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ABSTRACT: Inspection and maintenance (I&M) optimization entails many sources of 

computational complexity, among others, due to high-dimensional decision and state variables in 

multi-component systems, long planning horizons, stochasticity of objectives and constraints, and 

inherent uncertainties in measurements and models. This paper studies how the above can be 

addressed within the context of constrained Partially Observable Markov Decision Processes 

(POMDPs) and Deep Reinforcement Learning (DRL) in a unified fashion. Special emphasis is 

paid on how ordered action structuring of I&M actions can be exploited to decompose the 

respective policy parametrizations in actor-critic DRL schemes, resulting into fully decoupled 

maintenance and inspection actors. It is shown that the Value of Information (VoI) is naturally 

utilized in such POMDP control frameworks, as directly associated with the DRL advantage 

functions that emerge in the gradient computations of the inspection policy parameters. Overall, 

the presented approach, following the natural flow of engineering decisions, results in new 

architectural configurations for policy networks, facilitating more efficient training, while 

alleviating further the dimensionality burdens related to combinatorial definitions of I&M actions. 

The efficiency of the methodology is demonstrated in numerical experiments of a structural system 

subject to corrosion, where the optimization problem is formulated to concurrently account for 

state and model uncertainties as well as long-term probability of failure exceedance constraints. 

Results showcase that the obtained DRL policies considerably outperform standard decision rules.  
 

KEYWORDS: inspection & maintenance; deep reinforcement learning; partially observable 

Markov decision processes; value of information; stochastic constraints; decision theory.  

 

1  INTRODUCTION 

Inspection and maintenance (I&M) planning of 
deteriorating systems can be defined as a dynamic 
programming problem of minimizing life-cycle risks 
and operational costs, through proper allocation of 
available resources. Formulating such a program 
involves two discrete tasks: modeling the deteriorating 
environment and optimizing actions over time. 
Modeling of environment transitions, as these are 
manifested due to chronic or abrupt stressors acting on 
structures, can be efficiently carried out by Bayesian 
networks, e.g. in (Straub, 2009; Andriotis & 
Papakonstantinou, 2018). Based on the constructed or 
learned Bayesian network, optimization is often 
conducted heuristically, through evaluation of 
responses under possible decision rules, with the best 
rule being eventually elected as the final policy. Such 
decision rules typically rely on threshold- or interval-
based criteria (Straub & Faber, 2005; Sørensen, 2009; 

Nielsen & Sørensen, 2011). Other optimization 
formulations in the broader area of infrastructure 
I&M planning, focus on more principled 
mathematical programming processes for 
determination of optimal solutions, such as 
gradient-based, mixed integer programming, and 
evolutionary algorithms, e.g. (Nishijima, et al., 
2009; Ouyang & Madanat, 2004; Su, et al., 2017; 
Yang & Frangopol, 2018).  

Optimal I&M solutions from such formulations 
primarily ensue from static or quasi-static problem 
statements, thus, in principle, approximating the 
optimum that can be provided by a dynamic 
programming-based sequence of decisions. 
Bridging dynamic programming and Dynamic 
Bayesian Networks (DBNs), Partially Observable 
Markov Decision Processes have been successfully 
used for I&M planning (Jiang, et al., 2000; 
Papakonstantinou & Shinozuka, 2014; Schobi & 
Chatzi, 2016). The theoretical elegance of POMDPs 
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is, however, not on par with the complexity of their 
accompanying solution techniques. Alleviating some 
of the emerging complexities, point-based value 
iteration is successfully implemented for optimization 
of medium-sized I&M problems (Papakonstantinou & 
Shinozuka, 2014; Papakonstantinou, et al., 2016 & 
2018, Morato, et al., 2022a).   

