
An intuitive method to design
load-displacement characteristics for nonlinear

springs in parallelogram linkages

Fa
cu

lty
 o

f
M

ec
ha

ni
ca

l,
M

ar
iti

m
e

an
d

M
at

er
ia

ls
 E

ng
in

ee
ri
ng

Roel van Ekeren
September 2019

Master of Science Thesis

AN INTUITIVE METHOD TO DESIGN LOAD-DISPLACEMENT CHARACTERISTICS
FOR NONLINEAR SPRINGS IN PARALLELOGRAM LINKAGES

by

Roel van Ekeren

in partial fulfillment of the requirements for the degree of

Master of Science
in Mechanical Engineering

at the Delft University of Technology,
to be defended publicly on Monday September 30, 2019 at 14:00 AM.

Supervisors: Ir. J. Rommers TU Delft
Ir. A. Zondervan Hittech Multin BV

Thesis committee: Prof. dr. ir. J. L. Herder TU Delft
Dr. M.A. Bessa, TU Delft
A. Geelkerken, Hittech Multin BV

This thesis is confidential and cannot be made public until (...)

Copyright © 2019 by R. van Ekeren

An electronic version of this thesis is available at http://repository.tudelft.nl/.

http://repository.tudelft.nl/

PREFACE

This thesis concludes my master Mechanical Engineering after two years at the faculty Mechanical, Maritime
and Materials Engineering at the TU Delft. Formally, this thesis finalizes the master track Bio Mechanical De-
sign I followed in first year. The project itself is carried out at the precision- and micro-systems department,
and is partially dedicated to the company Hittech Multin BV, a system supplier in the high-tech industry.

It appeared to me that this is the place to express my gratitude and I am glad to mention the people who
made it possible to finish the master Mechanical Engineering.

In the first place, I would like to thank my supervisor, Jelle Rommers, for his incredible positive and helpful
feedback at any time. I enjoyed our meetings and time was always short. Besides, I would like to thank Arnold
Zondervan for his valuable time, supporting me throughout the thesis on the company side, even when he
was super occupied by his own work or just started family.

Also, I would like to mention and thank prof. Just Herder for his valuable time and valuable feedback
during our meetings. The interesting lectures at Precision Mechanism Design made me decide to do the
graduation project at the PME department and I am very happy I did!

Furthermore, many thanks to Ard Geelkerken for his practical feedback at Hittech and together with
Miguel Bessa for being interested, reading my work and taking part in the committee. Also I enjoyed the
meetings with Giuseppe and his feedback was very helpful, thank you for that. You have made me very en-
thusiastic about nonlinear springs by the interesting conversations we had.

A special thanks to my brother Wim, genius and "schoolvoorbeeld student", always willing to listen to my
problems. Thank you for your motivating speeches and reviewing my work! Also I would like to mention Arie,
my eldest brother for being always so optimistic and proud about my work. I enjoyed playing tennis with you
and I always will! Many thanks to my friends and of course I also want to thank Natalie for her confidence in
me and her endless support. At last, I am very thankful to my parents who made it possible that I can finish
this great study.

Roel van Ekeren
Delft, September 30, 2019

iii

CONTENTS

1 Introduction 1
1.1 Project Background . 1
1.2 Scope and problem statement . 2
1.3 Relevance . 2
1.4 Thesis objective . 3
1.5 Thesis outline . 3

2 Literature review - Comparison of spring force compensation mechanisms literature 5

3 Paper - An intuitive method to design load-displacement characteristics for nonlinear springs in
parallelogram linkages 13

4 Discussion 25
4.1 Literature review . 25
4.2 Thesis Paper . 25

4.2.1 Method for load-displacement characteristics . 25
4.2.2 Parameters and boundary conditions . 26
4.2.3 Simulations . 26
4.2.4 Gravity Balancing . 26

5 Conclusion 29
5.1 Literature . 29
5.2 Paper . 29
5.3 Appendices . 29

6 Recommendations 31
6.1 Improvements on model . 31
6.2 Prototype and measurements . 31
6.3 Opportunities for future work . 32
6.4 Vision . 32

Bibliography 35

A Appendix A 37
A.1 Parameters of spring design. 37
A.2 Stacking. 38
A.3 Variation of payload. 39
A.4 Materials for spring design . 40
A.5 Strain Energy in loaded beams . 40
A.6 Ideas for future research . 41

A.6.1 Boundary conditions of the parallelogram . 41
A.6.2 Width pattern implementation . 41
A.6.3 Torsion bars . 42

A.7 GUI . 42
A.8 Building blocks . 43
A.9 Prototype and Measurements . 44

A.9.1 CAD model and construction . 44
A.9.2 Measurement setup . 45

A.10 ANSYS model . 48
A.10.1 Setup. 48
A.10.2 APDL script . 48
A.10.3 Prestress options . 49

v

vi CONTENTS

A.11 Tolerances parallelogram . 50

B Appendix B - Additional projects 51
B.1 Static balancing parallelogram linkage . 51
B.2 Bernoulli-Euler Beam theory . 52
B.3 Volume occupancy of helical springs . 54

B.3.1 Unstretched spring. 54
B.3.2 Stretched spring . 55

B.4 Kinematic options microscope stand . 56

C Appendix C - MATLAB code 59
C.1 Structure of MATLAB files . 59
C.2 File 01_00 . 59
C.3 File 02_00 . 61
C.4 File 03_00 . 65
C.5 File 01_01 . 73
C.6 File 01_02 . 81
C.7 File 01_03 . 82
C.8 File 01_04 . 95
C.9 File 02_01 . 95

D Appendix D - ANSYS APDL code 97

1
INTRODUCTION

This thesis includes several independent contributions and is conducted in collaboration with both univer-
sity and Hittech Multin BV. The reader is especially encouraged to read the paper in chapter 3 with the thesis
title, as it introduces the problem compactly and focuses on the presentation of a new design methodology
for nonlinear springs to find load-displacement characteristics for the end effector of parallelogram linkages.
In this chapter the project background is introduced, to provide a better understanding of the context of this
thesis. Next, the scope and problem statement will be given and its relevance discussed. After, thesis goals
are stated, followed by a short outline of the report.

1.1. PROJECT BACKGROUND
Many springs are designed for the purpose of storing potential energy, often with the goal to have a special
load-displacement characteristic. The design of very specific nonlinear load displacement functions can be
found in various mechanical systems. To introduce the problem, let us consider the following application.

Many surgical procedures require a high level of accuracy and precision. An essential aid is the surgical
microscope allowing surgeons to enhance their view on the working area to perform on a specific level of
detail. Positioning and adjusting the microscope near the working area by using joysticks is an important
procedure, which is performed multiple times per operation, taking up a significant part of the total surgery
time [1]. The microscope is suspended to a mobile support system. (figure 1.1a) For most microscope sup-
ports a key feature is to statically balance the mass of microscope and the support in such way that the user,
in this case the surgeon, will experience the instrument to be weightless.

(a) Microscope mobile support system. The statically
balanced parallelogram is incorporated in the top arm
to compensate the mass of the microscope at the outer
end.

(b) Statically balanced parallelogram for the payload
using conventional helical zero-free-length spring.

Figure 1.1: Conventional method to statically balance a parallelogram, implemented in industrial applications such as the microscope
support.

1

2 1. INTRODUCTION

To balance the mass of a microscope, a force compensation mechanism is required. There are two meth-
ods to compensate forces: active and passive. The method of active force compensation involves external
energy, for example a actively controlled actuator. Passive approaches, such as implementation of springs,
use potential energy and do not require external energy. Therefore, passive methods are often preferred.
For a common industrial application such as the mobile support system a parallelogram linkage is used in
combination with a conventional linear helical spring to compensate the mass of the microscope. The paral-
lelogram -applied in many more fields [2]- is particular useful for these type of applications, because it keeps
the end-effector in parallel with the reference. The spring and mass are in equilibrium, because the potential
energy of the mass is compensated by the potential energy of the spring, meaning the system is statically bal-
anced. This shows the governing principle of static balance: constant potential energy of the total system for
the applied range of motion. Statically balanced mechanisms have many advantages, including: compensa-
tion of undesired forces, energy free motion, improved performance and inherent safety. Incorporating static
balancing from the beginning of the design process will reduce parts and leads to higher performance of the
product [3]. The method of force compensation in the mobile support system is frequently seen in mechan-
ical devices and was first introduced by Carwardine in his patents from 1931-1935 [4], and later studied by
French et al., [5] and Herder [3]. The nonlinear load-displacement characteristic of the unbalanced system is
reached by implementing a zero-free-length linear spring across the links such that is uses the geometry of
the parallelogram as shown in figure B.1. In practice this zero-free length is emulated by the use of pulleys or
by normal springs.

1.2. SCOPE AND PROBLEM STATEMENT
In designing passive force compensation mechanisms, several challenges arise. The first challenge is to coun-
teract the forces throughout the entire range of motion, such that the system is in equilibrium at any position.
In practice, this equilibrium is often not perfectly accurate due to practical limitations, such as emulating a
zero-free-length spring. Besides, other external forces than gravity can act on the mechanism such as the
elastic forces in compliant mechanisms. Another challenge is to make the force compensator as compact as
possible. For the application of a microscope support, compactness of the force compensation mechanism
leads to a more lightweight design, making the overall system less bulky. Furthermore, with the same amount
of space more payload can be balanced. For many other applications a more compact design is beneficial,
especially in the field of exoskeletons. A more challenging aspect is to adjust the spring to a new payload.
These problems arise in other applications as well [6] and Extensive research is done in this field by [3],[7].

Helical linear springs are not always the best option. As an alternative, nonlinear springs bring opportu-
nities because of their design freedom [8] and shape. The use of nonlinear springs, however, is a relatively
complex and large field with respect to linear springs. More insight in the design of nonlinear springs can
help future designers. Translating those insights into design tools will be valuable for designers in the field
of nonlinear springs. As a small step towards the understanding of nonlinear spring design, the scope is nar-
rowed down to the implementation of nonlinear springs in parallelogram linkages as potentially compact
force compensator for prescribed load-displacement functions. Adaptability of the spring is left out of scope
and can be a next step in the design of nonlinear springs.

1.3. RELEVANCE
Many products, devices and other engineering applications benefit from use of static balancing [3]. Limit-
ing the volume occupancy remains a challenging task for designers, especially when it may not violate other
requirements. Research to the volume use of spring mechanisms may give engineers understanding for the
design of more compact mechanism design. Furthermore this research may contribute to scientific under-
standing in the design of nonlinear springs.

Society may benefit from the applications of more compact statically balanced devices. In recent years,
exoskeletons have drawn more attention. Workers can be relieved from heavy loads and people with muscle
diseases may be able to deal with more daily activities because of the support from a force compensator.
Reduction of volume of the exoskeleton improves the user interface and experience.

The performance of industrial applications is enhanced by the use of static balance. Not only micro-
scope supports, but many robotic manipulators, pick and place arms, and positioning systems in the high-
tech industry can be improved. Passive compensation of forces increases efficiency due to faster operating
times and reduction of external power. Besides, more compact force compensation mechanisms lead to more
lightweight design due to reduction materials, thereby reducing the product costs.

1.4. THESIS OBJECTIVE 3

1.4. THESIS OBJECTIVE
This thesis focusses on the challenge how to make force compensation mechanisms more compact. For
that purpose the following research goals are established. The scope of the literature review is narrowed
down to spring based force compensation mechanisms. The scope of the paper is narrowed down to the
implementation of nonlinear plate springs in parallelogram linkages.

• Provide an overview of the volume occupancy of spring based force compensation mechanisms in lit-
erature.

• Investigate implementation of nonlinear plate springs in parallelogram linkages for the design of force
compensation mechanisms.

In theory the second research goal is related to the first research goal, with the underlying purpose to
investigate if nonlinear plate springs can store the same or even more potential energy in the volume of a
parallelogram linkage. Therefore, it is important to find out if nonlinear springs are suitable for force com-
pensation in parallelograms. Subsequently, the possibility to stack multiple nonlinear springs in parallel can
be investigated.

Figure 1.2: Scope of the research: the literature review involves the field of spring based force compensation mechanisms. The paper
focusses on the field of nonlinear plate spring implemented in parallelogram linkages. *note: this is not a complete illustration of all
fields. For example: parallelogram linkages appear also in non-spring based systems.

1.5. THESIS OUTLINE
This thesis includes 6 chapters and is structured as follows: first, a literature review will be presented in chap-
ter 2, which deals with the first research goal. The second research goal is handled by the paper presented
in chapter 3, which is also the main contribution of the thesis. After, the discussion is presented in chapter
4 and main conclusions of the thesis are summarized in chapter 5. Moreover, recommendations for future
work are given in chapter 6 and additional work related to the thesis is presented in the appendices A B. In
addition, programming code is provided in appendices C D.

2
LITERATURE REVIEW - COMPARISON OF

SPRING FORCE COMPENSATION

MECHANISMS LITERATURE

5

Comparison of spring force compensation mechanisms in
literature

Roel van Ekeren

Delft University of Technology
Department of Precision and Microsystems Engineering, Mekelweg 2, 2628 CD, Delft, Netherlands

January 27, 2019

Nomenclature

A Metric 1: Accuracy [-]

ED Metric 3: Energy Density [J/m3]

FCM Force compensation mechanism

FCMV Force compensation mechanism volume

GCM Gravity compensation mechanism

RVE Metric 4: Volume Efficiency Ratio [-]

RMSE Root mean squared error [-]

ROM Metric 2 : Range of motion divided by diagonal of FCMV[-]

1. Introduction

Force compensation mechanisms (FCM) use the principle of static
balancing to relieve an unbalanced system from undesired forces
to improve the overall performance. A gravity compensation mech-
anism (GCM) is a special FCM that only counteracts the forces of
gravity, which remain constant. GCMs belong therefore to the cate-
gory constant force mechanisms. GCMs are widely applied, from
industry to society and differ in size, weight, system performance
and range of motion. Industrial robotic arms run heavy duty cycles.
The GCM relieves the robot arm from gravity forces, resulting in
lower energy use and increasing efficiency and performance. In
the application field of orthotics and exoskeletons GCMs are used
to counteract the gravity forces acting on the human body. Incor-
porating the GCM into the functional design is challenging due
to comfort and volume constraints. Generally, the more volume
is occupied, the heavier and more expensive the system becomes.
Reduction of the volume of a FCM requires the system to store
the same amount of potential energy on a smaller volume. More
compact FCM design in terms of higher energy density contributes
to smaller machines for industry and consumer products. Insight in
the performance of present literature could improve development
on FCMs.

1.1. Static Balancing

The governing principle behind static balancing is that the total
potential energy within a mechanical system remains constant for a
prescribed range of motion. [1] This means that the only required
energy to move the system is used to accelerate and decelerate. A
gravity equilibrator is designed to statically balance a mass and is
in equilibrium if the balancing mechanism counteracts the moment
exerted by the mass of the system and its payload, thereby removing
any operational energy. Constant potential energy for gravity equi-
librators can be established in various ways. The two most common
methods are balancing by counterweights and balancing by springs.
Other methods involve pneumatic or hydraulic cilinders, or the use
of electromagnetic effects.[2] [3].

Spring elements can efficiently store potential energy by com-
pression or extension. These flexible storage elements are advanta-
geous because they are simple, mechanical, passive, relative compact
components which are suitable for implementation. In contrast to
springs, the use of counterweights is generally not preferred. An im-
portant disadvantage in the use of counterweights is the increased
mass and inertia of the total system.

Static balance is applied in numerous application fields to counter-
act the weight, payloads or reaction forces of the system. Examples

are robotics [ref], orthotics and assistive devices [4], [5] or the famous
Anglepoise desk lamps. [6] Generally, statically balanced systems
include the following beneficial features: compensation of unde-
sired forces, energy free motion, full energy exchange, improved
information transmission, energy free force control, elimination of
backlash, zero stiffness, neutral buoyancy, improved performance
and inherent safety. Incorporating static balancing from the begin-
ning of the design process will reduce parts and leads to higher
performance of the product. [1]

1.2. Application

The application focused on in this research is a surgical microscope
depicted in figure 1. Many surgical procedures require a high
level of accuracy and precision. An essential aid is the surgical
microscope allowing surgeons to enhance their view on the working
area to perform on a specific level of detail.

(a) (b)

Figure 1: Microscope and balanced microscope stand

Positioning and adjusting the microscope near the working area
by using the joysticks is an important procedure, which is performed
multiple times per operation, taking up a significant part of the total
surgery time [7]. The microscope is suspended to a mobile support
system. For most microscope supports a key feature is to statically
balance the weight of microscope and the support in such way that
the user, in this case the surgeon, will experience the instrument to
be weightless. The floating instrument is now a more manageable
device [1b].

1.3. Objectives

This literature review presents an overview of existing methods
to compensate forces using springs, but also presents other spring
force generators. Furthermore, the existing methods are compared
on performance to create insight in the volume occupancy of force
compensation mechanisms. To summarise the goals of this literature
survey:

• Obtain an overview of spring force generators
• Determine key performance indicators to compare spring force

generators
• Compare the literature on performance indicators.

The outline of the literature survey will follow the described goals.
First an extensive body of literature will be discussed. In this section
also advantages, disadvantages and key features of existing force
compensation mechanisms are reviewed. Second, metrics will be
defined that can position the reviewed literature in perspective of
their performance. Third the found literature will be compared and
discussed on the described metrics. Also an overview is given of the
collected data and presented in an energy density design chart. A

1

Roel van Ekeren Literature review

conclusion will be drawn from the state of the art and the classified
literature.

2. Force compensation mechanisms in literature

To get a more general picture of the used spring concepts in litera-
ture, not FCMs have been taken into account, but also other spring
force generators. The body of literature in the field of SFG can be
distinguished into four groups. These four groups are formed by
combinations of individual parts. An overview is shown in figure
11. Generally, SFG comprises one or multiple spring elements and
if necessary a transmission to facilitate the non-linearity. Group
one consist of SFG which use one nonlinear spring element without
any link or transmission to generate the desired load-displacement
function. Group two consists of SFGs which are made of multiple
linear or nonlinear spring elements. The third group includes both
multiple spring elements as a transmission. The last group includes
only a single spring element in combination with a transmission.
Linear springs are used more frequently because of their simplic-
ity and availability. In contrast, nonlinear springs are harder to
implement, because they are application specific. However, if the
nonlinear spring is properly designed, no auxiliary mechanism or
transmission is required to balance a system with nonlinear be-
haviour. First an overview will be given of the systems in literature
for each group. A small discussion ends the chapter.

2.1. Class 1: Single Spring
The first group of SFGs are systems that only use a single (non-
linear) spring. If a linear spring is used the nonlinear system will
only be compensated with high accuracy for a small range of motion.
An example is described in a paper by Gopalswamy [24]. He
proposed a simple configuration for gravity compensation of a
parallelogram linkage using a single linear torsion spring in the
main axle. The linear spring limits the range of motion to the
linear part of the moment curve and can reduce the systems forces
to a specific level. For higher accuracy a better non-linear spring
is required. Nonlinear springs are however application-specific.
Promising prototypes from recent research by Radaelli [8], [9] show
that is possible to compensate nonlinear systems with high accuracy.
(figure 2). In his dissertation [10] Radaelli describes several concepts
to synthesise non-linear springs. The dissertation is also collection of
papers in which new concepts for non-linear springs are prototyped
and analysed. The non-linearity can be created by special curves,
shapes, widths and preloads.

(a) [11] (b) [12]

Figure 2: Monolithic gravity balancers based on shape optimization

2.2. Class 2: Multiple Springs
Similar to class 1, the second class only uses springs to compensate
the mechanism forces. This class is mostly found in compliant
mechanisms where hinges are replaced by compliant joints. The
flexible members act as springs storing elastic energy. An example
of such balanced mechanism is proposed by Radaelli [13] where all
joints are replaced by prestressed torsion springs. The springs are
designed such that the total mechanism counteracts the torque done
on the system by its weight and the payload. The pendulum with
the mass requires an auxiliary arm, connected to the pendulum such
that the non-linear behaviour can be achieved by the complete set of
springs and links. A fully compliant nonlinear variant to this system
is a five-bar mechanism by Merriam [14] in the horizontal plane. In
this mechanism all the hinges are replaced by lumped compliant

joints. After optimizing the dimensions and preloads of the joints
the input force required to actuate the device can be eliminated.
More examples of constant force mechanisms are presented in figure
4. Here multiple springs are designed to generate a constant torque
mechanism. [15], [16]. Constant force linear motion stages are
also proposed by Wang [17] and Tolman [18]. Another constant
force end effector using two different springs is proposed by Chen
[19] where the force can be adapted. Also fully statically balanced
compliant grippers are known in literature [20] [21] [22]. Merriam
and Radaelli (figure 3 managed to use only the joint space for the
spring mechanism. However, the joint space is limited and the space
between the links is not used. For the nonlinear springs, energy
capacity could be increased by enlarging the width of the springs.

(a) [13] (b) [14]

Figure 3: Spring force compensation systems based on compliant joints.

(a) [16] (b) [15]

Figure 4: Monolithic constant torque mechanisms

2.3. Class 3: Multiple Springs and Transmission

The third class involves mechanism with multiple springs and a
transmission to generate the desired load-displacement function.
This transmission mechanism can be a four-bar mechanism, end
stops, a combination of links or otherwise. Recent research related
to the Holland Container Innovation [23] proposed the use of tor-
sion bars. Since torsion bars are loaded on pure shear, they make
efficiently use of the material. Also, the torsion bar could fit with its
length easily in the bottom hinge joint of a container. Research is
done how to achieve the nonlinear behaviour in combination with
the linear torsion bar.

(a) Prototype by Radaelli [24] bal-
ances 25 Nm using multiple tor-
sion bars

(b) Scaled prototype by Claus [23]
from thesis using spurs transmis-
sion balances 0.4 Nm

Figure 5: Gravity balancers using prestressed torsion bars and end stops

The research conducted by Claus and Radaelli [23] [24], fo-
cused on approximate balancing using torsion bars. By positioning
preloaded energy storage elements, for instance torsion bars, in
series and parallel, end stops can realise a discrete stiffness profile,
thus achieving an approximation to counteract the exerted moment.
5 However, such systems include many parts and can accommodate
only positive stiffness. A system using the discrete approximation
principle achieving negative stiffness is not known.

2

Roel van Ekeren Literature review

Another variant to such transmission balancers is the design by
van Osch [25]. Torsion bars are used as spring elements and a
cam-wire transmission ensures equilibrium for the specified range
of 90 degrees. The cam-wire mechanism inherently limits the range
of motion. A perfectly static balanced mechanism using torsion
bars was not known, but the system still uses a bulky transmission.
Kilic [26] proposed an simpler and smaller method for a non-linear
spring mechanism using wrapping cams and a pulley connected
to linear coil springs. However, comparison is difficult since insuf-
ficient data is provided. Another example of a cam mechanism is
described by Liu [27]. Two linear springs and a cam mechanism
were used to produce a constant force mechanism. These cam roller
mechanism are also applicated in statically balanced brakes. [28].
In literature also cam based mechanism designed specifically for
gravity balancing were found. [29] [30]

Next to cam-based transmissions various mechanisms in literature
make use of linkages to generate the gravity load-displacement
function. [31][32]

Within the found body of literature the most compact designed
prototype appeared to be a variable gravity equilibrator incorpo-
rating a non-linear mechanism using linear compliant compression
and extension springs.[31] The extension spring provides stiffness
while the compression spring provides negative stiffness through
the mechanism links. The pretension can be varied by a screwdriver
to adjust the mechanism to different payloads.

(a) Compact gravity balancer
based on folded compliant
springs[31]

(b) Cam based mechanism
with adjustable cam for other
payloads[26]

Figure 6

2.4. Class 4: Single Spring and Transmission

The fourth class involves single spring mechanisms using a trans-
mission. A frequently seen mechanism is the balanced pendulum or
parallelogram having an ideal helical spring [33] [34] attached to the
linkage and vertically in line with the hinge, simplified shown in fig-
ure 7 [1]. Basically, the linkage provides the non-linear transmission.
This method is currently implemented in most of the microscope
suspension systems. Pully arrangements can be made to move the
springs to desired positions in the mechanism. Additional features
were devised to adjust the balancer to various payloads and even
energy free adjustment methods are known [35] [36] [37] [38] [39].
If perfect balancing (i.e. with high accuracy) is desired, such springs
are very effective. Also in terms of energy stored per unit mass
these springs perform well: a helical spring can very efficiently
store energy because the whole wire is loaded on shear. [40] De-
spite the fact that such configurations with efficient helical springs
are readily available and affordable, they take up a lot of building
space. [23] Furthermore, more space is required during operation
because of extension of the springs. Moreover, to emulate a zero-
free length spring, cable-pulley configurations are required which
take up more space. Space occupancy is disadvantageous since the
working area needs to be free for surgeons, tools, the patient and
other instruments.

(a) [6] (b) [41]

Figure 7: Spring balancers using emulated or zero-free-length springs and the
geometry of the parallelogram as ’transmission’.

An interesting relating example is a gravity equilibrator, designed
by Bijlsma [?], comprising a clever planetary gear allowing unlimited
range of motion, i.e. 360 degrees and more. The mechanism uses
a torsion bar as well and the transmission system is less bulky. A
disadvantage of this systems is the concern of significant hysteresis
and wear in the gears, which is a limiting factor for accurate systems.

3. Performance metrics for FCM’s

In the preceding literature examples we have seen various advan-
tages and disadvantages which can be assigned to performance
indicators. The following four key performance indicators can be
distinguished which are used to compare literature. The metrics
will be used to evaluate future work as well.

3.1. Accuracy

The accuracy metric can be interpreted as the percentage of the
system forces cancelled by the balancing mechanism along its range
of motion. Since the system is not perfectly balanced along the
displacement interval, the root mean square error between the
spring force and the unbalanced system determines the average
error.

A = 1 − RMSE [−] (1)

where

RMSE =

√√√√ 1
N

N

∑
n=1

(
fn − Fn

fn
)2 (2)

where fn is the spring force and Fn represents the unbalanced
system force at interval n. A perfect balanced system has 100%
accuracy, meaning that all forces are compensated by the spring.

3.2. Range of Motion

The range of motion metric is a ratio to determine the relative travel
distance of the mechanism with respect to its size. The range of
motion is described by the upper limit for the given accuracy minus
the lower limit divided by the diagonal of the force compensation
mechanism volume in meters.

ROM =
UL − LL

D
[−] (3)

Where LL specifies the lower limit and UL the upper limit. Both
are described in height (vertical) meters. If a system is not a gravity
equilibrator, but for example a rotating constant force mechanism
the upper and lower limits are measured in radians. For these
applications a height is calculated by the sine of the angle of the
range of motion, multiplied by the link of the system. If the system
does not have a link, the length of the link is assumed to be the
same as D, where D specifies the diagonal of the force mechanism
volume (FCMV) in meters shown in figure 8.

3

Roel van Ekeren Literature review

Figure 8

For some systems it is not necessary to achieve a large range of
motion, for instance constant force graspers. [20] Other systems
require a certain minimum range of motion for example an orthosis
to compensate limbs. [42] Therefore it is very situation specific. For
designers it is important to specify this key performance indicator
early in the design process. Generally a larger range of motion
means that the system is wider applicable, and is therefore more
relevant.

3.3. Energy density of spring

Various methods are used in literature to quantify the energy density
of springs. Cool uses a metric to quantify the maximum amount
of energy that is possible to be stored in the spring material before
yielding. [40]. A variant on this metric was proposed by Krishnan
et al. [43]. Both materials take the material volume of the spring
into account. The fraction of material that is maximally used for
strain energy we refer to as UMV (used material volume) However,
is it also interesting to know what the efficiency is with respect to
the occupied mechanism volume.

The combination of the spring mechanism volume and the abso-
lute energy capacity gives useful information for designers about the
springs performance in relation to actual occupied volume. Despite
a high UMV efficiency, the spring can be inefficient with respect to
its FCMV. Therefore the following metric provides a rate of compact-
ness in relation to its energy capacity. This metric will be described
in terms of absolute stored strain energy in Joule divided by the
FCMV in m3.

EnergyDensity =
Work Compensated

FCMV
[J/m3] (4)

where the work compensated is the amount of energy that is
possible to be stored by the FCM. A spring compensation system can
be implemented more generally if it possesses more energy capacity
within a smaller assembly volume. If we look at the conventional
coil spring we see an efficiency on material level, but the space
occupied by its cylindrical shape is not very efficient.

3.4. Volume Efficiency

The last metric is defined to obtain information about the volume
efficiency, or in other words, the amount of volume that is lost to
overall design considerations. A high volume efficiency means that
more volume of the FCMV is used for energy storage. The metric is
defined by the amount of volume used for strain energy, divided by
the FCMV.

RVE =
UMV
FCMV

[−] (5)

where UMV is the used material volume. The UMV can best be
illustrated by figure 9. The boxes on top represent volume ratios
whereas the volume efficiency ratio is defined by:

RVE = Rmaterial · Runit · Rstacking · Rsystem (6)

The grey boxes represent the occupied volumes. The complete
system, -the top grey rectangular bar-, represents the total system
volume of 100%. The balanced system can be split into two volumes:
the FCM volume, and the volume of the inbalanced system. Again,
the FCM volume can be split into the volume of the spring system
itself and the volume of a potential transmission, if there is one.

Figure 9: Overview of volume distribution. The top grey bar represents the volume
of the entire system. Below the volumes are split into useful volume and losses. The
losses are illustrated in darker grey. On top four ratios, based on the volume bars
below, are presented in the blue boxes.

The spring system includes all energy storage elements, the
springs. This could be either one or multiple springs. If there
are multiple springs involved, the spring system can be split into
spring unit volumes and stacking space, volume that is needed in
order to prevent spring collisions. The space that is lost by stack-
ing is referred to as the stacking ratio. The stacking distance is
explained by figure 10 where the spring unit cells are defined by
the red rectangular blocks.

Figure 10: Illustration of the spring material. On the left the distance between
spring material determines the amount of volume that is lost to stacking of springs.

If we proceed downwards in figure 9, the spring unit volume
is split into spring material volume and free space. This can be
explained as the spring unit ratio, the amount volume that is lost to
free space around the spring material. For instance, the cylindrical
space within a coil spring is not used for energy storage. At last
the material ratio is defined by the amount of volume within the
material that is used for pure energy storage. The illustration on the
right of Figure 10 shows a torsion wire that is loaded. The stress
distrubution is shown and increases linearly from the inside. As
a result only 50 % of the material is used for energy storage. In
conclusion only a small part of the FCM will store potential energy.
Increasing the Volume Efficiency of the FCM will lead to higher
energy densities.

Figure 11: On the left, four classes are defined by the blue components on top. Class
1 involves spring systems with only 1 spring. Class 2 involves systems with multiple
springs. Class 3 involves multiple springs and a transmission. Class 4 involves a
single spring with transmission. On the right, an overview is shown for which classes
and components volume is lost.

The volume ratios can be used to identify volume losses. For
example this means how much volume is lost by the transmission
of the system. Figure 11 shows the four groups. On the right, the

4

Roel van Ekeren Literature review

volume parameters are shown. Class 1 does not involve stacking and
system ratios, because no volume is lost by stacking or transmission.
Class 2, however, loses volume to stacking because multiple springs
are involved. Class 3 loses volume on all four ratios and class 4
no volume is lost to stacking since only single springs are involved.
For example, ways to increase the volume efficiency of class 4, is
to change the type of spring, to change the shape or change the
volume of the transmission.

4. Performance of Literature

Based on the four performance metrics, literature can be compared
and possible opportunities can be extracted. Table 1 shows an
overview of several gravity compensation mechanisms and spring
force generators, discussed in the previous paragraphs. The table
is plotted for the volume metrics, 3 and 4, since we are interested
in how volume is used. Metric 1 and 2 is used to quantify the
balancing performance. Figure 12 shows an overview of the proto-
types. The horizontal axis represents metric 3, the energy density
of the systems in [J/m3]. The vertical axis represents metric 4, the
volume efficiency. Many papers are excluded because they provide
insufficient information about the discussed performance metrics.

The papers that provided sufficient information are listed in the
table. For some other papers hold that the provided information
was unclear or not shown, so numbers had to be guessed based on
other information or pictures. The table gives a rough estimation
and calculates the energy density ratios for the enlisted papers.
The table is not complete and can be supplemented by new or
unseen papers. More importantly, the numbers can be improved by
providing more accurate results of the experiments and prototypes.
For now it gives an indication where the prototypes can be found
on the energy density scale. The figure also provides information
about the FCM classes, discussed in section 2. The colors of the
prototypes correspond with figure 11.

5. Discussion

The plot from figure 12 provides insight which systems use their
volume well, and which systems do not. The lower left corner in-
cludes systems which have a low energy density and a low volume
efficiency. The upper right corner includes systems with higher
volume efficiency and higher energy density. The presented com-
parison data is based on raw data extracted from literature papers.
A lot of papers do not provide sufficient data in order to calculate
the performance metrics. Theses papers were therefore not included
in the overview. The systems that were compared show very low
volume efficiencies. Also the comparison may be not completely
fair, because the individual spring systems were not designed for
volume efficiency. Most of the systems are prototypes and proof of
concepts. The accuracy data was in most case clearly provided. The
data of range of motion was most of the times provided, but metric
2 could often not be calculated since the mechanism volume was
not known. If more data is available, industrial systems could be
compared on volume occupancy by the ratios provided in this paper.
From the presented plot no particular relation can be extracted.

