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Abstract

The electronics industry aims at following Moore’s law which states that the amount of transistors per
unit area doubles every two years. To achieve this, the industry manufacturing Integrated Circuits (ICs)
requires production technologies capable of producing smaller details. The machines capable of fulfilling
these demands become more expensive and so does the cost per chip. This increase in cost is undesirable
and a solution to this problem is to increase the production volumes per unit of time per machine.

The industry’s approach to increase the production volumes is to increase the diameter of the wafer
from 300 mm to 450 mm. The increase in size of some components in the lithography machines introduces
a number of challenges to the position control of the wafer chuck in lithography machines. The main
challenge is the positioning accuracy requirements of the wafer chuck with respect to the focal point of the
projection optics. This is caused by the decreased stiffness of the wafer chuck, which induces undesirable
deformations of the wafer resulting in decreased positioning accuracy of the chuck with respect to the
focal point. Recently, two new algorithms for estimating the wafer and wafer chuck deformations have
been developed that may help solve this problem.

The estimation algorithms rely on models to generate accurate estimates. In general the input, output,
or both signals are not measurable. Therefore, it is not straight forward to apply system identification
techniques to obtain a model. As alternative a model can be obtained from physical modeling. Both
approaches are likely to result in a mathematical model with high uncertainties.

The effect of model uncertainty on one of the estimation algorithms is studied in this thesis. The
model uncertainty is propagated through the algorithm to obtain a theoretical upper bound on the
estimation error. The error bounds are also used to solve the constructed Least Squares (LS) problems
using Robust Least Squares (RLS) algorithms where for a case study the estimation accuracy is analyzed
and compared with the estimates obtained using Ordinary Least Squares (OLS). It is concluded that the
usage of RLS algorithms together with the obtained error bounds increases the estimation quality under
certain conditions.

Furthermore, to show that these algorithms work, experimental results are preferred over simulation
results and therefore an experimental setup is designed. The setup will also be used to demonstrate
the capabilities of the estimation algorithms under conditions that are topologically similar to those in
a real lithography machine. Finally, the setup has been build and its performance is validated using
measurements. From these measurements it is concluded that the setup’s specification matches with the
designed specifications.
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Executive summary

Research background (§1)

The electronics industry aims at following Moore’s law which states that the amount of transistors per
unit area doubles every two years. To achieve this, the industry manufacturing Integrated Circuits (ICs)
requires production technology capable of producing smaller details. Lithography is the key step in
determining the achievable resolution.

The lithography machines capable of fulfilling these demands become more expensive and so does
the cost per chip. This increase in cost is undesired and a solution to lower the cost is to increase the
production volumes per unit of time per machine. The industry’s approach to reduce the cost is to
increase the diameter of the wafer from 300mm to 450mm.

To handle the larger wafer, the wafer chuck in lithography machines needs to be scaled up. Due to
the increased size, the weight of the wafer chuck will significantly increase when its stiffness is retained.
A consequence of the increase in weight is the increased load on the actuators. This in turn results in
additional heat production which is unwanted.

Therefore, there is a desire to lower the wafer chuck’s weight at the cost of decreasing its stiffness.
Because of the reduced stiffness, disturbances acting on the wafer chuck cause it to deform, resulting in
a focal error. This focal error is significant and consumes about 10% of the focus error budget in current
technology and will increase significantly when scaling up to 450mm wafer technology.

Means of actuation to compensate for the chuck deformations are present. However, compensation is
only possible when the shape of the chuck is known. Measuring at the location of interest on the wafer is
difficult. Currently research is being conducted at the TU Delft aiming at the development of algorithms
that can estimate the shape of the wafer chuck.

Estimation algorithms (§2)

At the TU Delft two estimation algorithms are being developed. One method does shape estimation, the
other estimates unknown inputs.