In all cases, from policy enumeration to static 
optimization formulations to dynamic programming, 
attempts to trace a globally optimal solution succumb 
to the burdens of dimensionality; long planning 
horizons; stochasticity of objectives and constraints; 
and integration of state and/or model updating, among 
others. To deal with such complex and general 
environments, a coupled Deep Reinforcement 
Learning (DRL) and POMDP framework has been 
introduced in (Andriotis & Papakonstantinou, 2019a, 
2019b), shown to significantly outperform standard 
risk-, condition-, and time-based I&M rules in decision 
analysis of multi-component engineering systems. The 
integrated DRL-POMDP approach has the capacity to 
alleviate issues of dimensionality and uncertainty, 
approximating arbitrarily well globally optimal belief-
conditioned sequential decision paths in long-horizon 
planning problems. This concept is extended in 
(Andriotis & Papakonstantinou, 2021) to facilitate 
incorporation of constraints that bound strictly, or in a 
probabilistic sense, relevant quantities of interest, such 
as risk, failure probability, system availability, budget-
related costs, and other measures.    

In this paper, the above-described multi-agent 
actor-critic DRL approach is further enhanced to 
provide training and planning of improved efficiency. 
Maintenance and inspection policies are decoupled and 
defined by separate actor networks, following the 
natural structuring of decisions inside each decision 
analysis step. Training of the two resulting policy 
networks (actors) is thereby performed independently. 
This architectural feature reduces the original output of 
the policy network that would be formed through 
combinations of I&M actions. Moreover, it uses 
distinct inputs, as it does not condition the two types of 
actions (maintenance and inspection) on the same prior 
probability distribution (belief) over states of structural 
health (as this may be represented by corrosion depth, 
crack size, or other relevant engineering metrics). 

Parametric independence of inspection and 
maintenance policies is computationally reflected in 
the formed gradients of the actors. The inspection-actor 
and the maintenance-actor are trained with their own 

advantage functions, both being linked to the 
centralized life-cycle cost (parametrized by the 
critic network). For the inspection-actor network, it 
is shown that the respective advantage function 
assumes Value of Information (VoI) semantics, i.e., 
conditional VoI is directly leveraged for learning of 
inspection network weights during training. The 
role of VoI, as a metric quantifying the amount the 
decision-maker should be willing to pay for 
structural data prior to maintenance (Thöns & 
Faber, 2011; Pozzi & Der Kiureghian, 2011; 
Andriotis, et al., 2021), is therefore  explicitly 
positioned within the framework of DRL-POMDP 
and within planning of the inspection policy.  

As an application of the developed approach, a 
multi-component steel truss structure subject to 
corrosion deterioration is examined. For the 
optimization problem, the failure risk over the 
service life is constrained, so that the structure 
adheres to prescribed safety levels, whereas the 
deterioration model is also uncertain and gets 
updated in time based on data. Results show the 
suggested approach to outperform standardly 
optimized decision rules. It is additionally shown 
that the new training scheme furnishes advantages 
of theoretical consistency and relies on more 
interpretable metrics, such as VoI, for policy 
training and action selection.  
 

2 I&M OPTIMIZATION WITH POMDPs 

The stochastic objective to be optimized in the I&M 
problem under consideration is the following: 

   :
*

10 0: 0

0

~ ,min
T

t
t t t t

t

c a oV a


  








 
 
b        (1) 

where V * is the optimal expected life-cycle cost; b0 
is the initial probability distribution of the system 
states/parameters; ct is the cost at time step t; T is the 
length of service life; γ is a discount factor in (0,1);  
at = (aI,t, aM,t) ϵ A=AI×AM is an inspection (aI,t) and 
maintenance (aM,t) action at time step t; ot ϵ Ω is an 
observation of structural health at time t; and π ϵ Π 
is a policy (decision rule). Policy, π, is a function 
that maps past observations and actions to a new 
action. As such, at best, an optimal policy may 
consider the entire history of actions and 
observations up to each time step t, (o0:t,a0:t-1), to 
output an action at.  Expectation of Eq. (1) is taken 
over possible states s ϵ S, as reached through 
transitions e ϵ Ꜫ, and the action outcomes. 
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The cost function, ct, depends on states and actions 
and is decomposed into sub-costs: 

maintenance inspection risk

( , , ) ( ) ( ) ( , )  I M M M I I R Mc s a a c a c a c s a      (2) 

 

Additional sub-costs can be included in this class of 
problems, such as scheduled shutdown costs and/or 
unavailability costs (Andriotis & Papakonstantinou, 
2021). In case life-cycle is considered in its entirety, 
the cost function at time step 0 and T can also include 
initial and terminal costs such as design/construction 
and decommissioning costs, respectively (Morato, et 
al., 2022b). Such sub-costs are omitted here. 

