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Abstract. For goal-oriented model adaptation a model-error estimator is required to
drive the adaptation process. In recent years publications have appeared on the dual-
weighted residual (DWR) method in the application of model-error estimation in output
functionals. In this paper we study the application of the DWR method for convection-
diffusion problems where hierarchical models are of different type. Omitting the diffusion
operator often results in a singular perturbation problem considering the model residual in
the limit of vanishing diffusion. This is caused by the change of mathematical type of the
model equations and therefore the applied boundary conditions.

In this work we show how a model error estimator is developed for steady and unsteady
convection-diffusion problems. It is found that a weak formulation and weakly imposing
boundary and initial conditions leads to a dual-weighted model-error estimator that also
incorporates boundary residuals.

1 INTRODUCTION

The goal of CFD computations in engineering is to compute certain quantities of in-
terest that are functionals of the solution, e.g. lift and drag. For this one can choose a
suitable fluid-flow model from the class of hierarchical models in which the most simple
model is also the cheapest in the sense of CPU-time. However, a cheap model also results
in a lower accuracy of the quantities of interest. Model adaptation is expected to save
CPU time in problems requiring a large number of CFD computations where a prescribed
accuracy of the functional has to be achieved. To drive a model-adaptation algorithm
a suitable goal-oriented model-error estimator is required, which is the subject of this
research.
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A general approach for deriving a goal-oriented error estimator in finite element ap-
proximations has been developed by Becker and Rannacher [1] and is referred to as the
dual-weighted residual (DWR) method. This work has been extended by Oden and Prud-
homme [8] for goal-oriented model-error estimation in computational mechanics. So far,
the DWR method has been applied to problems where the model complexity varies, for
instance, due to different forms of constitutive relations or modified properties of the
medium considered. In all these cases the hierarchical models are of the same math-
ematical type, e.g., they are all elliptic partial differential equations. Examples are the
modelling of heterogeneous materials [8, 9] and structural mechanics [10]. Also in work on
(steady) flow(-type) problems [2, 3, 8], the hierarchical models are all of the same math-
ematical type. In the steady incompressible flow example by Oden and Prudhomme [8]
the incompressible Navier-Stokes equations are approximated by the Stokes equations in
which the convective term is neglected. In convection-diffusion problems considered by
Braack and Ern [2, 3] the level of sophistication is determined by the diffusion model,
by applying Fick’s law as an approximation of a more accurate multicomponent diffusion
model. In both cases the problem remains elliptic such that the same boundary conditions
apply to both models.

Approximating the convection-diffusion problem by omitting the diffusion in the model
is a more rigorous model simplification. Such a simplification is common in engineering:
many flow problems are solved using the Euler equations, which are obtained when in the
Navier-Stokes equations diffusion and heat conduction are omitted. Since in this case the
highest order derivative is omitted in the equations, the mathematical type changes. In
case of the unsteady equations, e.g., the type changes from parabolic to hyperbolic. For
these problems special attention needs to be payed to constructing the dual problem and
the model-error estimator. This is explained as follows.

In flow-type problems where the diffusion term (controlled by the diffusion parameter
µ) is omitted in the approximating model B0(u0, q) = F0(q) with respect to the sophis-
ticated model B(u, q) = F (q), the model equation changes type. This means that the
sophisticated problem is not similar to the approximating model in the limit of µ → 0:

lim
µ→0

B(u, q) 6= B0(u, q), ∀u, q ∈ U. (1)

These kinds of problems are recognised as singular perturbation problems: the solution of
the Navier-Stokes equations for the limit of zero viscosity is not equal to the solution of
the Euler equations. The application of the DWR-method for goal-oriented model-error
estimation in singular perturbation problems is not that straightforward as in regular
problems. In singular perturbation problems the DWR method fails when boundary
residuals are not taken into account as will be illustrated in this paper.

In the present work we show that imposing initial and boundary conditions weakly in
the problem formulations and modifying the residual estimator leads to a suitable goal-
oriented model-error estimator for convection-diffusion problems by the DWR method.
We illustrate the method, the derivation of the proper adjoint problem and the limitations
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of the DWR method when using the approximating adjoint for problems governed by
the linear convection-diffusion equation. In this problem the approximating model is
obtained by neglecting the diffusive term in the convection-diffusion equation such that
the convection equation remains.

2 The DWR method for convection-diffusion problems

In the present work we give an overview of the DWR framework as it is applied to
a linear convection-diffusion problem. In this problem the approximating model is gov-
erned by neglecting the diffusive term in the convection-diffusion equation (the fine model)
such that the convection equation (the coarse model) remains. The unsteady convection-
diffusion equation is of parabolic type and the convection equation is of hyperbolic type.
Therefore the fine model requires boundary conditions on the inflow- and outflow bound-
aries (independent of the value of the diffusion coefficient) and the coarse model only
requires an inflow boundary condition. In case of a Dirichlet outflow boundary, this re-
sults in a residual (a singular perturbation) on the outflow boundary, even for vanishing
diffusion in the fine model.

2.1 The fine model

Consider the linear convection-diffusion equation on (x, t) ∈ (0, 1) × (0, T ):

ut + aux − µuxx = 0, x ∈ (0, 1), t ∈ (0, T ), (2)

with a the constant convective velocity and µ > 0 the diffusion coefficient. The initial
condition is u(x, 0) = u0(x) from which the boundary conditions are found: u(0, t) =
uL(t) and u(1, t) = uR(t), written as uL and uR, respectively. The weak form of the
problem is found by introducing a test function q without imposing restrictions for q on
the boundaries and at t = 0 and performing integration by parts after which the boundary
and initial conditions are substituted:

B(u, q) = F (q), ∀q ∈ V ⇔
∫ T

0

∫ 1

0

(utq + auxq + µuxqx)dxdt −

∫ T

0

µuxq|
1
0dt +

∫ T

0

µu(0, t)qx(0, t)dt−

∫ T

0

µu(1, t)qx(1, t)dt +

∫ 1

0

u(x, 0)q(x, 0)dx +

∫ T

0

au(0, t)q(0, t)dt−

∫ T

0

au(1, t)q(1, t)dt =

∫ T

0

µuL(t)qx(0, t)dt −

∫ T

0

µuR(t)qx(1, t)dt +

∫ 1

0

u0(x)q(x, 0)dx+

∫ T

0

auL(t)q(0, t)dt −

∫ T

0

auR(t)q(1, t)dt, ∀q ∈ V, (3)

with U and V suitable Banach spaces. It is mentioned that the integrals
∫ T

0
au(0, t)q(0, t)dt

and
∫ T

0
au(1, t)q(1, t)dt are usually not included in the weak form. In this case we de-
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cided to leave both terms in, since they will be required for deriving the goal-oriented
error-estimator.

