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Magnetic resonance electrical properties tomography (MR-EPT) is a technique used to estimate

the conductivity and permittivity of tissues from MR measurements of the transmit magnetic

field. Different reconstruction methods are available; however, all these methods present

several limitations, which hamper the clinical applicability. Standard Helmholtz-based MR-EPT

methods are severely affected by noise. Iterative reconstruction methods such as contrast

source inversion electrical properties tomography (CSI-EPT) are typically time-consuming and

are dependent on their initialization. Deep learning (DL) based methods require a large amount of

training data before sufficient generalization can be achieved. Here, we investigate the benefits

achievable using a hybrid approach, that is, using MR-EPT or DL-EPT as initialization guesses

for standard 3D CSI-EPT. Using realistic electromagnetic simulations at 3 and 7 T, the accuracy

and precision of hybrid CSI reconstructions are compared with those of standard 3D CSI-EPT

reconstructions. Our results indicate that a hybrid method consisting of an initial DL-EPT

reconstruction followed by a 3D CSI-EPT reconstruction would be beneficial. DL-EPT combined

with standard 3D CSI-EPT exploits the power of data-driven DL-based EPT reconstructions,

while the subsequent CSI-EPT facilitates a better generalization by providing data consistency.

KEYWORDS

conductivity, contrast source inversion EPT, deep learning EPT, electrical properties tomography,
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1 INTRODUCTION

Knowledge of in vivo tissue electrical properties (EPs: conductivity 𝜎 and relative permittivity 𝜀r) is of high interest for different applications

such as improving the local specific absorption rate quantification used in, for example, hyperthermia treatment planning or safety assessment

in MRI.1,2 Furthermore, due to the relation between conductivity and ionic content, in vivo measurements of tissue EPs can in principle

provide clinical information about pathological tissues, making them a potentially useful biomarker for diagnostic purposes and treatment

monitoring.3,4

There have been several approaches to measure in vivo tissue electrical properties noninvasively.5,6 In 1991, the possibility of retrieving tissue

electrical properties in the radio-frequency range from MR measurements of the circularly polarized transmit magnetic field
(

B̂+
1

)
has been

shown.7 This technique was referred to as electrical properties tomography (EPT).8,9

Abbreviations used: CSF, cerebrospinal fluid; CSI, contrast source inversion; DL, deep learning; EM, electromagnetic; EPs, electrical
properties; EPT, electrical properties tomography; GM, gray matter; MR-EPT, magnetic resonance electrical properties tomography; RRE,
relative residual error; SNR, signal-to-noise ratio; WM, white matter.
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EPT approaches can be divided into two major categories: direct and inverse methods. Direct methods based on the Helmholtz equation aim

to reconstruct tissue EPs from MR measurements by computing spatial derivatives of the measured B̂+
1

field. However, this operation leads to

severe boundary errors and noise amplification in the reconstructed EP maps.

Inverse methods like contrast source inversion electrical properties tomography (CSI-EPT)10-12 aim to reconstruct EPs by solving a minimization

problem iteratively, where the EP model is fitted to the measured B̂+
1

field. This avoids the need to compute spatial derivatives of measured data,

making these methods in principle more noise-robust. However, these methods are limited by their computational complexity and the need for

EM quantities that are not directly accessible with MRI measurements (such as background fields or transmit phase).8,9 Furthermore, CSI-EPT

reconstructions suffer from artifacts arising from the low electric field strength at the center of a volume transmit coil and local minima, making

CSI-EPT reconstructions dependent upon their initialization.

Recently, a new approach, called deep learning-electrical properties tomography (DL-EPT),13 has been proposed, where the inverse transfor-

mation is learned by means of a convolutional neural network. This method relies purely on measurable MR quantities, making it applicable to

MR measurements. Preliminary results demonstrated the feasibility of this approach, leading to good-quality EP maps. However, the major risk

of DL-based EPT reconstructions is that cases not present in the training set will not be accurately reconstructed. Therefore, exhaustive datasets

are needed in training, increasing the computational load for DL-based EPT methods.

In this work, a two-step approach is proposed, where Helmholtz-based reconstructions (magnetic resonance electrical properties tomography:

MR-EPT) and deep learning reconstructions (DL-EPT) are used as data-driven initializations for 3D CSI-EPT. We show that an accurate

initialization guess provided by DL-EPT improves CSI-EPT reconstructions, while CSI-EPT has the potential to improve tissue structure of DL-EPT

reconstructions.

