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Abstract: Kites can be used to harvest wind energy at higher altitudes while using only a fraction
of the material required for conventional wind turbines. In this work, we present the kite system of
Kyushu University and demonstrate how experimental data can be used to train machine learning
regression models. The system is designed for 7 kW traction power and comprises an inflatable wing
with suspended kite control unit that is either tethered to a fixed ground anchor or to a towing vehicle
to produce a controlled relative flow environment. A measurement unit was attached to the kite for
data acquisition. To predict the generated tether force, we collected input–output samples from a set of
well-designed experimental runs to act as our labeled training data in a supervised machine learning
setting. We then identified a set of key input parameters which were found to be consistent with our
sensitivity analysis using Pearson input–output correlation metrics. Finally, we designed and tested
the accuracy of a neural network, among other multivariate regression models. The quality metrics
of our models show great promise in accurately predicting the tether force for new input/feature
combinations and potentially guide new designs for optimal power generation.

Keywords: airborne wind energy; kite system; kite power; tether force; machine learning;
neural network; power prediction

1. Introduction

1.1. Airborne Wind Energy

Airborne wind energy (AWE) is an emerging renewable energy technology, which utilizes
flying devices for harnessing wind energy at higher altitudes than conventional wind turbines [1–5].
Although the fundamental working principles of the technology were already formulated in the 1980s
by Miles L. Loyd [6], it was not until the turn of the century that a more systematic and networked
exploration of the technology started to emerge. One of the pioneering teams was led by Wubbo J.
Ockels at Delft University of Technology, initially proposing the visionary “Laddermill” concept [7],
but eventually resorting to a pumping kite power system using a single flexible membrane wing
connected to a ground station [8]. Over the last decade, AWE has evolved into a rapidly growing field
of activity encompassing a global community of researchers, investors and developers. The investment
in this topic is motivated by the desire to find a cost-effective renewable energy technology that can
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contribute substantially to reducing the dependency on fossil fuels [1,2,4,5]. Floating offshore locations
are considered to be particularly suitable for large-scale deployment of AWE systems [9].

Although a number of different harvesting concepts have been explored, the most pursued
type of concept is that of a flying device that performs fast crosswind maneuvers and transfers the
generated pulling force via a tether to a ground station [10]. At the ground station, the tether is
reeled off a drum-generator module to convert the pulling force into electrical energy. When reaching
the maximal tether length, the flight pattern of the device is changed and the tether is reeled back
in, which consumes a small fraction of the previously generated energy. The working principle of
such a pumping AWE system [11] is illustrated in Figure 1, for the example of the 20 kW technology
demonstrator of Delft University of Technology [12].
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Figure 1. Computed flight path of a kite power system using a flexible wing with suspended kite
control unit and single tether (kite and drum not to scale) [13].

So far, AWE has been demonstrated only on a level of several hundred Kilowatts,
i.e., one magnitude lower than what would be commercially viable for the utility sector [1,2]. However,
AWE systems have several promising advantages compared to the horizontal wind turbines (HAWTs),
for example, substantially lower material use for both tower structure and foundations as well as lower
costs for transportation, installations and maintenance. Conventional wind turbines use the tower
and foundation to transfer the bending moment of the aerodynamically loaded rotor to the ground.
AWE systems use one or more tethers to transfer forces of a similar magnitude. The design, as a tensile
structure, substantially reduces the material use, which leads to lower system costs and environmental
footprint. It also allows for a dynamic adjustment of the operational altitude to the available wind
resources, which can greatly increase the capacity factor [14]. For a HAWT, almost 30% of the power
is generated by the tip of the rotor blades while the rest of the rotor functions mainly as a support
structure for the crosswind motion of the blades [1,2]. The rated power of the generator typically
determines the installation. For the same rated power, an AWE system generally gives a higher annual
yield than a HAWT because it can operate at a higher capacity factor. The higher capacity factor is a
result of the more persistent and more steady wind at higher altitudes. However, an AWE system also
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needs more space than a HAWT, which increases the costs of an installation. These land surface costs
are still quite unknown and responsible for the large differences in expected costs [2].

In this paper we focus on flexible membrane kites as they are less expensive, require low
maintenance costs and are more safe. To maximize the power production the kite is operated in
crosswind maneuvers during reel out of the tether [6]. We use a tether of constant length attached to a
towing vehicle to produce a controlled relative flow environment, there is no actual drum/generator
module yet. Figure 2 shows the typical system components of such an AWE system, for the example
of the 20 kW technology demonstrator of Delft University of Technology. Several companies are
currently developing AWE systems with flexible membrane kites: Kitenergy [15], KiteGen [16], SkySails
Power [17] and Kitepower [18]. Among these the highest technology readiness level (TRL) has been
reached by the company Kitepower which commercially develops a 100 KW system with a kite of
60 m2 wing surface area.

