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Dr. Ir. A.G. Chiţu Daily Supervisor
alin.chitu@tno.nl Medior Researcher Petroleum Geosciences

TNO

Prof. Dr. Ir. J.D. Jansen Head of Geoscience and Engineering Department
J.D.Jansen@tudelft.nl Delft University of Technology

Dr. Ir. M.B. van Gijzen Associate Professor
M.B.vanGijzen@tudelft.nl Department of Numerical Analysis

Delft University of Technology

MSc. Ir. C.M. Mariş PhD Candidate
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Abstract

The oil industry is at the backbone of global economy and, as natural resources are becoming
scarce, there is a pressing need for efficient extraction strategies. This has led to the development of
reservoir models and simulators, able to predict future field behaviour, when paired with accurate
geological information. However, the data obtained through in-situ measurements, such as seismic
surveys, is insufficient to represent the large number of unknowns (porosity, permeability, pressure
and fluid saturation in each grid cell).

In response to this issue, the scientific community designed computer-assisted history matching
algorithms, which are able to provide estimates for model parameters by conditioning on the log
of observed production data. The Ensemble Kalman Filter, in particular, is becoming the industry
standard, because of its ease of implementation and natural ability to handle uncertainty. However,
as past studies have pointed out, reservoirs with complex structural features, such as curved or
branching channels, raise difficulties because of the higher-order dependencies induced between the
state variables. Another important drawback is the appearance of ensemble collapse, which leads
to poor estimates and causes the filter to diverge.

The Subspace EnKF is a recently developed history matching framework, able to address both of
these issues, by using parameterizations to constrain the ensemble members to different subregions
of the parameter space. The main goal of the Master’s project was to adapt this framework to 2D
channelized petroleum reservoirs, composed of two types of rocks (permeable sand and background
shale).

For this purpose, we studied polynomial kernel Principal Components Analysis and proposed
a novel analytical solution to the preimage problem. The experiments showed that our method
surpasses the fixed-point iterative scheme, suggested in the literature, especially in terms of scalab-
ility and computational expense. Next, we paired the resulting KPCA parameterization with the
Iterative Ensemble Smoother and the Subspace EnKF. Our comparative history matching experi-
ment revealed that the latter is able to successfully avoid ensemble collapse. Finally, we suggested
training set clustering as a means to accommodate the subspace parameterizations to the prior
information and conducted a sensitivity study on the Subspace EnKF, which yielded encouraging
results.
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Notation

a, b, c, . . . , α, β, . . . scalars

x, y, z, . . . , µ, λ, . . . column vectors

xT , yT , zT , . . . ,µT , λT , . . . row vectors

X, Y, Z, . . . random vectors

E (X[i]) the expected value of random variable X[i]

A, B, C, . . . , Σ, Λ, . . . matrices

AT , BT , CT , . . . , ΣT , ΛT , . . . transposed matrices

P, S, X , . . . sets

x[i] i-th element of vector x

A[i, j] element on the i-th row and j-th column of matrix A

A[i, :] i-th row of matrix A

A[:, j] j-th column of matrix A

det(A) determinant of matrix A

tr(A) trace of matrix A, i.e. the sum of its diagonal elements

∥x∥2 Euclidean norm of vector x ∈ Rm

∥x∥F space-specific norm of vector x ∈ F

⟨x,y⟩2 dot product of vectors x,y ∈ Rm

⟨x,y⟩F space-specific inner product of vectors x,y ∈ F(
n

k

)
binomial coefficient, n choose k, where n, k ∈ N and k ≤ n

n! factorial of n ∈ N

δij Kronecker delta function, δij =

{
1, if i = j

0, otherwise

In n× n identity matrix, i.e. In[i, j] = δij

1n n-component vector with 1n[i] =
1
n

1n n× n matrix with 1n[i, j] =
1
n

∇xh
gradient vector, corresponding to the function h : Rm → R,

defined as ∇xh [i] =
∂h

∂x[i]

Jxξ
jacobian matrix, corresponding to the function g : Rm → R

l,

g(x) = ξ, defined as Jxξ [i, j] =
∂ξ[i]

∂x[j]
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Notation

m dimension of the parameter space, i.e. size of the state vector, x

p dimension of the feature space, i.e. dimension of the image, Φ(x)

l number of principal components, i.e. size of the projection vector, ξ

ne ensemble size

no number of observations

nt number of kernel PCA training vectors

M model

H observation operator; size no ×m

x state vector; size m

xtruth vector representing the truth state; size m

xf , xa forecasted and analyzed state vectors, respectively; size m

xi i-th ensemble member, i = 1, . . . , ne; size m

x ensemble mean; size m

ϵ error vector; size m

P error covariance matrix; size m×m

P f , P a forecasted and analyzed error covariance matrices, respectively; size m×m

dmeas vector of observations measured from the field; size no

di i-th vector of observations predicted by the model, di = Hxi, i = 1, . . . , ne; size no

pi i-th vector of perturbations, i = 1, . . . , ne; size no

∆di i-th innovation vector, i = 1, . . . , ne; size no

w observation error vector; size no

R observation error covariance matrix; size no × no

ri standard deviation of the error in the i-th observation, i = 1, . . . , no

Kgain Kalman gain matrix; size m× no in Rm and l × no in Rl

ti i-th kernel PCA training vector, i = 1, . . . , nt; size m

F feature space; dimension p

Φ(x) image of x in F ; dimension p

Φt mean of the images of the training vectors; dimension p

K(x,y) kernel function, computing the inner product of the images of x and y in F

f(s) alternative formulation of K in terms of the dot product, s = ⟨x,y⟩2
K training kernel matrix, K[i, j] = K(ti, tj); size nt × nt

vi i-th principal component, i = 1, . . . , l; dimension p

λi i-th eigenvalue, corresponding to vi, i = 1, . . . , l

αi coefficient vector, relating vi to the {Φ(tj)}j=1,...,nt , i = 1, . . . , l; size nt

γ coefficient vector, relating Φ(x) to the {Φ(tj)}j=1,...,nt ; size nt

ξ projection vector, obtained by projecting Φ(x) onto the {vi}i=1,...,l; size l

g parameterization function, g(x) = ξ
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Chapter 1

Introduction

For the last century, the oil industry has gradually consolidated its position at the backbone of
world economy. As described by Halliday (2005), petroleum was ”the largest commodity, in value
terms, traded in the world market” across the 20th century, while Fried et al. (1975) argue that
the increase in its price was the main cause for the global recession between 1973-1975.

However, as natural resources start to fall short and most of the oil fields around the world enter
the ”mature” stages of their life cycle, there is a pressing need for efficient extraction strategies. This
has led to the development of computational tools, such as reservoir models and simulators, their
results proving to be indispensable in decision-making, from the early phase of field prospection,
to the later enhanced oil recovery (EOR) stage. However, since petroleum reservoirs are located at
considerable depths in the subsurface, in-situ studies, such as seismic surveys, can only provide a
limited amount of a priori information about the oil-bearing geological structures. Hence, there is
a high degree of uncertainty regarding the values that need to be supplied as input to the models,
in order to obtain results which reflect real field operation. On the bright side, after production
begins, there is a constant inflow of data from the so-called smart wells, and an ideal scenario would
be to implement a closed-loop reservoir management system (Jansen et al. 2005), in which model
updates are performed in in real-time.

History matching is a crucial component in this loop, its purpose being to adjust the paramet-
ers by conditioning on the log of measured data. Ensemble-based algorithms, in particular, have
recently gained popularity in the scientific community, due to their ease of implementation and
natural ability to handle uncertainty (Oliver and Y. Chen 2011). However, their theoretical formu-
lation relies on a set of assumptions, and previous studies (see, for example, Sarma and W. Chen
2009; or Ma and Zabaras 2011) showed that reservoirs with complex geological structure (curved
features or branching channels) are particularly challenging.

This leads to the following

1.1. Problem statement

Given a joint distribution, which incorporates all the available prior information about the
geology of a channelized petroleum reservoir, construct a posterior distribution by conditioning on
the history of observed production data, such that the following requirements are fulfilled:

• The estimate provided by the posterior distribution also has a channelized structure.

• Its forecasted production data is in line with the observations.

• And, finally, the uncertainty associated with the posterior model parameters is represented
appropriately.

Ensemble-Based History Matching for Channelized Petroleum Reservoirs 3
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1.2. Research goals

The Subspace Kalman Filter is a history matching framework, recently developed by Sarma and
W. Chen (2013) to address the challenges mentioned above. The purpose of the present project is
to provide an appropriate formulation and determine the advantages of using the Subspace EnKF
for history matching applications. To this end, we focus, specifically, on 2D channelized reservoirs,
composed of two types of rocks (channel sand and background shale). In order to reach our end-goal,
we will investigate the following topics:

..1 Propose a parameterization that preserves the structure of channelized reservoirs over se-
quential assimilation steps.

..2 Study the effect of the number of subspaces when using the Subspace EnKF for history
matching channelized reservoirs.

..3 Develop a strategy to form the subspaces which takes into account the prior information
about the reservoir.

The report is structured as follows. First, we introduce the basic geological notions concerning
petroleum reservoirs, in general, and investigate the flow and well production for channelized fields,
in particular. Next, we turn to multi-point geostatistics as a means to represent the prior knowledge
and generate the initial ensemble for the Ensemble Kalman Filter data assimilation algorithm.
After formulating a suitable state-space representation, we investigate the problem of adaptating
the (continuous) response of the EnKF to represent binary categorical variables.

Chapter 3 is dedicated to the kernel PCA parameterization, as a means to address the limitation
of the EnKF in handling higher-order moments between state variables. Here, we propose an
analytical solution to the preimage problem, as alternative to the fixed-point iterative scheme
suggested in the literature.

In chapter 4, we investigate the Iterative Ensemble Smoother and the Subspace EnKF in an
attempt to avoid ensemble collapse. Further insight is obtained during the experiments in chapter 5,
which is divided in three parts. The first is a study on the KPCA parameterization, outlining the
differences between the two preimage problem solutions and the effect of the size of the training set
and reservoir grid on their performance. Thereafter, we conduct a comparative history matching
experiment on two channelized reservoirs, and finally, we discuss the results of our sensitivity study
on the Subspace EnKF, meant to provide answers to the last two research topics.
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Chapter 2

Petroleum reservoirs and history
matching

As depicted in figure 2.1, a reservoir is a subsurface body of porous rock. However, the factor
that makes it noteworthy to multinational oil companies, such as Shell, Chevron or Statoil, is
the mass of crude oil and natural gas residing in its pores. These hydrocarbons result from the
decomposition of large quantities of biomass during millions of years and at the right levels of
temperature and pressure. And since simple autotrophic organisms, such as phytoplankton, are
known to have periodic large-scale outbursts, it is not surprising that most reservoirs are formed
around ancient sea and river beds.

However, there is one more crucial ingredient that leads to the formation of a petroleum reservoir
– the impermeable cap rock, which prevents the hydrocarbons from syphoning towards the surface.
This creates a so-called petroleum trap (see figure 2.1), in which the target fluids are sandwiched
between the upper impermeable barrier and the lower, water-bearing rock (the aquifer).

Figure 2.1: Petroleum reservoir a

aReservoir image courtesy of Encylopaedia Britannica, in accordance with section 1.Terms of Use for Everyone
subsection Use of Content of the terms at http://corporate.britannica.com/termsofuse.html, accessed on 22
July 2013.
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2.1. Field production and geology

The fluids trapped within the reservoir are, initially, in thermodynamic equilibrium, and their
extraction can be performed by drilling wells that perforate the cap rock. Then, the difference in
pressure between the atmosphere (1 atm) and subsurface (hundreds of atm) will induce a driving
force which pushes the fluids towards the surface. This is called primary production and is depicted
in figure 2.2.

Figure 2.2: Primary production phase

However, according to the laws of physics. the pressure difference will inevitably drop with
time and field throughput will start to decline. This is the beginning of secondary production
(figure 2.3), during which some of the wells are used to inject water into the aquifer, maintaining
the pressure gradient. This phase is also known as water-flooding and constitutes the main focus
in our application.

Figure 2.3: Secondary production phase

The behaviour of subsurface fluid flow is determined by two important geological properties.
On the one hand, there is porosity, which measures the percentage of the rock volume occupied
by pores. As such, its value gives an indication of the quantity of hydrocarbons we can expect
to produce from the field. On the other hand, we have permeability, which is proportional to the
amount of effort needed for a fluid to traverse the body of rock. Its value is related to the way the
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pores are connected to each other and is the main factor in determining the direction and intensity
of the flow.

Our study is focused on a special class of petroleum reservoir, which formed around ancient
river beds. As such, their structure exhibits curved channels, which branch out and constitute the
main pathways for fluid flow (see figure 2.4 for an example). For simplicity, we assume that our
reservoirs are representable in 2D and their composition only has two types of rocks (or facies)
with known properties (table 2.1): channel sand, which is quite permeable, and background shale,
which is essentially impermeable.

Prod1

Inj2

Inj3

Prod3

Inj1

Prod2

Figure 2.4: Y-channel reservoir with well locations

Rock type Permeability Porosity

Background shale 0.1 mD 5%

Channel sand 100 mD 20%

Table 2.1: Geological properties of the two facies that form channelized reservoirs

In order to get a feel for the flow pattern in channelized reservoirs, we will use the MRST
reservoir simulator (SINTEF 2013) to monitor the first four years in the production cycle of the
Y-channel reservoir from figure 2.4. The results are shown in figure 2.5, and, by examining the
oil saturation plots (figures 2.5a and 2.5b), we confirm that the flow is, indeed, directed along the
channels.

Figure 2.5c shows the production rates in different wells and, first off, we see that Prod3 is
essentially inactive due to its unfortunate position in the impermeable background. In Prod2, we
notice the intersection of the two curves at ∼ 1250 days. This important moment in the production
cycle is known as the water breakthrough, and it appears when the injected water front (figure 2.5b)
reaches the location of the well. Our simulation is not long enough to capture the same behaviour
in Prod1, whose evolution seems to be slowed down by the two ”competing” injectors, Inj1 and
Inj3.
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(a) Oil saturation, 360 days (b) Oil saturation, 1500 days
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Figure 2.5: Evolution of the Y-channel reservoir
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2.2. Geostatistics

The main problem in predicting the future production behaviour of a petroleum reservoir, lies
in the fact that its geological structure is unknown a priori. The information obtained from field
measurements (for example, seismic studies) allows us to get a general idea, but still a high degree
of uncertainty remains regarding the permeability and porosity values.

Geostatistics is a mathematical framework, designed to quantify the representation uncertainty
of the prior geological information. In order to achieve this, geostatistical methods operate by
building a joint probability distribution, which captures the relationships between the values of the
rock properties at different locations within the reservoir. An important by-product is that this
distribution can be sampled, in order to obtain and study different structural scenarios for the field
in question. Moreover, the samples can be constrained to satisfy hard data, for example, the type
of rock at a particular location.

The traditional geostatistical approach is to use a variogram, which gives the dependency
between a value at a given point and its neighbours. Unfortunately, in order to represent curved
channels, we need to take into account groups of more the 2 points, thus, for our application, we
need to turn towards multi-point geostatistics. The difference is that, instead of considering the
values at single locations, multi-point methods build a distribution for structural features.

Snesim is a popular multi-point algorithm, introduced by Strebelle (2002), which operates
on training images (figure 2.6). These images do not (necessarily) depict real reservoirs; their
role, however, is to represent all the possible structural features, along with their frequency of
appearance. Broadly speaking, snesim extracts patches from the training image, according to a
predefined ”search ellipsoid”, and uses them to build the corresponding geostatistical distribution.

For our purposes, we will run snesim on the channelized reservoir training image (figure 2.6),
in order to obtain ensembles of geological scenarios, to be used in history matching algorithms –
for clarity, a diagram of the sampling workflow is provided in figure 2.7.

2.3. History matching

History matching, or data assimilation, is the procedure of updating the parameters of a model
by conditioning on a time-series of observations. The main motivation in doing this is the hope that
the posterior model is more accurate in predicting future behaviour of the studied phenomenon (in
our case, the production of a channelized petroleum field during water-flooding).

