025 0.279 0.161 0.353 0.800 0.678
0.022 0.331 0.121 0.402 0.711 0.743
0.029 0.295 0.087 0.354 0.712 0.576
0.024 0.277 0.069 0.298 0.733 0.473
0.019 0.298 0.112 0.261 0.838 0.375
0.021 0.333 0.082 0.204 0.797 0.306
0.026 0.411 0.049 0.282 0.660 0.343
0.044 0.421 0.045 0.362 0.577 0.362
0.047 0.252 0.048 0.248 0.681 0.277
0.072 0.344 0.029 0.163 0.725 0.274
0.054 0.333 0.016 0.209 0.614 0.348
0.062 0.221 0.004 0.283 0.476 0.442
0.055 0.254 0.007 0.212 0.505 0.345
0.105 0.419 0.013 0.199 0.638 0.308
0.117 0.491 0.014 0.166 0.640 0.318
0.183 0.488 0.017 0.241 0.488 0.418
0.115 0.729 0.016 0.132 0.504 0.425
0.149 0.922 0.008 0.314 0.242 0.553
0.417 0.630 0.013 0.131 0.399 0.353
0.984 0.634 0.009 0.307 0.243 0.717
0.981 0.776 0.022 0.209 0.290 0.818
0.910 0.654 0.070 0.250 0.351 0.889
0.677 0.722 0.142 0.077 0.574 0.753

Columns:

1 TD / ADHD
2 Male / Female
3 Male TD / ADHD
4 Female TD / ADHD
5 Male TD / Female TD
6 Male ADHD / Female ADHD
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TABLE A.3: Regions found to be significantly different for TD children

Threshold (θ) Region Region Region
1 (0.15) 0 0 0
2 (0.16) 0 0 0
3 (0.17) 0 0 0
4 (0.18) 82 0 0
5 (0.19) 0 0 0
6 (0.20) 0 0 0
7 (0.21) 0 0 0
8 (0.22) 0 0 0
9 (0.23) 57 86 0

10 (0.24) 0 0 0
11 (0.25) 0 0 0
12 (0.26) 57 0 0
13 (0.27) 57 58 86
14 (0.28) 86 0 0
15 (0.29) 2 57 58
16 (0.30) 1 101 0
17 (0.31) 1 88 0
18 (0.32) 1 2 88
19 (0.33) 1 88 107
20 (0.34) 1 0 0

TABLE A.4: Regions found to be significantly different for children with ADHD

Threshold (θ) Region Region
1 (0.15) 0 0
2 (0.16) 0 0
3 (0.17) 0 0
4 (0.18) 0 0
5 (0.19) 0 0
6 (0.20) 0 0
7 (0.21) 0 0
8 (0.22) 0 0
9 (0.23) 0 0

10 (0.24) 0 0
11 (0.25) 0 0
12 (0.26) 0 0
13 (0.27) 0 0
14 (0.28) 0 0
15 (0.29) 0 0
16 (0.30) 17 0
17 (0.31) 17 0
18 (0.32) 17 0
19 (0.33) 17 4
20 (0.32) 17 0
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TABLE A.5: Errors obtained for each of the classifiers (θ = 0.2)

Classifier Error (θ = 0.2) Min PCA Mean PCA
QDC 0.5000 0.3817 0.4207
PC 0.4624 0.4086 0.4344
LogL 0.4462 0.4032 0.4468
LD 0.4624 0.3978 0.4527
NM 0.4140 0.3925 0.4191
FL 0.4839 0.4194 0.4522
SVM (p=2) 0.4731 0.4247 0.4500
SVM (p=3) 0.4301 0.3871 0.4290
SVM (p=4) 0.4409 0.3978 0.4312
SVM (r=5) 0.4785 0.3978 0.4387
SVM (r=10) 0.4462 0.3817 0.4497
SVM (r=15) 0.4785 0.3871 0.4457
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