The sequence of random variable realizations and 
decisions within each step is shown in Figure 1. 
Accordingly, the computational tasks undertaken 
within each step consist of an optimal state control 
task; an uncertainty propagation (prediction) task; a 
Value of Information (VoI) maximization task; and a 
state/model updating task. POMDPs seek globally 
optimal solutions over a multi-step horizon, unifying 
the above tasks. In a POMDP, states representing the 
condition of structural health and/or model parameters 
are partially observable to the decision-maker, i.e., 
modeled as latent random variables (Papakonstantinou 
& Shinozuka, 2014; Schobi & Chatzi, 2016). 
Collected observations through inspections and 
monitoring are conditioned on these states and are 
used to update their respective priors. This forward 
filtering operation is herein described by a Bayesian 
update:  

   ' ' Pr ' | ', , ,I Mb s s o a a b  
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where bt is the probability distribution over S at 
time t, and (⸱)′ is (⸱) at the next time step. Based on 
this belief update, the Bellman equation, describing 
the optimal value of the objective function of Eq. 
(1), can be written as: 
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where VoInet denotes the net Value of Information 

(VoI) associated with inspection action aI : 
 

     * * 'Ma
net I o IVoI a cV V    b b              (5) 

 

Thus, Eq. (4) describes that following execution of 
a maintenance action aM, under an optimal POMDP 
policy, inspections aI are chosen based on the net 
VoI (Andriotis, et al., 2021). Within the 
mathematical principles of POMDPs, this assures 
non-negativity of VoI both at every decision step 
and  over the entire horizon of decisions. 
 

2.1 Optimization under life-cycle risk constraints 

Consideration of constraints in the decision 

Figure 1. Recurrence of sequential decisions, random variables, and computational steps in inspection and 

maintenance planning of deteriorating engineering systems. 
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optimization problem enables a policy to control the 
deterioration of structural health while satisfying 
pragmatic desired or required targets on some 
quantities of interest, as these for example relate to 
maintenance costs, risks, etc. These quantities are not 
necessarily bounded at every single step, in general, 
but rather over longer horizons. Some types of 
constraints may also be perceived only stochastically, 
as they depend on the underlying stochastic processes 
that govern the deterioration.  

An example of such a type of constraints, which is 
of interest to this work, is bounding the failure 
probability or risk over the service life of a structure. 
The need for a stochastic formulation of this constraint 
type can be understood if one notes that the probability 
of failure over multiple time steps is updatable based 
on observations at instances where inspection actions 
are prescribed by the policy. Thereby, different 
realizations of a policy, producing different 
observation sequences, yield different trajectories of 
probability of failure. Accordingly, the expected 
cumulative risk is herein bounded as: 

 
1 0: 0: 0: 0:
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0
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where cF is the failure cost, PFt is the failure probability 
up to time t, and 

ult  is a prescribed life-cycle risk 
tolerance. A broader family of constraints and how 
these can be implemented in a POMDP/DRL 
framework is presented in more elaborate terms in 
(Andriotis & Papakonstantinou, 2021). Attaching the 
constraint of Eq. (6) at the objective function of Eq. (1), 
the following max-min optimization problem is 
eventually defined: 
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where λ is a Lagrange multiplier transforming the 

constrained problem into an unconstrained one. A 
globally optimal solution to the above problem is 
sought through the belief-based constrained multi-
agent actor-critic DRL approach presented in the 
next section, for multi-component systems.  

