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Abstract—Reactionary delays are a critical challenge in airline
operations, especially within hub-spoke networks, where disrup-
tions at spoke airports propagate and amplify throughout the
fleet. Accurate prediction of these delays is essential for effective
network planning, as errors can lead to flight cancellations,
missed connections, and curfew infringements. However, current
state-of-the-art delay prediction models do not fully integrate
all elements that cause reactionary delays and affect subsequent
operations. This study aims to close this gap by using a Graph
Attention Network (GAT) model to predict reactionary delay
distributions within a fleet network and identify the most
critical flights through the analysis of attention weights. Using
operational data from Swiss International Air Lines’ short-
haul fleet, the GAT model integrates node-level features, such
as flight-specific parameters, and edge-level features, including
rotational dependencies and passenger connections, to capture
the spatial-temporal dynamics of delay propagation. The GAT
model achieved reliable predictive accuracy, particularly on
medium-delay days, of a root mean squared error of 15.59
minutes and a mean absolute error of 10.50 minutes. The results
further reveal that the model comprehends the ripple effects
caused by rotation delays. Furthermore, its attention weights
confirm its capability to identify critical flights and connections,
enabling the airline to allocate resources more effectively.

Keywords—Reactionary Delays; Delay Propagation; Graph
Attention Network; Airline Operations; Critical Flights

I. INTRODUCTION

Airline punctuality is critical not only for operational effi-
ciency but also for passenger satisfaction and cost control. De-
lays in air traffic operations can be classified as primary delays
and reactionary delays. Primary delays are initial disruptions
caused by factors such as technical issues, weather conditions,
or air traffic control restrictions. Reactionary delays, on the
other hand, occur when earlier disruptions affect later flights
and can significantly amplify the impact of the initial delay
[1]. In the European air traffic network, reactionary delays
account for approximately 45% of total delays, sometimes
exceeding primary delays in their cumulative effect [2].

Reactionary delays present a unique challenge, especially
within hub-spoke airline networks, where spoke airports can
introduce unpredictable complexities due to arrival delays [3]].
Spoke airports often have limited resources and operational
constraints, making them more susceptible to delays that can
propagate through the network. Hub-spoke networks suffer
more from reactionary delays than point-to-point networks
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because delays originating at spoke airports can quickly
spread to hub airports, which are central nodes connecting
multiple routes [4]. This interconnectedness means that a
single delay in a spoke airport can have a ripple effect, causing
widespread disruptions across the network.

Current state-of-the-art approaches typically focus on esti-
mating departure delays at specific airports, often using the
previous flight’s delay as an input [5]. However, because
actual delays for later flights are unknown earlier in the
day, prediction accuracy decreases over longer time horizons.
To mitigate the effects of reactionary delays, airlines need
predictions that allow sufficient time for operational adjust-
ments. Moreover, many studies lack passenger data, which
is essential for assessing the impact of reactionary delays
on connecting flights. To address these challenges, this study
analyzes the entire short-haul fleet of Swiss International Air
Lines (SWISS), comprising of approximately 350 flights per
day connecting Zurich Airport, the central hub, to numerous
spoke airports across Europe. The dataset includes detailed
flight information such as scheduled and actual arrival and
departure times, minimum ground times, and confidential
connecting passenger data.

This research explores whether a Graph Attention Net-
work (GAT) model can accurately determine reactionary de-
lay distributions within a fleet network, specifically examining
the role that spoke airports play in delay propagation. By
using a dynamic, graph-based model and real operational data
from SWISS, the model can address the complex, real-time
nature of delay propagation, especially in hub-spoke networks
where spoke airports play a critical role. Furthermore, the
attention weights within the GAT model highlight the most
critical flights, offering insights into which connections have
the greatest impact on delay propagation. This interpretability
is important for operational decision-making, as it allows
SWISS to identify and prioritize interventions on key flights
that could mitigate widespread disruptions and improve over-
all network performance.

This paper is structured as follows. Section [l highlights the
current state-of-the-art and the research gap covered by this
work. Section describes the methodology applied in this
study. The results of the GAT model are then presented and
validated in Sections [[V|and |V} respectively. Finally, Sections
and discuss and conclude this work.



II. RELATED WORK

Delay propagation in air traffic networks has been studied
through a variety of methods, ranging from mathematical
and statistical models to machine learning techniques, that
aim to capture the complexity of how delays spread over
interconnected flights. Early mathematical approaches intro-
duced concepts such as the ‘delay multiplier’, which quanti-
fies how an initial delay amplifies throughout the network
[6]. Other techniques employed Monte Carlo simulations,
where statistical distributions capture variability in processes
such as ground operations [3]]. More sophisticated models,
including Delay Propagation Trees and Bayesian Networks,
explicitly account for the non-independent nature of delays.
For instance, a Delay Propagation Tree with a Bayesian
Network (DPT-BN) approach modeled interlinked factors
(i.e., aircraft, crew, and passenger connections) using con-
ditional probability distributions [[7]. Although valuable for
revealing causal relationships, many of these mathematical
and statistical models are typically validated on a limited
number of datasets or restricted operational scenarios, which
hinders their generalizability.