Wing

Bridle line
systemKite

control
unit

Traction
tether

Drum/generator
moduleControl

center
Battery
module

Power
electronics

Ground
station

Kite

Wind meter

Sensor
unit

Launching & landing
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Wind

Dump load
module

Figure 2. Airborne wind energy system components [19].

1.2. Machine Learning Methods in AWE

Machine learning (ML) and deep learning (DL) methods have gained a lot of research momentum
recently because of their capabilities in modeling nonlinear input–output relations when solving
classification or regression problems. Their power extend to multivariate problems where the number
of input variables, which are also known as features, is large. They have have been successfully
applied in computer vision [20], pattern recognition [20], bioinformatics [21], medical diagnosis [22]
etc., and are available in hardware-optimized software libraries such as Scikit Learn [23], Pytorch [24]
and TensorFlow [25].

A class of ML methods that is widely used in practice is supervised learning; where pairs of
the input variables x and the output variable y are used to learn the input–output mapping function
y = f (x). The goal is to approximate the mapping function, optimizing some objective function,
such that when new data x∗ are available on input (without associated output predictions), we would
be able to predict the output variable y∗(x∗) for that data. A one-dimensional linear regression,
for example, is the problem of fitting a line y = ax + b to a number of n labeled points {x, y}n

i=1,
minimizing the some loss function, e.g., the least squares error.

There are several papers that deal with model-based AWE systems for kites [13,26–28] and
tethered aircraft [29–31] as the flying devices of an AWE system, including a simulated approach
for training constrained Gaussian processes models [32]; however, there is a lack of papers based on
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experimental measurements [33] using data-driven methods [34,35], although, system identification
was used in several papers [28,36–38]. In a predecessor paper [39], experimental data from early flight
tests was presented, but without any data analysis. In this paper, we enhanced the data collection
process and performed more flight tests to collect more data, then applied machine learning algorithms
to predict the power generation. To the best of our knowledge, this was the first attempt in the AWE
community to employ experimental/measured data for training machine learning models, albeit the
existence of many notable papers that combined the topics of machine learning and wind energy (see,
e.g., [40–43]).

1.3. Contribution and Organization

In this paper we describe an AWE research platform developed at Kyushu University, covering
system set-up, ground station and kite control unit (KCU). Several tests were performed to analyze the
kite performance for several truck speeds and flight conditions. The tether force curves of the data
obtained from the flight tests were carried and analyzed. Finally, we performed sensitivity analysis
and applied several machine learning algorithms to predict the power output of the AWE system.

The paper is divided into four main sections. Section 2 presents how we collected the data,
including the system set-up and the hardware used in the project. Section 3 discusses the design of
the experiment and the experimental results obtained from the truck test. Then we performed data
analysis, including sensitivity analysis, presented in Section 4. In Section 5 we show the construction
of the machine learning and quality assessment of the model. In Section 6, we present our applied
neural network and various machine learning techniques. Finally, conclusions and future work are
reported in Section 7.

2. System Setup and Data Collection

The kite system of Kyushu University is a small prototype designed for 7 kW traction power.
It uses an inflatable wing of 6 m2 surface area and a suspended remote-controlled KCU, similar to the
airborne kite component depicted in Figure 2. We performed early flight tests with the KCU anchored
at the ground at Nata beach, Fukuoka, Japan, as shown in Figure 3a. The wind speed during these
tests was between 6 and 10 m/s. For safety reasons, we launched the kite manually from the side of
the wind window, where the pulling force is relatively low. Following that, a trained human pilot
operated the kite in figure-of-eight maneuvers, using the remote control (RC) of the KCU.

(a) (b)

Figure 3. Flight tests with (a) stationary kite control unit (KCU) anchored at the ground and (b) towed
KCU flying on a short tether.

During these early tests we could not measure the wind speed at the kite. We also faced the
problem of often having too low wind speeds to launch the kite. For these reasons, we moved to
a tow test setup, tethering the KCU to a truck, as shown in Figure 3b. These tests were performed
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on days with only little wind to avoid a perturbation of the generated relative air flow. Under these
circumstances, the apparent wind speed at the kite and the truck speed are nearly identical, which gave
us another DOF to be controlled. The tests were performed on a small air field for unmanned aerial
vehicles at Shiroshi, Saga, Japan, with a run way of 750 m, depicted in Figure 4.

50 m

B

A

Figure 4. Aerial view of the run way used for the tow tests, at Shiroshi, Saga, Japan ( c© DigitalGlobe,
c© Zennin).

