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Estimation of Railway Track Parameters Using Evolutionary Algorithms
by Terrence Dahoe

Abstract

Keywords: Evolutionary Computation, Railway Engineering, Inverse
Modelling

The estimation of railway track parameters from a target frequency response function is a
non-convex optimization problem. The objective of this thesis is to evaluate new evolutionary
optimization methods to solve the railway track optimization problem. We use a Python based
platform, since this programming language is increasing in popularity and new evolutionary algo-
rithms are being made available there. The purpose of the research is to find out which optimizer
and objective function performs best. Before the railway track parameters are optimized, tests
are conducted on benchmark problems to become familiar with the evolutionary optimization
solutions. In this thesis we use Grey Wolf Optimization, Particle Swarm Optimization and Ge-
netic Algorithm. Subsequently, the optimizers are applied on a numerical railway track model
from [1]. We focus on the optimization of four parameters, stiffness and damping of both railpad
and ballast. Objective function one J1 includes the sum of the differences between estimated fre-
quency response function and target frequency response function in the frequency range 0-12500
Hz. Objective functions two includes the sum of the differences between estimated frequency
response function and target frequency response function in the frequency range 0-3418 Hz and
gives extra weight to those differences in the frequency range of the track resonances. Objective
function three J3 includes the sum of differences of the estimated track resonances and the res-
onances from the target response. We compare the performance of these optimizers and three
different objective functions. We show that it is possible to use all three optimizers to estimate
the rail track parameters. We yield the best results with an objective function that only takes the
frequency range 0-3418 Hz into account and applies a higher weight factor to differences within
the frequency ranges of the track resonances. The compared algorithms behave differently for
different objective functions. In most of the tested cases, GWO performed the best. The small-
est difference between target parameters and optimized parameters were obtained with objective
function two J2. Damping of the railpad is the most difficult parameter to estimate. Stiffness
of the ballast was estimated with an error of about 3.90%, stiffness of the railpad with 1,06%
and damping of ballast with an error of 3.60%. Finally, part of the further research includes the
analysis of other evolutionary computation algorithm, optimization of the whole track model,
sensitivity of analysis of the optimization parameters, inclusion of real-life measurements and
addressing stochasticities in the objective function.
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1 Introduction
To predict the behaviour of the railway track we use a physics based model. The computational
model we use in this thesis is a simplified representation of the physical track. In this thesis
we use the dependence of the dynamic response of the track on the railway track parameters to
estimate these parameters. The challenge here is to find an effective way to estimate the railway
track parameters. We focus on the optimization of four parameters, stiffness and damping
of both railpad and ballast. The dynamic response of the railway track is represented by a
frequency response function, and we obtain it using the railway track model proposed in [1].
Drastic changes in frequencies can represent a deterioration mechanism occurring in the railway
track. As such, the measurement and understanding of the frequency response function is key
for railway maintenance decisions. The estimation of railway track parameters from a target
frequency response function is a non-convex optimization problem. The objective of this thesis
is to evaluate new evolutionary optimization methods to solve the railway track parameters
optimization problem. The purpose of the research is to find out which optimizer and objective
function performs best.

Figure 1: The structure of the thesis

The thesis starts after the introduction with a literature review, which contains a introduction
to structural dynamics and the background of the computational railway track model. Besides,
the literature review contains a description of the evolutionary algorithms: Grey Wolf Opti-
mization, Particle Swarm Optimization and Genetic Algorithm. Section 3 is the next part of the
thesis, which discusses the performance of the earlier introduced evolutionary algorithms. Section
4 consists of two parts. In the first part the experiment is discussed together and in the second
part we discuss the three objective functions. Subsequently in Section 5 the experimental results
are described. This section consists out of three subsections. Each part shows the results of an
objective function. Finally in Section 6 the results are discussed and we do recommendations for
further research. We end the thesis with a conclusion in Section 7.
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2 Literature Review
As part of the thesis a literature study is conducted concerning dynamic features of structures,
inverse modelling of railway tracks and evolutionary computing.

In 2.1 we discuss the relevant features of the dynamic response of structures. The identifi-
cation of the railway track parameters from measurement is an inverse problem. The specific
dynamic features serve as input for the inverse model to obtain these railway track parameters.
The inverse model and the relation with the dynamic features is specified in 2.3.2. In the last
part of the literature study 2.4 we discuss the methods to solve the inverse problem. There are
iterative and non-iterative methods available. We discuss both methods, but focus on iterative
evolutionary algorithms in particular.

2.1 Dynamic Response of Structures
Structural dynamics is a part of structural analysis in which dynamic loads are taken into account.
In general these are loads with an acceleration, in contrast to statics, where the loads do not
move. An important part of structural dynamics is modal analysis. In modal analysis the
structure is described in terms of dynamic characteristics as natural frequency, damping and
modal shapes. The natural frequency is a frequency by which a structure vibrates when moved
out of equilibrium. The modal shape is the deformation of a structure vibrating at natural
frequency. A key concept in structural dynamics is that the amplitude varies under constant
force with changing frequency. The amplitude amplifies when the frequency approaches the
natural frequency of the structure. The response of a structure can be measured by placing
accelerometers on the structure. In order to understand what a Frequency Response Function
(FRF) is, we need to distinct between the time domain and frequency domain. Both domains
show the dynamic response of a structure. The time domain is the most intuitive method in
which the amplitude is a function of time. It is possible with the Fast Fourier Transform to
convert a signal from the time domain to frequency domain. In Eq. 1 the transfer function is
shown. This equation is used to model the dynamic response and is obtained from the time
domain.

FRF(f) =
1

(2πf)2
SaF (f)

SFF (f)
=

1

(2πf)2

∑N
n=1

∑N−m−1
m=1 a[m+ n]F [m]e−i(2πf)n∑N

n=1

∑N−m−1
m=1 F [m+ n]F [m]e−i(2πf)n

(1)

where SaF is the cross-spectrum between the force and the acceleration, and SFF the auto
spectrum of the force, N the number of data points sampled [2]. The frequency domain shows
the dynamic response, where the amplitude is a function of the oscillation frequency. Fig. 2
shows the the dynamic response of a structure in the time domain in Fig. 2a and the frequency
domain in Fig. 2b.
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(a) Time Domain

(b) Frequency Domain

Figure 2: Two possible representations of the dynamic response of a structure. Fig. 2a
shows the dynamic response in the time domain. Fig. 2b shows the dynamic response
in the frequency domain. The conversion between both domains can be done with the
Fast Fourier Transform [3]

From the FRF we obtain information about the resonances, damping and mode shapes. The
peaks in Figure 2b correspond with the natural frequencies of the structure. The amount of
damping has a direct influence on the width of the peaks. The more damping, the wider the
peak. Most signals in reality do not consist out of one a single frequency. These signals are a sum
of sinusoidals with different frequencies. From the frequency response function in the frequency
domain we can see out of which frequencies the signal consists. In practice, different methods
are possible to identify resonance frequencies and dynamic responses. In this thesis, we consider
the use of hammer impact excitation to obtain the FRF in a railway track. We describe next
the formulation of FRF and some examples [4].
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The FRF is a complex function and therefore consists of a real and an imaginary part. The
FRF for frequency f is given by FRF(f) = a(f)+ ib(f). The amplitude and phase are calculated
with Eq. 2 and Eq. 3.

|FRF(f)| =
√
a(f)2 + b(f)2 (2)

6 FRF(f) = tan−1
(
a(f)

b(f)

)
(3)

with the amplitude we can determine the frequencies of the track resonances. With the phase
we can determine whether the response of the structure is in phase with the excitation. To
determine the mode shapes the amplitude as well the phase need to be taken into consideration.
In this thesis we focus primarily on the amplitude of the FRF to estimate the railway track
parameters.

Figure 3: The magnitude plotted against the frequency [5]

Figure 4: The phase plotted against the frequency [5]

Fig. 3 and Fig. 4 show three different FRF’s. The FRF indicated as "A" represents a track
response at the sleeper, "B" at a quarter distance span from sleeper, and "C" at mid-span (in
between of two sleepers). Thus, the track response depends on the location of measurement.
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2.2 Structural Health Monitoring of Railway Infrastructure
As a result of usage and environmental influences railway infrastructures are subject to wear.
Failure of the rail could lead to catastrophic accidents. To prevent failure, the rail track needs to
be maintained. An important question is when to perform maintenance and where. Deterioration
is a process which is self accelerating in time. We need to prevent that the deterioration crosses
the threshold where radical measures, such as replacement of the rails, are necessary to guarantee
the safety. We increase the durability of the infrastructure by applying early state maintenance
[6]. To apply early state maintenance we need adequate measuring techniques, which are the
cornerstones of Structural Health Monitoring. In this section we discuss a technique by which
we can examine the deterioration state of the rail track, the hammering test. We use the theory
on Dynamic Characteristics from Section 2.1 to understand the physical principles behind the
hammer test. With this background we discuss which data is obtained from the hammer test
and how deterioration can be detected with this data.