Statistical methods such as regression analysis and time-
series forecasting have provided additional insights into delay
patterns. For example, linear regression models have been
used to link early delays to subsequent disruptions at air-
ports [8]], while Granger causality and its refinements enable
the construction of Delay Causality Networks (DCNs) that
track how delays flow between airports [9]], [10]. However,
these methods frequently overlook real-time and dynamic fac-
tors such as evolving weather conditions or peak operational
periods, limiting their practical applicability.

With increased computational power, machine learn-
ing (ML) methods have gained traction. Gradient Boost-
ing Decision Trees (GBDTs) and Random Forests excel at
capturing non-linearities in large datasets [11]], and have
been used by organizations like EUROCONTROL to improve
arrival time predictions [5]. Although these approaches of-
ten show strong performance close to the departure time,
their accuracy typically diminishes for longer prediction
horizons. Deep learning models, including LSTM, Recur-
rent Neural Networks (RNNs) [12], and Graph Neural Net-
works (GNNs) [13]], further exploit spatial-temporal depen-
dencies. For example, LSTM-based methods forecast delays
for specific look-ahead intervals, while graph-based archi-
tectures such as the Spatial-Temporal Gated Multi-Attention
Graph Network can anticipate delays across wide airport net-
works [14]. Despite these advancements, most deep learning
models are still primarily validated on historical datasets and
rarely incorporate real-time data streams or airline-specific
resource constraints, such as crew or passenger connections.

As a result, several gaps persist in literature. Access to
detailed passenger connection data is frequently restricted,
limiting the ability to fully capture how delays ripple across
flights. Many studies focus on U.S. air traffic data, leav-
ing European or other regional networks underrepresented.
Moreover, although multiple causal factors, such as aircraft,
crew, and passengers, are known to contribute to delays, they

are rarely modeled together. Lastly, a persistent challenge
lies in dynamically updating predictions in real-world opera-
tions, where conditions like weather and congestion fluctuate
quickly.

This research addresses these limitations by adopting a
GAT model capable of dynamically capturing both the impor-
tance and evolving relationships of interconnected flights. In
contrast to traditional Graph Convolutional Networks, which
treat all connections with static weights, a GAT model contin-
uously adjusts the relevance of flight-to-flight connections and
can more effectively leverage edge features. This approach
enables the model to better reflect changing conditions within
the network and accurately predict how delays propagate. By
identifying the flights and connections that have the greatest
impact on cascading delays, the proposed research aims to
improve the resilience and efficiency of airline operations.

III. METHODOLOGY

GATs are inherently complex, making it crucial to thor-
oughly understand their architecture in order to effectively
comprehend their functionality and identify appropriate ap-
plications. To present the methodology used in this study,
Section [lII-A] introduces the GAT model, and its architecture
is discussed in Section A description of the model
training procedure, along with the tuned hyperparameters, are

included in Sections and [[II-D} respectively.

A. Problem Definition and Graph Representation

The problem of predicting flight delay propagation is
formulated as a graph-based problem where each flight is
modeled as a node, and the relationships between flights (such
as connections and rotations) are represented as edges. Let
G = (V, E) be a directed graph where:

e V = {v1,v,...,0,} represents the set of flights, with

each node v; corresponding to a unique flight.

e E = {e;;} represents the set of edges, where an
edge e;; exists if flight v; is connected to flight v;
through passenger connections, crew rotations or aircraft
rotations.

This is visually represented in Figure[I} Each node v; is asso-
ciated with a feature vector h; that includes both categorical
and numerical attributes related to the flight. Similarly, each
edge e;; is associated with a feature vector e;;, capturing the
relationship between connected flights.

Each component of the GAT model utilizes specific node,
edge, and graph features to capture complex relationships
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Figure 1: Illustration of the flight network, showing nodes
(flights), edges (connections), and their interdependencies.



within the network. Table [I] displays the features associated
with each node-level feature vector h;. Table [[] lists the
features associated with each edge-level feature vector e:j
for connections between nodes 7 and j. Graph-level features,
shown in Table characterize the entire graph. It was
decided to include the day and month as graph features to help
the model capture seasonal patterns and daily trends affecting
flight delays.