6. Conclusion

Volume occupancy in the design FCM is an important aspect for
engineers. Insight where to gain higher volume efficiencies in terms
of energy storage can improve the overall compactness of the system.
This literature study provides a structured perspective on volume
losses in FCMs. Four metrics are presented which compare literature
on performance. Apparently the present state of literature shows
that a very small amount of volume is effectively used for storing
strain energy (<3% of the total FCMV). Future designs can focus
on volume improvements based on four classes that are defined by
their component levels to create more compact force compensation
systems.

References

[1] Herder, J. L., 2001, “Energy-free systems: theory, conception, and design of statically balanced spring
mechanisms,” Ph.D. thesis, Delft University of Technology, doi:10.13140/RG.2.1.3942.8966, http://
repository.tudelft.nl/view/ir/uuid:8c4240fb-0315-462a-8b3b-efbd0f0e68b6/

[2] Westerman, S., 2015, “Design of a statically balanced mechanism using magnets and springs,” Ph.D.
thesis, Delft University of Technology.

[3] Gosselin, C. M. and Wang, J., 2000, “Static balancing of spatial six-degree-of-freedom parallel mecha-
nisms with revolute actuators,” Journal of Robotic Systems, 17(3), pp. 159–170.

[4] Banala, S., Agrawal, S., Fattah, A., Rudolph, K., and Scholz, J., 2004, “A gravity balancing leg or-
thosis for robotic rehabilitation,” IEEE International Conference on Robotics and Automation, 2004.
Proceedings. ICRA ’04. 2004, (May 2014), pp. 2474–2479 Vol.3.

[5] te Riele, F. L. and Herder, J. L., 2001, “Perfect Static Balance with Normal Springs,” Perfect Static
Balance with Normal Springs, Figure 9, pp. 1–8.

[6] French, M. J. and Widden, M. B., 2000, “The spring-and-lever balancing mechanism, George Car-
wardine and the Anglepoise lamp,” Proceedings of the Institution of Mechanical Engineers, Part C:
Journal of Mechanical Engineering Science, 214(3), pp. 501–508.

[7] de Wit, N., 2017, “Vibration dissipation in a surgical microscope support system,” Tech. rep., Delft
University of Technology.

[8] Radaelli, G. and Herder, J. L., 2016, “Shape optimization and sensitivity of compliant beams for
prescribed load-displacement response,” Mechanical Sciences, 7(2), pp. 219–232.

[9] Radaelli, G. and Herder, J. L., 2016, “Shape optimization and sensitivity of compliant beams for
prescribed load-displacement response,” Mechanical Sciences, 7(2), pp. 219–232.

[10] Radaelli, G., 2017, “Synthesis of mechanisms with prescribed elastic load-displacement characteris-
tics,” Ph.D. thesis, Delft University of Technology, doi:10.4233/uuid.

[11] Radaelli, G. and Herder, J. L., 2016, “A monolithic compliant large-range gravity balancer,” Mecha-
nism and Machine Theory, 102, pp. 55–67.

[12] Radaelli, G. and Herder, J. L., 2014, “Isogeometric Shape Optimization for Compli-
ant Mechanisms With Prescribed Load Paths,” Proceedings of the ASME 2014 International
Design Engineering Technical Conferences & Computers and Information in Engineering Con-
ference, doi:10.1115/DETC2014-35373, http://proceedings.asmedigitalcollection.asme.org/

proceeding.aspx?doi=10.1115/DETC2014-35373

[13] Radaelli, G. and Intespring, B. V., 2011, “An energy approach to the design of single degree of freedom
gravity balancers with compliant joints,” Proceedings of the ASME 2011 International Design Engineering
Technical Conferences & Computers and Information in Engineering Conference IDETC/CIE 2011, ASME,
Washington DC.

[14] Merriam, E. G., Colton, M., Magleby, S., and Howell, L. L., 2013, “The Design of a
Fully Compliant Statically Balanced Mechanism,” Proceedings of ASME 2013 International De-
sign Engineering Technical Conferences & Computers and Information in Engineering Conference,
August, doi:10.1115/DETC2013-13142, http://proceedings.asmedigitalcollection.asme.org/

proceeding.aspx?doi=10.1115/DETC2013-13142

[15] Hou, C. W. and Lan, C. C., 2013, “Functional joint mechanisms with constant-torque outputs,” Mech-
anism and Machine Theory, 62, pp. 166–181.

[16] Nair Prakashah, H. and Zhou, H., 2016, “Synthesis of Constant Torque Compliant Mechanisms,”
Journal of Mechanisms and Robotics, 8(6), p. 064503.

[17] Wang, J.-Y. and Lan, C.-C., 2014, “A Constant-Force Compliant Gripper for Handling Objects of
Various Sizes,” Journal of Mechanical Design, 136(7), p. 071008.

[18] Tolman, K. A., Merriam, E. G., and Howell, L. L., 2016, “Compliant constant-force linear-motion
mechanism,” Mechanism and Machine Theory, 106, pp. 68–79.

[19] Chen, Y.-H. and Lan, C.-C., 2012, “An Adjustable Constant-Force Mechanism for Adaptive End-
Effector Operations,” Journal of Mechanical Design, 134(3), p. 031005.

[20] Lamers, T., 2012, “Design of a Statically Balanced Fully Compliant Grasper Using the Rigid Body
Replacement Method,” MSc.

[21] Stapel, A. and Herder, J. L., 2004, “Feasibility study of a fully compliant statically balanced la-
paroscopy grasper,” Proceedings of the ASME Design Engineering Technical Conference, (January
2004), pp. 1–9.

[22] Steutel, P., Kragten, G. A., and Herder, J. L., 2010, “Design of an Underactuated Finger With a
Monolithic Structure and Largely Distributed Compliance,” Volume 2: 34th Annual Mechanisms
and Robotics Conference, Parts A and B, (December 2015), pp. 355–363.

[23] Claus, M. R., 2008, “Gravity balancing using configurations of torsion bars,” Ph.D. thesis, Delft Uni-
versity of Technology, doi:10.1006/jdeq.1996.0111.

[24] Radaelli, G., Buskermolen, R., Barents, R., and Herder, J. L., 2017, “Static balancing of an inverted
pendulum with prestressed torsion bars,” Mechanism and Machine Theory, 108(July 2016), pp. 14–26.

[25] Osch, F., 2011, “Design of an adjustable gravity equilibrator using torsion bars,” .

[26] Kilic, M., Yazicioglu, Y., and Kurtulus, D. F., 2012, “Synthesis of a torsional spring mechanism with
mechanically adjustable stiffness using wrapping cams,” Mechanism and Machine Theory, 57, pp.
27–39.

[27] Liu, Y., Yu, D. P., and Yao, J., 2016, “Design of an adjustable cam based constant force mechanism,”
Mechanism and Machine Theory, 103, pp. 85–97.

[28] Van Der Hoeven, T., 2015, “Statically balanced singular-friction locking,” Tech. Rep. 1519786, Delft
University of Technology.

[29] Koser, K., 2009, “A cam mechanism for gravity-balancing,” Mechanics Research Communications,
36(4), pp. 523–530.

[30] Ulrich, N. and Kumar, V., 1991, “Passive mechanical gravity compensation for robot manipula-
tors.pdf,” Proceedings of the 1991 IEEE International Conference on Robotics and Automation, Sacramento,
California.

[31] Yang, Z. W. and Lan, C. C., 2015, “An adjustable gravity-balancing mechanism using planar extension
and compression springs,” Mechanism and Machine Theory, 92, pp. 314–329.

5

Roel van Ekeren Literature review

Table 1: Overview of FCM literature which is evaluated on the 4 performance metrics. The data is extracted from the referenced papers. Some ROM valuas are not presented
because the ROM could not be calculated.

Fig.
Ref.

Paper
Ref.

Author Year Class
1.

Accuracy
[-]

2.
ROM

[-]

3.
Energy Density

[J/m3]

4.
Volume Efficiency

1 [20] Lamers 2012 3 99,0% 0,01 206 0,116%
2 [25] van Osch 2011 3 90,0% 4900 0,144%
3 [24] Radaelli 2017 3 99,1% 2373 0,281%
4 [12] Radaelli 2014 1 97,0% 2,00 1460 0,293%
5 [44] Bijlsma 2017 4 87,0% 3890 0,306%
6 [16] Prakashah 2016 2 97,4% 1997 0,350%
7 [11] Radaelli 2016 1 99,0% 2415 0,359%
8 [45] Berntsen 2014 2 85,0% 2094 0,387%
9 [46] Jutte 2008 1 85,0% 7486 0,391%
10 [14] Merriam 2013 3 85,0% 0,82 245 0,478%
11 [47] Radaelli 2017 1 99,0% 0,98 16 0,563%
12 [48] Stroo 2014 4 87,0% 8032 0,609%
13 [32] Dede 2004 3 97,0% 1,05 367 0,900%
14 [31] Zong-Wei Yang 2015 3 98,0% 0,91 5845 0,105%
15 [15] Hou 2013 2 88,0% 8407 1,210%
16 [13] Radaelli 2011 3 93,0% 1,33 611 1,231%
17 [17] Wang 2014 2 95,0% 12197 1,260%
18 [19] Yi Ho Chen 2012 2 95,0% 0,08 1974 1,391%
19 [49] Merriam 2015 2 95,0% 3281 1,912%
20 [23] Claus 2008 4 96,7% 7679 2,042%

Figure 12: Plot showing the energy density of literature prototypes from table 1on the horizontal axis and volume efficiency metric RVE on the vertical axis. The classes defined
in the previous section are shown in the four colors. Green is class 1, yellow is class 2, blue is class 3, orange is class 4.

[32] Trease, B. and Dede, E., 2004, “Statically-Balanced Compliant Four-Bar Mechanism for
Gravity Compensation,” Tech. rep., http://www-personal.umich.edu/btrease/share/ASME2004/

statically-balanced-4bar.pdf

[33] Arakelian, V. and Ghazaryan, S., 2008, “Improvement of balancing accuracy of robotic systems: Appli-
cation to leg orthosis for rehabilitation devices,” Mechanism and Machine Theory, 43(5), pp. 565–575.

[34] Rahman, T., Ramanathan, R., Seliktar, R., and Harwin, W., 1995, “A Simple Technique to Passively
Gravity-Balance Articulated Mechanisms,” Journal of Mechanical Design, 117(4), p. 655.

[35] Barents, R., Schenk, M., van Dorsser, W. D., Wisse, B. M., and Herder, J. L., 2009, “Spring-to-Spring
Balancing as Energy-Free Adjustment Method in Gravity Equilibrators,” Volume 7: 33rd Mechanisms
and Robotics Conference, Parts A and B, 133(June 2011), pp. 689–700.

[36] van Dorsser, W. D., Barents, R., Wisse, B. M., and Herder, J. L., 2007, “Gravity-Balanced Arm Support
With Energy-Free Adjustment,” Journal of Medical Devices, 1(2), p. 151.

[37] Chu, Y.-L. and Kuo, C.-H., 2017, “A Single-Degree-of-Freedom Self-Regulated Gravity Balancer for
Adjustable Payload ¹,” Journal of Mechanisms and Robotics, 9(2), p. 021006.

[38] Briot, S. and Arakelian, V., 2015, “A New Energy-free Gravity-compensation Adaptive System for
Balancing of 4-DOF Robot Manipulators with Variable Payloads,” Proceedings of the 14th IFToMM
World Congress, pp. 179–187.

[39] Wisse, B. M., Van Dorsser, W. D., Barents, R., and Herder, J. L., 2007, “Energy-free adjustment of
gravity equilibrators using the virtual spring concept,” 2007 IEEE 10th International Conference on
Rehabilitation Robotics, ICORR’07, 00(c), pp. 742–750, arXiv:1011.1669v3.

[40] Cool, J., 1987, Werktuigkundige systemen, 3rd ed., Delftse Uitgevers Maatschappij.

[41] Barents, R., 2006, “The space cabinet,” Ph.D. thesis.

[42] Esteveny, L., Barbe, L., and Bayle, B., 2014, “A novel actuation technology for safe physical human-
robot interactions,” Proceedings - IEEE International Conference on Robotics and Automation, pp.
5032–5037.

[43] Krishnan, G., Kim, C., and Kota, S., 2012, “A Metric to Evaluate and Synthesize Distributed Compliant
Mechanisms,” Journal of Mechanical Design, 135(1), p. 011004.

[44] Bijlsma, B. G., Radaelli, G., and Herder, J. L., 2017, “Design of a Compact Gravity Equilibrator With
an Unlimited Range of Motion,” Journal of Mechanisms and Robotics, 9(6), p. 061003.

[45] Berntsen, L., Gosenshuis, D., and Herder, J., 2014, “Design Of A Compliant Monolithic Internally Stat-
ically Balanced Four-Bar Mechanism,” Proceedings of the ASME 2014 International Design Engineering
Technical Conferences & Computers and Information in Engineering Conference IDETC/CIE 2014, Buffalo.

[46] Jutte, C. V. and Kota, S., 2008, “Design of Nonlinear Springs for Prescribed Load-Displacement Func-
tions,” Journal of Mechanical Design, 130, arXiv:1011.1669v3.

[47] Radaelli, G. and Herder, J. L., 2017, “Gravity balanced compliant shell mechanisms,” International
Journal of Solids and Structures, 118-119, pp. 1339–1351.

[48] Stroo, J., 2014, “Feasibility Study of a Balanced Upper Arm Orthosis based on Bending Beams,” Tech.
rep., Delft University of Technology.

[49] Merriam, E. G. and Howell, L. L., 2015, “Non-dimensional approach for static balancing of rotational
flexures,” Mechanism and Machine Theory, 84, pp. 90–98.

6

3
PAPER - AN INTUITIVE METHOD TO DESIGN

LOAD-DISPLACEMENT CHARACTERISTICS

FOR NONLINEAR SPRINGS IN

PARALLELOGRAM LINKAGES

13

An intuitive method to design load-displacement
characteristics for nonlinear springs in parallelogram linkages

Roel van Ekeren∗

Delft University of Technology
Department of Precision and Microsystems Engineering, Mekelweg 2, 2628 CD, Delft, Netherlands

Hittech Multin BV, Laan van Ypenburg 60, 2497 GB, The Hague, Netherlands

September 21, 2019

Abstract

Many mechanical applications involve the use of springs with specifically designed load-displacement characteristics. This paper presents a new mechanical concept,
that uses prestressed nonlinear plate springs that can be designed for various load-displacement characteristics for the end effector of parallelogram linkages. An
intuitive method is proposed to design the global geometry of the nonlinear plate springs within the given set of boundary conditions from the parallelogram. The
results from this method enhance understanding in the design of nonlinear springs and can be used as initial condition for structural shape optimization methods.
Three distinct spring characteristics are found using this method to show its applicability. The springs are modelled by a finite element model and validated with a
protoype.

Nomenclature

,
α Clamp angle of PPS

Ω Normalized root mean
squared error between two
curves

φ Orientation angle of PPS

σ Stress

θ Angular displacement of par-
allelogram

ζ Prestress ratio

EE End Effector

FE Finite element

g Gravity constant

GB Gravity balancing metric

h Height of parallelogram

K Stiffness

L Initial length of PPS

M Moment

PPS Prestressed plate spring

R1 Full domain of parallelo-
gram

R2 Cropped domain from θ1 to
θ2

SE Strain Energy denity metric

U Work done by PPS

w Width of PPS

1. Introduction

Parallelogram linkages, a special subset of four-bar mechanisms,
are widely used in planar (2-DOF) industrial manipulators. The
field of application varies over a large range of scale from microme-
ters to meters[1] [2] [3] [4] [5]. In various applications a specified
force or moment is required along the trajectory of the parallelo-
gram end effectors, for example to statically balance elastic forces
in compliant mechanisms or to balance an external load. Statically
balanced mechanisms benefit from energy-free force control, inher-
ent safety and improved information transmission [6]. Springs can
accommodate the desired load-displacement characteristic for these
mechanisms, which is often nonlinear. Typical nonlinear systems
in literature are negative stiffness mechanisms [7], constant force
mechanisms [8] and bi-stable mechanisms [9], but design of these
systems is complicated, since there is no comprehensive method
for all nonlinear situations. [10]. Although conventional helical
springs are limited to linear responses, techniques are known that
use the mechanism geometry or additional transmissions to generate
nonlinear load-displacement characteristics for the end-effector. A
famous example is the spring-and-lever balancing mechanism from
Carwardine [11][12], which is specifically useful to statically bal-
ance parallelogram mechanisms, but can also be used for standard
rotating pendulums [13]. Furthermore, studies are known where
prestressed torsion bars are used to approximate load-displacement
functions [14]. Another study uses a special nonlinear gearbox
transmission for unlimited range of motion [15]. An energy method
is also presented in literature, where linear springs are used as
compliant joints to design gravity balancers. [16]

As an alternative to the use of linear springs, which have a fixed
spring constant, nonlinear springs can be designed to a prescribed
nonlinear load-displacement function. [17]. This makes nonlin-
ear transmissions redundant, which is a clear advantage. How-
ever, the possibility to configure many geometric parameters and

∗Graduate student (roelvekeren@outlook.com)

boundary conditions makes the design process of nonlinear springs
challenging. Although, by selecting parameters carefully, shape
optimizations can be done to reach desired load-displacement re-
sponses. Several successful compliant designs are presented in
literature, having constant torque-displacement functions [18], [19].
Also constant-force linear motion mechanisms are presented, but
are not directly useful for the application of parallelograms or
pendulums [20] [21] [22]. More challenging problems are various
gravity balancers, designed by optimizing the initial curvature [23]
[24], because such systems can also be employed in parallelograms.
Moreover, the use of prestress makes it possible to generate negative
stiffness mechanisms. [25] In this study, prestressed nonlinear plate
springs are employed in a parallelogram linkage such that the spring
is deflected by rotation on both outer ends due to displacement of
the paralleogram links, also bringing the possibility to generate neg-
ative stiffness and bistable responses. This employment is not earlier
seen in literature. In another study by [26], a monolithic, internally
statically balanced four-bar was designed, where prestressed non-
linear springs compensate the elastic force of the compliant hinges.
Here, the springs were mounted to the reference. Other examples
of completely internally statically balanced linkages are optimized
without additional prestressed springs [27]. In present designs from
literature it is not directly visible how the design can be modified
to obtain different load-displacement responses. The optimization
procedure should be re-evaluated for a the new load-displacement
response. Having a method to design a proper intuitive initial guess
of the shape that is to be optimized, assists the optimization proce-
dure and offers understanding in the design of nonlinear springs.
The design presented in this paper offers the opportunity to modify
the spring shape intuitively to various different load-displacement
response. Although the presented method is specifically found for
the problem of parallelograms, it is another step in understanding
nonlinear spring design.

The goal of this study is to present a novel mechanical conceptual
design that uses prestressed nonlinear plate springs. Furthermore,
an intuitive method is presented to design the shape of nonlinear
plate springs for various load-displacement functions for the end
effector of parallelograms.. Results from this approach can be used
as proper initial guesses for structural shape optimization methods.

The outline of this paper is as follows: first a detailed problem
description will be presented in section 2, followed by additional
performance metrics which will be used to evaluate the results.
In section 2.3, the spring mechanism concept is proposed. Then,
a design method is proposed in section 2.4, and by using a finite
element program the plate spring is modelled. Section 2.4.4 presents
the constructed and tested prototype to verify the model. In section
3.2, the simulation and measurement results are presented. At
last, results will be discussed in section 4, and conclusions given in
section 5.

1

Roel van Ekeren

2. Methods

This section formulates the technical research problem and explains
the spring mechanism concept. Subsequently a method is presented
how springs can be designed for a desired load-displacement objec-
tive.

2.1. Problem description

The parallelogram linkage considered in figure 1 consists of four
rigid links (1-4). The links are assumed to have infinite stiffness
and are connected with standard pin in hole hinges. The most left
link is connected to the reference. The linkage system is allowed
to rotate by an angle θ in the domain R2: [(π

2 − 0.5) (π
2 + 0.5)]

rad. Theoretically the parallelogram can move to any angle θ in the
domain R1: [0 π] rad. (dotted line) or even [0 2π] rad. Since we
consider a parallelogram, the opposite links have equal lengths and
remain parallel. Also the opposite angles remain equal. For an ideal
situation, the friction forces are assumed to be negligible.

Figure 1: The parallelogram considered with arm lengths L and h. A moment-
displacement characteristic for the end effector is required for the imposed displacement
[θ1 θ2] = [(π

2 − 0.5) (π
2 + 0.5)] rad. Gravity is considered to act perpendicular to

the parallelogram, so this force can be neglected. The links are assumed to have no
mass.

We are interested in a specified moment-displacement function
at the end effector, generated by the parallelogram mechanism .
Therefore, a prestressed plate spring, hereafter referred to as PPS,
is positioned inside the linkage. By displacing the outer ends, the
PPS exerts a moment on the parallelogram link 2, link 4 or both.
The amount of work done by the resulting moment acting on the
parallelogram along the range of motion can be expressed by the
energy U:

U =
∫ θ2

θ1

Mdθ (1)

The work is delivered by the PPS. Examples of three systems with
distinct load-displacement characteristics are illustrated in figure 2.
The three systems are selected because they are different by their
stiffness characteristic (K). Characteristic A is typically used for
the application of gravity balancing, which is a difficult nonlinear
problem due to a significant negative stiffness range. A gravity
balancing spring can be realized by letting the load-displacement
curve such that the gravitational force of the mass suspended at the
end effector of the parallelogram is balanced by the spring force. It
follows that the moment-displacement must be a sine of the angle
θ. Characteristic B is the trivial problem, approximating linear
springs and characteristic C is typically seen for the application of
static balancing elastic forces in compliant mechanisms [26]. The
characteristics are normalized, meaning their amplitude is divided
by their maximum. In this study, the range of motion and the load-
displacement characteristic are considered more important than the
load amplitude.

Figure 2: From left to right three selected energy-displacement curves and below
their corresponding moment-displacement (dU

dθ) and stiffness-displacement curves.
d2U
dθ2). The hatched area (R2) is the relevant range of motion, in contrast to the

full domain R1 = [0 π]. Arbitrary designs are illustrated in red as example. The
difference between the spring moment in red)(m) and the objective moment (M) is
to be minimized.

Focusing on the stiffness curves, system A appears to have both
positive and negative stiffness. System B only has positive stiffness
and system C, has only negative stiffness behaviour. The presented
characteristics are highly nonlinear due to the sine-shape and can
not directly be created by linear springs without the help of mecha-
nism transmission or without a significant error. A nonlinear spring
is desired that is able to approximate the presented objective curves
by varying geometry and selecting the right boundary conditions.
The target function Ω to be minimized is the normalized root mean
squared error between the moment objective function and the ac-
tual spring moment for the selected displacement domain R2. The
objective and actual moment are both divided by their maximum,
to make comparison independent from scale. Ω can also be used
to calculate the error between two other curves. In theory this is
calculated by the integral over the complete interval. In practice, the
difference between the moments are evaluated at discrete intervals
of rotation and the target function is then described numerically:

minimize : Ω(R2) =

√√√√ 1
N

N

∑
n=1

(
mn

max(mn)
− Mn

max(Mn)

)2

(2)

In this equation Mn and mn represent the objective and the de-
signed spring moment respectively for a specific rotation. N is
the number of intervals taken for the entire range of motion. This
problem definition is subjected to the following constraints:

• σmax < σyield
• wmin < w < wmax

where w is the stiffness parameter, the width of the PPS. This
parameter defines the stiffness by changing the geometry of the
spring, which further explained in section 2.3.2.

The selected objective moment-displacement functions are de-
fined by:

Mn = sin(θn − γ) (3)

for the entire interval n and where γ is 0, π/2 and π for the
spring A, spring B and spring C respectively.

2.2. Additional Performance metrics

Two additional performance indicators are used to evaluate the
spring designs. The first is used to check the mechanical perfor-
mance of energy stored into the spring. The second metric is used
to evaluate the performance of a spring designed for the gravity
balancing objective, which will be discussed in section 4.3.

2

Roel van Ekeren

2.2.1 Beam Energy density

The mechanical efficiency of storing energy into the beam is indi-
cated by the energy density metric as defined by Krishnan et al.
[28].

ηSE =
EU

σ2
maxV

(4)

Where E is the Young’s modulus of the material, U is the work
that is put into the system. σmax is the maximum stress and V
is the material volume of the beam. The presented metric is the
simplified expression of the ratio between the average strain energy
density experienced by the entire volume to the local maximum
strain energy density. The metric can be interpreted by the fraction
of how much material volume is actually used for energy storage.

2.2.2 Gravity Compensation Metric

This metric is used to evaluate the performance of spring designed
for the gravity balancing case. The gravity compensation metric
(GCM) indicates how much energy that is stored by the springs
is effectively used for gravity balancing the payload. Because the
springs can be lifted, a part of the spring energy gets lost to lift the
weight of the springs. The energy balance is in such cases:

Ustored = Uspringmass + Upayload + Usystem (5)

where Ustored is the energy stored in the spring. Uspringmass is the
potential energy due to the weight of the spring. Upayload is the
potential energy due to the weight of the payload and the Usystem
represents the potential energy due to the weight of the linkages.
We assume from here the linkages to be weightless.

The following definition is used to determine the efficiency of the
spring for gravity compensation, which should be smaller than 1 to
compensate additional payload:

ηgc =
Uspringmass

Ustored
=

2ρVga
Ustored

=
2ρgaE
ηSEσ2 (6)

Here a is the distance from the spring’s center of mass to the mo-
ment rotation point, which is assumed to be halfway the moment
arm of the payload as average. ρ is the density of the spring’s ma-
terial and g is the gravity constant. Furthermore the energy stored
in the spring can be expressed in terms of beams energy density
metric defined from section 2.2.1. The metric can be interpreted as
the percentage of the spring storage that is lost to its own weight.
Ideally, this number should be zero. The performance is improved
when the COM is displaced towards the rotation point.

2.3. Spring mechanism concept

Prestressed plate springs having specified stiffness over their length
can be implemented into a parallelogram linkage to obtain various
load-displacement characteristics for the end effector. Stiffness of the
PPS can be varied by changing the width parameter along its length.
Buckling behaviour of the PPS is forced by axial prestress. The
mechanism concept uses this buckling ability to generate negative
stiffness and multi-stable behaviour for a large displacement range.
First the topology and its boundary conditions are explained. Then,
a description is given for the geometry of the PPS. A summary of
the design variables for the mechanism concept is presented in table
1.

2.3.1 Topology and boundary conditions

As a first step one unique single spring is investigated. The
preloaded spring, illustrated in figure 3, is attached to the parallelo-
gram links with clamp angle α and orientation angle φ respectively.
Because angle φ is kept zero, deformations are only imposed by
rotation, which makes the configuration novel, since previously seen
concepts that use linear helical springs, were based on change of
distance between the clamping points. [11], [6], [29].

Figure 3: Schematic 2D representation (left) of the nonlinear spring attachment
within the parallelogram linkage. The attachment points (1 and 2) are aligned so
angle φ is zero. The angle α is 90◦ . The dotted line spring configuration, located
by φ 6= 0, is not used. The 3D partial view shows the spring before prestressing
(hatched) by length L, the prestressed spring having constant width (grey) and having
an arbitrarily varying width pattern (red).

In this paper however, the absolute distance d is not changed over
rotation because φ = 0. Loading of the spring therefore only occurs
as a result of a changing clamping orientation. Axial prestress is
imposed by displacement of the clamping points before the PPS is
attached to the parallelogram. The distance of prestress is described
by prestress ratio ζ, expressed as:

ζ =
d
L
=

L− h
L

(7)

where d is the absolute prestress distance (from point 0 to 1) and L
is the initial length of the spring (0 to 2), as indicated in figure 3. In
this paper, the distance h is kept constant. So a change in ζ is done
by a change in initial length L.

Attaching the outer ends of the beam to the links can be done in
three ways, as displayed in figure 4: Hinged-hinged, Hinged-Fixed
or Fixed-Fixed.

Hinged-Hinged - Since we keep the angle φ at zero, no change
in distance will occur between clamping points 1 and 2. Also no
moments can be exerted on the links so this configuration will store
no potential energy. A comparable case when φ would be nonzero
is elaborated by Stroo et al. [30].

Hinged-Fixed - In this configuration the reaction moment is ex-
erted only on one attachment point since the other is free to rotate.

Fixed-Fixed - When both outer ends are clamped to the links, both
ends will exert a moment on the links. Depending on the geometry
and prestress conditions the resulting moment can be defined.

Figure 4: From left to right three different attachment configurations of the spring
within a parallelogram. Hinged-Hinged configuration will apply no moment. Hinged-
Fixed results in one applied moment and Fixed-Fixed results in two applied moments.

For the second and third case, bi-stable behaviour can occur if
sufficient displacement is imposed. This behaviour can be used for
special load-displacement objectives but is for now not investigated
to simplify calculations. Therefore, displacements will be limited to
one stable domain during modelling and testing. The fixed-hinged
could do the job and could probably store more energy, but is not
selected, because it is not practical to create an additional hinge for
the spring. The fixed-fixed configuration is therefore selected.

3

Roel van Ekeren

By rotation of the parallelogram links (θ), the outer ends of the
plate spring will be rotated as well, resulting in reaction forces
and moments on the links. Elastic energy will be stored into the
beam. The sum of the reaction moments counteracts the imposed
forces on the parallelogram. The reaction forces on the outer ends
are cancelled throughout the geometry of the parallelogram as
displayed in figure 5.

Figure 5: Reaction forces on the spring are equal and opposite (FBD 1 on the left)
Reaction forces of spring cancel out within parallelogram (FBD 2 on the right).
Reaction moments are summed within parallelogram if M1 6= M2 and contribute to
a resulting moment.

Focusing on the spring itself, static equilibrium equations show
that only reaction moments will contribute to compensation of
system moments . Consider the free body diagram of the spring
from figure 5 on the left. Summing the forces in x-direction gives:

∑ Fx = 0→ V1x + V2x = 0 (8)

Summing the forces in y-direction gives:

∑ Fy = 0→ V1y + V2y = 0 (9)

Summing the moments around an arbitrarily chosen point 0 gives:

∑ M0 = 0→ M1 + M2 + V1x · (h− a) + V2x · a = 0 (10)

We can conclude that the forces V1x and V2x , should be equal
and opposite sign. The same holds for the forces V1y and V2y. The
moments will be counteracted by the forces in x-direction (V1x and
V2x) to maintain equilibrium. The resulting moment, the sum of
M1 and M2 which are not necessarily the same, can be prescribed
by changing the geometry or material of the spring.

2.3.2 Geometry and material of spring model

For a single non-spatial spring, its stiffness can be arbitrarily influ-
enced by varying one or more of the following variables over the
springs total length s: the initial curvature κ, the Young’s modulus
E, or the second moment of inertia I, which depends on the width
w and thickness t. For spatial problems the in-plane curvature and
thickness could also contribute to the beams stiffness.

In this research, the stiffness is chosen to vary over the length of
the spring by changing its width. The width is a practical parameter
for production purposes. Thickness and initial curvature variations
are difficult to produce with low tolerances, while a variation in
width could be done, if necessary, with high precision laser cutters.
The selected width variation makes this a semi-spatial problem,
because the spring can still be modelled in two dimensions, having
a single parameter varied over one dimension. The variation in
width makes the spring three dimensional, but can be modelled
as a stiffness parameter. This makes solving less expensive than a
normal spatial problem. The assumption is made that the variation
in width will not result in 3-dimensional stresses.

The goal is to find the specified width-shape over the beam length
L that will produce a desired moment output, the moment-objective.

This problem is constrained by the fact that the spring should have
a minimum and maximum width. Also the spring is not allowed
not exceed its yield strength σy. An example of the variables used
for the spring having a varying width is illustrated in figure 6.

Figure 6: Top view of half the spring with arbitrary width (w(s)) over its length. L
is the total non-prestressed length of the spring. The maximum and minimum width
is constrained by wmin and wmax .

The Bernoulli-Euler equation for the bending moment at any
point in the spring is used for modelling the geometry and is
expressed by:

M = EIκ (11)

where E is the Young’s modulus and curvature can be expressed
as the first derivative of the local beam angle:

κ = ds/dθ (12)

The second moment of inertia for a infinitesimal part of the
rectangular cross-section is expressed by the beams width w, and
thickness t:

I =
wt3

12
(13)

For practical reasons the material selected for this research is RVS
1.4310. This is a common spring material for industrial applications
with a high ultimate tensile strength (1500-1700 MPa) and does not
suffer from creep under normal temperatures.

In summary the following variables can be distinguished for
the design of the presented balancing concept using the nonlinear
spring. The conceptual constraints could be varied for other designs.

Table 1: List of design variables for the proposed spring mechanism.