2.2.1 Hammer Testing

Hammer testing is a non-destructive technique to perform modal analysis. We learned in sec-
tion 2.1 that the objective in modal analysis is to describe the structure in terms of dynamic
characteristics as natural frequency, damping and modal shapes. The principle behind hammer
testing is that an impulse is applied to the structure. With this impulse we supply energy to the
system and excite the response frequencies of the structure. The response is measured by the
acceleration meters that are placed on the structure. We present the results of the experiment
in an FRF diagram. Hammer testing falls into the category of impact testing. Another form of
impact testing is the shaker test, in which a shaker is used to excite the structure. In the context
of railway infrastructures the hammer test is better suited, because with the hammer test it is
possible to obtain a broad range of frequencies by changing the type of hammer.

Figure 5: The test setup for the hammer test. The principle behind hammer testing is
that an impulse is applied to the structure. With this impulse we supply energy to the
system and excite the response frequencies of the structure. The response is measured
by the acceleration meters that are placed on the structure. In this experiment 3
acceleration meters are used to measure the response of the track [6]

Fig. 5 shows a picture of a test setup for the hammer test [6]. It is important to take the effect
of the hammer properties into account such as hardness of the tip and weight of the hammer.
These properties determine which frequencies are excited in the structure. A hard hammer tip
results in a short pulse and excites a broad frequency range, while a soft tip has a longer pulse
and excites a frequency range that is more narrow. The weight property of the hammer has the
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largest influence on the location of the frequency domain, rather than the size of the frequency
domain. In [6] the hammer test is conducted with a large hammer (high mass) and a small
hammer (low mass). This is done to have a broader frequency range. The small hammer has a
better resolution for frequencies in the higher range, while the large hammer a better response
in the lower range is obtained. Further, if the responses of interest are even lower, then a falling
weight mechanism can be implemented, to excite those low frequency components. In this thesis,
we will analyze frequency responses from 0-12500 Hz, with a focus on the responses between 0-
3418 Hz. The analysis of track responses is interesting for understanding its behavior over time.
Drastic changes in frequencies can represent a deterioration mechanism occurring in the railway
track. As such, the measurement and understanding of the FRF’s is key for railway maintenance
decisions.
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2.3 Modelling and Computational methods
To predict the behaviour of the rail track we use physics based models. In this section we focus
on the dependence of the railway track parameters on the dynamic response of the track [1].
The computational model we use in this thesis is a simplified representation of the physical
track. In traditional modelling we specify the track parameters and after simulation we analyse
the FRF which represents the dynamic behavior of the track. In this section we also discuss
inverse modelling in which we try to fit a computational model based on real observations. The
challenge here is to find an effective way to approximate the railway track parameters. For the
approximation of these parameters we use the FRF’s described in the previous section.

2.3.1 Forward Modelling and Inverse Modelling

To analyse the dynamic response of the railway track we use a finite element model. The model
is dependent on railway track parameters. The relevant parameters in this model are denoted
as vector x = (x1, x2, . . . , x8)

T in 8 dimensional space X. In Table 1 we find the railway track
parameters of the rail track model. The input of the finite element model are the railway track
parameters and the output an FRF, which we denote with y. The finite element model of the
rail track is denoted as f . Mathematically we can denote this forward relation as:

y = f(x),x ∈ X (4)

The main objective in [1] is to establish the inverse relation g(y), based on observed an FRF.
This relation can mathematically be defined as:

x = g(y),y ∈ Y (5)

It is important to note the difference between both relations. Eq. 4 is the forward relation
between the railway track parameters and the FRF. In forward modelling the input parameters
are known beforehand and we are simulating a process to collect the output data. Eq. 5 is the
inverse relation between the FRF and the railway track parameters. In inverse modelling only the
output data is known and we are adjusting the railway track parameters to fit the observations.
The inverse modelling involves a fitting procedure to find unknown parameters. In this thesis,
the procedure is conducted via a global optimization approach.

2.3.2 Global Sensitivity Analysis

The objective is to find the railway track parameters with the inverse relation in Eq. 5 by
analysing the FRF features. The FRF’s are obtained by performing field hammer tests [7]. The
first step is to determine which FRF features are the most sensitive to changes in specific track
parameters. To obtain these sensitive FRF features in relation to the railpad and ballast stiffness
a global sensitivity analysis is performed. In a global sensitivity analysis the task is to quantify
relative contribution of the input parameters in determining the output variable [8]. With the
information from the global sensitivity analysis we need to find out which Track Resonances
(TR) should be used to identify which railway track parameters.
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Table 1: The railway track parameters that serve as input for the finite element rail
track model. Table from [1]

Symbol Track Parameter
x1 Rail EI
x2 Rail Intertia
x3 Sleeper EI
x4 Sleeper Inertia
x5 Railpad stiffness
x6 Railpad damping
x7 Ballast Stiffness
x8 Ballast Damping

Table 1 shows the railway track parameters that serve as input for the finite element rail
track model.

To perform a sensitivity analysis, in [1] a sets of track parameters are evaluated. These
parameters are taken randomly, uniformly distributed with a 5% increase of the nominal value
as upper boundary and a 5% decrease of the nominal value as lower boundary. In Eq. 6 the
railway track parameter xi is denoted as an uniformly distributed stochastic variable with xli as
lower boundary and xui as upper boundary.

xi ∼ U
(
xui , x

l
i

)
, i = 1, 2, . . . , 8 (6)

the next step is to generate N samples of the railway track parameters x(k) ∈ X(k = 1, 2, . . . , N).
Since we presumed the railway track parameters xi as stochastic variables, it can be assumed
that each sample contains a different set of parameters. For each sample the dynamic response
is simulated according the forward relation from Eq. 4.

Figure 6: The figure shows in a bar plot the sensitivity of each track parameter per
track resonance. From this figure we can see which railway track parameters have the
largest influence on the track resonances [3]
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Figure 7: The dynamic responses of the rail track model [1]

As part of the sensitivity analysis, the FRF’s of 5000 samples are plotted. The result is
shown in Fig. 7. In the figure we see that each peak is labeled as a track resonance. The track
resonances are chosen as the FRF features to analyze. Fig. 6 shows in a bar plot the sensitivity
of each track parameter per track resonance. From the sensitivity analysis we can conclude that
the pin-pin resonance is most sensitive to variation in the rail EI and the rail inertia, x1 and
x2. We see that the track resonances TR4, TR5 and TR5 are most sensitive for a variation in
the ballast stiffness x7. The track resonances TR4, TR5, TR6 are the most correlated with the
railpad stiffness x5

9



2.4 Evolutionary Algorithms
In section 2.3 we discussed that the estimation of the railway track parameters from the measured
FRF is an inverse problem. To obtain these railway track parameters the error between the
measured FRF and the FRF of the simulated rail track model needs to be minimized. The search
for the best railway track parameters has therefore turned into an optimization problem. We
simply cannot try all the combinations, because that is computationally unfeasible. Therefore we
need an optimization technique. The challenge here is to find optimization techniques that work
on functions that are non-differentiable. To work around that problem we focus on the domain
of evolutionary optimization techniques. These algorithms have in common that the mechanism
behind these algorithms is inspired on nature. We see that the techniques we focus on in this
section contain the same mechanisms found in Darwinian evolution, swarming behaviour and
pack hunting. A potential bottleneck of evolutionary algorithms is that the fitness function
needs to be evaluated quickly in order to work efficiently. This section contains the theoretical
background of three famous evolutionary algorithms. In this section we have a closer look at
Genetic Algorithms (GA), Particle Swarm Optimization (PSO) and Grey Wolf Optimization
(GWO).

2.4.1 Nature-Inspired Metaheuristics

The classification of metaheuristics is complex and the categories are overlapping. In this section
we focus on the classification of nature-inspired metaheuristics. Fig. 8 shows an overview of the
categories within nature-inspired metaheuristics.

Figure 8: An overview of the categories within nature-inspired metaheuristics [9]
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2.4.2 Evolution Based

Evolution-based methods are based on the Darwinian evolution theory. The general concept
is that only the fittest individuals are able to ‘reproduce’ and form the population of the next
iteration. These algorithms work with operators based on processes generally known in Darwinian
evolution, such as crossover, mutation, and selection. Table 2 shows the most common evolution
based metaheuristics.

Table 2: Overview of the most common evolution based metaheuristics

Algorithm Abbrevation Citation
Differential Evolution DE [10]
Evolutionary Strategies ES [11]
Genetic Algorithm GA [12]
Genetic Programming GP [13]
Population Based Incremental Learning PBIL [14]

2.4.3 Swarm Based

Swarm Based metaheuristics are based on the complex interaction between individuals that are
observed in swarms. This thesis comprises partly of the comparison of two algorithms from this
category: Particle Swarm Optimization and Grey Wolf Optimization. Table 3 shows the most
common swarm based metaheuristics.

