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A B S T R A C T

Uneven access to greenspaces or visible greenness is an environmental justice (EJ) issue. In this paper, we use a 
social equity lens to develop geospatial models that measure convenient walking access to urban greenspaces 
such as parks and street-level green exposure en route to greenspaces. We utilized earth science, geospatial, and 
demographic datasets to develop two models—Greenspace Accessibility and Visible Greenness Exposure—and 
applied them in Camden and Jersey City, USA, two communities experiencing environmental injustices. 
Modeling results show that greenspace accessibility is a concern in both cities, with Jersey City experiencing 
more prominent disparities. We observed significant positive relationships in Camden between greenspace 
accessibility and two EJ variables: Black segregation and Hispanic segregation. Most streets in both cities have 
poor greenness exposure, although Jersey City faces higher inequality compared to Camden. We also observed 
significant negative relationships in Jersey City between street-level greenness exposure and low-income pop
ulations. We conclude the paper by explaining the implications of our findings for greenspace planning and 
policymaking.

1. Introduction

Environmental justice (EJ) seeks to ensure no group bears dispro
portionate environmental consequences from industrial, governmental, 
or commercial activities, and involves people in decisions affecting their 
environment and health so that they can influence regulatory choices 
with a focus on community concerns (Mohai et al., 2009; Meenar et al., 
2018). This study looks into how greenspaces and visible greenness 
exposure are distributed in two cities in New Jersey, USA. We define 
greenspaces as publicly accessible parks and visible greenness exposure 
as green features such as trees, shrubs, planters, and flower beds visible 
on city streets. Greenspaces and visible green play a pivotal role in 
advancing health equity among communities (Twohig-Bennett & Jones, 
2018). Beyond serving as recreational spaces, they form integral parts of 
a thriving community, fostering both physical and mental well-being, 
and promoting social equity, environmental sustainability, and quality 
of life for residents (Gianfredi et al., 2021; Tirri et al., 2023; Meenar 

et al., 2019). Although parks and other green recreational spaces are 
considered critical for active living in all communities, not all people 
have equitable access to these spaces (Nesbitt et al., 2019; Locke et al., 
2021). Uneven accessibility of greenspaces or visible greenness exposure 
is an EJ and spatial equity issue because greenspaces or green features 
are not always equitably distributed in communities enduring environ
mental injustices. With roots in top-down urban planning and devel
opment, racial inequality and white supremacy are just two causes of 
inequitable access to greenspaces (Anguelovski et al., 2022). For 
instance, a California-based study suggests the inadequate distribution 
of recreational spaces among low-income households, low fiscal ca
pacity, minority populations, and multifamily housing, increases health 
risks among those populations (Dahmann et al., 2010). According to the 
2023 ParkScore Index created by the Trust for Public Land (TPL), mi
nority neighborhoods in the USA typically have 43 percent less access to 
park space, while residents in low-income neighborhoods have 42 
percent less access compared to those in high-income neighborhoods 
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(TPL, n.d.). On the contrary, several studies also have found that there is 
little or no difference in minority access to greenspaces (Cutts et al., 
2009; Zhou & Kim, 2013).

Greenspace location or proximity is one of the most dominant factors 
in examining greenspace accessibility and equity. Studies have consid
ered 5-minute, 10-minute, or 15-minute walking access to nearby 
greenspaces as convenient accessibility measures. However, the 
nationwide movement "The 10-Minute Walk Campaign" in the USA, 
created and led by the Trust for Public Land in collaboration with the 
National Recreation and Park Association and the Urban Land Institute, 
aims to ensure that everyone has safe access to a quality park or 
greenspace within 10 minutes of their home by the year 2050 (Lau, 
2020). The 10-minute walk metric—approximately 0.8 km or 0.5 miles 
for an able-bodied person—represents the typical distance people are 
willing to walk to reach a destination and has been used in greenspace 
accessibility studies (Hughey et al., 2021; Macfarlane et al., 2021). In 
addition to debates over easy walking distance, most studies inconsis
tently use greenspace locations as points (centroids) or polygons 
(greenspace boundaries) when calculating the distance to or from 
neighboring residential areas. Many studies, however, did not consider 
important factors, including the walkability index surrounding green
spaces, actual entrance points, and the quality of greenspaces. It is, 
therefore, important to measure equitable access to urban greenspaces 
by examining significant understudied factors like location, size, 
entrance, and quality, and comparing greenspace accessibility with EJ 
variables.

While greenspaces play a role as hubs for congregating, street-level 
greenery provides a dimension of flexibility as green corridors. Streets 
can become easily accessible greenspaces outside of the designated 
greenspace (park) context, improving the overall living conditions of a 
neighborhood (Zhou & Kim, 2013; Labib et al., 2021). Street-level 
greenery, such as lush foliage and tree-lined sidewalks, offers a myriad 
of benefits: it provides a soothing view and a calming environment that 
can reduce mental stress, fatigue, and aggression (Kaplan, 1995; Zhou & 
Kim, 2013); reduces harmful exposure to air, noise, and heat pollution 
(Gunawardena et al., 2017; Wang et al., 2021a); contributes to lower 
childhood asthma rates and the quality of life of older individuals (Zhou 
& Kim, 2013); increases sleep, physical activity, and social interactions 
(Wang et al., 2021b).

