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 A B S T R A C T

An emerging branch of control theory specialises in certificate learning, concerning the specification of a desired 
(possibly complex) system behaviour for an autonomous or control model, which is then analytically verified by 
means of a function-based proof. However, the synthesis of controllers abiding by these complex requirements 
is in general a non-trivial task and may elude the most expert control engineers. This results in a need for 
automatic techniques that are able to design controllers and to analyse a wide range of elaborate specifications. 
In this paper, we provide a general framework to encode system specifications and define corresponding 
certificates, and we present an automated approach to formally synthesise controllers and certificates. Our 
approach contributes to the broad field of safe learning for control, exploiting the flexibility of neural networks 
to provide candidate control and certificate functions, whilst using SAT-modulo-theory (SMT)-solvers to offer 
a formal guarantee of correctness. We test our framework by developing a prototype software tool, and assess 
its efficacy at verification via control and certificate synthesis over a large and varied suite of benchmarks.
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1. Introduction

The analysis of the behaviour of continuous-time dynamical systems 
focuses on a wide range of properties, which are themselves suitable 
for an even wider range of applications. Properties of interest include 
arguably the most common property, (asymptotic) stability, namely the 
convergence of trajectories to an equilibrium (Sastry, 1999); to safety, 
namely the avoidance of an unsafe region of the state space at all 
time (Blanchini & Miani, 2008); to its dual, reachability, that is the 
hitting of a target region of the state space in finite time (Henzinger, 
1996). As we shall see, with the combination and the slight modifica-
tion of these basic properties (we shall alternatively denote them as 
specifications or requirements), an engineer may design a broad range 
of desired dynamical behaviours for any model at hand.

Given a model of a dynamical system, such spectrum of proper-
ties can be investigated from different perspectives and with diverse 
approaches: either analytical (e.g., via local linearisation and eigen-
values computation) (Sastry, 1999), or computational ones (e.g., via 
dynamic flow propagation or via reach-set computation). In general, 
non-linearity in dynamical models is difficult to deal with: on account 
of this, approaches that are indirect or sufficient can be successful: a 
proof that the system actually fulfils a given requirement can be offered 
in the form of a certificate: the onus is to find, or to synthesise, a real-
valued function defined over the state space with proper characteristics. 
A celebrated instance of indirect methods is the synthesis of Lyapunov 
functions (Lyapunov, 1992), whereby one ought to hand-craft a be-
spoke energy function, oftentimes based on intuition and on physical 
properties of the underlying dynamical model.

In recent years numerical optimisation methods have automated 
the synthesis of certificates, employing templates, i.e. candidate func-
tions where only the coefficients (parameters) ought to be determined. 
Commonly, the choice falls onto polynomial templates framed as sum-
of-squares convex problems (Goubault, Jourdan, Putot, & Sankara-
narayanan, 2014; Papachristodoulou et al., 2013; Papachristodoulou & 
Prajna, 2002; Prajna, 2006), which admit globally optimal solutions. 
However, these techniques operate solely on models with polyno-
mial dynamics and various convexity assumptions. Alternative formu-
lations include linear programs (Ben Sassi, Sankaranarayanan, Chen, 
& Ábrahám, 2016; Ratschan & She, 2010; Sankaranarayanan, Chen, & 
Ábrahám, 2013) and semi-algebraic systems (She, Li, Xue, Zheng, & 
Xia, 2013; She, Xia, Xiao, & Zheng, 2009), all of which raise structural 
requirements on the dynamical models at hand.

Despite the usefulness of the mentioned synthesis approaches, they 
are numerically sensitive and generally unsound, and thus undesir-
able for robust solutions and safety-critical applications (Abate, 2017; 
2 
Bohrer, Tan, Mitsch, Myreen, & Platzer, 2018; Knight, 2002). Conse-
quently, in recent years interest has grown in approaches for synthesis 
that can yield provably-correct certificates, much in the same line of 
research as correct-by-design control synthesis (Belta, Yordanov, & Gol, 
2017; Tabuada, 2009). A powerful technique to reason formally about 
correctness involves SMT-solving (Barrett, Stump, Tinelli, et al., 2010). 
SAT-modulo-theory (SMT) extends satisfiability (SAT) solving to richer 
theories, enabling, for example, finding feasible assignments of real 
numbered variables over nonlinear formulae.

SMT can be in particular leveraged for synthesis tasks. Inductive
approaches (Solar-Lezama, Tancau, Bodik, Seshia, & Saraswat, 2006), 
leveraging SMT, have been used to synthesise certificates (Ravan-
bakhsh & Sankaranarayanan, 2015b, 2019), controllers (Abate et al., 
2020; Huang, Wang, Mitra, Dullerud, & Chaudhuri, 2015) and ab-
stractions (Abate, Edwards, & Giacobbe, 2022) for dynamical models. 
Such techniques have been used first for stability certification of 
dynamical models using polynomial Lyapunov functions and later 
extended to more general reach-avoid requirements (Ahmed, Peruffo, 
& Abate, 2020; Kapinski, Deshmukh, Sankaranarayanan, & Arechiga, 
2014; Ravanbakhsh & Sankaranarayanan, 2015a, 2015b). Related to 
SMT-based solutions, approaches that formulate synthesis problems 
as a mixed-integer linear programs have also been used to synthe-
sise provably-correct Lyapunov functions (Dai, Landry, Pavone, & 
Tedrake, 2020; Dai, Landry, Yang, Pavone, & Tedrake, 2021) for 
stability analysis, encompassing linear matrix inequalities for uncertain 
systems (Masti, Fabiani, Gnecco, & Bemporad, 2023), and barrier 
certificates for safety (Chen, Fazlyab, Morari, Pappas, & Preciado, 2020, 
2021; Zhao, Zeng, Chen, Liu & Woodcock, 2021). Notably, mixed-
integer problems also encompass candidates in the form of neural 
networks with ReLU activation functions, and may employ an optimi-
sation engine like Gurobi (Gurobi Optimization, LLC, 2021) to certify 
the soundness of the proposed functions (Zhao et al., 2021).

Related work The flexibility of neural networks has permeated 
the field of certificate synthesis, including their use for synthesis of 
Lyapunov-like functions. For instance, Jin, Wang, Yang, and Mou 
(2020), Noroozi, Karimaghaee, Safaei, and Javadi (2008) and Richards, 
Berkenkamp, and Krause (2018) describe generally unsound procedures 
for gradient descent-based training of a Lyapunov neural network. 
Sound, counter-example based techniques are proposed in e.g. Abate, 
Ahmed, Giacobbe and Peruffo (2020), Ahmed et al. (2020), Chang, 
Roohi, and Gao (2019), Grande, Anderlini, Peruffo and Salavasidis 
(2023), Grande et al. (2023) and Samanipour and Poonawala (2023), 
specifically for Lyapunov functions, and solely for barrier certificates 
in e.g. Peruffo, Ahmed, and Abate (2021), Ratschan (2017) and Zhao, 
Zeng, Chen, and Liu (2020). The choice of SMT solver depends on the 
models under consideration and desired certificate template: Z3 (de 
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Moura & Bjørner, 2008) handles polynomial functions, dReal (Gao, 
Kong, & Clarke, 2013), iSat3 (isat3, 0000) and CVC5 (Barbosa et al., 
2022) enable analysis of non-polynomial functions as well as polyno-
mials. The synthesis of certificates includes more complex properties, 
as proposed in Verdier (2020) and Verdier and Mazo (2020) where be-
spoke genetic algorithms are leveraged to generate reach-while-stay and
reach-and-stay-while-stay functions, alongside controllers, for hybrid 
systems. Certificates for reach-avoid properties have been previously 
synthesised using counterexample-based approaches (Ravanbakhsh & 
Sankaranarayanan, 2015b). Meanwhile reach-avoid-stay properties and 
corresponding certificates have been well studied from a theoretical 
perspective (Meng, Li, Fitzsimmons & Liu, 2021; Meng, Li & Liu, 2021). 
In this work, we collate certificates for these more complex properties, 
and categorise them in order to unify them within simpler certificates 
for stability, reachability and safety. We also generalise the concept 
of reach-avoid-stay property by separating allowing the stay set to be 
different from the reach set. The interested reader may find a survey 
on neural certificates with application in control synthesis and robotics 
in Dawson, Gao, and Fan (2022).

Contributions We summarise our contributions as follows:

• We collate and add to existing certificates across literature for 
nonlinear continuous-time dynamical models.

• We categorise the properties these certify into a simplified and 
general framework, which we newly describe through notions
arrive, avoid and remain.

• We describe a unified algorithm to concurrently synthesise both
controllers and certificates in parallel for dynamical models, to 
prove they satisfy these properties.

• We implement our framework1 on top of the computational li-
brary Fossil (Abate, Ahmed, Edwards, Giacobbe, & Peruffo, 2021; 
Edwards, Peruffo, & Abate, 2024), offering a new prototype soft-
ware tool that can verify general arrive, avoid and remain proper-
ties for nonlinear control models using controllers and certificates 
based on neural networks.

Organisation This manuscript is organised as follows. Section 2 
provides relevant background information and notation used across this 
work. In Section 3, we describe a range of properties for dynamical 
models and certificates which prove that they hold. Next, we describe 
a unified and computationally correct algorithm for synthesising these 
certificates in Section 4. We present experimental results for a prototype 
tool to synthesise these certificates in Section 5, before discussing the 
limitations of our framework in Section 6 and providing concluding 
remarks in Section 7. Finally, we outline the proofs of all theorems 
in Appendix  A, and we reserve a discussion on the broader taxonomic 
connections of our work to Appendix  B.

2. Preliminaries

2.1. Dynamical models

We denote the set of positive real numbers and its extended version 
as R+ and R = R+∪{+∞}, respectively. A function is said to be of class 
1 if its first derivative exists and is continuous. Let us consider models 
described by 
𝜉̇(𝑡) = 𝑓𝑢(𝜉(𝑡), 𝑢(𝑡)), 𝑥(𝑡0) = 𝑥0 ∈ 𝐼 ⊆  (1)

where 𝑥 = 𝜉(𝑡) ∈  ⊆ R𝑛 is the state of the system, 𝑓𝑢 ∶  ×  → R𝑛

is a Lipschitz-continuous vector field describing the model dynamics. 
We refer to these models as control models. We denote a trajectory 
over a time horizon 𝑇 ∈ R as 𝜉(𝑡) ∶ [𝑡0, 𝑇 ] → R𝑛, where 𝜉(𝑡) admits 
a time derivative everywhere, and such that 𝜉̇(𝑡) = 𝑓𝑢(𝜉(𝑡), 𝑢(𝑡)) and 

1 Avaliable at https://github.com/oxford-oxcav/fossil.
3 
𝜉(𝑡0) ∈  , namely the trajectory is a solution of the model in (1). 
Finally, 𝑢(𝑡) ∈  ⊆ R𝑚 is the input and 𝐼  denotes the set of initial 
conditions. Once a state-feedback controller 𝑢(𝑡) = 𝑘(𝜉(𝑡)) has been 
specified, we may interpret the dynamics described by (1) as those of 
a closed-loop model, as follows 
𝜉̇(𝑡) = 𝑓 (𝜉(𝑡)), 𝜉(𝑡0) = 𝜉0 ∈ 𝐼 ⊆  . (2)

We refer to models of this kind simply as autonomous dynamical 
models. We denote with 𝑥∗ an equilibrium point of (2), namely where 
𝑓 (𝑥∗) = 0. We note that we can assume without loss of generality that 
this equilibrium point is the origin, since we are always able to translate 
the dynamics to ensure this Khalil (2002).