Category Description Parameters This paper

Topology Nr of nonunique springs N 1
Nr of unique springs n 1

Geometry Initial Curvature κi 0
Width w(s) wmin < w < wmax
Thickness t > 0
Initial Length L > 0

Material RVS 1.4310

Boundary Attachment to parallelogram A fixed-fixed
conditions Clamp angle α 90◦

Prestress ratio ζ > 0

Imposed Rotation RI Rm ax > RI > 0
Imposed Translation TI 0 (φ = 0)

2.4. Design Method
The present section will explain how the PPS can be designed for
the desired load-displacement characteristic. The PPS in this paper
deals with large deflections, so standard equations relating small
deflection directly to the spring curvature do not hold. Furthermore,
the width of the PPS is not uniform so even more complex analytical
models dealing with large deflections can not be used directly [31]
[32] [33]. Therefore, a finite element program is used to solve
the imposed displacement and boundary conditions of the large-
displacement PPS. First, a short overview of the design process

4

Roel van Ekeren

will be discussed. Then, the finite element (FE) model set-up will
be described. By studying the constant-width PPS, guidelines are
given to parametrize the width shape of a non-constant-width PPS
to obtain a desired energy objective. The three characteristics from
the problem description in section 2 were devised and evaluated by
the FE model. Finally, a prototype will be presented that is used to
test the three springs and to validate the FE model.

2.4.1 Procedure for beam design

The procedure used to obtain the desired beam geometry for a
specified load-displacement objective can be generally described as
follows:

1. Select main geometry, boundary conditions and topology;

2. Select geometry parameter for the shape to be optimized;

3. Set initial conditions of the geometry parameter;

4. Calculate load-displacement function for the geometry param-
eter input;

5. Calculate error of evaluated load-displacement function to the
objective function;

6. Configure geometry inputs and iterate untill objective is satis-
fied;

The first and second step are already discussed in the previous
section. The following sections will describe how to find a proper
initial guess (step 3) for the geometry parameter to reduce optimiza-
tion costs. This paper does not discuss the particular optimization
routine and calculates only the initial step using the FE program.

2.4.2 Finite element model

The finite element package, ANSYS APDL,is used to calculate and
predict the complex PPS shape functions, displacements and result-
ing forces. A 2-dimensional 188 Bernoulli beam element type is
used for this model. In order to model width variations over the
length of the complete PPS, multiple 188 beam elements were con-
nected. Each element’s width is specified by a shape-vector scalar
S(i) as shown in equation 14. The FE model is then constructed as
displayed in figure 7. The thickness of the PPS is kept constant. No
initial curvature is applied.

S = [s(1)s(2)..s(n− 1)s(n)] (14)

Figure 7: Top view of the FE model, constructed by multiple 188 Bernoulli beam
elements. Every element’s width is specified by its corresponding shape-vector item.
The displayed shape is arbitrarily chosen for illustrative purpose.

The FE model is run using 100 elements and a minimum of 50 load
steps to make sure the model converged. The material parameters
used for the FE model are: density ρ = 7800 kg/m3, Young’s
Modulus E = 200 GPa, Poisson ratio ν = 0.29 and σyield= 1100
MPa. To simulate prestress and rotations within the parallelogram,
boundary conditions from figure 4a are used:

1. a small perturbation load, a moment on both ends having the
same sign, is applied to ensure buckling into the second mode
shape;

2. prestress is applied for a selected prestress ratio ζ;

3. the perturbation load is removed;

4. the outer ends are displaced by the same specified rotation
R = Rle f t = Rright;

A MATLAB script defines geometric parameters, runs an ANSYS
batch file, and the outputs generated by ANSYS are then loaded
and processed in MATLAB again.

2.4.3 Creating shape function

For a specific energy objective function, a corresponding width
shape has to be found. The main procedure in finding this width-
shape is explained here. By investigating a constant width beam
imposed by the described boundary conditions from section 2.3,
strain energy waves appear during deflection. The waves occur at
points of maximum curvature. Points of zero curvature are called
inflection points. The beam sections where peaks in curvature are
found, can be used to add or remove material with the goal to
reach a desired energy characteristic. From there, an optimization
procedure could be initiated to reduce the overall error between
the design and objective. First, a single FE model run is done for a
spring having uniform width. From this run, an energy diagram and
its curvatures were extracted. Figure 8 illustrates the normalized
curvature (by its maximum) for the undeformed (red) and deformed
(blue) situation. The spring is displaced on both ends by 1.6 radians.
The deflection shapes for the initial and final conditions are shown
on top, where incremental sub steps are displayed in grey. Strain
energy peaks occur at maximum deformation locations in the spring.
At deformation points where curvature reaches a local maximum
the derivative of the curvature is zero. During deformation the
inflection points will move. Since two inflection points appear in this
configuration, three energy peaks can be found in total. However,
at the initial and final conditions only two peaks are visible.

Figure 8: On top the shape function for initial (red) and final (blue) deformation of
the constant width spring. The black lines represent the sub steps. Below the absolute
curvature is plotted, normalized by its maximum. In the middle the energy waves for
the initial and final condition. Upon deformation strain energy peaks will displace
from left to right, caused by the curvature maxima. The inflection points are indicated
by the black dots corresponding to zero curvature and zero energy. Energy sections
(S1-S4) can be distinguished between the inflection points where curvatures from the
initial and final deformation conditions intersect.

Using the behaviour of the moving energy section, we can create
other cross-sections with different width patterns resulting in a
changed load-displacement characteristic. For springs with uniform
width, the total energy remains constant under current boundary

5

Roel van Ekeren

conditions. Springs having a different cross-section, however, yield
a slightly similar energy diagram, approaching roughly the uniform
width beam. Therefore a width pattern can be selected on basis of
the illustrated energy diagram from figure 10. Adding more material
to a certain section of the spring will increase its total strain energy if
that section is bended. The section bounds will vary when geometry
and boundary conditions are changed, meaning that peak stresses
can be located at different positions. A simple parametrisation for
the width of the spring is devised as illustrated in figure 9. The
boundaries where width of the beam varies, is described by a vector
q. The scalar values of q represent the normalized distance in %.

Figure 9: An arbitrary shape illustrates the spring geometry parameters that is used
for the simplified model. Three building blocks were used: wide rectangular block
(wmax), a narrow rectangular block (wmin) and a tapered block to connect the wide
with the narrow blocks. The length of the blocks are parametrized by q as a fraction
of the total length L.

Since we are interested in the three objectives (A, B and C) from
figure 2, three width shapes were constructed semi-arbitrarily, mean-
ing that intuition and a few iterations were done to approach the
energy objectives. Their geometry specifications can be found in
table 2. The model parameters are presented in table 3.

Table 2: Spring geometry specifications for the modelled and tested springs.

Spring Type Bounds

Spring A1 q = [22.7; 31.3; 45.5; 54.1; 68.1; 76.1]
Spring A2 q = [15.0; 25.0; 45.0; 55.0; 75.0; 85.0]
Spring B q = [31.8; 40.0; 59.0; 67.7]
Spring C q = [31.8; 40.0; 59.0; 67.7]

Table 3: Parameters used for the model and experiment. The prestress ratio and
imposed rotation are the only parameters which are varied for the other simulations.

Category Description Parameters Model input Unit

Geometry Width w(s) 30 < w < 60 mm
Thickness t 0.2 mm
Initial Length L 220 mm

Material Young’s Modulus E 200 GPa
Poisson ratio ν 0.29 [−]
Density ρ 7800 kg/m3

Yield strength σyield 1100 MPA

Boundary Clamp angle α 90 ◦
conditions Prestress ratio ζ 31.8 %

Imposed Rotation RI [-1 1] rad
Imposed Translation TI 0 m

The first objective is only increasing, so width is increased in
section S1 and S3. The second objective is initially decreasing and
halfway increasing. Therefore width is decreased in the middle,
halfway in section B until halfway between in section S3. The third
objective is exactly the opposite. Therefore, the width was increased
halfway section B and decreased halfway section S3, resulting in the
desired energy characteristic that is initially increasing and from
halfway decreasing. The final models are presented in figure 11.
The simulated spring shapes are most likely not unique solutions

Figure 10: On top three spring designs are presented parametrized by q. Below the
strain energy per element is plotted for a uniform width beam for the initial (red) and
final (blue) conditions. Sub-steps are indicated in grey. The boundaries are selected
where strain energies are equal for both initial and final deflection. The relevant
sections appear between the selected boundaries(A-D) for which material is added or
removed as guideline to influence the load-displacement objective.

for the energy characteristics. Other shapes can possibly be found
with similar characteristics. However, the method shows that proper
intuitive initial guesses can be made for shape optimization of
springs for at least three different load-displacement functions. The
three spring designs will be simulated for three different prestress
ratios: ζ = 20, 40 and 60 % to investigate to what level the objective
functions can be approximated.

Figure 11: Three different springs were simulated corresponding to the three objec-
tives (A, B and C) from the problem description. On top the total energy (normalized)
is calculated for the entire displacement. Below the initial and end energy distribution
in the beam is shown. On the bottom the spring’s shape functions are shown.

2.4.4 Prototype and experiment setup

A prototype was designed, constructed and tested to validate the
ANSYS model. The model consists of two arms and a connector,
made from 3D printed PLA. Deep groove ball bearings were used
to keep friction low at the four hinges.

6

Roel van Ekeren

Figure 12: Snapshot of the parallelogram test set-up prototype. The prototype is
made of PLA 3D-printed parts. SKF 306 bearings were used for reduction of friction.
Shoulder bolts were used for the pin connections in the hinges. A clamp mechanism
was designed to keep the springs in position during rotation. The springs are tested
for the range of θ1 to θ2. End-stops make sure the range is not violated.

The prototype is tested on a load-displacement stage, a PI stage
(M-505.4DG S/N 107054253). A linear DC motor can displace the
load cell in tiny steps of 10 µm with a total of 10.000 steps. The
experiment is done in 1200 steps, i.e. displacement intervals of 8.3
µ. The left arm’s pulling disc is connected by wire to the loadcell
(FUTEK 549178 10lbs). The right arm’s pulling disc is connected
by wire to additional measured mass of 0.322 kg. The mass was
provided to avoid measurements around zero. A clamp mechanism
holds the prestressed spring in position. By pulling the wire a
moment is exerted on the parallelogram arm resulting in rotation
around the hinges. During a single measurement, the force was
measured by the load cell over the range of motion backward and
forward. The turning point was marked with an endstop. For spring
A, C and the set-up this endstop was placed at 1.65 radians. For
spring B this endstop was placed at 1.55 radians.

Figure 13: Top view photograph of the test set-up. The parallelogram is clamped to
the ground. The linear motor pulls the left arm. Between the motor and the left arm,
a load cell measures the force. A conservative force, gravity acting on a weight, pulls
the right arm. The three different springs (A,B and C) are tested on this set-up.

3. Results

3.1. Simulations
Simulations were done for all spring types A,B and C, to investigate
how well the objectives can be reached by the presented method.
Three different prestress ratios ζ were simulated (20%, 40% and
60%) for the three spring types and plotted in figure 14. Based on
information from the three simulations, a fourth or fifth simulation
is done with slightly modified parameters to obtain an improved
result. Note that the simulations and objectives are normalized
by their maximum and as a consequence the maxima and minima
of simulations 5-12 are located at the initial and final point of the
simulated range of motion respectively. Except for simulation 10
where the FE model simulated a part of the post-buckling behaviour.

For each simulation the normalized root mean squared error (Ω)
between the simulated spring and the objective was calculated twice.
The first error,Ω1 was calculated for the complete range of motion
of the objective, π [rad]. The second, Ω2 was calculated for the
narrowed interval of [−0.5, 0.5] [rad]. All results are presented in
table 4. The best result for spring A is simulation 4 and shows Ω2 =
2.29%. The best result for spring B is simulation 9 and shows Ω2 =
3.04% and the best result for spring C is simulation 11 shows Ω2 =
2.21%.

For all simulations the strain energy density metric (SE) was
calculated, as well the absolute amount of energy stored in Joule.
However, only for the simulations of spring A, the gravity balancing
metric (GB) is calculated since spring A is the only result designed
for gravity balancing.

Focussing on spring type A, simulations 1-4, the intervals differ
because only positive moments are simulated. The intervals of
spring type B are simulated for almost the entire domain (3 rad.)
except for simulation 6 which converged only for a slightly smaller
interval (2.84 rad.). Simulations 8 and 9 are presented to show
that a better approximation reached for the smaller intervals of 2
radians. The last three simulations (10, 11 and 12) are simulated
with intervals smaller than 2 radians because larger intervals did
not converge.

For spring type A the simulation ζ = 60% is repeated with a
slightly modification for the spring shape parameter q to reach a
smaller error Ω. For spring type B the simulations of ζ = 60% and ζ
= 20% were repeated for the smaller interval of 2 radians because
an increase in performance was expected. The results show that
the smaller interval produce smaller errors and for simulation 9 a
higher strain energy density. Spring type C showed best results for
the prestress ratio of ζ = 40%.

3.2. Measurements
The goal of testing the prototype springs is to validate the FE model.
Twelve measurements were done on the previously described test
set-up. Three measurements were done for each spring (a total of 9)
and three measurements were done with the set-up only, measuring
the friction and additional weight to the setup. Results of the
measurements are presented in figure 15 and 16. The hysteresis loop
is clearly visible. Since every spring is tested three times, three blue
loops are slightly visible in the results. The mean of measurements,
taken from the three measurement sets per spring, is shown in
green. To identify the measured error, the set-up mass is subtracted
for all spring measurements (A, B and C) such that comparison is
improved. The moments simulated by the FE model are plotted in
red. The error between the measurements and the simulated model
is calculated and shown in black. Also the normalized root mean
squared error (Ω) is calculated between the measurements and the
simulated FE model. Finally, to show errors in the set-up, the mass
was subtracted from the set-up measurement and shown in blue in
figure 16b.

4. Discussion

The presented method seems fast and effective to approximate
shapes that can be used as initial guesses for structural shape opti-
mization. The method uses the behaviour of a uniform width PPS to
predict strain energy in non-constant width PPS. This implies that

7

Roel van Ekeren

Table 4: Results calculated by the ANSYS model based on spring A1 and A2, BandC. The normalized root mean squared error (Ω), Range of motion (ROM), strain energy
density ratio (SE), Gravity balancing metric(GB) and the energy stored in the spring (ES). Higher prestress ratios result in smaller errors larger ROM’s for spring A. Ω1 is the
error calculated for the entire ROM. Ω2 is calculated for a narrowed ROM = [-0.5 0.5] rad. For spring B and C a specific range of motion is to be selected to decrease the error.

Simulation Type ζ Ω1 Ω2 Simulated ROM Energy Stored Metric SE Metric GB
[%] [%] [%] [rad] [J] [%] [%]

1 A1 20 31.94 21.31 1.25 0.103 9.07 23.33
2 A1 40 22.27 7.36 1.84 0.171 6.87 25.07
3 A1 60 12.89 6.59 2.36 0.191 4.60 50.35
4 A2 60 11.63 2.29 2.36 0.179 4.48 54.18

5 B 20 39.79 22.91 3 0.278 19.03
6 B 40 7.75 6.88 2.84 0.122 4.08
7 B 60 10.73 8.37 3 0.094 1.87
8 B 60 4.83 3.04 2 0.094 1.88
9 B 20 3.04 3.04 2 0.067 4.89

10 C 20 22.51 4.25 2 0.046 4.72
11 C 40 7.39 2.21 1.6 0.187 9.68
12 C 60 6.04 5.03 1.8 0.216 7.46

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

ROM [rad]

0

0.2

0.4

0.6

0.8

1

M
o
m

e
n
t
(n

o
rm

a
lis

e
d
)

[-
]

Sim 1: = 20%

Sim 2: = 40%

Sim 3: = 60%

Sim 4: = 60%

objective

(a) Spring type A

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

ROM [rad]

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

M
o
m

e
n
t
(n

o
rm

a
lis

e
d
)

[-
]

Sim 5: = 20%

Sim 6: = 40%

Sim 7: = 60%

Sim 8: = 60%

Sim 9: = 20%

objective

(b) Spring type B

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

ROM [rad]

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

M
o
m

e
n
t
(n

o
rm

a
lis

e
d
)

[-
]

Sim 10: = 20%

Sim 11: = 40%

Sim 12: = 60%

objective

(c) Spring type C

Figure 14: Three spring types simulated in comparison with the objective function. The graphs show the normalized moment along the range of motion of rotation in rad. The
spring types are simulated for three different prestress ratios ζ = 20%, 40% and 60%. The narrowed interval for a range of motion [0.5 0.5] rad is indicated with the black dotted
lines.

the method is not perfect and can result in incorrect predictions for
more complex load-displacement functions. Therefore, the method
is particularly useful for predicting the rough shape of the PPS as
approximate to the load-displacement function. The design method
has a limited applicability, because it uses the boundary conditions
of a parallelogram. Although these boundary conditions appear in
other situations as well, there are boundary conditions for which
the method cannot be used. Nevertheless, the presented mechan-
ical concept shows that at least three different load-displacement
functions can be realised, where two of three exploit the buckling
behaviour to generate negative stiffness for a significant range of
motion. Creating negative stiffness is a challenging objective for the
design of spring mechanisms. Therefore, letting the load displace-
ment characteristic follow a specifically designed load-displacement
function, of which a large part has a negative stiffness, is a valuable
finding.

4.1. Simulations

The simulations from figure 14 show good approximations of the
objective within the selected interval of [−0.5, 0.5] rad. With the
error of Ω = 2.29%, simulation 4 showed the best result. Outside
the interval the simulations diverge rapidly from their objective.
Focussing on the first four simulations, the increase of a larger
prestress distance (higher prestress ratio ζ) leads to better approxi-
mations of the objective, because the range of motion is increased.
However, by increasing prestress ratio ζ (and so the total length
of the PPS) the characteristic does not remain the same. Slight
modifications in spring shape parameter q compensate this, leading
to a smaller error Ω in simulation 4. Although Ω is decreased, the
gravity balancing metric (GB) increases, meaning that a larger part
of the springs energy is lost to it’s own mass. For higher prestress

ratios the SE shows a lower efficiency. This could be explained by
the fact that a higher prestress ratio (and therefore a larger initial
volume) results in larger differences between the stress peaks and
zones with lower stresses. Also, the zones with lower stresses are
relatively larger. Therefore, a lower fraction of the PPS is maximally
used for storing energy.

Simulation 5 stands out from the other simulations with spring
type B, because a clear discrete stiffness transition is visible. The
spring, having a prestress ratio of only ζ = 20% shows a stable
equilibrium halfway the displacement. The required moment is
dramatically increased, because further deflection is constrained
by the length of the spring. A fraction of the spring is from this
point also axially strained. Therefore, a much higher SE metric can
be observed for simulation 5. This effect is also slightly visible in
simulation 9, having the same prestress ratio as simulation 5, but a
smaller range of motion. In fact, this simulation is a cropped version
of simulation 5 and since the moment is normalized, it results in a
better approximation of the objective. For the other simulations this
effect appears to exist as well, but since the prestress is different,
the region of smaller stiffness is increased. An optimization could
be performed using the found rough shape as initial condition to
find the exact shape that will fit the load-displacement objective.

4.2. Measurements

The measurements satisfy the expected and modelled results. The
characteristics are qualitatively the same as the modelled springs
in ANSYS, although the error between the ANSYS model and the
measurements is significant and not the same for every spring ele-
ment. The possibility exists that errors are caused by elasticity or
inaccuracies in the printed PLA, although the springs were lasercut-
ted from the same sheet of spring steel. The thickness tolerance of

8

Roel van Ekeren

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

Rotation [rad]

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2
M

o
m

e
n

t
[N

m
]

Spring A - Positive-Negative Stiffness

Measurements

ANSYS

Measurements Mean

Error

(a) Ω = 0.078

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

Rotation [rad]

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

M
o

m
e

n
t

[N
m

]

Spring B - Positive Stiffness

Measurements

ANSYS

Measurements Mean

Error

(b) Ω = 0.107

Figure 15: Measurement and model data for spring A having both positive and negative stiffness and for spring B having positive stiffness. Ω is calculated where Mn is the
measurement and mn is the model.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

Rotation [rad]

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

M
o

m
e

n
t

[N
m

]

Spring C - Negative Stiffness

Measurements

ANSYS

Measurements Mean

Error

(a) Ω = 0.021

-1.8 -1.6 -1.4 -1.2 -1 -0.8 -0.6 -0.4 -0.2 0

Rotation [rad]

0

0.05

0.1

0.15

M
o

m
e

n
t

[N
m

]

SETUP

setup without weight

setup mean without weight

setup

setup mean

(b)

Figure 16: Measurement and model data for spring C having negative stiffness in (a) and measurement data of the individual setup to evaluate the hysteresis in (b). Ω is
calculated where Mn is the measurement and mn is the model.

the sheet according to supplier Jeveka is 3%. The E-modulus is not
measured but is assumed to maximally vary 5% within the sheet.
The difference in width between the model and the cut sheet is 0.2
mm, giving a maximum width error of 0.6% on both sides. Adding
the tolerances would lead to significant maximum error of 8.6%.
A realistic measure is to take the root of the sum of the squared
tolerances which results in an error of 5.6%. However, for some mea-
surements the error is larger than 10%, so the difference is unlikely
to be explained by the inaccuracies of production only. Another
possible source for the model differences is the method of clamping
the spring to the parallelogram. Errors could occur by clamping the
spring not perfectly perpendicular to the plane of the parallelogram,
causing complex out of plane bending. After inspection the axle
of one parallelogram arm was indeed not perfectly perpendicular.
The deviation of the angle was only 1 degree, but this could already
have large consequences on the load-displacements. Both the in-
accuracies in the parallelogram arm, and possibly a small bearing
misalignment could cause the friction variation that is found in the
set-up measurements.

4.3. Gravity balancing case

If tuned properly, the load-displacement characteristic obtained by
spring A (15a), can be used for gravity balancing. As a first result
a spring is designed by simulation 4 for a ROM of [−0.5, 0.5] rad
having Ω = 2.48%. The performance is calculated by the metric
GB shown in table 4. For the spring from simulation 4, 54% of the

energy that is stored is lost to balance its own weight, assuming that
the spring is located in the middle of the parallelogram. Moving
the spring toward the hinge results in smaller moment exerted by
the spring itself, so less energy is lost to its own weight. For smaller
prestress ratios the performance is better: a smaller percentage of
the spring energy is lost to balancing its own weight. However, the
errors are significantly higher for smaller prestress ratios, so spring
balancers with 20% - 40% prestress ratios would not be feasible.
The strain energy metric shows that only 2-5 % of the material is
used to store energy. For normal helical springs this number is 50%,
which is almost ten times higher [34]. The energy capacity of the
presented spring system could potentially be increased by using
multiple springs in parallel, stacked together, if the deflections are
not excessive. Besides that, also the overall width parameter can be
increased, or the entire system could be scaled to reach the desired
amount of energy.

5. Conclusion

A novel mechanical concept is presented where prestressed non-
linear springs are used to synthesise distinct load-displacement
characteristics for parallelogram linkages. An easy-to-use intuitive
method is described for the design of nonlinear springs constrained
by the boundary conditions of the parallelogram. The width param-
eter can be manipulated to specify the stiffness of the spring at any
location along the length to approximate at least three important

9

Roel van Ekeren

load-displacement characteristics. The presented implementation
of nonlinear springs with the used boundary conditions is novel
and not found earlier in literature. Three different springs were de-
signed, prototyped and compared to their objective function. Based
on this intuitive guess the model showed an NMSE with respect to
the objective functions of 2.29%, 3.04% and 2.21% respectively, for
the selected interval of [-0.5 0.5] rad. Both model and measurements
show load-displacement characteristics as expected. The model
is validated and shows a good match with the measurements: Ω
= 0.083;0.149 and 0.087 for the three springs respectively. The re-
sult of one modelled spring load-displacement characteristic can
potentially be used for gravity balancing.

References

[1] Wilcox, D. L. and Howell, L. L., 2005, “Fully Compliant Tensural Bistable
Micromechanisms (FTBM),” Journal of microelectromechanical systems,
14(6), pp. 1223–1235.

[2] Hao, G. and Li, H., 2015, “Nonlinear Analytical Modeling and Char-
acteristic Analysis of a Class of Compound Multibeam Parallelogram
Mechanisms,” Journal of Mechanisms and Robotics, 7(4), p. 041016.

[3] Arakelian, V. and Ghazaryan, S., 2008, “Improvement of balancing
accuracy of robotic systems: Application to leg orthosis for rehabilitation
devices,” Mechanism and Machine Theory, 43(5), pp. 565–575.

[4] van Dam, T., Lambert, P., and Herder, J. L., 2011, “Static Balancing of
Translational Parallel Mechanisms,” 35th Mechanisms and Robotics Confer-
ence, Parts A and B (Vol. 6), pp. 883–889, doi:10.1115/DETC2011-47525,
http://proceedings.asmedigitalcollection.asme.org/

proceeding.aspx?articleid=1641019

[5] Briot, S. and Arakelian, V., 2015, “A New Energy-free Gravity-
compensation Adaptive System for Balancing of 4-DOF Robot Manipu-
lators with Variable Payloads,” Proceedings of the 14th IFToMM World
Congress, pp. 179–187.

[6] Herder, J. L., 2001, “Energy-free systems: theory, concep-
tion, and design of statically balanced spring mechanisms,”
Ph.D. thesis, Delft University of Technology, doi:10.13140/RG.
2.1.3942.8966, http://repository.tudelft.nl/view/ir/uuid:

8c4240fb-0315-462a-8b3b-efbd0f0e68b6/

[7] Hoetmer, K., Woo, G., Kim, C., and Herder, J., 2010, “Negative Stiffness
Building Blocks for Statically Balanced Compliant Mechanisms: Design
and Testing,” Journal of Mechanisms and Robotics, 2(4), p. 041007.

[8] Tolman, K. A., Merriam, E. G., and Howell, L. L., 2016, “Compliant
constant-force linear-motion mechanism,” Mechanism and Machine
Theory, 106, pp. 68–79.

[9] Cleary, J. and Su, H.-J., 2015, “Modeling and Experimental Validation
of Actuating a Bistable Buckled Beam Via Moment Input,” Journal of
Applied Mechanics, 82(5), p. 051005.

[10] Radaelli, G., 2017, “Synthesis of mechanisms with prescribed elastic
load-displacement characteristics,” Ph.D. thesis, Delft University of Tech-
nology, doi:10.4233/uuid.

[11] French, M. J. and Widden, M. B., 2000, “The spring-and-lever balancing
mechanism, George Carwardine and the Anglepoise lamp,” Proceedings
of the Institution of Mechanical Engineers, Part C: Journal of Mechanical
Engineering Science, 214(3), pp. 501–508.

[12] Carwardine, G., 1935, “Improvements in Equipoising Mechanism,” .

[13] Rahman, T., Ramanathan, R., Seliktar, R., and Harwin, W., 1995, “A
Simple Technique to Passively Gravity-Balance Articulated Mechanisms,”
Journal of Mechanical Design, 117(4), p. 655.

[14] Radaelli, G., Buskermolen, R., Barents, R., and Herder, J. L., 2017, “Static
balancing of an inverted pendulum with prestressed torsion bars,” Mech-
anism and Machine Theory, 108(July 2016), pp. 14–26.

[15] Bijlsma, B. G., Radaelli, G., and Herder, J. L., 2017, “Design of a Compact
Gravity Equilibrator With an Unlimited Range of Motion,” Journal of
Mechanisms and Robotics, 9(6), p. 061003.

[16] Radaelli, G. and Intespring, B. V., 2011, “An energy approach to the
design of single degree of freedom gravity balancers with compliant
joints,” Proceedings of the ASME 2011 International Design Engineering
Technical Conferences & Computers and Information in Engineering Conference
IDETC/CIE 2011, ASME, Washington DC.

[17] Jutte, C. V. and Kota, S., 2008, “Design of Nonlinear Springs for Pre-
scribed Load-Displacement Functions,” Journal of Mechanical Design,
130, arXiv:1011.1669v3.

[18] Nair Prakashah, H. and Zhou, H., 2016, “Synthesis of Constant Torque
Compliant Mechanisms,” Journal of Mechanisms and Robotics, 8(6), p.
064503.

[19] Hou, C. W. and Lan, C. C., 2013, “Functional joint mechanisms with
constant-torque outputs,” Mechanism and Machine Theory, 62, pp. 166–
181.

[20] Wang, J.-Y. and Lan, C.-C., 2014, “A Constant-Force Compliant Gripper
for Handling Objects of Various Sizes,” Journal of Mechanical Design,
136(7), p. 071008.

[21] Rahman, M. U. and Zhou, H., 2014, “Design of Constant Force Compliant
Mechanisms,” Internatial Journal of Engineering Research & Technology,
3(7), pp. 14–19.

[22] Chen, Y.-H. and Lan, C.-C., 2012, “An Adjustable Constant-Force Mech-
anism for Adaptive End-Effector Operations,” Journal of Mechanical
Design, 134(3), p. 031005.

[23] Radaelli, G. and Herder, J. L., 2014, “Isogeometric Shape Op-
timization for Compliant Mechanisms With Prescribed Load
Paths,” Proceedings of the ASME 2014 International Design En-
gineering Technical Conferences & Computers and Information in
Engineering Conference, doi:10.1115/DETC2014-35373, http:

//proceedings.asmedigitalcollection.asme.org/proceeding.

aspx?doi=10.1115/DETC2014-35373

[24] Radaelli, G. and Herder, J. L., 2016, “A monolithic compliant large-range
gravity balancer,” Mechanism and Machine Theory, 102, pp. 55–67.

[25] van Eijk, J. and Dijksman, J. F., 1979, “Plate spring mechanism with
constant negative stiffness,” Mechanism and Machine Theory, 14(1), pp.
1–9.

[26] Berntsen, L., Gosenshuis, D., and Herder, J., 2014, “Design Of A Com-
pliant Monolithic Internally Statically Balanced Four-Bar Mechanism,”
Proceedings of the ASME 2014 International Design Engineering Techni-
cal Conferences & Computers and Information in Engineering Conference
IDETC/CIE 2014, Buffalo.

[27] Merriam, E. G., Colton, M., Magleby, S., and Howell, L. L., 2013,
“The Design of a Fully Compliant Statically Balanced Mecha-
nism,” Proceedings of ASME 2013 International Design Engineer-
ing Technical Conferences & Computers and Information in Engi-
neering Conference, August, doi:10.1115/DETC2013-13142, http:

//proceedings.asmedigitalcollection.asme.org/proceeding.

aspx?doi=10.1115/DETC2013-13142

[28] Krishnan, G., Kim, C., and Kota, S., 2012, “A Metric to Evaluate and
Synthesize Distributed Compliant Mechanisms,” Journal of Mechanical
Design, 135(1), p. 011004.

[29] Cardoso, L. F., TomaÌĄzio, S., and Herder, J. L., 2002, “Conceptual Design
of a Passive Arm Orthosis,” 27th Biennial Mechanisms and Robotics
Conference, 5(January), pp. 747–756, arXiv:1011.1669v3.

[30] Stroo, J., 2014, “Feasibility Study of a Balanced Upper Arm Orthosis
based on Bending Beams,” Tech. rep., Delft University of Technology.

[31] Holst, G. L., Teichert, G. H., and Jensen, B. D., 2011, “Modeling and
Experiments of Buckling Modes and Deflection of Fixed-Guided Beams
in Compliant Mechanisms,” Journal of Mechanical Design, 133(5), p.
051002.

[32] Zhao, J., Jia, J., He, X., and Wang, H., 2008, “Post-buckling and Snap-
Through Behavior of Inclined Slender Beams,” Journal of Applied Me-
chanics, 75(4), p. 041020.

[33] Howell, L. L. S. P. M., 2013, Handbook of Compliant Mechanisms, John
Wiley & Sons, West Sussex.

[34] Cool, J., 1987, Werktuigkundige systemen, 3rd ed., Delftse Uitgevers
Maatschappij.

10

4
DISCUSSION

This section discusses first the literature review from chapter 2. Next, the thesis paper from chapter 3 is
discussed. The discussion here is presented more elaborately, but may have overlap with the discussions in
the papers.

4.1. LITERATURE REVIEW
The presented classification and metrics in the literature review can be used to identify the accuracy, range
of motion and compactness of a spring force mechanism. Two metrics were presented that quantify the per-
formance of the mechanism on error and range of motion. The other metrics quantify a spring mechanism
on compactness. By classification of a system in one of the presented classes, it can make designers aware
of the possible volume losses in the mechanism. The prototypes from literature however, were designed for
the proof of concept, in stead of compactness, so the presented list does not represent the true compactness
of these concepts for industrial applications. Nevertheless, the list can serve as inspiration for new oppor-
tunities in the design of more compact spring force generators. Volume loss was considered high for the
class with multiple springs and transmission. The possibility exists to use space from the spring unit cell for
stacking. Moreover, the literature review was a starting point to investigate stacking possibilities of nonlin-
ear plate springs. In contrast to the conventional helical spring, a plate spring stores relatively less energy
per unit volume. But, if plate springs are properly stacked, they can provide possibly more energy per unit
volume because conventional springs lose also space to their unit volume inside the coil. In this research it
appeared that, for the application of gravity balancing and the imposed boundary conditions of the paral-
lelogram, stacking of springs in parallel without contact, becomes very complicated. No feasible option was
found for a significant range of motion. Therefore, the focus was set on the design of single unique springs
with different load-displacement characteristics for the parallelogram linkage. Nevertheless, stacking is still
possible for mechanisms with small displacements. It is left for future research to find out for what conditions
stacking of nonlinear plate springs is suitable.