Shape estimation is performed by computing a linear estimator that is used to estimate the shape of
the body while using a limited number of sensors. In literature, the linear estimator is often computed
based on a set of fitting shapes. The new algorithms computed this estimator in an optimal manner such
that the estimation error is minimized at all coordinates simultaneously. Therefore, its performance is
equal or better then excising methods that use a linear estimator. This method is especially suitable
when the shape of the body varies in a static manner i.e. below the first eigenfrequency of the body.

The second method is governed by the idea that the deformations are caused by disturbances. The
disturbances can be considered unknown inputs of the system. When a model is available that relates
these unknown inputs with measurements, then these inputs can be estimated. This method is called
Receding Horizon Input (RHI) estimation and provides an effective way of doing this. Once an estimate
of the unknown inputs is obtained, then these can be used to estimate the deformations. This method
can also handle cases where the shape varies in a dynamic manner.

Uncertainty propagation (§3)

In order to compute an estimate of the unknown input or shape of the chuck, the estimation algorithms
require a model that relates measurements to inputs or deformations. Obtaining accurate models using
system identification techniques is not trivial because the inputs and/or outputs are not measurable and
need therefore estimation. Because of this it is likely that the models are erroneous.

11



12 Executive summary

Therefore, the effect of model uncertainty on the RHI estimator is studied. The same methodology can
also be applied to the shape fitting algorithm. A study is performed to see whether knowledge about the
size of the model error can be propagated in order to obtain an upper bound on the resulting estimation
error.

From the study it is concluded that Markov parameters provide a suitable means to study model
errors. Markov Parameters are unique as opposed to state space matrices. Therefore, the difference
between Markov parameters of different candidate models provide a measure of the model uncertainty.
This is a contribution of this thesis.

Another contribution is that, where required, a method has been derived to construct the RHI estima-
tor solely using Markov parameters. This is useful for propagating uncertainty of the Markov parameters
through the RHI estimator.

It is shown that propagating the uncertainty on the Markov parameters result in a conservative
upper-bound of the estimation error. It has been attempted to apply regularization to reduce the con-
servativeness which resulted in a very large estimation bias.

Inspired by the results and conclusions a different method is proposed that does compute a realistic
upper bound on the estimation error. This method has been extended to provide the uncertainty on the
RHI estimator matrices such that the required Least Squares (LS) problem, can be solved using Robust
Least Squared (RLS).

Robust RHI estimation (§4)

Both estimations algorithms solve a LS problem and when the data used to construct this problem is
erroneous the estimates will also be erroneous. The topic of obtaining more robust estimates in such
scenarios has been studied extensively in literature.

Literature provide a variety of different Robust Least Squares (RLS) methods. RLS methods attempt
to reduce the variance of the solution at the cost of introducing a bias. Three RLS methods are applied
on the RHI estimator, to evaluate whether its estimation performance can be improved, when the used
model contains errors.

A case study is performed where the RHI estimator is applied to estimate unknown disturbance forces
acting on a simplified wafer chuck. A finite element model of this simplified wafer chuck has been created
and realistic modeling errors are assumed. Estimation results provided by the Ordinary Least Squares
(OLS) and the RLS methods are mutually compared.

Based on this case study, it is concluded that the RLS methods provide better estimates, in both
RMS and maximum error sense, when discontinuous signals are estimated while OLS performs better
when continuous signals are estimated. Disturbance forces are typically Zero Mean White Noise (ZMWN)
which is a highly discontinuous signal and for this case it is demonstrated that RLS methods reduces the
estimation error significantly. The robustness of this performance increase has been studied by applying
it to 100 different perturbed models. These results are presented and studied in Chapter 4.

The methodology of this case study can also be applied to the shape fitting algorithms that computes
a linear estimator by means of solving a LS problem.

Setup design (§5)

To validate the theory behind the estimation algorithms, experimental results are preferred over simula-
tion results and therefore an experimental setup is designed. The setup will also be used to demonstrate
the capabilities of the estimation algorithms under conditions that are topologically similar to the condi-
tions in a real lithography machine.