Measuring green exposure at eye level on streets is a relatively recent 
approach compared to previous top-down methods, such as the bird’s- 
eye-view perspective using the Normalized Difference Vegetation Index 
(NDVI) (Labib et al., 2020; Larkin & Hystad, 2019). Several studies have 
shown that greenery measurements from top-view images (e.g. aerial 
photographs and satellite imagery) often differ from the amount and 
type of greenery identified by people capturing greenery images at eye 
level, including shrubs that are growing underneath tree canopies (Ye 
et al., 2019; Larkin & Hystad, 2019). One standard method to measure 
eye-level visible greenness is to use a diverse dataset (e.g., street view 
images, digital elevation model) to capture and measure greenness using 
various indexes (Aikoh et al., 2023; Labib et al., 2021; Biljecki & Ito, 
2021; Wang et al., 2022). Examples include the Green View Index (GVI) 
(Aikoh et al., 2023), Viewshed Greenness Visibility Index (VGVI) (Labib 
et al., 2021), and the Street View Index (Biljecki & Ito, 2021). Generally, 
GVI and Street View Index use image data such as Google Street View 
images to model eye-level visible greenness; however, they are often 
restricted due to a lack of access to quality image data (Larkin & Hystad, 
2019; Sánchez & Labib, 2024). Compared to GVI and other image-based 
methods, the VGVI model can apply geo-computation approaches to 
estimate eye-level greenness visibility at a large scale by utilizing 
viewshed modeling approaches leveraging high-resolution LiDAR and 
earth observation data on the presence of plants (Labib et al., 2021; Yan 
et al., 2023).

Greenspace inequalities are generally measured by greenspace ac
cess across cities and neighborhoods (Boone et al., 2009; Jennings et al., 
2017), and by examining the racial and ethnic composition of 

greenspace access to investigate EJ (Rigolon et al., 2018). Zhou and Kim 
(2013), for example, used GIS and remote sensing in six Illinois cities to 
assess park accessibility and quantify tree canopy, and found less tree 
canopy in racial/ethnic minority neighborhoods, with little difference in 
greenspace accessibility. Similarly, Nesbitt et al. (2019) evaluated park 
accessibility and vegetation coverage in 10 US cities, while Locke et al. 
(2021) explored housing segregation and tree canopy coverage in 37 US 
cities, but neither study directly compares visibility and accessibility to 
assess the spatial inequality of these metrics.

Previously used metrics included the presence vs. absence of a 
greenspace or recreation facility near homes, the density of facilities, 
total greenspace acreage within a given radius of homes, or percentages 
of tree canopy coverage. Studies have yet to concurrently assess both 
greenspace access and greenness exposure within the same communities 
enduring environmental injustices. Recognizing the comparable signif
icance of street-level visible green exposure during transit to parks and 
access to parks, our study addresses both aspects in these communities. 
Thus, this study aims to apply a social equity lens in developing geo
spatial models to assess convenient walking access to urban greenspaces 
and street-level visible greenness exposure en route to greenspaces. We 
focus on the City of Camden and Jersey City in New Jersey, USA, and 
address the following two research questions.

1) Is limited or lack of convenient walking access to high-quality 
greenspaces related to vulnerable population groups in commu
nities enduring environmental injustices?

2) Is limited or lack of visible greenness exposure on streets related to 
vulnerable population groups in communities enduring environ
mental injustices?

This study holds significant implications for planning green street
scapes and ensuring equitable access to greenspaces in cities. High
lighting spatial inequities and their correlation with vulnerable 
population groups provides valuable insights and policy recommenda
tions to mitigate any disparities and promote fairer access to green
spaces in similar cities.

2. Context and Methodology

2.1. Study Areas

Camden and Jersey City, located in the state of New Jersey, are 
highly suitable for this project. With the passing of its Environmental 
Justice Law in 2020, New Jersey became the first state in the nation to 
subject all permits for new facilities to increased scrutiny through EJ 
analyses and to issue mandatory denials if those analyses discover 
disproportionate effects for overburdened communities (NJDEP, 
2022b). The legislation culminates New Jersey’s commitment to cor
recting the historical injustices its most vulnerable residents have 
experienced because of the state’s legacy of siting heavily polluting in
dustries in overburdened communities and therefore limiting those 
residents’ chances of economic and health-related success.

Both Camden and Jersey City are illustrative examples of the his
torical injustices New Jersey now seeks to remediate, for both cities 
rapidly developed during the late 19th and early 20th centuries as either 
transportation or manufacturing hubs for their neighboring metropol
itan areas of Philadelphia and New York City, respectively. In the mid-to 
late-20th century, major industries began to relocate or cease operations 
completely, and residents began to move into the surrounding suburbs, 
leaving behind a wide array of environmental hazards and building 
stock that quickly fell into dereliction (Gillette, Jr, 2006; Jacobs, 2000). 
In recent years, however, political forces in both cities have made sig
nificant investments in parks and open spaces. Not only have the cities 
published plans regarding these areas, but they have also developed new 
greenspaces or revitalized existing ones. Table 1 illustrates demographic 
and greenspace-related information for both cities based on 2022 data.
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2.2. Data