The schematic illustration of the tow test setup in Figure 5 (Truck image: Freepik.com) details how
the wing was connected to the KCU by three separate lines: the power line, which connected to the
leading edge of the wing via several bridle lines, and two control lines, which connected to the wing
tips at the trailing edge. The power line was kept at a constant length of 13.3 m (measured from the
KCU to the end of the first fork), we used control lines of three different lengths, 13.4, 13.6 and 13.8 m,
by which it was possible to adjust the angle of attack of the wing. The KCU was connected to the truck
deck by a short tether with a constant length of 0.4 m. For energy harvesting in a configuration as
depicted in Figure 2, the tether would be much longer to allow the kite to sweep a larger volume and
to reach higher altitudes [12]. The pulling force of the wing was measured by a tension meter that is
attached at the KCU.
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Tension meter

Wing

Kite control unit

Measurement unit

Camera

Towing truck

AoA

Relative
flow

Power line

Control lines

Leading
edge Canopy Bridle lines

Trailing
edge

Tether

Figure 5. Schematic illustration of the tow test setup: side view with angle of attack (AoA) definition
(left) and 3D view (right).

2.1. System Components

The ground equipment included the wireless unit receiver, a speed sensor and tension meter
accessories. The KCU design and its functional components are illustrated in Figure 6. The mass of
the KCU, including the Lithium battery, was about 3 kg. The KCU was located 13 m below the kite
and used a servo motor to actuate the control lines by which the kite was steered on a specific flight
path. The employed bridle layout is common for small surf kites and supports the leading edge tube
at four points, and the rear ends of the wing tips are connected to the control lines. The kite is steered
by asymmetric control input, shortening one control line while feeding out the other line. Such control
input leads mainly to a deformation of the wing by spanwise twisting, because the front bridle largely
constrains a roll motion of the wing when the power line and the control lines are tensioned. The wing
twist and the modulated aerodynamic load on the wing tips induce a yaw moment by which the
kite is steered into a turn [44,45]. At the current stage of the project, it was not possible to actively
control the angle of attack of the wing, however, the length of the control lines could be varied along
different flight tests. The KCU receives the control action for the servo motor wirelessly from the RC.
The KCU was connected to a tension meter which measures the generated pulling force during testing.
The KCU was powered by a Lithium battery which could sustain almost three hours of continuous
operation. The power line and the tether used in the experiment were made of Dyneema R© designed
for a maximum force of 2500 N.

As shown in Figure 7, a small measurement unit was attached to the connection of leading edge
and center strut of the kite to obtain the position, height and attitude. An Arduino R© microcontroller,
a global positioning system (GPS), an inertial measurement unit (IMU) and pressure sensors are used
to obtain this data. XBEE R© was used to sent the data wirelessly to the ground station with a sampling
time of 0.15 s.
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Circuit box

Motor

Guide roller

Timing belt

(a)

KCU

Power line

Control line

Tension meter

(b)

Figure 6. Design of the KCU, including structural frame, transmission belts, electronic circuit
and motors. (a) The core of the KCU without casing and (b) after putting the casing on.

(a) (b)

Figure 7. (a) Measurement unit and (b) attachment on the leading edge of the kite.

2.2. Data Collection

Table 1 shows the data that were collected by the different sensors.

Table 1. Data from sensors and statistics of the numerical attributes.

Kite Position Kite Orientation Towing Speed
(km/h)

Tether Force (N)
(Output)Longitude

(◦)
Latitude

(◦)
Height

(m)
Roll
(◦)

Pitch
(◦)

Yaw
(◦)

min 130.186294 33.146762 38.500000 −178.000000 −159.000000 −196.000000 0.000000 0.000000

max 130.189163 33.150520 90.880000 176.000000 129.000000 179.000000 50.661459 1263.870000

mean 130.187766 33.148546 73.816240 0.936829 5.592179 −16.135081 32.737716 118.015877

std 0.000823 0.001138 12.354317 30.846308 22.635880 101.824154 12.295361 94.366362

25% 130.186996 33.147449 66.250000 −12.000000 1.000000 −112.000000 26.057640 63.420000

median 130.187774 33.148536 77.750000 0.000000 8.000000 −2.000000 36.877950 97.395000

75% 130.188507 33.149593 84.440000 13.000000 14.000000 67.000000 40.105059 147.225000
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Two additional columns for the sampling time (time step) and the number of satellites (satellite
count) to which the GPS is connected are included in the data, but not displayed in the table.
Subsequently, we added an additional column for the maneuver type (steady flight or figure-of-eight
maneuver), and an additional column for the control line length (CLL). The length difference between
the control lines and the power line controls the nominal angle of attack, as shown in Figure 5 (left).
The output feature is the tether force, which was measured using a tension meter. This force is one
factor for power generation, the tether reeling speed, using a drum/generator module, the other factor.
In the present study, this second factor was not analyzed.