We begin this section by introducing the mathematical framework necessary to prepare a model
for history matching. Next, we focus on the Ensemble Kalman Filter algorithm, the numerical
aspects related to its implementation and possible approaches in maintaining consistency in the
results. Finally, we study its performance on the Y-channel reservoir (figure 2.4).

2.3.1. State space representation

There are three main aspects to consider in describing the physical state of a petroleum reservoir:

• the geological structure, given by the permeability and porosity in each point (unknown a
priori and, for our purposes, we assume that these properties remain unchanged in time).

• the flow characteristics, captured in the values of the pressure and fluid saturation in each
point (practically impossible to measure).

• the production data, i.e. the bottom-hole pressures (BHP) and fluid rates in each well (which
constitute our observations).

Given the size of a reservoir and the volume of computations necessary to propagate its state
forward in time, we need to define a spatial discretization grid and rely on numerical tools, such

Ensemble-Based History Matching for Channelized Petroleum Reservoirs 9
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Figure 2.6: Training image

GEOSTATISTICS 
SOFTWARE
SGeMS Snesim

HARD DATA
Well core analysis
Geological survey

TRAINING IMAGE

Figure 2.7: Multipoint geostatistics sampling
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as the MRST reservoir simulator (SINTEF 2013). To that end, we introduce the so-called state
vector, which gathers the values of the quantities listed above, at a given time, t,

x(t) =



permi

poroi
presi
sati
ratej
bhpj


i = 1, . . . , ngrid cells

j = 1, . . . , nwells

(2.3.1)

Mathematically, x is a member of an m-dimensional space, to which we will refer, simply, as the
parameter space. The number of state variables, m, for a realistic field is, typically, of order 106.

With this in mind and if we assume that the reservoir simulator is able to capture reality
perfectly, then the history matching problem reduces to that of finding the initial condition, x(0),
such that the forecasted production behaviour matches the observed data. The main uncertainty
related to x(0) lies in the grid cell permeability and porosity values, and we will attempt to estimate
them using the algorithm presented in the next paragraph.

However, before moving on, we would like note that, for channelized reservoirs, the permeability
and porosity values are fully determined by the type of rock (sand or shale) in the respective grid
cell. Hence, we can reduce the size of the state vector by replacing the geological properties with a
categorical variable, which gives the type of facies. For example, we can plug the output of snesim
(0 for shale and 1 for sand) directly into the state vector; then (2.3.1) becomes

x(t) =


faciesi
presi
sati
ratej
bhpj


i = 1, . . . , ngrid cells

j = 1, . . . , nwells

faciesi ∈ {0, 1}
(2.3.2)

2.3.2. The Ensemble Kalman filter

We intend to use data assimilation to tune the parameters of our reservoir model, increasing its
power to predict the true state, xtruth, of channelized petroleum reservoirs. Among the algorithms
designed for this purpose, the Kalman Filter (KF), introduced by Kalman (1960), has recently
gained popularity in the literature (Oliver and Y. Chen 2011), especially due to its intrinsic ability
to handle uncertainty.

Given a distribution, fprior, that incorporates all the available information about the state
vector at moment t, and a model, M , that describes how the state changes in time, the aim of the
KF is to compute an updated, fposterior, by conditioning on the set of observations. The algorithm
is sequential and operates in two steps. The first is called the forecast step, in which the model is
used to propagate the state forward in time,

x(t) = M(x(t−∆t)) x(t) ∼ fprior (2.3.3)

For simplicity, we will drop the time indices and refer to x(t) as xf .

The observations are field measurements which provide information about the true state, and
are given by

dmeas = Hxtruth +w dmeas,w ∈ Rno w ∼ W (2.3.4)

Here, H is the observation operator that describes the relationship (assumed linear) between the
measured quantities and the state variables in x. The above also accounts for observation error;
w is a realization of a random vector, W, whose distribution describes our uncertainty about the
accuracy of dmeas.
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If observations are available at time t, then we compute the innovation vector,

∆d = dmeas −Hx (2.3.5)

which shows the discrepancy between the observed values and those predicted by the model.

We are now ready to enter the analysis step, which updates the state by conditioning on the
observations,

xa = xf +Kgain∆d xa ∼ fposterior (2.3.6)

where Kgain is an m×no matrix of coefficients, called the Kalman gain. Therefore, we see that the
update is linear and its impact depends on the magnitude of the innovation vector – a perfect match
with the truth will leave the state unchanged, while a ∆d with large magnitude will translate into
a heavily modified x.

The Kalman gain is chosen as to minimize the mean squared error function,

MSE : Rm → R

MSE(x) =
1

m

m∑
i=1

(x[i]− xtruth[i])
2 (2.3.7)

Thus, it is the solution to the following optimization problem,

min
Kgain

MSE(xa) (2.3.8)

which can be equivalently formulated as (Kalman 1960)

min
Kgain

tr(P a) (2.3.9)

where P is the error covariance,

P = E
[
ϵϵT
]

(2.3.10)

and ϵ is the error vector,

ϵ = xtruth − x (2.3.11)

The derivation is straightforward,

ϵa = xtruth − xa

(2.3.6)
===== xtruth − xf −Kgain(dmeas −Hxf )

(2.3.4)
===== xtruth − xf −Kgain(Hxtruth +w −Hxf )

= (I −KgainH)ϵf −Kgainw

(2.3.12)

If we denote by R = E
(
wwT

)
, the observation error covariance, then we have

P a = (I −KgainH)P f (I −KgainH)T +KgainRKgain
T

= P f −KgainHP f − P fHTKgain
T +Kgain(HP fHT +R)Kgain

T
(2.3.13)

where we assumed that the error vector and the observation error are uncorrelated (Kalman 1960).

The solution to (2.3.9) can now be found by setting the gradient of the objective function to 0,

d tr(P a)

dKgain
= −2 · (HP f )T + 2 ·Kgain(HP fHT +R) = 0 (2.3.14)
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finally, leading to

Kgain = P fHT (HP fHT +R)−1 (2.3.15)

The Ensemble Kalman Filter (EnKF) is a Monte-Carlo variant of the Kalman filter, introduced
by Evensen (1994). In this formulation, the prior and posterior distributions are represented by a
set of ne realizations, x1, . . . ,xne ∈ Rm, referred to as ensemble members. The ensemble mean is,
then, an estimation for the true state,

xtruth ≃ x =
1

ne

ne∑
i=1

xi (2.3.16)

while the ensemble covariance is an approximation for P ,

P ≃ 1

ne − 1

ne∑
i=1

(xi − x)(xi − x)T (2.3.17)

The EnKF workflow, illustrated in figure 2.8, uses the same Kalman update equation (2.3.6),
this time applied to each forecasted ensemble member, xi

f . The only difference is a correction to
the innovation vector (equation (2.3.5)), introduced by Burgers et al. (1998),

∆di = dmeas + pi −Hxi (2.3.18)

Here, the pi are an ensemble of perturbations, sampled from W, and can be interpreted as a
simulation of the field measurement process.

GEOSTATISTICS 
SOFTWARE
SGeMS Snesim

RESERVOIR 
SIMULATOR

Sintef MRST

HARD DATA
Well core analysis
Geological survey

TRAINING IMAGE

PARAMETER SPACE
Permeability, Porosity, Pressure, Saturation

DATA ASSIMILATION
Ensemble Kalman Filter

PRODUCTION DATA
Water and oil rates

FORECAST
ensemble

POSTERIOR
ensemble

PRIOR
ensemble

Figure 2.8: EnKF workflow

The derivation of the Kalman filter equations and the performance of the EnKF rely on a set
of assumptions. Some of them were already explicitly stated, while the rest is given in (Kalman
1960; and Evensen 1994). We compile a complete list below:

..1 The distribution of the state vector, x, can be fully described by its mean, x, and covariance
matrix, P , i.e. fprior and fposterior are multivariate Gaussian.

..2 The observation operator H is a linear function of the state vector. This can be satisfied by
augmenting the x with the model-predicted observations, di = Hxi (Evensen 2003).
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..3 W, the distribution of the observation error, is multivariate Gaussian with zero mean and
covariance matrix R, and the ensemble of perturbations, {pi}i=1,...,ne , is mean-centered. For
our application, we will also assume that R = diag(r1

2, . . . , rno
2).

..4 The error vector, ϵ, and the observation error vector, w, are uncorrelated, i.e.

E
(
ϵwT

)
= E

(
wϵT

)
= 0 (2.3.19)

2.3.3. Numerical aspects of the EnKF

Since the numerical implementation is easier if we write the equations in matrix form, we define
the following

X[:, i] = xi

D[:, i] = di = Hxi
∀i = 1, . . . , ne (2.3.20)

Then,

HXf = D

HX̃f = HXf (Ine − 1ne) =
∼
D

(2.3.21)

which allows us to rewrite (2.3.15) as

Kgain
(2.3.17)
======

1

ne − 1
X̃f X̃f

T
H

T
(

1

ne − 1
HX̃f X̃f

T
H

T
+R

)−1

= X̃f
∼
D

T
(

∼
D

∼
D

T

+ (ne − 1)R

)−1
(2.3.22)

Also, notice that,

X̃f
∼
D

T

= Xf (Ine − 1ne)
∼
D

T

= Xf

(
∼
D(Ine − 1ne)

)T

= Xf
∼
D

T
(2.3.23)

since
∼
D1ne = 0.

If we substitute the above into the Kalman update equation (2.3.6),

Xa = Xf +Kgain∆D

(2.3.22)
======
(2.3.23)

Xf +Xf
∼
D

T
(

∼
D

∼
D

T

+ (ne − 1)R

)−1

∆D

= Xf

[
Ine +

∼
D

T
(

∼
D

∼
D

T

+ (ne − 1)R

)−1

∆D

] (2.3.24)

we see that the xi
a, are, in fact, linear combinations of the xi

f with coefficients taken from the
columns of the ne × ne matrix

C = Ine +
∼
D

T
(

∼
D

∼
D

T

+ (ne − 1)R

)−1

∆D (2.3.25)

According to Evensen (2003), the sum along every column of C is equal to 1, while the sum along
the rows gives each member’s relative ”importance” in the assimilation result. An important thing
to note is that C does not use the ensemble, X, directly, which allows us to shorten the state vector
by removing the quantities we are not actually interested to update. This includes the production
data, which can be obtained directly from the model, and even the flow variables, since we plan to
use restarting (see next paragraph), leaving only

x[i] = faciesi
∀i = 1, . . . , ngrid cells

faciesi ∈ {0, 1}
(2.3.26)
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The most demanding step in the EnKF algorithm is computing the inverse of

B =
∼
D

∼
D

T

+ (ne − 1)R (2.3.27)

which is an no×no matrix. By analyzing its structure, we notice that the main contribution comes

from
∼
D

∼
D

T

, whose rank is min(no, ne). Therefore, it might happen that B is rank deficient and we
have to resort to a pseudo-inverse.

We distinguish two cases, and, in treating them, it is useful to first decompose

(ne − 1)R = QQT (2.3.28)

and, since R was chosen diagonal,

Q =
√
ne − 1 · diag(r1, . . . , rno) (2.3.29)

Note. For general R, we could obtain Q via Cholesky decomposition or approximate it using the
ensemble of perturbations (Evensen 2003),

R ≃ 1

ne − 1

ne∑
i=1

pipi
T (2.3.30)

leading to

Q[:, i] = pi ∀i = 1, . . . , ne (2.3.31)

Case 1: no ≤ ne

Emerick and Reynolds (2012) argue that B might suffer from bad scaling, due to observations
with values in differing ranges (for example, water cut and fluid rate from the production log
of a petroleum well). In Appendix A of the mentioned paper, the authors suggest the following
”rescaling” procedure:

B = QB̂QT (2.3.32)

where

B̂ = Q−1BQ−T

(2.3.27)
====== Q

−1∼
D

∼
D

T

Q
−T

+ Ino

(2.3.33)

Therefore, if we compute B̂−1, then, immediately

B−1 = Q−T B̂−1Q−1 (2.3.34)

To this end, let

A = Q−1
∼
D (2.3.35)

and

F1 = [A|Ino ] (2.3.36)

be a matrix constructed by appending Ino to the right of A. Then, it is easy to verify that,

B̂ = F1F1
T (2.3.37)

and we can obtain the inverse by computing the SVD,

F1 = U1Λ1V1
T (2.3.38)
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In order to avoid rank issues, we will discard the singular vectors corresponding to the least signific-
ant singular values (see Golub and van Loan 2012, and also the discussion surrounding (3.3.8)). To
that end, it is also worth noting that, since B is a symmetric semi-positive definite matrix (as the
sum of two covariance matrices), we are guaranteed that all the singular values are non-negative.

Finally,

B̂−1 (2.3.37)
======

(
F1F1

T
)−1 (2.3.38)

====== U1Λ1
−2U1

T (2.3.39)

where we used the fact that V is orthogonal, and, after gathering everything together, (2.3.25) now
reads

C
(2.3.34)
======
(2.3.39)

Ine +
∼
D

T

Q
−T

U1Λ1

−2

U1

T

Q
−1

∆D

= Ine +
∼
D

T
(
Q

−T

U1

)
Λ1

−2
(
Q

−T

U1

)T

∆D

(2.3.40)

Case 2: no > ne

If the observations outnumber the ensemble members, then, according to Mandel (2006), it is
advantageous to use the Sherman-Morrison-Woodbury inversion formula (which can be consulted
in Golub and van Loan 2012),

B−1 (2.3.27)
======
(2.3.28)

(
∼
D

∼
D

T

+QQT

)−1

S−M−W
======== Q−TQ−1 −Q−TQ−1

∼
D

(
Ine +

∼
D

T

Q−TQ−1
∼
D

)−1 ∼
D

T

Q−TQ−1

(2.3.35)
====== Q−T

[
Ino −A

(
Ine +ATA

)−1
AT
]
Q−1

(2.3.41)

In order to solve this, we define

F2 =
[
AT
∣∣Ine

]
(2.3.42)

and compute its SVD,

F2 = U2Λ2V2
T (2.3.43)

This allows us to rewrite (2.3.41) as

B−1 (2.3.42)
====== Q−T

[
Ino −A

(
F2F2

T
)−1

AT
]
Q−1

(2.3.43)
====== Q−T

(
Ino −AU2Λ2

−2U2
TAT

)
Q−1

(2.3.44)

and, finally, by substituting into (2.3.25),

C
(2.3.44)
======
(2.3.35)

Ine +AT
[
Ino − (AU2) Λ2

−2 (AU2)
T
]
Q−1∆D (2.3.45)

Notice that, in this case, the rescaling (Emerick and Reynolds 2012) is implicitly applied from
the start (2.3.41).

2.3.4. Adapting the assimilation results for simulation

The previous paragraph revealed that the updated ensemble is, in fact, a linear combination
of the forecasted state vectors (2.3.24), with coefficients given by matrix C (2.3.25). However,
if the model is nonlinear, then the state variables might lose physical consistency. For example,
the updated flow variables might not be in line with the new set of rock properties. This can be
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2.3. History matching Chapter 2. Petroleum reservoirs and history matching

overcome by restarting, which simply implies running the simulator from time 0 with the updated
geological parameters.

Another issue is related to the range of the assimilation results. We learned that each column of
C sums up to 1 (Evensen 2003), however, this does not make the Kalman update a convex combin-
ation, since it is possible that some of these coefficients become negative. This, in turn, allows the
assimilation results to attain unacceptable values, i.e. negative porosities or permeabilities, which
are not in line with reality. We study two alternative approaches for dealing with this drawback:

Truncation

A natural approach is to simply replace each outlier with the nearest acceptable value. In order
to see the effect, we will perform the twin-experiment described in table 2.2, in which the EnKF is
run with an ensemble of 100 members and the truth is the Y-channel reservoir from figure 2.4.

Note that the members have hard data constraints regarding the facies at well locations – this
is clearly visible in the prior mean and variability (figure 2.9a). We also decided to control all wells
based on bottom-hole pressure, since any rate constraint would have created unphysical pressure
values in Prod3, due to its position in the nearly-impermeable background shale (see table 2.1).
Finally, there is a discrepancy between the observation and assimilation intervals and we treat this
asynchronicity in a similar way to the Ensemble Smoother (see paragraph 4.1).