Table 3: Overview of the most common swarm based metaheuristics

Algorithm Abbrevation Citation
Ant Colony Optimization ACO [15]
Artificial Bee Colony ABC [16]
Bat Algorithm BA [17]
Cuckoo Search CS [18]
Firefly Algorithm FA [19]
Flower Pollination Algorithm FPA [20]
Grey Wolf Optimization GWO [21]
Krill Heard KH [22]
Magnetic Optimization Algorithm MOA [23]
Particle Swarm Optimization PSO [24]
Social Spider Optimization SSO [25]
Whale Optimization Algorithm WOA [26]

11



2.4.4 Physics Based

Physics based metaheuristics are techniques based on physical laws such as the laws of a black
hole or the interaction between water drops. Sometimes in literature his category is subdivided
in math based and chemical based meta heuristics. Table 4 shows the most common physics
based metaheuristics.

Table 4: Overview of the most common swarm based metaheuristics

Algorithm Abbrevation Citation
Black Hole BH [27]
Big Bang-Big Crunch BB-BC [28]
Central Force Optimization CFO [29]
Expectation Maximization EM [30]
Gravitational Search Algorithm GSA [31]
Ortogonal Immune Algorithm OIA [32]
Multi-Verse Optimizer MVO [33]
Simulated Annealing SA [34]
Sine Cosine Algorithm SCA [35]
S Metric Selection SMS [36]
Intelligent Water Drops IWD [37]

2.4.5 Human Based

Human based meta heuristics are based on behavior that is typical for humans. Inspiration
could be drawn from group interaction, but also from the psychological methodologies of problem
solving. Table 5 shows the most common human based metaheuristics.

Table 5: Overview of the most common human based metaheuristics

Algorithm Abbrevation Citation
Bi-directional Search BS [38]
Football Game Inspired Algorithm FGIA [39]
Fireworks Algorithm FWA [40]
Harmony Search HS [41]
Human Group Formation HGF [42]
Imperialist Competitive Algorithm ICA [43]
Teaching and Learning Based Optimization TLBA [44]
Wisdom of Artificial Crowds WAC [45]

12



2.5 Genetic Algorithm
The idea of a Genetic Algorithm (GA) is based on the biological concept of evolution. Given
a population, which could be vectors containing railway track parameters or individuals in the
biological case. We randomly create a set of individuals, given an objective function to be
maximised or minimized. Each individual has a fitness score which depends on the properties of
the individual and the environmental selection pressure. Based on the outcome of this objective
function applied on these individuals a fitness score is assigned. The individuals with the lowest
fitness score tend to be eliminated from the population. The individuals with the highest fitness
score will have the preference to ‘reproduce’ and pass their successful properties to the next
iteration. The objective is to increase the fitness of the population each iteration. We see in Fig.
9 the simplified flowchart of evolutionary algorithms that explains in three steps the processes
within an iteration [46].

Figure 9: The simplified flowchart of a Genetic Algorithm explains in three steps the
processes within an iteration. We start with a population of individuals. The objective
function is applied to the individuals and a fitness score is computed. The individuals
with the highest fitness score are selected as parent. Subsequently variation opera-
tors as recombination and mutation are applied to produce offspring. This offspring
composes the new population and one iteration is completed [46]

To generate the new population variation operators are applied to the the parent solutions.
The variation operators are recombination and mutation. Before we discuss what these operators
do it is important to understand why they are necessary. The selected parents are the individuals
in the population with the highest fitness score. These individuals have the properties that result
in a high fitness score. The properties are called genes in accordance with the biological analogy.
The objective is to find the individual with the best fitness score or with the best genes. It
is unlikely that this individual is found in the first iterations, but we know which individuals
contain the best properties. In order to find a better solution we combine the properties of
the selected individual in the hope to obtain individuals which contain more desired properties
and bring us closer to the best solution. This operation is called recombination, with the term
breeding as biological equivalent. The operator needs at least two individuals and yields at least
one individual. Fig. 10 show to the principle behind the recombination operator. The successful
genes in the gene pool do not lead automatically to the best solution. There might be genes
that are currently not in the gene pool, but would yield a better fitness score. Mutation is the
mechanism behind the introduction of new genes. The mutation operator slightly alters a gene.
The principle behind the operator is shown in Fig. 11.
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Figure 10: The principle behind the recombination operator. We see that the new in-
dividuals contain genes from both parents. The operator needs at least two individuals
and yields at least one individual [47]

Figure 11: The principle behind the mutation operator. We see that the new individual
contains an altered gene compared to the parent. The operator needs one individual
and yields at least one individual [47]
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2.6 Particle Swarm Optimization
Particle Swarm Optimization (PSO) is an evolutionary algorithm that does not contain variant
operators. The principle behind the algorithm is based on swarms in nature. It is important
to note that the individual in a swarm is influenced by the rest of the swarm, but also has the
freedom to move in its own direction. We iteratively simulate this behavior with a group of
particles to find the global maximum of the objective function.

With PSO the particles move through the search space. This space is defined by the pa-
rameters of the problem. This means the number of parameters determines the dimension of
the search space. The domain of the dimensions is determined by the possible values of the
parameters. The concept of search space is explained with an example. Each possible solution is
dependent on the x and y parameter. We obtain an area of possible x-y combinations, because
each parameter can take a value independent from the other parameter. The limits of the search
space are defined, because both parameters only can take a value in the interval [-3,3].

Figure 12: The figure shows four particles within the defined two dimensional search
space.The limits of the search space are defined, because both parameters only can
take a value in the interval [-3,3].The function needs to be dependent on x and y. We
take the function z = x+ y, which yields 5 for the green particle and -4 for the blue
particle [48]

With PSO each particle represents a possible solution. The solution is dependent on the
value of the parameters. These values are determined by the location of the particle in the
search space. Fig 12 shows four particles within the above defined two dimensional search space.
The function needs to be dependent on x and y. We take the function z = x+ y, which yields 5
for the green particle and -4 for the blue particle.

We discuss first how to particles move though the search space before the algorithm is dis-
cussed. The movement of a particle is determined by the velocity vector which is influenced by
different parameters. The velocity vector has a cognitive part which defines the best personal
solution the particle has found so far and a social part which defines the best global solution
that the swarm has found so far. Each particle has its own best personal solution and the best
global solution of the swarm in memory. The memory of the particle is updated each iteration
if necessary.
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Each iteration a new velocity vector is calculated. The calculation of the velocity vector is
done on basis of Eq. 7

vi(t+ 1) = ωvi(t) + c1r1 (x̂i(t)− xi(t)) + c2r2 (g(t)− xi(t)) (7)

we define the following parameters:

- vi(t+ 1) : Velocity vector of the next iteration
- ω : Inertial parameter which affects the propagation of the previous velocity vector
- c1 : Weight coefficient for the best personal solution
- r1 : Random number between 0 and 1
- x̂i(t) : The location of the best individual solution of the particle
- xi(t) : The current location of the particle
- c2 : Weight coefficient for the best global solution of the swarm
- r2 : Random number between 0 and 1
- g(t) : The location of the best global solution of the swarm

The displacement is calculated with Eq. 8. Where xi(t+ 1) is the location of the particle in
the next iteration.

xi(t+ 1) = xi(t) + vi(t+ 1) (8)

in Fig. 13 we see a visual representation of the inertial, cognitive and social part in the calculation
of the new particle location. The addition of these parts is visualized with the head-to-tail method
[49].

Figure 13: The visual representation of the inertial, cognitive and social part in the
calculation of the new particle location. The addition of these parts is visualized with
the head-to-tail method [49]

Before the iterative process the particles are initialized randomly from an uniform distri-
bution. The fitness score or solution is calculated for each particle and saved in the memory.
Subsequently the velocity vector is calculated and the particles are displaced. Again for each
particle the fitness score is calculated. If a particle the obtains a new individual best the memory
of that particle is updated. If the swarm obtains a new global best, the memory of all particles
is updated. This process repeats itself until convergence or a predefined number of iterations.
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2.7 Grey Wolf Algorithm
The Grey Wolf Algorithm (GWO) is an evolutionary algorithm inspired on the hunting pack
behavior of wolves. GWO is an evolutionary algorithm that does not contain variant operators.
The pack consists of an α-wolf, β-wolf and δ-wolf in descending order of dominance. The rest
of the pack consists of ω-wolfs which follow the three dominant wolves. Hunting is the context
of this algorithm means finding the best solution and the prey is the best solution within the
search space. The algorithm consists out of two phases.

- Searching for prey

- Hunting the prey

The preys means in the context of the algorithm the best solution. We start with the random
initialization of the wolfs. The wolfs are the agents that go though the search space looking for
a prey. This is the first phase of the algorithm. Next,

−→
A ,
−→
C and −→a are initialized according Eq.

9. The component of −→a is linearly decreasing from 2 to 0 over the course of the iterations.

~A = ~r1 · 2 ·~a−~a
~C = ~r2 · 2

(9)

Subsequently the fitness score is evaluated for each wolf. This fitness score is dependent on
the location of the wolf in the search space. The three best solutions are assigned to the α-wolf,
β-wolf and the δ-wolf. It is assumed that the dominant wolves have superior knowledge about
the location of the prey. The ω-wolves need to update their location according the location of
the dominant wolves. The updating of the location is done according Eq. 10, Eq. 11 and Eq.
12. With

−→
Xα,

−→
Xβ and

−→
X δ denoting the position of the dominant wolves. The position of the

wolfs in the next iteration is denoted with
−→
X(t+ 1).