Suppose we are interested in evaluating the functional Q(u(x, T )) from the solution
u of (3). Such an evaluation can be formulated as solving the (trivial!) constrained
optimisation problem for u ∈ U (see [1]):

Find u ∈ U such that:
Q(u) = inf

v∈M
Q(v), (4)

where M = {v ∈ U ; B(v; q) = F (q), ∀q ∈ V }.
The minimum u corresponds to the stationary point (u, p) ∈ U × V of the Lagrangian

(or modified functional):

L(u, p) := Q(u) + F (p) − B(u, p), (5)

with p the influence function or adjoint variable. We assume that L(u, p) is bounded by
assuming a constant C exists such that:

|L(u, p)| ≤ C||u||U ||p||V . (6)

For the stationary point (u, p) applies that small perturbations in u and p lead to insignif-
icantly small perturbations in the Lagrangian L(u, p):

L′((u, p); (v, q)) = 0, ∀(v, q) ∈ U × V. (7)

Here v indicates the variation in the direction of u and q the variation in the direction of
p. Furthermore, by taking the derivative of Eq. (5) we also have:

L′((u, p); (v, q)) = Q′(u; v) − B′(v, p) + F (q) − B(u, q), ∀(v, q) ∈ U × V, (8)

where the semicolon indicates that Q might be non-linear in u. We seek (u, p) ∈ U × V
such that:

B(u, q) = F (q), ∀q ∈ V, (9)

B′(v, p) = Q′(u; v), ∀v ∈ U. (10)

These equations are the primal and dual problem, respectively. Since the dual initial
and boundary conditions depend on the quantity of interest considered, we continue for
a specific choice of the Q(u).

In case we are interested in the quantity of interest Q(u) =
∫ 1

0
u(x, T )dx we find for (10)

through performing integration by parts:

B′(v, p) = Q′(u; v), ∀v ∈ U ⇔
∫ T

0

∫ 1

0

(−vpt − avpx + µvxpx)dxdt −

∫ T

0

µvpx|
1
0dt −

∫ T

0

µvxp|
1
0dt+

∫ 1

0

v(x, T )p(x, T )dx =

∫ 1

0

v(x, T )dx, (11)

4



J.M. Cnossen, H.Bijl, M.I. Gerritsma and B. Koren

where boundary terms and the initial condition have cancelled. Since Eq. (11) must hold
for all v the initial and boundary conditions for the dual problem are given by:

∫ 1

0

v(x, T )p(x, T )dx =

∫ 1

0

v(x, T )dx ⇒ p(x, T ) = 1, (12)

∫ T

0

µvxp|
1
0dt = 0 ⇒ p(0, t) = p(1, t) = 0. (13)

These initial and boundary conditions are applied to solve the dual problem:

∫ T

0

∫ 1

0

(−vpt − avpx + µvxpx)dxdt −

∫ T

0

µvpx|
1
0dt = 0. (14)

Furthermore Eq. (11) shows that the dual problem is solved backwards in time with the
dual initial condition p(x, T ) = 1.

In strong form the dual problem to be solved is:

−pt − apx − µpxx = 0, ∀(x, t) ∈ (0, 1) × (0, T ), (15)

p(x, T ) = 1, ∀x ∈ (0, 1),

p(0, t) = 0, ∀t ∈ (0, T ),

p(1, t) = 0, ∀t ∈ (0, T ).

2.2 The coarse model problem

Suppose that solving the fine model problem is too hard or expensive and therefore
we want to approximate it by the coarse model. Omitting the diffusion term in the fine
model (2) is a rigorous but common approximation. In many engineering flow problems
the diffusion coefficient is a small parameter and often omitted, e.g. in the Euler equations
with respect to the Navier-Stokes equations. The model-error is defined as e0 = u − u0

with u0 the solution of the approximating model. The coarse model equation in strong
form is given by:

u0t + au0x = 0, x ∈ (0, 1), t ∈ (0, T ), (16)

with the same initial condition as the fine model problem: u0(x, 0) = u0(x). Considering
only sufficiently smooth solutions of Eq. (16) we assume u0 ∈ U . For arbitrary a the
boundary conditions need to be defined such that a boundary condition is given only
at an inflow boundary (incoming characteristic dx/dt = a). With a > 0 we require
u0(0, t) = uL(t) and in case of a < 0 we require u0(1, t) = uR(t). In the weak form this is
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achieved by modifying the implementation of the boundary conditions:

B0(u0, q) = F0(q), ∀q ∈ V ⇔
∫ T

0

∫ 1

0

u0tq + au0xqdxdt +

∫ 1

0

u0(x, 0)q(x, 0)dx +

∫ T

0

a+u0(0, t)q(0, t)dt−

∫ T

0

a−u0(1, t)q(1, t)dt =

∫ 1

0

u0(x)q(x, 0)dx+

∫ T

0

a+uL(t)q(0, t)dt −

∫ T

0

a−uR(t)q(1, t)dt, ∀q ∈ V, (17)

where a+ and a− are defined as:

a+ = max(a, 0), (18a)

a− = min(a, 0). (18b)

Please notice that F0(q) 6= F (q) (compare Eq. (17) and (3)) due to weakly imposing the
boundary and initial conditions. When the hierarchical models are of equal mathematical
type we would have F0(q) = F (q). Since the boundary condition and the initial condition
are imposed weakly, we do not need to constrain q to be zero at x = 0 and t = 0.