2.2 System-level control through multi-agent 
belief-based DRL 

 
In the actor-critic DRL approach taken in this paper, 
following the deep multi-agent algorithmic schemes 
in (Andriotis & Papakonstantinou, 2019a; 2021), 
the value function of Eq. (7) is parametrized by a 
critic network, with parameters θV, which are 
gradually learned during training: 

   ˆ ˆ ; VV V 
 b b θ                                              (8) 

 

where b̂  is the system belief (typically consisting 

of all factored component and model parameter 

probability distributions). The multi-agent  policy  

actor is also similarly parametrized, with each 

component being treated as a separate agent. 

Accordingly, policies of different components have 

their individual action outputs, which are 

conditionally independent given the current system 

belief: 

   ( )

1

ˆ ˆ| | ;  



CN

i
i

i

aa b b θ                               (9) 

where Nc is the number of components (or control 
units), a is a vector of actions a(i), and θ is the 
vector of the policy network parameters. The 
parameters of the actor and critic networks are 
updated based on their gradients. Based on Eq. (9), 
the actor gradient is given within the premises of the 
policy gradient theorem (Sutton, et al., 2000): 
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ˆ ˆ , ;

ˆlog | ;
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V wA

a

θ

θ
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 (10) 

where w is an importance sampling weight, A
 is 

the advantage function, and is the experience 
replay containing information of past transitions 
and costs. Importance sampling is used because off- 
policy  learning  is  used,  i.e.,  experiences  retrieved 
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from were generated by policies other than the 
current one (in training time).  

According to Eq. (7), and using the parametrized 
Lagrangian value function of Eq. (8), the advantage 
function is computed through the following relation: 

 

   

   

ˆ , ; ( , )

ˆ ˆ'; ;




 
 





  

 

tV F F

V V

A c c P

V V

sb a θ s a
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The critic network gradient is similarly given as: 

     ˆ ˆ ˆ, ; ;  
  

   
 V VV VV wA Vθ θb b a θ b θ     (12) 

V 
  is linear with respect to λ and thus the respective 

gradient is: 

0
t

T
t

F F ult

t

V c P 
  



                                        (13) 

Lagrange multipliers are updated using Eq. (13) in an 
on-policy manner at the end of every episode (service-
life realization), and therefore, unlike for the other 
gradients, importance sampling is not required.  

Based on the gradients of Eqs. (10), (12), and (13), 
respective parameters are updated through stochastic 
gradient descent. For λ=0, the constrained problem is 
now defined as an unconstrained one, with Eqs. (8)- 

(12) remaining unchanged. In that case, the gradient 
of Eq. (13) becomes irrelevant.  

 

3 DECOUPLED INSPECTION AND MAINTEN-

ANCE ACTORS 

Following the ordered structuring of inspection and 
maintenance actions within each decision step 
(Figure 1) the factored policy representation in Eq. 
(9) can be written as: 
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Parametrizing the two policies with different 
networks, i.e., having θM and θI, and substituting 
Eq. (14) in Eq. (10), it immediately follows that the 
gradient is decomposed into two parts. Based on 
this and keeping only the advantage parts that are 
relevant to each decision, the maintenance and 
inspection actors have the following gradients: 
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Figure 2. Underlying dynamic Bayesian network describing deterioration, structural and statistical dependencies 

among components, and effects of decisions on state and observation random variables.  
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The advantage functions, ,MA
 , ,IA

 , which are 

necessary for the training of the maintenance and 

inspection policy networks, respectively, assume the 

following forms: 
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Following standard nomenclature in structural 
reliability literature regarding information value, e.g. 
in (Straub, 2014; Konakli, et al., 2015), it can be readily 
noted that the inspection advantage is the net value of 
Conditional VoI (CVoI) at every time step t: 

 ,
ˆ ,

 M

net I ICVoI A a
b a                                          (19) 

Taking the expected value over all possible 

observations, one can compute VoI: 
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As shown in Eq. (4), VoI is inherently present in 
POMDPs as the selection criterion of inspection 
actions at every step. This property can be also 
naturally utilized in DRL to avoid separate related 
neural networks and inspection parametrizations, thus 
only parametrizing the maintenance policy and 
choosing the inspection that maximizes net VoI, using 
Eqs. (5) and (20). This option would, however, require 
an accurate estimate of VoI at every step, which in 
multi-component systems is computationally hard 
(expectation over component observations, o).  