−→
Dα = |

−→
Xα ·

−→
C 1 −

−→
X |

−→
Dβ = |

−→
Xβ ·

−→
C 2 −

−→
X |

−→
D δ = |

−→
X δ ·

−→
C 3 −

−→
X |

(10)

−→
X 1 =

−→
Xα − (

−→
Dα) ·

−→
A 1−→

X 2 =
−→
Xβ − (

−→
Dβ) ·

−→
A2−→

X 3 =
−→
X δ − (

−→
D δ) ·

−→
A 3

(11)

−→
X(t + 1) =

(
−→
X 1 +

−→
X 2 +

−→
X 3)

3
(12)

It is possible that a solution is found by an ω-wolf that has a higher fitness score than the
solutions in the current top 3. In that case that wolf attains dominance. The other ω-wolves
update their locations according to the new dominant wolf/wolves. The transition from the
searching phase to the hunting phase is mainly influenced with the parameter −→a . This value
is linearly decreasing from 2 to 0 over the course of the iterations. The value of ~A is therefore
between [−2, 2]. The next position of the wolf can be any position between the prey and the
current position only if the value of ~A is between [−1, 1]. If | ~A| > 1 the wolves are in the
exploration phase and searching the search space diverging from the prey.If | ~A| < 1 the wolves
are in the exploitation and are converging toward the prey [50].
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Figure 14: The figure shows that the searching and hunting behavior is dependent on
the value of ~A. If | ~A| > 1 the wolves are in the exploration phase are diverging from
the prey.If | ~A| < 1 the wolves are in the exploitation and are converging toward the
prey [51]

.

The threshold for transition between searching and hunting is shown in Fig. 14. The searching
phase is also called exploration. It is important to have moved though the search space thoroughly
to avoid ending up at the local maximum instead of the global maximum. The flowchart of the
Grey Wolf Algorithm is shown in Fig. 15.

Figure 15: The flowchart of the Grey Wolf Algorithm [50]
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3 Performance of Evolutionary Algorithms
As shown in Section 2.4 there are multiple evolutionary optimization techniques. The perfor-
mance of these algorithms are dependent on different factors such as properties of the objective
function and the tuning of the control parameters. Since the search agents are randomly initial-
ized and the movement of the agents through the search space contains a random element. We
have to take stochastic effects into account in order to draw a firm conclusion on the performance.

The performance of the evolutionary algorithms is tested by applying the evolutionary algo-
rithms on test problems. Since we know beforehand the properties of the test functions such as
the locations of the optima, number of optima and geometric shape we can draw a conclusion on
the performance for different test functions. This information is necessary in the case of working
with real engineering problems when these properties are not known beforehand.

In this section three experiments are performed. In the first experiment we want to find out
what the percentage of convergence to the optimum solution for an increasing number of search
agents. In the second experiment we study the rate of the convergence of each evolutionary algo-
rithm for each test function. In the last experiment we want to find out what the computational
costs are for each evolutionary algorithm.

The performance of the algorithms is also dependent on the control parameters. We can
distinguish two groups of parameters. The first group contains the general parameters, which
appear in all the optimizers. The parameters ‘number of search agents’ and ‘number of iterations’
belong to the first group. The second group is a collection of algorithm specific parameters.
Examples are the weight coefficients for the cognitive behaviour c1 and the social behaviour c2,
which are specific for Particle Swarm Optimazation described in Section 2.6.

Only the general parameters are modified while using the evolutionary algorithms. The
algorithm specific parameters are kept constant on the default value. The modification of the
specific parameters is considered outside the scope of this thesis. Table 6 shows the values of the
parameters.

Table 6: The parameters of the evolutionary algorithms. The algorithm specific pa-
rameters are kept constant and default. The parameters ’Iterations’ and ’Population
size’ are variable and modified during the performance tests

Name of algorithm Parameters Value

GWO Iterations
Population size

Variable
Variable

PSO

Iterations
Population size
ωmax
ωmin
c1
c2

Variable
Variable
0.9
0.2
2
2

GA

Iterations
Population size
Crossover probability
Mutation probability
Keep

Variable
Variable
1
0.01
2
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3.1 Test Functions
Test functions are used to study the performance of the evolutionary algorithms. We know
beforehand the locations of the optima, the number of optima and the general geometric shape.
Because the optimal solution is known, a check can be performed to test whether the evolutionary
algorithm has converged or not. One reason to evaluate benchmarks is that those functions
require few milliseconds to evaluate a solution. While the railway model can take up to various
minutes when including complex characteristics. A simplified railway model can take various
seconds. Therefore, by using these functions we get familiar with the optimized solutions. We
select four functions with different modal properties. The degree of modality increases from uni-
modal to multi-modal to highly multi-modal. The caveat with multi-modal functions is that the
evolutionary algorithm gets stuck at a local optimum instead of the global optimum. The multi-
modal functions are per definition non-convex. A function is convex if a line segment between
any two points on the graph of the function lies above the graph between the two points.

3.1.1 Easom’s Function - F1

Easom’s function is an uni-modal function with the global optimum at [π,π]. In Fig. 16 the
function is visualised by means of a 2D heatmap and 3D plot. Table 7 the characteristics of the
function are schematized.

(a) Heatmap of Easom’s Function (b) 3D plot of Easom’s Functions

Figure 16: The figure shows a 2D heatmap and 3D plot of the Easom’s Function. The
Function is uni-modal and has a global optimum in [π,π] and The global optimum has
a small area compared to the search space

Table 7: Characteristics of the function

Name Easom’s function - F1
Domain [−10, 10],[−10, 10]
Optimal value(s) f(π, π) = −1
Formula f(x, y) = − cos(x) cos(y) exp

(
−
(
(x− π)2 + (y − π)2

))
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3.1.2 Ackley’s function - F2

Ackley’s function is a multi-modal function with the global optimum at [0,0]. In Fig. 17 the
function is visualised by means of a 2D heatmap and 3D plot. Table 8 the characteristics of the
function are schematized.

(a) Heatmap of Ackley’s function (b) 3D plot of Ackley’s function

Figure 17: The figure shows a 2D heatmap and 3D plot of Ackley’s function. The
Function is multi-modal and has a global optimum in [0,0]

Table 8: Characteristics of the function

Name Ackley’s function - F2
Domain [-10,10], [-10,10]
Optimal value(s) f(0, 0) = 0

Formula f(x, y) = −20 exp
[
−0.2

√
0.5 (x2 + y2)

]
− exp[0.5(cos 2πx+ cos 2πy)] + e+ 20
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3.1.3 Schaffer’s function N.2 - F3

Schaffer ’s function N.2 is a highly multi-modal function with the global optimum at [0,0]. In Fig.
18 the function is visualised by means of a 2D heatmap and 3D plot. Table 9 the characteristics
of the function are schematized.

(a) Heatmap of Schaffer’s function N.2 (b) 3D plot of Schaffer’s function N.2

Figure 18: The figure shows a 2D heatmap and 3D plot of Schaffer function N.2. The
Function is highly multi-modal and has a global optimum in [0,0]

Table 9: Characteristics of the function

Name Schaffer’s function N.2 - F3
Domain [-10,10], [-10,10]
Optimal value(s) f(0, 0) = 0

Formula f(x, y) = 0.5 +
sin2(x2−y2)−0.5
[1+0.001(x2+y2)]2
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3.1.4 Himmelblau’s function - F4

Himmelblau’s function is a multi-modal function with the global optimum at four locations.
In Fig. 19 the function is visualised by means of a 2D heatmap and 3D plot. Table 10 the
characteristics of the function are schematized.

(a) Heatmap of Himmelblau’s function (b) 3D plot of Himmelblau’s

Figure 19: The figure shows a 2D heatmap and 3D plot of Himmelblau’s function.
The Function is multi-modal and has multiple modes

Table 10: Characteristics of the function

Name Himmelblau’s function - F4
Domain [-10,10], [-10,10]

Optimal value(s)

f(3.0, 2.0) = 0.0
f(−2.805118, 3.131312) = 0.0
f(−3.779310,−3.283186) = 0.0
f(3.584428,−1.848126) = 0.0

Formula f(x, y) =
(
x2 + y − 11

)2
+
(
x+ y2 − 7

)2
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3.1.5 Rastrigin’s function - F5

Rastrigin’s function is a multi-modal function with the global optimum at four locations. In Fig.
20 the function is visualised by means of a 2D heatmap and 3D plot. Table 11 the characteristics
of the function are schematized.