In a similar way as for the fine dual problem in the previous section we can derive the
coarse dual problem:

B′
0(v, p0) = Q′(u0; v), ∀v ∈ U, (19)

with p0 the coarse-model influence function or coarse-adjoint variable. With the quantity
of interest Q(u) =

∫ 1

0
u(x, T )dx we find for Eq. (19):

B′
0(v, p0) = Q′(u0; v), ∀v ∈ U, ⇔
∫ T

0

∫

Ω

v(−p0t − ap0x) dx dt +

∫ 1

0

v(x, T )p0(x, T )dx −

∫ T

0

(a − a+)v(0, t)p0(0, t)dt+

∫ T

0

(a − a−)v(1, t)p0(1, t)dt =

∫ 1

0

v(x, T )dx, ∀v ∈ U. (20)

The dual model error is ε0 = p− p0. For a > 0, a− a− = a and a− a+ = 0, then Eq. (20)
reduces to:

∫ T

0

∫ 1

0

v(−p0t − ap0x) dx dt +

∫ 1

0

v(x, T )p0(x, T )dx +

∫ T

0

av(1, t)p0(1, t)dt =

∫ 1

0

v(x, T )dx. (21)

Since Eq. (21) has to hold for all v ∈ U we find as dual initial condition p0(x, T ) = 1
and dual boundary condition p0(1, t) = 0 showing that the boundary condition in the
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coarse dual problem swaps to the other boundary x = 1 with respect to the primal
boundary condition. To conclude, the (homogeneous) coarse dual equation with initial
and boundary conditions in strong form is given by:

−p0t − ap0x = 0, ∀(x, t) ∈ (0, 1) × (0, T ), (22)

p0(x, T ) = 1, ∀x ∈ (0, 1),

p0(1, t) = 0, ∀x ∈ (0, T ).

For a < 0 a similar procedure can be followed and one would find that the dual boundary
condition moves to the boundary x = 0 with the condition: p0(0, t) = 0.

2.3 The error estimator

When the fine or coarse adjoint solution is computed by solving (11) or (20), respec-
tively, the model error in the functional Q(u0) using the approximating solution can be
computed. Therefore first the following residual functionals are defined:

R(u0, q) = F (q) − B(u0, q), q ∈ V, (23)

R̄(u0; p0, v) = Q′(u0; v) − B′(v, p0), v ∈ U, (24)

which are the primal and dual residuals, respectively. A relation between the model error
in the quantity of interest, Q(u) − Q(u0), and the residual functionals (23) is given by
the following a posteriori error representation according to THEOREM 1 in Oden and
Prudhomme [8]:

Q(u) − Q(u0) = R(u0, p0) +
1

2
(R(u0, ε0) + R̄(u0; p0, e0)) + r(e0, ε0) (25)

where ε0 = p − p0 is the dual error and r(e0, ε0) contains integral remainders of order
three:

r(e0, ε0) =
1

2

∫ 1

0

Q′′′(u0 + se0; e0, e0, e0)ds. (26)

This term is zero for a quantity of interest which is linear or quadratic in u. A proof for
this error representation can be found in Oden and Prudhomme [8]. A relation between
the primal and dual residual is easily found by rewriting the dual residual:

R̄(u0; p0, v) = Q′(u0; v) − B′(v, p0) (27)

= Q′(u0; v) − Q′(u; v) + Q′(u; v)− B′(v, p0)

= −[Q′(u; v) − Q′(u0; v)] + Q′(u; v) − B′(v, p0).

For the term between square brackets we use the following (exact) Taylor expansion with
integral remainder:

Q′(u; v) − Q′(u0; v) = Q′(u0 + e0; v) − Q′(u0; v) =

∫ 1

0

Q′′(u0 + se0; e0, v)ds. (28)
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Furthermore we have B ′(v, p) = Q′(u; v) from Eq. (10) such that we obtain:

R̄(u0; p0, v) = −

∫ 1

0

Q′′(u0 + se0; e0, v)ds + B′(v, p) − B′(v, p0). (29)

= −

∫ 1

0

Q′′(u0 + se0; e0, v)ds + B′(v, ε0).

Using B(u, q) = F (q) (Eq. (3)) we can write the primal residual (23) as:

R(u0, q) = B(u, q) − B(u0, q) = B(u − u0, q) = B(e0, q). (30)

For a linear problem one can find through integration by parts that the following relation
holds:

B(e0, q) = B′(e0, q). (31)

Using this in Eq. (30) and taking q = ε0 in (30) and v = e0 in (29) gives the relation
between the primal and dual residual:

R̄(u0; p0, e0) = R(u0, ε0) −

∫ 1

0

Q′′(u0 + se0; e0, e0)ds. (32)

This allows to write for (25):

Q(u) − Q(u0) = R(u0, p0) + R(u0, ε0) −
1

2

∫ 1

0

Q′′(u0 + se0; e0, e0)ds (33)

+ r(e0, ε0)

= R(u0, p0) + R(u0, ε0) + O(e2
0)

= R(u0, p) + O(e2
0),

with the residual R(·, ·) given in Eq. (23). For linear quantities of interest we have the
exact a posteriori error representation:

Q(u) − Q(u0) = R(u0, p0) + R(u0, ε0) = R(u0, p). (34)

In case of non-linear problems, the integral remainders in (32) and r(e0, ε0) also have
contributions from the operator B (see [8]).