2.2. Systems and properties

The goal of this work is to find a feedback controller, namely a 
signal 𝑢(𝑡) in time, such that the dynamics above satisfy some desired 
temporal requirements (e.g., safety), or to show that given closed-
loop (autonomous) dynamics are endowed with some given property 
(e.g., asymptotic stability).

We interpret properties of dynamical models in (2) in terms of their 
trajectories, and of binary relations that these trajectories have with 
given sets within the state space  . To this end, we now introduce 
the notations and the semantics of the sets characterising properties of 
dynamical models. We denote as 𝑈  an unsafe set, indicating a region 
of the state space where the system’s trajectories should avoid; 𝐺
represents a goal set, indicating the region that the system’s trajectories 
should enter; and 𝐹  represents a final set, indicating a set where 
the system’s trajectories should remain for all times after arriving at 
the goal set. These sets will be employed in the next section for the 
definition of properties, as depicted in Fig.  1. Implicitly, we consider 
that the unsafe and final sets are disjoint, i.e. 𝑈 ∩ 𝐹 = ∅ and that 
the goal set is contained within the final set, i.e. 𝐺 ⊂ 𝐹 .  Often we 
will assume these sets to be compact; the motivation for assuming sets 
to be compact (rather than just closed) is mainly to ease automated 
synthesis and verification. Additional topological properties of sets will 
be clarified later, within formal statements. Given a set 𝑆 in a domain 
 , we denote by 𝑆∁ its complement, i.e.  ⧵𝑆, and by int(𝑆) its interior, 
namely the set without its border, i.e. int(𝑆) = 𝑆 ⧵ 𝜕𝑆.

We consider a set 𝑆 to be (forward) invariant if at some initial time 
𝑡0, 𝜉(𝑡0) ∈ 𝑆 implies that for all 𝑡 > 𝑡0, 𝜉(𝑡) ∈ 𝑆 (Blanchini & Miani, 
2008). We consider a set 𝑆𝐴 to be attracting (Blanchini & Miani, 2008) 
with region of attraction 𝑆𝐵 if for some initial time 𝑡0 and any initial 
state 𝜉(𝑡0) ∈ 𝑆𝐵 , the trajectory 𝜉(𝑡) converges to 𝑆𝐴 as 𝑡 → ∞, i.e. if 
lim𝑡→∞ 𝑑𝑖𝑠𝑡(𝜉(𝑡), 𝑆𝐴) = 0. Finally, given a function 𝐶 ∶ R𝑛 → R, we 
denote the Lie derivative of this function with respect to the vector 
field 𝑓 simply as 𝐶̇ = ⟨∇𝐶, 𝑓 (𝑥)⟩.

2.3. Neural networks

Denote a neural network   with input layer 𝑧0 ∈ R𝑛, corresponding 
to the dimension of the dynamical model in (2). This is followed by 
𝑘 hidden layers 𝑧1,… , 𝑧𝑘 with dimensions ℎ1,… , ℎ𝑘 respectively, and 
finally followed by an output layer 𝑧𝑘+1 ∈ R𝑑 . In this work, 𝑑 ∈ {1, 𝑚}, 
where 𝑑 = 1 corresponds to a scalar-valued certificate, whereas 𝑑 = 𝑚
is used for a state-feedback controller with 𝑚 control variables.

We denote the hidden layers and output layer as ℎ𝑖 with index 
𝑖 = 0,… , 𝑘 + 1, where 𝑘 + 1 denotes the output layer; to these layers 
are associated matrices of weights 𝑊𝑖 ∈ Rℎ𝑖×ℎ𝑖−1  and a vector of biases 
𝑏𝑖 ∈ Rℎ𝑖  (MacKay, 2003). Every 𝑖th hidden layer is associated with an 
activation function 𝜎𝑖 ∶ R → R. The valuation of output and hidden 
layers is given by

𝑧𝑖 = 𝜎𝑖(𝑊𝑖 ⋅ 𝑧𝑖−1 + 𝑏𝑖), 𝑖 = 1,… , 𝑘, (3)

𝑧𝑘+1 = 𝑊𝑘+1 ⋅ 𝑧𝑘 + 𝑏𝑘+1, (4)

where each 𝜎  is applied element-wise to its ℎ -dimensional argument.
𝑖 𝑖

https://github.com/oxford-oxcav/fossil
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2.4. SAT-Modulo Theory (SMT)

Here, we offer a brief introduction to SMT solving to aid under-
standing of how they are used in this work; for a more comprehensive 
introduction the reader is directed to Barrett and Tinelli (2018).

Let 𝜙(𝑥) be a formula in first-order logic, expressed in terms of vari-
ables 𝑥 in a given domain. SMT is the problem of determining if there 
exists an assignment of the variables 𝑥 such that 𝜙(𝑥) is satisfied (i.e., if 
it evaluates to true). SMT extends the Boolean satisfiability (SAT) 
problem: SAT solvers use modern forms of the DPLL algorithm (Davis, 
Logemann, & Loveland, 1962; Davis & Putnam, 1960) to search for 
satisfying assignments for boolean formulae. As an example, consider 
the following boolean formula, 𝜙1(𝑥) = (𝑥0 ∨ 𝑥1) ∧ (¬𝑥0 ∨ ¬𝑥2), 𝑥 =
(𝑥0, 𝑥1, 𝑥2), 𝑥𝑖 ∈ {𝑇 , 𝐹 }. When provided with this formula, a SAT solver 
would return an assignment such as 𝑥0 = T, 𝑥1 = T, 𝑥2 = F, which 
satisfies 𝜙1(𝑥).

Now let us consider an example that is more relevant to this work. 
Let 𝜎𝑡 be the hyperbolic tangent function, and consider the following 
function 𝑔 ∶ R → R

𝑔(𝑥) = 𝜎𝑡(2 − 2𝑥) − 3𝜎𝑡(1 − 𝑥) + 3
2
.

Suppose we wish to find if 𝑔 is negative at some point where 𝑥 is 
non-negative. Formally, this is
∃𝑥 ∈ R, 𝑥 ≥ 0 ∶ 𝑔(𝑥) < 0.

An SMT solver over the theory of real algebra, which can in particular 
handle transcendental functions, can handle this problem. This solver 
will return 𝑢𝑛𝑠𝑎𝑡 to this problem, as no satisfying assignment exists 
— it is unsatisfiable. Crucially, SMT-solvers are sound: if a satisfying 
assignment exists then it cannot return that the problem is unsatisfiable.

We note that 𝑔(𝑥) is in fact a trivial feed-forward neural network and 
we have proven that it is positive in a region of the state-space. Later, 
we will use the same ideas to prove similar properties for non-trivial 
networks.

3. Properties and certificates

We present a number of properties (or requirements) for dynamical 
models defined over their trajectories, alongside definitions of corre-
sponding certificates, whose existence serve as sufficient conditions for 
the satisfaction of the desired properties. We focus on continuous-time 
models; while the presented properties may be seamlessly applied to 
discrete time models, the corresponding certificates would not neces-
sarily align with the presentation of the work, hence we omit their 
discussion as outside the scope of this work. The proofs of the theorems 
relating certificates to dynamical properties are outlined in Appendix 
A. Several properties (and corresponding certificates) are ubiquitous 
across the control theory literature, whilst others have been more 
recently introduced or inherited from analogues in formal verification. 
Further, we include a practical variant on Lyapunov functions to allow 
for constrained local stability and an original certificate called Reach-
Avoid-Remain, and suggest that more can be obtained in a modular, 
composable fashion. We emphasise that while many of these properties 
are similar to each other, they are subtly, and importantly, different 
and distinguished. Later in the section we provide a summary and 
clarification on their distinguishing features, which may also be seen 
in Fig.  1. Abbreviations for these properties (and other acronyms used 
in this work) may be found in Table  5 at the end of the work.

3.1. Stability

Stability is the most-studied property of dynamical models, and 
many definitions of this property exist. Stability is most commonly 
characterised in a Lyapunov (asymptotic) sense (Sastry, 1999), namely 
in terms of the distance of a trajectory from the equilibrium point. 
4 
However, we choose to characterise stability in terms of set contain-
ment in order to achieve a consistent characterisation with subsequent 
properties and certificates. The corresponding certificate defined in the 
sequel may also be used to prove solely the more common asymptotic 
stability, which we leverage in the experimental results. 
∃𝐼 ∶ ∀𝜉(𝑡0) ∈ 𝐼 ,∃𝑇 ∈ R,∀𝜏 ≥ 𝑇 , 𝜉(𝜏) ∈ {𝑥∗}, (5)

where 𝐼  has non empty interior. In words, there exists some initial 
set 𝐼  such that for all trajectories initialised in 𝐼 , there exists a 
time instant 𝑇  (possibly at infinity) when the trajectory reaches the 
equilibrium state 𝑥∗ and remains there for all times after 𝑇 . A model 
can be proven to satisfy this property using a Lyapunov function, which 
we introduce next.

Certificate 1 (Lyapunov Function). Given a model 𝑓 with unique equilib-
rium point 𝑥∗ ∈ int(), consider a function 𝑉 ∶  ⊂ R𝑛 → R, 𝑉 ∈ 1. 𝑉  is 
a Lyapunov function if: 
𝑉 (𝑥∗) = 0, (6a)

𝑉 (𝑥) > 0 ∀𝑥 ∈  ⧵ {𝑥∗}, (6b)

𝑉̇ (𝑥) = ⟨∇𝑉 (𝑥), 𝑓 (𝑥)⟩ < 0 ∀𝑥 ∈  ⧵ {𝑥∗}. (6c)

Theorem 1 (Stability).  Given a model (2), if a Lyapunov function exists, 
then (5) holds for some set of initial conditions 𝐼 .  ■

Let us clarify the issue of finding 𝐼  in the next section.

3.2. Region of attraction

Theorem  1 proves the existence of some region of the state space in 
which initialised trajectories will converge asymptotically towards the 
origin — this region is known as a region of attraction (ROA). In general, 
Lyapunov functions merely prove the existence of a region of attraction 
within the state space, without additional information about its size or 
shape. Lyapunov functions may prove global asymptotic stability under 
additional conditions, but these can be difficult to synthesise and verify 
automatically for some models. Here, we offer a certificate the acts as 
a middle ground between local and global asymptotic stability.