By parametrizing instead the inspection network 
and using CVoI to train the parameters, this optimal 
inspection behavior is gradually approximated through 
gradient descent. In similar terms, the advantage 
function backpropagated for the maintenance actor can 
be interpreted as net conditional value of maintenance.  

 
 
 
 
 

 
 
 

 
 

 

Table 1. Environment parameters and random variables. 

Name Type a Values 

b 

Annual corrosion 
depth, δx (cm) 

Gam( ,  x ), 
see Eq. (21) 

0: 0.02: 1.0  

Initial corrosion 
depth, x0 (cm) 

Exp(2) 0: 0.02: 1.0  

Gamma parameter, 

m70 (mm) 

Uni([4,6]) 4: 0.5 :6  

Gamma parameter, 

σ70 (mm) 

deterministic 0.2 m70 

Gamma parameter, 

β 

deterministic 1.5 

Observation, o (cm)  Norm(x,6%⸱x) 0: 0.02: 1.0  

Load, P (kN) Weib(330,72) 0: 5: 380 

Nominal section 
areas, Ar, Ag, Ab (m2) 

deterministic 32e-4, 38e-
4, 26e-4 

Yield strength, σy 
(MPa) 

deterministic 355.0 

Lengths, ℓ1, ℓ2, ℓ3 
(m) 

deterministic 6.0, 3.0, 4.5  

Costs, cI, cmat, cbas, 
cF (creb)

c 

deterministic 0.01, 0.6, 
0.02, 1.0 

Discount, γ deterministic 0.95 

a Gam, Exp, Uni, Norm, and Weib, are gamma, 
exponential, uniform, normal, and Weibull distributions, 
respectively. 
b For random variables, reported values include minimum: 
step: maximum. 
c

 creb: entire structure rebuild cost; cmat: material cost of 
intact structural volume; cbas: base cost of replacement 
campaign incurred when NC,M>0; ult =0.05creb.  

4 RESULTS 
 

4.1 Modeling of the deteriorating environment 
 

Scheduling of I&M actions is considered for a 
multi-component steel structure subject to 
deterioration. The structure consists of 13 truss 
members, which incur cross section losses due to 
operation in a corroding environment for a service 
horizon  of  50  years.  I&M  actions  are  taken  once  

Figure 3. Multi-component deteriorating truss 

structure.  

ℓ1 

Ag 

ℓ1 ℓ1 ℓ1 
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Table 2. Description of optimized baseline policies. 

Policy Acronym Decision variables 
Optimal 

values 

TPI: Time Periodic 

Inspection 

inspection time 

interval, tI ; 

section-loss 

replacement 

threshold, oR 

tI* =5 

(years); 

oR* = 6 

(mm) 

RBI: Risk-Based 

Inspection 

system PoFa 

inspection threshold, 

pth ; 

section-loss 

replacement 

threshold, oR 

pth*= 8e-

3; 

oR*= 8 

(mm) 

TPI-RBPb: TPI & 

Risk-Based 

Prioritization 

number of 

components to be 

maintained, npr ; tI ; oR 

npr* = 9 

tI* = 4 

(years); 

oR*= 6 

(mm) 

RBI-RBPb: RBI & 

Risk-Based 

Prioritization 

number of 

components to be 

maintained, npr ; pth ; 

oR 

npr* = 8; 

pth* = 6e-

3; 

oR*= 6 

(mm) 

a Probability of failure of structural system. 
b RBP is conducted based on PoF of individual components. 

 

every year. The deterioration process DBN and the 

truss are shown in Figures 2 and 3, respectively. 