Since we have B0(u0, p) − F0(p) = 0 we can add it to (33):

Q(u) − Q(u0) = R(u0, p) + O(e2
0) = (35)

= F (p) − B(u0, p) + B0(u0, p) − F0(p) + O(e2
0),

which allows to split the contributions in the estimator into a contribution from the
inner domain (0, 1)× (0, T ): B0(u0, p)−B(u0, p) and a contribution from the boundaries:
F0(p) − F (p).
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To emphasise the importance of inclusion of boundary terms we first derive the estima-
tor in case the boundary conditions are imposed strongly such that we have F0(p) = F (p).
This is followed by a derivation of the error estimator in case boundary conditions are
imposed weakly. In the examples we illustrate the difference between both estimators.
A linear quantity of interest is considered below, such that the error representation (34)
holds.

2.3.1 Error estimator for strongly imposed boundary conditions

Suppose we did not impose initial and boundary conditions weakly as in the fine
model (3) and the coarse model (17). We then would have the fine model as:

B(u, q) = F (q) ⇔

∫ T

0

∫

Ω

(utq + auxq + µuxqx)dxdt = 0, (36)

(where q(0, t) = q(1, t) = 0 in the strong form) and the coarse model:

B0(u0, q) = F0(q) ⇔

∫ T

0

∫

Ω

u0tq + au0xqdxdt = 0. (37)

Since we have now in fact F (q) = F0(q) = 0 the model-error estimator (35) reduces to (in
case of a linear quantity of interest):

Q(u) − Q(u0) = B0(u0, p) − B(u0, p) =

=

∫ T

0

∫

Ω

u0tp + au0xpdxdt −

∫ T

0

∫

Ω

(u0tp + au0xp + µu0xpx)dxdt =

− µ

∫ T

0

∫

Ω

u0xpxdxdt. (38)

The resulting residual is an inner product of the derivatives of the coarse model solution
and the adjoint solution on the space-time domain weighted by the diffusion coefficient µ.

2.3.2 Error estimator for weakly imposed boundary conditions

Now we derive the estimator for the models where initial and boundary conditions are
imposed weakly. From Eq. (35) we find:

R(u0, p) = B0(u0, p) − B(u0, p) − (F0(p) − F (p)) =
∫ T

0

∫

Ω

µu0xpxdxdt +

∫ T

0

µu0xp|
1
0dt −

∫ T

0

µ(uR(t) − u0(1, t))px(1, t)dt+

∫ T

0

µ(uL(t) − u0(0, t))px(0, t)dt −

∫ T

0

(a − a−)(uR(t) − u0(1, t))p(1, t)dt+

∫ T

0

(a − a+)(uL(t) − u0(0, t))p(0, t)dt, (39)
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where contributions from the inner domain and the boundaries are separated in ‘convec-
tive’ (involving a) and ‘diffusive’ contributions (involving µ):

In case a > 0 we have a − a+ = 0 and a − a− = a, so that equation (39) reduces to:

R(u0, p) = −

∫ T

0

∫

Ω

µu0xpxdxdt +

∫ T

0

µu0xp|
1
0dt−

∫ T

0

µ(uR(t) − u0(1, t))px(1, t)dt+

∫ T

0

µ(uL(t) − u0(0, t))px(0, t)dt −

∫ T

0

a(uR(t) − u0(1, t))p(1, t)dt. (40)

In this equation the convective contribution is restricted to the outflow boundary (x = 1).
In fact, writing a − a+ and a − a− in (39) is somewhat superfluous since the boundary
conditions for the coarse and fine model are equal at inflow boundaries, so the boundary
residual is zero (here: uL(t)−u0(0, t) = 0). As a result we could write a instead of a− a−

and a − a+ in the general estimator (39). The same can be done for a < 0 which yields
that a convective boundary contribution remains at the outflow boundary x = 0.

Comparing the estimator (39) for the weakly imposed boundary conditions with the
estimator (38) derived for the case when boundary conditions are imposed strongly, shows
that imposing the boundary conditions weakly in the model equations results in an esti-
mator that incorporates boundary residuals besides the inner contribution. We will show
in an example with a linear quantity of interest a case where the contribution in the
interior of the computational domain is zero but the boundary contribution takes care of
a correct computation of the error Q(u) − Q(u0). In this case ‘correct’ means that the
error estimator is exact for a linear quantity of interest using the fine adjoint.

2.4 A computationally efficient error estimator

One can imagine that solving the coarse primal problem and the fine dual problem
required to compute the estimator as given in Eq. (39) or (40) is equally expensive in
the sense of CPU time (in case of linear problems) as solving the coarse and fine primal
problem and computing Q(u) − Q(u0) directly. Therefore it is common, see [8, 2, 10], to
approximate the error estimator, solving the coarse dual problem instead, and to compute
only the residual term involving the coarse dual solution, as in Eq. (25). Moreover, to
drive a model adaptation algorithm it is sufficient to have a reasonably accurate estimate
of the error by using:

Q(u) − Q(u0) ≈ R(u0, p0). (41)

For the linear convection diffusion problem described above where p0 is the solution
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of (22) we have:

R(u0, p0) = −

∫ T

0

∫

Ω

µu0xp0xdxdt −

∫ T

0

µ(uR(t) − u0(1, t))p0x(1, t)dt+

∫ T

0

µ(uL(t) − u0(0, t))p0x(0, t)dt. (42)

In the following sections both analytical and numerical examples are given in which both
fine-adjoint and coarse-adjoint based estimators are computed and compared.