(a) Heatmap of Rastrigin’s function (b) 3D plot of Rastrigin’s function

Figure 20: The figure shows a 2D heatmap and 3D plot of function F6. The function
is multi-modal and has a global optimum in [0,0]

Table 11: Characteristics of the function

Name Rastrigin’s function - F6
Domain [-10,10], [-10,10]
Optimal value(s) f(0, 0) = 0

Formula 20 +
(
x2 − 10 cos(2πx)

)
+
(
y2 − 10 cos(2πy)

)
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3.1.6 Altered Schaffer’s Function - F6

The altered Schaffer’s function is a highly multi-modal function with the global optimum at four
locations. In Fig. 21 the function is visualised by means of a 2D heatmap and 3D plot. Table
12 the characteristics of the function are schematized.

(a) Heatmap of function F6 (b) 3D plot of function F6

Figure 21: The figure shows a 2D heatmap and 3D plot of function F6. The function
is multi-modal and has a global optimum in [0,0]

Table 12: Characteristics of the function

Name Altered Schaffer’s Function - F6
Domain [-10,10], [-10,10]
Optimal value(s) f(0, 0) = 0

Formula 0.5 +
sin2

(
(x2+y2)

2
)
−0.5

1+0.001(x2+y2)2
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3.2 Movement of the search agents
In this section we visualise the movement of the agents through the search space. Evolutionary
computing in an iterative process and each iteration is visualised with a snapshot of the current
state of the process. The only variable in this experiment is the optimizer. We consecutively
conduct the experiment for GWO, PSO and GA. For all the optimizers we use 40 search agents.
The optimizers are applied on the function Schaffer N.1. The GWO algorithm converges rather
quickly. We show only the first 8 iteration to make proper visualisation of the visualisation
possible. For PSO and GA 24 iterations are shown.

In Fig. 22, Fig. 24 and Fig. 26 the convergence process is simulated with GWO, PSO and
GA applied on the function Schaffer N.1 with 40 search agents. To easily follow a search agent
during the convergence process one search agent is colored black. In Fig. 23, Fig. 25 and Fig.
27 all the previous locations of the search agents are colored black. By doing so we create a map
that indicates the part of the search space that is actually searched.

(a) Iteration 0 (b) Iteration 1 (c) Iteration 2

(d) Iteration 3 (e) Iteration 4 (f) Iteration 5

(g) Iteration 6 (h) Iteration 7 (i) Iteration 8

Figure 22: The convergence process simulated with GWO applied on the function
Schaffer N.1 with 40 search agents
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Figure 23: All solutions simulated with GWO applied on the function Schaffer N.1
with 40 search agents

(a) Iteration 0 (b) Iteration 3 (c) Iteration 6

(d) Iteration 9 (e) Iteration 12 (f) Iteration 15

(g) Iteration 18 (h) Iteration 21 (i) Iteration 24

Figure 24: All solutions simulated with PSO applied on the function Schaffer N.1 with
40 search agents
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Figure 25: All solutions simulated with PSO applied on the function Schaffer N.1 with
40 search agents

(a) Iteration 0 (b) Iteration 3 (c) Iteration 6

(d) Iteration 9 (e) Iteration 12 (f) Iteration 15

(g) Iteration 18 (h) Iteration 21 (i) Iteration 24

Figure 26: All solutions simulated with GA applied on the function Schaffer N.1 with
40 search agents

28



Figure 27: The convergence process simulated with GA applied on the function Schaf-
fer N.1 with 40 search agents

3.3 Numerical comparison of the EA’s
With the No Free Lunch Theorem it is proved that optimizer algorithms perform exactly the
same, when averaged over all possible objective functions. For example when algorithm A out-
performs algorithm B, then there must exist exactly as many other functions where algorithm B
outperforms algorithm A [52]. This theorem implies that there is no best algorithm and that the
performance of an algorithm is function dependent. In this section we compare the numerical
results of the algorithms applied on the benchmark functions from Section 3.1.

Table 13: The numerical outcomes of the application of GWO on the benchmark
functions

F F ∗ Mean GWO Best GWO Worst GWO STD GWO MSE GWO
F1 −1 −0.9998818 −0.9999992 −0.9989307 0.0001224 0.0000000
F2 0 0.0000000 0.0000000 0.0000010 0.0000000 0.0000000
F3 0 0.0000273 0.0000000 0.0034934 0.0002723 0.0000001
F4 0 7.4511756 0.0000014 168.3136353 26.9980750 784.4160716
F5 0 0.9233187 0.0000000 30.4928559 3.7188431 14.6823117
F6 0 0.0028266 0.0000000 0.5498715 0.0350022 0.0012331

Table 14: The numerical outcomes of the application of PSO on the benchmark
functions

F F∗ Mean PSO Best PSO Worst PSO STD PSO MSE PSO
F1 −1 −0.9999938 −1.0000000 −0.9998850 0.0000096 0.0000000
F2 0 0.0049219 0.0000875 0.0314262 0.0037114 0.0000380
F3 0 0.0000002 0.0000000 0.0000761 0.0000025 0.0000000
F4 0 0.0014365 0.0000001 0.4112068 0.0157075 0.0002488
F5 0 0.2021788 0.0000062 5.9562249 0.4457013 0.2395259
F6 0 0.0000000 0.0000000 0.0000011 0.0000001 0.0000000
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Table 15: The numerical outcomes of the application of GA on the benchmark func-
tions

F F∗ Mean GA Best GA Worst GA STD GA MSE GA
F1 −1 −0.8651625 −0.9999726 −0.2605681 0.1280339 0.0345738
F2 0 1.0124667 0.0167889 3.6844148 0.8048388 1.6728542
F3 0 0.0021202 0.0000000 0.0161548 0.0028652 0.0000127
F4 0 0.7895123 0.0000413 7.0237208 0.8787829 1.3955891
F5 0 1.9194927 0.0105721 7.6715139 1.2890445 5.3460878
F6 0 0.0015269 0.0000000 0.0191067 0.0026996 0.0000096

The experiment is conducted by applying the optimizers each a 1000 times on the specific
benchmark function. The optimizers are applied with 40 search agents and 30 iterations. The
best solution of each run is saved in an array. Subsequently statistic information is calculated
on basis of that array. The results are shown in Table 13, 14, 15 and show the mean, best
score, worst score, standard deviation and the mean squared error. The statistical information
is visualised with boxplots in Fig. 28.
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(a) F1 - Easom (b) F2 - Ackley

(c) F3 - Schaffer N.1 (d) F4 - Himmelblau

(e) F5 - Rastrigin (f) F6 - Altered Schaffer

Figure 28: The statistical information from the array with the scores of 1000 runs is
visualised with boxplots

31



3.4 Convergence and Convergence Rate
We conduct an experiment to study the convergence behavior of the EA’s. This experiment
consists of two parts. Each optimizer returns an array with the best score per iteration which
shows the rate of convergence. In the first part we keep the number of iterations and search
agents constant and we take the average convergence rate of 500 runs. Fig. 30 shows the rate of
convergence for the benchmark functions.

In the second part of the experiment a test is performed to find out how the best solution
changes with the number of search agents. From the theory we know that a larger part of the
search space is searched with a larger number of search agents and the probability of convergence
to the global optimum increases. An increment in the number of search agents increases the
computational cost. Therefore it is important to gain insight on how the percentage of successful
runs increases with the number of search agents.

If the difference between the best score and the global optimum is smaller than 0.1 we consider
the run as successful. Fig. 29 shows the ratio between successful runs and total runs against
the number of search agents. Again the ratio is averaged over 1000 runs to decrease stochastic
influences. We see clearly that in some cases the number search agents influences the success
rate. This effect is for all optimizers most prevalent in Fig. 29e.

(a) F1 - Easom (b) F2 - Ackley

(c) F3 - Schaffer N.1 (d) F4 Himmelblau

(e) F5 - Rastrigin (f) F6 - Altered Schaffer

Figure 29: If the difference between the best score and the global optimum is smaller
than 0.1 we consider the run as successful. The figure shows the ratio between suc-
cessful runs and total runs against the number of search agents

32



(a) F1 - Easom (b) F2 - Ackley

(c) F3 - Schaffer N.1 (d) F4 - Himmelblau

(e) F5 - Rastrigin (f) F6 - Altered Schaffer

Figure 30: The rate of convergence for GWO, PSO and GA applied on the benchmark
functions
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3.5 Computational Costs
The computational cost of an evolutionary algorithm is an important performance metric. The
computational cost is measured in the time it takes to execute the algorithm. In Section 3.4 we
discussed that an computationally inexpensive EA that converges slowly may perform as well as
an EA that is computationally expensive but converges fast. In the experiment the GWO, PSO
and GA optimizers are applied on all test functions. Per test function we run the optimizer 500
times and take the average elapsed time for each EA. The results of the experiment are shown
in Fig. 31.

(a) F1 - Easom (b) F2 - Ackley (c) F3 - Schaffer N.1

(d) F4 - Himmelblau (e) F5 - Rastrigin (f) F6 - Altered Schaffer N.1

Figure 31: The computational cost of each optimizer for the benchmark problems

What stands out is that the figures show strong resemblances. Prior to the experiment the
expectation was that the ration in computation costs between the different algorithms would be
the same for all benchmark functions, because the mathematical nature of each optimizer stays
constant. This turns out to be true. It is unexpected that, besides ratio, also a strong resemblance
occurs in the numerical values. A reason could be that the evaluation of the objective function
has an insignificant effect on the computational costs.
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4 Simulation and Objective Functions
We conduct experiments to gain insight in the performance of the optimizers to estimate the
track parameters. In this section we discuss the experiments and what kind of results we extract
from these experiments. We repeat the experiments with different objective functions. The
objective functions used are J1, J2 and J3. The objective functions are explained in detail in
this section.