4.2. THESIS PAPER
The discussion of the paper is divided into four sections. The first is a general discussion about the presented
method. The second section discusses the parameters and boundary conditions that were used to constrain
the problem. Subsequently simulations from the model are discussed in more general terms than in the paper
and finally a discussion on the application of gravity balancing is presented.

4.2.1. METHOD FOR LOAD-DISPLACEMENT CHARACTERISTICS

The method explained in the paper can be used to design at least three distinct load-displacement charac-
teristics for nonlinear plate springs that are implemented in a parallelogram. It can also be used for other
applications with similar boundary conditions, a few examples of possible applications are presented in ap-
pendix A.6.1. The method uses results from an uniform width plate spring to predict load-displacement
functions for non-uniform width springs. This implies that the method is not perfect and can result in incor-
rect predictions. Furthermore, the method only predicts very rough load-displacement characteristics. The

25

26 4. DISCUSSION

three findings are: negative stiffness curve, positive stiffness curve and a curve having both negative and pos-
itive stiffness. Other general characteristics that are interesting to reach are: constant force curves or curves
that demonstrate more combinations of negative and positive stiffness. A mechanism that exhibits negative
stiffness is normally seen as challenging, so the found negative stiffness curves seem to be already a valuable
result that can be used for instance to statically balance elastic forces in compliant mechanisms. The results
from the paper show that the negative stiffness region of the spring is relative large, and can be increased by
enlarging the prestress distance. However, larger prestress distances also result in more volume occupation
by the spring. This is more elaborately discussed in the last section 4.2.4. Furthermore, the possibility exists to
combine both negative and positive springs by superposition to create a zero-stiffness mechanism, having a
constant force output. It is also observed that this mechanism can demonstrate bi-stability. This can be used
for a range of different applications, although the focus in this paper was not on the synthesis of bi-stable
behaviour.

4.2.2. PARAMETERS AND BOUNDARY CONDITIONS
Many decisions are made for selecting the geometry and boundary conditions to constrain the problem. The
width parameter was selected as key parameter to influence the load-displacement characteristic, because of
practical advantages in fabrication. Variations in curvature and thickness are relatively more challenging to
manufacture with low tolerances. Also the clamp angle α and the orientation angle φ (figure 3, paper) can be
varied. Furthermore, the hinge-fixed boundary condition could be exploited in order to increase the output
moment on the parallelogram. By clamping the outer ends of the spring reaction moments are counteracted,
thereby lowering the effective moment exerted on the parallelogram. In the configurations of a hinged-fixed
design, the entire internal moment is exerted on the parallelogram resulting in higher forces with respect
to the fixed-fixed configuration. However, implementation of a hinge is challenging and can be a source to
new problems. If chosen for a hinged configuration, for example a lumped compliant hinge can be used.
Opportunities for alternative designs can be found in variations of these boundary conditions. More about
this can be found in appendix A.6.1 and A.1.

4.2.3. SIMULATIONS
The simulations showed that for three objectives a sufficient match can be reached. Also other simulations
are run for different blocked shapes. Output from these simulations is presented in appendix A.8. For the sim-
ulation it was chosen to investigate only blocked shapes to simplify the problem. As a consequence, results
from this simplification can be slightly unrealistic for transition zones between narrow and wider widths.

Better predictions can be done if more information is known about the influence of the ratio between
the maximum and minimum local width rw = wmi n/wmax and how the variation in width influences the
curvature globally. For now the rw was set on 0.5 along the entire beam. Also a small ramp was added to
avoid extreme stress concentrations at the transition zones. An alternative is to keep a uniform width for the
spring and perforate the parts continuously on spots where less material is required. More detail about this
idea is explained in in appendix A.6.2.

It is evaluated that for a constant-width spring, the effective moment exerted on the parallelogram is
effectively zero, because the reaction moments are opposing (appendix A.8). The reaction moment on an
outer end of the spring can be reduced by varying the width along the spring length. Focussing on the strain
energy in the spring, three waves can be distinguished. (figure 8, paper). The first wave is initially outside
the beam and flows in from the left when the beam is deflected. The second wave, almost halfway, flows
from S2 to S3. The third wave on the right outer end (S4) flows outside the beam. The difference between
minimum and maximum total energy stored in the spring can be increased by using all waves. Furthermore,
the energy wave is distributed over a certain domain of the spring. The shape of this distribution, together
with the displacement rate of the wave, determine the global energy-displacement function of the spring.
More insight in these complexities can bring new ideas for the design of new load-displacement functions.

4.2.4. GRAVITY BALANCING
The paper showed that a simulation approximated the gravity balancing objective with a normalized root
mean squared error of Ω = 2.29 for the range of motion of [π/2−0.5; π/2−0.5] rad, and a prestress ratio of
ζ= 60%. This is a relatively low error over a significant range of motion. The prestress ratio is however quite
large and as a consequence the spring occupies more volume than expected. Therefore, stacking springs in
parallel is compromised by the prestress ratio. The prestress ratio ζ appears to be an important parameter,
influencing the range of motion and occupied volume of the mechanism. For example, if a higher prestress

4.2. THESIS PAPER 27

ratio is applied, the range of motion is enlarged. However, a larger prestress ratio increases spring occupancy
volume as well, which is for some cases not desired. Another consequence is the fast decrease of stack-ability
of springs, resulting in lower total energy capacity of the mechanism. As a rough guideline, springs can be
stacked next to each other if the prestress ratio is low (< 20%) and the range of motion is sufficiently small
(< 0.5 radians).

For the application of gravity balancing it is required that the spring mechanism has sufficient energy
capacity to compensate the force exerted by the mass. Furthermore, a minimum prestress ratio is required
for the spring to be able to approximate the balancing objective accurately. Since the springs are not stackable
for prestress ratios larger than 20%, and a single spring is only able to balance two times its own weight, (GB
= 54% in paper, table 4) this mechanism is not very suitable. Another factor that makes the presented spring
configuration not suitable for gravity balancing is the maximum allowable stress of the spring. In this research
the maximum allowable stress is the yield strength. In practice the value for the yield strength is scaled down
by a risk factor. On the other hand, energy capacity could be increased independently from the yield strength
by scaling the width, or by scaling the entire spring, thus by scaling the length together with the thickness.

5
CONCLUSION

The overall goal of the thesis was divided into two parts: the first goal was to provide an overview of the
volume occupancy of spring based force compensation mechanisms in literature. The second goals was to
investigate the implementation of nonlinear spring in parallelogram linkages for the design of force compen-
sation mechanisms. The following conclusions can be drawn from the research.

5.1. LITERATURE
The literature review shows a classification in four groups of existing force compensation mechanism proto-
types from literature. Groups are formed on basic components from the mechanisms: single spring, multiple
springs and a transmission or combinations. The classification gives insight on what component level of vol-
ume occupancy improvements can be made. Furthermore, four metrics were presented and used to compare
literature on accuracy, range of motion, energy density and volume efficiency. For all analysed mechanisms
the volume efficiency is below 3% of the total mechanism volume, which is mainly explained by the fact that
literature prototypes are not designed for compactness. Nevertheless, the presented overview that shows the
compactness of these systems can be a starting point to compare and future designs.

5.2. PAPER
The paper presents a mechanical design using prestressed nonlinear plate springs in parallelogram linkages.
Boundary conditions of a parallelogram were exploited to impose end rotations on nonlinear springs, which
is not earlier seen in literature. The presented method is another step in the understanding of nonlinear
springs for designers and future researchers. Three distinct load-displacement characteristics were generated
by three spring shapes based on the presented method. The shapes can serve as initial condition for shape
optimization methods tot reach smaller errors for the objectives. Moreover, a significant negative stiffness
range can be created. For one spring type simulations show that this negative stiffness range was already
more than 1 radians, by using a prestress ratio ζ = 60%. This could be enlarged by increasing the prestress
ratio ζ. This ratio is an important parameter that influences applicable range of motion. It also influences
the stacking density of spring in parallel. A FE model is used to simulate the springs and is validated using a
prototype for three different springs. The presented mechanical concept can be used for the application of
gravity balancing but is in this stage not a better alternative with respect to conventional methods. Regarding
the energy capacity of the spring a more suitable application is to counteract elastic forces of parallelograms
with lumped compliant hinges.

5.3. APPENDICES
Finally several conclusions regarding the appendices can be drawn:

• The volume occupancy of a maximally stretched conventional helical spring with a spring index of 4
is 30%. Since only 50% of the material is maximally utilized, only 15% of the occupied volume is used
for strain energy. This number can serve as an incentive to investigate more efficient methods to store
potential energy. This calculation is presented in appendix B.3.

29

30 5. CONCLUSION

• A list of possible options is presented for adjusting a nonlinear plate spring to new payloads or other
load-displacement functions. The list is most likely not complete.

• A list is presented in appendix A.4 that compares possible spring materials on three properties. Based
on these properties a suitable material can be selected.

• Several ideas are presented in appendix A.6 showing that the boundary conditions of the parallellogram
can also be found in other applications. Also different options are presented for the implementation of
a width pattern.

• A GUI is programmed and presented in appendix A.7 to analyse properties of large deflections of non-
linear springs.

• An overview is provided in appendix A.5 that shows energy storage efficiency for different types spring
shapes and load types.

• Simulations were run for all unique combinations of block-shapes consisting of four blocks, presented
in appendix A.8. The simulations shows that with simple building blocks already distinct load-displacement
characteristics can be generated. It can serve as a start for a ’building block’ library. Furthermore, it can
be seen from the simulations that similarities in load-displacement characteristics appear by compa-
rable shapes.

• Another small study in appendix B.4 shows that 216 options are available to create three degrees of
freedom for the example of an end effector of a microscope support. This number can be reduced to ()
feasible options, based on the stated assumptions.

• The study presented in B.2 shows that the spring model with outer end rotations can be converted to a
fixed guided beam problem, frequently seen in literature [9]. It also shows analytic equations that are
valid to calculate uniform width beams for large displacements.

6
RECOMMENDATIONS

Reflecting on the work done, the following recommendations can be considered. The recommendations are
divided into three categories: the first category includes possible improvements on the model. The second
category involves recommendations on the prototype and measurements. The final category discusses op-
portunities for future work related to this thesis. At last a short vision for future development is addressed.

6.1. IMPROVEMENTS ON MODEL
• The spring is now modelled with discrete width shapes. As a consequence stresses can accumulate

at corners. Moreover, transitions from small to wider widths are modelled as it was a uniform beam,
meaning that from one element to the other, the full moment is transferred in the model. In reality, the
moment is transferred over the smallest cross-section, resulting in zero stress at the outer corner of the
larger element, and additional stresses at the transition zone between the two elements. A smoother
variation in width is therefore preferred.

• The model could be extended by an optimization program to find the exact fit to the objective curve.
For the optimization it is important to choose the right parameters. The parameters that are now of
interest are: the prestress ratio ζ, the building block distances q, and the maximum and minimum
widths. However the width can also be defined as a continuous parameter instead of a prescribed
minimum and maximum. A spline-based optimization would therefore be more suitable. Spline-based
optimizations are for example performed by Radaelli [10].

• Constant parameter in the model, are the clamp angle α and the orientation angle φ, could be varied.
The parameters influence the spring behaviour and can possibly be used for other load-displacement
functions. However, incorporating these parameters into the model is at the expense of computational
cost.

• This study is done using a FE model. Analytic solutions to this problem could provide insight to the
complexities and open possibilities to new load-displacement characteristics.

• A sensitivity analysis can be performed to find out what parameters have more priority. For example,
to find out the influence of an error in the clamp angle α several runs can be compared. The result can
be used to find out what influence the calculated error difference from appendix A.11 is on the output.
Other important parameters to check are: prestress ration ζ, orientation angle φ, thickness t and width
w .

6.2. PROTOTYPE AND MEASUREMENTS
• It is highly recommended to focus on correct alignment in future setups. Improvements on this set-up

could be made by ensuring a perfect alignment of the spring with the parallelogram and the ground’s
surface.

• Clamping the spring with the right angle and distance is challenging and quickly lead to errors in the
output. Improvements are possible on the current implementation, since the possibility exists that the

31

32 6. RECOMMENDATIONS

clamp blocks can differ in distance for about a maximum of 1 mm. This is shown in detail in appendix
A.9.

• Since pulley disk and wire arrangements can lead to errors, a more accurate approach would be to use
a torque-displacement sensor directly on the axle.

• Instead of clamping end-stops to the stage, incorporating end-stops in the mechanism design could
increase the accuracy for the initial and final angle.

• In future designs it can be considered to incorporate compliant hinges. However, the elastic forces from
these hinges should be accounted for.

6.3. OPPORTUNITIES FOR FUTURE WORK
The following topics can serve as opportunities for future research.

• In the paper from chapter 3 the main focus was on the design of a load-displacement characteristic
generated by a single spring. Multiple springs were initially not considered. The implementation of
multiple different springs could bring opportunities in the design of more unique load-displacement
characteristics in the form of superposition when springs are positioned in parallel in the mechanism.

• Next to the use of multiple different springs, it is also interesting to research how shapes can be stacked
in parallel to optimize the space inside the mechanism. Much space is lost due to the curved pre-
stressed shape of the spring. If springs could be stacked efficiently, the energy capacity of the mech-
anism could be increased significantly. Moreover, an overview of the conditions that enable stacking
for nonlinear springs could be valuable for designers for example to know which shapes and boundary
conditions are suitable for stacking of springs, and which are not.

• The spring is assumed to have both outer ends clamped. It was noted in the paper that a hinged-
clamped configuration could be feasible. The hinged-clamped configuration is probably less stable,
but can be exploited for bi-stable applications.

• A small study was done to find out what load-displacement functions were obtained for different build-
ing blocks. The building blocks were based on a discrete width variation with four blocks as shown in
appendix A.8. From this study already arise various load-displacement curves. This study can also be
conducted using five or more blocks. However, by increasing the number of blocks, the number of op-
tions increase as well. The results from such studies can also form a library to gain insight for the design
of load-displacement characteristics.

• A related topic to the design of load-displacement characteristics is the analysis of stability of the spring.
The considered spring design was analyzed in its stable region. However, for larger displacements bi-
stability occurs. This bi-stable behaviour could be exploited but can also be avoided. In either case it
is important to know in which situations and regions the spring is stable or unstable. Having a model
that specifies stability properties of the designed beam allows the designer to predict the applicability
of the spring.

• The boundary conditions of the parallelogram were used to displace the outer ends of the spring. These
imposed rotations can be found in other applications as well, as can be seen in appendix A.6.1. More
research can be done on what applications are suitable for which kind of load-displacement functions.
The load-displacement characteristics can then be generated by the design method and optimization
models.

6.4. VISION
The idea of using nonlinear springs in parallelogram linkages is potentially a solution for optimizing the en-
ergy density in a parallelogram. If springs are properly shaped and stacked, the parallelogram can be filled
with springs in parallel. The research showed that this is complicated because of the shape of the springs.
However, for smaller displacements the method is still feasible. Some ideas are discussed here that can be
used for future development:

6.4. VISION 33

• The method can be used to statically balance elastic forces of a compliant parallelogram. It can also be
used to statically balanced other external forces.

• It can potentially serve as method for compliant four-bars, but since the angular rotations of the end-
points will change it is still unknown for what configurations this will hold.

• The balanced parallelogram can be made monolithic. If a monolithic building block can be made, the
parallelogram can be extended and scaled, making it a statically balanced meta-material parallelogram.

• Adjustment of the balancing condition is a next step for the nonlinear spring design. However, adjust-
ment could potentially be done by turning springs on or off. This is discussed in appendix A.3.

If a system with the properties from above is proven feasible, it can have the following advantages with
respect to the conventional method of a helical spring:

• High redundancy. If multiple springs are used in parallel, the redundancy is increased. For the case
that a spring failure, many springs are left to guarantee safety and functionality of the system.

• The system is easily scalable by enlarging the width or by increasing the number of active springs.

• Assembly and maintenance advantages due to monolithic design possiblities. Ways can be found to
easily replace failed springs.

• Accuracy can be improved if the entire system is monolithic. No hinges are involved in the connection
of springs to the parallelogram.

BIBLIOGRAPHY

[1] N. de Wit, Vibration dissipation in a surgical microscope support system, Tech. Rep. (Delft University of
Technology, 2017).

[2] V. Arakelian and S. Ghazaryan, Improvement of balancing accuracy of robotic systems: Application to leg
orthosis for rehabilitation devices, Mechanism and Machine Theory 43, 565 (2008).

[3] J. L. Herder, Energy Free Systems: Theory, conception and design of statically balanced spring mechanisms,
Ph.D. thesis, Delft University of Technology (2001).

[4] G. Carwardine, Improvements in Equipoising Mechanism, (1935).

[5] M. J. French and M. B. Widden, The spring-and-lever balancing mechanism, George Carwardine and the
Anglepoise lamp, Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical
Engineering Science 214, 501 (2000).

[6] R. Barents, The space cabinet, Ph.D. thesis (2006).

[7] R. Barents, M. Schenk, W. D. van Dorsser, B. M. Wisse, and J. L. Herder, Spring-to-Spring Balancing
as Energy-Free Adjustment Method in Gravity Equilibrators, Volume 7: 33rd Mechanisms and Robotics
Conference, Parts A and B 133, 689 (2009).

[8] G. Radaelli, TU Delft University, Ph.D. thesis, Delft University of Technology (2017).

[9] G. L. Holst, G. H. Teichert, and B. D. Jensen, Modeling and Experiments of Buckling Modes and Deflection
of Fixed-Guided Beams in Compliant Mechanisms, Journal of Mechanical Design 133, 051002 (2011).

[10] G. Radaelli and J. L. Herder, Isogeometric Shape Optimization for Compliant Mechanisms With Prescribed
Load Paths, in Proceedings of the ASME 2014 International Design Engineering Technical Conferences &
Computers and Information in Engineering Conference (2014).

[11] L. Berntsen, D. Gosenshuis, and J. Herder, Design Of A Compliant Monolithic Internally Statically Bal-
anced Four-Bar Mechanism, in Proceedings of the ASME 2014 International Design Engineering Technical
Conferences & Computers and Information in Engineering Conference IDETC/CIE 2014 (Buffalo, 2014).

[12] J. Cool, Werktuigkundige systemen, 3rd ed. (Delftse Uitgevers Maatschappij, 1987).

[13] G. Krishnan, C. Kim, and S. Kota, A Metric to Evaluate and Synthesize Distributed Compliant Mecha-
nisms, Journal of Mechanical Design 135, 011004 (2012).

[14] G. Radaelli, R. Buskermolen, R. Barents, and J. L. Herder, Static balancing of an inverted pendulum with
prestressed torsion bars, Mechanism and Machine Theory 108, 14 (2017).

[15] J. L. Herder, N. Vrijlandt, T. Antonides, M. Cloosterman, and P. L. Mastenbroek, Principle and design of
a mobile arm support for people with muscular weakness, The Journal of Rehabilitation Research and
Development 43, 591 (2006).

[16] W. D. van Dorsser, R. Barents, B. M. Wisse, and J. L. Herder, Gravity-Balanced Arm Support With Energy-
Free Adjustment, Journal of Medical Devices 1, 151 (2007).

[17] J. Zhao, J. Jia, X. He, and H. Wang, Post-buckling and Snap-Through Behavior of Inclined Slender Beams,
Journal of Applied Mechanics 75, 041020 (2008).

[18] L. L. S. P. M. Howell, Handbook of Compliant Mechanisms (John Wiley & Sons, West Sussex, 2013).

35

http://dx.doi.org/ 10.1016/j.mechmachtheory.2007.05.002
http://dx.doi.org/ 10.13140/RG.2.1.3942.8966
http://dx.doi.org/10.1243/0954406001523137
http://dx.doi.org/10.1243/0954406001523137
http://dx.doi.org/ 10.1115/DETC2009-86770
http://dx.doi.org/ 10.1115/DETC2009-86770
http://dx.doi.org/10.4233/uuid
http://dx.doi.org/10.1115/1.4003922
http://dx.doi.org/10.1115/DETC2014-35373
http://dx.doi.org/10.1115/DETC2014-35373
http://dx.doi.org/10.1115/1.4007926
http://dx.doi.org/ 10.1016/j.mechmachtheory.2016.10.005
http://dx.doi.org/ 10.1682/JRRD.2006.05.0044
http://dx.doi.org/ 10.1682/JRRD.2006.05.0044
http://dx.doi.org/10.1115/1.2736400
http://dx.doi.org/10.1115/1.2870953

A
APPENDIX A

This appendix includes related work to the thesis, which is done during the past year. The work includes
individual projects but also supplementary material to the paper that is presented in chapter 3. Programmed
code is presented in the next appendices C D.

A.1. PARAMETERS OF SPRING DESIGN
This research focusses on the width parameter of the spring to modifty the springs stiffness. This section
shows an overview of the alternatives. Figure A.1 shows an overview of the basic mechanism parameters that
can be modified. The overview can be read like an morfological overview where the entire mechanism is
formed by the individual components, here denoted by parameters.

Figure A.1

37

38 A. APPENDIX A

A.2. STACKING
For the situation of stacking of multiple springs in parallel, sufficient distance is required to avoid contact
between adjacent springs. The minimum and maximum distances between the springs are dependent on
the shape of spring for each rotational interval. However, before calculating anything, a few things can be
stated.

• The stacking distance d, must be chosen with a safety factor. Contact between the springs will lead to
stiffness variations.

• Since the spring is prestressed in a s-shape the smallest gaps between the springs will also be in the
zones with a low curvature.

• the local angle alpha of the spring determines how much stacking distance is lost to the springs curve.
The local angle can be extracted from the model. (elemental z-rotation). If the minimum distance
between the springs is required to be k, the minimum stacking distance should be dmi n = k ·cosα+ s
where α is the local angle and s is the safety factor distance.

• The maximum local angle of the spring increases by higher prestress ratios as can be seen in figure A.3.

• Next to continuous deflection of the spring itself, the adjacent springs displace relative to the spring
with distance: g = d ·cosθ where θ is the instantatnious angle of the parallelogram, because the springs
have different positions with respect to the hinge. This must be taken into account when calculating
the minimum distance between two springs, as discussed in the previous bullet-point.

Figure A.2: Three identical springs stacked in parallel. In yellow a close up. Below the local angle per element of one spring.

Figure A.3: Three simulations with different prestress ratios (from left to right) ζ= 20%, ζ= 40% and ζ= 60% presented for spring type A
(see paper). The root mean squared error (notΩ) with respect ot the objective is displayed below. It is observed that for higher prestress
ratios stacking is not feasible because contact is made between springs. Depending on the design of the parallelogram the springs can
also make contact with its links.

A.3. VARIATION OF PAYLOAD 39

A.3. VARIATION OF PAYLOAD
The following figure A.4 serves as inspiration for future concepts in the design of adjustable balancers using
nonlinear plate springs. The list is most likely not complete. First 7 parameters are presented. The 7 param-
eters can be adjusted to either change the load-displacement curve or to change the amplitude to adjust the
balancer to a new payload. It is most likely both load-displacement curve and amplitude change when ma-
nipulating one of the parameters. However for some parameters this is not the case, for example the width.
Changing the width uniformly will increase the amplitude only.

For parameter 2, 3, 4 and 5 it is hard to think of a solution that can change the parameter without remak-
ing the component. Another trivial solution is to add another subsystem to the mechanism which can be
adjusted.

The figures illustrate multiple springs that are stacked in parallel. It is however known from this thesis
that stacking is challenging when dealing with large displacement (> 0.5 rad) or large presstress distances (>
10%).

Figure A.4: ways to adjust the load-displacement curve or payload amplitude

40 A. APPENDIX A

A.4. MATERIALS FOR SPRING DESIGN
The following table is constructed using data from CES Edupack and shows minima and maxima of three
categories. In his paper, Berntsen [11] uses the metric stress versus stiffness as σy /E to quantify the range
of motion of the material. To quantify the amount of energy that can be stored into the material, the second
metric shows σ2

y /E . At last the amount of energy is calculated per unit mass σ2
y /(Eρ) as decribed in [12].

Although the selected material, RVS 1.4310, does not perform best on the defined metrics, it is selected as
material for the prototype for practical considerations. It was available at suppliers. The material does not
suffer from creep and stress relaxation, where polymers and plastic do at room temperature. Also titanium is
very expensive. A more complete list could be made by doing more extensive search to suppliers data.

Figure A.5

A.5. STRAIN ENERGY IN LOADED BEAMS
The following table shows for different crossections of beams and for different types of loading the fraction
of volume that is maximally used for storing strain energy. The values are partially based on [12], [13]. For
beams that are axially loaded all volume is maximally used. However, for that application strains are very
small, which is not practical. It is observed that torsion loading on a shaft has the highest efficiency.

Application Type of loading Square Circular

Axial strain energy Compression or extension 100% 100%

Bending strain energy end point loading 11% 8%
 distributed loading 7% 5%
 moment loading 33% 25%

transverse strain energy end point loading 0,4% 0,3%
(for A = 1, L = 5A) distributed loading 0,5% 0,4%
 moment loading 0,0% 0,0%

Torsion strain energy torsion moment loading 26% 50%

Special Spiral leaf spring 33%
 Linear coil spring 50%
 Torsion coil spring 25%

Figure A.6: The numbers show how much material volume is maximally used for storing strain energy. In most cases this is not 100%,
because stresses are not evenly distributed.

A.6. IDEAS FOR FUTURE RESEARCH 41

A.6. IDEAS FOR FUTURE RESEARCH
Ideas that have come up during the research that could be valuable for future work are denoted here.

A.6.1. BOUNDARY CONDITIONS OF THE PARALLELOGRAM
The boundary conditions of the parallelogram were exploited to serve as imposed rotations for the spring. In
other words, the outer ends were displaced over an equal finite rotation. These boundary conditions can also
be applied in other situations. Figure A.7 shows a few other possible applications. Note that the boundary
condition of equal finite rotation on both ends, can be seen in other perspective if the reference frame is fixed.
This is explained in B.2. Therefore, the spring can also be applied in concentric axles for finite displacements.

The conformal transmission shown in the figure shows three grey gears. The left and right gear rotate with
same angular rate. The spring is fixed to the gears. Therefore, equal angular displacements are imposed on
the spring, just like in the parallelogram. This could be used to apply specific load-displacement characteris-
tics on the transmission, for example for the purpose of static balancing.

Two concentric axles are shown in the right figure. The outer axles rotates around the inner axle. The
spring is fixed between the two axles, but the outer end attached to the outer axle remains the same orienta-
tion (in this figure horizontal). By rotation of the outer axle, the outer end of the spring follows a sinusoidal
path. By rotating the reference frame with respect to the inner axle, the boundary conditions can be seen
similar to the parallelogram linkage. Therefore, this spring configuration can be used to create specific load
displacement characteristics for concentric axles.

Figure A.7: Two possible applications that use the same boundary conditions to impose finite rotations on the spring as imposed in the
parallelogram linkage.

A.6.2. WIDTH PATTERN IMPLEMENTATION
In the previous section is assumed that the width of the beam just a fixed parameter dependent on the beam’s
length. The width was assumed to vary from its center line from inside out. However, if we consider the
beam as real spatial object, the total material used per width increment can be varied along the depth of the
beam as well. For example, when making the beam smaller in width, material can be removed from the sides,
but can also be removed from the center, as displayed in figure A.8. This could benefit the beams behavior,
especially when the the beam gets wider and spatial effects come into play.

Figure A.8: Three different springs having the same width variation, because the amount of material along the length (from left to right)
is for all the same.

42 A. APPENDIX A

A.6.3. TORSION BARS

Torsion bars and tubes in series can be folded to limit the maximum length of the mechanism. The system is
then compressed to smaller length. The compactness of storing energy can be increased. Methods to create
negative stiffness is however not known. It is possible to use end stops to create degressive behaviour [14].

Figure A.9: Folded torsion bars

A.7. GUI
A GUI was used to quickly analyse simulations. The code of the gui is provided in the appendix A.7 and can
be used for further analysis. The provided figure is an arbitrary snapshot.

The GUI shows in red the result of the selected rotation interval. In the most left column: on top the
springs, in blue parallel identical springs. Below the top view of the spring. Colors indicate stresses. Below
the elemental local rotation of the spring. On bottom the elemental stress. The second column shows from
top to bottom per element: axial force, shear force, internal moment, curvature, relative strain energy. The
third column shows the same quantities of the second column, only now for the endpoint nodes. The last
column illustrates the movement of the springs within the parallelogram.

Figure A.10: GUI

A.8. BUILDING BLOCKS 43

A.8. BUILDING BLOCKS
This section shows the results of the all possible configurations for the spring constructed by 4 building
blocks.

Figure A.11

Figure A.12

44 A. APPENDIX A

A.9. PROTOTYPE AND MEASUREMENTS

The parallelogram constructed from PLA printed parts performed sufficiently accurate to test the springs.
The connector, connecting the two arms of the parallellogram, is placed on the opposite side to create more
space for the spring. The spring is not allowed to make contact with the parallelogram arms or the connector.
The focus was on testing the springs so hinges were kept simple by using standard bearings. Compliant hinges
can be used in improved designs to avoid friction to improve accuracy. The springs were designed to deflect
to stresses up to 90% of the Yield strength. Reducing the load limit will strongly increase the lifetime of the
springs. For industrial purposes a safety factor of at least 1/4 times the yield strength is required.

A.9.1. CAD MODEL AND CONSTRUCTION

The CAD model shows the design of the prototype. Clamps are used to make the spring easily removable.
The prototype arms and connector (shown in white) are 3D-printed from PLA on standard settings on a Ul-
timaker 3 printer, having 0.4mm nozzle. 2 SKF 306 bearings were used per arm, separated by a distancer to
avoid alignment problems. The bearings rotate around a f6 tolerance shoulder bolt. The spring is made from
RVS 1.4310 spring steel ordered at JEVEKA: FOBLADA20200903, 0.2x305x1000mm. Brand: H+S. The shapes
created using a lasercutter machine from the faculty of 3ME at TU Delft with a tolerance of 0.2mm.

Figure A.13: CAD model (solidworks) from prototype used for measurements. The spring can be substituted for a different plate spring.

Figure A.14: Side view of the prototype - the clamp blocks can be pulled together by a bolt and nut. When moving to the middle the plate
spring will be clamped.

A.9. PROTOTYPE AND MEASUREMENTS 45

Figure A.15: Side view showing the bolt and bearings inside the parallelogram arm. The pulling disk is also clear visible below. Around
this disk a wire pulls the arm to exert a moment on the parallelogram.

Figure A.16: Photograph of assembled prototype.

A.9.2. MEASUREMENT SETUP
Supplementary material about the testing stage is provided here.

List of possible sources for errors:

• Very small slip in attachment point of wire to prototype.

• Strain in wire

• Parallelogram not perfectly parallel

• Small plastic deformations in the spring from scratches, transportation or earlier measurements

• Friction and backlash of bearings

46 A. APPENDIX A

• Friction of pulleys from the load

• Elasticitiy of printed PLA

• clamping blocks not perfectly aligned with surface of parallelogram arm

• Circumference of pulling disk not perfectly round

• Height of pulling disk not perfectly aligned with height of point of application of wire to loadcell

• Tolerance of spring steel: E-modulus, thickness (3%)

Figure A.17: Photograph of the measurement stage.

A.9. PROTOTYPE AND MEASUREMENTS 47

Figure A.18: Photograph of the measurement stage.

Figure A.19: Photograph of used wiring. The left wire is used for the mass. The right wire is used for the loadcell.

48 A. APPENDIX A

A.10. ANSYS MODEL
This section presents the setup of the ANSYS model. The goal of the ANSYS model is to simulate the spring be-
haviour for the presented boundary conditions as described in the paper, because analytical methods would
be very tedious or maybe even not possible.

A.10.1. SETUP
The simulation setup is as follows. The main MATLAB script A1_LSW defines a spring width shape. The
boundary conditions and parameters of the model are defined in a separate script A4_parameters. It runs
a ANSYS APDL script from D which performs the actsual finite element simulation of the spring. The pa-
rameters are read and run and the ansys apdl program produces results to a batch run dataset. This dataset is
loaded into the main script and processed to visual results. The results can be read by Matlab gui A7_LSWGUI.
Using this ANSYS apdl batch file an optimization could be performed. The force and moment results from
a single run can be processed and compared to a desired objective fucntion. The calculated error can then
be send to the Matlab optimizer, for instance fmincon. The optimization script is then able to configure the
initial shape conditions of the spring to improve the springs behavior.