In the DBN of Figure 2, deterioration rate, τ(i), 

corresponds to component age; deterioration level, x(i), 

corresponds to corrosion depth (assumed uniform over 

the cross section); component performance state, f (i), 

indicates the failure of a component (binary); and 

system performance, fs, indicates system failure 

(binary). The overall system belief is defined based on 

the above variables together with the environment 

parameters, θenv. The depth of corrosion of each 

member is modeled as a gamma process, whose mean 

follows a power law (Frangopol, et al., 2004), as is 

typical for the assumed type of stressor and material: 
 

  1

/

| 1 ,

x r

x x Gamma r r





 

 

  



   
         (21) 

 

Environment parameters, θenv, comprise (β,r,κ) of Eq. 
(21) together with load, P. Given β, parameters r, κ are 
determined through known mean corrosion depth (m70) 
values and the respective standard deviation (σ70) after  

 Table 3. Life-cycle costs of baseline and DRL policies a. 

Cost TPI RBI 
TPI-

RBP 

RBI-

RBP 
DRL 

I&M 2.18 1.82 1.84 1.57 1.00 

Insp. 0.20 0.21 0.24 0.20 0.25 

Maint. 1.98 1.61 1.60 1.37 0.75 

Risk 0.27 0.29 0.30 0.30 0.29 

a Computed based on 103 policy realizations and 

normalized with respect to the DRL policy. Normalized 

95% confidence intervals are tighter than 0.1. For all 

policies constraint violation estimate is lower than 3.5%. 

 
exposure of 70 years. The state of each member also 
includes its age. Age is considered, without loss of 
generality, to be a fully observable variable 
reflecting the rate of deterioration, evolving 
deterministically based on the selected maintenance 
action, in contrast to the corrosion depth variable 
which is stochastic and latent, only perceivable 
through observations collected at time instances of 
inspection visits.  

The global environment parameter m70 of the 
gamma process is also a latent variable. As 
illustrated in Figure 2, it is assumed that m70 is an 
overarching parameter, shared among components, 
since all member stochastic deterioration processes 
ensue from the same environment. This parameter 
is also identifiable in inference time, i.e., during the 
deployment phase of the life-cycle policy, based on 
direct cross-section thickness measurements 
(observations). Discretization and probabilistic 
assumptions for the corrosion modeling can be 
found in Table 1. At inspection times, all 
components are inspected (NC,I=1). Maintenance 
actions exist for each member (NC,M=13), including 
do-nothing and perfect-repairs (replacement).  

Component failure occurs when the cross section 
normal stress, σ, exceeds the material yield stress, 
σy, or the cross section area loss exceeds 50%. 
System failure occurs upon failure of at least one 
member (series system assumption). Members 
under compression are not prone to buckling due to 
appropriate slenderness ratio. The same value of 
corrosion penetration depth inflicts roughly equal 
percentage of cross section loss to all members, due 
to the equally thick hollow circular cross sections 
used for the structural members (1cm). Parameter 
details for the environment are presented in Table 1. 
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4.2 Deep network parametrization and training 

On the basis of the derivations of Section 3, separate 
inspection and maintenance actors are utilized, 
whereas the critic network corresponds to a 
parametrization of the Lagrangian value function, 
allowing us to evaluate the actors’ advantage functions 
through a surrogate of the life-cycle cost. For the 
maintenance actor, the used parametrization introduces 
independency among components, in accordance with 
the deep decentralized multi-agent actor critic 
architecture in (Andriotis & Papakonstantinou, 2021).  

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Each actor has 2x100 hidden layers, mapping 
the system belief to a binary output, whereas the 
critic is parametrized with 2x300 hidden layers. For 
the inspection actor, the binary output applies to all 
members. The involved networks were trained with 
Keras with Tensorflow backend version 1.5.0.  

4.3 Policy evaluations and comparisons 

To assess the quality of the learned DRL policy we 
compare against different baselines that are built 
and  optimized  as  per  risk-,  condition-,  and  time- 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4. Policy realization of the trained multi-agent actor-critic DRL networks. (a) Corrosion depth mean estimates based on 

history of previous actions and observations; (b) System probability of failure (PoF), with the observation-driven update part 

indicated in blue; (c) Gamma process environment parameter identification. 