We collected Earth observation, and other geospatial and socio- 
demographic data from a variety of local, state, national, and interna
tional sources. LiDAR point cloud data was downloaded from USGS 
3DEP LiDAR explorer, which was originally collected through the 
Delaware Valley 2015 LiDAR project and New Jersey Post Sandy LiDAR 
project 2014. LiDAR data is used to create a detailed digital elevation 
model (DEM) and digital surface model (DSM) to generate viewshed. 
Global vegetation height products were collected from EcoVision Lab 
(Lang et al., 2022) to generate a green versus non-green raster for VGVI 
model. ORNL landscape gridded nighttime population data at 90 m 
resolution was collected from Oak Ridge National Laboratory (ORNL, n. 
d.) to estimate demand and supply for each greenspace in the study area. 
Block group demographic and income data, including total population, 
race, and age, were collected from the U.S. Census ACS five-year esti
mate in 2021. Additional geospatial data, including city boundaries and 
greenspace boundaries, were collected from the New Jersey Geographic 
Information Network (NJGIN, n.d.) and the Jersey City Open Data 
(JCOD, n.d.). Street network graph data was collected from the Open
street Network data set, which is used for analyzing walk time between 
population grids to park entrances. The EPA National Walkability Index 
was collected from the smart location data portal (EPA, 2021) to adjust 
the accessibility score. Park public rating data was collected from Google 
Maps, which is used as a quality indicator for weighing the supply of 
quality greenspaces. The research team also mapped park entrance lo
cations and edited newly developed parks through field surveys and the 
visual interpretation of fine-resolution Google Map images.

We used Black and Hispanic population concentrations as racial 
segregation variables. Many studies utilize the Index of Concentration at 
the Extremes (ICE), developed by Massey (2001), to determine racial 
segregation at the community level because ICE has an advantage over 
other indicators, such as the percentage of minority populations (Krieger 
et al., 2016 and Sonderlund et al., 2022). ICE measures the extent of 
residents’ concentration in the extreme of distribution. In this study, we 
calculated ICE using demographic and race/ethnicity data at the block 
group level. The following formula (Eq. 1) was used to calculate Black 
segregation: 

ICEi =
Ai − Pi

Ti
(1) 

Where Ai represents the number of non-Hispanic white populations, Pi is 
the number of non-Hispanic Black populations, and Ti is the total 

population at block group i. Similarly, to calculate Hispanic segregation 
above, Pi is the number of Hispanic populations. The value of ICE ranges 
from − 1 to +1 where − 1 indicates a concentration of deprived condition 
(fully Black or Hispanic concentration) and +1 indicates a concentration 
of a privileged population (fully white).

2.3. Methodology

2.3.1. Assessing greenspace accessibility
The Greenspace Accessibility model was developed to assess the 

accessibility of greenspace incorporating multiple input parameters: 
grid-level population data, greenspace size, greenspace quality, green
space entrance points, street network, walkability scores, and city 
boundaries. Newly constructed or renovated greenspaces were added to 
the greenspace boundary data through editing, using information from 
community partners involved in the project and validated by both high- 
resolution Google Earth images and field surveys. Greenspace entrance 
data was generated through a combination of field surveys (windshield 
surveys, walking surveys) and visual interpretations of Google Earth 
images. Greenspace quality was assessed by deriving Google Map public 
ratings for each greenspace. The EPA National Walkability Index ranges 
from 1 to 20, where 1–5.75 scores indicate least walkable and 15.26–20 
indicates most walkable (Chapman et al., 2021). In our modeling, we 
converted the block group walkability index at the 90-meter population 
grid cell level to match our walk accessibility modeling aerial unit using 
the “nearest neighbor” technique. The raw walk accessibility scores 
were then standardized to a range of 0–1 using maximum-minimum 
standardization.

A Modified Enhanced Two-step Floating Catchment Area (ME2SFCA) 
approach calculated the greenspace accessibility score at the grid level. 
The first step was to compute the supply-demand ratio of greenspaces by 
using Eq. 2. The supply was defined as the area of a greenspace multi
plied by the rating (quality) of that greenspace. 

Rj =
Aj × Qj

∑
k∈{dkj≤d0}

G(dkj, d0)Pk
(2) 

Where, Rj is the supply-demand ratio of greenspace j; Aj is the area of 
greenspace j; Qj is the greenspace rating; G(dkj, d0) is the distance decay 
function; and Pk is the number of populations at grid cell k. The distance 
decay function is defined by the following Gaussian distribution func
tion (Eq. 3): 

Table 1 
Demographic and greenspace-related information for Camden and Jersey City, 2022.

Variables Camden Jersey City

Total population 70,996 286,670
% White 15.7 32.1
% Black 42.9 22.5
% Hispanic 52.8 27.5
% Older adults (65 years and above) 10.6 11.4
% Young population (10–17 years old) 29.1 20.8
% Low-income population* 33.6 % 16.1 %
Number of parks** 43 77
Total park area (in acres) 560.5 1312.9
Per capita parkland acres 0.008 0.004
% of city land area for parks and recreation*** 8 % 12 %

Number of Census block groups 60 195

*Low-income population refers to households that are at or below twice the U.S. Census poverty threshold, according to NJDEP.
**Includes all the public and private parks that are accessible to the public.
***The national median of % of city land area for parks and recreation is 15 %.
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In the second step, the greenspace accessibility score was calculated 
at each population grid cell by combining the supply-demand ratio of all 
greenspaces accessible from the grid cell. The accessibility scores were 
then multiplied by the walkability index (WI) at the grid level where ASk 

is the greenspace accessibility score at grid cell k (Eq. 4): 

ASi = WI
∑

k∈{dkj≤d0}
G(dkj, d0)Rj (4) 