3 Example of a steady problem

In this section the goal-oriented model-error estimator is illustrated for the steady linear
convection-diffusion equation. We want to evaluate the quantity of interest Q(u) =

∫

Ω
udx

from the solution of the following problem on Ω = (0, 1):

aux − µuxx = 0, x ∈ Ω, (43a)

u(0) = uL = 0, (43b)

u(1) = uR = 1. (43c)

The equation is made dimensionless by scaling the variables and introducing the Péclet
number:

Pe =
aL

µ
,

where L is a length scale, in this case chosen equal to the length of the domain: L = 1.
The Péclet number indicates the ratio between convection and diffusion in a problem and
is usually large in engineering flow problems. In terms of the Péclet number, Eq. (43)
becomes:

ux −
1

Pe
uxx = 0. (44)

In weak form this is written as:

B(u, q) = F (q) ⇒

∫

Ω

(uxq +
1

Pe
uxqx)dx −

1

Pe
uxq|

1
0 +

1

Pe
u(0)qx(0)−

1

Pe
u(1)qx(1) + u(0)q(0) − u(1)q(1) = −

1

Pe
uRqx(1) − uRq(1). (45)

The analytical solution in terms of the Péclet number, is given by:

u(x) =
−1 + ePex

−1 + ePe
. (46)

For a = 1 and three values of µ the primal fine solution is given in figure 1. The quantity
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Figure 1: Fine and coarse model solutions, steady example.

of interest is then given by:

Q(u) =

∫

Ω

udx =
ePe − 1 − Pe

Pe(−1 + ePe)
. (47)

Now we want to evaluate the quantity of interest based on the approximating model in
which the diffusion is neglected:

aux = 0, x ∈ Ω, (48a)

u(0) = 0, (48b)

or in weak form:

B0(u0, q) = F0(q) ⇒

∫

Ω

au0xqdx + au0(0)q(0) = auLq(0), a > 0. (49)

The solution of this problem is trivial: u0(x) = 0, so we have for the quantity of interest
Q(u0) = 0. Neglecting the second order derivative means that only one boundary condi-
tion is required at the inflow boundary (x = 0 for a > 0). On the inner domain the limit
of the fine model solution for vanishing diffusion µ → 0 (meaning 1/Pe → 0), is equal to
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the coarse model solution:

lim
1/Pe→0

u(x) = u0(x), ∀x ∈ (0, 1).

On the boundary, however, this is not the case:

lim
1/Pe→0

u(1) 6= u0(1),

showing we are dealing with a singular perturbation problem.
To estimate the model error in the quantity of interest Q(u0) by the DWR method we

first derive the dual problems. The fine dual problem in weak form is given by:

B′(v, p) = Q(v) ⇒

∫

Ω

(−vpx +
1

Pe
vxpx)dx −

1

Pe
vpx|

1
0−

1

Pe
vx(1)p(1) +

1

Pe
vx(0)p(0) =

∫

Ω

vdx. (50)

Since this has to hold for all v the boundary conditions are: p(0) = p(1) = 0. The fine
dual solution is then:

p(x) = −
ePe(1−x) − x(1 + ePe) − ePe

a(−1 + ePe)
. (51)

For the coarse dual problem we have:

B′
0(v, p0) = Q(v) ⇒

∫

Ω

−avp0xdx + av(1)p0(1) =

∫

Ω

vdx. (52)

Since (52) has to hold for all v we arrive at the dual equation −ap0x = 1 with the boundary
condition p0(1) = 0 of which the solution is given by p0(x) = (1 − x)/a. This solution is
shown together with the solution of the fine adjoint problem for a > 0 and three values
of Pe in Figure 2.

Figure 2 illustrates that the dual problem is also a singular perturbation problem. The
fine dual solution approaches the coarse adjoint solution on (0, 1) for 1/Pe → 0, but on
the dual outflow boundary a residual remains: lim1/Pe→0 p(0) 6= p0(0).

Now we can evaluate the residual estimator based on the fine and coarse dual solutions
according to Eq. (39) for the steady case. For the fine adjoint-based estimator we obtain
using uL − u0(0) = 0, p(0) = p(1) = 0, uR = 1, u0(1) = 0 and the fact that u0 is constant
on (0, 1):

R(u0, p) = B0(u0, p) − B(u0, p) − (F0(p) − F (p)) (53)

=

∫

Ω

µu0xpdx − µ(uR − u0(1))px(1) + µ(uL − u0(0))px(0) −

a(uR − u0(1))p(1)

= −µ(uR − u0(1))px(1)

= −µ(1 − 0)
(−ePe + 1 + Pe

µPe(−1 + ePe)

)

=
1

Pe
−

1

−1 + ePe
.
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Figure 2: Fine and coarse dual solutions, steady example.

Comparing the result of (53) with the exact error Q(u) − Q(u0) = Q(u) in Eq. (47),
it shows that this estimator is exact. Eq. (53) also illustrates the importance of the
explicit inclusion of boundary contributions in the error estimator: the inner domain
contribution (the first integral in (39)) is zero, so using expression (38) yields a zero
model-error estimate. The residual estimator R(u0, p) is fully determined by the boundary
contribution −µ(uR − u0(1))px(1).

Similarly we find for the coarse adjoint-weighted estimator by neglecting the dual error
ε0 = p − p0 and using uL − u0(0) = 0, uR = 1, u0(1) = 0, p0(1) = 0, p0x(1) = −1/a and
u0 being constant on (0, 1):

R(u0, p0) = B0(u0, p0) − B(u0, p0) − (F0(p0) − F (p0)) (54)

= −µ(uR − u0(1))p0x(1)

=
1

Pe
.

Also the coarse adjoint-weighted estimator (54) has a contribution exclusively from the
boundary in this example. Both fine and coarse adjoint-weighted estimators are shown
in Figure 3 for a = 1 together with the exact error Q(u) − Q(u0). For µ / .3 the dif-
ference between both estimators is negligible and for larger µ the coarse-adjoint weighted
estimator over-estimates the exact error. This over-estimation makes the estimator more
suitable for adaptation purposes than under-estimation.
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Comparing Eq. (54) with Eq. (53) tells us that for large Péclet numbers the fine adjoint-
weighted estimator converges to the coarse adjoint-weighted estimator and that both
estimators are of O( 1

Pe
):

lim
Pe→∞

R(u0, p) = lim
Pe→∞

1

Pe
= R(u0, p0). (55)

This is due to the derivative of p(x) which gives lim1/Pe→0 px(1) = p0x(1), see also Figure 2.
For small Pe the real error is over-estimated by R(u0, p0).
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0.6

.1
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0PSfrag replacements

Q(u) − Q(u0)
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R(u0, p0)

error

1
Pe

Figure 3: Real error and estimators based on fine and coarse dual solution (a = 1), Example 1.