TABLE 1. Features for Flight Nodes

Features Type

Aircraft type Categorical
Departure airport Categorical
Arrival airport Categorical
Delay codes Categorical

Estimated time of departure (ETD)
Scheduled departure time
Scheduled arrival time

Actual departure time

Actual arrival time

Flight distance

Number of passengers

Numerical (time)
Numerical (time)
Numerical (time)
Numerical (time)
Numerical (time)
Numerical

Numerical

TABLE II. Features for Flight Edges

Features Type

Connection type Categorical

Flight number Numerical
Number of connecting passengers Numerical
Destination Categorical
Airport capacity Numerical
Number of connections per class Numerical

Connecting time

Minimum connecting time

Minimum ground time

Number of HON and Senator members
Number of wheelchair passengers

Numerical (minutes)
Numerical (minutes)
Numerical (minutes)
Numerical
Numerical

TABLE III. Graph-Level Temporal Features

Features Type
Day Numerical (time)
Month Numerical (time)

B. Model Architecture

The GAT model leverages multi-layer attention-based
graph convolutions to predict arrival times by learning from
the relationships and dependencies among flights. The model
is implemented using the PyTorch Geometric library, with
three attention layers that progressively refine the node-level
embeddings through neighborhood aggregation. The architec-
ture of the model has two primary components.

1) Attention Mechanism: The first layer in the model ap-
plies the graph attention mechanism, which assigns attention
coefficients o;; to each edge e;; between a node wv; (the
target node) and its neighboring node v;. These coefficients
quantify the importance of neighboring nodes in determining
the representation of a target node. The attention coefficients
are computed as follows:

B exp (LeakyReLU (a' [Wh;||[Wh;]))
= Trents o5 (LeakyReLU (a” [Wh[Why])

ey
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where a is a weight vector, W is a learnable weight matrix,
N (i) denotes the neighbors of node i, and | represents
concatenation. These coefficients determine the influence of
neighboring nodes on the target node during the aggregation
process. The LeakyReLU activation function introduces a
small, non-zero gradient for negative input values, allowing
the model to retain information from these inputs rather than
setting them to zero.

2) Layers: Following the attention mechanism, two Graph
Attention Convolutional (GATv2Conv) layers are used to
further refine the node embeddings. These layers continue
aggregating information from neighboring flights using the
learned attention weights, improving the expressiveness of
each flight’s representation:

B =0 Y aywOn) )
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where [ indicates the layer number, o is a non-linear activation
function, and c;; are the attention weights from the previous
layer. The final layer of the network is a linear layer that
maps each node’s final embedding to a predicted arrival time
tAami for each flight v;.

C. Training

The GAT model is trained using historical flight data from
SWISS, covering the period from January 1% to September
30" 2024. This dataset includes detailed records of flight
schedules, actual departure and arrival times, delay codes, and
various other flight-related features. Based on this historical
data, the model is tasked with learning to predict delay
propagation. Furthermore, the dataset is pre-processed to
encode temporal features using trigonometric functions to
capture their cyclical nature. Both node and edge features
are normalized to improve training stability.

D. Hyperparameter Optimization

A three-layer GAT architecture was found to provide good
prediction abilities whilst not overfitting. Each layer has
progressively fewer attention heads in each subsequent layer
to refine relational patterns. Moving from two to three layers
improved the model’s ability to capture complex dependen-
cies, while a fourth layer led to overfitting. Weight decay
was omitted to enable more flexible parameter tuning, and a
dropout rate of 0.1 was used to mitigate overfitting without re-
stricting the model’s adaptability. The final hyperparameters,
shown in Table achieved the best balance of performance
and generalization.

TABLE IV. Hyper-parameter Fine-tuning

Hyper-parameter Value(s) Optimum
Batch Size 1 - 100 10

Epoch 100 — 1000 500
Drop-out 0.1 -0.6 0.2
Learning Rate 0.001 - 0.1 0.002
Number of Layers 1,2,3,4 3




IV. RESULTS

This section presents the model’s training and testing
performance, along with evaluation metrics such as RMSE
and MAE to assess prediction accuracy. Through an analysis
of loss curves (Subsection , RMSE, MAE, and MAPE
(Subsection [[V-B)), the model’s generalization capability and
its effectiveness across different delay scenarios is assessed.
Finally, in Subsection [[V-C| feature importance is analyzed.

A. Training and Testing Performance

The training loss, in Figure [2] decreases rapidly and sta-
bilizes at 0.0702 by epoch 1000, indicating effective pattern
capture without overfitting. The test loss, in Figure [2] follows
a similar trend and stabilizes at 0.0071, which is lower
than the training loss, suggesting robust generalization and
potentially lower test data complexity. Overall, these results
confirm that the chosen architecture and hyperparameters are
effective and reliable for predictions on new data.
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Figure 2: Loss curves

B. Performance Measures

The Root Mean Squared Error (RMSE), Mean Absolute
Error (MAE), and Mean Absolute Percentage Error (MAPE)
metrics are used to assess model performance. For the vali-
dation dataset, these metrics indicate prediction errors across
all flights, representing overall accuracy for the entire day
before each flight day begins. Both RMSE and MAE are
approximately 16.35 minutes, suggesting a consistent error
margin. The low MAPE of 2.61% implies a strong alignment
between predicted and actual arrival times.