First, basic mounting principles and conditions in a lithography machine are studied to obtain an
abstract concept design of the setup. The most important choices are to partially levitated chuck, to use
low stiffness actuators and to mount the sensors on a separate metrology frame.

Floor vibration measurements have been performed at the location where the setup will be operated.
These measurements provide an estimate of the expected measurement noise level. Furthermore, they
are used to quantify the performance increase related to the conceptual choices. They show that the
sensor noise levels is the largest remaining noise source.

Then, the detailed design decisions are presented. These are based on minimizing the sensor require-
ments to reduce the cost of the setup. The most important sub-system, the chuck, has been optimized
for this goal.
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Finally, the setup has been build and its performance is validated. The closed-loop sensitivity functions
of the controlled DoFs are measured to validate the performance of the controller positioning the chuck.
The magnitude of the deformations are measured as function of frequency. Finally, the noise level of
the deformation measurement is determined and compared with the initial analysis where expected noise
level has been computed.
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Chapter 1

Introduction

1-1 Research background

The electronics industry aims at following Moore’s law which states that the amount of transistors per
unit area doubles every two years. As stipulated by [1] the industry uses this law as an assumption for
determining their strategic roadmap for the next decade. Moore’s law is based on an observation made by
Intel co-founder Gordon E. Moore. In his paper [2], he described the trend he observed. Today Moore’s
law is being ’adjusted’ to match the current speed at which the complexity of the Integrated Circuits
(ICs) increases. For the interested reader, an extensive example of such an analysis can be found in [3].
To make this increase in complexity possible, production technologies must be created in order to
manufacture the smaller details of the new ICs designs. One of the key production steps determining the
achievable resolution is lithography. An example of a lithography machine is shown in Figure 1-1.

Figure 1-1: Source: ASML. A waferscanner designed and build by ASML which is used to perform the lithography
process step for manufacturing 1Cs.

Lithography is a process in which a pattern is very precisely imaged on the wafer. A wafer is a round
mono-crystalline silicon plate on which many ICs are manufactured. Each part of the wafer containing
an IC, called a dice, is exposed separately. The exposure takes place during a scanning motion of the
wafer. When a scan is complete the machine steps to the next dice. A chemical called photoresist is
put on the wafer which undergoes a chemical reaction at the locations where it is exposed to the light
enabling subsequent production steps e.g. deposition, etching or doping. It is very important that the

15



16 Chapter 1. Introduction

wafer is perfectly positioned in the focal point of the projection optics. A much more detailed explanation
of lithography machines can be found in [4].

Lithography machines are extremely complex and because of the desire to produce even smaller details
they are becoming more complex. The increasing complexity also increases the cost of such a lithography
machine and as a result the overall price per IC will increase. This is undesirable and research is being
done to maintain or lower the price per manufactured IC. One of the options is to increase the throughput
of the machine. One of the options considered by the industry is to increase the wafer size and this is the
motivation for this research. Currently wafers have a diameter of 200mm or 300mm and current research
focuses on increasing this to 450mm.

1-2 The need for estimation algorithms

There are many problems when modifying lithography machines to handle 450mm wafers. The problem
studied in this thesis is illustrated in this section.

As is shown in Figure1-2a, the wafer is placed on a wafer chuck. When the size of the wafer is
increased, the size of the chuck needs to be increased such that the larger wafer fits on top of it. In order
to maintain the stiffness of the larger chuck its thickness needs to be increased as well (Figure 1-2b). As
a consequence the mass of the chuck increases and so does the load on the actuators positioning it. This
in turn result in additional heat production which is unwanted.

metrology frame
lens colu

R, : | lens colus
él wafer ﬁ
— L | sehsors L

| wafer chuck

wafer chuck

(a) Stiff 300mm wafer chuck (b) Stiff 450mm wafer chuck

acoustic effects

.| lens colu
G ]
\fj-)j y vibrations from lens

wafer chuck

(c) Light 450mm wafer chuck

Figure 1-2: Illustrations showing the problems related to increasing wafer size. The images are created by Vogel,
J. G.in 2018.