4.1 Experiments
The search space is determined by the railway track parameters. The position of the search
agent within that search space represents a set of railway track parameters. The common factor
of all the experiments is that for each set of railway track parameters an FRF is generated and
compared with the target FRF. We compare these FRF’s in different ways, which results in
three objective functions. Before the objective functions are discussed in detail, it is important
to first understand which data we obtain from the experiments. Within an experiment each
optimizer is called 10 times. For each run we use 20 search agents and 6 iterations. For every
optimizer a lower bound and upper bound is needed to define the search space. For the lower
boundary [1e9, 1e4, 1e7, 1e4] is used and [10e9, 10e4, 10e7, 10e4] for the upper boundary. We
used mostly the default parameters of the optimizers. A detailed sensitivity analysis can be
conducted to tune the algorithms, which is a topic for further research. In the case of PSO, we
tuned the maximum velocity to consider the different order of magnitudes in the search space.
Alternatively, a normalization can be applied before the optimization, which performance can
be analyzed.

4.1.1 Numerical Values and Boxplot

We run each algorithm a total number of 10 times. When the algorithm has completed a run,
there is a best solution. For all the runs we store the fitness score of the best solution. After
the experiment we have an array that contains the fitness score of the runs. As we have seen
in Section 3 the search process involves stochastic elements. We expect that we obtain different
fitness scores each run. We present the performance of the methods in different tables. The
columns of a table include the mean fitness score, the best fitness score, the worst fitness score
and the standard deviation. The numerical results are also visualised with a boxplot. With the
boxplot we can easily compare the optimizers and see which optimizer has the best performance,
for example the best fitness score. Besides the spread of the results could be observed.

4.1.2 Rate of Convergence

It is important to have insight into the rate of convergence of the optimizer. This information is
crucial in choosing the number of iterations and in determining the cost of an optimizer. Within
a run for each iteration the best score is stored in an array. Each experiment consists of 10 runs
for each optimizer. We obtain therefore for each optimizer 10 convergence arrays. These arrays
with the fitness scores of each iteration are plotted against the number of iterations.

4.1.3 Visualisation

In the experiment two methods are used to visualise the iterative process. The first method
makes use of a parallel-data plot. This is a tool to visualise high-dimensional data. In the plot
4 vertical axes are found and each axis represents a railway track parameter. The set of railway
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track parameters can be represented by a line that intersects these 4 axes on specific locations
dependent on the value of that parameter. The lines of the search agents are red coloured and
the target is coloured blue. When the algorithm is applied we can plot a parallel-data plot for
each iteration. With the consecutive plots we can see what the behaviour of the optimizer is and
whether the process converges or not. Another method of visualisation is to plot all the FRF’s
of a specific iteration in the same figure together with the target FRF. In this way we visualise
the search space in terms of the FRF.

4.2 Objective Functions
Objective functions are used to assign a fitness score to the search agents. The goal of the
optimizers is to obtain the best fitness score. In this section the 3 objective functions are
described that we test in the experiments. Each optimizer has the same main parts. There is a
part for agent initialization, where each search agent is put randomly in the search space. There
is also a part where the fitness score of the search agents is evaluated. This part consists of a
nested loop. The outer loop goes through the iterations and the inner loop goes through the
number of search agents. This is where the objective function is called to evaluate the fitness
score.

4.2.1 Objective Function J1

Objective function J1 is the most simple one. Here the target FRF is needed as input, where
FRF (fi) is the value of the target at frequency fi. The FRF of the target is included in the
objective function. The next step is that for a search agent the FRF is simulated. The error is
calculated by summing the absolute differences between the target and the resulting FRF from
the agent in the frequency range between 0 - 12500 Hz. The sum of absolute differences is the
fitness score. In Fig. 32 the steps of the objective function are visualised in a flowchart. In Eq.
13, xk is the search agent k, and FRF

(
xk, fi

)
is the simulated frequency response with search

agent k at frequency fi. Important to note that in the simulation we consider 12801 data points
that are in the range of 0 - 12500 Hz.

J1
(
xk
)
=

12801∑
fi=1

| FRF
(
xk, fi

)
− FRF (fi) | (13)
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Figure 32: The flowchart of J1
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4.2.2 Objective Function J2

Objective function J2 is a more sophisticated version of J1. From the theory we know that the
more valuable information to estimate the railway track parameters is in the frequency range
0 - 3418 Hz. Besides there are frequency ranges of the track resonances which contain the most
valuable information. With this objective function we only look in the frequency range of
0 - 3418 Hz and if the iteration variable of the inner loop is within the frequency range of a track
resonance, the error is multiplied by 100. Before applying this objective function there needs
to be a visual inspection of the target to estimate the ranges of the track resonances. For the
experiments the following ranges are used [20, 120], [350, 600], [600, 900], [900, 1250], [2000, 2700].
Each range has an upper and lower bound of the estimated frequency range of a particular track
resonance. In Fig. 33 the flowchart of the objective function is shown. In Eq. 14 we define J2.
With the symbol k defining the search agents.

J2
(
xk
)
=

3500∑
fi=1

w(fi)· | FRF
(
xk, fi

)
− FRF (fi) | (14)

w(fi) =

{
100 if fi ∈ [20, 120] ∪ [350, 600] ∪ [600, 900] ∪ [900, 1250] ∪ [2000, 2700]
1 otherwise
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Figure 33: The flowchart of J2
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4.2.3 Objective Function J3

Objective function J3 also considers that the first 3500 data points contain more value informa-
tion. In addition we also need a estimation of the TR ranges as input. The key difference is that
the fitness is determined by the x-values of the resonance peaks rather than the y-values. The
goal of the objective function is to minimize the x-distance of the resonance peaks. In Fig. 35
we see two different FRF’s. The objective function is able to find the peaks within the specified
range. It is assumed that the peaks of the evaluation are within the same frequency range as the
target. The objective function find the indices of the resonance peaks. The fitness is obtained by
summing the absolute differences of the index arrays. In Fig. 35 the flowchart of the objective
function is shown. In Eq. 15 we define J3. The variable TRki is the frequency of track resonance
i in the FRF, obtained with agent k. The variable TRi is the frequency of track resonance i of
the target FRF.

For finding the track resonance of the agents, we perform a local search. In this work, we
consider the following ranges: TRk1 ∈ [20− 120]Hz, TRk4 ∈ [350− 600]Hz, TRk5 ∈ [600− 900]Hz,
TRk6 ∈ [900 − 1250]Hz and TRk9 ∈ [2000 − 2700]Hz. We find the resonance frequencies of the
target FRF, TRi within the same frequency ranges.

Fig. 34 shows the target FRF and an FRF from an agent k. We consider the following
values for the track resonances of the target, TR1 = 60Hz, TR4 = 426Hz, TR5 = 700Hz,
TR6 = 1068Hz, and TR9 = 2292Hz. In the case of the agent k, TRk1 = 48Hz, TRk4 = 409Hz,
TRk5 = 638Hz, TRk6 = 953Hz and TRk9 = 2066Hz. The ranges of the local search are important,
as for example in Fig. 34b. We see that the track resonances of TR6 and TR9 are outside the
pre-defined frequency ranges. The algorithm takes the local optimum within the pre-defined
range as optimum. This is more likely to occur when the rail track parameters have a larger
difference compared with the target rail track parameters. More flexible ranges can be considered
for this local search, or alternative methods for identification of resonances.

J3
(
xk
)
=

∑
i∈{1,4,5,6,9}

∣∣TRki − TRi∣∣ (15)

(a) Target FRF (b) FRF of agent k

Figure 34: It is assumed that the peaks of the evaluation are within the same frequency
range as the target. The objective function find the indices of the resonance peaks.
The fitness is obtained by summing the absolute differences of the index arrays
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Figure 35: The flowchart of J3
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5 Experimental Results
The objective functions described earlier are tested in this chapter. We test these objective
functions by applying the optimizers GWO, PSO and GA. The tested objective functions are
J1, J2 and J3. In this section the numerical results are represented in tables and in figures.
The ultimate goal is to estimate the railway track parameters, therefore we have a look at
the optimized railway track parameters in comparison with the target. We also visualise the
convergence process of the optimizers. The multi-dimensional data is visualized by means of
parallel-data plots. In the last subsection the positions of the last iteration from the best-overall
solution of all optimizers of an objective function is put in the other two objective functions.
We do this to gain insight whether a good fitness score with one objective function results
automatically in a good fitness score with the other objective functions.