2 METHODS

2.1 EM simulation setup

Electromagnetic (EM) field simulations were performed using the commercial finite-difference time-domain EM simulation software XFdtd

(Remcom State College, PA, USA). At 3 T a high-pass quadrature birdcage body coil (length 58 cm, diameter 70.4 cm) resonant at 128 MHz was

simulated, surrounded by a shield (length 70 cm, diameter 74.3 cm), while for simulations at 7 T a high-pass quadrature birdcage head coil (length

19.5 cm, diameter 30 cm, similar to the dimensions of the Nova Medical birdcage Tx/Rx head coil) resonant at 300 MHz was used, surrounded by

a shield (length 22 cm, diameter 36 cm). The head of the male human body model (Duke, Virtual Family14) used for these simulations was placed

at the center of each coil and discretized on a 2 × 2 × 2 mm3 grid. For these B̂+
1

field simulations, the object is bounded to the reconstruction

domain (128 × 128 × 56 voxels), to prevent influences from tissues outside the reconstruction domain on the B̂+
1

field.

2.2 Reconstruction approaches

Standard Helmholtz-based MR-EPT, DL-EPT, and standard 3D CSI-EPT using a homogeneous mask as initialization guess were performed as

described below. Furthermore, hybrid reconstructions were performed by providing MR-EPT and DL-EPT reconstructions as initialization guesses

to 3D CSI-EPT.

2.2.1 MR-EPT

The conventional implementation of MR-EPT is based on the Helmholtz equation, given by

∇2B̂+
1

B̂+
1

= −𝜔2𝜇𝜀0𝜀r + i𝜔𝜇𝜎 (1)

with 𝜔 the Larmor frequency (128 or 300 MHz for 3 and 7 T, respectively), 𝜇 the permeability of the tissue, which is assumed to be equal to

that of free space, and 𝜀0 the permittivity of free space. If the left-hand side of Equation (1) is known, the unknown tissue parameters 𝜀r and 𝜎

can easily be extracted from this equation. To compute the Laplacian of the simulated B̂+
1

fields in XFdtd, a large 3D finite-difference kernel is

used (see Mandija et al.15 for its description), since small finite-difference kernels are highly sensitive to spatial fluctuations.15 This approach is

hereafter referred to as MR-EPT.

2.2.2 DL-EPT

Deep learning EPT is a data-driven approach, where a surrogate model based on accessible MR quantities is learnt. Following the procedure

indicated in Mandija et al.,13 1064 unique B̂+
1

fields (56 slices for 19 head models) obtained from realistic EM simulations at 3 T performed in

Sim4Life (ZMT, Zurich, Switzerland) with noise superimposed were used to train the network. The head models were obtained by changing

conductivity and permittivity values of the male (Duke) and female (Ella) human head models from the Virtual Family, and by including geometrical

transformations such as compression/dilatation, rotation, and translation.13 The original Duke model used for testing (56 slices) was excluded



LEIJSEN ET AL. 3 of 7

from training. For these simulations, the same body coil setup as simulated in XFdtd (see Section 2.1) was used. For details on the network, please

refer to Isola et al.,16 while for details on training, validating, or testing please refer to Mandija et al.13 Moreover, this network was trained using

the transceive phase, that is, the combination of the transmit and receive phase, and not using the transmit phase only, since this latter field cannot

be measured in an MR experiment.17 Note that only a deep learning network trained for head models at 3 T is currently available. This network

provides 2D EP reconstructions, and therefore abrupt changes can appear through slices. These reconstructions are referred to as DL-EPT.