The mass of the chuck can simply be lowered by reducing its thickness. As a consequence, the stiffness
is reduced which will lead to significant deformations due to all sorts of disturbances e.g. vibrations from
the lens or evaporation of water from the water film in-between the lens and the chuck.

Parts of the wafer will not be in the focal point of the projection optics because of the deformations
which is illustrated in Figure1-2c. This is also undesirable as it will affect the achievable resolution.
Currently focal errors due to wafer chuck flatness are in the order of 10nm which is significant and
consumes about 10% of the focus error budget as described in [5]. When the wafer chucks are scaled
up to 450 mm while reducing their stiffness, then this error will significantly increase making it difficult
maintain or increase the resolution for future generation lithography machines.

However, if the disturbances or the shape of the wafer chuck are known, it is possible to compensate for
these effects. Means of actuation such as repositioning the wafer chuck or adjusting the focal depth using
the lens array, are available to compensate for the chucks deformations. However in order to compensate,
the shape of the chuck must be known. Measuring at the location of the wafer is difficult because of all
the equipment in and around the wafer chuck which is required to hold and illuminate the wafer.

Currently, research is being conducted at the TU Delft, aiming at the development of algorithms that
can estimate the shape of the wafer chuck. The first algorithms is an optimal shape estimation algorithm
(see [6]). Tt estimates the shape of the chuck using only measurements from the current time instant
which is valid if the dynamics of the chuck are not of interest.

When the dynamics of the chuck are of interest, the shape can be estimated using an observer based
approach such as Kalman filtering. However, the main reason for the chuck to deform is because of
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disturbance forces acting on the chuck. Such disturbance forces are typically not known and when they
are committed as input to the observer, the shape will be poorly estimated. Therefore, the second
algorithm that is being developed is an unknown input estimator (see [7]).

Both algorithms will be covered in this thesis. For an overview of their position in literature the
reader is referred to respectively Subsection 2-1-1 and 2-2-3.

The estimation algorithms rely on an accurate model. Since the quantities of interest need to be
estimated and cannot be measured, it might be difficult to obtain accurate models. Therefore, the
available models are likely to have a relative large modeling error. In this thesis the effect of model errors
on one the unknown input estimation algorithms is studied. The model error is propagated through the
estimation algorithm and an upper bound on the estimated input is computed. Both estimation problems
rely on solving a Least Squares (LS) problem. It is investigated whether the application of Robust Least
Squares (RLS) can increase the performance of the unknown input estimator in the presence of model
errors. The unknown input estimation algorithm is studied but the same methodology can be applied to
the shape estimation algorithm.

Also, in this thesis a design for an experimental setup is presented. This setup can be used to test
the algorithms under a wide variety of conditions. These experimental results will strengthen the work
on the estimation algorithms. The setup also serves as demonstrator to show the capabilities of these
algorithm in conditions topologically similar to those in a actual lithography machine.

1-3 Societal aspects

Each research has some form of societal impact. So does this work. A short impression of this impact is
presented in this section. This report provides a small step in the overall research.

When the step towards 450 mm wafers can be made while maintaining the capabilities of the current
lithography machines it allows for production of more advanced technology at the same cost.

In addition smaller electronics can be more efficient while the performance is maintained. This enables
the creation of technology that is more sustainable while maintaining its capabilities.

Finally the current technology can also be produced more cost efficient which makes this technology
accessible to less prosperous people in the world.

1-4 Research objectives

This thesis has two main objectives, both related to the performance of the estimation algorithms. The
first is related to the performance of the estimation algorithms in the presence of model errors. It is
investigated whether Robust Least Squares (RLS) can improve the estimation accuracy in these cases
compared to Ordinary Least Squares (OLS). This study is limited to the unknown input estimator called
Receding Horizon Input (RHI) estimation. Therefore, the first research objective of thesis is to answer:

“When performing RHI estimation, what will be the error bound on the estimated input in the presence

of model errors? In addition, can this knowledge on the error bound in combination with RLS produce

more accurate estimations compared to OLS? How does this performance difference relate to the overall
estimation error introduced by model errors?”