Item Description

Grid size 45 × 45 × 1 cells

Physical size of 1 grid cell 15m × 15m × 2m

Snesim search ellipsoid 10 × 10 × 1 grid cells (2D isotropic)

Target marginal distribution for facies 50% shale, 50% sand

Hard data constraints facies at well locations

Ensemble size 100 members

Initial reservoir pressure p0 = 100 bars

Initial reservoir saturation 20% water, 80% oil (20% residual oil)

Injector well control BHP = 1.5 · p0

Producer well control BHP = p0

Observed variables water and oil rates in wells

Observation uncertainty r = max(10% ·measured value, 0.1)

Simulation time 34 months

Observation interval 1 month

Assimilation interval 4 months

Table 2.2: Experimental setup for the Y-channel reservoir

The posterior mean permeability field and the ensemble variability are shown in figure 2.9b
and we see that the result does offer a general idea of the channel locations. However, their
structural integrity is fundamentally altered and almost all of the initial variability (figure 2.9a) is
lost. Figures 2.10b, 2.10e and 2.10h reveal that this is not a consequence of averaging, since the
updated members exhibit similar properties to the posterior mean.

The most likely explanation for this behaviour is that truncation creates inconsistencies in the
error covariance matrix, leading to the appearance of spurious correlations. As we will see in
chapter 4, they are the main reason for ensemble collapse.
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Logistic transform

In order to avoid the side-effects of truncation, we explored the alternative of using the logistic
transform. To this end, we introduce the function, logit : (0, 1) → R,

logit(s) = ln

(
s

1− s

)
∀s ∈ (0, 1) (2.3.46)

and its inverse,

logit−1(s) =
1

1 + e−s
∀s ∈ R (2.3.47)

The idea is to use this function as a link between the simulator and the EnKF, by applying
(2.3.46) component-wise to the state vector before the assimilation cycle and recovering the updated
results via the inverse (2.3.47). This guarantees that the facies values remain in (0, 1), and we can
interpret them as the ”likelihood” that the respective cell is in a channel. Therefore, we can
compute the corresponding porosities and permeabilities via the expected value,

permi = faciesi · permsand + (1− faciesi) · permshale

poroi = faciesi · porosand + (1− faciesi) · poroshale
i = 1, . . . , ne (2.3.48)

As can be seen, for example in Myrseth and Omre (2009), this transform can be generally
applied to update any bounded variable via the EnKF – we simply need to bring its range to [0, 1]
via normalization. In our case, for permeability,

faciesi =
permi − permshale

permsand − permshale
(2.3.49)

However, note that the logit function has singularities for {0, 1} and we have to apply a small
perturbation to the facies values in the initial ensemble. Let eps be the smallest floating point
value representable in machine precision, then we have

faciesi(shale) = eps

faciesi(sand) = 1− eps
i = 1, . . . , ne (2.3.50)

For comparison, we repeated the Y-channel reservoir experiment using the logistic transform.
We see that the results (figure 2.9c) are a dramatic improvement over those obtained with trun-
cation: the channel structure is much better preserved in the mean and there is considerably
more posterior variability than in figure 2.9b. It is also interesting to see the evolution of indi-
vidual ensemble members; we see that new channels were added (figure 2.10c), while old ones were
severed (figures 2.10f) or redirected (figure 2.10i) in order to satisfy the observations, bringing each
member’s geological structure closer to that of the truth (figure 2.9a).

This leads to the conclusion that the logistic transform is less intrusive on the error covariance
and, thus, generally preferable over truncation when handling bounded variables in the EnKF
cycle.
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Figure 2.9: Effect of the adaptation methods on the EnKF results
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Chapter 3

Parameterizations and feature spaces

By taking a closer look at the EnKF results from the previous chapter (figure 2.9), we notice
that, although the general shape of the channels is captured well, both in the ensemble mean and
in individual members, their curvature is not preserved. This is particularly evident for the upper
branch of the Y-shaped channel (see figure 2.9c), which plays an important role in predicting future
reservoir production, due to the position of Prod1 (figure 2.4). Also, the posterior uncertainty
surrounding the channel boundaries (bottom of figure 2.9c) is not big enough to leave room for
fundamentally different shapes.

From equation 2.3.24, we recall that the Kalman filter is a linear update, whose computation
relies on the error covariance matrix. As such, it is only capable of preserving up to second
order statistical moments between the state variables (Sarma, Durlofsky et al. 2008). This is an
unfortunate limitation, since, in order to maintain the curved channel structure of our reservoir,
we need to take higher-order statistics into account (see definition A.4).

This chapter discusses a possible solution, in the form of nonlinear parameterizations. The
bulk of the discussion revolves around the theoretical aspects needed to move the data assimilation
framework from the parameter space to a so-called feature space. For this purpose, we introduce
the polynomial kernel PCA algorithm and show the effect of its application to the EnKF.

3.1. Parameterized EnKF

Using a parameterization simply implies performing a change of variable on the state vector
before the data assimilation cycle, as illustrated in figure 3.1.

Notice that the parameterization is an intermediate component, separating the parameter space
(where the simulator operates) from the, so-called, feature space (where the assimilation takes
place). In a sense, we already used this approach when applying the logistic transform (para-
graph 2.3.4).

Recall that the elements of the parameter space are the state vectors and their components
have physical meaning (permeability, porosity, etc). We will refer to them using latin letters (x,
y or t) and the goal is to map them into the feature space via the (possibly nonlinear) mapping,
Φ(x). Following the convention in the literature (see, for example, Schölkopf, Mika, Burges et al.
1999; Kwok and Tsang 2004; or Honeine and Richard 2011b), we will call Φ(x) the image and x,
its preimage. However, as explained in paragraph 3.4, we are generally unable to operate directly
on the images, but on their lower-dimensional projections, ξ, which are tied to the state vectors
via the parameterization, ξ = g(x).

As such, g : Rm → R
l is an invertible function, which allows us to perform data assimilation

in the feature space. This leads to the following formulation of the parameterized Kalman update
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FEATURE SPACE
Channels, Curves, Fans

GEOSTATISTICS 
SOFTWARE
SGeMS Snesim

RESERVOIR 
SIMULATOR

Sintef MRST

HARD DATA
Well core analysis
Geological survey

TRAINING IMAGE

PARAMETER SPACE
Permeability, Porosity, Pressure, Saturation

DATA ASSIMILATION
Ensemble Kalman Filter

PRODUCTION DATA
Water and oil rates

PARAMETERIZATIONg g-1

FORECAST
ensemble

POSTERIOR
ensemble

PRIOR
ensemble

gFORECAST

ensemble
gPOSTERIOR

ensemble

Figure 3.1: Parameterized EnKF workflow

equation (Sarma and W. Chen 2013)

ξf = g
(
xf
)

ξa = ξf +Kgain∆d

xa = g−1 (ξa)

(3.1.1)

where the Kalman gain is now computed such that it minimizes the mean squared error in the
feature space,

MSE∗(x) = g(x)− g(xtruth) (3.1.2)

The effect this has on the assimilation results depends on the choice for g and the properties
of the underlying feature space. For our application, we desire that the the high-order moments
of the facies field are ”reflected” in the ξ and that these properties are preserved during linear
transformations (such as the Kalman filter update). This will be the focus for the remainder of
this chapter.

3.2. Feature spaces

The two classes of points in figure 3.2a are separable by a circle – we call this a feature of this
particular dataset. If we perform a polar coordinate transformation, as in figure 3.2b, then the
circle is mapped to a line and the dataset becomes linearly separable (see paragraph A.2). We will
call the polar coordinate space a feature space for this dataset, because it emphasizes a key feature
of its structure.
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In the general case, let Φ : Rm → F be a (possibly nonlinear) mapping from the parameter
space, Rm, to a desired feature space, F . Then F is a p-dimensional space whose coordinates are
tied (through Φ) to the initial variables. The value of p depends on the general structure of the
dataset and the complexity of the target feature to be identified (Aizerman et al. 1964). It can also
happen that p = ∞ (see Gaussian kernel, below).

3.2.1. Kernel functions

Aizerman et al. (1964) noted that, especially when p ≫ m, Φ may become expensive to evaluate
and this poses a problem when working with large datasets. It might also happen that Φ doesn’t
have a closed form and, therefore, the properties of F are not fully known. However, if F is a
Hilbert space (see, for example, Kreyszig 2007), then many algorithms can be formulated to work
solely with inner product evaluations. For this purpose, we define the kernel function,

K : Rm ×Rm → R

K(x,y) = ⟨Φ(x),Φ(y)⟩F
(3.2.1)

If the kernel function is less expensive to compute than Φ, then any algorithm that only requires
inner product evaluations can operate efficiently in F through K.

From a bottom-up perspective, one can arbitrarily choose a kernel function, disregarding Φ
altogether, and work in the associated feature space. Cortes and Vapnik (1995) showed that a
choice for K is valid (i.e. it corresponds to a Hilbert feature space) if it satisfies Mercer’s condition:

..

Definition 3.1: Positive-definite kernel
.
(Cortes and Vapnik 1995) Let X be a nonempty set, X ⊆ R

m. The symmetric function
K : X × X → R is called a positive definite (PD) kernel if it satisfies

n∑
i,j=1

K(xi,xj) · cicj ≥ 0 (3.2.2)

for n ≥ 1, ∀xk ∈ X and ∀ck ∈ R.

Notable positive definite kernel functions are:

• The linear kernel

Klin(x,y) = ⟨x,y⟩2 + c c ∈ R (3.2.3)

is the regular dot product. It can help identify properties related to lines (in R2) and (hy-
per)planes (in Rm with m ≥ 3).

• The polynomial kernel

Kpoly(x,y) = (a · ⟨x,y⟩2 + c)d a, c ∈ R, d ∈ N∗ (3.2.4)

operates in a feature space whose coordinates are monomials of degree d of the initial variables.
It has widespread use in natural language processing (Chang et al. 2010).

• The Gaussian kernel

Kgauss(x,y) = exp

(
−
∥x− y∥2

2

2σ2

)
σ ∈ R (3.2.5)

corresponds to an infinite dimensional feature space of Gaussian functions. This kernel is
the most popular member of the radial basis function (RBF) class. As such, it can identify
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properties related to circles and (hyper)spheres and is frequently used in machine learning
models called Support Vector Machines (Schölkopf and Smola 2002).

The value of σ dictates the kernel’s sensitivity to the distance between arguments. If σ is too
low, it makes the classification unstable and vulnerable to noise. On the opposite side, having
σ too large translates to an almost linear behaviour, making the results less responsive to
fluctuations in the data (Schölkopf, Mika, Burges et al. 1999).

3.2.2. Operations in feature spaces

The power of kernel functions lies in the fact that they allow us to operate efficiently in high-
dimensional spaces. This paragraph gives the kernel-formulation for a few elementary operations.

Computing lengths and distances

As stated before, an algorithm can benefit from the use of the kernel function if it can be
rewritten entirely using inner-product evaluations. Fortunately, for lengths and distances this is
straightforward, given the properties of the norm in Hilbert spaces (see Kreyszig 2007):

∥Φ(x)∥F =
√

⟨Φ(x),Φ(x)⟩F =
√

K(x,x) ∀x ∈ Rm (3.2.6)

and

dF (Φ(x),Φ(y)) = ∥Φ(x)− Φ(y)∥F ∀x,y ∈ Rm

=
√

⟨Φ(x)− Φ(y),Φ(x)− Φ(y)⟩F

=
√

⟨Φ(x),Φ(x)⟩F − ⟨Φ(x),Φ(y)⟩F − ⟨Φ(y),Φ(x)⟩F + ⟨Φ(y),Φ(y)⟩F
=
√

K(x,x)− 2K(x,y) + K(y,y)

(3.2.7)

respectively, where we used the symmetry of the kernel function.

The distance function attains a special interpretation in feature spaces – it is a measure of the
dissimilarity between two samples, in terms of the analyzed features. Therefore, equation (3.2.7)
lays the foundation for the kernel-formulation of distance-based clustering algorithms such as K-
means (Forgy 1965; and Lloyd 1982).

Mean-centering

Even if a dataset, t1, . . . , tnt , has mean zero in Rm, there is no guarantee that this property is
carried over when mapping into the feature space, F .

Let

Φt =
1

nt

nt∑
i=1

Φ(ti) (3.2.8)

be the mean of the images. Then, following (Schölkopf, Smola and Müller 1998, Appendix B), we
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define the mean-centered kernel function as

∼
K(ti, tj) =

⟨
∼
Φ(ti),

∼
Φ(tj)

⟩
F

=
⟨
Φ(ti)− Φt,Φ(tj)− Φt

⟩
F

= ⟨Φ(ti),Φ(tj)⟩F −
⟨
Φ(ti),Φt

⟩
F

−
⟨
Φt,Φ(tj)

⟩
F
+
⟨
Φt,Φt

⟩
F

= K(ti, tj)−
1

nt

nt∑
k1=1

K(tk1 , tj)

− 1

nt

nt∑
k2=1

K(ti, tk2) +
1

nt
2

nt∑
k1=1

nt∑
k2=1

K(tk1 , tk2)

∀i, j = 1, . . . , nt (3.2.9)

We also define the kernel matrix,

K(i, j) = K(ti, tj) ∀i, j = 1, . . . , nt (3.2.10)

in order to rewrite equation (3.2.9) compactly as

∼
K = K − 1ntK −K1nt + 1mK1nt

= (Int − 1nt)K(Int − 1nt)
(3.2.11)

This result is crucial for the kernel PCA algorithm, given in paragraph 3.4.

3.2.3. The polynomial feature space

The previous discussion did not make any assumptions about the choice of kernel function.
However, our aim is to find a feature space in which data assimilation algorithms preserve high-
order moments of the state vector. Reviewing definition A.4, the polynomial feature space seems
to be a natural choice, as its coordinates are monomials of the initial variables. To illustrate, let’s

consider a state vector with m = 2 variables, x =
[
x1 x2

]T
. Then, the mapping to the space of

all monomials of order d = 2 is

Φ2 : R
2 → F2

Φ2(x) =
[
x1

2 x2
2 x1x2 x2x1

]T (3.2.12)

and dot products within this space can be computed using the following polynomial kernel function

K2(x,y) = ⟨x,y⟩2
2 = x1

2y1
2 + x2

2y2
2 + 2x1x2y1y2 ∀x,y ∈ R2 (3.2.13)

Schölkopf and Smola (2003) showed that (3.2.13) can be generalized for any choice of m and d,

Kd(x,y) = ⟨x,y⟩2
d ∀x,y ∈ Rm (3.2.14)

and they also computed the dimension of the corresponding feature space,(
m+ d− 1

d

)
=

(m+ d− 1)!

d! · (m− 1)!
(3.2.15)

Sarma et al. introduced the idea of incorporating kernel parameterizations in data assimilation
algorithms in order to preserve multipoint geostatistics. Their formulation is applicable to the
adjoint method (Sarma, Durlofsky et al. 2008) as well as the EnKF (Sarma and W. Chen 2009)
and it uses the following kernel function

K1...d(x,y) =

d∑
i=1

⟨x,y⟩2
i ∀x,y ∈ Rm, ∀d ∈ N∗ (3.2.16)
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3.3. Principal component analysis Chapter 3. Parameterizations and feature spaces

which corresponds to the space of all monomials up to order d. By using equation (3.2.15), the
dimensionality of this feature space is

p =

d∑
i=1

(
m+ i− 1

i

)
(3.2.17)

thus, prohibitively large even for relatively small values of m and d. However, there is a high
degree of redundancy – some dimensions are permutations of the same monomial – and the next
paragraph discusses a way to select only the most relevant subset of these dimensions.

3.3. Principal component analysis

In 1901, Pearson described a method of computing the best line fit for a set of points in the
Euclidean plane, an idea which was later developed into the Principal Component Analysis (PCA)
algorithm by Hotelling (1933). It is a transformation that exposes a dataset’s internal structure
from a perspective that best explains the variance. The principal components are an ordered set
of vectors which form the orthonormal basis of this new perspective, such that

• The first principal component is the direction of the biggest spread among the data points.