5.1 Experiment 1
In experiment 1 the performance of objective function J1 is tested.

5.1.1 Numerical results

In this section the numerical results of experiment 1 are presented. The fitness values from the
objective functions, the optimized railway track parameters and the relative differences between
the optimized parameters and the target parameters are shown in Table 16, Table 17 and Table
18.

Table 16: The numerical outcomes of the application of the optimizers on objective
function J1.

J1 Mean Best Worst STD
GWO 8.780e− 8 3.508e− 8 1.374e− 7 2.738e− 8
PSO 1.311e− 7 4.642e− 8 4.523e− 7 1.218e− 7
GA 1.808e− 7 5.722e− 8 4.114e− 7 1.119e− 7

Table 17: The table shows for each optimizer the best optimized parameters. These
parameters resulted in the best finess-score. The first row of the table shows the target
parameters.

Optimizer KP CP KB CB
target 4.300e+ 09 9.750e+ 04 6.00e+ 07 9.400e+ 04
GWO 3.130e+ 09 1.000e+ 05 5.087e+ 07 9.008e+ 04
PSO 3.288e+ 09 7.798e+ 04 5.002e+ 07 8.228e+ 04
GA 2.670e+ 09 9.516e+ 04 4.949e+ 07 9.326e+ 04

Table 18: Relative difference of the estimated parameters compared to the target
parameters for J1

Optimizer KP CP KB CB SUM
GWO 21.2% 10.6% 16.7% 7.3% 55.9%
PSO 23.5% 20.0% 16.6% 12.4% 72.6%
GA 23.4% 6.9% 15.7% 16.4% 62.5%

42



Fig. 36 shows the numerical data visualised with a boxplot.

Figure 36: This figure shows the best solutions from 10 runs with each optimizer
applied on J1. From the boxplot we could determine the best solution and worst
solution within the data set. Besides, the spread in results could be observed. We see
that the results from GWO are less spread than the optimizers PSO and GA

5.1.2 Rate of convergence

In this section we show the convergence rate per optimizer. The rate of convergence is shown in
Fig. 37.

(a) Rate of convergence for GWO (b) Rate of convergence for PSO (c) Rate of convergence for GA

Figure 37: The convergence process of the optimizers applied on J1
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5.1.3 Visualisation

In this subsection the iterative process of the optimizers is visualized. Two different methods
of visualization are applied. The first method is by means of a parallel-data plot. This is
visualization method especially suited for high-dimensional data. In the second method we plot
all the FRF’s of the iteration in the same figure. The agents are colored red and the target is a
coloured blue.

(a) Iteration 1 (b) Iteration 2

(c) Iteration 3 (d) Iteration 4

(e) Iteration 5 (f) Iteration 6

Figure 38: The parallel-data visualization of the GWO optimizer applied on J1
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In Fig. 38 we see the parallel-data visualization of the GWO optimizer applied on J1. Each
red line corresponds with a set of railway track parameters. With this set of parameters we
simulate the FRF in the next figure. In Fig. 39 we see the all the FRF’s for each iteration
plotted in one figure.

(a) Iteration 1 (b) Iteration 2

(c) Iteration 3 (d) Iteration 4

(e) Iteration 5 (f) Iteration 6

Figure 39: The search agents in this figure are colored red and the target in indicated
with blue. In this figure also the GWO optimizer is applied on J1
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In Fig. 40 we see the parallel-data visualization of the PSO algorithm applied on J1.

(a) Iteration 1 (b) Iteration 2

(c) Iteration 3 (d) Iteration 4

(e) Iteration 5 (f) Iteration 6

Figure 40: The parallel-data visualization of the PSO optimizer applied on J1
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In Fig. 41 the FRF’s that are generated from the sets of parameters are shown.

(a) Iteration 1 (b) Iteration 2

(c) Iteration 3 (d) Iteration 4

(e) Iteration 5 (f) Iteration 6

Figure 41: The search agents in this figure are colored red and the target in indicated
with blue. In this figure also the PSO optimizer is applied on J1
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(a) Iteration 1 (b) Iteration 2

(c) Iteration 3 (d) Iteration 4

(e) Iteration 5 (f) Iteration 6

Figure 42: The parallel-data visualization of the GWO optimizer applied on J1

In Fig. 42 and Fig. 43 the iterations are visualised. Here the GA optimizers is applied on J1.
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(a) Iteration 1 (b) Iteration 2

(c) Iteration 3 (d) Iteration 4

(e) Iteration 5 (f) Iteration 6

Figure 43: The search agents in this figure are colored red and the target in indicated
with blue. In this figure also the GA optimizer is applied on J1
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5.2 Experiment 2
In experiment 2 the performance of objective function J2 is tested.

5.2.1 Numerical results

In this section the numerical results of experiment 2 are presented. Fig. 44 shows the numerical
data visualised with a boxplot.

Figure 44: This figure shows the best solutions from 10 runs with each optimizer
applied on J2. From the boxplot we could determine the best solution and worst
solution within the data set. Besides, the spread in results could be observed. We see
that the results from GWO are less spread than PSO and GA

Table 19: The numerical outcomes of the application of the optimizers on objective
function J2

J2 Mean Best Worst STD
GWO 2.161e− 07 3.508e− 08 6.595e− 07 1.346e− 07
PSO 2.700e− 07 4.642e− 08 6.964e− 07 1.908e− 07
GA 2.740e− 07 5.722e− 08 6.512e− 07 1.692e− 07
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Table 20: The table shows for each optimizer the best optimized parameters. These
parameters resulted in the best finess-score. The first row of the table shows the target
parameters

Optimizer KP CP KB CB
target 4.300e+ 09 9.750e+ 04 6.00e+ 07 9.400e+ 04
GWO 4.287e+ 09 7.976e+ 04 6.005e+ 07 9.792e+ 04
PSO 4.225e+ 09 7.493e+ 04 5.988e+ 07 9.172e+ 04
GA 4.345e+ 09 3.899e+ 04 5.761e+ 07 9.742e+ 04

Table 21: Relative difference of the estimated parameters compared to the target
parameters for J2

Optimizer KP CP KB CB SUM
GWO 0.28% 18.1% 0.08% 4.17% 22.7%
PSO 1.73% 23.1% 0.19% 2.4% 27.5%
GA 1.06% 7.6% 3.9% 3.6% 16.2%

The fitness values from the objective functions, the optimized railway track parameters and
the relative differences between the optimized parameters and the target parameters are shown
in Table 19, Table 20 and Table 21.

5.2.2 Rate of convergence

In this section we show the convergence rate per optimizer. The rate of convergence is shown in
Fig. 45.

(a) Rate of convergence for GWO (b) Rate of convergence for PSO (c) Rate of convergence for GA

Figure 45: The convergence process of the optimizers applied on J2
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5.2.3 Visualisation

In this subsection the iterative process of the optimizers is visualized. Two different methods
of visualization are applied. The first method is by means of a parallel-data plot. This is
visualization method especially suited for high-dimensional data. In the second method we plot
all the FRF’s of the iteration in the same figure. The agents are colored red and the target is a
coloured blue.

(a) Iteration 1 (b) Iteration 2

(c) Iteration 3 (d) Iteration 4

(e) Iteration 5 (f) Iteration 6

Figure 46: The parallel-data visualization of the GWO optimizer applied on J2
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In Fig. 46 we see the parallel-data visualization of the GWO optimizer applied on J2. Each
red line corresponds with a set of railway track parameters. With this set of parameters we
simulate the FRF in the next figure. In Fig. 47 we see the all the FRF’s for each iteration
plotted in one figure.

(a) Iteration 1 (b) Iteration 2

(c) Iteration 3 (d) Iteration 4

(e) Iteration 5 (f) Iteration 6

Figure 47: The search agents in this figure are colored red and the target in indicated
with blue. In this figure also the GWO optimizer is applied on J2
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In Fig. 48 we see the parallel-data visualization of the PSO algorithm applied on J2.

(a) Iteration 1 (b) Iteration 2

(c) Iteration 3 (d) Iteration 4

(e) Iteration 5 (f) Iteration 6

Figure 48: The parallel-data visualization of the PSO optimizer applied on J2
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In Fig. 49 the FRF’s that are generated from the sets of parameters are shown.

(a) Iteration 1 (b) Iteration 2

(c) Iteration 3 (d) Iteration 4

(e) Iteration 5 (f) Iteration 6

Figure 49: The search agents in this figure are colored red and the target in indicated
with blue. In this figure also the PSO optimizer is applied on J2
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(a) Iteration 1 (b) Iteration 2

(c) Iteration 3 (d) Iteration 4

(e) Iteration 5 (f) Iteration 6

Figure 50: The parallel-data visualization of the GWO optimizer applied on J2

In Fig. 50 and Fig. 51 the iterations are visualised. Here the GA optimizers is applied on J2.
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(a) Iteration 1 (b) Iteration 2

(c) Iteration 3 (d) Iteration 4

(e) Iteration 5 (f) Iteration 6

Figure 51: The search agents in this figure are colored red and the target in indicated
with blue. In this figure also the GA optimizer is applied on objective function J2
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5.3 Experiment 3
In experiment 3 the performance of objective function J3 is tested.