Next, grid-level greenspace accessibility scores were aggregated at 
the census block group level by taking the median of all grids within a 
block group. Raw continuous scores were converted to three greenspace 
accessibility categories: low, moderate, and high. Thresholds for cate
gories were calculated using the following hypothetical scenario. We 
considered a hypothetical greenspace (Greenspace j) in a city with 1000 
residents. Grid cell A (near Greenspace j) has 1 person at a distance of 
one meter to Greenspace j, while grid cell B (at the periphery) has 999 
people at a distance of 803 m (at the periphery of ½ mile catchment) to 
greenspace j. Considering the World Health Organization (WHO) rec
ommended minimum of 9 m2 of greenspace per capita (Russo & Cirella, 
2018), greenspace j’s area should be at least 9000 m2 to serve 1000 
people. Further, we assumed two ideal scenarios: the hypothetical 

greenspace had the highest quality (1.0), and the neighborhood had the 
highest walkability index (1.0). Using Eq. 2-4, the accessibility score for 
grid cell B is 5.9 with low accessibility, and if it is halfway (¼ mile), the 
score is 9.0, indicating the cut-off for moderate accessibility.

2.3.2. Assessing Visible Greenness Exposure
Visible Greenness Exposure (VGE) was assessed in our model using 

the Viewshed Greenness Visibility Index (VGVI) by aggregating eye- 
level greenness along the street network at a defined distance interval 
(e.g., 5 m) (Labib et al., 2021). The VGVI index used two primary 
datasets: LiDAR point clouds and vegetation coverage data (indicating 
the presence or absence of vegetation). From the LiDAR point clouds, a 
digital elevation model (DEM) and a digital surface model (DSM) were 
derived at a spatial resolution of 0.5 m. The vegetation coverage data 
was created from a vegetation height dataset, indicating the continuous 
value of vegetation height. We used the height information in each pixel 
to determine if a pixel represents vegetation or not. This approach 
created a data layer with binary values where 0 indicated no vegetation 
and 1 indicated the presence of vegetation.

As outlined in Labib et al. (2021), VGVI is defined as the ratio of the 
green viewshed to the total viewshed for an observer standing at any 
given location in a city. For this study, VGVI scores at observer locations 
at the 5-meter interval were calculated by a distance-weighted viewshed 
algorithm. The modeling process executed multiple line-of-sight (LOS) 
in all directions from an observer (360 degrees) with a distance decay 
weighted algorithm because the visual prominence of a green object in 
space reduces with increasing distance from the observer. The maximum 
distance was set to 300 m with the assumption that visible green beyond 
this distance threshold had no impact on the observer’s eyes. The 

Fig. 1. A conceptual diagram of the Viewshed Greenness Visibility Index (VGVI). The street scene was captured from Google Street View. Adapted from Labib 
et al. (2021).
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observer’s height was set to 1.7 m, an average human height in North 
America. In this modeling process, all visible pixels were first selected 
from an observer location using DEM and DSM through the LOS algo
rithm. Then, these visible pixels were flagged as visible green and no 
green using a binary green layer. A value of 1.0 was assigned to visible 
green pixels and a value of 0.0 was assigned to no visible green pixels 
(See Fig. 1 for a conceptual diagram).

Each visible pixel was weighted using the following exponential 
distance decay function (Eq. 5) 

wij =
1

1 + b(dij)
m (5) 

where wij is the weight of the distance decay function for the distance dij; 
b is the coefficient; and m is the power. For this study, m=1 and b=3 
were used for Eq. 5 to fit the curve. The visible green and non-visible 
green scores were then calculated using a weighted sum of all pixels 
in the viewshed.

This model utilized the GreenExp R package (Koster & Labib, 2023) 
to calculate VGVI at an observer’s location using Eq. 6: 

VGVIj =

∑n

i=1
Gi × wij

(
∑n

i=1
Gi × wij

)

+

(
∑n

i=1
Vi × wij

) (6) 

where VGVIj denotes the VGVI at observer location j; Gi and Vi are 
visible green and visible no green pixels respectively; and Wij is the 
weight between the observer and the object.

Since we aimed to measure VGVI along streets, observer locations 
were deliberately chosen on streets to achieve city-wide mapping. To 
facilitate comparisons between the two study areas and among block 
groups, VGVI values were subsequently normalized by street length, 
leading to the representation of VGE per meter of streets at the block 
group level.

2.4. Measuring Equity in Greenspace Accessibility and Visible Greenness 
Exposure using EJ Variables

To examine the relationships between environmental justice-seeking 
communities and results from Greenspace Accessibility and Visible 
Greenness Exposure models, we assessed five population variables: 
Black segregation, Hispanic segregation, low-income, young (age 
10–17), and older adults (age 65 and above). The descriptive statistics of 
EJ variables are shown in Table 2. These variables were selected based 
on localized contextualization of scholarly literature on EJ (NJDEP, 
2022b; Meenar et al., 2022). The relationships were then tested using a 
four-step method. The following description pertains to the Visible 
Greenspace Access model results, while the analysis for the VGE model 
followed the same methodology.

First, greenspace inequalities were measured at the grid level and 
block group level for Camden and Jersey City using the spatial Gini 
coefficient. Unlike the traditional Gini coefficient that measures loca
tionally invariant inequality, the spatial Gini measures inequality by 
addressing spatial autocorrelations jointly with overall inequality 
(Sheriff & Maguire, 2020). The inequality Python package was utilized 

to compute the spatial Gini coefficient. Second, the Ordinary Least 
Squares Regression (OLS) was used to identify the relationships between 
greenspace accessibility with the five EJ variables mentioned above. The 
spatial autocorrelation was measured using Moran’s I on the OLS 
regression residuals to ensure that the variables were random since 
spatially significant clustering of high and low residuals indicated mis
specifications. Third, if there were spatial clusters, spatial lag regression 
was performed to determine the relationship between greenspace 
accessibility and explanatory variables. Finally, Geographically 
Weighted Regression was performed to determine the local relationship 
between greenspace exposure metrics and EJ variables.