Proving that all trajectories initialised within a given 𝐼  are stable 
amounts to proving that 𝐼  is contained wholly within a sub-level set of 
a Lyapunov function (which must also lie in ), and that the Lyapunov 
conditions in (6) hold over this entire sub-level set. This is treated in 
the following equation and corollary.

First, we modify (5) to now require a specified set of initial states 
𝐼 , which should be a region of attraction for an equilibrium point, as 
follows: 
∀𝜉(𝑡0) ∈ 𝐼 ,∃𝑇 ∈ R,∀𝜏 ≥ 𝑇 , 𝜉(𝜏) ∈ {𝑥∗}. (7)

We can certify that an autonomous model satisfies this property 
using the following certificate.

Certificate 2 (ROA Certificate). Let a dynamical model 𝑓 be given with 
unique equilibrium point 𝑥∗ ∈  . A Lyapunov function 𝑉  is an ROA 
certificate if there exists a 𝛽 such that 𝐼 ⊂ {𝑥 ∈  ∶ 𝑉 (𝑥) ≤ 𝛽 } and 
that the conditions in (6) hold over the set {𝑥 ∈  ∶ 𝑉 (𝑥) ≤ 𝛽}.  ■

Alternatively, a Lyapunov function can be interpreted as a proof 
that a region of attraction (here 𝐼 ) exists within some larger set (here 
), whereas a ROA certificate proves the converse: that a given initial 
set 𝐼  lies within a larger region of attraction, which is defined by 
a sublevel set of 𝑉 . This certificate offers a more practical guarantee 
over classical Lyapunov functions: all trajectories initialised within the 
pre-defined set 𝐼  indeed converge to 𝑥∗.

Corollary 2 (Region of Attraction).  Given a model (2), a bounded set of 
initial conditions 𝐼 , and a ROA certificate, then (7) holds.  ■
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Fig. 1. Pictorial depiction of relevant properties in this work. Here, 𝐼 is the initial set, 𝑈  the unsafe set (𝑆 is its safe complement), 𝐺 the goal/target set, 𝐹
the final set. (The entire state space is  .) Here, a dashed background denotes that the corresponding set’s existence is implied by the corresponding certificate, 
but that it is not explicitly defined in the property. Notably, this means that the set cannot be specified a-priori when defining the property: e.g., the invariant 
set 𝐺 may be any size contained within 𝐹 . This motivates the construction of the additional certificates (and corresponding properties) ROA and RAR, which 
instead allow for a-priori set specifications.
3.3. Safety

Safety is another fundamental property we can require from dynam-
ical models. It involves the avoidance of some unsafe region: namely, 
that no trajectory starting from 𝐼  may enter the unsafe set 𝑈

2; 
formally 

∀𝜉(𝑡0) ∈ 𝐼 ,∀𝑡 ∈ R, 𝑡 ≥ 𝑡0, 𝜉(𝑡) ∈ 𝑈
∁. (8)

For continuous-time models, safety over an unbounded time horizon 
can be proved via barrier certificates (Prajna, 2006; Prajna, Jadbabaie, 
& Pappas, 2004). 

Certificate 3 (Barrier Certificate). Consider a dynamical model 𝑓 , a 
compact unsafe set 𝑈  and compact initial set 𝐼 . A function 𝐵 ∶  ⊂
R𝑛 → R, 𝐵 ∈ 1, is a Barrier certificate if the following holds: 

𝐵(𝑥) ≤ 0 ∀𝑥 ∈ 𝐼 , (9a)

𝐵(𝑥) > 0 ∀𝑥 ∈ 𝑈 , (9b)

𝐵̇(𝑥) = ⟨∇𝐵, 𝑓 (𝑥)⟩ < 0 ∀𝑥 ∈ {𝑥 ∶ 𝐵(𝑥) = 0}. (9c)

Many characterisations of barrier certificates exist, to cover differ-
ent applications or to abide by additional constraints. These include 
reciprocal (Ames, Xu, Grizzle, & Tabuada, 2017), high-order (zero-
ing) (Tan, Cortez, & Dimarogonas, 2022), or barrier conditions with 
modifications on the Lie derivative (9c) (Prajna et al., 2004). These 
certificates are alike in that they certify safety properties. However, the 
formulation used in this work are known to exist for any system which 
is safe (Ratschan, 2018), and hence we consider this sufficient for this 
work.

2 We shall later draw connections between the concept of safety and the 
dual notion of (unconstrained) reachability. Please refer to the discussions in 
Section 3.8 and in Appendix  B.
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Theorem 3 (Safety).  Given a model (2), a compact domain  , a compact 
initial set 𝐼 ⊂  and an unsafe set 𝑈 , alongside a barrier certificate, then 
(8) holds.  ■

3.4. Stable while avoid

It is natural to extend the aforementioned notions of stability and 
safety towards a combination of both, whereby all relevant trajectories 
converge towards an equilibrium point, while also avoiding a given 
unsafe set. Such a property is formally described as follows:
∀𝜉(𝑡0) ∈ 𝐼 ,∃𝑇 ∈ R,∀𝑡 ∈ [𝑡0, 𝑇 ), 𝜉(𝑡) ∈ 𝑈

∁

∧∀𝜏 ≥ 𝑇 , 𝜉(𝜏) ∈ {𝑥∗}. (10)

Since (10) is simply the conjunction of a stability property and a safety 
property, certifying this is equivalent to concurrently certifying both 
stability and safety hold: this task can be thus formally tackled by the 
following corollary. 

Corollary 4 (Stable While Avoid (SWA)).  Given a model (2) with unique 
equilibrium point 𝑥∗ ∈  , a compact domain  , a compact initial set 
𝐼 ⊂  and an unsafe set 𝑈  alongside a ROA certificate 𝑉  and barrier 
certificate 𝐵, then (10) holds.  ■

Notice that it is alternatively possible to combine the conditions 
of (6) and (9) into that of a single certificate for stability and safety. 
Such a function is sometimes referred to as a Lyapunov-Barrier certifi-
cate (Romdlony & Jayawardhana, 2016; Wu et al., 2019). However, 
in this work we choose to use two separate functions, as this makes 
synthesis easier and more modular.

3.5. Reach while avoid

Let us now set asymptotic stability aside, and instead study prop-
erties over a finite time horizon: namely, we require that trajectories 
enter a non-singleton set in finite time. These are reachability-like 
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properties, which require trajectories to reach a region known as a goal 
set. A reach-while-avoid (RWA) property requires a non-singleton goal 
set to be reached within a finite time horizon 𝑇 , while avoiding an 
unsafe region; in formal terms,
∀𝜉(𝑡0) ∈ 𝐼 ,∃𝑇 ∈ R,∀𝑡 ∈ [𝑡0, 𝑇 ] ∶

𝜉(𝑡) ∈ 𝑈
∁ ∧ 𝜉(𝑇 ) ∈ 𝐺 . (11)

Next, we introduce an RWA certificate to guarantee that this property 
holds for a model under consideration.

Certificate 4 (RWA). Define an unsafe set 𝑈 =  ⧵ 𝑆 , where 𝑆 is 
a compact safe set, a compact initial set 𝐼 ⊂ int(𝑆 ), and a compact 
goal set 𝐺 ⊂ int(𝑆 ) with non-empty interior. A reach-while-avoid (RWA) 
certificate (Verdier, 2020) is a function 𝑉 ∶ R𝑛 → R, 𝑉 ∈ 1 if there exists 
𝛾 ∈ R+, such that 

𝑉 (𝑥) ≤ 0 ∀𝑥 ∈ 𝐼 , (12a)

𝑉 (𝑥) > 0 ∀𝑥 ∈ 𝜕𝑆 , (12b)

𝑉̇ (𝑥) ≤ −𝛾 ∀𝑥 ∈ {𝑥 ∈ 𝑆 ∶ 𝑉 (𝑥) ≤ 0} ⧵ 𝐺 . (12c)

Theorem 5 (Reach-While-Avoid). Given a model (2) and a RWA Certifi-
cate corresponding to the given sets of interest, then (11) holds.  ■

Remark 6 (Unconstrained Reachability). Unconstrained reachability can 
be defined as a special case of RWA, where we set 𝑈 = ∅ (i.e. 𝑆 = ). 
Hence, a certificate can be provided accordingly, as special instance of 
Certificate Certificate  4.  ■

We emphasise that a RWA certificate does not prove that trajectories 
will remain within the goal set, or that trajectories shall avoid the unsafe 
set for all (unbounded) time, nor does the specification in (11) indeed 
encode these requirements. In fact, since the Lie derivative condition 
(12c) does not hold across the goal set 𝐺, it is possible for trajectories 
to leave the goal set after entering it, and thereafter possibly enter the 
unsafe set 𝑈 . This alternative, more restrictive scenario is addressed 
by the next certificate.

3.6. Reach-and-stay while avoid

A reach-and-stay while avoid (RSWA) property is similar to the 
RWA property, consisting of RWA with an additional requirement that 
trajectories will eventually remain within some final set indefinitely. 
Formally, trajectories should satisfy the property
∃𝐺 ⊂ int(𝐹 ) ∶ ∀𝜉(𝑡0) ∈ 𝐼 ,∃𝑇 ∈ R,∀𝑡 ∈ [𝑡0, 𝑇 ],

𝜉(𝑡) ∈ 𝑈
∁ ∧ 𝜉(𝑇 ) ∈ 𝐺

∧∀𝜏 ≥ 𝑇 ∶ 𝜉(𝜏) ∈ 𝐹 . (13)

Notably, this property does not require that trajectories reach the final 
set and remain within it, and may enter and leave the final set as long 
as they eventually remain within the final set. However, in finite time 
trajectories must reach some subset of the final set a goal set, after 
which point they must remain within the final set for all time. 

Certificate 5 (RSWA). Define an unsafe set 𝑈 =  ⧵ 𝑆 , where 𝑆 is 
a compact safe set, then define a compact initial set 𝐼 ⊂ int(𝑆 ), and a 
compact final set 𝐹 ⊂ int(𝑆 ). A RSWA (Verdier, 2020) certificate is a 
function 𝑉 ∶ R𝑛 → R, 𝑉 ∈ 1 if there exists 𝛾 ∈ R+ such that the following 
is satisfied: 
𝑉 (𝑥) ≤ 0 ∀𝑥 ∈ 𝐼 , (14a)

𝑉 (𝑥) > 0 ∀𝑥 ∈ 𝜕𝑆 , (14b)

𝑉̇ (𝑥) ≤ −𝛾 ∀𝑥 ∈ {𝑥 ∈ 𝑆 ∶ 𝑉 (𝑥) ≤ 0} ⧵ 𝐹 , (14c)

𝑉 (𝑥) > 𝛽 ∀𝑥 ∈ 𝜕 , (14d)
𝐹
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𝑉̇ (𝑥) ≤ −𝛾 ∀𝑥 ∈ 𝐹 ⧵ int({𝑥 ∈ 𝑆 ∶ 𝑉 (𝑥) ≤ 𝛽}), (14e)

for some constant 𝛽 ∈ R−.