5.3.1 Numerical results

In this section the numerical results of experiment 3 are presented. Fig. 52 shows the numerical
data visualised with a boxplot.

Figure 52: This figure shows the best solutions from 10 runs with each optimizer
applied on J3. From the boxplot we could determine the best solution and worst
solution within the data set. Besides, the spread in results could be observed. We see
that the results from GWO are less spread than PSO and GA

Table 22: The numerical outcomes of the application of the optimizers on objective
function J3

J3 Mean Best Worst STD
GWO 9.7 4.0 16.0 3.66
PSO 9.4 5.0 13.0 2.53
GA 22.4 7.0 51.0 13.12
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Table 23: The table shows for each optimizer the best optimized parameters. These
parameters resulted in the best finess-score. The first row of the table shows the target
parameters

Optimizer KP CP KB CB
target 4.300e+ 09 9.750e+ 04 6.00e+ 07 9.400e+ 04
GWO 4.233e+ 09 1.000e+ 05 7.057e+ 07 1.00e+ 05
PSO 4.637e+ 09 2.929e+ 04 5.179e+ 07 7.106e+ 04
GA 4.011e+ 09 7.327e+ 04 7.822e+ 07 9.913e+ 04

Table 24: Relative difference of the estimated parameters compared to the target
parameters for J3

Optimizer KP CP KB CB SUM
GWO 4.41% 25.7% 0.48% 6.38% 37.0%
PSO 2.89% 14.5% 5.57% 21.0% 44.0%
GA 4.23% 36.5% 3.4% 1.6% 45.8%

The fitness values from the objective functions, the optimized railway track parameters and
the relative differences between the optimized parameters and the target parameters are shown
in Table 22, Table 23 and Table 24.

5.3.2 Rate of convergence

In this section we show the convergence rate per optimizer. The rate of convergence is shown in
Fig. 53.

(a) Rate of convergence for GWO (b) Rate of convergence for PSO (c) Rate of convergence for GA

Figure 53: The convergence process of the optimizers applied on J3
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5.3.3 Visualisation

In this subsection the iterative process of the optimizers is visualized. Two different methods
of visualization are applied. The first method is by means of a parallel-data plot. This is
visualization method especially suited for high-dimensional data. In the second method we plot
all the FRF’s of the iteration in the same figure. The agents are colored red and the target is a
coloured blue.

(a) Iteration 1 (b) Iteration 2

(c) Iteration 3 (d) Iteration 4

(e) Iteration 5 (f) Iteration 6

Figure 54: The parallel-data visualization of the GWO optimizer applied on J3

In Fig. 54 we see the parallel-data visualization of the GWO optimizer applied on J3. Each
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red line corresponds with a set of railway track parameters. With this set of parameters we
simulate the FRF in the next figure. In Fig. 55 we see the all the FRF’s for each iteration
plotted in one figure.

(a) Iteration 1 (b) Iteration 2

(c) Iteration 3 (d) Iteration 4

(e) Iteration 5 (f) Iteration 6

Figure 55: The search agents in this figure are colored red and the target in indicated
with blue. In this figure also the GWO optimizer is applied on J3
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In Fig. 56 we see the parallel-data visualization of the PSO algorithm applied on J3.

(a) Iteration 1 (b) Iteration 2

(c) Iteration 3 (d) Iteration 4

(e) Iteration 5 (f) Iteration 6

Figure 56: The parallel-data visualization of the PSO optimizer applied on J3
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In Fig. 57 the FRF’s that are generated from the sets of parameters are shown.

(a) Iteration 1 (b) Iteration 2

(c) Iteration 3 (d) Iteration 4

(e) Iteration 5 (f) Iteration 6

Figure 57: The search agents in this figure are colored red and the target in indicated
with blue. In this figure also the PSO optimizer is applied on J3

63



(a) Iteration 1 (b) Iteration 2

(c) Iteration 3 (d) Iteration 4

(e) Iteration 5 (f) Iteration 6

Figure 58: The parallel-data visualization of the GWO optimizer applied on J3

In Fig. 58 and Fig. 59 the iterations are visualised. Here the GA optimizers is applied on J3.
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(a) Iteration 1 (b) Iteration 2

(c) Iteration 3 (d) Iteration 4

(e) Iteration 5 (f) Iteration 6

Figure 59: The search agents in this figure are colored red and the target in indicated
with blue. In this figure also the GA optimizer is applied on J3
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5.4 Comparison of objective functions
The values in Table 25 are obtained by computing the fitness score of the best optimized railway
track parameters for each objective function with the other objective functions.

Table 25: The columns of the table represent the best optimized railway track param-
eters. In the rows of the table the fitness of these parameters is reevaluated with all
the objective functions J1, J2 and J3

Obtained J1 Obtained J2 Obtained J3
Fitness J1 9.992e− 08 1.756e− 05 143
Fitness J2 4.237e− 07 6.269e− 06 21
Fitness J3 4.778e− 07 1.168e− 05 10
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6 Discussion and Recommendations
The objective of this thesis is to find out what the influence is of different evolutionary algorithms
and objective functions on the estimation of railway track parameters. In this study we performed
three experiments with different objective functions. Within each experiment three optimizers
are tested. In this section the results are discussed. The most important characteristics obtained
from the numerical experiments are discussed.

6.1 Rate of convergence
The rate of convergence is defined as the speed with which an optimizer reaches the global
solution. For the experimental results we see that GWO has a high rate of convergence and the
algorithms needs a relative low amount of iterations to reach the global optimum. The rate of
convergence of GA is the lowest compared to the other optimizers. The rate of convergence of
PSO is in between GWO and GA, but tends more to be like GWO. This difference in convergence
rate may be the result of different ways information is shared within a population. This difference
in information sharing originates from the classification of the optimizers. PSO and GWO search
solutions considering the best solutions obtained so far, while GA is an evolution based optimizer
that does not include information about previous performance of an agent.

6.2 Time Performance
The time performance is an important metric to determine the applicability of an algorithm.
The time is measured by making use of the time module of Python, but the results are not
presented. The reason behind this is that only one computer was available for the experiments.
Also, conducting the experiments is computationally expensive, therefore it was necessary to run
the experiments day and night. During the night more processors are available than during the
day when other processes also need computation power. Therefore it was not possible to conduct
the time experiment under the same conditions. This is a topic for further research.

6.3 Numerical results
The purpose of the thesis is to gain insight in which optimizer and objective functions performs
best in estimating the railway track parameters. From the numerical results we can conclude
that the second objective function J2 yields the best results. Within experiment 2 we obtain the
best results with GA. The second best results we obtain with J3, this result is obtained with
GWO. Based on the results we can not conclude that superior results are obtained with a specific
optimizer, but we can conclude that J2 yields the best estimation. It is interesting to look at
the spread of the solutions. The spread of GA solutions is significantly larger than the spread
of PSO and GWO, this means that a larger part of final results is of low quality. From this we
can conclude multiple runs are a larger necessity for GA than for the other optimizers. This is
an important conclusion for the computational costs of parameter estimation.

The relative error of the optimized parameters shows an interesting pattern. We see that the
largest part of the error is caused by the damping of the railpad, CP. A possible explanation for
this is that this parameter has no significant influence on the FRF and is therefore not optimised
and assigned a random value. This is aligned with the findings of [1], where it is discussed that
some track parameters are more easily identified by some track resonances responses than with
others. A more tailored design of the objective function to identify particular parameters might
lead into better solutions. Further research should be done to test this hypothesis.
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Each experiment has been conducted by performing 10 runs. The number of runs is not
sufficient to avoid stochastic influences in the results. 10 runs are performed because more
runs are computationally not feasible to perform on a laptop. In order to improve the results
the experiments should be conducted on a large cluster when we can do ten thousands of runs
instead of 10. To move the experiments to a cluster is something for further research.
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7 Conclusion
The contributions of this thesis are that we have designed a platform in Python to optimize the
railway track parameters. In addition three evolutionary algorithms and three objective functions
have been evaluated for the railway track parameter identification problem. The purpose of the
research is to find out which optimizer and objective function performs best. In the simulation we
yield the best optimized railway track parameters with objective function J2. These results are
obtained with GA. With the other objective functions the optimizer GWO generally performed
best. We have found out that the parameter, damping of the railpad, is hard to optimize. In [1]
we see that this parameter is relatively insensitive. Further research is needed to develop a model
and method capable to better capture the parameters of railpads. Other suggestions for future
research are a sensitivity analysis of optimization parameters to increase the performance of the
optimization. Since the simulations are computationally expensive it is recommended to run a
large number of evaluations on a cluster to avoid stochastic influences on the results. In addition
we could implement other objective functions, such as combinations of J2 and J3 with an inclusion
of logarithm in the error estimation or other ways to weight differently large deviation values.
Also, real-life FRF measurements can be considered as the target FRF, for which new objective
functions that can include stochasticities of the measurements and parameter estimations can be
investigated. Finally, with the developed platform in this thesis, other evolutionary computation
optimizers can easily be tested and compared.
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