In Table 1 we present some statistics for each attribute/feature of the collected data; minimum and
maximum values, mean which is the central value of a discrete set of numbers: specifically, the sum of
the values divided by the number of values, standard deviation (std) which measures how dispersed
the values are, the 25%, median 50% and 75% rows show the corresponding percentiles: a percentile
indicates the value below which a given percentage of observations in a group of observations falls.

3. Design of Experiment (DOE)

In this section we discuss the results of the tow tests. The experimental work comprises seven
tests summarized in Table 2, for different combinations of towing speed, kite maneuver and control
line length. The objective of these tests was to quantify the effect of these parameters on the tether force.
For tests 1–4, the truck followed a continuous towing path A-B-A-B-A on the run way (see Figure 4),
performing two loops. Each time the end points A or B were reached, the truck performed a U-turn at
a reduced speed of 20 km/h. For tests 5–7, only a single loop was performed. During towing, the kite
was either operated in figure-of-eight flight maneuvers, or kept in a steady flight state by maintaining
a constant position with respect to the truck.

The results of the seven tests are presented below. Figure 8 represents a 3D visualization of the
kite and truck trajectories for tests with the kite both in steady flight and performing figure-of-eight
maneuvers. The effect of the crosswind maneuvering can be recognized from the evolution of the
tether force for cases with similar towing speeds, as in tests 1 and 2. As shown in Figure 9, the force
almost doubled and exhibited more aggressive fluctuations, when flying figure-of-eight maneuvers.
On the other hand, Figure 10 shows how the tether force increases with the towing speed, considering
a steady flight mode, as in tests 1 and 3. In Figures 11–17, the subfigures b, c, e and f show the same
sinusoidal pattern, clearly indicating the number of towing loops, which is different for tests 1–4 and
tests 5–6. Figures 11–17 represent the data set that we used to train and test the ML algorithm.

Table 2. Test specifications based on truck speed, flight mode and control line length (CLL).

Test No. Towing Speed (km/h) Flight Mode CLL (m)

1 30∼40 Steady flight 13.8
2 30∼40 Figure-of-eight maneuvers 13.8
3 40∼50 Steady flight 13.8
4 40∼50 Figure-of-eight maneuvers 13.8
5 30∼40 Steady flight 13.6
6 30∼40 Steady flight 13.4
7 40∼50 Steady flight 13.6
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(a) Test 1: Kite in steady flight (b) Test 2: Kite performs figure-of-eight maneuvers

Figure 8. A 3D visualization of the kite for tests 1 and 2.
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(b) 40 ∼ 50 km/h

Figure 9. Effect of flight mode for tests 1 & 2 and 3 & 4.
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Figure 10. Effect of towing speed for tests 1 & 3 and 2 & 4.
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Test 1: Steady flight with towing speed 30∼40 km/h and CLL = 13.8 m
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Figure 11. Data for test 1.

Test 2: Figure-of-eight maneuvers with towing speed 30∼40 km/h and CLL = 13.8 m
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Figure 12. Data for test 2.
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Test 3: Steady flight with towing speed 40∼50 km/h and CLL = 13.8 m
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Figure 13. Data for test 3.

Test 4: Figure-of-eight maneuvers with towing speed 40∼50 km/h and CLL = 13.8 m
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Figure 14. Data for test 4.
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Test 5: Steady flight with towing speed 30∼40 km/h and CLL = 13.6 m
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Figure 15. Data for test 5.

Test 6: Steady flight with towing speed 30∼40 km/h and CLL = 13.4 m
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Figure 16. Data for test 6.
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Test 7: Steady flight with towing speed 40∼50 km/h and CLL = 13.6 m
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Figure 17. Data for test 7.

4. Data Analysis and Preprocessing

In this section, we prepare and pre-process the collected measurements described in Section 3 for
inclusion in the machine learning modeling work flow. Furthermore, we present a sensitivity analysis
study of the relations between inputs and their impact on the output, the tether force prediction.

4.1. Handling Categorical Variables

Most of our input variables (features) are continuous or discrete, and we encode categorical ones
(e.g., motion type = {Steady, FigEight}) as a one-hot numeric array. The input to this encoder could be
an array of values taken on by categorical (discrete) features. The features are encoded using a one-hot
(also defined as “dummy” or “one-of-K”) encoding. Consequently, each category is represented by a
binary column.