4 Example of an unsteady problem

In this section numerical results are given for an example of the unsteady convection-
diffusion equation on (x, t) ∈ (0, 1)× (0, 0.5). A Galerkin spectral element code in space-
time formulation is used to approximate the primal and dual solutions. The case with
a linear integral quantity of interest Q(u) =

∫

Ω
udx as discussed in the previous sections

is studied. For the first quantity of interest the estimator should be exact using the fine
adjoint as weighting function. A fixed convective velocity a = 1 is used and the initial
condition used is given by the following function:

u0(x) = 1 − cos πx, x ∈ [0, 1]. (56)
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The boundary conditions for the fine model (2) are derived from the initial condition:
u(0) = u0(0) = 0 and u(1) = u0(1) = 2 and the boundary condition for the approximating
model (16) with a > 0 is u0(0) = u0(0) = 0. For both quantities of interest the goal-
oriented error estimators R(u0, p) and R(u0, p0) are evaluated for different values of the
diffusion coefficient µ.

4.1 The Galerkin spectral element model

For the numerical approximation by the Galerkin spectral element method (Galerkin
SEM) the domain (x, t) ∈ (0, 1) × (0, 0.5) is divided into space-time slaps Ωn which are
again divided into Nel non-overlapping sub domains Ωe:

Ωn =

Nel
⋃

e=1

Ωe.

With the finite dimensional subspace Uh ⊂ U with basis φi, the approximating solution
uh ∈ Uh (as well as the dual solution ph ∈ Uh) can be written as:

uh(x, t) =

Nel
∑

e=1

P+1
∑

p=1

ue
pφp(x, t). (57)

For the basis functions φi two-dimensional Lagrangian basis functions through the Gauss-
Lobatto-Legandre nodes (see [4, 5, 7]) are used, based on the element coordinates ~ξ = (ξ, η)
defined as the standard element [−1, 1]2. The order of the polynomials are indicated by
P and Q for the order in space and time, respectively, so the elemental degree of freedom
is (P + 1)(Q + 1).

Numerical integration Numerical integration is performed through Gauss-Lobatto
quadrature based on the Gauss-Lobatto-Legendre roots. The weights for numerical in-
tegration are the corresponding Gauss-Lobatto-Legendre weights (GLL-weights). Gauss-
Lobatto quadrature is exact for polynomials up to degree 2P − 1. The evaluation of an
integral in one dimension, for example in ξ, using Gaussian quadrature is done through
the finite summation:

∫ 1

−1

f(ξ)dξ ≈
P+1
∑

p=1

wpf(ξp), (58)

where wp is the GLL-weight and ξp the p-th GLL-point. To evaluate the integral in global
coordinates (x, t) Eq. (58) is multiplied by the determinant of the mapping from the
physical domain to the standard element.

In constructing the spectral element matrices as well as the computation of the model
error the inner product of two functions needs to be evaluated over an elemental region
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Ωe. To do so, the inner product of two functions u(x, t) and v(x, t) is also computed using
Gauss-Lobatto quadrature:

(u, v)Ωe
=

∫ ∫

Ωe

u(ξ, η)v(ξ, η)|Je|dξdη (59)

≈

P+1
∑

p=1

Q+1
∑

q=1

wpwqu(ξp, ηq)v(ξp, ηq)|J
e
pq| = ~uTW~v,

where ~u and ~v are the vectors containing the values of u and v evaluated in the GLL-roots
and |Je

pq| is the Jacobian determinant evaluated in (ξp, ηq) of element Ωe required for the

mapping from the local coordinates ~ξ to global coordinates (x, t). The diagonal weight
matrix W contains the GLL-weights wp and wq:

Wii = wpwq|J
e
pq|, i = (q − 1)(P + 1) + p, 1 ≤ i ≤ (P + 1)(Q + 1). (60)

The order of the numerical integration through Gaussian quadrature is chosen equal to
the order of the polynomial expansion in (57).

Numerical differentiation Differentiation of uh (and ph) with respect to the global
coordinates x and t is achieved by applying the differentiation matrices Dx and Dt which
are defined in terms of the local coordinates ξ and η by:

Dx = Λ
(∂ξ

∂x

)

Dξ (61a)

Dt = Λ
(∂η

∂t

)

Dη, (61b)

where Λ(·) is a diagonal matrix that evaluates the function between brackets at the
GLL-points. The local differentiation matrices Dξ and Dη contain the derivatives of
the Lagrange interpolants through the GLL-points with respect to the local coordinates ξ
and η, respectively. For more details on Spectral Element Methods the reader is referred
to, e.g., [4, 5, 7].

Stabilisation of convection equation Since Galerkin is unstable for convection (dom-
inated) problems a SUPG stabilisation [6] in space-time is applied with a stabilisation
parameter τ = h2.

The solutions of the primal fine and coarse models (2) and (16) respectively, for the
given initial solution (56) are shown in figure 4. These solutions are computed with 128
elements of second order in space and time. For the time steps we used a CFL number
of .5. The diffusion coefficient used for the solution in Figure 4(a) is µ = .1 such that,
with a = 1, the Péclet number is 10. The boundary layer at boundary x = 1 becomes
thicker/thinner with increasing/decreasing µ. As can be seen in Figure 4 the solution
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of the approximating convection equation clearly lacks the presence of a boundary layer.
The scales of both images differ somewhat since small overshoots exist in the convection
solution. Due to the applied SUPG the overshoots are non-increasing in time.
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(a) Fine model solution, µ = .1.
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(b) Coarse model solution.

Figure 4: Solutions of the fine and coarse model, Nel = 128, P = 2, Q = 2.