2.2.3 H-CSI

Three-dimensional CSI-EPT is an iterative method that minimizes a cost functional based on models of the contrast function �̂� describing the EPs

and the contrast source ŵ = �̂� Ê, where Ê is the electric field strength. The functional that is minimized is given by

F(ŵ, �̂�) = ||�̂�||2

||B̂+;sc
1

||2
+ ||r̂||2

||�̂� Êinc||2
(2)

where �̂� is the mismatch between measured and modeled data, r̂ describes the discrepancy in satisfying Maxwell's equations, and the superscripts

‘sc’ and ‘inc’ denote the scattered and incident part of the EM fields (see Leijsen et al.12 for more details). A conjugate gradient update step is

used for the contrast function to suppress sensitivity to low electric field regions.18 Reconstructions are stopped after 500 iterations or when

the functional has reached a tolerance level of 10−5. These stopping criteria are determined empirically to prevent noise overfitting. They act

like a simple regularizer, but more sophisticated regularization methods, such as multiplicative total variation, can also be implemented in 3D

configurations.10 The EPs are extracted from the real and imaginary part of the reconstructed contrast function. The B̂+
1

fields simulated in XFdtd

were used for standard 3D CSI-EPT reconstructions. For these reconstructions, a homogeneous mask (H) containing the average expected EP

values (𝜎 = 0.53 and 𝜀r = 51 for 3 T reconstructions, 𝜎 = 0.59 and 𝜀r = 43 for 7 T reconstructions) was used as initialization. We refer to these

standard CSI reconstructions as H-CSI.

2.2.4 MR-CSI and DL-CSI

As hybrid approaches, we used the performed MR-EPT and DL-EPT reconstructions as initialization masks for 3D CSI-EPT reconstructions.

Hereafter we call these two hybrid approaches MR-CSI and DL-CSI.

Note that DL-EPT reconstructions are available only at 3 T. Therefore, for DL-CSI reconstructions at 7 T, we also used as initialization step the

DL reconstruction at 3 T.

2.3 Statistic evaluation and constraints

For all these five methods, EP reconstructions are first performed on data with signal-to-noise ratio (SNR) ≈ 1000 by adding Gaussian noise to

the real and imaginary parts of the simulated complex B̂+
1

fields. Then reconstructions are performed for a realistic SNR value as indicated by

Gavazzi et al.19 (SNR ≈ 100). Note that CSI-EPT is based on the scattered field, which produces different effective SNR values at different field

strengths: the SNR of the scattered part of B̂+
1

is 22 at 3 T, while it is 92 at 7 T.

Since EP reconstruction methods may lead to voxels with unrealistic EP values, minimum and maximum constraints were applied to the final

reconstructions, that is, bounding the conductivity in the range [0–2.6] S/m and the permittivity in the range [1–100], where the maximum values

are approximately 20% higher than the maximum EP values present in the ground-truth dielectric models.

For all these reconstructions, mean and standard deviation values were computed in the white matter (WM), gray matter (GM), and cerebrospinal

fluid (CSF) regions as a proxy of accuracy and precision of these reconstruction methods. Moreover, to evaluate the overall reconstruction

accuracy among the investigated EP reconstruction methods, the global relative residual error (RRE) was computed as

RRE = ||x̂ − x̃||
||x̂|| , (3)

where x̂ depicts the true conductivity or relative permittivity and x̃ the reconstructed one, and the norm is the Euclidean norm defined over the

complete domain of interest.

3 RESULTS

Figure 1 shows EP reconstructions at 3 and 7 T for noiseless simulated B̂+
1

data using the standard 3D CSI-EPT (H-CSI) and the two hybrid F1

CSI-EPT approaches (MR-CSI and DL-CSI). All the results are obtained after 500 CSI iterations (taking around 60 minutes on an Intel i7-6700

CPU for this reconstruction domain size), at which point the mismatch functional has decreased to a value of about 5 × 10−5.

At 3 T, H-CSI produces very poor EP maps. The conductivity map shows a smooth reconstruction, with underestimations of the high

conductivity values. The permittivity map shows less of the underlying tissue structure and the white matter region contains clear overestimations.

Furthermore, distorted reconstructions are observed in the center of the object in both EP maps, corresponding to the region with low electric
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FIGURE 1 Reconstructed EP
maps from different EPT
reconstruction approaches for
the male head model at 3 and 7 T
based on B̂+

1
data with an SNR of

1000. A–H, Conductivity. I–P,
Permittivity

FIGURE 2 Reconstructed EP
maps from different EPT
reconstruction approaches for
the male head model at 3 and 7 T
based on B̂+

1
data with an SNR of

100. A–H, Conductivity. I–P,
Permittivity

field strength. For MR-CSI conductivity reconstructions, an improvement is observed, especially at the periphery of the head, that is, away from

the low |Ê|-field region. However, in the low |Ê|-field region (ventricles), conductivity reconstructions are still erroneous. MR-CSI permittivity

reconstructions shows severe distortions throughout the brain, reflecting the severe boundary errors of standard MR-EPT reconstructions (see