[Table V] displays the performance of the GAT model across
various delay day categories. The model achieves the highest
accuracy of 85.7% on medium delay days, likely due to
the large number of medium delay examples in the training
dataset. In contrast, low delay days exhibit lower accuracy
as a result of their scarcity, while high delay days remain
inherently challenging to predict, exhibiting the highest errors
with an accuracy of 31.7%. Moreover, the RMSE consistently
exceeds the MAE across all categories, highlighting the
influence of outliers on performance metrics.

TABLE V. Performance Metrics by Delay Day Category

Test Days MAE [min] RMSE [min] Accuracy
High delay days 27.39 37.56 31.7%
Medium delay days 10.50 15.59 85.7%
Low delay days 13.45 23.90 72.3%
All test days 16.30 26.52 65.3%

C. Feature Importance

GNN Explainer provides interpretability for GNNs by iden-
tifying important substructures and features that contribute
most to a model’s predictions [15]. displays the
average importance of each node feature across samples. The
ground time and total number of passengers are identified as
having the highest influence on arrival predictions. This aligns
with operational patterns where increased passenger counts
and ground handling requirements are known contributors to
delays. Additionally, the departure airport also scores highly,
indicating that certain airports, such as high-traffic hubs,
may be more susceptible to delays. In turn, scheduled time
represented by the encoded values for both scheduled arrival
and departure times hold moderate importance. These features
capture daily and weekly cycles, such as peak travel hours,
that can influence delay likelihood.

Regarding the edge features in rotation connec-
tions show notably higher importance than passenger connec-
tions, reflecting the impact of consecutive flights sharing the
same aircraft: if an earlier flight is delayed, the subsequent
flight using that aircraft is likely delayed as well. This
strong dependency underscores the importance of aircraft

Figure 3: Average node feature importance across samples

Edge Feature Name

Figure 4: Average edge features importance across samples
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Figure 5: Error vs Departure airport

rotation, as disruptions in one segment can cascade into
subsequent flights. According to the GAT model, passenger-
related features, such as the number of economy passen-
gers (i.e., EcoMaxPax, EcoPax) and group sizes, demonstrate
moderate importance in delay predictions. Interestingly, the
model assigns relatively high significance to the number of
first-class passengers, possibly reflecting operational factors
linked to premium travelers.

Special service features, such as wheelchairs and unac-
companied minors, also appear to have low importance.
However, this does not necessarily imply irrelevance for
delay predictions; their limited frequency (around 10% for
wheelchairs and 5% for unaccompanied minors) may con-
strain the model’s ability to capture their effects on network-
wide delays. Finally, minimum connection time demonstrates
moderate importance, indicating that short connection win-
dows raise the likelihood of delays if disruptions occur at
any point in the network.

V. VALIDATION

This section further elaborates on the results previously
presented to assess the quality of the model. Section [V-A]
presents the error per airport, followed by Section [V-B] which
investigates the model’s understanding of delay propagation.
Section compares the results obtained with a baseline
model, where XGBoost is used to predict arrival times on
a per-flight basis before the start of the day. Section [V-D|
presents unforeseen cases that the model cannot predict and
Section [V-E] evaluates the attention weights generated by the
model. It is important to note that, to protect confidentiality,
all flight numbers and airport codes (except ZRH, the SWISS
hub) have been altered and assigned random values.

A. Error vs Departure Airport

An analysis of error versus departure airport, as seen in[Fig-]
illustrates the geographical influence on model predic-
tions. Each airport reflects a unique operational environment,

with variability in delays likely influenced by factors such as
airport size, congestion levels, and connectivity. For instance,
larger international hubs, such as CDG, exhibit higher error
margins, potentially due to the greater complexity associated
with larger volumes of connecting passengers and intricate
scheduling interdependencies. This further strengthens the
idea that airport-specific features are crucial to understanding
the model.

When comparing to the historical delay average per airport,
it was observed that the model has a tendency to overpredict
delays. The model performs with varying accuracy across the
airports, reflecting their unique delay patterns. For example,
FCO exhibits a median error of approximately 20 minutes,
with whiskers extending up to 90 minutes, reflecting high
variability in prediction accuracy. This variability aligns with
FCO’s historical delays, which are generally low but can span
a wide range. Occasional overpredictions appear to contribute
to FCO’s unpredictability in delay increases.

In contrast, AMS demonstrates a clear pattern of adapt-
ability. With a median error of approximately 10 minutes, its
stable historical delay profile, characterized by low median
delays and narrow variability, is clearly reflected in the
prediction error. This performance indicates that the model
operates efficiently in environments with predictable delays
while consistently achieving low error rates without frequent
overestimates. Overall, airports with consistent delay patterns,
such as AMS and BHX, demonstrate lower prediction errors,
whereas airports with more unpredictable delays, like FCO
and CDG, experience a higher frequency of overpredictions.