The other objective is related to the performance of these algorithms in practice under conditions
topologically similar to those in a lithography machine. Therefore, the second research objective is:

“To design and build a setup that serves both as experimental setup and as demonstrator setup on which
both estimation algorithms can be applied, so that their practical performance can be evaluated and
compared with simulation results.”

1-5 Outline

First the ideas behind the two newly developed estimation algorithms in (see [6]) and (see [7]) are
presented in Chapter 2. Then the theoretical model uncertainty bounds are propagated through the RHI
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estimator in Chapter3. Several approaches are presented where one gives realistic sized upper-bounds
on the estimation error. Then, by means of a case study, the effect of model errors on the RHI estimator
accuracy is studied in Chapter4. In addition the performance difference between using RLS and LS
methods is studied. Finally the design of the experimental setup is presented in Chapter 5.



Chapter 2

Estimation algorithms

In this chapter, two recently developed shape estimation algorithms will be presented, such that it can
be understood how they work and how they can be implemented. First, an algorithm for estimating
unknown inputs is presented. Second, an algorithm for shape estimation using fitting shapes is treated.
The summarized goal of this research is to improving the background of the estimation algorithms.
Therefore, in this chapter a closer look is taken to these algorithms.

When the shape of a body needs to be determined one can apply shape estimation algorithms. Static
and dynamic estimation can be distinguished. When the body is changing shape in a static manner then
only the current measurements contain relevant information about the current shape. However, when
the body changes shape in a dynamic manner, information about the past can contribute to improve the
estimation of its shape.

In both cases, the estimation can be improved when information about the disturbances are known
that case the body to change shape. These disturbances can be considered inputs of the system.

The first method covered in this chapter estimates the shapes based on a linear estimator. The
contribution of this method is the way the linear estimator is computed. A overview of the work in
[6] is presented in this chapter. Then the second method is covered. This method can be used to
estimate unknown inputs. The method is called Receding Horizon Input (RHI) estimation and is originally
presented in [7].

2-1 Static Shape estimation

Static shape estimation means that the shape of a body is estimated. The shape estimation methodology
considered in this sections is a simple method that estimates the shape using a linear estimator. This
method is suitable when the shape at the current time instant is unrelated to the shape at the previous
time instant. If this condition is not met the estimation method presented in Section 2-2 might be of
interest.

Shape estimation using a linear estimator is not new. In literature methods exist to compute the
linear estimator based on fitting shapes. The contribution of the new work presented in [6] is a different,
more optimal way, to compute the linear estimator.

First a short overview of shape fitting is provided, then the shape fitting methodology is covered and
finally the new way of computing the linear estimator is presented.

2-1-1 Short overview on shape fitting

In this section a short overview of existing shape fitting methodology is provided. It positions the
contribution of the work presented in [6] in the field

Often it is required to reconstruct unmeasured states. For dynamical systems this can be done using
an observer such as a Kalman filter. When the state of the system varies low frequent, i.e. lower than
the first eigenfrequency of the system, the states can be estimated using simpler, more intuitive methods.

One of the methods often used in literature is shape fitting. The idea of shape fitting is to estimate all
Degrees of Freedom (DoF') of interest by means of only measuring a limited number of DoFs. The shape
is reconstructed by fitting sensor data with fitting shapes. Fitting shapes are a set of orthogonal shapes
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of which it is assumed that a linear combination of these shapes can describe or estimate the shape of
the body.

In contrast to Kalman filters, shape fitting can still give good results even if the input is unknown. It
is possible however to incorporate knowledge about the input such as its location or size by choosing the
fitting shapes carefully. This will result in better estimates since such fitting shapes will be better able
to describe the shape of the body.