(a) 

(b) (c) 
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based assumptions. These policies are succinctly 
described in Table 2. The life-cycle costs of all 
policies, including the DRL one, are reported in Table 
3. It can be observed that the DRL policy reaches a 
57% lower life-cycle cost than the optimized risk-
based policy with component prioritization. This 
outcome is made possible by the dynamic and adaptive 
nature of DRL policies, which are not relying on static 
thresholds and/or conditioning of actions on noisy 
observation outcomes, but rather perform a direct 
mapping from the dynamically evolving posterior 
state and model parameter beliefs to I&M actions.  

Indicative realizations of the DRL policy are shown 
in Figure 4. For these realizations, the real environment 
parameter is assumed to be m70=6 mm, indicating 
operation of the structure under severely corrosive 
conditions.  Surrounding plots in Figure 4(a) show 
mean estimated corrosion depths for all members, as 
computed throughout the service life based on actions 
and observations and the corresponding belief vectors 
at each time step. The system probability of failure and 
gamma process parameter updates are also depicted in 
Figures 4(b) and 4(c). In the highlighted policy 
realization, it is observed that 19 inspections were 
necessary during the planning horizon of 50 years, 
taken at years 5, 11, 14, 17, 19, 21, 23, 28, 32, 34, 36, 
38, 40-45, and 47. Maintenance actions (component 
perfect-repairs) are dynamically selected for each 
component based on both its individual corrosion 
depth estimates (inferred via inspections) and system-
level scheduling considerations.  

It can be observed, for example, in Figure 4(a), that 
for the lower left member, although maintenance is 
taken in year 23, the updated corrosion estimate after 
inspection at year 28 dictates maintenance at that time 
too. Later, although equal levels of corrosion are 
reached or exceeded, repair is postponed until more 
components can be included in the intervention (year 
36), as there is a base cost associated with maintenance 
campaigns. It can be, therefore, seen that component-
level adaptability regarding maintenance activity is not 
irrelevant to system-level considerations. To reduce 
single-member interventions, maintenance activity is 
automatically grouped. For example, 6 members are 
maintained in years 23, 4 members in years 36 and 47, 
and 2 members in year 14. This pattern is observed in 
all realizations without, however, suggesting fixed, 
time-based interventions (see other realizations in 
grey). It is instead noticed to be a mixture of 
opportunistic criteria and time-based maintenance 

towards achieving optimality. Component classes 
are also discovered as reflected through similar 
policy patterns, e.g., internal members are seen to 
mainly require no more than one repair during the 
service life, typically after 30 years. However, the 
actual timing of the respective visit is again adjusted 
so that single-component interventions are avoided.  
This is an adaptability feature driven by the unique 
observation sequences of the life-cycle realizations. 
 

5 CONCLUSIONS 
 

An actor-critic Deep Reinforcement Learning 
(DRL) architecture and training approach is 
presented in this paper. Following the ordered 
action structuring of I&M actions in decision 
analysis of deteriorating structures, decoupled 
inspection/maintenance actor networks are devised. 
That is, the developed architecture recurrently 
conditions maintenance and inspection decisions on 
post-inspection and post-maintenance posterior 
beliefs, respectively. The two networks are trained 
based on their own distinct advantage functions. In 
the case of the inspection policy network, the 
advantage function coincides with the net 
conditional Value of Information (VoI), a metric 
that can objectively guide inspection decision 
updates in both learning and deployment times. 
Thereby, under the learned policy, the inspection 
plan incorporates the inspection selection criterion 
inherently present in Partially Observable Markov 
Decision Processes (POMDPs), i.e., the 
maximization of the net VoI. Following this 
intuitive formulation regarding decisions, this 
approach is found to provide adept planning 
solutions for a long-horizon problem of a multi-
component deteriorating structure under corrosion. 
The decoupled DRL-POMDP policy outperforms 
by at least 57% standard baselines following 
condition-, risk-, and time-based assumptions. 
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