• The second principal component accounts for the biggest spread, after the contribution of the
first component has been removed.

• The i-th principal component accounts for the biggest spread, after the contributions of the
first i− 1 components have been removed.

PCA operates on datasets with zero mean. If this is not the case, then the first principal
components will be perturbed by the mean and will not accurately show the directions of greatest
variance. Therefore, in order to get informative results, the dataset, t1, . . . tnt , needs to be first
centered (A.1.2) around its mean, t.

Formally, the above can be summarized as

..

Definition 3.2: Principal Component Analysis
.

(Jolliffe 2005) Let
∼
t1, . . .

∼
tnt be mean-centered samples of the random vector X ∈ Rm. Prin-

cipal component analysis is an orthogonal linear transformation, W ∈ Rm×l with l ≤ m, such
that

min
W

nt∑
i=1

∥∥∥∼ti −WW T
∼
ti

∥∥∥
2

2

(3.3.1)

Hotelling (1933) showed that the principal components are the eigenvectors, vj , of the covariance
matrix, S (A.1.5). Thus, they are obtained by solving the following eigenproblem (see, for example,
Golub and van Loan 2012)

Svj = λjvj

∥vj∥2 = 1
∀j = 1, . . . ,m (3.3.2)

where λj are the corresponding eigenvalues.
Covariance matrices are symmetric positive semidefinite by definition (Johnson and Wichern

2002). This has two implications for PCA. First, the eigenvalues and eigenvectors can be com-
puted through singular value decomposition (see Golub and van Loan 2012). Second, all of the
eigenvalues are real nonnegative numbers and, according to Hotelling (1933), the magnitude of λj

is proportional to the ”importance” of the associated principal component, vj .
An important observation is given in the following

Ensemble-Based History Matching for Channelized Petroleum Reservoirs 27



Chapter 3. Parameterizations and feature spaces 3.3. Principal component analysis

..

Corollary 3.3: Linearity of PCA
.
The principal components are a linear combination of the training dataset.

Proof. We substitute the definition of S (A.1.5) into (3.3.2),

λjvj =

(
1

nt − 1

nt∑
i=1

∼
ti

∼
ti

T
)
vj

=
1

nt − 1

nt∑
i=1

∼
ti

(
∼
ti

T

vj

)

=
1

nt − 1

nt∑
i=1

⟨∼
ti,vj

⟩
2

∼
ti

∀j = 1, . . . ,m (3.3.3)

leading to

vj =

nt∑
i=1

αj [i] ·
∼
ti

αj [i] =

⟨∼
ti,vj

⟩
2

(nt − 1)λj

∀j = 1, . . . ,m (3.3.4)

Notice that we used the term training dataset. This is because the principal components form
an orthonormal basis in Rm, with orientation given by the ti. However, once they are obtained,
we can express any x ∈ Rm, in terms of its projections onto the vj :

∼
x =

m∑
j=1

⟨∼
x,vj

⟩
2
· vj =

m∑
j=1

ξ[j] · vj ξ ∈ Rm (3.3.5)

where
∼
x = x− t is centered around t, the mean of the training dataset.

The projection vector, ξ ∈ Rm, can be written compactly as

ξ = V T∼
x = V T (x− t) (3.3.6)

Figure 3.3 shows an example where the Cartesian coordinates are sampled fromm = 2 positively
correlated variables. Notice that the datapoints are, in effect, rotated such that the direction of
the highest variance lies on the horizontal axis.

According to Hotelling (1933), most of the information is, usually, captured by the first few
principal components. We can, thus, define a truncated version of PCA, which retains only the
most significant l ≤ m components, leading to dimensionality reduction (see paragraph A.3), i.e.

∼
x ≃

l∑
j=1

ξ[j] · vj ξ ∈ Rl, l ≤ m (3.3.7)

l can either be fixed – for example, a value of 2 or 3 allows visualization of the results – or determined
dynamically, based on the dataset at hand. A detailed discussion of the different ways to do this
can be consulted in (Jolliffe 2005); we will only mention the simplest and most straightforward
criterion:

If we consider the eigenvalues in decreasing order, λ1 ≥ · · · ≥ λm, then, in order to preserve q%
of the initial variance, l needs to be chosen as the smallest number satisfying∑l

j=1 λj∑m
j=1 λj

≥ q

100
(3.3.8)
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Figure 3.3: The PCA transform
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..

Algorithm 3.1: Principal Component Analysis
.

Input: The training dataset t1, . . . , tnt ∈ Rm

Output: The transformation matrix W

..1 Center the dataset around its mean, t, (A.1.2) to obtain
∼
t1, . . . ,

∼
tnt .

..2 Compute the covariance matrix, S (A.1.5)

..3 Compute the SVD of S

S = V ΛV T (3.3.9)

where Λ = diag(λ1, . . . , λm) and V [:, j] = vj .

..4 Order the eigenvectors in decreasing order of the associated eigenvalues and store the first
l ≤ m of them in the columns of matrix W .

..5 Use W to perform transformations

ξ = W T (x− t) ∀x ∈ Rm (3.3.10)

3.4. Kernel PCA

As stated before, we intend to use PCA in the feature space in order to work with a manageable
subset of its dimensions. A crucial result in this direction was developed by Schölkopf, Smola and
Müller (1998), who showed that PCA can be formulated solely in terms of inner product evaluations.
Here, we will only give an outline of the key steps from their argument.

As usual, consider the training dataset t1, . . . , tnt ∈ Rm and let F be the desired feature space,
with K the corresponding kernel function. Then, by mapping into F , we obtain Φ(t1), . . . ,Φ(tnt).
After mean-centering, the covariance matrix reads

S =
1

nt − 1

nt∑
i=1

∼
Φ(ti)

∼
Φ(ti)

T

(3.4.1)

and the principal components are its eigenvectors, vj , satisfying

Svj = λjvj

∥vj∥2 = 1
∀j = 1, . . . , p (3.4.2)

where λj are the corresponding eigenvalues.
Similar to (3.3.4), we have

vj =

nt∑
i=1

αj [i] ·
∼
Φ(ti) αj ∈ Rnt ∀j = 1, . . . , p (3.4.3)

which allows the eigenproblem (3.4.2) to be rewritten as (see Schölkopf, Smola and Müller 1998,
for the proof):

µiαi =
∼
Kαi

∥αi∥2 =
1

√
µi

∀i = 1, . . . , nt (3.4.4)
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3.4. Kernel PCA Chapter 3. Parameterizations and feature spaces

where
∼
K is the mean-centered kernel matrix (3.2.11) and

µi = (nt − 1)λi ∀i = 1, . . . , nt (3.4.5)

its eigenvalues.
Projections onto the principal components are done through the kernel function

ξ[j] =

⟨
vj ,

∼
Φ(x)

⟩
F

(3.4.3)
=====

nt∑
i=1

αj [i] ·
⟨

∼
Φ(ti),

∼
Φ(x)

⟩
F

=

nt∑
i=1

αj [i] ·
∼
K(ti,x)

∀j = 1, . . . , nt ∀x ∈ Rm (3.4.6)

The new method is called kernel PCA and it performs PCA in the feature space through the
eigendecomposition of the kernel matrix. Since the kernel function satisfies Mercer’s condition
(3.2.2),K is positive semidefinite, hence, just as before, we have µi ≥ 0 for ∀i = 1, . . . , nt and the
eigenvectors can be obtained through SVD.

Given the high dimensionality of the feature space, we opt to keep only the l ≪ pmost significant
components. The equivalent of (3.3.7) then becomes

∼
Φ(x) ≃

l∑
i=1

ξ[i] · vi ξ ∈ Rl, l ≤ nt ≪ p (3.4.7)

and l is chosen according to the criterion presented in paragraph 3.3.

..

Algorithm 3.2: Kernel Principal Component Analysis
.

Input: The training dataset t1, . . . , tnt ∈ Rm

Output: The transformation matrix W

..1 Compute the kernel matrix K (3.2.10).

..2 Mean-center the kernel matrix (3.2.11) to obtain
∼
K.

..3 Compute the SVD of
∼
K

∼
K = AΣAT (3.4.8)

where Σ = diag(µ1, . . . , µm) and A[:, i] = αi.

..4 Normalize the αi according to (3.4.4).

..5 Order the eigenvectors in decreasing order of the associated eigenvalues and store the first
l ≤ nt of them in the columns of matrix W .

..6 Use W to perform transformations

ξ = W T
∼
k

∼
k[i] =

∼
K(ti,x)

∀x ∈ Rm

∀i = 1, . . . , nt
(3.4.9)
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The algorithm is generic, in the sense that any kernel function can be used. Schölkopf, Smola
and Müller (1998) showed that the results for the linear kernel (3.2.3) with parameter c = 0 are
equivalent to regular PCA. However, since the size of the kernel matrix is equal to the number of
the training dataset, the linear kernel PCA algorithm is more efficient than the one presented in
paragraph 3.3 when nt ≪ m.

As an example, figure 3.4 shows the effect of Gaussian kernel PCA with l = 2 on the circularly
separable dataset presented earlier (figure 3.2a). Through a radial basis function transform, the
algorithm was able to identify the two classes of points, making them linearly separable.
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Figure 3.4: Example kernel PCA result using the Gaussian kernel with σ = 7.89 and l = 2

3.5. The preimage problem

We would now like to use polynomial kernel PCA as a parameterization for the EnKF, in the
hope that it will help preserve high-order geostatistics throughout the assimilation cycle. We, thus,
need to provide a way to compute preimages, i.e. obtain the corresponding facies fields of the
update results. However, except for very special cases, the substantial difference in dimensionality
between the parameter and feature spaces makes this generally impossible (see Schölkopf, Mika,
Burges et al. 1999, for an argument regarding the Gaussian kernel). Fortunately, the polynomial
kernel (3.2.4) with odd degree is one such special case, but the same does not hold for (3.2.16).

To overcome this issue, the literature provides methods to compute approximate solutions.
These involve, either solving an optimization problem via fixed-point iterations (Schölkopf, Mika,
Burges et al. 1999), multidimensional scaling based on distances (Kwok and Tsang 2004) or learning
the inverse mapping by constructing a basis in the feature space (Honeine and Richard 2011a). A
complete survey of these methods can be consulted in (Honeine and Richard 2011b).

In the following paragraphs, we will review the fixed-point iterative scheme used to compute
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preimages in (Sarma, Durlofsky et al. 2008), and propose an alternative kernel function, which
admits analytical solutions to the preimage problem. An extensive comparison between the two
methods will be conducted in paragraph 5.1.

3.5.1. Fixed-point iterative scheme

Since the inverse kernel PCA problem does not have an exact solution in the general case,
Schölkopf, Mika, Burges et al. (1999) propose a method to compute approximate preimages. Let
Φx ∈ F be the image corresponding to a given projection vector ξ ∈ Rl (for example, obtained
through data assimilation). Then we can formulate the following optimization problem,

argmin
x∈Rm

ρ(x)

ρ(x) = ∥Φ(x)−Φx∥F
2

= ⟨Φ(x),Φ(x)⟩F − 2 ⟨Φ(x),Φx⟩F + ⟨Φx,Φx⟩F
Φx ∈ F fixed (3.5.1)

A key result is the following

..

Proposition 3.4: Linearity of the image space
.
Any image, Φ(x), lies in the feature subspace spanned by the images of the training dataset,
Φ(ti), i.e.

Φ(x) =

nt∑
i=1

γ[i] · Φ(ti) ∀x ∈ Rm (3.5.2)

Its proof will be provided in the next paragraph. We will not use the expression for the γ[i] from
(Sarma, Durlofsky et al. 2008), as their derivation assumed that the projection vectors, ξ ∈ Rl,
are normally distributed with zero mean and covariance equal to diag(λ1, . . . , λl). This assumption
was contested by Ma and Zabaras (2011), who attempt to use polynomial chaos expansions in order
to approximate the true distributions.

We can now rewrite the optimization problem (3.5.1) as

ρ(x)
(3.5.2)
===== K(x,x)− 2

nt∑
i=1

γ[i] · K(ti,x) +
nt∑
i=1

nt∑
j=1

γ[i] · γ[j] · K(ti, tj) Φx ∈ F fixed

(3.5.3)

which can be solved by setting the gradient of the objective function to 0,

dρ

dx
=

dK(x,x)

dx
− 2

nt∑
i=1

dK(ti,x)

dx
= 0 (3.5.4)

Applying the above to the kernel in (3.2.16), Sarma, Durlofsky et al. (2008) developed the
following fixed-point iterative scheme.

xk =

∑nt
i=1 γ[i]

(∑d
j=1 j

⟨
ti,x

k−1
⟩
2

j−1
)
ti∑nt

i=1 γ[i]
(∑d

j=1 j⟨ti,xk−1⟩2
j−1
) k ∈ N∗ (3.5.5)

The starting solution, x0, dictates the region of the parameter space where the search is performed,
therefore, a poor choice might drive the result into a local optimum (Kwok and Tsang 2004). In
the next paragraph we will give an alternative solution that does not suffer from this drawback.
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3.5.2. Analytical method

The derivation in this paragraph relies heavily on the following

..

Proposition 3.5: Sufficient condition for the existence of a preimage
.
(Schölkopf, Mika, Smola et al. 1998) A feature space admits an exact solution to the preimage
problem if its kernel is an invertible function of the dot product.

Proof. Consider the canonical basis in the parameter space

ei[j] = δij ∀i, j = 1, . . . ,m (3.5.6)

Then, the coordinates of any datapoint can be written as dot products with the canonical vectors
ei

x =

m∑
i=1

⟨x, ei⟩2 · ei ∀x ∈ Rm (3.5.7)

and, if the kernel function satisfies

K(x,y) = f (⟨x,y⟩2) ∀x,y ∈ Rm (3.5.8)

with f : R→ R invertible, then we can write

x[i] = ⟨x, ei⟩2
= f−1 (K(x, ei))

= f−1 (⟨Φ(x),Φ(ei)⟩F )
∀x ∈ Rm (3.5.9)

Even though this is a known result, the works consulted in our literature study do not provide
the full derivation of a closed-form expression for the analytical preimage solution. Therefore, we
feel compelled to elaborate below.

The key lies in the, yet undefended, result from proposition 3.4. We begin its

Proof of Proposition 3.4.
by expanding (3.4.3) as

vj =

nt∑
i=1

αj [i] ·
∼
Φ(ti)

=

nt∑
i=1

αj [i] ·
(
Φ(ti)− Φt

)
=

(
nt∑
i=1

αj [i] · Φ(ti)

)
−

(
nt∑
i=1

αj [i]

)
· Φt

=

(
nt∑
i=1

αj [i] · Φ(ti)

)
−

nt∑
k=1

1

nt

(
nt∑
i=1

αj [i]

)
· Φ(tk)

=

nt∑
i=1

(αj [i]−αj) · Φ(ti)

∀j = 1, . . . , l (3.5.10)

where αj is the mean of the elements in vector αj .

34 Matei Ţene
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This allows us to write

Φ(x) = Φt +
∼
Φ(x)

(3.4.7)
===== Φt +

l∑
j=1

ξ[j] · vj

(3.5.10)
====== Φt +

l∑
j=1

ξ[j]

(
nt∑
i=1

(αj [i]−αj) · Φ(ti)

)

= Φt +

nt∑
i=1

 l∑
j=1

(ξ[j] ·αj [i]− ξ[j] ·αj)

 · Φ(ti)

∀x ∈ Rm (3.5.11)

where we assumed equality in (3.4.7), since the contributions of the (p− l) trailing components are
attributed to noise and, thus, discarded by the kernel PCA algorithm.