A limited number of measurements are used to determine the coefficients of the linear combination.
For example when the out-of-plane deformations of a wafer chuck are measured at a few locations, the
entire shape of the chuck can then be approximated by creating a linear combination of well chosen fitting
shapes. In fact the linear estimator is thus computed based on the selected fitting shapes.

In literature a variety of possible fitting shapes can be found. [8] uses eigenmodes to reconstruct
mechanical deformations based on strain measurements. However, when the dynamics of the system are
not excited, these shapes will not be an optimal choice. [9] uses Proper Orthogonal Models (POMs)
for estimating temperature profiles. POMs are computed based on a dataset and represent orthogonal
shapes that are most apparent in the data. Depending on how the data is obtained, POMs can include
information about inputs and disturbances resulting in a better estimation. In optics [10], Zernike modes
are often used to reconstruct wavefronts.

The work in [6] presents a way of computing the linear estimator in an optimal way. The approach
is similar when using POMS which computes the fitting shapes most apparent in the dataset and then
forms a linear estimator based on these shapes. Based on such a dataset [6] computes the linear estimator
directly such that it can best approximate the data in the dataset. This approach actually minimizes the
estimation error instead of optimizing the selected fitting shapes.

In [6] it can be seen that the results obtained using this new linear estimator are usually generally or
better then excising methods. The relevance of each fitting shape differs per considered DoF. The number
of fitting shapes is limited by the number of sensors therefore, a trade-off must be made by selecting the
shapes and the desired estimation accuracy of each DoF. This trade-off is avoided by directly computing
the linear estimator from the dataset which explains the difference in performance.

2-1-2 Shape fitting methodology

In this section, the shape fitting methodology is explained and is based on [6].

When the shape of a bode is estimated using shape fitting, Ng DoFs must be measured. The more
DoFs are measured the better the estimate will be. Also Ny fitting shapes must be selected that are
linearly independent and can all be destination using measured DoFs. A fitting shape is denoted as s;
for Vj € Nt < Ng.

Let Npor be the total number of considered DoFs then the matrix S € RVporXNte containing all the
Ny fitting shapes is defined as:

S:[Sl SNfJ.

meas

Moreover, the matrix S™¢ ¢ RVbor XN is defined, which contains a subset of the rows of matrix S,

meas

namely only the measured N{5® DoFs, and is defined as:

gmeas _ [srlneas . Smcfssas:l
Note that S™¢%, is square since Ng = NP and invertible, since it is full column rank because of the
selected shapes and sensor locations.
An estimate of the current shape @ can be obtained by creating a linear combination of the fitting
shapes as:
W= Sa (2-1)

where a is the vector of coefficients determining the linear combination of fitting shapes.
The linear combination depends on the measurements w and should fulfill w = 5™®a. Then a is
determined as:
a = (Smeas)flw

Substituting this in Eq. 2-1 results in:
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where F € RVporXNmeas ig called the estimation matrix.

In this approach F is based on fitting shapes such as POMs or eigenmodes. However a linear combi-
nation of a set of shapes does not necessarily result in an optimal estimation. Some shapes could be of
small significance for most DoFs, while they may be very important for a few other DoFs. Simply taking
eigenmodes or POMs will therefore not result in an optimal estimation for every DoF.

Inspired by this insight [6] present a different method that computes an optimal estimation matrix
Fopt that yields a minimal estimation error on DoFs.

2-1-3 Computation of an optimal estimation matrix

Inspired by the conclusion of the previous section, a method to construct an optimal estimation matrix
Fops that yields an optimal shape estimation was derived in [6]. In this section it is presented how Fopy
is computed in [6].

This optimal estimation matrix is based on an initial dataset W containing data about all DoFs of
interest (i.e. the measured ones and the ones that require estimation). This data can be obtained from
simulations or from measurements.

Each shape w'™® contained in the dataset W'“¢ should be shapes that are typically expected when
the estimation is applied. By using such a dataset more information about the expected shapes is included
which results in a better estimation matrix.

Computing the optimal estimation matrix.