4.2. Global Sensitivity Analysis

Sensitivity analysis (SA) can be defined as the study of how uncertainty in the output of a
model can be apportioned to different input uncertainty sources [46]. Sensitivity analysis differs from
uncertainty quantification (UQ), which characterizes output uncertainty in terms of the empirical
probability density or confidence bounds. In other words, UQ aims to answer questions about how
uncertain the model output is, whereas SA aims to identify the main sources of this uncertainty, per the
input uncertainties. SA is typically used for model reduction, inference about various aspects of the
studied phenomenon, and optimal experimental design (OED).

At a high level, sensitivity analysis can be done locally or globally. On the one hand, local SA
methods examine the sensitivity of the model inputs at one specific point in the input space.
Global methods, on the other hand, take the sensitivities at multiple points in the input space,
before taking some measure of the average of these sensitivities.
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4.3. Feature Ranking and Selection

Global sensitivity analysis is often used to select a subset of the input features. Fundamentally,
these are the processes of selecting the features that can make the predicted output more accurate or
eliminating those features that are irrelevant and can decrease the model accuracy and quality.

We start our analysis using an univariate feature selection approach which examines individual
features, one at a time, to determine the strength of the relationship of the feature with the output
prediction. A simple univariate method for understanding the relation of a feature to the output
prediction variable is Pearson correlation coefficient (PCC), which measures the amount of linear
correlation between two variables, resulting in a value between −1 and 1, where +1 means positive
correlation, 0 means no linear correlation and −1 means negative correlation (as one variable increases,
the other decreases).

We computed the Pearson correlations between all variables using the Python machine learning
toolbox Scikit Learn and display them as a heat map in Figure 18. The correlations with the predicted
tether force (output) are illustrated in Figure 19, which is an alternative visualization of a subset of
the data contained in the heat map, represented by bar chart. It indicates a stronger impact on the
variability of the tether force for height, towing speed and the one-hot encoded maneuver variable
(represented by the two binary variables Steady and FigEight). These remarks are consistent with our
intuitive observations and experimental results, shown in Figure 9 for the maneuver type variable and
Figure 10 for towing speed.

To avoid the high ranking of statistically dependent variables, we examine the correlations among
the top features. The correlations between the top four features are listed in Table 3 with the output
(tether force) and among each other showing relative statistical independence.
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Figure 18. Pearson correlation coefficient for tow test.
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Figure 19. Absolute value of Pearson correlation coefficient (PCC) between input features and the
output prediction (tether force).

Table 3. Pearson correlation among the top-correlated features with the tether force.

TetherForce TowSpeed Height Steady FigEight

TetherForce 1.000000 0.364342 0.333041 0.314789 −0.314789
TowSpeed 0.364342 1.000000 0.308207 0.017213 −0.017213
Height 0.333041 0.308207 1.000000 0.568476 −0.568476
Steady 0.314789 0.017213 0.568476 1.000000 −1.000000
FigEight −0.314789 −0.017213 −0.568476 −1.000000 1.000000

4.4. Model-Based Sensitivity Analysis

To investigate the sensitivity of the tether force for variations of the input parameters, we used
the theoretical framework first derived in [6] and later expanded in [27,47]. In the first step, the tether
force was formulated as

Ft =
1
2

ρCRSv2
a, (1)

where ρ is the air density, CR the resultant aerodynamic coefficient of the kite, S the wing surface area
and va the apparent wind velocity at the kite. Equation (1) is based on the simplifying assumption that the
gravitational force acting on the kite is negligible compared to the aerodynamic force. For the following
analysis we assume that the kite is towed with constant speed at constant tether length through a windless
environment. We denote the wind speed relative to the towing truck as vw. When the kite is in a steady
flight mode, the apparent wind velocity is identical to the generated wind speed

va = vw (2)

and from Equation (1) we find
Ft ∼ v2

w. (3)

When flying crosswind maneuvers, the apparent wind velocity at the kite is given by

va = vw cos β cos φ

√
1 +

(
L
D

)2
, (4)

where β is the elevation angle, φ the azimuth angle and L/D the lift-to-drag ratio of the kite.
Equation (4) follows from ([47], Equation (2.15)) for the special case of a constant tether length and
negligible gravitational force contributions. The theoretical framework can be expanded to include the
effect of gravity ([47], Equation (2.67)), which is beyond the scope of this analysis. The term cos β cos φ

quantifies the angular deviation of the tether from the wind speed vector that is created by the towing
of the kite, and the square root is an amplification term resulting from the crosswind maneuvering
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of the kite. The higher the lift-to-drag ratio of the kite, the higher its flight speed and apparent wind
speed. By inserting Equation (4) into Equation (1) we get, for the tether force

Ft ∼ v2
w cos2 β cos2 φ

[
1 +

(
L
D

)2
]