For simplicity, let’s denote

β[i] =

l∑
j=1

ξ[j] ·αj [i] ∀i = 1, . . . , nt (3.5.12)

Then,

l∑
j=1

ξ[j] ·αj =

l∑
j=1

ξ[j]

(
1

nt

nt∑
i=1

αj [i]

)

=
1

nt

l∑
j=1

nt∑
i=1

ξ[j] ·αj [i]

=
1

nt

nt∑
i=1

 l∑
j=1

ξ[j] ·αj [i]


(3.5.12)
======

1

nt

nt∑
i=1

β[i]

= β

(3.5.13)

leading to

Φ(x) = Φt +

nt∑
i=1

(
β[i]− β

)
Φ(ti)

(3.2.8)
=====

(
1

nt

nt∑
i=1

Φ(ti)

)
+

nt∑
i=1

(
β[i]− β

)
Φ(ti)

=

nt∑
i=1

(
1

nt
+ β[i]− β

)
Φ(ti)

∀x ∈ Rm (3.5.14)

Thus, any Φ(x) lies in the linear span of the images of the training dataset, with coefficients

γ[i] =
1

nt
+ β[i]− β ∀i = 1, . . . , nt (3.5.15)
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We now have all the necessary ingredients. By combining (3.5.2) and (3.5.9), the preimage
solution, finally, reads

x[i] = f−1

 nt∑
j=1

γ[j] · ⟨Φ(tj),Φ(ei)⟩F


= f−1

 nt∑
j=1

γ[j] · K(tj , ei)

 ∀x ∈ Rm (3.5.16)

The kernel function (3.2.16), used by Sarma, Durlofsky et al. (2008) to preserve multipoint
geostatistics, is a d-th degree polynomial of the dot product,

f1...d(s) =
d∑

i=1

si =
1− sd+1

1− s
− 1 =

s(1− sd)

1− s
∀s ∈ R (3.5.17)

where we used the finite geometric series formula. Unfortunately, f1...d is not invertible, and
we propose the following alternative kernel – a slightly modified version of the inhomogeneous
polynomial kernel (Schölkopf and Smola 2003)

K1...d
∗(x,y) = (⟨x,y⟩2 + 1)d − 1

=

d∑
i=1

(
d

i

)
⟨x,y⟩2

i ∀x,y ∈ Rm d ∈ N∗ odd (3.5.18)

which corresponds to

f1...d
∗(s) = (s+ 1)d − 1

f1...d
∗−1(s) = d

√
s+ 1− 1

∀s ∈ R (3.5.19)

If the order, d, is chosen as an even number, then the inverse function will attain complex
values for negative dot products, hence the above holds only for odd d. This does not impede our
application significantly, however, the same cannot be immediately said about the extra coefficients,(
d
i

)
, that differentiate (3.5.18) from (3.2.16). Their effect was studied extensively in the experiments

from paragraph 5.1 and their results allow us to conclude that the analytical method is preferable
over the fixed-point iterative scheme, in general. Thus, for the remainder of this report, we will use
analytical preimages for our parameterizations.
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3.6. KPCA-EnKF

Equations (3.4.9) and (3.5.16) allow us to integrate the polynomial kernel PCA transform into
the parameterized EnKF workflow (figure 3.1) by defining g : Rm → R

l as

g(x) = W T
∼
k

g−1(ξ) = f−1(Ktγ)

∀x ∈ Rm

∀ξ ∈ Rl
(3.6.1)

where f−1 is applied component-wise and

∼
k[j] =

∼
K(tj ,x)

Kt[i, j] = K(ei, tj) = f(tj [i])

γ = 1nt + (Int − 1nt)Wξ

∀i = 1, . . . ,m

∀j = 1, . . . , nt
(3.6.2)

For comparison, we will now re-run the Y-channel reservoir experiment (see table 2.2) using
the parameterization setup described in table 3.1.

Item Description

Training set size nt = 1500 samples

Kernel degree d ∈ {1, 3, 5}

Parameterization variance threshold q = 90%

Adaptation method logit

Table 3.1: Parmeterization setup for the example reservoir

The results are depicted in figure 3.5, and we see that, for kernel degree 1 (figure 3.5b), we
obtain a posterior mean similar to that of the classic EnKF (figure 2.9). This was to be expected,
since, for d = 1, the kernel function computes the regular dot product and, thus, the feature and
parameter spaces coincide. However, as the degree of the kernel increases, so do the curved features
start to develop (see figure 3.5d).

Unfortunately, the better accuracy is accompanied by a dramatic decrease in ensemble variab-
ility (see the bottom plots in figure 3.5). This is called ensemble collapse and will be studied in
more detail during the following chapter.
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Figure 3.5: KPCA-EnKF results with different degrees of the polynomial kernel function
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Chapter 4

Preventing ensemble collapse

This chapter explores the possibilities to avoid the issue of ensemble collapse, which appears
when using the kernel PCA parameterization in EnKF. In (Evensen 2009, Chapter 15), the author
points out that the main cause for the dramatic loss in variability is the use of a limited number
of ensemble members when building the error covariance matrix.

Specifically, a small ensemble size results in a coarse approximation of P f and the appearance
of artificial (or spurious) correlations between the state variables and the observations. As a result,
each update step produces an over-reduction of the ensemble variability. In dealing with this issue,
Evensen (2009) discusses methods, such as localization or inflation, which imply direct modifications
on the covariance matrix.

However, since we are using a nonlinear parameterization, it is not obvious how to adapt these
methods to our application (in the case of localization, this might even turn out to be impossible).
Instead, we will focus on two recent developments – the Ensemble Smoother with multiple data
assimilations (Emerick and Reynolds 2012) and the Subspace EnKF (Sarma and W. Chen 2013).

4.1. Ensemble smoother

In order to learn more about the apparition and development of ensemble collapse, we will in-
vestigate some additional data from the previous experiment. Figure 4.1 illustrates the convergence
behaviour of the KPCA-EnKF by plotting the forecasted oil rate in Prod1 for all members after
each update.

We notice that for d = 1 (figure 4.1a) the ensemble maintains its spread until the end of
the simulation. In contrast, for the cases when d = 3 and d = 5 (figures 4.1b and 4.1c), where
we experienced collapse, there is an abrupt decrease in spread after the 6th-7th update and, even
though new observations become available at subsequent time steps, they seem to have little impact.

The Ensemble Smoother (EnS) is a data assimilation algorithm proposed by van Leeuwen and
Evensen (1996). In its formulation, the EnKF’s sequential updates are replaced with a single one,
which uses all available observations at once. This is, essentially, done by pasting together the state
vectors at different times, on one side, and the corresponding innovation vectors, on the other, and
then plugging them into the Kalman update equation (2.3.6). Recently, Emerick and Reynolds
(2012) extended this method by allowing for multiple iterations. More specifically, they prove that
one Kalman update is equivalent to n sequential iterations of (2.3.6) using the same observations,
while replacing R with nR.

We will now test this Iterative EnS algorithm, together with the KPCA parameterization
(table 3.1), in the hope of preventing collapse on the Y-channel reservoir. For this purpose, we
used a number of 9 iterations, which is equal to the number of sequential updates from the previous
experiment (table 2.2). The results are shown in figure 4.2 and, indeed, we notice an increase in
variability around the channel boundary, for both d = 3 (figure 4.2b) and d = 5 (figure 4.2c).
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Figure 4.1: Convergence behaviour of the KPCA-EnKF with different kernel degrees (oil rate in
Prod1)
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Figure 4.2: Iterative EnS results with different degrees of the polynomial kernel function
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Encouraged by these results, we will prefer the Iterative KPCA-EnS over the KPCA-EnKF
in the comparative experiments conducted in paragraph 5.2. However, having variability only
around channel boundaries might not be sufficient if the general structure is not in line with the
observations. This is the reason why, in the next paragraph, we will study an alternative approach
in preventing collapse.

4.2. Subspace EnKF
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Figure 4.3: Subspace EnKF workflow

Regardless of which history matching method we choose, the objective is to obtain a posterior
that minimizes the MSE function (see paragraph 2.3.2). Let’s denote by h = tr(P ), with ∇xh its
gradient vector. Then, we can approximate the solution to argminx h by employing the steepest
descent iterative method, introduced by Cauchy (1847) and refined by Curry (1944),

xk = xk−1 − s ·∇xh s > 0, k ∈ N∗ (4.2.1)

Sarma and W. Chen (2013) observed a similarity between this equation, with step size s = 1,
and the Kalman update (2.3.6), i.e. they used the following
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..

Conjecture 4.1: Equivalence between the EnKF and the steepest descent method
.
The EnKF update is equivalent to an iteration of the steepest descent method with unit step,
where the gradient is approximated from the ensemble, i.e.

Kgain∆d ≃ −∇xh (4.2.2)

to develop a new data assimilation framework, called the Subspace EnKF. However, this fact was
not sufficiently confirmed during our literature study (the closest match was the result by Sayed
and Kailath (1994), showing the equivalence between the Kalman filter and the Recursive Least
Squares method) and, unfortunately, providing a proof is outside the scope of this thesis. Hence,
we will use the above as an assumption.

As illustrated in figure 4.3, the attractiveness of the Subspace EnKF lies in the ability to define
a different parameterization for each (group of) ensemble members. The assimilation results will,
therefore, lie in the region of the parameter space spanned by the preimages of the corresponding
parameterization. Suppose these subspaces are known to be disjunct, then collapse is guaranteed
not to occur, regardless of the volume of observations or the number of assimilation steps.

However, since the Kalman equations (2.3.6) are only applicable when all members originate
from the same space, a naive approach would be to partition the ensemble into groups and run a
separate Kalman filter for each of them. Still, the reduced size of each group would increase the
ill-posedness of the problem, and instead, for the Subspace EnKF, the Kalman gain is computed
in such a way as to retain information from the complete ensemble.

To see this, we will turn our attention to the parameterized Kalman update equation (3.1.1), in
which the Kalman gain is computed using the projection vectors, ξ. Hence, the objective function
is expressed in terms of the covariance of the feature space images, however, since we want an
update that takes into account all ensemble members, regardless of parameterization, we have to
reconsider and choose the Kgain that minimizes h in the parameter space. Then, the Subspace
EnKF update equation can be formulated as

ξa
(4.2.2)
===== ξf −∇ξh

chain
===== ξf − (Jξx)

T ∇xh

(4.2.2)
===== ξf + (Jξx)

T Kgain∆d

(4.2.3)

where Jξx [j, k] =
∂x[j]

∂ξ[k]
is the jacobian matrix and we used the chain rule,

∇ξh [k] =
∂h

∂ξ[k]

chain
=====

m∑
j=1

∂h

∂x[j]
· ∂x[j]
∂ξ[k]

∀k = 1, . . . , l (4.2.4)
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What remains is to derive the expression for Jξx. In the case of kernel PCA, this is

Jξx [j, k] =
∂x[j]

∂ξ[k]

(3.5.9)
=====

∂f−1
(
⟨Φ(x),Φ(ej)⟩F

)
∂ξ[k]

chain
===== f−1′

(
⟨Φ(x),Φ(ej)⟩F

)
·
∂ ⟨Φ(x),Φ(ej)⟩F

∂ξ[k]

(3.5.2)
===== f−1′

(
nt∑
i=1

γ[i] · K(ti, ej)

)
·
∂ ⟨Φ(x),Φ(ej)⟩F

∂ξ[k]

(3.4.7)
===== f−1′

(
nt∑
i=1

γ[i] · K(ti, ej)

)
· ⟨vk,Φ(ej)⟩F

(3.5.10)
====== f−1′

(
nt∑
i=1

γ[i] · K(ti, ej)

)
·

(
nt∑
i=1

(αk[i]−αk) · K(ti, ej)

)

= f−1′

(
nt∑
i=1

γ[i] · f (ti[j])

)
·

(
nt∑
i=1

(αk[i]−αk) · f (ti[j])

)

(4.2.5)

where the ti represent the training dataset.
For the kernel (3.5.18), we have

f1...d
∗−1′(s) =

1

d d
√

(s+ 1)d−1
(4.2.6)

For comparison, we will now use the Subspace EnKF to history match the Y-channel reservoir
(see table 2.2) with 5 subspaces and different values for the kernel degree. The results are illustrated
in figure 4.4 and we notice that, for d = 1 (figure 4.4b), we obtain a channelized structure with a
good amount of posterior variability, covering not only the shale-sand borders, but also the channel
body and its possible branches (see the bottom part of the plot).

It is, therefore, surprising that these properties are not inherited for d = 3 (figure 4.4c) and
d = 5 (figure 4.4d). Actually, when comparing the results to the prior ensemble (figure 4.4a), the
update seems to have little to no effect in these cases. While investigating this issue, we identified
that the culprit is the jacobian matrix, Jξx, its norm decreasing drastically as d increases. As a
result, the magnitude of the updates become insignificant for d > 1, leaving the prior ensemble
almost intact. This is not in line with the results obtained by Sarma and W. Chen (2013) and the
only difference is that, in the latter, the authors apply PCA to the ensemble before using the kernel
parameterization, a step which we chose to avoid, in order to better understand the sole effect of
kernel PCA.

Despite this evident drawback, the results obtained for d = 1 are promising, and we will
investigate the Subspace EnKF more thoroughly in chapter 5.
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Figure 4.4: Subspace EnKF results with different degrees of the polynomial kernel function
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Chapter 5

Experiments

This chapter details the experiments carried out during our study and discusses their results.
As can be consulted in table 5.1, we used a multi-core hardware platform running MATLAB and
its Parallel Toolbox. The starting point for our implementation was the data assimilation module,
developed at TNO (Leeuwenburgh 2012), for the MRST reservoir simulator (see https://www.

sintef.no/Projectweb/MRST/ and http://www.sintef.no/Projectweb/MRST/Modules/). We
customized the module code to the application at hand and introduced parallelization for more
efficiency. The KPCA training sets and the initial ensemble for the EnKF were generated using
the snesim algorithm and the image from figure 2.6. Snesim is part of the SGeMS software suite
(http://sgems.sourceforge.net/), which was interfaced with MATLAB using the mGstat
package (http://mgstat.sourceforge.net/).

Item Specification

Processor Intel Core i7 2670QM

# of cores 4

RAM 8 GB, 1333 MHz

Operating system Windows 8 64-bit

MATLAB version R2013a 64-bit

MRST version 2013a

SGeMS version v2.5b

mGstat version 0.991

Table 5.1: Hardware and software setup for the experiments

All results presented in this chapter were obtained from so-called twin-experiments, in which
the ”truth” state is known and used to simulate the observation process. This allows for both a
qualitative and a quantitative comparison between canonical methods (the EnKF) and those newly
introduced in the literature (KPCA-EnS and Subspace EnKF), with the modifications suggested
in the previous chapters.

The exposition is split into three parts. First, we focus on the polynomial kernel PCA paramet-
erization and begin by comparing the results of the fixed-point iterative scheme, used by Sarma,
Durlofsky et al. (2008), and the analytical method introduced in paragraph 3.5.2. We also study
their sensitivity on the size of the training set and of the reservoir grid, and investigate their
behaviour when paired with the logistic transform (paragraph 2.3.4).

Next, we perform a comparison between the performance of the classic EnKF, the KPCA-EnS
with d = 3 and the Subspace EnKF with d = 1 on two channelized reservoirs. Finally, we conduct
sensitivity studies on the Subspace EnKF.
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5.1. Study on the polynomial kernel parameterization

The experiments in this paragraph aim to differentiate between the two preimage solutions for
the polynomial kernel PCA parameterization – the fixed-point iterative scheme, used by Sarma,
Durlofsky et al. (2008), and the analytical method, developed in paragraph 3.5.2. To this end, we
designed the following twin-experiment

..

Algorithm 5.1: Preimage problem experiment
.

Input: A set of n = (nt + ne) channelized fields, generated using snesim.

Output: The fields obtained from the ne test samples after an image-preimage cycle.

..1 Use the first nt samples to train the parameterization (i,e. obtain the transformation
matrix using algorithm 3.2).

..2 Apply the parameterization on the ne test samples, xi, in order to obtain the projection
vectors, ξi = g(xi).

..3 Use the preimage algorithm to reverse the parameterization, i.e. compute xi
′ = g−1(ξi).

..4 Compare xi
′ with the original xi.

5.1.1. Comparison between the analytical and iterative solutions to the preim-
age problem

We begin by showing a few example results, in order to get a feel for the effect of each of the
two preimage solution variants. Table 5.2 details the experimental setup and, as can be seen, we
sampled a set of n = 504 channelized fields with 45 × 45 grid cells. We used the training image
in figure 2.6 without imposing any hard data constraints. nt = 500 samples were used as training
set for the parameterization and, in building W (see algorithm 3.2), we retained the principal
components that account for 90% of the variance (i.e. q = 90 in (3.3.8)).