Theorem 7 (Reach-And-Stay While Avoid). Given a model (2) and a 
certificate corresponding to the given sets of interest, then (13) holds.  ■

The sub-level set of 𝑉  given by 𝛽 defines an invariant set contained 
with the final set, and ensures that trajectories reach this set in finite 
time without entering an unsafe region. Note that the specification de-
scribed in (13) – and the corresponding certificate – permit trajectories 
to enter and leave the final set, on the condition that eventually (and 
within finite time), they enter goal set and do not leave the final set 
again. Here, the goal set is implicitly defined by the intersection of 𝐹
and the 𝛽 level set of the certificate, and is an invariant set contained 
fully within 𝐹 . However, the shape and size of this 𝐺 is not specified 
a-priori, and can only be obtained after synthesis. The next certificate 
is motivated by a desire to allow 𝐺 and 𝐹  to be specified fully within 
the property. 

3.7. Reach, avoid and remain

The final property we consider is again similar to the previous Reach 
and Stay While Avoid property, but, as with the ROA certificate, we 
seek to remove the existential quantifier over the goal set from (13). 
This means that the Reach Avoid Remain (RAR) property requires that 
trajectories remain within a final set after reaching a goal set, but for 
two given goal and final sets. We express this formally, as follows:
∀𝜉(𝑡0) ∈ 𝐼 ,∃𝑇 ∈ R,∀𝑡 ∈ [𝑡0, 𝑇 ] ∶

𝜉(𝑡) ∈ 𝑈
∁ ∧ 𝜉(𝑇 ) ∈ 𝐺 ∧ ∀𝜏 ≥ 𝑇 ∶ 𝜉(𝜏) ∈ 𝐹 . (15)

Certificate 6 (RAR).  Define an unsafe set 𝑈 =  ⧵ 𝑆 , where 𝑆 is 
a compact safe set, a compact initial set 𝐼 ⊂ int(𝑆 ), a compact final 
𝐹 ⊂ int(𝑆 ), and a compact goal set 𝐺 ⊂ int(𝐹 ) with non-empty 
interior. Let 𝑉 ∶ R𝑛 → R be a RWA certificate, and a function 𝐵 ∶ R𝑛 → R, 
𝐵 ∈ 1, such that: 
𝐵(𝑥) ≤ 0 ∀𝑥 ∈ 𝐺 , (16a)

𝐵(𝑥) > 0 ∀𝑥 ∈ 𝜕𝐹 , (16b)

𝐵̇(𝑥) < 0 ∀𝑥 ∈ {𝑥 ∶ 𝐵(𝑥) = 0}. (16c)

The pair (𝑉 ,𝐵) define a Reach-Avoid-Remain certificate.  ■

As with the Stable-While-Avoid certificate, we choose to formulate 
this certificate as a pair of separate functions, rather than collapsing 
the conditions to a single function. This choice, which of course does 
not affect the soundness of the approach, renders synthesis practically 
easier and more modular.

Theorem 8 (Reach-Avoid-Remain).  Given a model (2) and a certificate 
pair 𝑉 , 𝐵 satisfying the conditions in Certificate  6, then (15) holds.  ■

We note that here, the certificate 𝐵 is similar to a Barrier certificate 
as defined in (9), though with 𝐺 as the initial set and 𝜕𝐹  as the unsafe 
set. We have restated the function in this context for clarity.

3.8. Summary and classification of properties

So far, we have presented a number of different properties that a 
dynamical model may conform to. These properties, and the certifi-
cates that sufficiently prove them to hold, can be complex and sub-
tly different. However, we observe the following similarities between 
them:

• All certificates rely on a set on initial conditions 𝐼 . In the case 
of a Lyapunov function, this set is implicitly defined a-posteriori 
to the synthesis of the certificate.
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Fig. 2. Euler Diagram depicting the semantic labels, arrive, avoid, and remain, 
associated with each certificate in this work. By the dashed line, we group 
properties that exhibit asymptotic stability. By the dotted line, we denote 
properties that exhibit (finite-time) reachability.

• 𝑈  denotes a region trajectories should avoid (and thus relate to 
a safety requirement).

• Either 𝐺 or {𝑥∗} denote a region which trajectories should enter 
or arrive at. We leverage this notion to encompass both finite-
time reachability and asymptotic stability, and note that it can 
be thought as the dual of the avoid category.

• Either 𝐹  or {𝑥∗} denote a region which trajectories should 
eventually remain in, for all time, as soon as they have arrived
in a goal set. This notion is thus related to both (forward) set 
invariance and asymptotically stable equilibria.

Based on these analogies, we introduce three labels avoid, arrive and
remain, and assign them to each certificate, in order to clarify their 
purpose and differences. We portray this relationships in Fig.  2, where 
the label arrive encompasses both stability and finite-time reachability.

We note that this classification does not distinguish between some 
certificates, which we clarify here. Firstly, as previously mentioned, a 
Lyapunov function and a ROA certificate differ in that for the latter an 
initial set is explicitly specified a priori to synthesis. Meanwhile, the 
SWA, RSWA and RAR certificates satisfy all three labels. Stable while 
Avoid is easy to distinguish, as it handles asymptotic stabilty, whereas 
the others treat finite time reachability. Finally, we differentiate the 
RSWA and RAR certificates as follows. A RSWA certificate proves that 
there exists a goal set, contained within a given final set, that trajec-
tories will reach and afterwards never leave the final set. Meanwhile 
a RAR certificate explicitly defines both the goal set and final set 
associated with this, allowing for a more elaborate specification.

3.9. Certificates for control models

Much work in the literature of certificate synthesis refers to, e.g.,
control Lyapunov functions and control Barrier certificates. In this work, 
we consider such terms to concern certificates that refer to a model 
expressed in terms of both state 𝑥 and control input 𝑢, as in (1). Existing 
approaches often specify a control set, over which the specifications 
quantify existentially. In other words, they seek certificates for which 
for all states, there always exists a valid control action that allows for 
the property to hold. A control Lyapunov function therefore proves that 
there always exists a suitable control input such that the Lyapunov 
conditions hold, and hence the system is (asymptotically) stabilisable. 
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This approach entails that, after a valid control-certificate is synthe-
sised, control actions can be determined, e.g. by solving an optimisation 
program over the input space and the found certificate.

We emphasise that this is not the approach taken in this work. 
Instead, we synthesise a feedback control law for the model described 
by (1), and ‘‘apply’’ this state feedback to obtain a closed-loop model 
of the form of (2), for which we synthesise a certificate. Whilst we 
synthesise the control law concurrently with the certificate, we do not 
refer to these as ‘‘control certificates’’. Our approach of assuming some 
parametric form of a feedback controller and calculating a separate 
certificate is also common across literature, such as in SOSTOOLS (Pa-
pachristodoulou et al., 2013). We note that this notation is broadly, 
but not entirely, in line with other literature, and add this discussion 
as clarification on the terminology used in this work. Hence, we verify 
properties for control models using both a controller and a certificate, 
and in particular do not delegate the controller synthesis a-posteriori.

We note that in general neither approach has a clear benefit over the 
other, and more variants exist in some literature. However, verifying a 
control-Lyapunov certificate based on an exists/for-all query would, in 
general, scale poorly with SMT solvers. As such, we prefer to break the 
problem into two tasks of guessing a candidate controller and checking
it with a certificate only dependent on the closed-loop dynamics.

4. Synthesis of certificates and controllers

Following the introduction of specifications that are salient for 
verification purposes, and certificates whose existence prove that a 
given model satisfies these conditions, we describe next a unified, 
efficient, and sound algorithm for the synthesis of these certificates, for 
both dynamical and controlled models. The objective of the synthesis 
task is indeed twofold: we seek a feedback controller 𝑘(𝑥) that ensures 
a control model satisfies a desired specification, and concurrently we 
synthesise a certificate 𝐶(𝑥) that serves as a proof that the specification 
holds. As such, allow us to use 𝐶(𝑥) to refer to each function in 
a possible pair separately. Call with 𝜃𝑢 the parameters of the state 
feedback law and 𝜃𝑐 the parameters of the certificate function. The 
synthesis task therefore amounts to finding values for the parameters 
𝜃𝑢 and 𝜃𝑐 such that the certificate conditions hold, i.e., 

∃ 𝜃𝑢, 𝜃𝑐 ∀𝑥 ∈  ∶ 𝜙(𝐶(𝑥)), (17)

where 𝜙(𝐶(𝑥)) denotes the conditions, related to a given specification 
(as formalised in the previous section), that the certificate ought to 
satisfy. Our procedure is based on counter-example guided inductive 
synthesis (CEGIS) (Solar-Lezama et al., 2006), an established approach 
to formally solving such exists-forall queries. CEGIS consists of two 
opposing components: a leaner and a verifier (cf. Fig.  4), which we 
detail in turn.

4.1. Learner

The learner fulfils the twofold task of designing both a stabilising 
control law (when required) and the desired certificate, as exemplified 
in Fig.  3. In this work, we seek feedback control laws and employ neural 
networks as a general template for these functions: neural architectures 
allow for a wide variety of control laws, as determined by the choice 
of their activation functions and of the number of neurons.

Our candidate controller is thus simply the output of a neural 
network, contributing to the closed-loop dynamics, and which is then 
employed within the certificate synthesis procedure.

For the certificate synthesis, we also employ a neural network as a 
template for 𝐶(𝑥): this allows not only for polynomial templates akin 
to classical (e.g., SOS-based) certificates, but also for highly non-linear 
functions, leveraging the expressive power of neural networks. One of 
the crucial components of a successful training within the learner is the 
definition of a tailored loss function.
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Fig. 3. Loss calculation block diagram. Blue indicates the inputs required 
for the loss calculation: namely the sampled data sets 𝐷□, the control and 
certificate network parameters 𝜃𝑢 and 𝜃𝑐 , respectively. Red arrows represent 
the back-propagation steps, updating the networks’ parameters during training. 
𝑓𝑢(𝑥, ⋅) corresponds to the model in (1), while 𝑓 (𝑥) corresponds to the model 
in (2). (For interpretation of the references to colour in this figure legend, the 
reader is referred to the web version of this article.)