4.2 Error estimator for Q(u) =
∫

Ω
udx

In Sections 2.1 and 2.2 the fine and coarse dual problems are derived for the linear
integral quantity of interest Q(u) =

∫

Ω
udx (for which the residual estimator R(u0, p)

should be exact (apart from numerical effects). The dual initial and boundary conditions
are given in Eq. (15) and Eq. (22) for the fine and coarse dual problem, respectively.

The fine and coarse dual solutions on (x, t) ∈ (0, 1) × (0, 0.5) are shown in Figure 5.
The solutions shown are again computed with 128 elements, P = Q = 2. Please note that
the dual problem is solved backwards in time and therefore p(x, T ) = 1, x ∈ (0, 1) is the
dual initial solution. In the dual convection-diffusion solution (the fine dual solution),
Figure 5(a), a boundary layer is visible at the dual outflow boundary x = 0 and the
discontinuity introduced at x = 1 is smeared out by the diffusion. The dual convection
solution (the coarse dual solution) in Figure 5(b) clearly lacks diffusion (apart from ar-
tificial diffusion from the SUPG) and the discontinuity is transported into the domain.
The scales from both plots in Figure 5 differ slightly due to the overshoots in the coarse
dual (convection) solution which are stable in time due to the SUPG stabilisation.

The error estimator in general form for a convection-diffusion problem on (x, t) ∈
(0, 1)×(0, T ) is given by Eq. (39). Since for the problem considered the boundary condition
for the coarse model is equal to the fine model boundary condition: u0(0, t) = uL(t),
the residual contributions on x = 0 are zero. Furthermore, both the second and the
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Figure 5: Dual solutions of the fine and coarse model, Nel = 128, P = 2, Q = 2.

last integral in Eq. (39) are zero. Due to the homogeneous adjoint boundary conditions
p(0, t) = p(1, t) = 0 estimator (39) reduces to:

R(u0, p) = −

∫ T

0

∫

Ω

µu0xpxdxdt −

∫ T

0

µ(uR(t) − u0(1, t))px(1, t)dt. (62)

4.2.1 The discrete error estimator

Using numerical integration and differentiation as given in Eq.s (59) and (61) the error
estimator (62) is approximated in a discrete way where e indicates the element on time-
level k:

R(uh
0 , p

h) = −µ
n

∑

k=1

Nel
∑

e=1

(Dx~u
h
0)

T |keW
k(Dx~p

h)|ke − (63)

µ

n
∑

k=1

Q+1
∑

q=1

wq

(

~uR − ~uh
0(ξP+1, ηq)|Nk

el

)

~ph
x(ξP+1, ηq)|Nk

el

∂y

∂η
|Nk

el
,

where ~uR is a vector with the boundary condition uR in the GLL-roots at ΩNk
el
(ξP+1, ηq),

∂y
∂η

the determinant and ~ph
x(ξP+1, ηq)|

k
Nel

the vector with adjoint derivatives evaluated at

the GLL-points on the right boundary (ξP+1, η) of element ΩNel at time-level k. For
computations which are first-order accurate in time the GLL-points are on both right
corners of the space-time element ΩNel

, or in local coordinates: (1,−1) and (1, 1). The
derivative ~ph

x(ξP+1, ηq)|Nk
el

is computed on element ΩNk
el

at the corresponding time-level k
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by:

~ph
x(ξP+1, ηq)|Nel

=
∂ph

∂ξ
(ξP+1, ηq)|Nel

∂ξ

∂x
|Nel

, (64)

where i = q(P + 1) and 1 < j < (Q + 1)(P + 1).

4.3 Results

The results are given for µ = 10−2 to 1 by the numerical approximation of the real error
Q(uh) − Q(uh

0), the estimated errors R(uh
0 , p

h) and R(uh
0 , p

h
0) and the two contributions

to the estimator as given in Eq. (63). The quantity of interest is computed using the
integration by Gaussian quadrature as in Eq. (58):

Q(uh) =

Nel
∑

e=1

∫ 1

−1

uh(ξ, ηQ+1)|edξ
∂x

∂ξ
≈

Nel
∑

e=1

P+1
∑

p=1

wpu
h(ξp, ηQ+1)|e

∂x

∂ξ
|Nel

. (65)

Furthermore, also the efficiency index is used to indicate the quality of the estimator. A
numerical approximation of the efficiency index is computed by:

Ieff =
R(uh

0 , p
h)

Q(uh) − Q(uh
0)

. (66)

The dual problem for the case described in this section with Q(u) =
∫

Ω
udx is derived

in Section 2 and is subject to homogeneous boundary conditions p(0, t) = p(1, t) = 0.
Together with the dual initial condition p(x, T ) = 1, ∀x ∈ (0, 1) this means a discontinuity
is introduced at the boundaries. For the convection-diffusion problem we experience
numerical difficulties. Discontinuities do not exist in the solution space of problems with
a diffusion operator (this is in fact a non-physical situation). It is, however, important
to have a good approximation of the boundary values since the error estimator requires
the derivative of the dual solution at the boundary x = 1, see Eq. (62). Increasing the
order P of the elements does not improve the resolution of the solution. To maintain the
situation that we have an infinite boundary derivative ph

x(1, T ) but to make the initial
condition more smooth (or in other words: more ‘diffusion’ friendly), the values of the
initial condition are modified on the elements neighbouring the boundaries by a numerical
‘boundary fix’. Instead of the value ph(ξp, T ) = 1 (p = 1 . . . P ) the values in the Gauss-

Lobatto points are computed according to a circle with its centre in ~ξ = (−1, η). This is
illustrated in Figure 6 for the right boundary element of order P = 4 in space. Due to this
modification of the initial adjoint values at the boundary elements the derivative of the
adjoint at the boundaries px(0, T ) and px(1, T ) are infinite. Furthermore the oscillations of
the polynomials are reduced since the jump from the boundary point to the neighbouring
point of the element is eliminated.