Item Description

Grid size 45× 45× 1 cells

Snesim search ellipsoid 10× 10× 1 grid cells (2D isotropic)

Target marginal distribution for facies 50% shale, 50% sand

Hard data contraints none

Training set size nt = 500 samples

Parameterization variance threshold q = 90%

Starting solution for the iterative scheme x0 = 0

Iterative scheme stopping threshold 0.1

Table 5.2: Experimental setup for the comparative preimage problem experiment

For the iterative scheme, we used x0 = 0 as initial solution and the following stopping criterion∥∥∥xk − xk−1
∥∥∥
2
≤ 0.1 k ∈ N∗ (5.1.1)

which was chosen after investigating the convergence behaviour (figure 5.1). The main observation
is that the difference, in ∥∥2-norm, between the solutions of successive iterations is decreasing
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exponentially. Also, by comparing plots 5.1a and 5.1b, we see that the number of iterations required
for a converged result seems to increase with the order of the kernel function.

Figure 5.2a shows the results obtained with sample 501 and polynomial kernels of order 3.
We see that both methods produce grid cells with values outside [0, 1]. The issue is most likely
caused by the loss of information during the image-preimage cycle, together with the scope of the
parameterization, which spans the whole real axis. We also notice that the iterative scheme is less
affected, since its output is a linear (but not convex) combination of the training samples, with
normalized coefficients (3.5.5).

As revealed in paragraph 2.3.4, these outliers are inconsistent with the physics and will raise
difficulties in reservoir simulation. But, more importantly for the current experiment, they cause
a shift in colormaps, which impedes our comparison of the preimage results. Therefore, we will
constrain subsequent results to [0, 1], via truncation. Another approach would be to apply the
logistic transform to the samples before we feed them to the parameterization, and paragraph 5.1.4
shows the impact of this alternative.

We now turn to figures 5.2 to 5.5, which illustrate the (truncated) outputs of both methods when
faced with the ne = 4 test samples and different degrees of the polynomial kernel, d ∈ {3, 5, 7, 9}.
We notice that with the increase in d, the analytical solution produces nearly uniform fields, while,
for the iterative scheme, the search ”collapses” onto one of the training samples (figures 5.3c and
5.5c). Therefore, both preimage methods fail for higher values of d.

On the opposite side of the spectrum, when d = 3 the analytical method is generally able
to reproduce the details of the channel shape better than the iterative scheme (for example, the
connection on the right edge of figure 5.4b or the top tail in figure 5.5b).

We now have a general idea of each method’s performance. More in-depth properties will be
revealed during the sensitivity studies following this paragraph.
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Figure 5.1: Fixed-point iterative scheme convergence
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5.1. Study on the polynomial kernel parameterization Chapter 5. Experiments

 
Truth

 

0 0.5 1

 
Analytical

 

−1 0 1 0 0.5 1

Sample 501

 
Iterative

 

(a) Preliminary preimage problem results, d = 3

 
d = 3

 

0 0.5 1

 
d = 5

 

0 0.5 1

 
d = 7

 

0 0.5 1

 
d = 9

 

0 0.5 1

(b) Analytical solution

 
d = 3

 

0 0.5 1

 
d = 5

 

0 0.5 1

 
d = 7

 

0 0.5 1

 
d = 9

 

0 0.5 1

(c) Fixed-point iterative solution

Figure 5.2: Preimage results for sample 501
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Figure 5.3: Preimage results for sample 502
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Figure 5.4: Preimage results for sample 503

Ensemble-Based History Matching for Channelized Petroleum Reservoirs 53



Chapter 5. Experiments 5.1. Study on the polynomial kernel parameterization

Sample 504
 

 

0 0.2 0.4 0.6 0.8 1

(a) Truth

 
d = 3

 

0 0.5 1

 
d = 5

 

0 0.5 1

 
d = 7

 

0 0.5 1

 
d = 9

 

0 0.5 1

(b) Analytical solution

 
d = 3

 

0 0.5 1

 
d = 5

 

0 0.5 1

 
d = 7

 

0 0.5 1

 
d = 9

 

0 0.5 1

(c) Fixed-point iterative solution

Figure 5.5: Preimage results for sample 504
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5.1.2. Sensitivity to the size of the training set

The previous paragraph showed that the preimage results degrade for higher order of the poly-
nomial kernel function. Recall that the dimensionality of the feature space increases with the
factorial of d (3.2.17), hence, more training samples are required in order to obtain a converged
covariance matrix. We will now put this hypothesis to the test and study the effect of the training
set size on preimage results.

The only difference in setup from the previous experiment (table 5.2) is that we change the
number of training samples, nt, from 500, to 1000, 2000 and 4000. As test subjects, we will use
ne = 2 new samples – 505, with a Y-shaped channel (figure 5.6a), and 506, with a more complex
ribbon shape (figure 5.7a).

As illustrated in figure 5.6, both methods seem to benefit from an increased training set. On
the one hand, the results of the analytical method become sharper and the channel structure is
reproduced even for higher kernel degrees (see d = 7 in figure 5.6f). On the other hand, the iterative
scheme gains robustness in avoiding local optima (compare figures 5.6c and 5.6e to figure 5.6g) and,
with nt = 4000, it is able to correctly identify the shape of sample 505, even when d = 9.

Sample 506 raises more difficulty due to its ribbon channel, which is not well represented in
the training set. This is reflected in figures 5.7c, 5.7e and 5.7g, where, regardless of the amount
of training samples, the iterative scheme has difficulties in reconstructing the correct shape. In
contrast, the analytical method produces a reasonable output for d = 3, even with nt at 500
(figure 5.7b), and, after increasing the size of the training set, we see that the channel features
start to appear even when d = 7 and 9 (figure 5.7f).

In conclusion, we now have experimental evidence that the poor results obtained with higher
order kernels are due to an unconverged covariance matrix in the feature space. Still, the rate at
which we have to increase the size of the training set in order to obtain better performance seems
to be exponential in d. Also, we observed that an increase in the size of the training set benefits
the analytical solution more than the iterative. This can be due the fact that the dimension of the
search space increases with nt, making it more likely to arrive in a local optimum.

5.1.3. Sensitivity to the size of the reservoir grid

Another aspect to consider is the size of the reservoir grid, which, as per equation (3.2.17), also
contributes to the dimensionality of the polynomial feature space. For this purpose, we have used
snesim to generate three new sets with n = 1501 samples and grid sizes of 65 × 65 (figure 5.8),
100 × 100 (figure 5.9) and 200 × 200 (figure 5.10) cells, respectively. The first nt = 1500 samples
from each set were used to train the parameterizations, and the last ne = 1, for testing.

The results are presented in figures 5.8 to 5.10 and we notice that, regardless of grid size, the best
results were obtained for lower kernel degrees. Indeed, when d = 3 or d = 5, the channel boundaries
are clearly distinguishable – more so for the analytical method than the iterative scheme (compare,
for example, figure 5.8b to 5.8c). As d increases, however, the outputs of both methods tend to
become uniform, to the point where the channels can hardly be separated from the background
(figures 5.9 and 5.10 for d = 9).

If we compare figures 5.8 and 5.10, we see that, while a higher grid size does seem to reduce
the sharpness of the preimages produced by both methods, the impact is not dramatic. This is a
promising result in the prospect of applying the parameterization (albeit with a low value of d) to
large-scale reservoirs (∼ 106 grid cells).
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Figure 5.6: Preimage results for sample 505 with different training set sizes
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Figure 5.7: Preimage results for sample 506 with different training set sizes
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Figure 5.8: Preimage results for a 65× 65 reservoir grid
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Sample 100
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Figure 5.9: Preimage results for a 100× 100 reservoir grid
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Figure 5.10: Preimage results for a 200× 200 reservoir grid
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5.1.4. Effect of the logistic transform

This paragraph describes the final experiment performed on the parameterization, before in-
corporating it into the data assimilation cycle. Specifically, we studied the effect of the logistic
transform, as an alternative to truncation in constraining the preimage results to the interval [0, 1].
This implies evaluating the logit function (2.3.46) in each reservoir grid cell, before feeding the
samples to the parameterization, and, in turn, applying the inverse (2.3.47) on the outputs.

For comparison, we re-ran some of the previous experiments with their corresponding setups,
and the results are illustrated in figure 5.11. We observe, straight away, that the marginal distribu-
tion in all results are, now, nearly binary. This seems to be a side effect of the logistic transform,
which acts, in essence, similar to a thresholding filter, suppressing the intermediate values from
[0, 1] and, thus, making the preimages consistent with the truth.

Figures 5.11a to 5.11d show the outputs for samples 502 and 503 and we notice that the results
of the analytical solution seem to ”erode” as the order increases, while the iterative scheme attains
local optima (that sometimes differ from those obtained with truncation; compare, for example,
figures 5.3c and 5.11b). The behaviour is the same in figures 5.11e to 5.11h, where we used increased
training set sizes, nt = 1000 for sample 505 and nt = 2000 for sample 506, respectively (see the
corresponding plots in figures 5.6 and 5.7).

Finally, in figures 5.11i to 5.11l we give the outputs for higher grid sizes (samples 100 and
200). Notice that, in this case, the ”filtering” behaviour eliminates a good number of important
features from the channel structure (see the corresponding figures 5.9 and 5.10). Therefore, unlike
the truncated version we studied earlier, the logistic polynomial kernel parameterization may prove
problematic in applications with large-scale reservoirs. On the bright side, the experiments in
paragraph 5.1.2 suggest that a higher number of training samples may help in improving the
accuracy of the results. However, as we will see in the following, this comes at the cost of more
computational resources.

5.1.5. Computational expense

This paragraph shows a benchmark of the computational time necessary to train and apply
the polynomial kernel parameterization. The measurements were done by setting the affinity of
MATLAB to a single microprocessor core and performing tests on sets of 1000 samples. As before,
we vary the size of the training set and reservoir grid.

The values are given in tables 5.3 and 5.4 and plotted in figures 5.12 and 5.13 respectively.
Right from the get-go, we notice that the training times are relatively similar for all methods (left-
hand plots), while for the run times there is a difference of an order of magnitude, favouring the
analytical method over the iterative (right-hand plots).

Variations in nt seem to have a superlinear impact on the training time (table 5.3). This is
because nt gives the size of the kernel matrix and the complexity of the SVD algorithm (see Golub
and van Loan 2012). On the othe hand, in terms of run time, nt only displays linear influence,
however we notice a difference in slope between the four methods. This is most likely caused by
two factors:

• The first is the nature of the fixed-point scheme, which requires multiple iterations before a
converged result is obtained. The analytical method is at advantage here, since, under the
same circumstances, it always performs the same amount of computational work, roughly
equivalent to one fixed-point iteration.

• The second is the logistic transform, which, besides the flat amount of overhead induced by
evaluating the logit function and its inverse for each sample, seems to also have a negative
impact on the iterative scheme’s rate of convergence (table 5.3).

Increasing the grid size has a linear influence on both training and run times (table 5.4). By
comparing the right plots of figures 5.12 and 5.13 we also notice an impact on the convergence rate
of the logistic iterative scheme, which is even more significant than that of nt.
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(h) Logistic fixed-point iterative solution for sample 506 with training set size 2000

Ensemble-Based History Matching for Channelized Petroleum Reservoirs 65



Chapter 5. Experiments 5.1. Study on the polynomial kernel parameterization

(i) Logistic analytical solution for sample 100

(j) Logistic fixed-point iterative solution for sample 100

(k) Logistic analytical solution for sample 200

(l) Logistic fixed-point iterative solution for sample 200

Figure 5.11: Effect of the logistic transform on the parameterization
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Figure 5.12: Comparison of computational times with different training set sizes; left: training
time; right: run time for 1000 samples
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Figure 5.13: Comparison of computational times with different grid sizes; left: training time; right:
run time for 1000 samples
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Training
set size

Training
time

Run
time

500 0.3442 s 31.7001 s

1000 1.7412 s 61.8026 s

2000 10.5670 s 128.4134 s

4000 68.5852 s 247.3553 s

8000 465.8573 s 489.8302 s

(a) Fixed-point iterative solution

Training
set size

Training
time

Run
time

500 0.5192 s 59.6966 s

1000 2.0877 s 101.3104 s

2000 10.8576 s 179.4641 s

4000 65.4415 s 348.8961 s

8000 511.1044 s 741.5589 s

(b) Logistic fixed-point iterative solution

Training
set size

Training
time

Run
time

500 0.3649 s 1.2238 s

1000 1.6637 s 1.6829 s

2000 9.8691 s 2.6152 s

4000 63.4499 s 5.0124 s

8000 443.6609 s 12.0598 s

(c) Analytical solution

Training
set size

Training
time

Run
time

500 0.5280 s 1.4352 s

1000 2.1894 s 1.9439 s

2000 11.9768 s 3.0832 s

4000 69.7542 s 5.9801 s

8000 468.6185 s 14.5627 s

(d) Logistic analytical solution

Table 5.3: Computational times when using different training set sizes

Grid size
Training
time

Run
time

45× 45 0.3442 s 31.7001 s

65× 65 0.4914 s 49.6051 s

100× 100 0.7844 s 74.6686 s

200× 200 2.4634 s 173.0273 s

(a) Fixed-point iterative solution

Grid size
Training
time

Run
time

45× 45 0.5192 s 59.6966 s

65× 65 1.0116 s 229.0619 s

100× 100 1.8292 s 385.6604 s

200× 200 6.5193 s 740.8032 s

(b) Logistic fixed-point iterative solution

Grid size
Training
time

Run
time

45× 45 0.3649 s 1.2238 s

65× 65 0.5816 s 2.5042 s

100× 100 1.0908 s 5.8159 s

200× 200 3.8302 s 23.7782 s

(c) Analytical solution

Grid size
Training
time

Run
time

45× 45 0.5280 s 1.4352 s

65× 65 0.8940 s 2.8523 s

100× 100 1.7973 s 6.5384 s

200× 200 6.5026 s 26.5016 s

(d) Logistic analytical solution

Table 5.4: Computational times when using different grid sizes
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In conclusion, in terms of computational times, the analytical solution, with or without the
logistic transform, has a clear edge over the iterative scheme, on all fronts.

The main reason behind conducting the experiments in this section was to assess the impact of
the coefficients that differentiate the kernel (3.2.16) used by Sarma, Durlofsky et al. (2008) and the
inhomogeneous kernel (3.5.18), proposed as substitute in this report. The results presented above
allow us, not only to conclude that their effect is not detrimental, but also that the analytical
solution produces sharper results and is more efficient than the iterative scheme.

Therefore, the data assimilation experiments to be presented in the remainder of this report all
use analytical preimages in their kernel parameterizations.

5.2. Comparative history matching results

The experiments in this paragraph aim to study the behaviour of the different data assimilation
algorithms, discussed in the previous chapters of the report. More specifically, we will match the
classic EnKF against the Iterative KPCA-EnS (kernel degree 3) and the Subspace EnKF (kernel
degree 1) on two channelized reservoirs.

However, before moving on, we will first provide an overview of the data flow in the history
matching framework, depicted in figure 5.14.

  permi ϵ [a,b]m

  poroi ϵ [c,d]m xi ϵ [0,1]m

SIMULATION

xi ϵ IRm ξi ϵ IRl
ξi ϵ IRl

ASSIMILATIONNormalization Adaptation Parameterization

Figure 5.14: Data flow in the history matching framework

Recall from paragraph 2.3.4, that we chose to reduce the size of the state vector by replacing
permeability and porosity with a value in [0, 1], which represents the likelihood that the respective
grid cell is in a channel and is done via normalization. After that we use an adaptation step,
whose purpose is to constrain the assimilation results to their feasible ranges – after the discussion
in paragraph 2.3.4, we decided that the logistic transform is preferable for this purpose, since
truncation has a detrimental impact on the ensemble error covariance. Finally, before entering
the assimilation cycle, the state vector undergoes parameterization, which stands to address the
EnKF’s limitation in handling higher-order statistical moments (see chapter 3). Also note, from
the experiments in paragraph 5.1.4, that we need to use a sufficient number of training samples to
counteract the thresholding effect of logit on the KPCA preimages.