B. Propagation Delay

The GAT model attempts to detect how a delay in one flight
can ripple through subsequent connections. By predicting
arrival times and comparing the model’s output with actual
delay propagation, this section examines whether the GAT
model can effectively predict these cascading delay effects.
The delay propagation curves provide a side-by-side compar-



ison of real and predicted delays for individual aircraft, with
red indicating actual delay propagation and blue representing
the model’s predictions. These predictions are generated by
running the model at 02:00 UTC.

Certain aircraft, such as Aircraft A (Figure 6), demon-
strate a strong alignment between predicted and actual delay
patterns, indicating that the GAT model effectively captures
propagation in these cases. The model’s predicted curve
closely follows actual fluctuations throughout the day, sug-
gesting it has learned the sequence of dependencies between
flights. Similarly, for Aircraft B (Figure 7)), the predicted delay
curve follows the real trajectory, underscoring the model’s
ability to track delay fluctuations and identify dependency
patterns in a structured network. Although the GAT captures
the overall propagation trend, it does not fully match the
magnitude of the actual delay, illustrating a limitation while
still reinforcing the model’s capability to represent critical
relationships driving delay propagation.
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Figure 7: Aircraft B

However, not all cases display such alignment. In [Figure 9]
the GAT model’s predictions remain relatively flat compared

to the pronounced peaks in the real data, suggesting com-
plexities in Aircraft D’s flight connections or rotations that
the model cannot fully capture. Similarly, for Aircraft C in
the predicted delays do not closely track the real
propagation pattern, particularly at the beginning. This gap
could imply that the model’s graph structure struggles to
generalize to aircraft with less predictable or atypical patterns
of delay propagation.

These inconsistencies reveal that while the GAT model may
perform well in certain structured network scenarios, it may
lack the versatility required to accurately model propagation
for more irregular cases, potentially due to limited informa-
tion or insufficient representation of key operational features
within the dataset.
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Figure 9: Aircraft D

C. Comparison with Baseline Model

The GAT model is evaluated against the existing approach
used by SWISS for arrival time prediction. The current model
employs XGBoost, a gradient-boosting framework optimized
for efficiency and performance, to predict arrival times per



flight before the start of the day. XGBoost uses a set of
features primarily related to each flight’s structural charac-
teristics, as detailed in Table and relies on a more limited
feature set compared to the GAT model. This analysis inves-
tigates how the additional features used by the GAT model
and its graph-based approach lead to potential performance
improvements. The models also differ in feature handling;
the GAT model does not include average ground time or
maximum ground time, and it does not explicitly represent
features such as ground time before a flight or the number
of flights without a break as node or edge attributes. Instead,
the graph structure implicitly captures these elements through
the connections and interactions between flights, effectively
leveraging relational and temporal dependencies.

The baseline model’s feature importance, in Table @
has a strong reliance on temporal and structural character-
istics. Departure time of day ranks highest, likely reflecting
congestion patterns. Departure airport and previous ground
time also score highly, emphasizing the influence of origin-
specific factors and prior schedules. Additional features, such
as departure month, city pair, and turnaround metrics, capture
seasonal, route-specific, and operational considerations. Com-
paring the GAT and SWISS models reveals that both assign
high importance to scheduled and actual departure times,
along with the departure airport. However, the GAT model
also emphasizes total passenger count, a feature absent in the
SWISS model. Furthermore, while the SWISS model treats
departure month and day as categorical variables, the GAT
model integrates these time-based factors within its graph
structure.

[Table VTI| shows that both the SWISS and GAT models
yield nearly identical RMSE performance in predicting ar-
rival times, with minimal day-to-day differences. The RMSE
values indicate similar accuracy levels, with each model oc-
casionally showing a marginal advantage, and the consistent
standard deviation suggests comparable variability in predic-
tion errors. These results imply that the additional complexity
of the GAT model’s graph-based features does not translate
into a significant performance improvement over the XGBoost
model, suggesting that the current feature set already captures
the essential dynamics for accurate prediction.

The comparison between the GAT and SWISS models
reveals differences in error evolution throughout the day. As
shown in Figure the SWISS model exhibits lower error

TABLE VI. Features for the Baseline Model

Features Type

Departure time of day (min) Numerical (time)

Minimum ground time Numerical
Ground time before flight Numerical
Maximum ground time Numerical
Average ground time Numerical
Departure month Categorical
Number of flights without break Numerical
Off-block to on-block time (scheduled) Numerical (time)
Departure weekday Categorical
City pair Categorical
Departure airport IATA code (scheduled) Categorical

TABLE VII. RMSE Comparison between Baseline Model and
GAT Model by Day

Date SWISS Model (RMSE + SD) GAT Model (RMSE + SD)

