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ABSTRACT

Modeling in applied science and engineering targets increasingly ambitious objectives, which typically yield increasingly complex models.
Despite major advances in computations, simulating such models with exceedingly high dimensions remains a challenge. Even if technically
feasible, numerical simulations on such high-dimensional problems do not necessarily give the simplified insight into these phenomena
that motivated their initial models. Reduced-order models hold more promise for a quick assessment of changes under parameters and
uncertainties, as well as for effective prediction and control. Such models are also highly desirable for systems that are only known in the form
of data sets. This focus issue will survey the latest trends in nonlinear model reduction for equations and data sets across various fields of
applications, ranging from computational to theoretical aspects.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0237494

I. INTRODUCTION

The increasing demand to provide reliable and real-time sim-
ulations of complex physical models has demonstrated the fun-
damental importance of developing advanced numerical methods.
This goes in parallel with the availability of larger and larger
amounts of data, which provide important information on the phe-
nomena to be simulated but require sophisticated computational
techniques to be handled effectively and efficiently.

In this context, data-driven model reduction has the potential
to address these challenges by providing low-dimensional approxi-
mations of complex models to enable tasks such as rapid forecasting,
state estimation, and feedback control. Apart from computational
and numerical efficiency, special considerations are required to
ensure robust and physically meaningful predictions from reduced-
order models.

This Focus Issue presents a collection of works on the devel-
opment, analysis, and implementation of reduction techniques and
surrogate models aimed at replacing computationally expensive
models with more efficient, yet accurate ones learned from data, as
well as from governing equations. A particular emphasis is on how

to properly deal with data and to keep physical interpretability of the
approximate models. To this end, this issue presents a wide range of
computational developments leveraging neural networks, automatic
differentiation, operator inference, as well as theoretical develop-
ments. In several works, this emphasis also manifests in terms of
identification of low-dimensional invariant manifolds that preserve
robust features of the underlying dynamics.

This issue builds upon and complements several important
contributions in literature. An overwhelming majority of model
reduction techniques in the literature fall in the category of
projection-based methods.1,2 These methods project the governing
equations onto linear subspaces and are widely adopted due to sim-
plicity of implementations and developments that have improved
their efficiency over the decades of research.3,4 However, projection-
based methods tacitly assume invariance of projection subspaces,
which is generally not guaranteed for nonlinear systems. In recent
years reduced-order models based on nonlinear approximations
have emerged as a powerful tool to address this limitation. The topic
has seen several important contributions; we refer to Ref. 5 for an
overview.
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From a purely data-driven perspective, the dynamic mode
decomposition (DMD)6 and its extensions7 are particularly well-
suited for an equation-free construction of ROMs for linearizable
dynamics. However, DMD is generally incapable of predicting non-
linearizable phenomena such as multiple isolated steady-states.8

To address these issues, various techniques aim to identify
nonlinear manifolds relevant for nonlinear model reduction. With
limited theoretical understanding of the underlying system, such
nonlinear manifolds may be discovered by training autoencoders on
time-series data.9,10 Other reduction approaches rooted in dynam-
ical systems theory seek to compute low-dimensional, attracting
invariant manifolds. Related methods include equation and data-
driven constructions of spectral submanifolds11–13 that have been
demonstrated to be effective for reducing complex nonlinearizable
phenomena.14

II. SUMMARY OF AREAS COVERED

Numerical approximations based on nonlinear parameteriza-
tions have emerged as a powerful tool for the complexity reduction
of high-dimensional complex problems. These nonlinear param-
eterizations may be used to model invariant manifolds and their
reduced dynamics and for online simulation for unseen parameter
changes. Numerical approximations include online adaptive model
order reduction and neural networks.

In this Focus Issue, Ref. 15 explores the potential usage of graph
neural networks (GNNs) for the simulation of time-dependent par-
tial differential equations in parameter-dependent spatial domains.
This is achieved by constructing surrogate models based on a
data-driven time-stepping scheme where a graph neural network
architecture is used to evolve the system.

Reference 16 addresses the challenges of dealing with the effects
of fast dynamics and non-normal sensitivity mechanisms in tran-
sient dynamics near an underlying manifold. The authors introduce
a parametric class of nonlinear projections described by constrained
autoencoder neural networks in which both the manifold and the
projection fibers are learned from data. Key aspects are invertible
activation functions, biorthogonal weight matrices, and dynamics-
aware cost functions that promote learning of oblique projection
fibers.