Let the estimation error w, be defined as:

true ~
We, wq w1
true ~
Wenp g Npor WNper
We wtrue D

In addition let the dataset W'e ¢ RNpor X% with 4 shapes be of the form:
Wtrue — [wtruc(l) . wtruc(i)] .

Then the dataset W™ ¢ RNDoF X7 can be constructed by selecting the subset of rows from W% that
correspond to the measured DoFs. W™ has the structure:

Py meas [wmeas(1> wmeas(i)}
Finally, by using these datasets the error set W, € R¥PorXi can be defined as function of F,py as:
We — Wtruc _ foptwmcas

In order to obtain an optimal estimation of the object, we seek to minimize every element of W,. Let
W7 denote every j* row of W,. Then one can formulate the minimization problem as minimizing HWg H;
for Vj € N* < Npop. This can be done in a LS sense.

Also note that each j*" row in Fopt denoted as }"gpt, is responsible for the estimation quality of each
element in W7. Finally, let W;r“e denote the j*" row of W', Then the minimization problem can be
formulated as:

. . 2
Fly = argmin |wpmse = F e (2-3)

2

opt

The solution for one row j of Fopy is then given by: fgpt = Wyrue(Wmeas) T [pymeas(jymeas) T From
this, the solution for Fo¢ follows as:

]:opt — Wtrue (WmeaS)T (Wmeas (WmeaS)T) -1

An important remark must be made. When estimating a variable using a linear estimate, the variable
should be normally distributed. For linear systems this is the case if the inputs (e.g. disturbances) are
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normally distributed. When the variable is normally distributed an optimal estimator can be formulated
as a linear estimator.

When the DoFs are for example uniformly distributed, a linear estimator is per definition not optimal.
For this case a piece-wise linear estimator should be constructed. If in such a case, for simplicity, a linear
estimator is used, the algorithm above still produces the most optimal estimator that can be formulated
as a linear estimator but a more optimal estimator can be found as a piece-wise linear estimator.

2-2 Unknown input estimation

2-2-1 Necessity for unknown input estimation

In the previous section it has been seen how the shape of a body can be estimated in an optimal way
when the disturbances acting on it are normally distributed. This method is suitable when the shape at
the current time instance does not depend on the shape on the previous time instant.

If this condition is not met it a better approach can be thought of where the information about the
past, which contains information about the present, is used. These are classic observer techniques.

If the system is not autonomous the output is often dominantly determined by the system inputs. If
the inputs are known, then these can be taken into account very easily by the observer.

Almost always there are disturbances acting on a system. If the output needs to be estimated with a
high accuracy, these disturbances should be taken into account. In many practical cases the disturbances
cannot be measured (accurately) and can be considered unknown inputs (e.g. acoustic effects or thermal
gradients). These inputs need to be estimated before the output can be estimated accurately using
observer based techniques.

In this section an unknown inputs estimator called Receding Horizon Input (RHI) estimation is
presented. The work in this section is based on the work presented in [7].

First the required notations are introduced, then a short overview of the state of the art about
unknown input estimation is presented and finally the RHI estimator is presented.

2-2-2 Notations

In this section notations are introduced that are used throughout the thesis. Also ways to compute
commonly used variables are provided so that this provides also a solid basis for implementing the
methods presented in this chapter.

When a system is considered it is assumed that can be represented by a state-space model of order n
of the form:

#(k+1) = Az(k) + Bu(k) + w(k) (2-4a)
y(k) = Cz(k) + Du(k) + v(k), (2-4b)

where A, B, C, D are the state-space model system matrices, index k indicates the time instant, Z(k) €
R™ is the state, u(k) € R™ are inputs and y(k) € R’ are the outputs. The process noise w(k) € R"
and the measurement noise v(k) € R’ are zero-mean noise sequences. The process noise is the result of
unmodelled higher-order dynamics and non-linearities. The joint covariance matrix of the noise sequences

is denoted as:
[l o] <[5 ]