22-10-24 17.52 + 12.06 17.18 + 10.50
23-10-24 18.28 + 13.00 16.98 + 11.63
24-10-24 18.03 + 13.18 17.77 £ 11.94
25-10-24 18.72 £ 12.76 17.76 £ 11.95
26-10-24 27.88 + 22.39 18.95 + 12.65
27-10-24 22.77 + 16.43 2293 + 15.01
28-10-24 20.55 + 14.69 21.15 + 13.34
29-10-24 18.03 + 13.12 22.78 + 14.08
30-10-24 19.35 + 13.76 2198 + 13.72
31-10-24 16.30 + 10.05 19.98 + 13.17

during earlier time blocks but shows increasing error as the
day progresses, suggesting that accumulating delays or grow-
ing network complexity impact its performance. In contrast,
the GAT model maintains a more stable error across all time
blocks, indicating consistent handling of various operational
conditions. On some days, one model consistently does better
throughout the day, or their performance converges, indicating
that external factors (e.g., traffic patterns, network congestion)
impact their effectiveness.
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== SWISS Model
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Figure 10: Comparison of SWISS (Baseline model) and GAT
Model on 22-10-2024

Examining [Table VII| alongside the average daily delay
and its variability reveals a correlation with the performance

differences between the SWISS and GAT models. On days
with higher average delays and greater variability, the GAT
model outperforms the SWISS model significantly, likely
owing to its ability to capture complex interdependencies
through graph-based features. On days with lower average
delays, the SWISS model performs better, suggesting that its
simpler structure is more effective under stable, low-delay
conditions. When delays are moderate and variability is low,
both models achieve comparable performance. These findings
underscore the influence of delay distribution characteristics
on model effectiveness.

D. Unforeseen Events

Predictive models, such as GATs, offer potential solutions
by forecasting delays based on historical data and flight
interdependencies. However, irregular and unforeseen events,
such as Aircraft on Ground (AOG) incidents, pose significant
challenges. Over a 21-day period, 392 heavily delayed flights



(delays greater than 45 minutes) were recorded, including 40
AOG cases—averaging 1.9 per day.

One such incident involved a technical failure at Zurich air-
port, where a grounded aircraft caused the cancellation of its
rotation and delays across three downstream flights. Despite
the disruption, the model underpredicted the resulting delays,
suggesting its difficulty in accounting for such abrupt, pattern-
breaking events. On average, each AOG incident impacts
approximately 3.5 other flights, amplifying the disruption
within the flight network.

Delays can be attributed to various causes beyond AOG
incidents. As shown in these include technical
failures, operational disruptions, and external factors. For
example, a baggage sorting system failure combined with
adverse weather at the destination led to a departure delay
in Zurich, which in turn caused a rotational delay for a
subsequent flight. Such events, including equipment malfunc-
tions not addressed by routine maintenance and unscheduled
crew shortages, present significant challenges to the model’s
predictive accuracy. External factors such as weather, strikes,
and ground handling also contribute to sporadic and difficult
to foresee disruptions. As these events require immediate
operational responses, the GAT model’s reliance on historical
patterns may prove insufficient, limiting its predictive power
in real-time, random disruption scenarios.

TABLE VIII. Distribution of Delay Reasons

Delay Reason Number of Flights

AOG (Aircraft on Ground) 40
Technical Issues (Code 89) 50
Flight Operations & Crew (Code 81) 25
Immigration, Customs, Health (Code 84) 15
Weather (Codes 63f, 13) 10
Industrial Action (Code 16¢) 5
Ground Handling (Codes 65, 83) 5
Air Traffic Control (Code 39b) 3
Others 14
Total 132

This analysis underscores the limitations of the GAT model
in forecasting delays caused by unforeseen and irregular
operations. In particular, AOG incidents and technical issues
accounted for a notable portion of high-delay flights, yet the
model consistently underpredicted the delays for these cases.
Across the 40 AOG flights, the model’s predicted delays were,
on average, 36 minutes lower than actual delays. These factors
significantly contribute to overall flight delays, yet their
random, sudden nature makes them difficult to anticipate.
Understanding the frequency and impact of these events is,
therefore, critical for enhancing operational resilience and
refining flight delay prediction models.

E. Attention Weights

The GAT model’s attention weights provide insight into its
internal prioritization by identifying significant connections
within the flight network. Although some patterns are clear,
others remain less straightforward. A recurring theme across
datasets is the high attention weights assigned to ‘first flights
of the day’. These flights initiate the day’s rotation cycle,

and because early delays can propagate through subsequent
connections, a phenomenon known as the snowball effect, the
model inherently recognizes their operational importance.

To further analyze how the model evaluates flight im-
portance, the “first flights of the day” are excluded, and
the subsequent flights with the highest attention weights are
examined. In Table these flights are compared with the
priority flights designated by SWISS based on connectivity,
passenger load, and operational impact. This comparison mea-
sures the extent to which the model’s prioritization aligns with
the decisions from an operational perspective. For example,
Flight 6081 receives a high attention weight, likely because of
its numerous connections or its proximity to high-passenger
hubs. Delays on such flights may disrupt direct connections
and lead to misconnections for many passengers, emphasizing
their operational importance. The attention mechanism also
identifies flights operating within tightly packed rotations. For
instance, Flight 9123 (Figure follows a dense schedule
with minimal ground time, leaving little margin for delay re-
covery. These flights, particularly those with short turnaround
times at busy airports, are highly sensitive to even minor
disruptions. The model assigns them higher attention due
to their tight schedules and the potential impact on overall
network performance.