Figure A.20

A.10.2. APDL SCRIPT
This section describes the ANSYS APDL script used to model the springs in this research. The ANSYS APDL
script first loads the parameters from ansys. Two files are loaded: C1_Parameters, which are the boundary
conditon parameters and C2_shapedata, which is the vector describing the shape of the spring. The script
continues by constructing the spring simulation using the parameters. A Bernoulli beam 188 element is used
with rectangular crossection. The beam is constructed with i nc amount of keypoints. Lines connect the
keypoints and by meshing the lines and keypoints are converted to elements and nodes. Each line is a beam
188 element with a specified width from the width vector S.

Figure A.21

The entire beam is initially constrained for all degrees of freedom to the most outer nodes. The boundary
conditions are schematically displayed in figure B.6. Step zero is shows the contraining the outer nodes.
During step 2 a small pertubation is performed to force the beam into an s-shape. Step 2 displaces the right
right nodes to a specified compression. Step 3 removes the pertubation from step 2. Step 4 - Step 6 rotate
the outer ends of the beam to a specified start condition. It can be seen as the initial condition for the actual
parallelogram rotation. Step 7 is the imposed rotation on the outer ends which should be performed by

A.10. ANSYS MODEL 49

the parallelogram. Step 4-6 can be be used to specify arbitrary initial conditions for the spring within the
parallelgram. For instance the spring can be clamped with outer ends under different angles. In the paper
and this report the outer end angles are kept equal.

Figure A.22

The solution section produces results which are written to text files. The following nodal results from the
outer nodes were extracted using the RFORC E command.

Nodal results APDL command

Force x-direction node 1 RFORCE,11,ID_left ,F,X,FX1
Force y-direction node 1 RFORCE,12,ID_left ,F,Y,FY2
Moment z-direction node 1 RFORCE,13,ID_left ,M,Z,M1
Force x-direction node 2 RFORCE,14,ID_right,F,X,FX2
Force y-direction node 2 RFORCE,15,ID_right,F,Y,FY2
Moment z-direction node 2 RFORCE,16,ID_right,M,Z,M2

A.10.3. PRESTRESS OPTIONS

Figure A.23 shows an overview of the available options to apply presstress to the spring. The horizontal axis
shows the imposed displacement to apply prestress. The vertical axis shows three possible options as bound-
ary conditions for the outer ends of the spring. The fixed-fixed option means that both ends are clamped to
a point that may or may not displace (translate or rotate). The fixed-hinged option means that one outer end
may displace (both translate and rotate) but the hinged outer end may only displace, since the no rotation
can be imposed. For the hinged-hinged option only prestress displacement can be imposed, because both
outer ends are free to rotate, and not rotations can be imposed.

Focusing on the top level horizontal axis (yellow), two sections were created. Coupled imposed rotations
and uncoupled imposed rotations. The coupled rotations are actually a subcategory of the uncoupled rota-
tions, for the case where the rotation of left outer end is the the same as the right outer end.

In theory, all options are subcategories of option 10, where the prestress of the spring is fully defined by
both outer end rotations and a translation. For example, option 11 is one of the solutions from option 10, only
the right outer is now free to rotate, meaning that its angle can not be prescribed but depends on the other
displacements. Focusing on option 6, rotations can not be imposed since the outer ends are hinged and are
both free to rotate. Option 9 (and 12) are special, because of a translation the shape of the spring will form
itself to its lowest energy shape. The spring can therefore not be formed into an s-shape.

Option 10 is used in the model of this thesis, to have full control on the imposed prestress and initial
conditions of the spring. However, additional boundary conditions were required for implementation of this
prescribed prestress freedom, so this effects the time to construct and solve the model.

50 A. APPENDIX A

Figure A.23: Options to apply prestress.

A.11. TOLERANCES PARALLELOGRAM
A small study is done to find out what error tolerance is on variations in the parallelogram linkage. The
parallelogram is parametrized as illustrated in figure A.24. The figure illustrates a maximum offset t . The
illustrated vertical red link in the figure is not necessarily 100% vertical in reality. The following angles can be
expressed:

b = ar ccos

(
Lcos(a)+2t

L

)
(A.1)

d = ar ccos

(
Lcos(a)−2t

L

)
(A.2)

H = Lcos(a) (A.3)

A plot shows the error in degrees for a parallelogram having arms with L = 1000 mm and an error t = 10
mm. Thus the vertical error t, selected at 1% (10/1000), gives a total maximum error around 3 degrees. Thus,
the matlab script can be used to calculate the angular error along the range of motion, given a tolerance t .
The angular error can be used for the spring design, which depends on the clamp angle (to the links) for the
outer ends of the plate springs.

(a)

1 1.2 1.4 1.6 1.8 2 2.2

pgram angle [rad]

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3

e
rr

o
r

[d
e

g
]

top link error

bottom link error

total error

(b)

Figure A.24: Dimensions of parallelogram (a) and error analysis (b) for L = 1000 mm and t = 10 mm along the range of motion from a=
pi /2−0.5 rad to a = π/2+0.5 rad.

B
APPENDIX B - ADDITIONAL PROJECTS

B.1. STATIC BALANCING PARALLELOGRAM LINKAGE
The parallelogram linkage with a mass can be statically balanced using a zero-free-length spring across the
links. To explain this concept in more detail, the following equations are introduced. A zero-free-length
helical spring with extension length s is positioned between the two links with length L. The spring will
compensate the potential energy of the mass.

Figure B.1: Parallelogram linkage using ideal (zero-free-length)linear helical spring with extended length s to counteract gravity force
for any angle θ.

The total potential energy of this system is described by the following energy balance

Vtot al =Vmass +Vspr i ng = const ant (B.1)

The energy corresponding to the mass is described by

Vmass = mg Lcosθ (B.2)

The potential energy of the spring depends on the geometry of the system and is described by the distance of
the springs attachment point using the cosine rule.

s =
√

a2 + r 2 −2ar · cosθ (B.3)

and the energy of the zero-free-length (ideal) spring would then be:

Vspr i ng = ks2 = k(a2 + r 2 −2ar · cosθ) (B.4)

According to equation B.1 the energy should be constant for all angles so its derivative to θ should be zero,
leading to:

mg L = akr (B.5)

This equation only holds for implementations where φ 6= 0. Many variations are done on this basic concept
[15], [16]. However an ideal or emulated spring is required. Furthermore the concept works only for the
gravity balancing objective of equation B.3, where a constant force is acting on the end effector, rotating
around the hinge. The energy objective is illustrated in figure B.2.

51

52 B. APPENDIX B - ADDITIONAL PROJECTS

Figure B.2: Energy and moment plot of a balanced system, comprising of an unbalanced mechanism and a force compensation mech-
anism. In practice a system can not be perfectly balanced so a slight error is visible.

B.2. BERNOULLI-EULER BEAM THEORY
The problem of the large-displacement fixed guided beam having a constant cross-section can be analytically
solved. Several analytical models have been synthesised to accurately predict the beams behaviour and shape
functions. [9] [17] [18] It may not be directly visible that the problem as explained in the previous sections is a
modified fixed guided beam problem. Figure B.3 shows that our problem is similar but the coordinate system
is fixed to the parallelogram. In future work this may be helpful for modelling.

Figure B.3: Similar representations of the beam under large displacement. The first representation keeps the coordinate system (X,Y)
fixed with respect to the beam. The second representation has a coordinate system (X’, Y’) fixed to the left outer end.

To make the similarity complete for its imposed boundary conditions, the fixed-guided beam should fol-
low a sinusoidal path, because the distance between the outer ends is not changed. Finally, the clamp angle
should remain zero since the rotating links remain parallel. The Bernoulli-Euler beam theory states that the
relation between moment and curvature is linear. The Bernoulli-Euler equation for bending moment holds

B.2. BERNOULLI-EULER BEAM THEORY 53

for any point in the beam and is described by equation ??. The bending moment can then be expressed as

E I (s)
d s

dθ
= M1 −Rx sin(ψ)+R y cos(ψ) (B.6)

where M1 is the reaction moment on the left side, R is the imposed force under an angle ψ and x and y are
the coordinates of the considered point P of bending in the beam. E I (s) represents the beam’s stiffness by its
Young’s modulus and second moment of inertia, specifically indicated as a fucntion of the position s along
the beam. For any point P along the beam’s length s, the following geometric relations hold:

d ya

d s
= sin(θ)

d xa

d s
= cos(θ) (B.7)

For a beam with constant E I the procedure from Holst et al. [9] can be followed where elliptical integrals
can be obtained for the end displacements:

b

L
= −1p

α
{sinψ

(
2E(k,φ2)−2E(k,φ1)−2F (k,φ2)+2F (k,φ1)

)
+2k cosψ(cosφ1 −cosφ2)}

(B.8)

a

L
= −1p

α
{sinψ

(
2E(k,φ2)−2E(k,φ1)−2F (k,φ2)+2F (k,φ1)

)
+2k cosψ(cosφ2 −cosφ1)}

(B.9)

F is the incomplete elliptical integral of the first kind and E is the incomplete elliptical integral of the
second kind with φ is the amplitude k the modulus, defined by:

k sinφ= cos
ψ−θ

2
(B.10)

At last the end moments can be calculated by:

M1,2 = 2k
p

E I R cosφ1,2 (B.11)

The presented equations hold only for beams with constant E and I and without initial curvature, whereas
we are now interested in a beam with varying width, thus a non-constant second moment of inertia. The
presented equations can therefore not be directly used. However, the equations can still be used as reference
of the constant width beams. Analytical expressions for large displacement beams having a varying width are
left for future research.

54 B. APPENDIX B - ADDITIONAL PROJECTS

B.3. VOLUME OCCUPANCY OF HELICAL SPRINGS
A small study is done to calculate the volume occupancy of conventional helical springs. First, a calculation
is done for a unstretched spring. Only 39% is used for spring material for the unstretched spring. Second,
another calculation is done for a stretched coil spring. Only 30% is used for spring material for the stretched
spring, if stretched to the maximum allowable stress, the yield strength. A maximum spring index is selected
to occupy as much space as possible. For a compression spring the volume occupation is the other way
around. Since only 50% of the material is maximally utilized, only 15% of the occupied volume is used for
strain energy. This number can serve as an incentive to investigate more efficient methods to store potential
energy.

Figure B.4: A helical spring uses only a fraction of the unit cell box that is actually occupied in space. The space that is lost is inside the
spring and between the coils. For the assumption of a rectangular box, also space is lost on the corners.

B.3.1. UNSTRETCHED SPRING

This calculation provides an estimation of the maximum volume efficiency that can be achieved for strain
energy storage when using a conventional coil spring by extension or compression. No linkage configuration
is provided. For this calculation we will only look a the space in use by the spring itself and its direct unit cell.
The volume of a coil spring is:

Vspr i ng =πnDm · πd 2

4
(B.12)

where Dm is the coil mean diameter, n the number of coils and d the wire diameter. The number of coils
is defined by the free length L0 divided by the wire diameter d . In this case the coils are in contact with the
next coils when unstressed.

n = L0

d
(B.13)

We assume a maximum spring index for maximum volume occupation. Therefore

Index = Dm

d
= 4 (B.14)

The volume of the unit cell (rectangular box) that is occupied by the coil spring is defined by the mean
diameter:

Vcel l = (Dm +d)2 ·L0 (B.15)

The ratio of volume used by the coil spring for its free length is:

R =
Vspr i ng

Vcel l
= πnDm · πd2

4

(Dm +d)2 ·L0
= π2Dm ·d

4(Dm +d)2
= 0.39 (B.16)

B.3. VOLUME OCCUPANCY OF HELICAL SPRINGS 55

B.3.2. STRETCHED SPRING
We can also calculate the volume that is used by the spring while operating. So we calculate the extension of
the spring and use the final length as length for the unit cell.

The maximum force the spring can endure is:

F = πd 3τ

16r
; (B.17)

where t au is the maximum stress The extension of the spring is then calculated by: [ref: http://werktuigbouw.nl/sub17.htm]

u = 64 ·n · r 3 ·F

d 4G
; (B.18)

The unit cell volume becomes:
Vcel l ,ext = L · (Dm +d)2; (B.19)

Where L = L0 +u
The volume of the spring material stays the same. The volume ratio of the operating spring with respect

to its unit cell then results in:

Rext =
Vspr i ng

Vcel l ,ext
= 0.30 (B.20)

56 B. APPENDIX B - ADDITIONAL PROJECTS

B.4. KINEMATIC OPTIONS MICROSCOPE STAND

A small study is done to investigate the kinematic options that are available to create three degrees of free-
dom for the microscope stand. The goal is to find out if there are other feasible configurationsto reach three
degrees of freedom for the end effector. The available kinematic options are:

• Rotational joint: X(Rx)

• Rotational joint: Y(Ry)

• Rotational joint: Z (Rz)

• Translational joint: X (Ux)

• Translational joint: Y (Uy)

• Translational joint: Z (Uz)

Rotational joints can be thought of as hinges. Translational joints can be thought of a telescopic motion.
An example is shown in figure B.5. The example comprises the following joints: Rz , Uz and Rx or Ry , since a
rotation the first joint Rz can make the last joint Rx or Ry in the global coordinate system.

The total available options N , including mirrors and non-unique solutions due to the shown effect is
calculated by:

Ntot al = 6 ·6 ·6 = 216 (B.21)

Looking carefully to the base joint (joint 1), Ux, Uy, Rx and Ry are considered not feasible options as
base joint, because the occupied volume increases significantly. This reduces the amount of options to: N =
2 · 6 · 6 = 72; Leaving only Rz or Uz as base joint options. (36 options for base joint Rz and 36 options for
base joint Uz). These options are shown in the figure. The figure is ordered on basis of feasibility. Concept
43-72 are not feasible because the Uz joint is not followed by the Rz joint. Therefore, these configurations are
considered inpractical. Concept 34-41 are considered non-feasible because the reach in the x-y plane or y-z
plane is inpractical. This leaves us with 33 feasible options, from which 14 options are mirror versions. This
leaves us with 18 unique options.

Figure B.5: Example of a 3DOF manipulator with end effector. This type is called Rz-Uz-Rx or Rz-Uz-Ry

B.4. KINEMATIC OPTIONS MICROSCOPE STAND 57

Concept DOF 1 DOF 2 DOF 3 Remark Concept DOF 1 DOF 2 DOF 3 Remark Kinema�cs
1 Rz Uz Rx 34 Rz Rz Rz no height Rx
2 Rz Rz Rx 35 Rz Rz Ux no height Ry
3 Rz Rx Rx 36 Rz Rz Uy no height Rz
4 Rz Rx Rz 37 Rz Ux Ux no height Ux
5 Rz Rz Uz 38 Rz Ux Uy no height Uy
6 Rz Uz Rz 39 Rz Uy Ux no height Uz
7 Uz Rz Rz 40 Rz Uy Uy no height
8 Rz Rx Uy 41 Rz Uz Uz no reach
9 Rz Ux Uz 42 Uz Rz Uz no reach
10 Rz Uz Ux 43 Uz Rx Rx u z not followed by r z
11 Uz Rz Ux 44 Uz Rx Ry u z not followed by r z
12 Rz Rx Ux 45 Uz Rx Rz u z not followed by r z
13 Rz Rx Uz 46 Uz Rx Ux u z not followed by r z
14 Rz Ux Rx 47 Uz Rx Uy u z not followed by r z
15 Rz Ux Ry 48 Uz Rx Uz u z not followed by r z
16 Rz Ux Rz 49 Uz Ry Rx u z not followed by r z
17 Uz Rz Rx 50 Uz Ry Ry u z not followed by r z
18 Rz Rx Ry 51 Uz Ry Rz u z not followed by r z
19 Uz Rz Uy mirrorversion 52 Uz Ry Ux u z not followed by r z
20 Rz Ry Ux mirrorversion 53 Uz Ry Uy u z not followed by r z
21 Rz Ry Ry mirrorversion 54 Uz Ry Uz u z not followed by r z
22 Rz Ry Rz mirrorversion 55 Uz Ux Rx u z not followed by r z
23 Rz Rz Ry mirrorversion 56 Uz Ux Ry u z not followed by r z
24 Rz Uy Uz mirrorversion 57 Uz Ux Rz u z not followed by r z
25 Rz Uz Uy mirrorversion 58 Uz Ux Ux u z not followed by r z
26 Rz Ry Uy mirrorversion 59 Uz Ux Uy u z not followed by r z
27 Rz Ry Uz mirrorversion 60 Uz Ux Uz u z not followed by r z
28 Rz Uy Rx mirrorversion 61 Uz Uy Rx u z not followed by r z
29 Rz Uy Ry mirrorversion 62 Uz Uy Ry u z not followed by r z
30 Rz Uy Rz mirrorversion 63 Uz Uy Rz u z not followed by r z
31 Uz Rz Ry mirrorversion 64 Uz Uy Ux u z not followed by r z
32 Rz Uz Ry mirrorversion 65 Uz Uy Uy u z not followed by r z
33 Rz Ry Rx mirrorversion 66 Uz Uy Uz u z not followed by r z

67 Uz Uz Rx u z not followed by r z
68 Uz Uz Ry u z not followed by r z
69 Uz Uz Rz u z not followed by r z
70 Uz Uz Ux u z not followed by r z
71 Uz Uz Uy u z not followed by r z
72 Uz Uz Uz u z not followed by r z

Feasible concepts Non-feasible concepts

Figure B.6: The right column is referred to as non-feasible because of the reasons stated in the remark box.

C
APPENDIX C - MATLAB CODE

C.1. STRUCTURE OF MATLAB FILES

Figure C.1: Overview of matlab code

C.2. FILE 01_00

1 %% Run simulation
2

3 clear all
4 close all
5 clc
6

7 for iteration = 1:1
8 clearvars -except iii iteration compressionvector
9 run(’A8_LSW_globals.m’);

10 iii = iteration;
11 assignin(’base’,’iii’,iii)
12 assignin(’base’,’compression’,compression)
13 run(’A1_LSW.m’);
14 end
15 disp(’done’)
16

17 %% PLOT GUI MULTIPLE TIMES
18

19 % load(’E2_output.mat’);
20 %
21 % for i = 1:10
22 %
23 % E1output = E2(end+1-i);
24 % E1output = cell2mat(E1output);
25 % save(’E1_output.mat’,’E1output’);
26 %

59

60 C. APPENDIX C - MATLAB CODE

27 % A7_LSWGUI;
28 % hGuiFig = findobj(’Tag’,’Guifig1’,’Type’,’figure’); %find figure
29 % handles = guidata(hGuiFig); %get handles
30 % A7_LSWGUI(’pushbutton1_Callback’,handles.pushbutton1,[],handles); %push plot
31 % A7_LSWGUI(’pushbutton2_Callback’,handles.pushbutton2,[],handles); %push next
32 % A7_LSWGUI(’Save_Callback’,handles.Save,[],handles); %push save
33 % close(A7_LSWGUI)
34 %
35 % end
36

37 %% ELEMENT CONTROL
38 % This part checks the minimum amount of elemnets required for having an
39 % accurate solver. The solver compares different element sets. When the
40 % next larger element set has an offset smaller than 1% the amount of
41 % elements is sufficient.
42

43 % for now 81 elements is sufficient. Turned off for convenience and speed.
44

45 controller = [10 20 50 100 400]; %(inc-1) = deelbaar door 4,
46 clen = length(controller);
47

48 for jj = 1:clen
49 clearvars -except jj controller clen; close all; clc;
50 run(’A8_LSW_globals.m’);
51 elementcontrol = controller(jj);
52 run(’A1_LSW.m’);
53 end
54

55 load(’E2_output.mat’);
56 CompareE2 = E2((end-(clen-1)):end);
57

58 for jjj = 1:clen
59 cdata = cell2mat(CompareE2(jjj));
60 M1node(:,jjj) = cell2mat(cdata.M1node);
61 M2node(:,jjj) = cell2mat(cdata.M2node);
62 Kelem = cell2mat(cdata.Kurv);
63 Sene = cell2mat(cdata.Energy);
64 for jjjj = 1:50
65 SumSene(jjjj,jjj) = sum(Sene(:,jjjj));
66 K1elem(jjjj,jjj) = Kelem(1,jjjj);
67 end
68 end
69

70 jjj = 1;
71 for jjj = 1:(clen-1)
72 check1(:,jjj) = M1node(:,jjj)./M1node(:,jjj+1);
73 check2(:,jjj) = M2node(:,jjj)./M2node(:,jjj+1);
74 check3(:,jjj) = SumSene(:,jjj)./(SumSene(:,jjj+1));
75 check4(:,jjj) = K1elem(:,jjj)./K1elem(:,jjj+1);
76

77 d1(:,jjj) = M1node(:,jjj)./M1node(:,clen);
78 d2(:,jjj) = M2node(:,jjj)./M2node(:,clen);
79 d3(:,jjj) = SumSene(:,jjj)./(SumSene(:,clen));
80 d4(:,jjj) = K1elem(:,jjj)./K1elem(:,clen);
81 end
82

83 for jjj = 1:(clen-1)
84 check1total(jjj) = max(abs(check1(:,jjj)-1))*100;
85 check2total(jjj) = max(abs(check2(:,jjj)-1))*100;
86 check3total(jjj) = max(abs(check3(:,jjj)-1))*100;

C.3. FILE 02_00 61

87 check4total(jjj) = max(abs(check4(:,jjj)-1))*100;
88

89 d1total(jjj) = max(abs(d1(:,jjj)-1))*100;
90 d2total(jjj) = max(abs(d2(:,jjj)-1))*100;
91 d3total(jjj) = max(abs(d3(:,jjj)-1))*100;
92 d4total(jjj) = max(abs(d4(:,jjj)-1))*100;
93 end
94

95 checkvalues = [check1total; check2total; check3total; check4total]
96 dvalues = [d1total; d2total; d3total; d4total]

C.3. FILE 02_00

1 %% Measurements
2 % processes the measurements and generates plots for figure 15 and 16.
3

4 clear all
5 clc
6 close all
7

8 directory = ’C:\Users\Roel van Ekeren\OneDrive\Afstuderen\Ansys\09 LSW\’;
9 datefolder = ’Meting 2019_07_31\’;

10 filetype1 = ’.csv’;
11

12 files1 = { ’19 07 31 15 48 28 Roel GP real w0_1’
13 ’19 07 31 15 51 36 Roel GP real w0_1’
14 ’19 07 31 16 02 11 Roel GP real w0_2’
15 ’19 07 31 16 22 40 Roel GP real w0_2’
16 ’19 07 31 16 29 45 Roel GP real w0_3’
17 ’19 07 31 16 36 53 Roel GP real w0_3’
18 ’19 07 31 15 08 46 Roel GP real rm1_1’
19 ’19 07 31 15 11 33 Roel GP real rm1_1’
20 ’19 07 31 15 14 48 Roel GP real rm1_2’
21 ’19 07 31 15 17 44 Roel GP real rm1_2’
22 ’19 07 31 15 20 31 Roel GP real rm1_3’
23 ’19 07 31 15 23 19 Roel GP real rm1_3’
24 ’19 07 31 17 13 24 Roel GP real rm2_1’
25 ’19 07 31 17 26 32 Roel GP real rm2_1’
26 ’19 07 31 17 29 52 Roel GP real rm2_2’
27 ’19 07 31 17 32 37 Roel GP real rm2_2’
28 ’19 07 31 17 35 22 Roel GP real rm2_3’
29 ’19 07 31 17 38 02 Roel GP real rm2_3’
30 ’19 07 31 17 44 38 Roel GP real rm3_1’
31 ’19 08 01 10 26 48 Roel GP real rm3_1’
32 ’19 08 01 10 40 10 Roel GP real rm3_2’
33 ’19 08 01 10 43 16 Roel GP real rm3_2’
34 ’19 08 01 10 48 05 Roel GP real rm3_3’
35 ’19 08 01 10 53 33 Roel GP real rm3_3’
36

37 };
38

39 % skim datasets
40 dataset1 = {};
41 for i = 1:length(files1(:,1))
42 rawdata = xlsread(strcat(directory,datefolder,files1{i},filetype1));
43 dataset1{i} = rawdata(:,[2,4]);
44 end
45

62 C. APPENDIX C - MATLAB CODE

46

47 % Plot all datasets
48 for ii = 1:length(files1(:,1))
49 m = cell2mat(dataset1(ii));
50 d = m(:,1);
51 f = m(:,2);
52

53

54 plot(d,f); hold on
55

56 end
57 legvec = string([1:1:ii]);
58 legend(legvec)
59

60 % Save all datasets to mat-file
61 dataset1 = table2struct(cell2table(dataset1));
62 save(’rmdata1.mat’,’dataset1’);
63

64

65 %% LOAD DATASETS
66

67 global radius mass0 mass1 mass2 g
68 close all;
69 clear all
70 clc
71

72 load(’rmdata1.mat’)
73

74 % Create variables
75 radius= 0.0361;
76 mass0 = 0;
77 mass1 = 0.050;
78 mass2 = 0.36;
79 g = 9.81;
80

81

82 %% PLOT DATA
__

83

84 % weight
85 w0left_force = dataset1.dataset12(50:end,2);
86 w0right_force = dataset1.dataset11(50:end,2);
87 weight1 = mean(w0left_force);
88 weight2 = mean(w0right_force);
89 weight = mean([weight1 weight2]);
90

91 close all;
92

93

94 %% WEIGHTS
95 A14_plotmeasurements(dataset1.dataset12, dataset1.dataset11,radius, mass0, g, 0,’b’);
96 A14_plotmeasurements(dataset1.dataset14, dataset1.dataset13,radius, mass0, g, 0,’b’);
97 A14_plotmeasurements(dataset1.dataset16, dataset1.dataset15,radius, mass0, g, 0,’b’);
98

99

100 %% SPRING 1 SPRING A - POSITVIE AND NEGATIVE STIFFNESS
101 close all
102 figure
103 % load(’E1_output.mat’)
104 % load(’RM1_0.mat’) % ANSYS spring 1

C.3. FILE 02_00 63

105 % load(’RM1_1.mat’) % ANSYS spring 1
106 load(’RM1_5.mat’) % ANSYS spring 1
107 [MN1i, pm3] = A16_plotansys(E1output,0.755); %0.755
108 [mo1, di1, pm1, pm2] = A14_plotmeasurements(dataset1.dataset18, dataset1.dataset17,

radius, mass0, g, weight,’b’); %(0.9 - 0.7 rad)
109 [mo2, di2, pm1, pm2] = A14_plotmeasurements(dataset1.dataset110, dataset1.dataset19,

radius, mass0, g, weight,’b’);
110 [mo3, di3 ,pm1, pm2] = A14_plotmeasurements(dataset1.dataset112,

dataset1.dataset111, radius, mass0, g, weight,’b’);
111 for i = 1:length(mo1.mean)
112 mo_mean(i) = mean([mo1.mean(i) mo2.mean(i) mo3.mean(i)]);
113 end
114 for i = 1:length(MN1i);
115 SE(i) = (MN1i(i)-mo_mean(i))^2;
116 SEN(i) = (MN1i(i)/max(MN1i)-mo_mean(i)/max(mo_mean(300:800)))^2;
117 Err(i) = MN1i(i)-mo_mean(i);
118 Err_n(i) = 100*abs(Err(i))/abs(MN1i(i));
119 end
120 RMSE1 = sqrt(nansum(SE)/length(SE))
121 NMSE1 = sqrt(nansum(SEN)/length(SEN))
122 rho_cA = corrcoef(MN1i,mo_mean,’rows’,’complete’)
123 pm4 = plot(10.^-6.*di3.mright./radius,mo_mean’,’g’);
124 pm5 = plot(10.^-6.*di3.mright./radius,Err,’k’);
125 legend([pm2 pm3 pm4 pm5],’Measurements’,’ANSYS’,’Measurements

Mean’,’Error’,’location’,’southeast’)
126 title(’Spring A - Positive-Negative Stiffness’)
127

128 % norm error
129 figure
130 plot(10.^-6.*di3.mright./radius,sqrt(SEN),’k’)
131 ylim([0 1])
132

133 %% SPRING C - NEGATIVE STIFFNESS
134

135 figure
136 load(’RM2_1.mat’) % ANSYS spring 2
137 [MN1i ,pm3] = A16_plotansys(E1output,0.9);
138 [mo1, di1,pm1, pm2] = A14_plotmeasurements(dataset1.dataset114, dataset1.dataset113,

radius, mass0, g, weight,’b’); %(0.9 - 0.7 rad)
139 [mo2, di2,pm1, pm2] = A14_plotmeasurements(dataset1.dataset116, dataset1.dataset115,

radius, mass0, g, weight,’b’);
140 [mo3, di3,pm1, pm2] = A14_plotmeasurements(dataset1.dataset118, dataset1.dataset117,

radius, mass0, g, weight,’b’);
141 for i = 1:length(mo1.mean)
142 mo_mean(i) = mean([mo1.mean(i) mo2.mean(i) mo3.mean(i)]);
143 end
144 for i = 1:length(MN1i);
145 SE(i) = (MN1i(i)-mo_mean(i))^2;
146 SEN(i) = (MN1i(i)/max(MN1i)-mo_mean(i)/max(mo_mean(96:1245)))^2;
147 Err(i) = MN1i(i)-mo_mean(i);
148 Err_n(i) = 100*abs(Err(i))/abs(MN1i(i));
149 end
150 RMSE2 = sqrt(nansum(SE)/length(SE))
151 NMSE2 = sqrt(nansum(SEN(1:1235))/(length(SEN(1:1235))))
152 rho_cC = corrcoef(MN1i,mo_mean,’rows’,’complete’)
153 pm4 = plot(10.^-6.*di3.mright./radius,mo_mean’,’g’);
154 pm5 = plot(10.^-6.*di3.mright./radius,Err,’k’);
155 legend([pm2 pm3 pm4 pm5],’Measurements’,’ANSYS’,’Measurements

Mean’,’Error’,’location’,’southeast’)
156 title(’Spring C - Negative Stiffness’)

64 C. APPENDIX C - MATLAB CODE

157

158 figure
159 plot(10.^-6.*di3.mright./radius,sqrt(SEN),’k’)
160 ylim([0 1])
161

162 %% SPRING B - POSITIVE STIFFNESS
163 figure
164 load(’RM3_3.mat’) % ANSYS spring 3
165 [MN1i , pm3] = A16_plotansys(E1output,0.75);
166 [mo1, di1] = A14_plotmeasurements(dataset1.dataset119, dataset1.dataset120, radius,

mass0, g, weight,’b’);%(0.9 - 0.7 rad)
167 [mo2, di2] = A14_plotmeasurements(dataset1.dataset121, dataset1.dataset122, radius,

mass0, g, weight,’b’);
168 [mo3, di3,pm1, pm2] = A14_plotmeasurements(dataset1.dataset123, dataset1.dataset124,

radius, mass0, g, weight,’b’);
169 for i = 1:length(mo1.mean)
170 mo_mean(i) = mean([mo1.mean(i) mo2.mean(i) mo3.mean(i)]);
171 end
172 for i = 1:length(MN1i);
173 SE(i) = (MN1i(i)-mo_mean(i))^2;
174 SEN(i) =(MN1i(i)/max(MN1i)-mo_mean(i)/max(mo_mean(40:1090)))^2;
175 Err(i) = MN1i(i)-mo_mean(i);
176 end
177 RMSE3 = sqrt(nansum(SE)/length(SE))
178 NMSE3 = sqrt(nansum(SEN)/length(SEN))
179 rho_cB = corrcoef(MN1i,mo_mean,’rows’,’complete’)
180 pm4 = plot(10.^-6.*di3.mright./radius,mo_mean’,’g’);
181 pm5 = plot(10.^-6.*di3.mright./radius,Err,’k’);
182 legend([pm2 pm3 pm4 pm5],’Measurements’,’ANSYS’,’Measurements

Mean’,’Error’,’location’,’southeast’)
183 title(’Spring B - Positive Stiffness’)
184

185 figure
186 plot(10.^-6.*di3.mright./radius,sqrt(SEN),’k’)
187 ylim([0 1])
188

189

190 %% SETUP - WEIGHT ONLY
191 figure
192 weight = 3.22;
193 [mo1, di1] = A14_plotmeasurements(dataset1.dataset11, dataset1.dataset12, radius,

mass0, g, weight,’b’);%(0.9 - 0.7 rad)
194 [mo2, di2] = A14_plotmeasurements(dataset1.dataset13, dataset1.dataset14, radius,

mass0, g, weight,’b’);
195 [mo3, di3,pm1, pm2] = A14_plotmeasurements(dataset1.dataset15, dataset1.dataset16,

radius, mass0, g, weight,’b’);
196 for i = 1:length(mo1.mean)
197 mo_mean(i) = mean([mo1.mean(i) mo2.mean(i) mo3.mean(i)]);
198 end
199 pm4 = plot(10.^-6.*di3.mright./radius,mo_mean’,’g’); hold on
200

201 weight = 0;
202 [mo3 , di4, pm6,pm7] = A14_plotmeasurements(dataset1.dataset15, dataset1.dataset16,

radius, mass0, g, weight,’m’);
203 pm8 = plot(10.^-6.*di3.mright./radius,mo_mean+3.22*radius’,’c’); hold on
204 legend([pm2 pm4 pm7 pm8],’setup without weight’,’setup mean without

weight’,’setup’,’setup mean’, ’location’,’east’)
205 title(’SETUP’)
206 ylim([-0.01 0.15])
207 grid on