4.1.1. Certificate loss
We note that all of the certificate conditions described in the previ-

ous section can be expressed in terms of inequalities, either as 
𝐶(𝑥) ⋈ 𝑐 ∀𝑥 ∈ □, or as 𝐶̇(𝑥) ⋈ 𝑐 ∀𝑥 ∈ □, (18)

where ⋈∶= {<,>,≥,≤}, 𝐶(𝑥) represents the certificate, □ represents 
the relevant set (e.g., 𝐼  or ) and 𝑐 ∈ R. We can then construct a 
loss function based on this observation, as follows. Consider a mono-
tonically increasing function 𝑚(⋅) and suppose we have a finite set of 
sampled data points over the set □, which we denote as 𝐷□. A general 
loss function for any of the discussed certificate conditions is thus 
∑

𝑑∈𝐷□

𝑚(𝑝 ⋅ 𝐶(𝑑)), (19)

where 𝑝 = 1 if ⋈= {≤, <} and 𝑝 = −1 if ⋈= {≥, >}. Note that 
this function penalises points in 𝐷□ where the required condition is 
not satisfied. Suitable choices for function 𝑚 are leaky-ReLU, which is 
piecewise linear, and softplus, which is smooth. Since several of the 
sets □ are boundaries of sets, or represent level sets, in practice we 
consider a small band around them, in order to encompass a sufficient 
number of data points in 𝐷□.

Example 1 (Example). Let us consider a barrier certificate 𝐵(𝑥) for 
safety verification (see (9)). We create separate sets of finite samples 
for each set defined by the property (initial, unsafe, state-space), and 
the resulting loss function is given by

𝐿 = 1
𝑁𝐼

∑

𝑑∈𝐷𝐼

𝑚(𝐵(𝑑)) + 1
𝑁𝑈

∑

𝑑∈𝐷𝑈

𝑚(−𝐵(𝑑))

+ 1
𝑁

∑

𝑑∈𝑍𝐵

𝑚(𝐵̇(𝑑)). (20)

Here 𝑍𝐵(𝑑) = {𝑑 ∈ 𝐷 ∶ |𝐵(𝑑)| ≤ 𝜖}, where 𝐷 is the set of 𝑁 samples 
over the whole state space, 𝐷𝐼  is the set of 𝑁𝐼  samples over the initial 
set and 𝐷𝑈  is the set 𝑁𝑈  of samples of the unsafe set.  ■

4.1.2. Controller loss
Let us now discuss controlled models. Note that, as described in 

Fig.  3, the parameters of the neural network controller appear in the 
loss function for the certificate, as described previously. Specifically, 
they manifest themselves in the terms corresponding to conditions on 
the Lie derivative of the certificate, since these in turn depend on the 
control-dependent dynamics 𝑓 . This should encourage the learner to 
seek a controller that enables a valid certificate. However, in practice 
we find that this is insufficient for robust synthesis in the case of arrive
requirements. While our certificates and properties make no assump-
tion on the location of the goal set or of the equilibrium, oftentimes 
an equilibrium point (without loss of generality, the origin) lies within 
the goal set. If this is the case, trajectories converging to the origin 
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exhibiting a negative Lie derivative are in turn attracted to the goal set. 
Since the Lie derivative consists of two components, 𝑓 (𝑥) and ∇𝐶(𝑥), 
it can be helpful to separate these elements within the loss function to 
encourage better learning. We thus propose the additional term for the 
loss function: 

𝐿𝑢 =
1
𝑁

∑

𝑑∈𝐷

⟨𝑑, 𝑓 (𝑑)⟩
‖𝑑‖ ⋅ ‖𝑓 (𝑑)‖

, (21)

where ⟨⋅, ⋅⟩ is the inner product of its inputs and ‖ ⋅ ‖ is the 2-norm 
of its input, and 𝐷 is the set of 𝑁 samples over the state space. This 
loss is known as the cosine similarity of the two vectors 𝑑 and 𝑓 (𝑑), 
and rewards vectors for pointing in opposite directions. We interpret 
this loss function as separating 𝑓 (𝑥) from ∇𝐶(𝑥) when calculating the 
Lie derivative, and instead replacing the corresponding certificate with 
a default positive definite function (that of Euclidean distance). This 
encourages the loss function to specifically focus on the parameters in 
the feedback law to learn a desirable 𝑓 (𝑥). As an alternative interpre-
tation, since any vector 𝑑 is fixed and points away from the origin, this 
encourages a controller which guides the dynamics to point towards to 
origin, and hence eventually converge towards it. We demonstrate the 
efficacy of this loss component in Section 5.2.

4.2. Verifier

We now discuss the dual component of the CEGIS architecture, as 
portrayed is Fig.  4. The verifier’s role is assumed by an SMT solver 
and its operation is described as follows: let 𝜙 denote the conditions 
required for a given certificate. We seek a point 𝑥 ∈  that violates 
any of the constraints 𝜙 associated to the certificate. To this end, we 
express the negation of such requirements 𝜙, and formulate a nonlinear 
constrained problem over real numbers. Formally, we ask an SMT 
solver to find a witness to 
∃𝑥 ∈  ∶ ¬𝜙(𝐶(𝑥)), (22)

where any such witness 𝑥 would be considered a counterexample to the 
validity of the certificate 𝜙.

Example (Example Cont’d). Consider the negation of barrier certificate 
conditions 𝜙(𝐶(𝑥)) as in (9), namely
(𝑥 ∈ 𝐼 ∧ 𝐵(𝑥) > 0) ∨ (𝑥 ∈ 𝑈 ∧ 𝐵(𝑥) ≤ 0) ∨

(𝐵(𝑥) = 0 ∧ 𝐵̇(𝑥) ≥ 0). (23)

The verifier searches for solutions 𝑥 of the constraints in (23). This in 
general requires manipulating non-convex functions and is therefore 
handled by an SMT solver. Whenever such 𝑥 is found, it represents a 
witness that the candidate 𝐵(𝑥) is not a valid certificate function.  ■

The correctness of our algorithm hinges upon the soundness of the 
verification engine: we use two solvers, Z3 (de Moura & Bjørner, 2008) 
and dReal (Gao et al., 2013), both of which are sound over nonlin-
ear real arithmetic. Z3 is restricted to polynomial reasoning, whereas 
dReal can handle non-polynomial expressions, for instance containing 
trigonometric or exponential terms, thus allowing for more complex 
models and certificates (via their activation functions). We note that 
dReal is a 𝛿-complete SMT-solver: while this guarantees dReal will 
always find a counterexample if one exists, it may return also spurious 
counterexamples within a 𝛿-perturbation of the original formula (Gao 
et al., 2013). This implies that our procedure may not terminate, even 
when the candidate is valid. However quite importantly it does not 
compromise the correctness of certificates we verify successfully.

4.3. Enhanced communication amongst components

Our CEGIS approach builds on that of the software tool Fos-
sil (Abate et al., 2021). As part of its CEGIS loop, Fossil adds two 
elements to enhance the communication between components.
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Fig. 4. Enhanced CEGIS architecture within Fossil.

Translator. The translator is tasked with the conversion of the neural 
networks into a symbolic candidate 𝐶(𝑥) and the corresponding 𝐶̇(𝑥), 
ready to be processed by the verifier (see Fig.  4). The efficiency of SMT 
solvers depends also upon the numerical expressions of the formulae to 
be verified. Oftentimes the training returns numerically ill-conditioned 
expressions, e.g. unreasonably small coefficients (e.g., in the order of 
10−8); these candidates might slow the verification step, and thus the 
whole procedure. The translator thus rounds the coefficients of the 
candidate function to a specified precision, in order to help human 
interpretation and the verification process. Notably, this rounding step 
is performed before the SMT-based verification step (cf. Fig.  4, meaning 
the correctness of the synthesised certificates and controllers is not 
compromised.

Consolidator. Generating counterexamples is, in general, an expen-
sive procedure, and the verification engine returns a single counterex-
ample (cex in Fig.  4); e.g. an instance satisfying (23). Naturally, an 
isolated sample does not provide enough information for the learner 
to improve the candidate certificate. To overcome this issue, we ran-
domly generate a cloud of points around the cex point, since samples 
around a counterexample are also likely to invalidate the certificate 
conditions. Secondly, starting from cex, we compute the gradient of 
𝐶 (or of 𝐶̇) thanks to an automatic differentiation feature, and follow 
the direction that maximises the violation of the certificate constraints. 
The consolidator then aggregates the original counterexample and the 
newly generated points (denoted cex+ in Fig.  4) with the sample set 
𝑆 for a new synthesis round by the learner.

4.4. Comments on specific certificates

We add a few remarks next, elaborating on practical synthesis 
details that are unique to specific certificates.

4.4.1. Lyapunov functions
We assume without loss of generality that the given model has an 

equilibrium at the origin, and that 𝑘(0) = 0 for the control law. We aid 
synthesis by enforcing the positivity condition by construction: in the 
case of positive-definite polynomial functions this is done by fixing the 
output layer’s weights 𝑊𝑘+1 to be all positive.

4.4.2. ROA
For verification, we estimate the smallest level set that contains 𝐼

using sample points. Then, we verify that 𝐼  is contained wholly within 
this level set and that the Lyapunov conditions hold over the entire 
level set. Due to dReal’s inner workings, when verifying either Lya-
punov or ROA certificates, we remove a very small region around the 
origin from the verification domain. This is common practice (Chang 
et al., 2019) across similar works, and does not affect sub-level sets 
outside this region. In fact, this notion is studied as 𝜖-stability (Gao 
et al., 2019). This caveat does not apply when using Z3.
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4.4.3. RSWA
The choice of 𝛾 for the RSWA and RWA certificates is arbitrary and 

may be fixed prior to synthesis. Meanwhile, the conditions described in 
(14d), (14e) depend on the existence of the parameter 𝛽. We must prove 
a value for this parameter exists such that the relevant conditions hold 
in order to prove the certificate is valid. After successfully verifying the 
conditions which do not depend on 𝛽, we perform a line search for 𝛽
to find a suitable value (Verdier, 2020). If we do not find a valid 𝛽, we 
return to synthesis and keep training.

5. Computational experiments and benchmarks

We have implemented the proposed framework based on the com-
putational library of Fossil. We have tested our approach across a large 
number of case studies, and benchmarked it against the first release of
Fossil, showing improved results.

5.1. Main results

Our new prototype tool, which we refer to as Fossil 2.0,3 is able 
to verify all properties described in Section 3 for continuous-time 
models, both autonomous and controlled. We showcase the efficacy 
of our framework and corresponding tool across 26 benchmarks, bor-
rowed from existing literature on certificate synthesis (Abate et al., 
2021; Sankaranarayanan et al., 2013; Vannelli & Vidyasagar, 1985; 
Verdier & Mazo, 2020). Note that, in some cases, we have modified 
these benchmarks to further challenge our approach, for instance by 
using disjoint, non-convex sets in the specifications. We consider a 
key strength of our approach to be its flexibility — we are able to 
perform well on straightforward and challenging benchmarks using 
certificates that represent both polynomials and more complex non-
polynomial functions (as determined by the activation function of the 
neural network). We reflect this in our selection of benchmarks, in-
cluding dynamics that are relatively simple and dynamics that involve 
transcendental and trigonometric functions. Due to the large number 
of benchmarks, details on the dynamics and sets can be found in an 
extended version of this paper (Edwards, Peruffo, & Abate, 2023), 
and in the corresponding code-base, https://github.com/oxford-oxcav/
fossil, where additional benchmarks can be also found.