3. Results

The results section comprises four subsections to present the spatial 
distribution of outcomes as well as the equity justifications of outcomes 
from two models. Subsections 3.1 and 3.2 illustrate the spatial distri
bution of greenspace accessibility scores and the relationship between 
the aggregated greenspace accessibility score and EJ variables at the 
block group level, respectively, for two study areas. The spatial distri
bution of visible greenness exposure scores and EJ variables is found in 
subsections 3.3 and 3.4, respectively, for both Camden and Jersey City.

3.1. Greenspace accessibility in Camden and Jersey City

Based on the Greenspace Accessibility model results, Figs. 2a and 2b 
illustrate the spatial distribution of greenspace accessibility in Camden: 
residential block groups in the northern and some eastern parts of the 
city had high or moderate walk accessibility to greenspaces. Central, 
western, and southern parts of the city had low accessibility. As seen in 
Figs. 2c and 2d, only a few residential block groups in Jersey City had 
high or moderate accessibility.

3.2. Equity in greenspace accessibility in Camden and Jersey City

The spatial Gini coefficient for greenspace accessibility at both grid 
and block group levels in Camden were 0.702 and 0.546 respectively (p- 
value 0.01). For Jersey City, the values were 0.918 and 0.917 respec
tively (p-value 0.01). Upon analyzing the results, we observed sub
stantial disparities in greenspace accessibility within both cities. 
Particularly noteworthy is the significant unequal distribution of 
greenspaces in Jersey City, in contrast to the moderate inequalities 
observed in Camden.

To explore the relations between accessibility and socio- 
demographic variables, we performed spatial lag regression models 
since it is not appropriate to use OLS regression because Moran-I in
dicates a clustered pattern of variables. As shown in Table 3, a statisti
cally significant (p < 0.05) positive relationship existed in Camden 
between greenspace accessibility and Black segregation, as well as 
greenspace accessibility and Hispanic segregation. The positive corre
lation coefficient indicates high greenspace accessibility associated with 
a positive value of ICE (privileged population), which means that white- 
dominated areas (privileged population) have high greenspace accessi
bility scores. One unit increase in the greenspace accessibility score is 
associated with about 15 times increase in Black segregation and about 

Table 2 
Descriptive statistics of EJ variables used in this study.

Camden (n¼57) Jersey City (n¼193)

Variables Minimum Maximum Mean Standard Deviation Minimum Maximum Mean Standard Deviation

% Low-income population 0.00 94.18 61.43 19.32 0.73 100 32.3 19.85
Black segregation − 0.87 0.069 − 0.36 0.26 − 0.94 0.65 0.02 0.35
Hispanic segregation − 0.97 0.24 − 0.43 0.27 − 0.78 0.62 − 0.04 0.27
% Older adult 0.00 48.80 11.73 8.97 0.00 100 12.32 12.06
% Young population 0.00 32.59 13.42 8.09 0.00 38.38 7.16 6.50
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18 times increase in Hispanic segregation. We also observed statistically 
insignificant inverse relationships between greenspace accessibility and 
low-income populations, older adults, and young populations. For Jer
sey City, the spatial lag model indicated no significant relationship be
tween greenspace accessibility and EJ variables.

Fig. 3 illustrates the results of Geographically Weighted Regression 
(GWR) in Camden and Jersey City, depicting the local variation of re
lationships between greenspace accessibility and socio-demographic 
variables among census block groups. In Camden, the variable 

representing the low-income population exhibited a strong positive 
correlation with greenspace accessibility in the northern and central 
parts of the city, but a strong negative correlation in the southern part. 
The percentage of older adult populations showed a negative correlation 
throughout the city. For the young population, the correlation exhibits a 
positive relation mostly in the eastern part of the city and a negative 
relation western part of the city. Finally, variables representing Black 
and Hispanic segregation showed a positive correlation, with the cor
relation being stronger in the northern and eastern parts of the city for 

Fig. 2. Greenspace accessibility in Camden and Jersey City. a) Grid level accessibility in Camden, b) block group level accessibility in Camden, c) Grid level 
accessibility in Jersey City, d) block group level accessibility in Jersey City.

M.S. Rahman et al.                                                                                                                                                                                                                             Urban Forestry & Urban Greening 101 (2024) 128493 

6 



Black and Hispanic segregated block groups, respectively. In Jersey City, 
the variable representing the low-income population exhibited a nega
tive correlation with greenspace accessibility throughout the city, 
strongest in the southern part. For the young and older adult pop
ulations, a similar pattern emerged, with a strong negative correlation in 
the northern and northeastern parts of Jersey City. The variables rep
resenting Black and Hispanic segregation showed negative correlations 
throughout Jersey City, respectively, with the southern part displaying a 
strong correlation for Black segregation and the northern part for His
panic segregation.