C.4. FILE 03_00 65

C.4. FILE 03_00

1 %% Process simulations for three spring types
2 % This file processes simualations 1-12 and creates the plot and tabledata
3 % presented in table 4.
4

5

6 clear all
7 clc
8 close all
9

10 load(’E2_output.mat’);
11 % E4 = cell2mat(E2([1 4 6]));
12 % E6 = cell2mat(E2([77 76 75 79])); %spring A
13 % E7 = cell2mat(E2([83 86 87 89 93])) %spring B
14 % E8 = cell2mat(E2([90 91 92])); %spring C
15 % E9 = cell2mat(E2([96:101,103:104])); %blocksimulation
16 % E10 = cell2mat(E2([105:110])); %blocksimulation
17 run(’A4_LSW_parameters.m’);
18

19 %% SPRING A (E2 79 75 76 77)
20 % Different compressions are simulated
21

22 xaxisx = [-2 2];
23 xaxisy = [0 0] ;
24

25 load(’E6.mat’);
26 Sim = E6;
27

28 figure
29 for i = 1:length(Sim)
30 Rotation = cell2mat(Sim(i).RotN1);
31 Sim(i).Msum = -(cell2mat(Sim(i).M1node) + cell2mat(Sim(i).M2node)); % resulting

absolute moment
32 Sim(i).Mnorm = Sim(i).Msum/max((Sim(i).Msum)); %

normalized moment
33 RotZ = Sim(i).RotZ{1,1};
34 Stressset = Sim(i).Stress{1,1};
35 Maxrotation(i) = max(abs(RotZ(:)));
36 Maxstress(i) = max(abs(Stressset(:)));
37 [zerox(i,:), zeroy(i,:)] = intersections(xaxisx, xaxisy, -Rotation, Sim(i).Mnorm); %

find intersection with xaxis
38 ROM(i) = zerox(i,2)-zerox(i,1); % calculate

range of motion
39 %________________________
40

41

42 % Load Energy Data
43 Shape = cell2mat(Sim(i).Shape);
44 Energy = cell2mat(Sim(i).Energy);
45 for iv = 1:length(Energy(1,:))
46 Sumenergy(iv) = sum(Energy(:,iv));
47 end
48

49

50 ef = [0.2 0.4 0.6 0.6];
51 len = totlen/(1-ef(i));

66 C. APPENDIX C - MATLAB CODE

52 % STRAIN ENERGY
53 Uspring(i) = max(Sumenergy)-min(Sumenergy);
54 Unorm(i) = min(Sumenergy)/max(Sumenergy);
55 Volume = len*sum(Shape)*(len/inc)*thickness;
56 Umass = rho*Volume*g*2*0.5;
57

58 % Metrics
59 eta_SE(i) = E*Uspring(i)/(sigma^2*Volume);
60 eta_SE2(i) = E*Uspring(i)/(Maxstress(i)^2*Volume);
61 eta_GB(i) = 2*rho*g*E*0.5/(eta_SE(i)*sigma^2);
62 eta_GB2(i) = 2*rho*g*E*0.5/(eta_SE2(i)*Maxstress(i)^2);
63

64 %________________________
65

66 intnr = 200; % interpolation nr
67 for iii = 1:3
68

69 % create interpolation interval
70 newint(1,:) = linspace(zerox(i,1), zerox(i,2), intnr);
71

72 % try other smaller interpolation intervals
73 newint(2,:) = linspace(-0.5,0.5,intnr);
74 newint(3,:) = linspace(-pi/2,pi/2,intnr);
75

76 % interpolate over ROM
77 Sim(i).Mnormint = interp1(-Rotation,Sim(i).Mnorm,newint(iii,:));
78

79 % Objective function
80 Mobj(iii,:) = sin(newint(iii,:)+pi/2);
81

82 for ii = 1:length(Sim(i).Mnormint)
83 Sim(i).Err(ii) = ((Sim(i).Mnormint(ii))-Mobj(iii,ii));
84 Sim(i).SE(ii) = ((Sim(i).Mnormint(ii)-Mobj(iii,ii)))^2;
85 end
86

87 Sim(i).RMSE(iii) = sqrt(nansum(Sim(i).SE)/length(~isnan(Sim(i).SE)));
88 Sim(i).MaxE(iii) = max(abs(Sim(i).Err));
89 end
90

91 plot(-Rotation,Sim(i).Mnorm,’-’,’LineWidth’,1); hold on
92 xlabel(’ROM [rad]’)
93 ylabel(’Moment (normalised) [-]’)
94 ylim([0 1.1]);
95 end
96

97 plot(newint(3,:),Mobj(3,:),’LineWidth’,2,’color’,’b’); hold on;
98 plot([0.5 0.5],[0 1.1],’k--’)
99 plot([-0.5 -0.5],[0 1.1],’k--’)

100

101 legend(’Sim 1: \zeta = 20%’,...
102 ’Sim 2: \zeta = 40%’,...
103 ’Sim 3: \zeta = 60%’,...
104 ’Sim 4: \zeta = 60%’,...
105 ’objective’,...
106 ’location’,’northeast’);
107

108 varNames = {’zeta’,’RMSE1’,’RMSE2’,’ROM’,’Us’,’Un’,’eta_SE’,’eta_GB’};
109 Compressions = {’20’; ’40’; ’60’;’60’};
110 RMSE1 = round(100*[Sim(1).RMSE(1); Sim(2).RMSE(1); Sim(3).RMSE(1);

Sim(4).RMSE(1)],2);

C.4. FILE 03_00 67

111 RMSE2 = round(100*[Sim(1).RMSE(2); Sim(2).RMSE(2); Sim(3).RMSE(2);
Sim(4).RMSE(2)],2);

112 ROM = round(ROM,2);
113 eta_SE = round(100*eta_SE ,2);
114 eta_GB = round(100*eta_GB ,2);
115 Uspring = round(Uspring,3);
116 Unorm = round(100*Unorm,2);
117

118 T1 =
table(Compressions,RMSE1,RMSE2,ROM’,Uspring’,Unorm’,eta_SE’,eta_GB’,’VariableNames’,varNames)

119

120

121

122

123 %% SPRING B
124

125 load(’E7.mat’);
126 Sim = E7;
127

128 figure
129 for i = 1:length(Sim)
130

131 Rotation = cell2mat(Sim(i).RotN1);
132 Sim(i).Msum = -(cell2mat(Sim(i).M1node) + cell2mat(Sim(i).M2node)); % resulting

absolute moment
133 Sim(i).Mnorm = Sim(i).Msum/max((Sim(i).Msum)); %

normalized moment
134 RotZ = Sim(i).RotZ{1,1};
135 Stressset = Sim(i).Stress{1,1};
136 Maxrotation(i) = max(abs(RotZ(:)));
137 Maxstress(i) = max(abs(Stressset(:)));
138 ROM(i) = Rotation(1)-Rotation(end);
139

140

141 ef = [0.2 0.4 0.6 0.6 0.2];
142 len = totlen/(1-ef(i));
143 %________________________
144 % Load Energy Data
145 Shape = cell2mat(Sim(i).Shape);
146 Energy = cell2mat(Sim(i).Energy);
147 for iv = 1:length(Energy(1,:))
148 Sumenergy(iv) = sum(Energy(:,iv));
149 end
150

151 % STRAIN ENERGY
152 Uspring(i) = max(Sumenergy)-min(Sumenergy);
153 Unorm(i) = min(Sumenergy)/max(Sumenergy);
154 Volume = len*sum(Shape)*(len/inc)*thickness;
155 Umass = rho*Volume*g*2*0.5;
156

157 % Metrics
158 eta_SE(i) = E*Uspring(i)/(sigma^2*Volume);
159 eta_SE2(i) = E*Uspring(i)/(Maxstress(i)^2*Volume);
160 eta_GB(i) = 2*rho*g*E*0.5/(eta_SE(i)*sigma^2);
161

162 %________________________
163

164

165

166 intnr = 200; % interpolation nr

68 C. APPENDIX C - MATLAB CODE

167 for iii = 1:2
168

169 % try interpolation intervals
170 newint(1,:) = linspace(-pi/2,pi/2,intnr);
171 newint(2,:) = linspace(-0.5,0.5,intnr);
172

173 % interpolate over ROM
174 Sim(i).Mnormint = interp1(-Rotation,Sim(i).Mnorm,newint(iii,:));
175

176 % Objective function
177 Mobj(iii,:) = sin(newint(iii,:));
178

179 for ii = 1:length(Sim(i).Mnormint)
180 Sim(i).Err(ii) = ((Sim(i).Mnormint(ii))-Mobj(iii,ii));
181 Sim(i).SE(ii) = ((Sim(i).Mnormint(ii)-Mobj(iii,ii)))^2;
182 end
183

184 Sim(i).RMSE(iii) = sqrt(nansum(Sim(i).SE)/length(~isnan(Sim(i).SE)));
185 Sim(i).MaxE(iii) = max(abs(Sim(i).Err));
186 end
187

188

189 plot(-Rotation,Sim(i).Mnorm,’-’,’LineWidth’,1); hold on
190 xlabel(’ROM [rad]’)
191 ylabel(’Moment (normalised) [-]’)
192 ylim([-1.1 1.1]);
193 end
194

195 plot(newint(1,:),Mobj(1,:),’LineWidth’,2,’color’,’b’); hold on;
196 plot([0.5 0.5],[-1 1],’k--’)
197 plot([-0.5 -0.5],[-1 1],’k--’)
198

199 legend(’Sim 5: \zeta = 20%’,...
200 ’Sim 6: \zeta = 40%’,...
201 ’Sim 7: \zeta = 60%’,...
202 ’Sim 8: \zeta = 60%’,...
203 ’Sim 9: \zeta = 20%’,...
204 ’objective’,...
205 ’location’,’southeast’);
206

207 varNames = {’zeta’,’RMSE1’,’RMSE2’,’ROM’,’Us’,’Un’,’eta_SE’,’eta_GB’};
208 Compressions = {’20’; ’40’; ’60’;’60’; ’20’};
209 RMSE1 = round(100*[Sim(1).RMSE(1); Sim(2).RMSE(1); Sim(3).RMSE(1);

Sim(4).RMSE(1); Sim(5).RMSE(1)],2);
210 RMSE2 = round(100*[Sim(1).RMSE(2); Sim(2).RMSE(2); Sim(3).RMSE(2);

Sim(4).RMSE(2); Sim(5).RMSE(1)],2);
211 ROM = round(ROM,2);
212 eta_SE = round(100*eta_SE ,2);
213 eta_GB = round(100*eta_GB ,2);
214 Uspring = round(Uspring,3);
215 Unorm = round(100*Unorm,2);
216

217 T2 =
table(Compressions,RMSE1,RMSE2,ROM’,Uspring’,Unorm’,eta_SE’,eta_GB’,’VariableNames’,varNames)

218

219

220 %% SPRING C
221

222 load(’E8.mat’);
223 Sim = E8;

C.4. FILE 03_00 69

224

225 figure
226 for i = 1:length(Sim)
227

228 Rotation = cell2mat(Sim(i).RotN1);
229 Sim(i).Msum = -(cell2mat(Sim(i).M1node) + cell2mat(Sim(i).M2node)); % resulting

absolute moment
230 Sim(i).Mnorm = Sim(i).Msum/max((Sim(i).Msum)); %

normalized moment
231 RotZ = Sim(i).RotZ{1,1};
232 Stressset = Sim(i).Stress{1,1};
233 Maxrotation(i) = max(abs(RotZ(:)));
234 Maxstress(i) = max(abs(Stressset(:)));
235 ROM(i) = Rotation(1)-Rotation(end)
236

237 ef = [0.2 0.4 0.6];
238 len = totlen/(1-ef(i));
239 %________________________
240 % Load Energy Data
241 Shape = cell2mat(Sim(i).Shape);
242 Energy = cell2mat(Sim(i).Energy);
243 for iv = 1:length(Energy(1,:))
244 Sumenergy(iv) = sum(Energy(:,iv));
245 end
246

247 % STRAIN ENERGY
248 Uspring(i) = max(Sumenergy)-min(Sumenergy);
249 Unorm(i) = min(Sumenergy)/max(Sumenergy);
250 Volume = len*sum(Shape)*(len/inc)*thickness;
251 Umass = rho*Volume*g*2*0.5;
252

253 % Metrics
254 eta_SE(i) = E*Uspring(i)/(sigma^2*Volume);
255 eta_SE2(i) = E*Uspring(i)/(Maxstress(i)^2*Volume);
256 eta_GB(i) = 2*rho*g*E*0.5/(eta_SE(i)*sigma^2);
257

258

259 %________________________
260

261 intnr = 200; % interpolation nr
262 for iii = 1:2
263

264 % create interpolation interval
265 newint(1,:) = linspace(-pi/2,pi/2,intnr);
266 newint(2,:) = linspace(-0.5,0.5,intnr);
267

268 % interpolate over ROM
269 Sim(i).Mnormint = interp1(-Rotation,Sim(i).Mnorm,newint(iii,:));
270

271 % Objective function
272 Mobj(iii,:) = sin(newint(iii,:)+pi);
273

274 for ii = 1:length(Sim(i).Mnormint)
275 Sim(i).Err(ii) = ((Sim(i).Mnormint(ii))-Mobj(iii,ii));
276 Sim(i).SE(ii) = ((Sim(i).Mnormint(ii)-Mobj(iii,ii)))^2;
277 end
278

279 Sim(i).RMSE(iii) = sqrt(nansum(Sim(i).SE)/length(~isnan(Sim(i).SE)));
280 Sim(i).MaxE(iii) = max(abs(Sim(i).Err));
281 end

70 C. APPENDIX C - MATLAB CODE

282

283

284 plot(-Rotation,Sim(i).Mnorm,’-’,’LineWidth’,1); hold on
285 xlabel(’ROM [rad]’)
286 ylabel(’Moment (normalised) [-]’)
287 ylim([-1.1 1.1]);
288 end
289

290 plot(newint(1,:),Mobj(1,:),’LineWidth’,2,’color’,’b’); hold on;
291 plot([0.5 0.5],[-1 1.1],’k--’)
292 plot([-0.5 -0.5],[-1 1.1],’k--’)
293

294 legend(’Sim 10: \zeta = 20%’,...
295 ’Sim 11: \zeta = 40%’,...
296 ’Sim 12: \zeta = 60%’,...
297 ’objective’,’location’,’southeast’);
298

299 varNames = {’zeta’,’RMSE1’,’RMSE2’,’ROM’,’Us’,’Un’,’eta_SE’,’eta_GB’};
300 Compressions = {’20’; ’40’; ’60’};
301 RMSE1 = round(100*[Sim(1).RMSE(1); Sim(2).RMSE(1); Sim(3).RMSE(1)],2);
302 RMSE2 = round(100*[Sim(1).RMSE(2); Sim(2).RMSE(2); Sim(3).RMSE(2)],2);
303 ROM = round(ROM,2);
304 eta_SE = round(100*eta_SE ,2);
305 eta_GB = round(100*eta_GB ,2);
306 Uspring = round(Uspring,3);
307 Unorm = round(100*Unorm,2);
308

309 T2 =
table(Compressions,RMSE1,RMSE2,ROM’,Uspring’,Unorm’,eta_SE’,eta_GB’,’VariableNames’,varNames)

310

311 %% GRAPHS
312

313 % load(’E2_output.mat’);
314 % E5 = cell2mat(E2([12 11 10 8 9]));
315 % save(’E5.mat’,’E5’)
316

317 load(’E5.mat’)
318 Sim = E5;
319

320 for iiv = 1:length(Sim)
321

322

323 Energyset = Sim(iiv).Energy{1,1};
324 Stressset = Sim(iiv).Stress{1,1};
325 par = Sim(iiv).parameters{1,1};
326

327 for iv = 1:length(Energyset(1,:))
328 Energy(iv) = sum(Energyset(:,iv));
329 end
330

331 Energystored(iiv) = abs(Energy(end)-Energy(1));
332 Maxstress(iiv) = 1e-6*max(abs(Stressset(:)));
333

334 LT(iiv) = par(2)/par(1);
335

336

337 end
338

339 Volume = (par(1)*par(2)*par(3));
340 Energystoredvolume = Energystored/Volume;

C.4. FILE 03_00 71

341 % Stacking
342 nrsprings = 1/(par(1)+5*par(1));
343

344

345 figure
346 plot(LT,Energystored,’s-’)
347 xlabel(’L/t [-]’)
348 ylabel(’Energy stored [J]’)
349 title(’Energy Geometry relation | Compression 20%’)
350 figure
351 plot(LT,Maxstress,’s-’)
352 xlabel(’L/t [-]’)
353 ylabel(’Max Stress [MPa]’)
354 title(’Stress Geometry relation | Compression 20%’)
355 figure
356 plot(LT,Energystoredvolume,’s-’)
357 xlabel(’L/t [-]’)
358 ylabel(’Energy stored [J/m^3]’)
359 title(’Energy Stored per volume | Compression 20%’)
360 figure
361 yyaxis left
362 plot(Maxstress,Energystoredvolume,’s-’)
363 xlabel(’max stress [MPa]’)
364 ylabel(’Energy stored per volume [J/m^3]’)
365 yyaxis right
366 plot(Maxstress,LT,’s-’)
367 ylabel(’L/t [-]’)
368 title(’Stress Energy relation | Compression 20%’)
369

370 %% Blocksimulation
371

372 m = 6;
373 n = 4;
374 xaxisx = [-2 2];
375 xaxisy = [0 0] ;
376

377 load(’E9.mat’);
378 load(’E10.mat’);
379 % Sim = E9;
380 Sim = E10;
381

382

383 h = figure
384 for i = 1:length(Sim)
385 clear Sumenergy
386

387 Rotation = cell2mat(Sim(i).RotN1);
388 Sim(i).Msum = -(cell2mat(Sim(i).M1node) + cell2mat(Sim(i).M2node)); % resulting

absolute moment
389 Sim(i).Mnorm = Sim(i).Msum/max((Sim(i).Msum)); %

normalized moment
390 RotZ = Sim(i).RotZ{1,1};
391 Stressset = Sim(i).Stress{1,1};
392 Maxrotation(i) = max(abs(RotZ(:)));
393 Maxstress(i) = 1e-6*max(abs(Stressset(:)));
394 Xpos = cell2mat(Sim(i).Xpos);
395 Ypos = cell2mat(Sim(i).Ypos);
396

397 % Load Energy Data
398 Shape = cell2mat(Sim(i).Shape);

72 C. APPENDIX C - MATLAB CODE

399 Energy = cell2mat(Sim(i).Energy);
400 for iv = 1:length(Energy(1,:))
401 Sumenergy(iv) = sum(Energy(:,iv));
402 end
403 Sumenergy(end+1) = Sumenergy(iv);
404 Energynorm = Sumenergy/max(Sumenergy);
405

406 Sabs = 1.5*max(Energy(:));
407 perc = abs(Energy(:,1))/Sabs;
408 new = ceil(perc*256);
409 scaling = jet(256);
410

411 ef = 0.4;
412 len = totlen/(1-ef);
413 % STRAIN ENERGY
414 Uspring(i) = max(Sumenergy)-min(Sumenergy);
415 % Unorm(i) = min(Sumenergy(i,:))/max(Sumenergy(i,:));
416

417 %________________________
418

419

420 h1(i) = subplot(m,n,n*i-3);
421 plot(-Rotation,Sim(i).Mnorm,’-’,’LineWidth’,1); hold on
422 %xlabel(’ROM [rad]’)
423 ylabel(strcat(’Sim-’,sprintf(’%d’,i+8)))
424 ylim([-1.1 1.1]);
425

426 h2(i) = subplot(m,n,n*i-2);
427 plot(-Rotation,Energynorm,’-’,’LineWidth’,1); hold on
428 %xlabel(’ROM [rad]’)
429 %ylabel(’Moment (normalised) [-]’)
430 ylim([min(Energynorm) 1]);
431

432 h3(i) = subplot(m,n,n*i-1);
433

434 animatie1 = plot(Xpos(:,end),Ypos(:,end),’color’,’b’,’LineWidth’,2); hold on
435 animatie2 = plot(Xpos(:,1) ,Ypos(:,1) ,’color’,’r’,’LineWidth’,2);
436 axis off
437

438 h4(i) = subplot(m,n,n*i);
439

440 for k = 1:length(Shape)
441 animatie9a = line([k k],[0 0.5*Shape(k)],’color’,scaling(new(k),:),’LineWidth’,3);
442 animatie9b = line([k k],[0 -0.5*Shape(k)],’color’,scaling(new(k),:),’LineWidth’,3);
443 end
444 colormap(jet(256));
445 axis off
446

447

448

449

450 end
451 h.Name = ’Moment, Energy and Shape’;
452 set(h1(1).Title,’String’,’Moment’);
453 set(h1(6).XLabel,’String’,’Displacement [rad]’);
454 set(h2(1).Title,’String’,’Energy’);
455 set(h2(6).XLabel,’String’,’Displacement [rad]’);
456 set(h3(1).Title,’String’,’Coordinates’);
457 set(h4(1).Title,’String’,’Top view’);

C.5. FILE 01_01 73

C.5. FILE 01_01

1 %% ANSYS SIMULATION PRESTRESSED LEAF SPRING
2 % This simuluation prestresses a leaf spring and rotates both outer ends.
3 % The model describes the situation of a leaf spring being compressed and
4 % rotated by a parallellogram four bar linkage.
5 % On bottom a small script can calculate the closest distance to a nearby
6 % spring.
7

8 % ANSYS WORKING DIR: /CWD,’C:\Users\Roel van Ekeren\OneDrive\Afstuderen\Ansys\09 LSW’
9 % ANSYS READ FILE : /input,B5_LSW,txt

10

11 % clear all
12 % clc
13 % close all
14 % rng(’shuffle’);
15

16

17 %% Directory names
18

19 global dir_ansys fileafs_apdl fileafs_simout parameters shapedata curvedata cadcoor
cadcoorspring

20

21 dir_ansys = ’C:\Program Files\ANSYS Inc\v190\ansys\bin\winx64\ANSYS190.exe’;
22 fileafs_apdl = ’B5_LSW.txt’;
23 fileafs_simout = ’fileafs.simout’;
24 parameters = ’C1_parameters.macro’;
25 shapedata = ’C2_shapedata.txt’;
26 cadcoor = ’C3_cadcoordinates.txt’;
27 cadcoorspring = ’C4_cadcoorspring.txt’;
28 % curvedata = ’C3_curvedata.txt’;
29

30

31 %% PARAMETERS
32 run(’A4_LSW_parameters.m’);
33 run(’A8_LSW_globals.m’);
34

35 %% CHECK FILES
36

37 files = {
38 ’D1_anpar.txt’;...
39 ’D2_coordinates.txt’;...
40 ’D3_results.txt’;...
41 ’D4_elementtable.txt’;...
42 ’D5_energies1.txt’;...
43 ’D6_energies2.txt’;...
44 ’D7_moment1.txt’;...
45 ’D8_stress1.txt’;...
46 ’D9_translationx.txt’;...
47 ’D10_translationy.txt’;...
48 ’D11_forcex.txt’;...
49 ’D12_forcey.txt’;...
50 ’D13_rotationz.txt’;...
51 ’D14_kurvature.txt’;...
52 ’D15_kurvaturej.txt’;...
53 ’D16_ntx.txt’;...
54 ’D17_nty.txt’;...
55

56 ’fileafs.db’;...

74 C. APPENDIX C - MATLAB CODE

57 ’fileafs.DSP’;...
58 ’fileafs.err’;...
59 ’fileafs.esav’;...
60 ’fileafs.full’;...
61 ’fileafs.ldhi’;...
62 ’fileafs.log’;...
63 ’fileafs.mntr’;...
64 ’fileafs.rdb’;...
65 ’fileafs.rst’;...
66 ’fileafs.simout’;...
67

68 ’E1_output.mat’;...
69 };
70

71 for i = 1:length(files)
72 if exist(char(files(i)),’file’)
73 delete(char(files(i)))
74 end
75 fid = fopen(char(files(i)),’w’);
76 fclose(fid);
77 end
78 clear i
79

80 %% CROSSECTION
81 close all;
82

83 X1 = linspace(0,len,inc);
84

85 q = [22.7 31.3 45.5 54.1 68.1 76.1]; % graph 1
86 q = [31.8 40 59 67.7 100]; % for graph 2 and 3
87 % q = [30 40 60 70 100];
88 % q = [15 25 45 55 75 85];
89 % q = [5 20 30 45 60 70 80 95]
90

91 par1 = q(1);
92 par2 = q(2);
93 par3 = q(3);
94 par4 = q(4);
95 par5 = q(5);
96 par6 = q(6);
97

98 maxwidth = 1*(maxw+minw);
99 minwidth = 1*(minw-maxw);

100 shape = ones(1,inc)*maxwidth;
101

102 t1 = round(inc*par1/100);
103 t2 = round(inc*par2/100);
104 t3 = round(inc*par3/100);
105 t4 = round(inc*par4/100);
106 t5 = round(inc*par5/100);
107 t6 = round(inc*par6/100);
108

109 ramp1 = linspace(maxwidth,minwidth,(t2-t1));
110 ramp2 = linspace(minwidth,maxwidth,(t4-t3));
111 ramp3 = linspace(maxwidth,minwidth,(t6-t5));
112

113 shape(1:t1) = maxwidth;
114 shape(t1+1:t2) = ramp1;
115 shape(t2+1:t3) = minwidth;
116 shape(t3+1:t4) = ramp2;

C.5. FILE 01_01 75

117 shape(t4+1:t5) = maxwidth;
118 shape(t5+1:t6) = ramp3;
119 shape(t6+1:end) = minwidth;
120

121 %___
122 %% BUILDING BLOCKS
123 % blocks = 4; %amount of blocks
124 % blen = floor(inc/blocks); %elements per block
125 % blenp = 100/blocks; %percentage of beam
126 % blen = (inc)*blenp/100;
127 % maxwidth = 1*(maxw+minw);
128 % minwidth = 1*(minw-maxw);
129 %
130 % B1 = ones(1,blen)*maxwidth;
131 % B0 = ones(1,blen)*minwidth;
132 %
133 % iii = 1; % alleen aanzetten voor de elementcontrol
134 % combinations = [
135 % B1 B1 B1 B1
136 % B0 B1 B1 B1
137 % B1 B0 B1 B1
138 % B1 B1 B0 B1
139 % B1 B1 B1 B0
140 % B1 B1 B0 B0
141 % B0 B1 B1 B0
142 % B0 B0 B1 B1
143 % B1 B0 B1 B0
144 % B0 B1 B0 B1
145 % B1 B0 B0 B1
146 % B1 B0 B0 B0
147 % B0 B1 B0 B0
148 % B0 B0 B1 B0
149 % B0 B0 B0 B1
150 %];
151 %
152 % randomform = round(rand(blocks,1));
153 % formation = [combinations(iii,:)];
154 % shape = [formation];
155 %
156 %___
157 % RANDOM SPLINE
158

159 % X = abs(rand(7,1));
160 % X = ones(7,1);
161 % X = [1; 1; 1; 0; 1; 0; 0; 0];
162 % X = [0.658;0.083;0.590;0.454;0.170;0.654;0.670];
163 % X = flip(X);
164 % ary = 1*minw+(2*maxw)*X;
165 % arx = linspace(0,len,length(ary));
166 % shape = spline(arx,ary,X1);
167

168 %___
169 % COSINE SHAPE BUILDING BLOCKS
170

171 % close all;
172 % ratio = 15; % percentage of length where pi/2 fits

in.
173 % period = 100/ratio*pi; % period
174 % plen = period/4; % lengte van rise
175 %

76 C. APPENDIX C - MATLAB CODE

176 % t0 = 0;
177 % t1 = 70; %35
178 % t2 = 65;
179 % t3 = 30;
180 %
181 % ps0 = period*(1-t0/100)-pi;
182 % ps1 = period*(1-t1/100); % phase shift
183 % ps2 = period*(1-t2/100)-pi;
184 % ps3 = period*(1-t3/100);
185 %
186 % shape0 = 2*minw+2*maxw*cos(period/len*X1-ps0);
187 % shape1 = 2*minw+2*maxw*cos(period/len*X1-ps1);
188 % shape2 = 2*minw+2*maxw*cos(period/len*X1-ps2);
189 % shape3 = 2*minw+2*maxw*cos(period/len*X1-ps3);
190 %
191 % % e01 = (telem-1)/100*(100-t0); %weghalen bij

normaal
192 % e0 = (telem-1)/100*(100-t0+ratio); %weghalen bij

normaal
193 % e1 = (telem-1)/100*(100-t1);
194 % e2 = (telem-1)/100*(100-t1+ratio);
195 % e3 = (telem-1)/100*(100-t2);
196 % e4 = (telem-1)/100*(100-t2+ratio);
197 % e5 = (telem-1)/100*(100-t3);
198 % e6 = (telem-1)/100*(100-t3+ratio);
199 %
200 % shape1(1:e01) = min(shape1);
201 % shape1(e01:e0) = shape0(e01:e0); %weghalen bij normaal
202 % shape1(e0:e1) = max(shape1);
203 % shape1(e1:e2) = shape1(e1:e2);
204 % shape1(e2:e3) = min(shape0);
205 % shape1(e3:e4) = shape2(e3:e4);
206 % shape1(e4:e5) = max(shape0);
207 % shape1(e5:e6) = shape3(e5:e6);
208 % shape1(e6:end) = min(shape0);
209

210

211 %___
212 % STRAIGHT SHAPE
213

214 % check for different widths: 15, 20, 25, 30
215 % 50, 40, 30, 20,
216 % percentage = (telem-1)/100;
217 %
218 % b1 = 30*percentage;
219 % b2 = 20*percentage;
220 % b3 = 30*percentage;
221 %
222 % shape(1:b1) = max(shape);
223 % shape(b1:b1+b2) = min(shape);
224 % shape(b1+b2:b1+b2+b3) = max(shape);
225 % shape(b1+b2+b3:end) = min(shape);
226 %___
227

228 %___
229 % Curvature of beam
230 % ampl = 0.01; % [m] amplitude of curvature
231 % curve = ampl*sin(X1*(2*pi/len));
232 %___
233

C.5. FILE 01_01 77

234 %______FLIP
235 % shape5 = flip(shape1);
236

237 %______MIRROR
238 % shapegem = (min(shape)+max(shape)/2);
239 % shapemir = ((shape - shapegem)*-1)+shapegem/2;
240 % shape = shapemir;
241

242 %______STRAIGHT
243 % shape(1:end) = max(shape);
244

245 %___
246 % PLOT
247 trueshape1 = 0.5*shape;
248 trueshape2 = -0.5*shape;
249 figure
250 plot(X1,[trueshape1; trueshape2]); hold on
251 axis(’equal’)
252 title(’top view of the spring with varying width’)
253 %___
254

255

256 %% WRITE PARAMETERS IN MACRO AND TXT FILES
257

258 % Vectors to be written to ANSYS
259 vars =

{’Ey’,’nu’,’rho’,’len’,’thickness’,’section’,’inc’,’minw’,’maxw’,’nelem’,’incr’,’loadf’,’steps’,’telem’,’nnodes’,’rot’,’preload’,’prerot1’,’prerot2’,’prerot3’,’prerot4’};
260 x = [E; nu; rho; len; thickness; section; inc; minw; maxw; nelem; incr;

loadf; steps; telem; nnodes; rot; preload; prerot1; prerot2; prerot3; prerot4];
261

262 % write parameters
263 fid_out = fopen(parameters, ’w’);
264 for k = 1:length(vars)
265 fprintf(fid_out, ’%s=%10.8f \r\n’, vars{k}, x(k)) ;
266 end
267 fclose(fid_out);
268

269 % write shapedata
270 fid_out = fopen(shapedata, ’w’);
271 for k1 = 1:length(shape)
272 fprintf(fid_out, ’%1.6f \r\n’, shape(k1)) ;
273 end
274 fclose(fid_out);
275

276 % nodal coordinates txtfile
277 cadcoordinates = [trueshape1;X1;zeros(1,length(X1))];
278 fid_out = fopen(cadcoor, ’w’);
279 for k = 1:length(X1)
280 fprintf(fid_out, ’%10.8f %10.8f %10.8f \r\n’,

cadcoordinates(1,k),cadcoordinates(2,k),cadcoordinates(3,k)) ;
281 end
282 fclose(fid_out);
283

284 % Write curvedata
285 % fid_out = fopen(curvedata, ’w’);
286 % for k2 = 1:length(shape)
287 % fprintf(fid_out, ’%1.6f \r\n’, curve(k2)) ;
288 % end
289 % fclose(fid_out);
290

78 C. APPENDIX C - MATLAB CODE

291 run = ’ready’;
292

293 %% RUN SIMULATION
294 % Delete previous simulation file
295 if exist(’fileafs.lock’, ’file’)
296 delete(’fileafs.lock’);
297 end
298

299 tic
300 % Run program
301 cmd = strcat(’SET KMP_STACKSIZE=2048k & "’, dir_ansys, ’" -b -j fileafs -dir "’, pwd

,’" -i "’, pwd, ’\’, fileafs_apdl, ’" -o "’, pwd, ’\’, fileafs_simout, ’"’);
302 status = dos(cmd);
303 toc
304