. (5)

The model parameters determining the tether force are related to sensor data as follows. For the
kite in steady flight mode, Equation (3) suggests that the only sensor data with influence on the tether
force is the wind speed vw (TowSpeed) that is generated by the towing of the kite. On the other hand,
this speed is kinematically coupled to the sensor data Longitude, Latitude and Time. Because of the
diagonal orientation of the run way (see Figure 4) we can expect a roughly equal correlation of the
tether force to Longitude and Latitude. For the kite flying crosswind maneuvers, Equation (5) suggests
an additional influence of the maneuvering, expressed by the factor cos2 β cos2 φ. The bracketed
amplification factor depends on the aerodynamic performance of the kite, which was not considered
as a variable in this study.

To illustrate this for the example of a kite with a lift-to-drag ratio L/D = 3, which is typical for
this size of kite with additional line drag included. When this kite is flying crosswind maneuvers at
an elevation angle of β = 60◦ the tether force experiences an amplification by a factor of 10, which is
contributed by the aerodynamic term, while the maneuvering term reduces this amplification again by
a factor of cos2 60◦ = 0.25. The joint effect is a maximum force increase by a factor of 2.5, compared to
the case of steady towing. Roughly such an increase can be observed in the measured tether forces
shown in Figure 9.

5. Regression Model Construction

In this section, we constructed initial regression models of different types, approximating the
output tether force. We then used quality metrics to assess the predictions.

5.1. Multivariate Regression

Regression as a predictive modeling technique investigates the relationship between the inputs
and the output of a model. The accuracy of a regression model depends on the model order and
the types of input and output data. For example, linear regression fits a linear model to the known
data points in order to minimize the residual sum of squares between the labeled training outputs
and the predictions made by the linear approximation. Common regressors include neural networks,
linear regressors, support vector machines and decision trees.

We considered neural network models along with other regression methods such as linear
regression, decision trees and gradient boosting. These models differ in accuracy and we, therefore,
used standard statistical metrics to compare their performance under the same training data set.

5.2. Quality Metrics

To assess the performance of the machine learning algorithm, we split our data set into two
subsets, training and test sets, which contain 70% and 30% of the samples, respectively, as shown in
Figure 20.

Collected
Data Set

Test
Data Set

Quality
Metric

Quality
Assessmentymeasured

30%

Training
Data Set

Prediction
model70%

ŷpredicted

Figure 20. Assessing the performance of machine learning to build a predictive model.
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After training the model, we developed a formula to predict the tether force. Because we use 12
different features, this formula is very complex and for this reason we will not display it in this paper.
We used this formula to predict the tether force for the test set and then compared this prediction to
the measured tether force that is already part of the test set. This quantitative comparison was based
on quality metrics, which have the role of a cost functions. An algorithm such as the gradient descent
algorithm was used to minimize the quality metrics. There are several quality metrics that can be
used as a test score for model validation. Our choices are stated in the following, denoting ŷi as the
predicted value of the i-th sample, yi as the corresponding true value, n as the number of samples
and Var as variance.

• Mean Square Error: expected value of the squared (quadratic) error

MSE(y, ŷ) =
1
n

n−1

∑
i=0

(yi − ŷi)
2. (6)

• Coefficient of Determination (R2): represents the proportion of variance (of y) that has been
explained by the independent variables in the model, providing an indication of goodness of
fit and therefore a measure of how well unseen samples are likely to be predicted by the model,
through the proportion of explained variance

R2(y, ŷ) = 1− ∑n
i=1(yi − ŷi)

2

∑n
i=1(yi − ȳ)2 , (7)

where ȳ = 1
n ∑n

i=1 yi and ∑n
i=1(yi − ŷi)

2 = ∑n
i=1 ε2

i . Best possible score is 1 and it can be negative,
because the model can be arbitrarily worse. A constant model that always predicts the expected
value of y, disregarding the input features, would get a score of 0.

• Maximum Residual Error: captures the worst case error between the predicted value and the
true value. In a perfectly fitted single output regression model, it would be 0 on the training set.
This metric shows the extent of error that the model had when it was fitted

Max Error(y, ŷ) = max(|yi − ŷi|). (8)

• Explained Variance: best possible score is 1, lower values are worse.

explained variance(y, ŷ) = 1− Var{y− ŷ}
Var{y} . (9)

• Mean Absolute Error: expected value of the absolute error loss or l1-norm loss

MAE(y, ŷ) =
1
n

n−1

∑
i=0
|yi − ŷi| . (10)

6. ML Experimental Results

In our experiments, we used the aggregated data from all seven tests in Table 2. We start by running
basic neural networks experiments and follow with comparisons to other multivariate regression models.