The results are reported in Table  1, where for each benchmark 
we outline the number of variables 𝑁𝑠 and of control input 𝑁𝑢, the 
property to be verified (cf. acronyms introduced earlier), the number 
of neurons in each hidden layer and the corresponding activation 
functions for these layers. The number of neurons is denoted as a 
list, e.g. [𝑛1, 𝑛2] indicates that the first and second hidden layers are 
composed of 𝑛1 and 𝑛2 neurons, respectively. The activation functions 
for these hidden layers are denoted similarly. As mentioned, a strength 
of our methodology is its flexibility in terms of the form that certificates 
may take: we are able to synthesise polynomial certificates as well as 
non-polynomial certificates that represent more ‘‘neural-typical’’ func-
tions —- this is illustrated in the ‘‘Activations’’ column of Table  1. By 
𝜑𝑗 we denote that the layer represents a polynomial function of order 
𝑗; 𝜎sig represents the sigmoid function, 𝜎t represents the hyperbolic 
tangent function, 𝜎t2  is the square of 𝜎t and 𝜎soft is the softplus function.

For almost all benchmarks, we use a linear control function. Our ap-
proach can handle more general nonlinear templates, but we emphasise 
that, as we solve a verification problem, rather than a control problem, 
we only seek a feedback law such that the property is satisfied by the 
closed-loop dynamics, and thus offer no guarantee on the optimality 
of this controller. Still, we use a nonlinear controller employing 𝜎t
functions for the benchmark number 10 of Table  1.

3 The features and interface of Fossil 2.0 are detailed in Edwards et al. 
(2024). We note for clarity that Fossil 2.0 is able to prove some properties 
for discrete-time models, but that this is not relevant to the topic of study in 
this work: continuous time dynamical models.

https://github.com/oxford-oxcav/fossil
https://github.com/oxford-oxcav/fossil
https://github.com/oxford-oxcav/fossil
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Table 1
Results of synthesising certificates for all properties presented in this work. The first column indexes the benchmarks. 𝑁𝑠: Number of states, 𝑁𝑢: number of control 
inputs. We show the Property being verified and network structure (Neurons and Activations). For certificates of two functions, comma-separated lists shows the 
different structures. Finally, we report success rate (𝑆) and the minimum, mean (𝜇) and maximum computation time 𝑇  over successful runs, in seconds. In 
brackets we show the time spent during the learning phase.
 𝑁𝑠 𝑁𝑢 Property Neurons Activations 𝑇  (s) S (%)
 Min 𝜇 Max

 1 2 0 Stability [6] [𝜑2] 0.01 (≈0.00) 0.16 (0.15) 1.50 (1.48) 100
 2 3 0 Stability [8] [𝜑2] 0.28 (≈0.00) 2.22 (0.45) 12.57 (3.31) 100
 3 2 2 Stability [4] [𝜑2] 0.07 (0.01) 0.19 (0.02) 0.47 (0.04) 100
 4 2 2 Stability [5] [𝜑2] 0.09 (0.01) 0.26 (0.02) 0.54 (0.03) 100

 5 2 0 ROA [5] [𝜎t2 ] 0.71 (0.02) 1.17 (0.02) 2.59 (0.03) 50
 6 3 3 ROA [8] [𝜑2] 1.24 (0.02) 39.08 (0.03) 287.89 (0.04) 100

 7 2 0 Safety [15] [𝜎t] 0.44 (0.35) 3.36 (2.90) 7.61 (7.11) 100
 9 8 0 Safety [10] [𝜑1] 12.63 (7.71) 51.97 (32.75) 70.59 (44.66) 70
 10 3 1 Safety [15] [𝜎t] 1.57 (0.19) 11.87 (2.50) 51.08 (7.52) 90

 11 3 0 SWA [6], [5] [𝜑2], [𝜎t] 0.19 (0.05) 2.46 (0.100) 12.10 (0.20) 90
 12 2 0 SWA [5], [5, 5] [𝜑2], [𝜎sig, 𝜑2] 0.13 (0.06) 0.27 (0.14) 0.39 (0.20) 100
 13 2 1 SWA [8], [5] [𝜑2], [𝜑2] 0.06 (0.03) 0.20 (0.10) 0.58 (0.24) 90
 14 3 1 SWA [10], [8] [𝜑2], [𝜎t] 4.06 (0.87) 19.81 (2.73) 103.49 (7.23) 90

 15 2 0 RWA [4] [𝜑2] 0.14 (0.09) 1.81 (1.75) 4.70 (4.63) 100
 16 3 0 RWA [16] [𝜑2] 1.36 (0.09) 14.10 (0.14) 72.97 (0.20) 90
 17 2 1 RWA [4, 4] [𝜎sig, 𝜑2] 0.59 (0.27) 6.82 (3.32) 20.07 (11.46) 100
 18 3 1 RWA [5] [𝜑2] 0.46 (0.11) 16.06 (5.81) 72.47 (44.64) 80
 19 2 2 RWA [5] [𝜎sig] 0.69 (0.40) 1.38 (0.94) 2.14 (1.90) 100

 20 2 0 RSWA [4] [𝜑2] 0.19 (0.03) 1.29 (1.04) 3.79 (3.37) 100
 21 3 0 RSWA [16] [𝜑2] 4.81 (0.13) 27.14 (0.19) 80.95 (0.25) 100
 22 2 0 RSWA [5, 5] [𝜎sig, 𝜑2] 1.52 (0.06) 4.45 (0.19) 10.97 (0.35) 100
 23 2 1 RSWA [8] [𝜑2] 0.21 (0.05) 0.67 (0.25) 1.19 (0.91) 100
 24 2 2 RSWA [5, 5] [𝜎sig, 𝜑2] 0.98 (0.16) 1.23 (0.28) 1.61 (0.46) 100

 25 2 0 RAR [6], [6] [𝜎sof t], [𝜑2] 6.65 (1.08) 24.74 (6.46) 77.80 (15.06) 100
 26 2 2 RAR [6, 6], [6, 6] [𝜎sig, 𝜑2], [𝜎sig, 𝜑2] 5.13 (1.34) 26.99 (9.90) 101.23 (60.14) 100
We measure the robustness performance by running each experi-
ment 10 times, where we initialise the network with different weights 
and a new dataset across separate random seeds. Our procedure is not 
guaranteed to terminate, so after a maximum number of CEGIS loops 
we stop it and consider the overall run a failure. In general, we allow 
25 CEGIS loops; for the SWA and RAR certificates we allow 100 CEGIS 
loops as these certificates are composed of two functions.

We consider two metrics to assess the quality of our framework 
when attempting to synthesise a certificate and controller: how often 
it returns a successful result, the success rate 𝑆, and how long the 
algorithm takes for these successful runs, the time 𝑇 . Table  1 thus 
reports 𝑆, along with the average, minimum and maximum time for 
the procedure to terminate, under the 𝑇  column, denoted 𝜇, min and 
max, respectively. In brackets, we also denote the amount of time spent 
during the learning phase of our procedure, with approximately all 
remaining time spent during the verification phase.

The success rate is consistently close to 100%, with the minimum 
standing at 50% for a single benchmark, highlighting the robustness 
of our approach over the presented broad range of complex properties. 
The benchmark with a success rate of 50% is Benchmark 5, and is shown 
in Fig.  5(b). The difficulty of this benchmark is due to the nature of 
the dynamics, which admit only a non-polynomial global Lyapunov 
function (studied in Vannelli and Vidyasagar (1985)). Further, we seek 
to test our approach by seeking a region of attraction for this model 
with a disjoint, and thus non-convex, initial set. It is clear from the 
figure that the region of attraction cannot become too wide, or else 
it might fail over points of instability. We include a simple Lyapunov 
function for the model to demonstrate the benefit of using a ROA 
certificate. We depict a selection of other certificates in the rest of Fig.  5 
for the interested reader, either through the phase portraits or through 
surface plots.

5.2. Control loss evaluation

We have presented a novel loss function with the purpose of encour-
aging trajectories to converge to the origin, which is often desirable in 
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Table 2
Comparison of success rate and computation time for the combined RWA, 
RSWA and RAR benchmarks with control, with and without the loss term 
described in (21).
 Success (%) Time (s) 
 With 𝐿𝑢 96.67 7.14  
 Without 𝐿𝑢 80.00 10.64  

the case of arrive conditions, as discussed in Section 4.1.2 We evaluate 
the inclusion of this loss function in two ways: first, we consider the 
effect on success rate and computation time relative to not having 
the term across all control benchmarks for RWA, RSWA and RAR 
properties, of which there are 6. These results are presented in Table 
2, where as before we present the success rate (this time over all 60 
runs), and the average computation time for successful runs. It is clear 
that the inclusion of this loss term improves both the robustness and 
efficiency of the automated synthesis.

Secondly, we compare again these two metrics when instead using 
an LQR feedback controller. This is the purpose of benchmarks 22 
and 24, which are identical except for one key difference: benchmark 
22 is equipped with a pre-computed LQR controller, de facto rep-
resenting an autonomous model, whilst we shall compute a control 
law in benchmark 24. This allows us to compare our framework’s 
ability to learn feedback laws which satisfy properties relative to a 
common baseline controller, the known LQR. The results for these two 
benchmarks are very similar, with our control approach performing 
slightly more efficiently. Note, we do not claim to outperform LQR 
controllers, as other cost matrices may perform better or worse; further, 
we do not provide the cost minimisation guarantees — we simply use 
these benchmarks as a baseline comparison.

5.3. Comparison to Fossil 1.0 baseline

We have built a prototype tool based on our framework, improving 
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Fig. 5. Visualisations of a selection of certificates as either phase portraits (depicting the dynamics with relevant level sets of the certificate overlaid), or surface 
plots of the certificates (with relevant sets and level sets shown) from experiments in Table  1. We show salient level sets as dashed lines, and denote others sets 
as follows. Dark blue: 𝐼 ; Red: 𝑈 ; light blue: 𝑆 ; green: 𝐺; orange: 𝐹 . The grey arrows show the underlying vector field. The 3d surfaces of the certificates 
are also coloured to show the relative magnitude of the function (from blue for low relative values, to red for large ones). (For interpretation of the references 
to colour in this figure legend, the reader is referred to the web version of this article.)
on the work initially presented in Abate et al. (2021). This tool com-
pares against competitive state-of-the-art techniques such as SOS-tools, 
proving to deliver a faster synthesis for stability and safety properties 
for autonomous models. Table  3 collects works providing an automated 
and sound synthesis of relevant certificates. In general these related 
works either lack maintained or accessible supporting software tools 
with which experiments can be repeated and modified. This makes a 
direct comparison with these approaches infeasible beyond what has 
already been presented in Abate et al. (2021). Therefore, we focus our 
benchmarking against Fossil 1.0 as the state-of-the-art for certificate 
synthesis, as an accredited software tool for certificate synthesis that 
has been previously benchmarked against other approaches, such as 
SOS tools. These results are presented in Table  4. 