305 %% LOAD DATA FROM ANSYS FILES
306

307 % data parameters
308 data1 = load(’D1_anpar.txt’);
309 data2 = load(’D2_coordinates.txt’);
310 data3 = load(’D3_results.txt’);
311 data4 = load(’D4_elementtable.txt’);
312 data5 = load(’D5_energies1.txt’);
313 data6 = load(’D6_energies2.txt’);
314 data7 = load(’D7_moment1.txt’);
315 data8 = load(’D8_stress1.txt’);
316 data9 = load(’D9_translationx.txt’);
317 data10 = load(’D10_translationy.txt’);
318 data11 = load(’D11_forcex.txt’);
319 data12 = load(’D12_forcey.txt’);
320 data13 = load(’D13_rotationz.txt’);
321 data14 = load(’D14_kurvature.txt’);
322 data15 = load(’D15_kurvaturej.txt’);
323

324 data16 = load(’D16_ntx.txt’);
325 data17 = load(’D17_nty.txt’);
326

327

328 if isempty(data2) == true
329 % type fileafs.err
330 disp(’------file not solved------’)
331 RMSE_shift_int = 1;
332 else
333

334

335 %% STRUCTURE DATA
336 n1 = data1(1);
337 n2 = data1(2);
338 n3 = data1(3);
339 n4 = data1(4);
340 n5 = data1(5);
341 n6 = data1(6);
342 n7 = data1(7);
343 n8 = data1(8)+1;
344

345 ntotal = n1+n2+n3+n4+n5+n6+n7+n8;
346 npre = ntotal-n8;
347

348 % Relevant load step (only last step)
349 data2b = data3([1:n8]+npre-1,:);

C.5. FILE 01_01 79

350

351 % Rotations Node 1 and Node 2
352 rotN1 = data2b(:,1)-data2b(1,1); %from zero
353 rotN2 = data2b(:,2)-data2b(1,2); %from zero
354 RotN1 = data2b(:,1);
355 RotN2 = data2b(:,2);
356

357 % Structural moments and forces Node 1 and 2
358 FX1 = data2b(:,3);
359 FY1 = data2b(:,4);
360 MN1 = data2b(:,5);
361 FX2 = data2b(:,6);
362 FY2 = data2b(:,7);
363 MN2 = data2b(:,8);
364

365 % Stresses
366 S = abs(data4(:,1))*10^-6;
367

368 % Initial Positions
369 % Nodal coordinates undeformed
370 X0n = [data2(1,1);data2(3:end,1);data2(2,1)];
371 Y0n = [data2(1,2);data2(3:end,2);data2(2,2)];
372

373 % Element Coordinates undeformed
374 X0e = data2(1:end-1,4);
375 Y0e = data2(1:end-1,5);
376

377 % Displacements and Deformations
378 X_1 = data4(:,4);
379 Y_1 = data4(:,5);
380 X_2 = data4(:,7);
381 Y_2 = data4(:,8);
382 X_3 = data4(:,9);
383 Y_3 = data4(:,10);
384 X_4 = data4(:,11);
385 Y_4 = data4(:,12);
386 X_5 = data4(:,2);
387 Y_5 = data4(:,3);
388 MZ = data4(:,6);
389

390 % Elemental deformation
391 % load step 1
392 Xdisp1 = X0e + X_1;
393 Ydisp1 = Y0e + Y_1;
394 % load step 2
395 Xdisp2 = X0e + X_2;
396 Ydisp2 = Y0e + Y_2;
397 % load step 3
398 Xdisp3 = X0e + X_3;
399 Ydisp3 = Y0e + Y_3;
400 % load step 4
401 Xdisp4 = X0e + X_4;
402 Ydisp4 = Y0e + Y_4;
403 % load step 5
404 Xdisp5 = X0e + X_5;
405 Ydisp5 = Y0e + Y_5;
406

407

408 %% STRUCTURE STEP 5 DATA FOR ANIMATION
409

80 C. APPENDIX C - MATLAB CODE

410 MZ_5 = data7;
411 X_5all = data9;
412 Y_5all = data10;
413 Xpos = X0e+X_5all;
414 Ypos = Y0e+Y_5all;
415 Stress1 = data8;
416 Ene1 = data5;
417 Ene2 = data6;
418 Ene3 = data6-data5(:,end);
419 ForceX = data11;
420 ForceY = data12;
421 RotZ = data13;
422 Kurv = data14;
423

424 parvector = [thickness len maxw+minw];
425

426

427 %% SAVE AND EXPORT DATA
428

429 % elemental data
430 E1output.Xpos = {Xpos};
431 E1output.Ypos = {Ypos};
432 E1output.Stress = {Stress1};
433 E1output.Moment = {MZ_5};
434 E1output.Energy = {Ene2};
435 E1output.ForceX = {ForceX};
436 E1output.ForceY = {ForceY};
437 E1output.RotZ = {RotZ};
438 E1output.Kurv = {Kurv};
439 E1output.Shape = {shape};
440

441 % nodal data
442 E1output.RotN1 = {RotN1};
443 E1output.RotN2 = {RotN2};
444 E1output.Fx1node = {FX1};
445 E1output.Fy1node = {FY1};
446 E1output.M1node = {MN1};
447 E1output.Fx2node = {FX2};
448 E1output.Fy2node = {FY2};
449 E1output.M2node = {MN2};
450

451 % parameter data
452 E1output.parameters = {parvector};
453

454

455

456 save(’E1_output.mat’,’E1output’);
457

458 %% Open the GUI and save file *** turn off when running optimization***
459 % A7_LSWGUI;
460 % hGuiFig = findobj(’Tag’,’Guifig1’,’Type’,’figure’); %find figure
461 % handles = guidata(hGuiFig); %get handles
462 % A7_LSWGUI(’pushbutton1_Callback’,handles.pushbutton1,[],handles); %push plot
463 % A7_LSWGUI(’pushbutton2_Callback’,handles.pushbutton2,[],handles); %push next
464 % A7_LSWGUI(’Save_Callback’,handles.Save,[],handles); %push save
465 % close(A7_LSWGUI)
466 %
467 %% Save new data to larger struct
468 E2 = {E1output};
469 if exist(’E2_output.mat’,’file’)

C.6. FILE 01_02 81

470 fin = load(’E2_output.mat’);
471 fin.E2(end+1,:) = E2;
472 E2 = fin.E2;
473 end
474 save(’E2_output.mat’,’E2’);
475

476 %% Save coordinates of spring to file *** turn off when running optimization ***
477

478 % Springcoor = [Xpos(:,1) Ypos(:,1) zeros(length(Xpos(:,1)),1)]’;
479 %
480 %
481 % % nodal coordinates txtfile
482 %
483 % fid_out = fopen(cadcoorspring, ’w’);
484 % for k = 1:length(Xpos(:,1))
485 % fprintf(fid_out, ’%10.8f %10.8f %10.8f \r\n’,

Springcoor(1,k),Springcoor(2,k),Springcoor(3,k)) ;
486 % end
487 % fclose(fid_out);
488

489 %% calculate closest distance to next spring
490 %
491 % Xpos2 = Xpos;
492 % Ypos2 = Ypos+offs;
493 %
494 % for iv = 1:length(Xpos)
495 %
496 % for iii = 1:length(Xpos)
497 % vectorX = Xpos(iv,:) - Xpos2(iii,:);
498 % vectorY = Ypos(iv,:) - Ypos2(iii,:);
499 % dist(iii,:) = sqrt(vectorX.^2+vectorY.^2);
500 % end
501 % mindist1(iv) = min(dist(:));
502 % dist = [];
503 %
504 % end
505 % mindist = min(mindist1(:));
506 % surfdist = mindist-thickness;
507

508

509 end
510 %% Print Errors
511 type ’fileafs.err’

C.6. FILE 01_02

1 %% FIXED PARAMETERS
2

3 % Finite elements
4 steps = 50; % nr of load steps
5 inc = 100; % nr of lines (odd) % 81 minimum amount of elements
6 nelem = 1; % nr of elements per line
7 nnodes = nelem*inc+1; % total nr of nodes
8 telem = nnodes-1; % total nr of elements
9

10 % Geometry
11 thickness = 0.000200; % [m] thickness of beam
12 totlen = 0.15; % [m] resulting length after prestress

82 C. APPENDIX C - MATLAB CODE

13 ef = 0.4; % [*100%] prestress factor
14 len = totlen/(1-ef); % [m] initial length of beam
15 maxw = 1.2*0.0125; % [m] maximum width = 0.6 m
16 minw = 1.2*0.0375; % [m] minimum width = 0.3 m
17 offs = 0.01; % [m] offset for next stacked spring
18

19 % Loads
20 preload = len-totlen; % [m] distance of prestress
21 rot = 1 ; % [rad] endpoints rotation % change for final angle
22 prerot1 = 0.8;
23 prerot2 = 0.1; % initial position rigth node
24 prerot3 = 0.1; % intiial position left node
25 prerot4 = 1; % rotate to start position % change of initial angle
26 loadf = 0.01; % [Nm] small pertubation load
27

28 % Steel Material RVS 1.4310
29 E = 200*10^9 ; % [Pa] Young’s modulus
30 nu = 0.29; % []Poisson ratio
31 rho = 7800; % [kg/m^3] Density
32 sigma = 1100e6; % MPa
33

34 %Constants
35 g = 9.81;
36

37 % Crossection
38 section = len/mode;
39 incr = round(inc/(mode/2+1));

C.7. FILE 01_03

1 function varargout = A7_LSWGUI(varargin)
2 % A7_LSWGUI MATLAB code for A7_LSWGUI.fig
3 % A7_LSWGUI, by itself, creates a new A7_LSWGUI or raises the existing
4 % singleton*.
5 %
6 % H = A7_LSWGUI returns the handle to a new A7_LSWGUI or the handle to
7 % the existing singleton*.
8 %
9 % A7_LSWGUI(’CALLBACK’,hObject,eventData,handles,...) calls the local

10 % function named CALLBACK in A7_LSWGUI.M with the given input arguments.
11 %
12 % A7_LSWGUI(’Property’,’Value’,...) creates a new A7_LSWGUI or raises the
13 % existing singleton*. Starting from the left, property value pairs are
14 % applied to the GUI before A7_LSWGUI_OpeningFcn gets called. An
15 % unrecognized property name or invalid value makes property application
16 % stop. All inputs are passed to A7_LSWGUI_OpeningFcn via varargin.
17 %
18 % *See GUI Options on GUIDE’s Tools menu. Choose "GUI allows only one
19 % instance to run (singleton)".
20 %
21 % See also: GUIDE, GUIDATA, GUIHANDLES
22

23 % Edit the above text to modify the response to help A7_LSWGUI
24

25 % Last Modified by GUIDE v2.5 07-Jun-2019 11:35:04
26

27 % Begin initialization code - DO NOT EDIT
28 gui_Singleton = 1;

C.7. FILE 01_03 83

29 gui_State = struct(’gui_Name’, mfilename, ...
30 ’gui_Singleton’, gui_Singleton, ...
31 ’gui_OpeningFcn’, @A7_LSWGUI_OpeningFcn, ...
32 ’gui_OutputFcn’, @A7_LSWGUI_OutputFcn, ...
33 ’gui_LayoutFcn’, [] , ...
34 ’gui_Callback’, []);
35 if nargin && ischar(varargin{1})
36 gui_State.gui_Callback = str2func(varargin{1});
37 end
38

39 if nargout
40 [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});
41 else
42 gui_mainfcn(gui_State, varargin{:});
43 end
44 % End initialization code - DO NOT EDIT
45

46

47 % --- Executes just before A7_LSWGUI is made visible.
48 function A7_LSWGUI_OpeningFcn(hObject, eventdata, handles, varargin)
49 % This function has no output args, see OutputFcn.
50 % hObject handle to figure
51 % eventdata reserved - to be defined in a future version of MATLAB
52 % handles structure with handles and user data (see GUIDATA)
53 % varargin command line arguments to A7_LSWGUI (see VARARGIN)
54

55 % Choose default command line output for A7_LSWGUI
56 handles.output = hObject;
57

58 % Update handles structure
59 guidata(hObject, handles);
60

61 % UIWAIT makes A7_LSWGUI wait for user response (see UIRESUME)
62 % uiwait(handles.Guifig1);
63

64 % Create the data to plot.
65 % run(’A1_LSW.m’);
66

67 % assignin(’base’,’handles’,handles)
68 % assignin(’base’,’hObject’,hObject)
69

70 % Axes onzichtbaar maken bij openen
71 axes(handles.axes_position)
72 set(gca, ’visible’, ’off’);
73 axes(handles.axes_moment)
74 set(gca, ’visible’, ’off’);
75 axes(handles.axes_stress)
76 set(gca, ’visible’, ’off’);
77 axes(handles.axes_energy)
78 set(gca, ’visible’, ’off’);
79 axes(handles.axes_shape)
80 set(gca, ’visible’, ’off’);
81 axes(handles.axes_sumenergy)
82 set(gca, ’visible’, ’off’);
83 axes(handles.axes_resultmoment)
84 set(gca, ’visible’, ’off’);
85 axes(handles.axes_forcex)
86 set(gca, ’visible’, ’off’);
87 axes(handles.axes_sumforcex)
88 set(gca, ’visible’, ’off’);

84 C. APPENDIX C - MATLAB CODE

89 axes(handles.axes_forcey)
90 set(gca, ’visible’, ’off’);
91 axes(handles.axes_sumforcey)
92 set(gca, ’visible’, ’off’);
93 axes(handles.axes_rotation)
94 set(gca, ’visible’, ’off’);
95 axes(handles.axes_pgram)
96 set(gca, ’visible’, ’off’);
97 axes(handles.axes_error)
98 set(gca, ’visible’, ’off’);
99 axes(handles.axes_curvature)

100 set(gca, ’visible’, ’off’);
101 axes(handles.axes_resultkurv)
102 set(gca, ’visible’, ’off’);
103

104 % --- Outputs from this function are returned to the command line.
105 function varargout = A7_LSWGUI_OutputFcn(hObject, eventdata, handles)
106 % varargout cell array for returning output args (see VARARGOUT);
107 % hObject handle to figure
108 % eventdata reserved - to be defined in a future version of MATLAB
109 % handles structure with handles and user data (see GUIDATA)
110

111 % Get default command line output from handles structure
112 varargout{1} = handles.output;
113

114

115 % --- Executes on button press in pushbutton1.
116 function pushbutton1_Callback(hObject, eventdata, handles)
117 % hObject handle to pushbutton1 (see GCBO)
118 % eventdata reserved - to be defined in a future version of MATLAB
119 % handles structure with handles and user data (see GUIDATA)
120

121 run(’A8_LSW_globals’)
122 run(’A4_LSW_parameters.m’);
123 load(’C2_shapedata.txt’);
124 load(’D1_anpar.txt’);
125 load(’E1_output.mat’);
126 % load(’E2_output.mat’);
127 % E1output = cell2mat(E2([83]));
128 %__
129 Stress = cell2mat(E1output.Stress);
130 Moment = cell2mat(E1output.Moment);
131 Energy = cell2mat(E1output.Energy);
132 Xpos = cell2mat(E1output.Xpos);
133 Ypos = cell2mat(E1output.Ypos);
134 Shape = cell2mat(E1output.Shape);
135 ForceX = cell2mat(E1output.ForceX);
136 ForceY = cell2mat(E1output.ForceY);
137 Steps = D1_anpar(8);
138 RotZ = cell2mat(E1output.RotZ);
139 Kurv = cell2mat(E1output.Kurv);
140

141 % nodal data
142 RotN1 = cell2mat(E1output.RotN1);
143 RotN2 = cell2mat(E1output.RotN2);
144 Fx1node =cell2mat(E1output.Fx1node);
145 Fy1node =cell2mat(E1output.Fy1node);
146 M1node =cell2mat(E1output.M1node);
147 Fx2node =cell2mat(E1output.Fx2node);
148 Fy2node =cell2mat(E1output.Fy2node);

C.7. FILE 01_03 85

149 M2node =cell2mat(E1output.M2node);
150

151 %__
152

153

154 r1 = RotZ(1,:);
155 r2 = RotZ(end,:);
156 Rotation = (RotZ(1,:));
157 angleoff = mean(r2-r1);
158 Elements = length(Xpos);
159

160 for i = 1:Steps
161 Sumenergy(i) = sum(Energy(:,i));
162 Summoment(i) = Moment(1,i)-Moment(end,i);
163 Sumkurv(i) = Kurv(1,i) -Kurv(end,i);
164 Sumforcex(i) = ForceX(1,i)-ForceX(end,i);
165 Sumforcey(i) = ForceY(1,i)-ForceY(end,i);
166

167 % StrainEnergy(:,i) = (Energy(:,i));
168 end
169

170

171 for i = 1:Steps
172 StrainEnergy(:,i) = 100*(Energy(:,i)/Sumenergy(end));
173 end
174

175 Summomentnodes = abs(M1node+M2node);
176 Summomentnodes2 = -(M1node+M2node);
177

178 % Convert shear force and axial force to global coordinate system
179 FY1 = ForceY(1,:).*cos(r1)+ForceX(1,:).*sin(r1);
180 FX1 = ForceX(1,:).*cos(-r1)+ForceY(1,:).*sin(-r1);
181

182 FY2 = ForceY(end,:).*cos(r1)+ForceX(end,:).*sin(r1);
183 FX2 = ForceX(end,:).*cos(-r1)+ForceY(end,:).*sin(-r1);
184

185 % Calculate Error
186 Mobj = max(Summomentnodes2)*sin(RotN1+pi/2);
187

188 for i = 1:Steps+1
189 Err(i) = 100*(Summomentnodes(i)-Mobj(i))/Mobj(i);
190 SE(i) = ((Summomentnodes(i)-Mobj(i))/Mobj(i))^2;
191 end
192

193 newint = linspace(-RotN1(1),-RotN1(end),100);
194 Err_int = interp1(-RotN1,Err,newint);
195 SE_int = interp1(-RotN1,SE,newint);
196

197

198 % Perfomance Units
199 Perf_moment = max(Summomentnodes(:))/max(Moment(1,:));
200 Perf_error = sqrt(sum(SE_int)/length(SE_int));
201 % Perf_error2 = sqrt(sum(SE)/length(SE));
202 Perf_total = Perf_moment*(1-Perf_error);
203

204 % Standard units
205 Smin = abs(min(Stress(:)));
206 Smax = max(Stress(:));
207 Sabsreal= max([Smax Smin])/10^6;
208 Sabs = 2000000000;

86 C. APPENDIX C - MATLAB CODE

209 next = 0;
210 nextone = 1;
211 spacing = 0.010;
212 spacing2 = 0.010;
213

214 assignin(’base’,’Shape’,Shape)
215 assignin(’base’,’Kurv’,Kurv)
216 assignin(’base’,’Err_int’,Err_int)
217 assignin(’base’,’SE’,SE)
218 assignin(’base’,’SE_int’,SE_int)
219 assignin(’base’,’dist’,spacing)
220 assignin(’base’,’Err’,Err)
221 assignin(’base’,’Steps’,Steps)
222 assignin(’base’,’FX2’,FX2)
223 assignin(’base’,’FY2’,FY2)
224 assignin(’base’,’FX1’,FX1)
225 assignin(’base’,’FY1’,FY1)
226 assignin(’base’,’r1’,r1)
227 assignin(’base’,’r2’,r2)
228 assignin(’base’,’RotN1’,RotN1)
229 assignin(’base’,’RotN2’,RotN2)
230 assignin(’base’,’RotZ’,RotZ)
231 assignin(’base’,’Rotation’,Rotation)
232 assignin(’base’,’next’,next)
233 assignin(’base’,’nextone’,nextone)
234 assignin(’base’,’Stress’,Stress)
235 assignin(’base’,’Moment’,Moment)
236 assignin(’base’,’Energy’,Energy)
237 assignin(’base’,’StrainEnergy’,StrainEnergy)
238 assignin(’base’,’Xpos’,Xpos)
239 assignin(’base’,’Ypos’,Ypos)
240 assignin(’base’,’Shape’,Shape)
241 assignin(’base’,’Sumenergy’,Sumenergy)
242 assignin(’base’,’Summoment’,Summoment)
243 assignin(’base’,’Summomentnodes’,Summomentnodes)
244 assignin(’base’,’Summomentnodes2’,Summomentnodes2)
245 assignin(’base’,’ForceX’,ForceX)
246 assignin(’base’,’ForceY’,ForceY)
247 assignin(’base’,’Sumforcex’,Sumforcex)
248 assignin(’base’,’Sumforcey’,Sumforcey)
249 assignin(’base’,’Elements’,Elements)
250

251 assignin(’base’,’Fx1node’,Fx1node)
252 assignin(’base’,’Fy1node’,Fy1node)
253 assignin(’base’,’M1node’,M1node)
254 assignin(’base’,’Fx2node’,Fx2node)
255 assignin(’base’,’Fy2node’,Fy2node)
256 assignin(’base’,’M2node’,M2node)
257

258

259 axes(handles.axes_position)
260 set(gca, ’visible’, ’on’);
261 axes(handles.axes_moment)
262 set(gca, ’visible’, ’on’);
263 axes(handles.axes_stress)
264 set(gca, ’visible’, ’on’);
265 axes(handles.axes_energy)
266 set(gca, ’visible’, ’on’);
267 axes(handles.axes_shape)
268 set(gca, ’visible’, ’on’);

C.7. FILE 01_03 87

269 axes(handles.axes_sumenergy)
270 set(gca, ’visible’, ’on’);
271 axes(handles.axes_resultmoment)
272 set(gca, ’visible’, ’on’);
273 axes(handles.axes_forcex)
274 set(gca, ’visible’, ’on’);
275 axes(handles.axes_sumforcex)
276 set(gca, ’visible’, ’on’);
277 axes(handles.axes_forcey)
278 set(gca, ’visible’, ’on’);
279 axes(handles.axes_sumforcey)
280 set(gca, ’visible’, ’on’);
281 axes(handles.axes_rotation)
282 set(gca, ’visible’, ’on’);
283 axes(handles.axes_pgram)
284 set(gca, ’visible’, ’on’);
285 axes(handles.axes_error)
286 set(gca, ’visible’, ’on’);
287 axes(handles.axes_curvature)
288 set(gca, ’visible’, ’on’);
289 axes(handles.axes_resultkurv)
290 set(gca, ’visible’, ’on’);
291

292 limx = 1.5; %rotation limit
293 elimx = Elements; %element limit
294 mlimy = 0.3; %moment
295 flimy = 20; %force
296 elimy = 1; %energy
297 selimy = 0.020; %strain energy per element limit
298 strlim = 2000*10^6;
299

300 stringformat = 4;
301 arm = 0.295;
302

303

304 % graph 1
305 axes(handles.axes_position)
306 base1 = plot(Xpos,Ypos,’color’,[0,0,0]+0.5); hold on
307 animatie1 = plot(Xpos,Ypos,’color’,[0,0,0]+0.5);
308 % animatie1c =

plot(Xpos+spacing*sin(Rotation(1)),Ypos+spacing*cos(Rotation(1)),’color’,[0,0,0]+1);
309 % animatie1e =

plot(Xpos*spacing*sin(Rotation(1)),Ypos-spacing*cos(Rotation(1)),’color’,[0,0,0]+1);
310 % xlabel(’x coordinate [m]’)
311 ylabel(’y coordinate [m]’)
312 % ylim([-0.01 0.06])
313 title([’Coordinates | offset:’,num2str(angleoff,1),’ rad | ef: ’, num2str(ef,2)])
314 hold on;
315 axis equal
316 % xlim([0 totlen]);
317

318

319 % graph 2
320 axes(handles.axes_moment)
321 base2 = plot(Moment,’color’,[0,0,0]+0.5); hold on
322 zero1 = plot(zeros(length(Stress),1),’k’);
323 animatie2 = plot(Moment,’color’,[0,0,0]+0.5);
324 ylabel(’Moment [Nm]’);
325 title(’Moment’);
326 ylim([-0.6 0.6]);

88 C. APPENDIX C - MATLAB CODE

327 xlim([1 Elements]);
328 grid on
329

330

331 % graph 3
332 axes(handles.axes_stress)
333 base3 = plot(Stress,’color’,[0,0,0]+0.5); hold on
334 zero1 = plot(zeros(length(Stress),1),’k’);
335 animatie3 = plot(Stress,’color’,[0,0,0]+0.5);
336 xlabel(’element nr [-]’)
337 ylabel(’Stress [MPa]’)
338 title([’Stress | Max: ’, num2str(Sabsreal,stringformat),’ MPa’])
339 grid on
340 ylim([-strlim strlim])
341 xlim([1 Elements]);
342

343 % graph 4
344 axes(handles.axes_energy)
345 base4 = plot(StrainEnergy,’color’,[0,0,0]+0.5); hold on
346 animatie4 = plot(StrainEnergy,’color’,[0,0,0]+0.5);
347 xlabel(’element nr [-]’)
348 ylabel(’Elemental Energy / tot Energy [%]’)
349 title(’Strain Energy | ref: 100 elem’)
350 % ylim([0 4]);
351 xlim([1 Elements]);
352 grid on
353

354 % graph 5
355 axes(handles.axes_sumenergy)
356 base5 = plot(-Rotation,Sumenergy,’color’,[0,0,0]+0.5); hold on
357 animatie5 = plot(-Rotation,Sumenergy,’color’,[0,0,0]+0.5);
358 line5a = line([next next],[0 1],’color’,’red’,’LineStyle’,’-’);
359 xlabel(’Rotation [rad]’)
360 ylabel(’Strain Energy [J]’)
361 title([’Total Potential Energy | Max: ’, num2str(max(Sumenergy(:)),stringformat),’ J’

])
362 ylim([min(Sumenergy(:))-0.1 max(Sumenergy(:))+0.1])
363 xlim([-limx limx])
364 grid on
365

366 % graph 6
367 axes(handles.axes_resultmoment)
368 base6 = plot(-RotN1,Summomentnodes2,’color’,[0,0,0]+0.5); hold on
369 line6a = line([next next],[-mlimy mlimy],’color’,’red’,’LineStyle’,’-’);
370 animatie6 = plot(-RotN1,Summomentnodes2,’color’,[0,0,0]+0.5);
371 % animatie6 = plot(-Rotation,Summoment,’color’,[0,0,0]+0.5);
372 % animatie6b = plot(-Rotation,Moment(1,:));
373 % animatie6c = plot(-Rotation,-Moment(end,:));
374 % summoment1 = plot(-Rotation,(FY1+FY2)/2*totlen);
375 objective = plot(-RotN1,Mobj);
376

377 % nodemoment1 = plot(-Rotation,M1node);
378 % nodemoment2 = plot(-Rotation,M2node);
379 ylabel(’Moment [Nm]’)
380 title([’Moment | Max: ’,num2str(max(Summoment(:)),stringformat),’ Nm’])
381 ylim([-0.2 0.2])
382 xlim([-limx limx])
383 grid on
384 % text(-0.9,0.2,{’Mmax =’ num2str(max(Summoment))})
385 % legend(’Eresult’,’Nresult’,’live’);

C.7. FILE 01_03 89

386

387 % graph 7
388 axes(handles.axes_forcex)
389 base7 = plot(ForceX,’color’,[0,0,0]+0.5); hold on
390 animatie7 = plot(ForceX,’color’,[0,0,0]+0.5);
391 ylabel(’Force [N]’)
392 title(’Axial Force (AF)’)
393 xlim([1 Elements]);
394 ylim([-flimy 0])
395 grid on
396

397 % graph 7b
398 axes(handles.axes_forcey)
399 base7b = plot(ForceY,’color’,[0,0,0]+0.5); hold on
400 animatie7b = plot(ForceY,’color’,[0,0,0]+0.5);
401 ylabel(’Force [N]’)
402 title(’Shear Force (SF)’)
403 xlim([1 Elements]);
404 ylim([-flimy flimy])
405 grid on
406

407

408 % graph 8
409 axes(handles.axes_sumforcex)
410 base8 = plot(-Rotation,Sumforcex,’color’,[0,0,0]+0.5); hold on
411 animatie8 = plot(-Rotation,Sumforcex,’color’,[0,0,0]+0.5);
412 % base8 = plot(-Rotation,FX1,’color’,[0,0,0]+0.5); hold on;
413 animatie81 = plot(-Rotation,ForceX(1,:));
414 animatie82 = plot(-Rotation,-ForceX(end,:));
415 line8a = line([next next],[-max(abs(ForceX(:)))

max(abs(ForceX(:)))],’color’,’red’,’LineStyle’,’-’);
416 % globalfx1 = plot(-Rotation,FX1);
417 % globalfx2 = plot(-Rotation,FX2);
418 ylabel(’Force [N]’)
419 title([’Endpoint AF| Max: ’, num2str(max(ForceX(:)),stringformat),’ N’])
420 grid on
421 ylim([-15 15])
422 xlim([-limx limx])
423

424 % graph 8b
425 axes(handles.axes_sumforcey)
426 base8b = plot(-Rotation,Sumforcey,’color’,[0,0,0]+0.5); hold on
427 animatie8b = plot(-Rotation,Sumforcey,’color’,[0,0,0]+0.5);
428 % base8b = plot(-Rotation,FY1,’color’,[0,0,0]+0.5); hold on;
429 animatie83 = plot(-Rotation,ForceY(1,:));
430 animatie84 = plot(-Rotation,-ForceY(end,:));
431 line8b = line([next next],[min(ForceY(:))

max(ForceY(:))],’color’,’red’,’LineStyle’,’-’);
432 % globalfy1 = plot(-Rotation,FY1);
433 % globalfy2 = plot(-Rotation,FY2);
434 ylabel(’Force [N]’)
435 title([’Endpoint SF | Max: ’, num2str(max(ForceY(:)),stringformat),’ N’])
436 grid on
437 ylim([-10 10])
438 xlim([-limx limx])
439

440

441 global sequence
442 sequence = 1:1:length(RotN1);
443

90 C. APPENDIX C - MATLAB CODE

444 % graph 9
445 axes(handles.axes_shape)
446 for i = 1:length(Shape)
447 animatie9a = line([i i],[0 0.5*Shape(i)]);
448 animatie9b = line([i i],[0 -0.5*Shape(i)]);
449 end
450 colormap(jet(256));
451 title([’Width | SF: ’,num2str(Shape(1)/Shape(end),3)]);
452 h = colorbar(’westoutside’);
453 h.YAxisLocation=’left’;
454 title(h, ’Stress [MPa]’)
455 h.Ticks = linspace(0, 1, 5) ; %Create ticks from zero to 1
456 h.TickLabels = num2cell([0 0.25 0.5 0.75 1]*Sabs*10^-6) ;
457 xlim([1 Elements]);
458 ylim([-0.1 0.1])
459

460 % graph 10
461 axes(handles.axes_rotation)
462 base10 = plot(RotZ,’color’,[0,0,0]+0.5); hold on
463 animatie10 = plot(RotZ,’color’,[0,0,0]+0.5); hold on
464 limit1 = line([0 Elements],[pi/3 pi/3]);
465 limit2 = line([0 Elements],[-pi/3 -pi/3]);
466 title([’Elemental Z Rotation | Max: ’, num2str(max(RotZ(:)),stringformat),’ rad’]);
467 ylabel(’rotation [rad]’);
468 ylim([-pi/2 pi/2])
469 xlim([1 Elements]);
470

471

472

473

474 % graph 11
475 axes(handles.axes_pgram)
476 pgram = plot([0 0 arm*cos(Rotation(1)) arm*cos(Rotation(1)) 0],...
477 [0 totlen totlen+arm*sin(Rotation(1)) arm*sin(Rotation(1)) 0]); hold on;
478 % pgramveer1 = plot(-Ypos,Xpos,’color’,[0,0,0]+0.5);
479 pgramveer2 =

plot(Ypos+0.1*cos(Rotation(1)),totlen-Xpos+0.1*sin(Rotation(1)),’color’,[0,0,0]+0.5);
480 % pgramveer3 =

plot(Ypos+(0.1+1*spacing2)*cos(Rotation(1)),totlen-Xpos+(0.1+1*spacing2)*sin(Rotation(1)),’color’,[0,0,0]+0.5);
481 % pgramveer4 =

plot(Ypos+(0.1+2*spacing2)*cos(Rotation(1)),totlen-Xpos+(0.1+2*spacing2)*sin(Rotation(1)),’color’,[0,0,0]+0.5);
482 % pgramveer5 =

plot(-Ypos+(0.1+3*spacing)*cos(Rotation(1)),Xpos+(0.1+3*spacing)*sin(Rotation(1)),’color’,[0,0,0]+0.5);
483 ylabel(’y coordinate [m]’)
484 ylim([-0.10 0.25])
485 title(’Coordinates’)
486 hold on;
487 xlim([-0.05 0.15]);
488 axis equal
489

490

491 % graph 12
492 axes(handles.axes_error)
493 base12 = plot(-Rotation,Err); hold on;
494 animatie12 = plot(-Rotation,Err);
495 line12 = line([-1 -1],[-40 10],’color’,’red’,’LineStyle’,’-’);
496 title([’Error | RMSE: ’,num2str(Perf_error,3)]);
497 ylabel(’Error [%]’);
498 xlabel(’Rotation [rad]’);
499 xlim([-limx limx]);