Figure S1). The DL-CSI approach shows better tissue reconstructions of the ventricles compared with H-CSI and MR-CSI. They are clearly visible

in both the conductivity and permittivity maps. However, even though the reconstructed DL-CSI EP values are close to the ground-truth values,

small errors arising from the DL-EPT reconstructions used as initialization step (see Figure S1) are visible at the periphery of the head. Note that

the DL-CSI reconstructions presented in this figure assume noiseless data, while DL-EPT reconstructions used as initialization for DL-CSI are

available only for noisy data, since the available neural network was trained only on the noisy B̂+
1

data, to better resemble realistic scenarios from

MR-measurements.

At 7 T, similar results are observed for H-CSI as at 3 T: a smoothed version for the reconstructed conductivity, and overestimations in the

homogeneous WM region for the reconstructed permittivity. Also, the low |Ê|-field region, which at 7 T is located further down compared with

the 3-T case (compare the coronal slices of Figure 1b,j with 1f,n), is clearly visible. MR-CSI at 7 T shows boundary artifacts, which are the result

of the intrinsic errors of MR-EPT at tissue boundaries. However, compared with its initialization (Figure S1), improvements are observed in the

conductivity maps. DL-CSI reconstructions at 7 T (using as initialization DL-EPT reconstructions at 3 T) show higher structure fidelity compared

with DL-EPT reconstructions, especially around the ventricles.

Figure 2 shows reconstruction results when Gaussian noise is present in the B̂+
1

data (SNR = 100). The introduction of noise results inF2

nonsignificant differences for H-CSI reconstructions at both 3 and 7 T. This is in contrast to MR-CSI, for which initialization maps, that is, EP maps

obtained from standard Helmholtz MR-EPT reconstructions, are extremely sensitive to noise (see Figure S1), thus leading to noise-corrupted



LEIJSEN ET AL. 5 of 7

FIGURE 3 Absolute error maps
(ground truth − reconstruction)
of the reconstructions from the
different EPT approaches, for the
Duke head model at 3 and 7 T.
The values in the subcaptions
denote the RRE of the whole
volume. A–J, Conductivity. K–T,
Permittivity. Note that a DL-EPT
network at 7 T is not available
and these reconstructions are
therefore not included

MR-CSI reconstructions at both 3 and 7 T. DL-CSI reconstructions are minimally affected by noise, which leads to slightly higher standard

deviations in permittivity reconstructions for DL-CSI compared with DL-EPT (see Table S1).

In the supplementary material Table S1, the mean and standard deviation values are reported for EP reconstructions in WM, GM, and CSF from

noiseless and noisy data for all the aforementioned methods (MR-EPT, DL-EPT, H-CSI, MR-CSI, and DL-CSI) as a proxy of accuracy and precision.

Figure 3 gives a qualitative impression of the reconstruction errors of the five different reconstruction methods, by showing the absolute error F3

maps for EP reconstructions from noisy B̂+
1

data. For a direct quantitative comparison, the computed RRE in the whole domain is also reported in

the figure for each reconstruction method.

MR-EPT reconstructions show severe errors due to noise amplification in the reconstructed EP maps at 3 T. These errors are reduced for

7-T MR-EPT reconstructions. However, the quality of the reconstructed EP maps still remains poor. DL-EPT reconstructions, available only at

3 T, show good accuracy in homogeneous regions. However, reconstruction errors are present at tissue boundaries, for example, around the

ventricles. H-CSI shows substantial errors arising from the low |Ê|-field region. These errors appear as artificial bands/shadow artifacts, which

are intrinsically caused by the homogeneous initialization. MR-CSI is strongly affected by the reconstruction errors present in MR-EPT, which

is used as an initialization guess. Although the RRE is lower compared with MR-EPT reconstructions, the quality of MR-CSI is still poor. DL-CSI

reconstructions show good-quality EP maps. The combined conductivity and permittivity RRE values of DL-CSI are lower compared with H-CSI at

both 3 and 7 T, showing an advantage in using DL as the initialization guess. Artifacts such as the artificial bands present in H-CSI reconstructions

are highly reduced in DL-CSI. Improvements are also observed with respect to DL-EPT (see Figure S1), especially for conductivity reconstructions

around the ventricles.