In Ref. 17, the identification of nonlinear structure in the data
through a general representation learning problem is used to learn
a nonlinear manifold on which reduced-order models are con-
structed. The matrix operators of the reduced-order model are then
inferred from the data using operator inference.

The focus of Ref. 18 is a judicious selection of data to nonlin-
early adapt the approximate model of time-dependent problems. A
lookahead data-gathering strategy is developed to predict the next
state of the full model for adapting reduced spaces toward dynamics
that are likely to be seen in the immediate future.

Some contributions in this issue focus on specific important
problems arising in fluid dynamics and ecosystems behavior. For
instance, in Ref. 19, model order reduction for the two-dimensional
Rayleigh–Bénard problem is considered in different flow regimes,
with the development of suitable data-driven techniques able to
ensure long-time stability of the solution. The focus of Ref. 20 is
on a dimension-reduction method for analyzing the resilience of

hybrid herbivore–plant–pollinator networks. Prey-predator systems
are considered in Ref. 21 where a fractional-order model and its
discretization are studied to shed light on the role of group effects
and ecosystem stability. The work in Ref. 22 focuses on comput-
ing relative equilibrium states of a superfluid in rotating cylinder as
stationary vortices in the rotating frame. To this end, the authors
develop an automatic differentiation-based technique to minimize
the free energy via gradient-based optimization. They discover rel-
ative equilibria along with low-energy saddle-type solutions and
the associated homoclinic orbits to examine the local nonlinear
dynamics near a minimizing state.

Model order reduction relies on the assumption that the
problems considered are characterized by low-dimensional struc-
tures, at least locally around operating points in the phase space.
For some complex problems, however, the neglected components
associated with such approximations might play a crucial role
in the dynamics. Closure modeling and model correction are
important numerical techniques developed to address this issue.
In this Focus Issue, Ref. 23 pertains to closure models for effi-
cient ensemble prediction of leading-order statistical moments
and probability density functions in multiscale complex turbu-
lent systems. This is achieved via a calibration of the high order
feedback using ensemble solutions of the consistent stochastic
equations.

Reference 24 proposes a model correction framework for
decreasing the discrepancies between reduced model predictions
and observations from the true system of interest. Focusing on
the Lotka–Volterra equations, a stochastic enrichment operator is
embedded into the reduced model: the enrichment operator is
theory-informed, calibrated with observations from the complete
model, and extended to extrapolative combinations of parameters
and initial conditions.

Indeed, discovering the low-dimensional structures associated
with complex nonlinear systems is a challenging task and tech-
niques rooted in dynamical systems theory are particularly inter-
esting for addressing this challenge. References 25–27 pertain to
data-driven approaches for reducing the dimensionality of com-
plex systems using spectral submanifolds (SSMs). More in details,
Ref. 25 deals with low-dimensional inertial manifolds containing the
chaotic attractor of the underlying high-dimensional system. The
reduced dynamics on the SSMs is used to predict chaotic dynam-
ics over a few Lyapunov times and to reproduce long-term statistical
features of the chaotic attractor.

Reference 26 proposes an extended class of SSMs that also
contains invariant manifolds with mixed internal stability types
and of lower smoothness class arising from fractional powers in
their parametrization. This has application in shear flows, dynamic
buckling of beams, and periodically forced nonlinear oscillatory
systems.

On the other hand, the focus of Ref. 27 discusses an equation-
driven approach for SSM-based reduction of nonlinear mechani-
cal systems subject to parametric excitations. The authors develop
expressions for higher-order nonautonomous terms in the param-
eterization of SSMs and their reduced dynamics using a multi
index-based approach able to optimize memory requirements and
the computational procedure. An open-source implementation in
the software package SSMTool is provided.
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III. CONCLUSIONS

The real-time simulation of large-scale nonlinear systems is
a challenging task and requires the development of sophisticated
computational techniques. Indeed, traditional numerical approxi-
mation based on simplified low-resolution models are ineffective in
reproducing such complex dynamics. Reduced-order models hold
promise for a quick assessment of changes under parameters and
uncertainties, as well as for effective prediction and control. This
Focus Issue surveys some of the latest trends in nonlinear model
reduction for equations and data sets across various fields of appli-
cations, ranging from computational to theoretical aspects from a
dynamical systems perspective.
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