C.7. FILE 01_03 91

500 ylim([-40 10])
501

502 % graph 13
503 axes(handles.axes_curvature)
504 base13 = plot(abs(Kurv),’color’,[0,0,0]+0.5); hold on
505 animatie13 = plot(abs(Kurv),’color’,[0,0,0]+0.5); hold on
506 title([’Curvature | Max: ’, num2str(max(abs(Kurv(:))),stringformat),’ [m^{-1}]’]);
507 ylabel(’[Curvature [m^{-1}]’);
508 ylim([0 70])
509 xlim([1 Elements]);
510 grid on
511

512

513

514 % graph 14
515 axes(handles.axes_resultkurv)
516 base14 = plot(-Rotation,Sumkurv,’color’,[0,0,0]+0.5); hold on
517 animatie14 = plot(-Rotation,Sumkurv,’color’,[0,0,0]+0.5);
518 animatie14b = plot(-Rotation,Kurv(1,:));
519 animatie14c = plot(-Rotation,-Kurv(end,:));
520 line14 = line([next next],[-max(abs(Kurv(:)))

max(abs(Kurv(:)))],’color’,’red’,’LineStyle’,’-’);
521 ylabel(’Curvature [Nm]’)
522 title([’Curvature | Max: ’,num2str(max(Sumkurv(:)),stringformat)])
523 ylim([-25 25])
524 xlim([-limx limx])
525 grid on
526

527

528 % graph 15
529 axes(handles.axes_forcesGC)
530 % base8 = plot(-Rotation,FX1,’color’,[0,0,0]+0.5); hold on;
531 % animatie81 = plot(-Rotation,ForceX(1,:));
532 % animatie82 = plot(-Rotation,-ForceX(end,:));
533 % line8a = line([next next],[-max(abs(ForceX(:)))

max(abs(ForceX(:)))],’color’,’red’,’LineStyle’,’-’);
534 globalfy1 = plot(-Rotation,FY1); hold on;
535 globalfy2 = plot(-Rotation,FY2);
536 nodeforce2 = plot(-Rotation,-Fy1node);
537 nodeforce4 = plot(-Rotation,Fy2node);
538 ylabel(’Force [N]’)
539 title([’Global Y Forces’])
540 grid on
541 legend(’eFY1’,’eFY2’,’nfy1’,’nfy2’)
542 % legend(’FX1’,’FX2’,’FY1’,’FY2’)
543 % ylim([-flimy flimy])
544 % xlim([-limx limx])
545

546 axes(handles.axes_forcesXGC)
547 globalfx1 = plot(-Rotation,-FX1); hold on;
548 globalfx2 = plot(-Rotation,-FX2);
549 nodeforce1 = plot(-Rotation,Fx1node);
550 nodeforce3 = plot(-Rotation,-Fx2node);
551 ylabel(’Force [N]’)
552 title([’Global X Forces’])
553 grid on
554 legend(’eFX1’,’eFX2’,’nfx1’,’nfx2’)
555 % graph 16
556 % axes(handles.axes_forcesDIFF)
557 % % base8 = plot(-Rotation,FX1,’color’,[0,0,0]+0.5); hold on;

92 C. APPENDIX C - MATLAB CODE

558 % % animatie81 = plot(-Rotation,ForceX(1,:));
559 % % animatie82 = plot(-Rotation,-ForceX(end,:));
560 % % line8a = line([next next],[-max(abs(ForceX(:)))

max(abs(ForceX(:)))],’color’,’red’,’LineStyle’,’-’);
561 % localfxdiff = plot(-Rotation,ForceX(1,:)-ForceX(end,:));hold on;
562 % localfydiff = plot(-Rotation,ForceY(1,:)-ForceY(end,:));
563 % globalfxdiff = plot(-Rotation,FX1-FX2);
564 % globalfydiff = plot(-Rotation,FY1-FY2);
565 % globalfxdiffnodes = plot(-Rotation,Fx1node+Fx2node,’+-’);
566 % globalfydiffnodes = plot(-Rotation,Fy1node+Fy2node);
567 %
568 %

legend(’localFx’,’localFy’,’Globalfx’,’Globalfy’,’globalnodex’,’globalnodey’);
569 % % xlim([-limx limx])
570 %
571

572 % --- Executes on button press in pushbutton2.
573 function pushbutton2_Callback(hObject, eventdata, handles)
574 % hObject handle to pushbutton2 (see GCBO)
575 % eventdata reserved - to be defined in a future version of MATLAB
576 % handles structure with handles and user data (see GUIDATA)
577

578 run(’A8_LSW_globals’);
579

580 next = next + nextone;
581 perc = abs(Stress(:,next))/Sabs;
582 new = ceil(perc*256);
583 scaling = jet(256);
584

585 assignin(’base’,’next’,next)
586 assignin(’base’,’scaling’,scaling)
587 assignin(’base’,’new’,new)
588 assignin(’base’,’perc’,perc)
589

590 % graph 1
591 axes(handles.axes_position)
592 set(animatie1, ’Xdata’, Xpos(:,next), ’Ydata’,

Ypos(:,next),’color’,’r’,’LineWidth’,2); hold on;
593 set(animatie1c, ’Xdata’, Xpos(:,next)+0.010*sin(Rotation(next)), ’Ydata’,

Ypos(:,next)+0.010*cos(Rotation(next)),’color’,’b’,’LineWidth’,2);
594 set(animatie1e, ’Xdata’, Xpos(:,next)-0.010*sin(Rotation(next)), ’Ydata’,

Ypos(:,next)-0.010*cos(Rotation(next)),’color’,’b’,’LineWidth’,2);
595

596 % graph 2
597 axes(handles.axes_moment)
598 set(animatie2, ’Ydata’, Moment(:,next),’color’,’r’,’LineWidth’,2);
599

600 % graph 3
601 axes(handles.axes_stress)
602 set(animatie3, ’Ydata’, Stress(:,next),’color’,’r’,’LineWidth’,2);
603

604 % graph 4
605 axes(handles.axes_energy)
606 set(animatie4, ’Ydata’, StrainEnergy(:,next),’color’,’r’,’LineWidth’,2);
607

608 % graph 5
609 axes(handles.axes_sumenergy)
610 set(animatie5,’XData’,-Rotation(next),’YData’,Sumenergy(next),’color’,’r’,’Marker’,’square’,’MarkerFaceColor’,’r’);
611 set(line5a, ’Xdata’,[-Rotation(next) -Rotation(next)],’Ydata’,[-max(Sumenergy(:))-0.1

max(Sumenergy(:))+0.1],’LineWidth’,0.3);

C.7. FILE 01_03 93

612

613 % graph 6
614 axes(handles.axes_resultmoment)
615 set(animatie6, ’Ydata’,

Summomentnodes2(next),’XData’,-Rotation(next),’color’,’r’,’Marker’,’square’,’MarkerFaceColor’,’r’);
616 set(line6a, ’Xdata’,[-Rotation(next) -Rotation(next)],’Ydata’,[-mlimy

mlimy],’LineWidth’,0.3);
617

618 % graph 7
619 axes(handles.axes_forcex)
620 set(animatie7, ’Ydata’, ForceX(:,next),’color’,’r’,’LineWidth’,2);
621

622

623 % graph 7b
624 axes(handles.axes_forcey)
625 set(animatie7b, ’Ydata’, ForceY(:,next),’color’,’r’,’LineWidth’,2);
626

627

628 % graph 8
629 axes(handles.axes_sumforcex)
630 set(animatie8, ’Ydata’,

Sumforcex(next),’XData’,-Rotation(next),’color’,’r’,’Marker’,’square’,’MarkerFaceColor’,’r’);
631 set(line8a, ’Xdata’,[-Rotation(next) -Rotation(next)],’Ydata’,[-flimy

flimy],’LineWidth’,0.3);
632

633 % graph 8b
634 axes(handles.axes_sumforcey)
635 set(animatie8b, ’Ydata’,

Sumforcey(next),’XData’,-Rotation(next),’color’,’r’,’Marker’,’square’,’MarkerFaceColor’,’r’);
636 set(line8b, ’Xdata’,[-Rotation(next) -Rotation(next)],’Ydata’,[-flimy

flimy],’LineWidth’,0.3);
637

638 % % graph 9
639 axes(handles.axes_shape)
640 for i = 1:length(Shape)
641 animatie9a = line([i i],[0 0.5*Shape(i)],’color’,scaling(new(i),:),’LineWidth’,3);

hold on
642 animatie9b = line([i i],[0 -0.5*Shape(i)],’color’,scaling(new(i),:),’LineWidth’,3);

hold on
643 end
644

645 % graph 10
646 axes(handles.axes_rotation)
647 set(animatie10,’Ydata’, RotZ(:,next),’color’,’r’,’LineWidth’,2); hold on;
648

649

650 % graph 11
651 axes(handles.axes_pgram)
652 set(pgram,’Ydata’, [0 totlen totlen+arm*sin(Rotation(next)) arm*sin(Rotation(next)) 0

],...
653 ’Xdata’, [0 0 arm*cos(Rotation(next)) arm*cos(Rotation(next)) 0],...
654 ’color’,’k’,’LineWidth’,2); hold on;
655 % set(pgramveer1,’Xdata’, -Ypos(:,next), ’Ydata’,

Xpos(:,next),’color’,’r’,’LineWidth’,2); hold on;
656 set(pgramveer2,’Xdata’, Ypos(:,next)+0.1*cos(Rotation(next)) , ’Ydata’,

totlen-Xpos(:,next)+0.1*sin(Rotation(next)),’color’,’r’,’LineWidth’,2); hold on;
657 % set(pgramveer3,’Xdata’,

Ypos(:,next)+(0.1+spacing2)*cos(Rotation(next)), ’Ydata’,
totlen-Xpos(:,next)+(0.1+spacing2)*sin(Rotation(next)),’color’,’r’,’LineWidth’,2);
hold on;

94 C. APPENDIX C - MATLAB CODE

658 % set(pgramveer4,’Xdata’,
Ypos(:,next)+(0.1+2*spacing2)*cos(Rotation(next)), ’Ydata’,
totlen-Xpos(:,next)+(0.1+2*spacing2)*sin(Rotation(next)),’color’,’r’,’LineWidth’,2);
hold on;

659 % set(pgramveer5,’Xdata’,
-Ypos(:,next)+(0.1+3*spacing2)*cos(Rotation(next)), ’Ydata’,
Xpos(:,next)+(0.1+3*spacing)*sin(Rotation(next)),’color’,’r’,’LineWidth’,2); hold
on;

660

661

662 % graph 12
663 axes(handles.axes_error)
664 set(animatie12,’Xdata’,-Rotation(next),’Ydata’,

Err(next),’color’,’r’,’Marker’,’square’,’MarkerFaceColor’,’r’);hold on;
665 set(line12, ’Xdata’,[-Rotation(next) -Rotation(next)],’Ydata’,[-40

10],’LineWidth’,0.3);
666

667 % graph 13
668 axes(handles.axes_error)
669 set(animatie13, ’Ydata’, abs(Kurv(:,next)),’color’,’r’,’LineWidth’,2);
670

671 % graph 14
672 axes(handles.axes_resultkurv)
673 set(animatie14, ’Ydata’,

Sumkurv(:,next),’XData’,-Rotation(next),’color’,’r’,’Marker’,’square’,’MarkerFaceColor’,’r’);
674 set(line14, ’Xdata’,[-Rotation(next) -Rotation(next)],’Ydata’,[-20

20],’LineWidth’,0.3);
675

676 % DRAW NEW POINTS
677 drawnow
678

679 % go to next point
680 if next == Steps && nextone == 1
681 next = 0;
682 end
683

684 if nextone == -1 && next == 1
685 next = Steps;
686 end
687

688

689

690 % --- Executes on button press in Reverse.
691 function Reverse_Callback(hObject, eventdata, handles)
692 % hObject handle to Reverse (see GCBO)
693 % eventdata reserved - to be defined in a future version of MATLAB
694 % handles structure with handles and user data (see GUIDATA)
695

696

697 global nextone
698 nextone = nextone*-1;
699

700

701 % --- Executes on button press in Save.
702 function Save_Callback(hObject, eventdata, handles)
703 % hObject handle to Save (see GCBO)
704 % eventdata reserved - to be defined in a future version of MATLAB
705 % handles structure with handles and user data (see GUIDATA)
706 ctime = (datetime(’now’));
707 ctime.Format = ’yyMMdd_HHmmss’;

C.8. FILE 01_04 95

708 ctime = char(ctime);
709 plotname = strcat(ctime,’_LSWgui’);
710 fig = gcf;
711 fig.PaperPositionMode = ’auto’;
712

713 saveas(fig,plotname,’svg’)

C.8. FILE 01_04

1 %% all globals
2

3 global elementcontrol compression
4 global E1output Stress1 MZ_5 Ene3 Ene2 rotN1 rotN2
5 global trueshape1 trueshape2 Shape
6 global par1 par2 par3 par4 par5 par6
7 global scaling new perc Smax Sabs
8 global next nextone Steps spacing spacing2
9 global limx mlimy flimy elimy selimy

10 global totlen arm Rotation sequence stringformat Elements
11 global t1 t2 t3 t4 t5 t6 q
12 global animatie1 Xpos Ypos
13 global animatie1b
14 global animatie1c
15 global animatie1d
16 global animatie1e
17 global animatie2 Moment moment1 moment2
18 global animatie3 Stress
19 global animatie4 Energy StrainEnergy
20 global animatie5 Sumenergy line5a
21 global animatie6 Summoment line6a Summomentnodes Summomentnodes2
22 global animatie7 ForceX
23 global animatie7b ForceY
24 global animatie8 line8a Sumforcex globalfx1 FX1
25 global animatie8b line8b Sumforcey globalfy1 FY1
26 global animatie9a
27 global animatie9b Shape RotN1 RotN2
28 global animatie10 RotZ base10a line10
29 global animatie12 Err line12
30 global animatie13 Kurv
31 global animatie14 line14 Sumkurv
32 global M1node M2node Fx1node Fx2node Fy1node Fy2node
33 global pgram pgramveer1 pgramveer2 pgramveer3 pgramveer4 pgramveer5

C.9. FILE 02_01

1 function [mo, di, pm1, pm2] = A14_plotmeasurements(fileleft, fileright, radius, mass,
g, weight,color)

2

3

4

5 m.left = fileleft;
6 m.right = fileright;
7

8 %distances
9 di.mleft = m.left(:,1);

96 C. APPENDIX C - MATLAB CODE

10 di.mright = m.right(:,1);
11

12 di.mleft = flip(di.mleft);
13 di.mright = -di.mright;
14

15 %forces
16 fo.mleft = m.left(:,2);
17 fo.mright = m.right(:,2);
18

19 fo.mleft2 = interp1(di.mleft,fo.mleft,di.mright); %interpolated data
20 fo.mdiff = - fo.mleft2 + fo.mright;
21

22 %plot absolute measurments
23 % figure
24 % plot(di.mleft,fo.mleft); hold on
25 % plot(di.mright,fo.mright); hold on;
26 % plot(di.mright,fo.mdiff); hold on;
27 % legend(’left’,’right’,’difference’)
28

29 % moments minus weight
30 mo.mleft = (fo.mleft2-weight)*radius;
31 mo.mright = (fo.mright-weight)*radius;
32

33 for i = 1:length(mo.mleft)
34 mo.mean(i) = mean([mo.mleft(i) mo.mright(i)]);
35 end
36

37

38 %plot real and comparison
39 % figure;
40 pm1 = plot(10.^-6.*di.mright./radius,mo.mleft,color); hold on
41 pm2 = plot(10.^-6.*di.mright./radius,mo.mright,color); hold on;
42 % plot(10.^-6.*di.mright./radius,mo.mean’,’g’);
43 % legend(’ANSYS’,’Measurements’,’mean’)
44 xlabel(’Rotation [rad]’);
45 ylabel(’Moment [Nm]’);
46 grid on;
47

48 end

D
APPENDIX D - ANSYS APDL CODE

The code presented in this appendix is used to model a 188 Bernoulli beam for large deflections. The code is
run using the MATLAB script from appendix C. More information about the model is presented in appendix
A.

1

2 !__________________________________
3 FINISH
4 /CLEAR,START
5 /FILNAME,fileafs,1
6

7 !__________________________________
8 !setparameters
9

10 *USE, ’C1_parameters.macro’
11

12 !__________________________________
13 !load shape data
14 *DIM,crshape,ARRAY,inc,1
15 *VREAD, crshape(1,1),C2_shapedata,txt,,IJK,inc,1
16 (1F8.4)
17

18 !__________________________________
19 /PREP7
20 !element selection
21 ET, 1, BEAM188
22 ET, 2, BEAM188
23

24 !__________________________________
25 !define crosssections
26 *DO, i, 1, inc
27 SECTYPE, i, BEAM, RECT, , 0
28 SECOFFSET, CENT
29 SECDATA, thickness, crshape(i,1) !thickness,width
30 *ENDDO
31

32 !__________________________________
33 ! Material properties
34 MPTEMP, 1 , 0
35 MPDATA, EX , 1, , Ey
36 MPDATA, PRXY , 1, , nu
37 MPDATA, DENS , 1, , rho
38

97

98 D. APPENDIX D - ANSYS APDL CODE

39 !__________________________________
40 !Define keypoints
41 K,1,0,0
42 *DO,i,1,inc
43 K, i+1 ,(i/inc)*len ,0
44 *ENDDO
45

46 !__________________________________
47 !Define Lines, index on sections
48 *DO,i,1,inc
49 L,i,i+1
50 *ENDDO
51

52 !__________________________________
53 ! Meshing
54 TYPE,1
55

56 *DO,i,1,inc
57 SECNUM,i
58 LSEL,S,LINE, ,i
59 LESIZE,ALL, , ,nelem
60 LMESH,ALL
61 *ENDDO
62

63 !__________________________________
64 !get node number under keypoints 1 and inc+1
65 !then we can put bc on nodes instead of kp
66 KSEL,S,KP,,1
67 NSLK,S
68 *GET, ID_left,NODE,,NUM,MIN
69

70 KSEL,S,KP,,inc+1
71 NSLK,S
72 *GET, ID_right,NODE,,NUM,MIN
73

74 ! Create Dummy node
75 N,500,0,0.11,0
76 N,501,0,0.1,0
77 TYPE,2
78 REAL,2
79 EN,500,500,501
80

81 !__________________________________
82 !BOUNDARY CONDITIONS
83 ALLSEL,ALL
84

85 !Constrain n1 n2
86 D,ID_left,ALL
87 D,ID_right,ALL
88

89 !Hinge n1 n2
90 DDELE,ID_right,ROTZ
91 DDELE,ID_left,ROTZ
92

93 !Free Ux n2
94 DDELE,ID_right,UX
95

96 !Imperfection End moment n1 n2
97 F,ID_left ,MZ,loadf
98 F,ID_right,MZ,loadf

99

99

100 !Uniform pressure on beam
101 !SFBEAM,ALL,2,PRES,1,1
102

103 !Dummy node contrain to hinged
104 D,500,ALL
105 DDELE,500,ROTZ
106

107 ! Couple DOFS
108 CE, 1, 0.0, ID_left, ROTZ, 1, ID_right, ROTZ, -1,500,ROTZ,-1
109

110 /ESHAPE,1
111 /PBC,ALL,,2 !plot the BC, just to check
112 eplot
113

114 !__________________________________
115 /SOLU
116 ANTYPE, 0
117 NLGEOM,ON
118 OUTRES,ALL,ALL
119 NSUBST,steps,,steps
120

121

122 !Load step 1
123 TIME,1
124 D,500,ROTZ,%_FIX% !Make n1 n2 dependent
125 LSWRITE, 1
126

127 !Load step 2
128 TIME,2
129 D,ID_right,UX,-preload !load displacement
130 LSWRITE, 2
131

132 !Load step 3
133 TIME,3
134 D,ID_left,ROTZ,%_FIX%
135 FDELE,ALL,ALL !Remove imperfection
136 LSWRITE, 3
137

138 ! Load step 4: make independent
139 TIME,4
140 DDELE,500,ROTZ !Make n1 n2 independent
141 D,ID_left ,ROTZ,%_FIX% !Fix n1 (and n2) in current rotational position
142 D,ID_right ,ROTZ,%_FIX%
143 LSWRITE, 4
144

145 !Load step 5 !-->rotate right node
146 TIME,5
147 D,ID_right ,ROTZ,prerot2
148 LSWRITE, 5
149

150 !Load step 6 !-->rotate left node
151 TIME,6
152 D,ID_right ,ROTZ,%_FIX% !Fix n1 (and n2) in current rotational position
153 D,ID_left ,ROTZ,prerot3
154 LSWRITE, 6
155

156 !Load step 7 !-->rotate both nodes backwards
157 TIME,7
158 !D,500,ROTZ,%_FIX% !C !Make n1 n2 dependent

100 D. APPENDIX D - ANSYS APDL CODE

159 D,ID_left ,ROTZ,prerot4 !Rotate n1 and n2
160 D,ID_right,ROTZ,prerot4
161 !DDELE,ID_right,ROTZ
162 LSWRITE, 7
163

164 LSSOLVE,1,7
165

166 !Load step 8
167 TIME,8
168 !ARCLEN, ON, 1
169 !DDELE,500,ROTZ !Make n1 n2 independent
170 D,ID_left ,ROTZ,-rot !Rotate n1 (and n2)
171 D,ID_right ,ROTZ,-rot !Rotate n1 (and n2)
172 !DDELE,ID_right,ROTZ
173 !LSWRITE, 8
174 SOLVE
175

176

177

178

179

180

181 !__________________________________
182 /POST1
183

184 !SET,1
185 !PLDISP,1
186 !ANTIME,50,0.1,1,0,1,1,5
187 !/ANFILE, SAVE, LSW5,avi
188

189 ! CREATE ELEMENT TABLE
190 *DIM,out_s,ARRAY,telem,12
191

192 SET,1
193 NSEL,ALL
194 *GET,nsteps1,ACTIVE,0,SET,SBST
195

196 etable,translationx1,U,X
197 *vget,out_s(1,4),elem,,etab,translationx1
198 etable,translationy1,U,Y
199 *vget,out_s(1,5),elem,,etab,translationy1
200

201 !__________________________________
202 ! acquire locations of every node
203 *DIM, out_list, ARRAY, nnodes, 6
204 *VGET,out_list(1,1),NODE,1,LOC,X
205 *VGET,out_list(1,2),NODE,1,LOC,Y
206 *VGET,out_list(1,3),NODE,1,LOC,Z
207 *VGET,out_list(1,4),ELEM,1,CENT,X
208 *VGET,out_list(1,5),ELEM,1,CENT,Y
209 *VGET,out_list(1,6),ELEM,1,CENT,Z
210

211 !WRITE TABLE TO FILE
212 *MWRITE,out_list(1,1),D2_coordinates,txt,,JIK,6,1000,1
213 (6E15.6)
214

215

216 SET,2
217 NSEL,ALL
218 *GET,nsteps2,ACTIVE,0,SET,SBST

101

219

220 etable,translationx2,U,X
221 *vget,out_s(1,7),elem,,etab,translationx2
222 etable,translationy2,U,Y
223 *vget,out_s(1,8),elem,,etab,translationy2
224

225 SET,3
226 NSEL,ALL
227 *GET,nsteps3,ACTIVE,0,SET,SBST
228

229 etable,translationx3,U,X
230 *vget,out_s(1,9),elem,,etab,translationx3
231 etable,translationy3,U,Y
232 *vget,out_s(1,10),elem,,etab,translationy3
233

234 SET,4
235 NSEL,ALL
236 *GET,nsteps4,ACTIVE,0,SET,SBST
237

238

239 etable,translationx4,U,X
240 *vget,out_s(1,11),elem,,etab,translationx4
241 etable,translationy4,U,Y
242 *vget,out_s(1,12),elem,,etab,translationy4
243

244 SET,5
245 NSEL,ALL
246 *GET,nsteps5,ACTIVE,0,SET,SBST
247

248 SET,6
249 NSEL,ALL
250 *GET,nsteps6,ACTIVE,0,SET,SBST
251

252 SET,7
253 NSEL,ALL
254 *GET,nsteps7,ACTIVE,0,SET,SBST
255

256 SET,8
257 NSEL,ALL
258 *GET,nsteps8,ACTIVE,0,SET,SBST
259

260 ! FILL ETABLE
261 etable,bendingstress,LS,1
262 *vget,out_s(1,1),elem,,etab,bendingstress ! ALL STRESSES
263 etable,translationx,U,X
264 *vget,out_s(1,2),elem,,etab,translationx ! X TRANSLATION
265 etable,translationy,U,Y
266 *vget,out_s(1,3),elem,,etab,translationy ! Y TRANSLATION
267 etable,momentz,M,Z
268 *vget,out_s(1,6),elem,,etab,momentz ! Z MOMENT
269

270 !WRITE TABLE TO FILE
271 *MWRITE,out_s(1,1),D4_elementtable,txt,,JIK,40,1000,1
272 (40E15.6)
273

274 ! READ DATA
275 ESEL,ALL
276

277 *DIM, out_ene1 , ARRAY, telem,nsteps2
278

102 D. APPENDIX D - ANSYS APDL CODE

279 *DIM, out_ene2 , ARRAY, telem,nsteps8
280 *DIM, out_momz1, ARRAY, telem,nsteps8
281 *DIM, out_str1 , ARRAY, telem,nsteps8
282 *DIM, out_tx , ARRAY, telem,nsteps8
283 *DIM, out_ty , ARRAY, telem,nsteps8
284 *DIM, out_fx , ARRAY, telem,nsteps8
285 *DIM, out_fy , ARRAY, telem,nsteps8
286 *DIM, out_rotz , ARRAY, telem,nsteps8
287 *DIM, out_kurv , ARRAY, telem,nsteps8
288 *DIM, out_kurvj , ARRAY, telem,nsteps8
289

290 *DIM, out_nodetx , ARRAY, nnodes,nsteps8
291 *DIM, out_nodety , ARRAY, nnodes,nsteps8
292

293 ! calculate potential energy for the preload step (1)
294 *DO,i,1,nsteps2
295 SET,2,i
296 etable,potentialenergy,SENE
297 *vget,out_ene1(1,i),elem,,etab,potentialenergy
298 *ENDDO
299

300 ! calculate potential energy for final step (2)
301 *DO,i,1,nsteps8
302 SET,8,i
303 etable,potentialenergy,SENE
304 *vget,out_ene2(1,i) ,elem,,etab,potentialenergy ! POTENTIAL ENERGY
305 etable,momz1,SMISC,3
306 *vget,out_momz1(1,i),elem,,etab,momz1 ! Z MOMENT
307 etable,str1,SMISC,32
308 *vget,out_str1(1,i) ,elem,,etab,str1 ! ALL STRESSES
309 etable,transx,U,X
310 *vget,out_tx(1,i) ,elem,,etab,transx ! X TRANSLATION
311 etable,transy,U,Y
312 *vget,out_ty(1,i) ,elem,,etab,transy ! Y TRANSLATION
313 etable,forcex,SMISC,14
314 *vget,out_fx(1,i) ,elem,,etab,forcex ! X FORCES
315 etable,forcey,SMISC,19
316 *vget,out_fy(1,i) ,elem,,etab,forcey ! Y FORCES
317 etable,rotz,ROT,Z
318 *vget,out_rotz(1,i) ,elem,,etab,rotz ! Z ROTATION
319 etable,kurv,SMISC,9
320 *vget,out_kurv(1,i) ,elem,,etab,kurv ! Z CURVATURE
321 etable,kurvj,SMISC,22
322 *vget,out_kurvj(1,i) ,elem,,etab,kurvj ! Z CURVATURE
323

324 *VGET,out_nodetx(1,i),NODE,1,U,X
325 *VGET,out_nodety(1,i),NODE,1,U,Y
326 *ENDDO
327

328 *MWRITE,out_ene1(1,1),D5_energies1,txt, ,JIK,nsteps2,telem,1
329 (200E15.6)
330 *MWRITE,out_ene2(1,1),D6_energies2,txt, ,JIK,nsteps8,telem,1
331 (200E15.6)
332 *MWRITE,out_momz1(1,1),D7_moment1,txt, ,JIK,nsteps8,telem,1
333 (200E15.6)
334 *MWRITE,out_str1(1,1),D8_stress1,txt, ,JIK,nsteps8,telem,1
335 (200E15.6)
336 *MWRITE,out_tx(1,1),D9_translationx,txt, ,JIK,nsteps8,telem,1
337 (200E15.6)
338 *MWRITE,out_ty(1,1),D10_translationy,txt, ,JIK,nsteps8,telem,1

103

339 (200E15.6)
340 *MWRITE,out_fx(1,1),D11_forcex,txt, ,JIK,nsteps8,telem,1
341 (200E15.6)
342 *MWRITE,out_fy(1,1),D12_forcey,txt, ,JIK,nsteps8,telem,1
343 (200E15.6)
344 *MWRITE,out_rotz(1,1),D13_rotationz,txt, ,JIK,nsteps8,telem,1
345 (200E15.6)
346 *MWRITE,out_kurv(1,1),D14_kurvature,txt, ,JIK,nsteps8,telem,1
347 (200E15.6)
348 *MWRITE,out_kurvj(1,1),D15_kurvaturej,txt, ,JIK,nsteps8,telem,1
349 (200E15.6)
350

351 *MWRITE,out_nodetx(1,1),D16_ntx,txt, ,JIK,nsteps8,nnodes,1
352 (200E15.6)
353 *MWRITE,out_nodetx(1,1),D17_nty,txt, ,JIK,nsteps8,nnodes,1
354 (200E15.6)
355

356 !__________________________________
357 /POST26
358 TIMERANGE
359 NUMVAR,200
360

361 !__________________________________STORE FORCES AND DISP
362

363 NSOL ,2 ,ID_left ,ROT,Z,phi1
364 NSOL ,3 ,ID_right,ROT,Z,phi2
365

366 *DIM, out_disp, ARRAY, 1000, 2
367 VGET,out_disp(1,1),2
368 VGET,out_disp(1,2),3
369

370 RFORCE,11,ID_left ,F,X,FX1
371 RFORCE,12,ID_left ,F,Y,FY2
372 RFORCE,13,ID_left ,M,Z,M1
373 RFORCE,14,ID_right,F,X,FX2
374 RFORCE,15,ID_right,F,Y,FY2
375 RFORCE,16,ID_right,M,Z,M2
376

377 *DIM, out_forces, ARRAY, 1000, 6
378 VGET,out_forces(1,1),11
379 VGET,out_forces(1,2),12
380 VGET,out_forces(1,3),13
381 VGET,out_forces(1,4),14
382 VGET,out_forces(1,5),15
383 VGET,out_forces(1,6),16
384

385

386 *CFOPEN,D3_results,txt
387 *VWRITE,out_disp(1,1),out_disp(1,2),out_forces(1,1),out_forces(1,2),out_forces(1,3),out_forces(1,4),out_forces(1,5),out_forces(1,6)
388 (8(E15.6))
389 *CFCLOS
390

391 !__________________________________ WRite parameters to file
392 *CFOPEN,D1_anpar,txt
393 *VWRITE,nsteps1,nsteps2,nsteps3,nsteps4,nsteps5,nsteps6,nsteps7,nsteps8,rotnr
394 (1(E15.6))
395 *CFCLOS
396

397

398 !__________________________________

104 D. APPENDIX D - ANSYS APDL CODE

399 FINISH
400 !__________________________________

Faculty of Mechanical, Maritime and Materials Engineering

Master Mechanical Engineering

Track Bio Mechanical Design

	Introduction
	Project Background
	Scope and problem statement
	Relevance
	Thesis objective
	Thesis outline

	Literature review - Comparison of spring force compensation mechanisms literature
	Paper - An intuitive method to design load-displacement characteristics for nonlinear springs in parallelogram linkages
	Discussion
	Literature review
	Thesis Paper
	Method for load-displacement characteristics
	Parameters and boundary conditions
	Simulations
	Gravity Balancing

	Conclusion
	Literature
	Paper
	Appendices

	Recommendations
	Improvements on model
	Prototype and measurements
	Opportunities for future work
	Vision

	Bibliography
	Appendix A
	Parameters of spring design
	Stacking
	Variation of payload
	Materials for spring design
	Strain Energy in loaded beams
	Ideas for future research
	Boundary conditions of the parallelogram
	Width pattern implementation
	Torsion bars

	GUI
	Building blocks
	Prototype and Measurements
	CAD model and construction
	Measurement setup

	ANSYS model
	Setup
	APDL script
	Prestress options

	Tolerances parallelogram

	Appendix B - Additional projects
	Static balancing parallelogram linkage
	Bernoulli-Euler Beam theory
	Volume occupancy of helical springs
	Unstretched spring
	Stretched spring

	Kinematic options microscope stand

	Appendix C - MATLAB code
	Structure of MATLAB files
	File 01_00
	File 02_00
	File 03_00
	File 01_01
	File 01_02
	File 01_03
	File 01_04
	File 02_01

	Appendix D - ANSYS APDL code