4 DISCUSSION AND CONCLUSION

In this article, we investigated the possible benefits for EP reconstructions achievable by combining standard MR-EPT, DL-EPT, and 3D CSI-EPT

(H-CSI) into a hybrid reconstruction approach, that is, by providing MR-EPT or DL-EPT reconstructions as an initialization guess for CSI-EPT.

By doing so, CSI provides data consistency for MR-EPT or DL-EPT reconstructions, that is, the data need to satisfy Maxwell's equations, while

MR-EPT and DL-EPT reconstructions provide, in principle, a better initialization guess for CSI-EPT compared with the standard approach, which

uses a simple homogeneous mask.

Reconstructions obtained with CSI-EPT depend on the map provided as initialization guess. If a homogeneous mask is provided (H-CSI), sharp

tissue boundaries are in principle reconstructed for a noiseless situation only after a larger number of iterations (for example, about 10 000).12

However, for realistic cases including noise, a large number of iterations leads to noise overfitting. To limit this, fewer iterations are performed,

resulting in smoother EP maps. Moreover, H-CSI can converge to suboptimal results, and regions of very low values in the reconstructed EP

maps can occur, even in noiseless cases. It is therefore critical to provide CSI-EPT with a good initialization guess.

If available methods like MR-EPT are used as the initial guess, improvements can be observed in noiseless cases. However, for realistic

scenarios (SNR = 100), MR-EPT reconstructions are severely affected by noise. As shown in this work, this also corrupts MR-CSI reconstructions.

DL-EPT is more noise-robust than MR-EPT, as the adopted network was trained on noisy data. The training of each network takes approximately

5 hours on a GPU NVIDIA Tesla P100 16-GB RAM, while DL-EPT reconstructions can be performed within a minute. An important issue for

DL-EPT is the need for a large training dataset to allow for better generalization, that is, to use DL-EPT for in vivo models that have different

features from the ones the algorithm was trained on. Indeed, initial results for in vivo cases show that geometric variability in training datasets is

a major cause of reconstruction errors for DL-EPT.20 The inclusion of a tissue mask can partly overcome these issues; however, it increases the

chance of overfitting.13 By using CSI-EPT after DL-EPT, data consistency, that is, satisfying Maxwell's equations, is incorporated implicitly in the

reconstruction process by minimizing the error between simulated and measured B̂+
1

, resulting in more accurate conductivity reconstructions at
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3 and 7 T compared with the other methods presented in this work. DL-CSI is able to provide data consistency, which, in principle, can allow

higher fidelity in the reconstructed tissue structures. For permittivity reconstructions, we did not observe a substantial improvement in the

reconstruction accuracy for DL-CSI compared with DL-EPT. Still, DL-CSI reconstructions at 7 T show an improvement compared with DL-CSI

reconstructions at 3 T, indicating the benefit of high field strength MRI for permittivity reconstructions.

A limitation in this work is that DL-EPT reconstructions were not available at 7 T, since the network was only trained on simulated noisy data at

3 T. We believe that by using 7 T DL-EPT reconstructions in the future, DL-CSI reconstructions can improve further due to the higher imprinting

of EPs in the measured fields, leading to higher spatial variations in the B̂+
1

field magnitude and phase with increasing field strength. A weakness

of CSI-EPT is that knowledge of the transmit phase is required, which is not directly available from MRI measurements. For this purpose, the

transceive phase assumption is often applied, but this becomes less accurate at higher field strengths.17 An alternative solution, consisting of an

iterative phase update, has recently been suggested, showing promising results.21 The implementation of this solution for 3D CSI-EPT at high

fields will be the focus of future work. Finally, we note that all the methods discussed could benefit from the inclusion of a segmentation step in

the reconstruction pipeline, since it could help to resolve initialization and boundary issues.

In conclusion, the combination of noise-robust DL-EPT reconstructions and 3D CSI-EPT reconstructions allows, in principle, better general-

ization, since CSI-EPT introduces data consistency for the subject at hand. This might reduce the need for an exhaustive training dataset for

DL-EPT. Meanwhile, using DL-EPT as initialization for CSI-EPT improves the quality and accuracy of standard 3D CSI-EPT reconstructions.
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