3.3. Visible greenness exposure in Camden and Jersey City

Fig. 4 illustrates the VGVI and VGE scores in Camden and Jersey City, 
and Fig. 5 displays examples of streets with high and low VGVI scores in 
Camden using 3D GIS and street views. At the city level, the varying 
shades of green in the left map from each row signify different levels of 
VGVI, with dark green representing a high exposure score (1.0) and light 
green representing a low exposure score (0.0). The middle and right 
maps in each row illustrate the VGVI and VGE scores along streets and at 
block group levels, respectively. As observed, certain block groups in 
North, East, and South Camden exhibit high VGE, characterized by low- 
density residential areas and proximity to large greenspaces. 
Conversely, downtown and industrial zones, primarily located in the 
eastern part of Camden, indicate low VGE. In Jersey City, block groups 
around the periphery of the city with large greenspaces, except for the 
downtown area, show high VGE.

3.4. Equity in visible greenness exposure in Camden and Jersey City

The spatial Gini coefficient for street-level VGE in Camden and Jer
sey City block groups was 0.203 and 0.409, respectively (p-value 0.01). 
The results indicate a high inequality in the distribution of VGE in Jersey 
City and a moderate to low unequal distribution of VGE among block 
groups in Camden. Next, spatial lag regression models were performed 
because Moran-I showed a clustered pattern of variables (see Table 4). In 
Jersey City, a statistically significant (p < 0.05) negative relationship 
existed between street-level VGE scores and low-income populations, 
while a significant positive relationship (p < 0.05) existed between VGE 
and young populations. No variables in Camden showed any statistically 
significant relationship with VGE, either positive or negative.

Fig. 6 depicts local variations in regression coefficients at the block 
group level for Camden and Jersey City. The coefficients show a weak 
relationship between VGE and EJ variables in both areas. In Camden’s 
southern region, there is a notable positive correlation for the percent
age of low-income, Black segregation, and Hispanic segregation, while 
the percentages of older adults and young population exhibit negative 
correlations in the south and southwest. In Jersey City, there is a 
negative coefficient for the percentage of low-income population city
wide, indicating an inverse relationship with VGE. Black segregation has 
a negative coefficient, while Hispanic segregation shows a positive co
efficient across the entire city, suggesting lower VGE in Hispanic- 

dominated neighborhoods and higher VGE in Black-dominated ones. 
The correlation coefficient for low-income is lowest in central Jersey 
City, while half of the southern part exhibits the lowest coefficient for 
Hispanic segregation. Black segregation shows the highest coefficient in 
the southeastern parts and the lowest in the northwestern parts of Jersey 
City. The percentage of the young population has a strong correlation 
with the VGE of block groups in the central business district of Jersey 
City.

4. Discussion

This study adopts a social equity framework along with geospatial 
methods to assess pedestrian accessibility to urban greenspaces, 
particularly parks, and exposure to eye-level visible greenness along 
greenspace access routes. By integrating geospatial and demographic 
datasets, we established two distinct models—Greenspace Accessibility 
and Visible Greenness Exposure—and applied them in Camden and 
Jersey City, two cities enduring environmental injustices.

Findings from the Greenspace Accessibility model highlight concerns 
about equitable access to greenspace in both cities. Notably, Jersey City 
exhibits more pronounced disparities in greenspace accessibility and 
visibility, emphasizing the need for targeted interventions to address 
these imbalances. In Camden, accessibility varies across different areas, 
with significant relationships observed between greenspace accessibility 
and EJ variables, such as Black segregation and Hispanic segregation. 
Importantly, the study brings to light the nuanced nature of greenspace 
equity within environmental justice-seeking communities, highlighting 
that the relationships between greenspace accessibility and EJ variables 
manifest differently in various parts of the city.

The existing body of literature on greenspace accessibility and EJ 
presents a complex and sometimes contradictory landscape. Several 
studies, including those by Rowangould et al. (2016) and Dahmann et al. 
(2010), have consistently reported disparities in access to greenspace 
among minority and low-income populations. These disparities often 
highlight challenges faced by these communities in terms of proximity to 
and availability of greenspaces. In contrast, other studies, such as those 
by Cutts et al. (2009) and Zhou & Kim (2013), suggest more equitable 
access to greenspaces.

Our study emphasizes the need to move beyond a singular focus on 
access to greenspace. Instead, we underscore the importance of 
considering additional factors such as greenspace size, quality, safety, 
entrance points, and maintenance. These factors are crucial de
terminants of the overall usability and enjoyment of greenspaces. 
Importantly, many lower-income and ethnic or racial minority groups 
may face challenges in accessing greenspaces that not only exist in close 
proximity but also meet the standards of size, quality, safety, and 
maintenance (Abercrombie et al., 2008; Rigolon et al., 2018).

The findings from our study reveal nuances in the relationship be
tween equitable access to greenspace and EJ variables in Jersey City and 
Camden. Despite Jersey City having overall more equitable access to 
greenspace compared to Camden, the association with EJ variables was 
not significant. This suggests that while there may be disparities in 

Table 3 
Summary of spatial lag regression for greenspace accessibility in Camden and Jersey City.