We employ the benchmarks originally outlined in Abate et al. 
(2021), and for a fair comparison we use the same network structure 
(width and activations) for both tools. It is clear that the approaches 
are very similar when synthesising the more straightforward Lyapunov 
functions. However, we achieve significant improvements in terms of 
both success rate and synthesis time relative to the baseline, on account 
of a fine-tuned loss function, an enhanced communication between the 
CEGIS components, and an overall improved software implementation.

6. Discussions on generality

6.1. Asymptotic reachability

Oscillations are important and common phenomena occurring in 
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dynamical systems, typically linked to (stable) limit cycles. Certificates 
for stability analysis in the presence of limit cycles, or equivalently for 
the asymptotic convergence to such set, have been so far notably absent 
from the synthesis framework in this manuscript. We discuss them next, 
recalling Barbashin-Krasowskii-Lasalle’s Principle (Khalil, 2002). 

Theorem 9 (Invariance Principle Khalil, 2002). Let 𝛺 ⊂  be a compact 
set that is positively invariant with respect to (2). Let 𝑉 ∶  → R be a 
continuously differentiable function such that 𝑉̇ (𝑥) ≤ 0. Let E be the set of 
all points in 𝛺 where 𝑉 (𝑥) = 0. Let 𝑀 be the largest invariant set in 𝐸. 
Then every solution starting in 𝛺 approaches 𝑀 as 𝑡 → ∞.  ■

Crucially, the principle states that we can prove asymptotic con-
vergence towards a set thanks to a Lyapunov-like function which is 
equal to zero exactly at the limit cycle. Such certificates have recently 
been studied from the perspective of disturbed models (Meng, Li, 
Fitzsimmons et al., 2021; Meng, Li & Liu, 2021). Nonetheless, without 
prior knowledge of the existence and location of a limit cycle it is, 
in our experience, impractical to automatically synthesise such cer-
tificates, as they would need to be strongly templated based on the 
limit cycle (namely, precisely tailored to that set). Whilst in principle 
our approach could offer certificates for such properties, in this work 
we omit certificates requiring such an extensive analysis of the model 
dynamics.
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Table 3
Comparison of works for automated (and sound) synthesis of certificates for continuous-time dynamical models. We show the properties verified in the respective 
works, and whether they are also able to verify these properties for control models (either using control certificates or controller and certificate). Publications 
have been grouped together if they represent the same line of work by the same set of authors or research groups and they study the same kind of property.
 Stability ROA Safety SWA RWA RSWA RAR Control 
 Fossil 2.0 3 3 3 3 3 3 3 3  
 Fossil 1.0 (Abate et al., 2021) 3 7 3 7 7 7 7 7  
 F4CS (Verdier, 2020; Verdier & 
Mazo, 2020)

3 7 3 7 3 3 7 3  

 NLC (Chang et al., 2019) 3 7 7 7 7 7 7 3  
 Ravanbakhsh and 
Sankaranarayanan (2015a, 2015b, 
2019)

7 7 7 7 3 3 7 3  

 Zhao, Chen et al. (2021) 7 7 3 7 7 7 7 7  
 Zhao et al. (2020) and Zhao, 
Zeng et al. (2021)

7 7 3 7 7 7 7 3  

 Ratschan (2017) 7 7 3 7 7 7 7 7  
 Kapinski et al. (2014) 3 7 3 7 7 7 7 7  
 Dai et al. (2020) 3 7 7 7 7 7 7 7  
 Grande, Anderlini et al. (2023) 
and Grande, Fenucci et al. (2023)

3 7 7 7 7 7 7 3  
Table 4
Comparison of Fossil 1.0 vs. Fossil 2.0 (the present work). Here, we use the same naming scheme for benchmarks as used in Fossil 1.0, rather than indexing 
by number. See Table  1 for details on the columns.
 Benchmark 𝑁𝑠 Property Neurons Activations Fosill 1.0 Fossil 2.0
 Min 𝜇 Max 𝑆 Min 𝜇 Max 𝑆  
 NonPoly0 2 Stability [5] [𝜑2] 0.04 0.21 1.58 100 0.01 0.16 1.54 100 
 Poly2 2 Stability [5] [𝜑2] 0.35 11.71 70.39 90 0.08 4.77 6.50 100 
 Barr1 2 Safety [10] [𝜑1] 0.34 1.00 2.72 40 0.02 0.27 0.63 100 
 Barr3 2 Safety [10, 10] [𝜎sig, 𝜎sig] 16.80 101.72 334.79 50 3.81 14.14 30.63 100 
6.2. Sufficiency of the certificates and completeness of their synthesis

The certificates provided in this work are sufficient proofs for the 
corresponding properties. We do not in general provide guarantees 
that a certificate exists if the property is satisfied, i.e. necessary proofs. 
Such converse results exists for Lyapunov and barrier functions. In 
particular, a construction method of Lyapunov functions is known for 
globally exponentially stable models (Khalil, 2002), whilst the necessity 
of barrier certificates is studied in, e.g., Prajna and Rantzer (2005), 
Ratschan (2018) and Wisniewski and Sloth (2015).

Contextually, whilst sound, our counterexample-based inductive 
synthesis method is not complete: whenever it finds a certificate, the 
desired property formally holds for the model under consideration. On 
the other hand, if our algorithm fails to find a certificate we cannot 
draw any conclusion about the validity of the property for the given 
model. We show that our procedure consistently terminates with a 
successful outcome.

6.3. Modularity of the synthesis and nested properties

We have not considered properties describing that of sequential 
reachability — namely trajectories arriving at a series of target sets 
before the goal set. We have considered properties obtained by conjunc-
tion of requirements, and we shall comment in Appendix  B instances 
obtained via disjunction. We could similarly obtain certificates by 
manipulating via propositional logic, (e.g., conjunction and disjunction, 
rather than temporally, as suggested previously) requirements and 
corresponding certificates. Such properties tie into our approach of 
using certificates in a modular fashion, which is a relatively unexplored 
concept and represents an area of future work.

6.4. Issues of scale

Our CEGIS-based approach consists of a gradient descent based 
learning phase followed by an SMT dependent verification phase. While 
gradient descent is known to scale well to higher dimensions, nonlinear 
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real arithmetic SMT does not in general scale well to higher dimen-
sions. This problem is shared to all methodologies which rely on SMT. 
Possible mitigations, beyond an improvement of SMT performance, 
include the use of an alternative verification method, e.g., software 
as Marabou (Katz et al., 2019) for ReLU networks, or interval bound 
propagation based techniques.

6.5. Broader connections and taxonomy of properties

In Section 3 we have presented a diverse set of certifiable properties 
in terms of the behaviour of trajectories (that is, of solutions) of a 
given dynamical model. Furthermore, in Section 3.8, we have laid 
connections across such properties through the notions of avoid, arrive, 
and remain. In Appendix  B, we further frame such requirements in 
broader contexts, providing a categorisation of these properties within 
known classes of specifications. To this end, we draw connections with 
formal languages (in particular, regular expressions) and with automata 
theory (specifically, deterministic finite automata) (Hopcroft & Ullman, 
1979), and in passing we also informally relate to temporal logic 
for specifications of reactive models (Baier & Katoen, 2008; Clarke, 
Grumberg, Kroening, Peled, & Veith, 2018; Pnueli, 1977).

Appendix  B is written for the benefit of readers with a background in 
the mentioned areas, or with an interest in a perspective on dynamical 
models grounded upon formal methods (Belta et al., 2017; Tabuada, 
2009) — this part may be otherwise dispensed with, at no loss of 
understanding of the overall material.

7. Concluding remarks

We have presented a general framework to formally verify dynam-
ical and control models via certificate synthesis, and introduced Fossil
2.0, a prototype software tool for the automated formal synthesis of a 
broad range of certificates. Certificate synthesis is based on a CEGIS 
loop, exploiting neural networks to provide candidate functions, which 
are then formally verified with the help of SMT solvers. Our approach is 
able to efficiently synthesise certificates for a wide range of properties 
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Table 5
List of Abbreviations defined in this work.
 Abbreviation Definition  
 ROA Region of Attraction  
 RAR Reach-Avoid-Remain  
 RSWA Reach-and-Stay While Avoid  
 RWA Reach-While-Avoid  
 SWA Stable While Avoid  
 CEGIS Counterexample-Guided Inductive  
 Synthesis  
 SAT Satisfiability  
 DPLL Davis–Putnam–Logemann–Loveland 
 SMT Satisfiability Modulo Theories  

for both autonomous and control models, with varying complexity of 
dynamics and sets structure. We test our framework and corresponding 
tool on a number of benchmarks, outperforming a state-of-the-art tool 
for certificate synthesis and showing robustness to initialisation.

In future work, we hope to explore further the modular synthesis of 
certificates, as well as to extend our framework to stochastic models.
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Appendix A. Proof of theorems

Proof of Theorem  1.  We state without proof from Lyapunov the-
ory (Sastry, 1999) that the conditions in (6) imply that 𝑓 (𝑥) is asymptot-
ically stable, and that all sub-level sets of 𝑉 (𝑥) fully contained within 
are forward invariant. Since 𝑉  is continuous and  is non-empty, then 
there exists some 𝛽 such that the sub-level set 𝛺𝛽 = {𝑥 ∈  ∶ 𝑉 (𝑥) ≤ 𝛽}
is fully contained within  and 𝑥∗ ∈ 𝛺𝛽 . Since 𝑥∗ is asymptotically 
stable, all trajectories in 𝛺𝛽 converge towards it, and (5) holds for the 
initial set 𝛺𝛽 . □

Proof of Corollary  2.  Define the 𝛽 sub-level of the ROA certificate 
𝑉  as 𝛺𝛽 ∶= {𝑥 ∈  ∶ 𝑉 (𝑥) ≤ 𝛽}. By construction, 𝐼 ⊂ 𝛺𝛽 , and the 
condition of (6) hold. The proof then follows directly from Theorem 
1. □

Theorem 10 (Nagumo’s Theorem).  Let us state without proof Nagumo’s 
Theorem. For a proof, see Blanchini and Miani (2008). Consider the system 
𝜉̇(𝑡) = 3𝑓 (𝜉(𝑡)), where 𝑓 is Lipschitz continuous such that for each initial 
condition 𝜉(𝑡0) ∈  it admits a unique solution. Let 𝛺 ∈  be a closed set. 
𝛺 is positively invariant if and only if for every exterior normal vector 𝑣 at 
point 𝑥 on the border of 𝜕𝛺, the inner product satisfies ⟨𝑓 (𝑥), 𝑣⟩ ≤ 0.