The approximation to the real error Q(uh)−Q(uh
0) and the estimated errors by R(uh

0 , p
h)

and R(uh
0 , p

h
0) are shown in Figure 7 for Nel = 128 elements and P = Q = 2. Also the
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Figure 6: Original and modified initial adjoint solution at GLL-points of boundary element, P = 4.

absolute value of the individual contributions to the estimator from the inner domain
and the boundaries are shown. Figure 7(a) shows that the boundary contribution has a
significant contribution in the estimator. The coarse adjoint-weighted estimator R(uh

0 , p
h
0)

for µ = 1 is heavily over-estimated, even by the inner domain contribution only. This
over-estimation can be expected though, since in the steady analytical case the real error
is over-estimated as well for large µ, see Figure 3 (remind that Pe= aL/µ with a = L = 1).

 0

 0.5

 1

 1.5

 2

 2.5

 0.01  0.1  1

real error
estimated error

inner contribution
boundary contribution

PSfrag replacements

er
ro

r

Nel = 128, P = 2, Q = 2

µ

(a) R(uh
0
, ph).

 0

 0.5

 1

 1.5

 2

 2.5

 0.01  0.1  1

real error
estimated error

inner contribution
boundary contribution

PSfrag replacements

er
ro

r

Nel = 128, P = 2, Q = 2

µ

(b) R(uh
0
, ph

0
).

Figure 7: Exact and estimated errors, Nel = 128, P = Q = 2.

The efficiency index is given for both fine and coarse adjoint-weighted estimators, in
figure 8 with h-refinement and in figure 9 for P -refinement. Both figures show the quality
of the fine and coarse adjoint-based estimators with respect to the computed exact error:
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since R(u0, p) is exact in the linear case the numerical approximation R(uh
0 , p

h) should
be close to one, see figure 8(a). Only for µ = 1 there is a slight deviation which moves
closer to one for increasing order P and Q. This affects an accurate computation of the
derivate (64) at the boundary ph

x(1, t) required in the estimator (63). Even with the ‘fix’
described above the estimator is still not exact.

It is found that the coarse adjoint-based estimator R(uh
0 , p

h
0) is a good approximation

of the real error for µ ≤ .1, see figures 8(b) and 9(b). For µ = 1 the error is highly over-
estimated by the coarse adjoint-based estimator R(uh

0 , p
h
0), although the over-estimation

decreases for increasing order P and Q, see figure 9(b). The trend of over-estimation of
the coarse adjoint based estimator for increasing µ is also found in the steady example in
section 3 for a comparable quantity of interest Q(u) =

∫

Ω
udx, see Figure 3.

Furthermore, Figure 8 shows that the coarse adjoint-weighted estimator depends less
on the element size h than the fine adjoint-weighted estimator. This is explained by
the absence of boundary layers in the coarse adjoint solution. Therefore the accuracy of
the solution is not influenced by a good or bad resolution of the boundary layers. As
mentioned before the efficiency (or practical applicability) of the DWR requires the use
of the coarse adjoint. In this example the coarse adjoint-weighted estimator is found to
be a useful and reliable estimator, since:

• it gives a good approximation for µ / 1,

• it shows a low mesh dependence,

• it over-estimates the real error.

The latter makes the coarse adjoint-weighted estimator more useful as driving criterion in
an adaptation algorithm than under-estimation of the real error. Under-estimation might
cause the adaptation process to stop too early due to which the required accuracy of the
quantity of interest might not be achieved.

5 Conclusions

An approach has been presented for using the Dual-Weighted Residual method for
goal-oriented model-error estimation in convection-diffusion problems where the diffusion
term is omitted in the coarse model. In that case we are dealing with singular perturbation
problems in the limit of a vanishing diffusion coefficient since the highest order derivative
is omitted. Due to this change in mathematical character of the problem the required
boundary conditions change and consequently boundary residuals arise between the fine
and coarse model solutions on the outflow boundary.

By imposing the boundary conditions weakly in the problem formulation an estimator
according the DWR method is obtained for Q(u)−Q(u0) that includes both inner domain
and boundary contributions. In the goal-oriented model-error estimator according to the
DWR method we have contributions from the diffusion as well as the convection operator.
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Figure 8: h-Refinement for efficiency index of R(u0, p) and R(u0, p0), P = Q = 2.
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Figure 9: P-Refinement for efficiency index of R(u0, p) and R(u0, p0), N = 128.

The boundary contribution in the model-error estimator has a significant contribution:
in the steady (analytical) example the boundary contribution is in fact the only contri-
bution. However, in the boundary contribution the boundary residual is weighted by the
adjoint derivative which means that in numerical problems an accurate approximation
is required of the adjoint derivative at the boundary. For the dual convection-diffusion
problem this is complicated in case the adjoint boundary conditions are zero while the
initial adjoint solution is not: this introduces a discontinuity at the boundary. A numer-
ical fix of the initial adjoint solution is applied which improves the approximation of the
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adjoint derivative.
Inherent to the efficiency of the DWR method is the use of the coarse adjoint as

weighting function in the residual estimator. Especially in linear problems where solving
the fine dual problem requires equal numerical effort as the fine primal problem (in non-
linear problems the linearised fine dual problem is free of Newton-type linearisations).

As illustrated in the numerical examples computed using a Galerkin SEM applying the
DWR method in unsteady problems is fairly expensive since the dual problem needs to
be solved on the whole space-time domain. In a model adaptation procedure this would
imply that after evaluating the quantity of interest based on the coarse model solution
the dual problem has to be solved back in time to t = 0.

An advantage of the use of the coarse adjoint instead of the fine adjoint as weighting
function is that in neither the primal nor the dual problem physical diffusion is present
such that no mesh refinement is required to capture possible boundary layers. For the
examples treated in this paper the coarse-adjoint based estimator is a good approximation
of the fine adjoint based estimator and also of the real error.
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