With these in mind, we are now ready to introduce the first experiment.

5.2.1. The Curved reservoir experiment

The field used in this experiment is shown in figure 5.15. Notice that there is one injector and
four producer wells, most of which are placed inside the channel. The exception is Prod3, which we
expect not to have a significant contribution in the field’s production data, since the background
shale (table 2.1) is close to impermeable. Even so, its position introduces an additional constraint
in the data assimilation cycle and it is interesting to see how this translates into the results.

The challenge, here, is to determine the shape of the lower curved channel, which may prove
difficult, given the considerable distance between Inj1 and Prod1. As we have seen in the plots
from paragraph 2.1, a major event in channelized reservoir production is the water breakthrough
and, in the case of Prod1, it will occur in the later stages of the data assimilation cycle. This is also
the reason for the increase in injector BHP and the longer observation and assimilation intervals
in the experimental setup (table 5.5), when compared to that of the previously studied Y-channel
reservoir (tables 2.2 and 3.1).
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Prod2

Prod4

Prod3

Inj1

Prod1

Figure 5.15: The Curved reservoir with well locations

As before, we imposed hard data constraints at the well locations and this can be clearly seen
in the prior mean and variability (figure 5.16a). We also notice that these constraints, together
with the proximity between Inj1, Prod2 and Prod4, makes the upper part of the channel appear
frequently among the initial ensemble members. This is also reflected in the oil rate registered at
the producers (figure 5.16b), where we see the lack of spread in production response for Prod2 and
Prod4.

As expected, Prod3 has insignificant oil rate values, due to its position in the background
shale, and, given the hard data constraints, the situation is unlikely to change during assimilation.
However, the spread in its production response will still be affected by the update, allowing us to
detect a potential ensemble collapse.

Finally, we see that Prod1 registers more spread than the other wells due to the higher uncer-
tainty regarding the surrounding channel’s shape. We would also like to point out that the oil rate
registered by running the simulation with the ensemble mean (the blue line) is outside the range of
the ensemble (the grey lines). This is most likely due to the discrepancy in permeability between
the channel and the background – after averaging, some grid cells, indicated as impermeable by
the majority of the ensemble members, might become slightly permeable in the mean, and this can
have a dramatic impact on reservoir fluid flow. Verlaan and Heemink (2001) developed this remark
into a measure for model nonlinearity.

EnKF

The results of the EnKF on this reservoir are shown in figure 5.17a, where we see that the
general shape of the channel is correctly identified, albeit not its curvature. However, there is a
good amount of posterior variability, which leaves room for possible adjustments.

The oil production plots (figure 5.17b) show an improvement over the prior, in the sense that
the response of the members was ”pulled” towards the truth. This is particularly evident for Prod1,
for which the truth is now well within the range of the ensemble. The same plot also reveals that,
due to high model nonlinearity, the posterior mean might not be the best estimator for the true
state.
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Item Description

Grid size 45× 45× 1 cells

Physical size of 1 grid cell 15m× 15m× 2m

Snesim search ellipsoid 10× 10× 1 grid cells (2D isotropic)

Target marginal distribution for facies 50% shale, 50% sand

Hard data constraints facies at well locations

Ensemble size 100 members

Initial reservoir pressure p0 = 100 bars

Initial reservoir saturation 20% water, 80% oil (20% residual oil)

Injector well control BHP = 2.5 · p0
Producer well control BHP = p0

Observed variables water and oil rates in wells

Observation uncertainty r = max(10% ·measured value, 0.1)

Observation interval 6 months

Assimilation interval 12 months

Simulation time 108 months

Training set size nt = 900 samples (per subspace)

Kernel degree
d = 3 for Iterative KPCA-EnS
d = 1 for Subspace EnKF

Parameterization variance threshold q = 90%

Adaptation method logit

Table 5.5: Setup for the Curved reservoir experiment

Iterative KPCA-EnS

The KPCA Ensemble Smoother with degree 3 finds a similar channel shape (figure 5.18a) as
the one obtained with the EnKF. Also, by accounting for higher order moments, the integrity of
the channel structure and the sharpness of its boundary is well preserved. However, the curvature
is not well represented in the mean and, this time, the ensemble variability in the lower half of the
field is not sufficient to permit significant deviations from the suggested shape.

This is confirmed by the significantly reduced spread in the production plot for Prod3 (fig-
ure 5.18b). We also notice the development of an offset between the ensemble and the truth in the
oil rate of Prod1. This leads us to believe that an additional increase in the number of updates
may, eventually, lead to collapse, with the posterior ensemble drifting even further away from the
truth.

Subspace EnKF

The Subspace EnKF, with 5 subspaces and d = 1, seems to combine the advantages of the
previous two algorithms. Indeed, from figure 5.19a, we see that its output has a smooth channel
structure, while maintaining the sharpness of the boundary between shale and sand. Also, the
ensemble variability is sufficient to account for the imperfections in shape(for example, the newly-
appeared branch in the lower channel segment) and curvature in the posterior mean.

Moreover, the oil rate plots (figure 5.19b) exhibit a similar behaviour to that obtained with the
EnKF (figure 5.17b) – for Prod1, the production response of the ensemble is centered around the
truth and sufficient spread is maintained for all wells.
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Figure 5.16: Prior information for the Curved reservoir experiment
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Figure 5.17: Result of the EnKF on the Curved reservoir
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Figure 5.18: Result of the Iterative KPCA-EnS on the Curved reservoir
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Figure 5.19: Result of the Subspace EnKF with 5 subspaces on the Curved reservoir
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The conclusion after this experiment is that the Subspace EnKF is a viable alternative for history
matching, despite the strong assumptions in its theoretical background and apparent inability to
operate directly with higher-degree kernels. Also, the classic EnKF performs remarkably well and
we were surprised by the variability in its posterior ensemble, which was not affected significantly, in
this particular case, by the model nonlinearity. Finally, from a theoretical perspective, the Iterative
KPCA-EnS is attractive for its handling of high order statistical moments, however, even with the
smoother formulation, its results seem to be plagued by ensemble collapse.

5.2.2. The Ribbon reservoir experiment

Prod1

Prod5

Prod2

Inj2

Inj1

Prod3

Prod4

Figure 5.20: The Ribbon reservoir with well locations

We now turn towards the Ribbon reservoir, which was derived from sample 506 (figure 5.7a),
and populated with two injectors and five producers, one of which (Prod2) is placed in the central
shale enclave (see figure 5.20).

As mentioned before, this is an atypical channel shape and, with it, we aim to design a stress-
test for the three data assimilation algorithms under review. The experiment setup is detailed in
table 5.6, and the most important remark is that we have dropped the hard data constraints, both
for the ensemble members and the parameterization training samples.

Consequently, the prior ensemble mean is nearly uniform and there is high variability in all grid
blocks (figure 5.21a). Therefore, it may seem surprising that the production plots (figure 5.21b)
show less spread than the ones obtained using conditioned samples (figure 5.16b). However, in
this type of reservoirs, the probability that two cells are connected by a channel is lower than the
converse and, in order to operate, a producer well needs a connection to at least one injector. The
plots also reveal that none of the members has a connection between Prod2 and either injector.
This was not deliberate, but, fortunately, it is in line with the truth.

EnKF

The posterior mean produced by the EnKF (figure 5.22a) does have some resemblance to the
truth, however, instead of channels, its structure is composed mainly of disconnected permeable
”blobs”. Also, the ensemble variability, which was very high in the prior, is mostly lost after the
assimilation, indicating collapse.
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Item Description

Grid size 45× 45× 1 cells

Physical size of 1 grid cell 15m× 15m× 2m

Snesim search ellipsoid 10× 10× 1 grid cells (2D isotropic)

Target marginal distribution for facies 50% shale, 50% sand

Hard data constraints none

Ensemble size 100 members

Initial reservoir pressure p0 = 100 bars

Initial reservoir saturation 20% water, 80% oil (20% residual oil)

Injector well control BHP = 1.5 · p0

Producer well control BHP = p0

Observed variables water and oil rates in wells

Observation uncertainty r = max(10% ·measured value, 0.1)

Observation interval 1 month

Assimilation interval 4 months

Simulation time 34 months

Training set size nt = 1500 samples (per subspace)

Kernel degree
d = 3 for Iterative KPCA-EnS
d = 1 for Subspace EnKF

Parameterization variance threshold q = 90%

Adaptation method logit

Table 5.6: Setup for the Ribbon reservoir experiment

If we examine the production plots (figure 5.22b), we see that, apart from Prod3, which is the
well farthest away from the injectors, the spread has been greatly reduced. As a result, the water
breakthrough is not well captured by the ensemble (especially for Prod1 and Prod4).

Iterative KPCA-EnS

The Ribbon reservoir proves to be a challenge also for the KPCA Ensemble Smoother with
d = 3. The posterior ensemble is collapsed, this time on a local optimum (figure 5.23a), in which
the reservoir is split into two parallel channels – the upper one connects Inj1 to Prod1 and Prod2,
while the lower one connects Inj2 to Prod3 and nearly misses Prod5.

The production plots (figure 5.23b) show almost no spread and the truth is outside the ensemble
range for three out of the five producer wells.

Subspace EnKF

The posterior mean obtained using the Subspace EnKF with 5 subspaces and d = 1 (figure 5.24a)
seems to be a smoothed-out version of the EnKF result (figure 5.22a). As such, it does bear
similarity to the truth and we also see that the variability is better preserved and concentrated in
the central area. This is somewhat unfortunate; for example, the algorithm is certain about the
existence of the upper channel, which is, in fact, not present in the truth.

In order to assess the impact this has on production, we turn to figure 5.24b, which shows an
obvious increase in spread, when compared to the corresponding plot from the EnKF (figure 5.22b).
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The truth is captured in the ensemble range for almost all producer wells. The only exception is
Prod4, for which none of the members register water breakthrough, in contrast to the truth, for
which this does occur at roughly 750 days. In order to provide an explanation, we turn back to the
true permeability field (figure 5.24a), where we see that Prod4 (upper-left) is connected to both
injectors, with Inj1 being the closest one. However, in the posterior mean, the channel between
the two is severed and the production from Prod4 is, now, mainly due to the more distant Inj2.

In conclusion, the Ribbon reservoir poses difficulties for all three data assimilation algorithms.
The Iterative KPCA-EnS performs the worst due to obvious ensemble collapse. Between the
remaining two, we prefer the Subspace EnKF, which produces results with channel-like features,
while retaining some of the initial variability.

78 Matei Ţene
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Figure 5.21: Prior information for the Ribbon reservoir experiment
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Figure 5.22: Result of the EnKF on the Ribbon reservoir

80 Matei Ţene
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Figure 5.23: Result of the Iterative KPCA-EnS on the Ribbon reservoir
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Figure 5.24: Result of the Subspace EnKF with 5 subspaces on the Ribbon reservoir
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5.3. Study on the Subspace EnKF

Encouraged by its performance in the previous data assimilation experiments, we dedicate the
remainder of the chapter to the Subspace EnKF, in order to provide answers to the last two research
topics formulated in paragraph 1.2.

5.3.1. Sensitivity to the number of subspaces

During the Ribbon reservoir experiment, we used a set of 7500 unconstrained channelized reser-
voir samples to train the parameterizations of the Subspace EnKF (1500 samples for each of the 5
subspaces). Since we want to assess the impact of the number of subspaces on assimilation results,
we will divide the same set, evenly, for the training of 2, 10, 25 and, finally, 50 subspaces. In all
other aspects, the setup is the same as described in table 5.6, including the 100 ensemble members,
which, just like the training samples, will be equally split across the subspaces.

2-Subspace EnKF

Since we decided to partition the whole set of samples evenly, the parameterizations of 2 sub-
spaces will be slightly over-trained (3750 samples for each), in comparison to the usual setup.
Nevertheless, the training set, together with the ensemble, contributes to the volume of prior in-
formation available to the (parameterized) data assimilation scheme and, for the validity of our
argument, we need to keep it intact.

The results are given in figure 5.25a and we recognize, yet again, that the structure of the
posterior mean bears some resemblance to the truth. However, the channels are distorted and the
ensemble variability seems to be diminished slightly, in comparison to figure 5.24a.

After analyzing the production plots (figure 5.25b), we see that, this time, the water break-
through in both Prod1 and Prod4 is incorrectly represented by the ensemble. We also notice an
overall reduction in spread (see, for example, Prod4 and its corresponding plot in figure 5.25b).

In conclusion, a smaller number of subspaces seems to result in a reduction of ensemble variab-
ility, in terms of both geological structure and production.

10-Subspace EnKF

With 10 subspaces, the result (figure 5.26a) seems to deviate slightly from the general shape of
the Ribbon reservoir. Most notably, the channel connecting Prod4 to Inj2 is severed in all members
(see variability) and this is reflected in its production plot (figure 5.26b), where despite the high
spread, the water breakthrough in the ensemble is delayed considerably (∼500 days) from that of
the truth.

On the positive side, the increased number of subspaces seems to enhance the overall spread in
ensemble oil production, when compared to the previous cases (figures 5.25b and 5.24b). In terms
of geological structure, the amount of variability seems to be comparable to that obtained with 5
subspaces (figure 5.24a).

25-Subspace EnKF

25 subspaces takes us to the opposite side of the spectrum, where the parameterizations are
under-trained (300 samples for each). Nevertheless, the posterior mean is a fair representation of
the truth, especially when paired with the variability (figure 5.27a), significantly increased when
compared to the previous results.

The improvement is also visible in the production plots (figure 5.27b), where we notice that, this
time, the ensemble has less delay in representing the water breakthrough in Prod1 and Prod4. In
terms of production variability, it is surprising to see that the present result has, overall, surpassed
the prior ensemble (figure 5.21b). An explanation can be that, after the Kalman updates, the
permeability may attain intermediate values between that of the two facies, thus increasing the
spectrum of possible production trends.
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50-Subspace EnKF

Note that, with 50 subspaces, each parameterization only has 150 training samples at its dis-
posal. We see that this has an impact on the posterior mean (figure 5.28a), in the sense that the
features lose curvature and, instead, tend to become parallel to each other (due to the reduced
number of kernel principal components). Despite this, the production responses register a further
increase in spread (figure 5.28b) and the ensemble captures the truth appropriately in all wells.

In conclusion, the experiments show that the number of subspaces has a positive influence
on the ensemble spread, both in terms of rock properties and production response. For future
applications, it might even be beneficial to have a separate subspace for each ensemble.

Another aspect to consider is the number of training samples. Although our results are prom-
ising even in degenerate cases (see the previous experiment, with 50 subspaces), we expect that the
structure of the estimated geological features will suffer if the parameterizations are insufficiently
trained.
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Figure 5.25: Result of the Subspace EnKF with 2 subspaces on the Ribbon reservoir
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Figure 5.26: Result of the Subspace EnKF with 10 subspaces on the Ribbon reservoir
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Figure 5.27: Result of the Subspace EnKF with 25 subspaces on the Ribbon reservoir
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Figure 5.28: Result of the Subspace EnKF with 50 subspaces on the Ribbon reservoir
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5.3.2. Sensitivity to training set clustering

One of the main goals of this study was to develop a way to build the parameterizations which
takes into account the prior knowledge about the geological structure of our reservoir. To this end,
we propose to use clustering when determining the training sets for the subspaces, in the hope
that the more specialized parameterizations, thus obtained, will amount to a greater variability in
the posterior ensemble. A clear advantage is that this approach is not restricted to channelized
reservoirs and can be generally applied when history matching with the Subspace EnKF.

With this in mind, the steps of the experiments in this paragraph are oultined in the following

..

Algorithm 5.2: Training set clustering experiment
.

Input: A set of n = nclust + nt reservoir samples, t1, . . . , tn ∈ Rm

k, the number of desired subspaces.

Output: The partition of the nt samples into k training sets for the subspace
parameterizations.

..1 Use the trailing nclust samples to train a separate kernel PCA parameterization, gclust (for
example, with degree d = 3).