Proof of Theorem  3.  By definition we have that 𝐼 ∩𝑈 = ∅. The set 
𝛺0 = {𝑥 ∈  ∶ 𝐵̇(𝑥) ≤ 0} defines a closed set for which (9c) ensures 
that 𝑓 (𝑥) points inwards along its border. It follows from 10 that 𝛺0 is 
an forward invariant set which contains 𝐼 , and that at all trajectories 
initialised in 𝐼  remain within 𝛺0 for all time 𝑡 > 𝑡0. (9b) ensures that 
𝛺0 ∩ 𝑈 = ∅, and hence (8) holds. □

Proof of Corollary  4.  We note that the specification described by (10) 
is the conjunction of those in (5) and (8). Therefore, the proof follows 
directly from Corollary  2 and Theorem  3. □
13 
Proof of Theorem  5 (from Verdier & Mazo (2020)).  Let 𝐴 = {𝑥 ∈
𝑆 ∶ 𝑉 (𝑥) ≤ 0}. For 𝜉(𝑡0) ∈ 𝐼 , it follows from (12a) and the definition 
of 𝐴 that 𝜉(𝑡0) ∈ 𝐴. From (12c), for all 𝜉(𝑡𝑘) ∈ 𝐴 ⧵ 𝐺, 𝑉̇ (𝜉(𝑡𝑘)) <
−𝛾. Using ∀𝑥 ∈ 𝐴, 𝑉 (𝑥) ≤ 0 and the comparison principle (Khalil, 
2002), it follows that ∀𝑘 ∈ Z≥0,∀𝑡 ∈ [𝑡𝑘, 𝑡𝑘 + ℎ],∀𝜉(𝑡𝑘) ∈ 𝐴 ⧵ 𝐺 ∶
𝑉 (𝜉(𝑡)) ≤ 𝑉 (𝜉(𝑡𝑘)) − 𝛾ℎ ≤ −𝛾ℎ. Therefore, 𝜉(𝑡𝑘) ∈ 𝐴 ⧵ 𝐺 implies 
∀𝑡 ∈ [𝑡𝑘, 𝑡𝑘+ℎ], 𝑉 (𝜉(𝑡)) will decrease and thus cannot reach 𝜕𝑆 , since by 
(12b) ∀𝑥 ∈ 𝜕𝑆 ∶ 𝑉 (𝑥) > 0. Since 𝑆 is compact and 𝑉 (𝑥) is continuous, 
∃𝑒 ∈ R s.t. 𝑒 = inf𝑥∈𝑆⧵𝐺

𝑉 (𝑥) and the sublevel sets of 𝑉 (𝑥) is compact. 
It follows that 𝑉 (𝑥) is lower bounded on 𝐴 ⧵ 𝐺 ⊂ 𝑆 ⧵ 𝐺, so 𝑉 (𝜉(𝑡))
will decrease until in finite time 𝜉(𝑡) leaves 𝐴 ⧵𝐺 and may only enter 
𝐺. □

Proof of Theorem  7 (from Verdier & Mazo (2020)).  Let 𝐵 = {𝑥 ∈
𝑆 ∶ 𝑉 (𝑥) ≤ 𝛽}. From Theorem  5, there exists a time 𝑇 ≥ 𝑡0 such 
that 𝜉(𝑇 ) ∈ 𝐹 . Using a similar argument as before, we conclude that 
∀𝜉(𝑇 ) ∈ 𝐹 , 𝜉(𝑡) with 𝑡 ≥ 𝑇  enters in finite time 𝐹 ∩𝐵. Since 𝐵 is a sub-
level set of the compact set 𝑆 and continuous 𝑉 , then 𝐵 is also compact 
and so is 𝐹 ∩ 𝐵. From (14e) we have ∀𝑥 ∈ 𝜕(𝐹 ∩ 𝐵) ∶ 𝑉̇ (𝑥) ≤ −𝛾. 
Combining with (14d), we have that all states 𝜉(𝑡) ∈ 𝜕(𝐹 ∩ 𝐵) cannot 
reach 𝜕𝐹  and 𝑉 (𝜉(𝑡)) decreases, meaning these trajectories remain in 
𝐹 ∩𝐵. Therefore, 𝐹 ∩𝐵 is forward invariant. Since 𝐹 ⊂ int(𝑆 ), we 
have that (13) holds. □

Proof of 8.  This proof follows directly from Theorems  3 and 5. □

Appendix B. Broader connections and taxonomy of properties

In this part, we further frame the presented requirements in broader 
contexts, thus providing a categorisation of the properties under study 
within specific classes of formal specifications (Baier & Katoen, 2008; 
Clarke et al., 2018). In order to do so, we draw connections with formal 
languages (in particular, regular expressions) and with automata theory 
(specifically, deterministic finite automata) (Hopcroft & Ullman, 1979), 
and in passing we also informally relate to the use of temporal logic for 
specifications of reactive models (Baier & Katoen, 2008; Clarke et al., 
2018; Pnueli, 1977). However, these connections can be drawn under 
an important proviso: that is, in formal methods, properties by and 
large are expressed over finite alphabets, namely over a finite set of 
labels (which can be related to our sets – or complement thereof – of in-
terest), but most importantly concern traces in discrete time. Similarly, 
formal languages and automata deal with finite or countably-infinite 
strings of (finite) characters.
Safety and reachability - language and semantic duality. We remark that 
all the presented properties consist of combinations of two fundamental 
specifications in formal verification (Kupferman & Vardi, 1999; Manna 
& Pnueli, 1990). The first is safety, which qualitatively concerns trajec-
tories always staying clear from a nominative region in the state space 
that is deemed to be unsafe. Thus, safety specifications are infinite-
horizon requirements, which however can be equivalently defined as 
requirements admitting finite-horizon counter-examples: namely, they 
are specifications that are necessarily invalidated by trajectories that 
enter the given unsafe in finite time.

The second specification we refer to as reachability, and comprise 
trajectories reaching a given desirable goal set (which is also known 
as reach or target set). In the area of formal languages, reachabil-
ity is known to be a co-safety property, namely a dual to a safety 
requirement and, as such, it is a finite-horizon property. Indeed, in 
formal verification co-safe specifications admit finite-horizon witnesses, 
that is satisfying trajectories that enter the goal set in finite time. In 
Section 3 we have defined this as unconstrained reachability, and as 
a special instance of the reach-while avoid specification. We could 
have alternatively introduced it as the logical dual of safety, except 
that the certificate synthesis would not have followed as seamlessly. 
We should mention that, more generally, co-safety properties (and, in 
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particular, reachability) are special instances of another broad class 
of specifications, known as liveness properties (Baier & Katoen, 2008; 
Clarke et al., 2018): in this work we do not deal with general liveness 
properties, and in particular the synthesis of sufficient certificates for 
this class is left as future work.
Finite- and infinite-horizon requirements. We have discussed that safety 
and reachability properties are dual in the sense that the earlier raises 
a requirement over infinite-horizon trajectories, asking that nothing bad 
ever happens, whereas the latter requires reasoning about finite-horizon 
solutions, asking that over a finite time horizon something good even-
tually happens (Baier & Katoen, 2008). However note that, whenever 
safety requirements are added to finite-time reachability properties, as 
in the case of the avoid constraint in RWA, RSWA, and RAR, these safety 
requirements ought to hold only over the finite time spans inherited 
from the reachability requirements.

Dually, as much as reachability requirements natively encompass 
co-safety properties, in this work we have discussed extension of such 
reachability requirements over infinite-time horizons: this is quite nat-
ural in control theory, namely in the context of asymptotic stability. 
Similarly, we have not only raised requirements that trajectories reach 
a goal set within a finite time horizon, which we have simply denoted as
reachability, but additionally discussed (cf. 6.1) that they may approach 
the set (e.g., a set of equilibria, or a limit cycle) asymptotically, which 
we have denoted as asymptotic reachability.
Automata theory. Next, we qualitatively relate these classes of proper-
ties to automata theory. Through their duality, both safety and co-safety 
properties can be expressed by the same class of finite-state models, 
namely deterministic finite automata (DFA) (Hopcroft & Ullman, 1979). 
In other words, traces within these two classes of specifications can be 
compiled by a DFA model, which reads them when they are started 
in one of its initial states, and when they terminate upon hitting one 
its accepting states. (Conversely, liveness properties, which we saw 
generalise co-safety specifications, require automata of different nature, 
such as Büchi or Rabin automata, which specifically accept infinite 
traces.) Summarising this discussion, we can conclude that we can pro-
vide sufficient certificates for properties that can be expressed as DFAs: 
an enticing extension of our work is looking at richer specifications 
obtained by modularly composing such finite-state models.
Linear-time properties and temporal logic. Finally, let us draw connec-
tions to temporal logic, a class of modal logic that was natively devel-
oped to specify requirements of (models of) reactive programs (Pnueli, 
1977). Whilst originally employed for finite-state programs evolving 
over discrete-time steps, temporal logics, such as LTL (linear TL), have 
been also widely employed in the context of dynamical and control 
models (Belta et al., 2017; Tabuada, 2009). Bearing in mind that the 
above caveat on discrete-time semantics holds also in this context 
(which for instance renders its next operator useless for our purposes), 
we can express safety requirements over safe set 𝑆 as always 𝑆 - in 
LTL syntax this is expressed as the formula □𝑆 (or 𝖦𝑆) - and, dually, 
reachability requirements over target set 𝑇  as eventually 𝑇  - in LTL 
this is ⋄𝑇  (or 𝖥𝑇 ); incidentally, the discussed duality between these 
requirements is crisply expressed logically as: □𝑆 ≡ ¬ ⋄ ¬𝑆 ≡ ¬ ⋄ 𝑆∁. 
Similar discussions follow through for finite-time properties, which in 
LTL require selecting a (finite) horizon 𝜏 ∈ R, yielding for example 
□≤𝜏𝑆. Reach-avoid can be expressed via the until operator 𝖴 in LTL, 
say 𝑆 𝖴𝑇 , which may be tailored to unconstrained reachability as ⋄𝑇 ≡
𝚝𝚛𝚞𝚎𝖴𝑇 .

Dovetailing to the discussion above, we can thus flexibly and mod-
ularly synthesise certificates also for the known weak until 𝖶, and even 
for the release 𝖱 specifications in LTL. Indeed, recall that Baier and 
Katoen (2008)

𝑆𝖶𝑇 = (𝑆 𝖴𝑇 ) ∨□𝑆,
14 
We can thus obtain a certificate for weak until from either a certificate 
for reach-avoid or one for safety, respectively. Additionally notice in 
particular, that □𝑆 ≡ 𝑆𝖶𝚏𝚊𝚕𝚜𝚎.

Finally, the useful release operator in LTL expresses a safety re-
quirement (set 𝑆) that is released upon reaching a target set (𝑇 ), as 
follows:

𝑇 𝖱𝑆 = ¬(¬𝑇 𝖴¬𝑆),

and in fact (the next equivalent expression is easier for finding certifi-
cates)

𝑇 𝖱𝑆 = (¬𝑇 ∧ 𝑆)𝖶(𝑇 ∧ 𝑆),

and so, in particular, □𝑆 ≡ 𝚏𝚊𝚕𝚜𝚎𝖱𝑆.

Data availability

The code is publicly available and linked in the paper.
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