6.1. Neural Network Regression

Neural network models have gained a lot of research attention due to their capabilities in modeling
nonlinear input–output relations. In general, neural networks work similarly to the human brain’s
neural networks. A “neuron” in a neural network is a mathematical function that collects and classifies
information according to some pre-determined architecture, achieving statistical objectives such as
curve fitting and regression analysis.



Energies 2020, 13, 2367 18 of 23

In terms of architecture, a neural network contains layers of interconnected nodes. Figure 21
illustrates the tether force prediction problem as a neural network with two hidden layers. Each node
is a perceptron and is similar to a multiple linear regression. The perceptron feeds the signal produced
by a multiple linear regression into an activation function that may be nonlinear. In a multi-layered
perceptron (MLP), perceptrons are arranged in interconnected layers. The input layer collects input
patterns. The output layer has classifications or output signals to which input patterns may map.
In our work, our predicted output is the tether force. Hidden layers fine-tune the input weightings
until the neural network’s margin of error is minimal. It is hypothesized that hidden layers extrapolate
salient features in the input data that have predictive power regarding the outputs.

Time

Longitude

...

FigEight

Tether Force ŷ

Hidden
layer

Hidden
layer

Input
layer

Output
layer

Figure 21. A neural network illustration of tether force prediction with two hidden layers.

We used the TensorFlow and Keras [48] libraries to create a regression-based neural network with
linear activation functions. At a high level, an activation function determines the output of a learning
model, its accuracy and also the computational efficiency of the training a model. It can generally be
designed to be linear or nonlinear to reflect the complexity of the predicted function.

For exploration, we used two hidden layers of 12 and 8 neurons, respectively, over 500 optimization
iterations (epochs, forward and backward passes). A model summary is reported in Table 4 highlighting
the dimensions of dense layers, the number of parameters to be optimized in each epoch per layer and the
total number of trainable parameters.

For a small network of two layers with 12/8 neurons, a total number of 281 parameters need
to be trained. This number grows quickly as the number of layers and neurons per layer increases.
Although adding layers/neurons would clearly improve the prediction accuracy, it obviously comes
with an added computational cost. Trade-off studies are often used to find a practical implementation
with acceptable accuracy, for a given training data set.

Figure 22 highlights the decreasing training and validation losses along epochs. Once the model was
trained to a satisfactory error metric, we used it for predicting tether force values of new input vectors.

Table 4. Keras model summary.

Layer (Type) Output Shape Param #

Dense_9 (Dense) (None, 12) 168
Dense_10 (Dense) (None, 8) 104
Dense_11 (Dense) (None, 1) 9

Total params: 281; Trainable params: 281; Non-Trainable params: 0.
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Figure 22. Neural network model loss performance, based on mean squared error (MSE).

6.2. Comparing Regression Models

To further demonstrate the value of machine learning regression models for an accurate prediction
of the power output of airborne wind energy systems, we evaluated different standard regression
models per the quality metrics in Section 5.2, along with the training time. We used standard Scikit
Learn implementations. Results are reported in Table 5. For this study, we split the full data set into
random train and test subsets, we used 70% for training and save 30% for testing.

Table 5. Quality metrics of different regression models.

Model MSE Coef. of Det. Max_error Exp_Var MAE Train_Time

Voting Regressor 2733.279160 0.678340 573.467337 0.678418 32.411861 0.43750
Neural Network 3623.617703 0.573562 553.713162 0.591568 39.140221 22.03125
Gradient Boosting 3890.056241 0.542207 791.537785 0.542208 37.028307 0.46875
Decision Tree Regressor 4206.607833 0.504954 1005.660000 0.504978 30.291717 0.06250
Nonlinear Regression 4709.975147 0.445717 671.062801 0.445805 43.167692 0.03125
linear Regression 5487.650725 0.354197 702.994674 0.354205 49.385283 0.00000
Ridge Regression 5552.731547 0.346539 729.976413 0.346563 49.595747 0.00000
Lasso Regression 5557.930973 0.345927 731.646629 0.345952 49.619318 0.00000
Elastic Net Regression 6154.191023 0.275757 784.324714 0.275797 52.908989 0.00000
Adaptive Boosting 7211.143207 0.151372 496.412500 0.260536 62.991571 0.15625

A key remark at this point is that no one model scores best for all data sets in terms of all quality
metrics. Multiple iterations and hyper-parameter tuning operations would be needed for further
model optimization. We note the different trade-offs highlighted in Table 5, e.g., between training time
and accuracy [49].