..2 Apply this parameterization to the leading nt samples, ti, in order to obtain the projection
vectors, ξi = gclust(xi).

..3 Use the K-means clustering algorithm (see Forgy 1965; and Lloyd 1982) to partition the
ξi into k groups.

..4 Use the partition indices to split the original samples, ti, i = 1, . . . , nt, into k training sets.

where we chose nt = 7500, just as before, nclust = 1400 and, for efficiency reasons, we used the
Matlab implementation by M. Chen (2012) instead of the built-in kmeans function.

In other respects, the experiments are identical to those performed in the previous paragraph.

2-Subspace EnKF

In this case, the K-means clustering algorithm partitioned the training set in {2058, 5442}
samples. By comparing the results, given in figure 5.29a, with those obtained without clustering
(figure 5.25a) we notice a slightly greater variability. At the same time, the production plots
(figure 5.29b) exhibit a significant increase in spread over all wells (figure 5.25b).

10-Subspace EnKF

For 10 subspaces, K-means split the training samples roughly as {2500, 9 × 550}. The res-
ults (figure 5.30a) reveal a surprising increase in ensemble variability over the former experiment
(figure 5.26a) and, also, the posterior mean is a better reflection of the truth. However, on the
production plot side (figure 5.30b) the differences in spread are not that dramatic, in this case.

25-Subspace EnKF

The trend carries on over to 25 subspaces. As before, one of the subspaces was assigned more
training samples (∼ 1200) than its peers (∼ 260). The posterior variability (figure 5.31a) is much
greater than in figure 5.27a and, also, more uniformly distributed over the reservoir. Finally, the
production plots (figure 5.31b) all capture the truth in the spread of the ensemble.
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50-Subspace EnKF

The most notable output was obtained with 50 subspaces. We see (figure 5.32a) that the pos-
terior mean is surprisingly similar to the truth and is accompanied by a good amount of variability.
The production plots (figure 5.32b) exhibit, roughly, the same amount of spread as in the results
without clustering (figure 5.28b), with the exception of Prod4, for which the truth breaks outside
of the ensemble range for the first part of the simulation (0-600 days).

This experiment shows that the Subspace EnKF generally performs better in conjunction with
training set clustering. Some surprising results were obtained with 50 subspaces, where a large
portion of the prior variability was maintained, while, at the same time, providing an informative
posterior mean, with features similar to the true geological structure.
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Figure 5.29: Result of the Subspace EnKF with K-means clustering over 2 subspaces on the Ribbon
reservoir
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Figure 5.30: Result of the Subspace EnKF with K-means clustering over 10 subspaces on the Ribbon
reservoir
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Figure 5.31: Result of the Subspace EnKF with K-means clustering over 25 subspaces on the Ribbon
reservoir
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Figure 5.32: Result of the Subspace EnKF with K-means clustering over 50 subspaces on the Ribbon
reservoir
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Chapter 6

Conclusions

This chapter provides a summary of the developments in the present study, along with con-
clusions on the experimental results. We also make recommendations, in the hope that they will
be useful when using the discussed algorithms in real-world application, and, finally, we end our
presentation by sketching possible directions for further research.

Without further ado,

6.1. Summary of contributions

..1 We proposed a new approach for using data assimilation to estimate the geological structure
of reservoirs composed of two facies. The permeability and porosity in each grid cell were
replaced by a single value in [0, 1], describing the likelihood of having one rock type, in
detriment of the other (paragraphs 2.3.1 and 2.3.4). This also implies a reduction in state
vector size, which is beneficial for the convergence of the scheme.

..2 We studied the problem of updating state variables with bounded feasible ranges. The first
impulse was to use truncation, however the twin-experiment from paragraph 2.3.4 revealed
its detrimental impact on the ensemble covariance, which led to a significant reduction in
posterior variability. As an alternative, we proposed the logistic transform, for which, the
resulting mean had a much closer resemblance to the truth and was accompanied by a better
propagation of uncertainty.

..3 We developed an analytical solution to the polynomial kernel PCA preimage problem. The
sensitivity studies from paragraph 5.1 show that the new method has a similar, and, in some
cases, better performance than the fixed-point iterative scheme suggested by the literature.
More specifically, it is not susceptible to local optima and the channel features are better
preserved when varying the training set size or the dimension of the reservoir grid. These
benefits also come at a dramatically lower expense in computational resources.

..4 We paired the analytical kernel PCA parameterization with the Iterative Ensemble Smoother,
proposed by Emerick and Reynolds (2012). The results from paragraph 4.1 show an increase
in ensemble variability, in comparison to the performance of the KPCA-EnKF (Sarma and
W. Chen 2009).

..5 We also applied said parameterization to the Subspace EnKF (Sarma and W. Chen 2013) and,
despite obtaining usable results only for kernel degree 1, the stress-test from paragraph 5.3.1
revealed that the new scheme has a good ability in tackling ensemble collapse. Moreover, the
spread in the ensemble’s production response seems to increase with the number of subspaces.

..6 We proposed training set clustering as a general approach to adapt the subspace parameter-
izations to the prior geological information. The experiments in paragraph 5.3.2 show that
this results in further spread in posterior production response, when compared to the case
without clustering. In particular, we obtained very promising results with the 50-Subspace
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EnKF (figure 5.32), in which, the posterior mean shows a similar channel structure as the
true field, while at the same time, a large part of the initial variability is preserved.

..7 We added new functionality to the MRST data assimilation module developed at TNO
(Leeuwenburgh 2012), accommodating all the algorithms mentioned in this report and al-
lowing for parallel execution, in order to benefit from multi-core hardware.

..8 Finally, we used this software framework to perform a comparison between the classic EnKF,
the KPCA-EnS and the Subspace EnKF on two channelized reservoir examples (see para-
graph 5.2). The results show that, in terms of avoiding ensemble collapse, the Subspace EnKF
has an edge over EnKF, while the KPCA-EnS is plagued by the danger of getting stuck in
local optima.

6.2. Recommendations

We would like to formulate the following of recommendations, with the hope that they will
be useful for future research endeavours or attempts to use the studied algorithms in real-world
applications:

• For polynomial kernel PCA parameterizations with odd degree, it is generally preferable to
use the proposed analytical preimage solution (paragraph 3.5.2) over approximate schemes,
such as fixed-point iterations.

• Our experiments showed that the KPCA parameterization scales well with the increase in
reservoir grid size (paragraph 5.1.3). Still, after a certain point, more training samples might
become necessary, in order to obtain usable preimage results. This is particularly evident
when KPCA is used in conjunction with the logistic transform (paragraph 5.1.4). It is, then,
important to note that the computational expense of the training phase grows exponentially
with the number of samples (paragraph 5.1.5).

• When assimilating observations with different ranges, we recommend incorporating the res-
caling procedure described in (Emerick and Reynolds 2012) into the Kalman update equation
(see paragraph 2.3.3).

• If the state variables have prescribed bounds, we suggest normalizing them to [0, 1] and
then applying the logistic transform, before entering the assimilation cycle, as described in
paragraph 2.3.4. This ensures that the results will be in the feasible range, with little impact
on the performance of the EnKF and its derivatives.

• When using the Subspace EnKF, it is beneficial to choose the number of subspaces as high
as possible. However, one also needs to consider the amount of training samples available
for each of the subspace parameterizations. Theoretically, it is recommended for this to be
sufficiently high, such that the information loss during the image-preimage cycle is at an
acceptable level. That being said, though, we did achieve good results even in degenerate
cases (paragraph 5.3.1).

• The Subspace EnKF seems to benefit from training set clustering (paragraph 5.3.2). This
provides a way to accommodate the parameterizations to the prior geological information and
can be generally applied, without significant computational overhead.

• Even though the KPCA-EnS frequently results in ensemble collapse, it should not be discarded
from the start, since its ability to handle high-order moments is not shared by the Subspace
EnKF (due to its limitation to kernel degree 1). We recommend, if feasible, to use both
methods, alongside the classic EnKF, and discuss the results with the expert.
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6.3. Proposals for future research

The subject of geological parameterizations seems to be an area of active research with many
open threads to follow. During the various stages of the present study, we identified limitations
and drawbacks of the various data assimilation algorithms, or directions that we simply lacked the
logistical means to follow. We list them below, with the hope that they might stir interest in future
research endeavours.

• What is the effect of the polynomial KPCA parameterization, when used in conjunction with
data assimilation algorithms, on cases with continuous state variables? Consult the work by
C. Mariş (TU Delft) on this topic.

• Is it possible to extend the formulation of the likelihood state vector, presented in para-
graph 2.3.1 and 2.3.4, to cases with more than 2 facies? See the related work by Sebacher
et al. (2013).

• Do the assimilation results benefit from using polynomial chaos expansions to approximate
the distribution of the feature space images induced by KPCA? For more information, see (Ma
and Zabaras 2011), where the authors generalize the results obtained by (Sarma, Durlofsky
et al. 2008).

• What is the difference in the effect of the Kalman update equation and the steepest descent
with step 1 on the state vector, i.e. to what extent does conjecture 4.1 hold? See (Sarma and
W. Chen 2013), where this was used to develop the Subspace EnKF, and (Sayed and Kailath
1994), for a possibly related result.

• Is there a way to use higher-order KPCA directly in the Subspace EnKF framework? The
results form Sarma and W. Chen (2013) seem to suggest so, however, the experiments in the
present report show surprisingly slow convergence. Can this be an advantage in situations
with a large volume of observations (such as seismic data)?

• How do the data assimilation algorithms studied in this report perform (in terms of both
performance and computational expense), when faced with realistic 3D reservoirs?
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Appendix A

Background information concerning
datasets

A dataset is a collection of equal-length vectors, x1, . . .xn ∈ Rm, which satisfy a set of common
properties. Statistically, they can be seen as samples from the joint distribution of m random
variables. Finally, from a geometric point of view, they describe the Cartesian coordinates of a
cloud of points in an m-dimensional space. But, regardless of their abstract interpretation, the
components of these vectors are quantities with physical meaning and we are interested to identify
and study their characteristics.

The following paragraphs give a brief revision of the basic mathematical concepts related to
datasets. And, since formulas are sometimes more compact when expressed in matrix form, we
define the m× n matrix X as

X[:, i] = xi ∀i = 1, . . . , n (A.0.1)

A.1. Statistical properties

Important aspects of a dataset’s structure can be described through its first and second order
moments, mean and covariance, defined below.

..

Definition A.1: Sample mean
.
(Johnson and Wichern 2002) Let x1, . . . ,xn ∈ Rm be a dataset with n members. Then the
sample mean is the vector

x =
1

n

n∑
i=1

xi = X1n (A.1.1)

Before we move on, we need to investigate a closely related concept. Mean-centering is a
transformation of a dataset, such that its mean coincides with the origin. The result is referred to
as the mean-centered dataset and is obtained by subtracting the mean from each of the original
datapoints,

∼
xi = xi − x ∀i = 1, . . . , n (A.1.2)

or, in matrix notation,

∼
X = X(In − 1n) (A.1.3)

where

∼
X[:, i] =

∼
xi ∀i = 1, . . . , n (A.1.4)
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..

Definition A.2: Sample covariance
.

(Johnson and Wichern 2002) Let
∼
x1, . . . ,

∼
xn be a mean-centered dataset with nmembers. Then

the sample covariance is the matrix

S =
1

n− 1

n∑
i=1

∼
xi

∼
xi

T
=

1

n− 1

∼
X

∼
X

T

(A.1.5)

The diagonal elements of S are called variances and are defined as

S[j, j] = σj
2 =

1

n− 1

n∑
i=1

(xi[j]− x[j])2 ∀j = 1, . . . , n (A.1.6)

where σj is the squared root of the variance and is referred to as the corresponding standard
deviation. The off-diagonal elements of S are simply denoted as covariances and they provide
measure of the linear dependence between the corresponding pair of variables. As a special case,
if two variables are independent, then their covariance is zero. The converse, however, only implies
that the pair is uncorrelated, which is a weaker property than independence (see Johnson and
Wichern 2002, for a complete explanation).

We can also give a geometrical interpretation: the mean is the center of the cloud of points
and the covariance matrix captures its shape, i.e. the variances are proportional to the spread of
the points along each axis, while the covariances describe the cloud’s projections onto the mutually
perpendicular planes around the origin (one plane for each pair of axes).

Pearson’s product-moment correlation coefficient is, alongside the covariance, also a measure of
the linear dependence between variables. The two are closely related through the following

..

Definition A.3: Sample correlation
.
(Johnson and Wichern 2002) Given a dataset, x1, . . . ,xn ∈ Rm, and the associated covariance
matrix, S, the sample correlation is the matrix with elements given by

ρi,j =
S[i, j]

σi · σj
∀i, j = 1, . . . ,m (A.1.7)

where σi and σj are the standard deviations.

According to the Cauchy-Schwarz inequality, the correlation coefficient takes values in [−1, 1].
Essentially, it is a dimensionless normalized version of the covariance.

Throughout the report and in the following chapters we refer to the quantities defined above,
simply, as mean vector, correlation and covariance matrix. They are not to be confused, however,
with the population mean, correlation and covariance, which are the corresponding properties of
the distribution from which the dataset was originally sampled (Johnson and Wichern 2002) and,
thus, unknown in our application.

We used the notion of statistical moments to describe the mean and covariance. However, there
are also higher-order moments and, since they play a crucial role in the present study, we give the
following
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..

Definition A.4: Statistical moment
.
(Johnson and Wichern 2002) Given the m-component random vector X, its mixed moment of
order n is defined as

E

(
m∏
i=1

X[i]ki

) k ∈ N∗

∀k1, . . . , km ∈ N∗ s.t.

m∑
i=1

ki = k
(A.1.8)

Notice that the statistical moments are obtained by evaluating monomials of the variables that
generate datasets. As such, they are a measure of the group dependencies between these variables.

A.2. Linear separability

Consider a dataset composed of m-component samples from two categories, X1 and X2. For
m = 2, the dataset is called linearly separable if we can draw a line that has all the samples from
one category (say from X1) on one side, and all others (i.e. from X2) on its opposite side. This is
illustrated in Figure A.1.

In m ≥ 3 dimensions, the line is replaced by a (hyper)plane, while for m = 1 we have a point.
Formally,

..

Definition A.5: Linear separability
.
(Mangasarian 1965) Let X1 and X2 be two classes of points in an m-dimensional space. Then
X1 and X2 are linearly separable if

∃y ∈ Rm, k ∈ R such that

∀x ∈ X1, xTy ≥ k and

∀x ∈ X2, xTy < k

(A.2.1)

Linear separability is a valuable property in image processing, automatic classification and
artificial intelligence applications (Elizondo 2006).

A.3. Dimensionality reduction

Data mining has become the focus of many companies and researchers in recent years (Taylor
2013). To name a few, wireless field sensors, market indices and online social networks are virtually
inexhaustible continuous streams of data. Crunching these huge high-dimensional datasets into
usable information may prove prohibitively expensive even on the most powerful contemporary
computers.

One method to bring a dataset down to a manageable size is to remove some of the data points,
retaining only a representative subset. Clustering algorithms (see, for example, Forgy 1965; and
Lloyd 1982; or Dempster et al. 1977) help identify groups of similar samples, which can be effectively
replaced by their mean. However, in cases when the datapoints are spread away from each other
(high variance), there is a lower bound to the number of clusters that can be formed. Crossing
this bound can lead to a significant loss in information about the structure of the dataset, with a
potentially detrimental impact on analysis results.

The rich availability of data sources might introduce redundancy into the dataset; some vari-
ables might measure the same quantity or be strongly correlated. Identifying and eliminating
these redundancies can dramatically reduce the volume of data with little to no impact on its
informativeness. This procedure is called dimensionality reduction and can be formally defined as
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Figure A.1: Linearly separable dataset

..

Definition A.6: Dimensionality reduction
.
(Fodor 2002) Given the random vector X ∈ Rm, find a representation in a lower-dimensional
(sub)space, Y = Pr(X), where Pr : Rm → R

l and l ≤ m, such that its structure is best
preserved according to a specified criterion c:

min
Y∈Rl

|c(X,Y)| (A.3.1)
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