Camden Jersey City

Variables Coefficient
Standard 
Error

Z-Statistics p-value Coefficient
Standard 
Error

Z-Statistics p-value

Constant 21.59 5.30 4.07 0.000* 36.40 17.16 2.1 0.033*
Low-income − 0.04 0.06 − 0.72 0.474 − 0.37 0.44 − 0.83 0.405
African American Segregation 15.02 5.86 2.56 0.010* − 31.67 25.49 − 1.24 0.214
Hispanic Segregation 17.94 5.75 3.11 0.002* − 0.22 35.02 − 0.01 0.995
Older Adult − 0.06 0.14 − 0.41 0.681 − 1.12 1.27 − 0.87 0.380
Young Population − 0.12 0.13 − 0.95 0.340 − 0.36 0.63 − 0.57 0.564
Weight Walk Accessibility 0.69 0.09 7.09 0.000* 0.06 0.11 0.46 0.641

* An asterisk next to a number indicates a statistically significant p-value (p < 0.05).
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Fig. 3. Geographically weighted regression of greenspace accessibility in Camden (a-f) and Jersey City (g-l).

M.S. Rahman et al.                                                                                                                                                                                                                             Urban Forestry & Urban Greening 101 (2024) 128493 

8 



greenspace accessibility within Jersey City, these disparities may not 
align closely with traditional EJ factors. Conversely, in Camden, where 
the overall equitable access to greenspace access is lower, Black and 
Hispanic populations in segregated areas face challenges in greenspace 
accessibility. These findings underscore the importance of conducting 
nuanced analyses that go beyond broad measures of greenspace acces
sibility. Moreover, the challenge of achieving equitable greenspace 
accessibility was not consistent across different communities enduring 
environmental injustices, nor did it affect all vulnerable population 
groups uniformly.

The disparities in greenspace accessibility observed between Cam
den and Jersey City prompt further inquiry into potential factors 

contributing to these differences. Despite Jersey City’s abundance of 
greenspaces and a higher greenspace area per capita, our study reveals 
significant disparities. Several factors may be contributing to this sce
nario, such as the presence of large greenspaces like Liberty State Park, 
which may not adequately serve overburdened neighborhoods. Addi
tionally, issues related to greenspace quality and community engage
ment may play a role. Even if there are greenspaces available, their 
condition and how well they meet the needs of the local population are 
critical factors in determining equitable accessibility.

The findings from the Visible Greenness Exposure model highlight 
the discrepancy between city-level greenness exposure and street-level 
visible greenness exposure in Camden and Jersey City. While many 

Fig. 4. a) Camden Viewshed Greenness Visibility Index (VGVI), b) VGVI along streets in Camden, c) Visible Greenness Exposure (VGE) at block level in Camden; d) 
Jersey City Viewshed Greenness Visibility Index (VGVI), e) VGVI along streets in Jersey City, f) Visible Greenness Exposure (VGE) at block level in Jersey.
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areas within these cities exhibit moderate to high levels of greenness 
exposure when viewed from a broader perspective, street-level analysis 
reveals poor greenness exposure along most streets, including those 
connecting residential neighborhoods to nearby greenspaces. This 
disparity underscores the importance of considering not only overall 
accessible greenspace within urban areas but also visible greenness 
exposure at the street level, particularly in relation to pedestrian access 
to greenspaces. A specific example highlighted in this study is Phoenix 
Park in Camden, situated amid active and abandoned industrial facil
ities. Residents from nearby neighborhoods must traverse streets char
acterized by poor VGE to access the greenspace. This scenario highlights 
how unappealing walking paths can discourage individuals accustomed 
to walking to greenspaces, exacerbating issues of equitable access and 
enjoyment of greenspaces within urban environments. Additionally, our 
findings indicate that the relationship between greenness exposure and 
EJ variables is complex. Areas characterized by high concentrations of 
poverty in Jersey City experience inadequate greenness exposure on the 
streets, while areas with a younger population display more favorable 
levels of greenness exposure.

While the measurement of eye-level visible greenness on streets is 
gaining traction in research studies (Labib et al., 2021; Larkin & Hystad, 
2019; Aikoh et al., 2023; Ye et al., 2019; Larkin & Hystad, 2019), the 
explicit investigation of its relationship with EJ variables remains rela
tively limited in the literature (Zhou & Kim, 2013). Our study addresses 
this gap by highlighting how disparities in street-level visible greenness 
exposure intersect with socioeconomic factors, such as poverty and age 
demographics, within urban contexts. This contribution sheds signifi
cant light on the nuanced connections between visible greenness on 
streets and social equity, particularly in underserved communities like 
Camden and Jersey City. Our findings emphasize the potential of ini
tiatives aimed at improving street-level visible greenness, such as tree 
planting initiatives and green stormwater projects, to enhance pedes
trian experiences and promote equitable access to greenspaces.

Tree planting initiatives and green stormwater projects not only 
enhance the aesthetic appeal of urban streets but also offer tangible and 
wide-ranging benefits for urban environments (Nguyen et al., 2021). 
They can contribute to improving air quality, reducing urban heat island 
effects, and mitigating stormwater runoff (Xiao et al., 2018). Beyond 

Fig. 5. Examples of streets with high to low VGVI scores in Camden using 3D GIS (represented by darker to lighter green color respectively) and street views.

Table 4 
Summary of spatial lag regression for visible green exposure for Camden and Jersey City.