Some flights, such as 24264 and 3142 (Table , receive
high attention weights even though they do not appear im-
mediately critical. This observation raises questions about
the model’s internal criteria. These flights may have histor-
ical patterns of delays or incidents that result in elevated
attention weights. Alternatively, their roles within specific
rotation cycles may render them more sensitive to disruptions
than initially apparent. For example, a flight connecting a
secondary hub or providing a special service may have a
delay history that propagates disruptions, leading the model
to prioritize it. Additionally, flights such as 24264 may have
fewer connections yet remain significant because of their ge-
ographical locations. The model may recognize dependencies

TABLE IX. Highest Attention Weights for 25/10 (Excluding
Initial Flights of the Day)

Flight Attention Criticality Origin Destination Edges
24264  0.999896 Moderate KXP GVA 2
6081 0.999404 High HFR ZRH 17
16072 0.999269 High DXB ZRH 18
3142 0.999115 Moderate MQT GVA [§
810 0.999090 High TRN ZRH 22
5179 0.998873 Moderate ZRH FzZYy 2
16632 0.998140 Low GVA IMC 1

TABLE X. Lowest Attention Weights for 04/11 per node

Flight  Attention Criticality Origin  Destination = Edges
6912 0.055620 Low ZRH WBT 8
822 0.068699 Low ZRH TRN 2
19166  0.104608 Moderate ZRH XTR 2
3118 0.106501 Moderate ZRH MQT 7
2885 0.112978 Low ZRH MQF 3
2084 0.115062 Moderate ZRH LHT 4
2893 0.116590 Moderate MQF ZRH 15
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Figure 11: Rotation of critical Flight 9123 (green represents scheduled and gray actual times)

on these flights, especially if delays on these routes affect
subsequent rotations involving more critical hubs.

The flights with the lowest attention weights in
demonstrate the GAT model’s focus on connectivity over
other operational features. For instance, the 2084-2091 ro-
tation was flagged as a priority by SWISS due to Flight
2091’s international group connections. However, the GAT
model assigns it low importance because it does not account
for the critical nature of large passenger volumes connecting
to international flights at the end of the day. Flight 19166
is classified as semi-critical because its paired flight has five
international connections with short layovers, necessitating a
high-speed rotation. Similarly, flight 822, also semi-critical,
operates within a tightly packed schedule with minimal
ground-time buffers. These examples further highlight the
GAT model’s emphasis on the number of connections rather
than on passenger metrics or schedule tightness.

In conclusion, the model’s high-attention nodes reveal a
notable trend: flights with high connectivity (i.e., multiple
connections or groups of connecting passengers) frequently
receive elevated attention scores. For instance, flights with
numerous connections to major hubs (e.g., ZRH) or closely
packed rotations often appear in the top ranks. This focus
aligns with operational intuition, as these flights represent
points in the network where disruptions could cascade, im-
pacting large numbers of passengers and subsequent flights.
Additionally, flights identified as ‘Priority flights’ by SWISS
generally appear within the high-attention subset, indicating
a strong alignment between the model’s attention outputs and
established criticality metrics.

VI. DISCUSSION

The GAT model has shown notable strengths in predict-
ing delay propagation within typical operational conditions,
particularly for flights with high connectivity and consis-
tent scheduling patterns. By effectively capturing network
dependencies, the model leverages relational data to anticipate
how delays may affect connected flights. The model’s use of
attention weights is effective in identifying flights essential
for maintaining network stability, such as those that have
numerous connections. This capability to discover key flights
highlights the potential of the GAT model in detecting flights
that could significantly impact the fleet network if delayed.

However, the GAT model encounters limitations when
tasked with predicting irregular delays caused by unexpected
factors, such as technical issues, crew shortages, or sudden
weather changes. Such cases often lack the predictability the
model depends on, revealing a gap in its ability to general-
ize to less predictable events. Although the model captures
dependencies within the flight network, it relies heavily on

historical data patterns, which limits its adaptability in real-
time, unexpected scenarios.

When compared to SWISS’s XGBoost model, the GAT
model exhibited comparable RMSE values across test days,
with both models performing well under typical operational
conditions. However, the GAT model showed a distinct ad-
vantage in scenarios involving cascading delays, achieving
an RMSE of 18.95 minutes compared to the SWISS model’s
27.88 minutes on a particularly challenging operational day.
This highlights the advantage of using a graph-based approach
to capture interdependencies between connected flights more
effectively than purely gradient-boosting models. Conversely,
the SWISS model outperformed the GAT model on days
with lower average delays, achieving an RMSE of 16.30
minutes compared to the GAT model’s 19.98 minutes on an
operationally stable day. This suggests that while the SWISS
model remains efficient for typical day-to-day operations, the
GAT model performs better in predicting networked delays
that propagate across multiple connections.