For example, linear regression is one of the simplest algorithms trained using gradient descent
(GD), which is an iterative optimization approach that gradually tweaks the model parameters to
minimize the cost function over the training set. A linear model might not have the best accuracy
but is simple to implement and hence is best of quick domain exploration. It makes a prediction by
computing a weighted sum of the input features, plus a constant called the bias term ŷ = hθ(x) = θ ·x,
where hθ(x) is the hypothesis function and θ is the model’s parameter vector containing the bias term
θ0 and the feature weights θ1 to θn.

Regularization is often used to further improve the loss function optimization. On the one hand,
ridge regression is a regularized version of linear regression where a regularization term equal to
α ∑n

i=1 θ2
i is added to the cost function. This forces the learning algorithm to not only fit the data but

also keep the model weights as small as possible. The hyper-parameter α controls how much you
want to regularize the model. If α = 0, then ridge regression is just a linear regression. If α is very
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large, then all weights end up very close to zero and the result is a flat line going through the data’s
mean. On the other hand, lasso regression is another regularized version of linear regression that adds
a regularization term to the cost function, but uses the l1 norm of the weight vector instead of half the
square of the l2 norm; like this α ∑n

i=1 |θi|. Lasso regression tends to completely eliminate the weights
of the least important features (i.e., set them to zero), in other words, it automatically performs feature
selection and outputs a sparse model (i.e., with few nonzero feature weights). Elastic net regression is
a middle ground between ridge regression and lasso regression. The regularization term is a simple
mix of both ridge and lasso regularization terms, and you can control the mix ratio r. When r = 0,
elastic net is equivalent to ridge regression, and when r = 1, it is equivalent to lasso regression.

Despite their longer training times, nonlinear models are expected to perform better for our data
set. As we noticed in Figures 11–17, input features and output force are not linearly related. To start,
polynomial regression introduces nonlinearity by imposing powers of each feature as new features. It
then trains a linear model on this extended set of features.

Alternatively, ensemble learning methods use a group of predictors, voting amongst them for
the best performance; and hence are often called voting regression. The accuracy of voting regression
depends on how powerful each predictor is in the group and their independence. Finally, boosting
refers to any ensemble method that combines several weak learners into a strong learner. The general
idea of most boosting methods is to train predictors sequentially, each trying to correct its predecessor,
often resulting in the best performance, compared to individual models. Due to the limitation of
training data, voting among multiple regressors yielded higher accuracy (less MSE) compared to
individual models, as shown in Table 5. If more training data is available, optimizing a single model to
outperform ensemble models would be feasible.

Per our machine learning experiments, we could conclude the clear success of a neural network
model applied to AWE for predicting tether force, even without hyper-parameter tuning. The main
model drawback is that it takes a longer training time than other algorithms, despite its overall
accuracy performance.

A major advantage for our ML model is cost. Once a model is trained, there is no need to physically
run new experiments (with the same test setup, as shown in Figure 5), to predict the tether force.
Instead, we could simply rely on our current NN model to predict the estimated tether force for new
input combinations. We could use our gradient boosting model, if we care about evaluation/prediction
time, rather than model accuracy. Note that the evaluation time is the time required to calculate the
predicted tether force from our model (prediction formula). The neural network generates a more
accurate formula, but also more complex and takes more time for evaluation.

7. Conclusions and Future Work

In this work, we demonstrated a novel approach to employ machine learning regression methods,
based on experimental measurements, for the prediction of the power generated by AWE systems.
Using an experimental kite system designed at Kyushu University, we orchestrated seven design scenarios
of different input specifications. We used experimentally-collected numerical and categorical data from
multiple sensors to construct multivariate regression models to predict the generated tether force.

• Our sensitivity analysis results have validated our intuitive understanding of measurement
ranking in impacting the predicted tether force, and hence the generated power.

• The performance of different ML algorithms was assessed, including neural networks,
linear regression and ensemble methods, in terms of training time and different accuracy metrics.
Different regression algorithms resulted in different performance scores, emphasizing the need
for further studies around the training data set and hyperparameter tuning.

• Our preliminary investigations highlighted the potential of ML modeling methods in predicting
tether force and traction power in AWE applications.

In future work, we will leverage the significance of height and type of motion (steady flight and
figure-of-eight flight maneuvers) to the accuracy of the multivariate regression models into exploring new
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trajectories for improved/optimal power generation. We will also attempt to overcome different types of
measurement errors by improving the data collection procedures by including:

• the steering actuation of the KCU, either directly measured as a linear motion of the control lines,
or derived from the rotation of the motor,

• the apparent wind speed at the kite,
• the angle of attack of the apparent wind velocity vector with the wing, and
• the side slip angle of the apparent wind velocity vector with the wing.

We will also use information that we gain from our ML model to actively determine optimal
deployment locations for AWE systems.
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