Camden Jersey City

Variable Coefficient Standard Error z-Statistic p-value Coefficient Standard Error z-Statistic p-value

Constant 0.049 0.025 1.984 0.047* 0.019 0.007 2.744 0.006*
Low-income % − 0.000 0.000 − 0.749 0.454 - 0.000 0.000 − 2.152 0.033*
Black Segregation − 0.001 0.023 − 0.024 0.981 − 0.004 0.009 − 0.440 0.660
Hispanic Segregation − 0.012 0.023 − 0.524 0.600 0.013 0.012 1.113 0.266
Older Adult % 0.000 0.001 0.159 0.874 0.001 0.000 1.181 0.238
Young population % − 0.000 0.001 − 0.041 0.967 0.000 0.000 2.028 0.043*
Weight Visible Green Exposure (VGE) 0.597 0.122 4.881 0.000* 0.587 0.077 7.587 0.000*

* An asterisk next to a number indicates a statistically significant p-value (p < 0.05).
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Fig. 6. Coefficient of variables from Geographically Weighted Regression between visible green exposure and EJ variables for Camden (a-f) and Jersey City (g-l).
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their environmental advantages, these initiatives have the potential to 
create more walkable and enjoyable environments. This, in turn, en
courages residents to engage with greenspaces more actively. However, 
it is essential to recognize the disparities in street-level visible greenness 
exposure highlighted in our study. Despite the potential benefits of tree 
planting and green stormwater projects, there is a risk that these ad
vantages may not be equally distributed, exacerbating existing envi
ronmental justice issues. Therefore, efforts to implement such initiatives 
should prioritize equitable distribution and accessibility to ensure that 
all residents can reap the rewards of a greener and healthier urban 
environment.

5. Conclusion

Our research presents a novel contribution to urban planning and EJ 
literature by introducing a coupled analysis of equitable greenspace 
accessibility and street-level visible greenness exposure. This unique 
approach has not been explored previously. By integrating these two 
critical dimensions, we provide a comprehensive understanding of the 
complexities surrounding access to and enjoyment of urban greenspaces. 
This study is one of the first to systematically examine greenspace 
accessibility and visible greenness exposure along roads, often over
looked in prior research efforts.

The novelty of our work is further extended to the development of a 
Greenspace Accessibility model that incorporates factors such as 
greenspace quality rating, entrance points, and walkability index. The 
refined model enhances the accuracy of our analyses and facilitates a 
more nuanced examination of greenspace accessibility within medium- 
sized urban environments. By incorporating these additional variables, 
our study moves beyond traditional metrics of greenspace accessibility 
such as measuring greenspace area within a given distance (Nesbitt 
et al., 2019). The result is a more holistic assessment of equitable access 
to greenspace in our study area. Moreover, our investigation into the 
relationship between street-level visible greenness exposure using the 
VGVI metric and EJ variables fills a critical gap in the literature, 
providing valuable insights into the intersectionality of socioeconomic 
factors and urban green infrastructure that have implications for equi
table urban development and community well-being.

The findings from our study hold critical implications for the stra
tegic development of greenspaces and the formulation of policies in 
Camden and Jersey City and align with recent initiatives aimed at 
enhancing urban greenspaces in both cities. Camden Mayor Moran’s 
ambitious goal of providing safe and high-quality outdoor spaces within 
a 10-minute walk of every Camden resident by 2050 resonates strongly 
with the insights derived from our study, which highlights that suc
cessful greenspace planning extends beyond factors such as the number 
and locations of greenspaces. Instead, it insists on the necessity of taking 
multiple factors like greenspace entrance points, greenspace quality, 
and walkability indices, all of which play a pivotal role in ensuring 
equitable access to greenspaces. These considerations are vital for 
realizing a more accessible and inclusive urban greenspace network in 
Camden.

A crucial strategy for greenspace improvement projects is close 
integration with street and sidewalk improvement initiatives. An inte
grated approach only enhances safety and increases street-level green
ness exposure. By incorporating street greenness concerns into the 
greenspace planning process, policymakers can address the needs of 
vulnerable populations, including, older adults, young people, and the 
urban poor, who rely on walking or public transportation to access 
greenspaces.

By identifying areas where specific population groups may require 
better access to quality greenspaces or streets with enhanced greenness, 
policymakers can guide future capital investment and improvement to 
ensure equitable and sustainable urban development. This approach 
aligns with Jersey City Mayor Fulop’s vision for 2022 as “the year of 
open space: in Jersey City and contributes to the broader goal of creating 

cities that are equitable for all residents.
While our study provides valuable insights into the intersection of 

greenspace accessibility, visible greenness exposure, and EJ variables 
within two minority-majority communities, it is important to acknowl
edge several limitations inherent in our study design and methodology. 
First, our focus on only two environmental justice-seeking communities 
may limit the generalizability of our findings to broader urban contexts 
with more diverse population distributions. Additionally, the use of 
Google quality ratings for greenspace quality assessment may introduce 
biases, as these ratings tend to be skewed toward negative responses. 
Future studies could improve upon this limitation by employing 
comprehensive greenspace quality scores derived from objective as
sessments of greenspace conditions.

Furthermore, the VGVI Index utilized in our study may not fully 
capture all aspects of greenness exposure, particularly greenery 
obscured by structures. Future studies could explore alternative meth
odologies to address this limitation, such as incorporating visible green 
elements tall enough to be seen behind structures. Also, in this study we 
only extracted VGVI values on the street, ignoring the visibility of 
greenery beyond the streetscape. This may have resulted in an incom
plete representation of greenness visibility.

Moving forward, there is a need for continued refinement and 
improvement of accessibility and greenness visibility exposure models. 
Factors such as greenspace quality and the inclusion of previously un
explored aspects of visible greenness must be considered to better 
inform urban planning and policymaking efforts aimed at promoting 
equitable access to greenspaces. By understanding the specific chal
lenges faced by diverse demographic groups and communities, urban 
planners and policymakers can develop more effective strategies to 
address EJ concerns.
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