Additionally, the GAT model’s performance aligns with and
surpasses other models from existing research used in delay
prediction for long-term prediction (before day of operations
begins). For instance, Random Forest models applied to
Colombia’s airport network achieved an RMSE of 33.8 min-
utes [11]], and MSTAGCN models on the U.S. airport network
yielded 30.7 minutes [14]. By comparison, the GAT model’s
RMSE of 15.59 minutes on medium-delay days underscores
its ability to adapt to the complex dynamics of European
airline networks. However, the model does not outperform
specialized sequential prediction models, such as LSTMs,
which achieve RMSE values between 6.31 and 7.73 minutes
for short look-ahead predictions [[12]]. However, these models
lack the GAT model’s comprehensive understanding of the
network structure of flights and, hence, are not appropriate
for modeling delay propagation across interconnected flights.

The attention mechanism embedded in the GAT model has
proven insightful for identifying flights with high operational
impact. The model often assigns higher attention weights to
flights that influence network stability, such as those initiating
daily operations or involving significant passenger connec-
tions. This alignment with operational priorities underscores
the relevance of the model’s attention outputs in highlighting
flights where delays may propagate widely through the net-
work. Moreover, Zurich and Geneva emerge as critical nodes
within the network, reinforcing the central role of these hubs
in maintaining operational efficiency. Outliers, meaning non-
critical flights receiving unexpectedly high attention weights,
suggest that the model might identify unquantified operational
risks or factors not currently captured by the priority flights.

Lastly, the model’s performance is influenced by the quality
and scope of available data, including the absence of real-



time operational data, such as maintenance records and up-
dated crew rotations. The lack of this data may restrict the
model’s ability to adjust dynamically to evolving operational
conditions. Consequently, this limitation may partly explain
discrepancies between predicted and actual delays in certain
flights or aircraft types with atypical schedules. Expanding
the model’s data inputs to incorporate weather forecasts and
maintenance data could enhance its predictive accuracy and
allow for more adaptive responses in future applications.

A. Future Work

Building on the GAT model’s strong performance, a key
area for improvement is integrating real-time operational data,
such as maintenance checks, crew rotations, and detailed
weather forecasts. This would allow the model to update
dynamically rather than relying solely on historical patterns,
reducing prediction gaps in rapidly changing conditions.
Adding airport-specific features, such as runway capacity,
ground congestion, and metrics like transfer passenger vol-
umes, would further refine predictions by capturing each air-
port’s unique operational context. Incorporating maintenance
details, like fleet age and the frequency of technical checks,
could also enhance reliability, especially for older aircraft that
are more prone to delays.

Moreover, a deeper examination of propagation dynamics,
specifically identifying which connections (e.g., international
vs. domestic) are most prone to cascading delays, could
offer targeted strategies to mitigate knock-on effects. Future
work might explore global attention mechanisms or hybrid
architectures (e.g., combining GAT with LSTM) to account
for these extended dependencies. By addressing these areas,
the GAT model can become an even more robust tool for
strengthening resilience and efficiency across a fleet network.

VII. CONCLUSION

Reactionary delays currently account for approximately
45% of total delays. This research demonstrates the potential
of a GAT model to predict reactionary delay distributions
within a hub-spoke airline network, with particular attention
to the role of spoke airports. By leveraging both node-
level features (representing individual flights) and edge-level
attributes (capturing dependencies among flights), the model
effectively identifies how delays propagate through critical
connections, including rotational links, high-volume passen-
ger transfers, and key spoke-hub routes.

Performance metrics underline the model’s accuracy, es-
pecially on moderate-delay days (RMSE of 15.59 minutes,
MAE of 10.50 minutes), and suggest a sensitivity to more
extreme disruptions (RMSE around 37.56 minutes on high-
delay days). The difference between RMSE and MAE indi-
cates that, while most predictions are reasonably accurate,
outliers significantly inflate the RMSE. The GAT’s attention
weights provide deeper insight into which nodes (flights) and
edges (connections) are most influential, thereby enabling
more precise operational interventions.

Despite its strong performance, the GAT model sometimes
struggles with irregular, extreme disruptions, emphasizing the
need for richer inputs such as weather forecasts, maintenance

schedules, and crew availability data. Additionally, while
the GAT excels at modeling localized delay propagation, it
may overlook longer-range effects in highly interconnected
networks.

Overall, this research showcases the GAT model’s poten-
tial to enhance delay forecasting and operational decision-
making, laying a foundation for more resilient airline network
management. For future work, including features on airport
capacity, ground congestion, or runway availability has the
potential to increase performance. Additionally, expanding
the training dataset beyond one year would capture greater
seasonal and operational variability, reducing the model’s
vulnerability to outliers or rare events.
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