When only the input output transfer is considered, a model of the form in Eq.2-4 can be rewritten
in the so called innovation form:

z(k+1) = Az(k) + Bu(k) + Ke(k) (2-5a)
y(k) = Cz(k) + Du(k) + e(k), (2-5Db)

where the state is given by z(k) € R™, K denotes the Kalman gain and e(k) represent a zero-mean white
noise sequence. In this form it is possible to model colored measurement noise. The covariance matrix
of the noise sequence e(k), denoted as ¥, can be computed based on the noise properties of v and w and
the system matrices as:

Y. =%, +Cx, 07T, (2-6)
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The Kalman gain can be computed using:
K = (Suy + A%,CT) (2, + C8,CT) (2-7)

In both Eq.2-6 and Eq.2-7 3, denotes the covariance matrix of the state, which can be computed by
solving the discrete time Riccati equation:

2y = AN AT + 5, — (Suw + AS,CT) (S, + C8,07) 7 (S + A8,C7) T (2-8)

These last three equations are derived in [11].

2-2-3 Overview of input estimation algorithms

Before diving the details about how the RHI estimator works, the state of the art concerning unknown
input estimation is studied. First the problem is approached from a basic point of view and the problem
that then arises is pointed out. Then a short literature survey is provided to position the RHI estimator
in the field.

A system in innovation form as denoted in Eq. 2-5 is considered. Let the unknown input be denoted
by u(k) € R™. Then, one can write the output of the innovation model down for a certain time interval
of length s which results in:

y(k) c D L O N
y(k+1) CcA CB D o - 0 u(k + 1)
y(k+2) | = | CA | pk)+ | cAB cB D . || ulk+2)
3 - : : w0 ~
y(kJrS* 1) CA? _CAszB CAs=3B ... CE D_ _u(k}JrSf 1) (2 9)
T 0 0 01 [ ek) )
CK 1 0 0 e(k+1)
+ | CcAK ck 1 . i ek+2)
: : " 0 :
cA2K CcAs3K ... oK 1) le(k+s—1)

When comparing the number of equations and the number of unknowns it is easily seen that for many
input-output size combinations the number of unknowns exceed the number of equations when estimating
the initial state z(k) and unknown inputs [u(k)? --- u(k + s — 1)T]T. Take for example the number of
inputs m equal to the number of outputs ¢. Then their will be s - £ equations and n + sm unknowns
making the system of equations under-determined. This makes this approach not suitable for unknown
input and state estimation. This is also described in [7].

Many attempts to overcome this problem have been done and are described in [7]. Sometimes the
input is modeled using a random walk model [12], a predefined time-invariant dynamic model [13] or a
constant input [14]. For such cases the state is augmented with the unknown input and a classical state
estimation problem is solved to obtain an estimate of the augmented state. However the assumptions
on the behavior of the input imposes large constraints on the estimates, making this approach only
applicable for some systems. Another approach found in literature assumes the unknown input to be
impulsive or of abrupt nature. These methods are observer based are recursive. However, they assume
that no input has occurred prior to the time window limiting the practical usefulness. See e.g. [15].
In [16] another method for estimating inputs of abrupt nature is presented. Because the problem was
under determined a sum-of-norms regularization term was used to force many inputs to zero. They
may perform well if the sum-of-norms regularization is appropriately chosen. A third group of solutions
perform simultaneous estimation of state and unknown input in a recursive manner [17]. The input can
be any arbitrary sequence and no model for the unknown input is required. However, these methods do
not allow regularization terms to be added when additional knowledge about the input is known.

Therefore, a new method for unknown input estimation was recently proposed in [7]. This method
can handle, under mild conditions, any arbitrary sequence of inputs and is given in a receding-horizon
formulation such that additional constraints can be imposed. The method is also suitable for real-time
applications and is called Receding Horizon Input (RHI) estimation.
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2-2-4 Receding horizon input estimation

In this section, the line of thought behind the unknown input estimator is presented and certain insight
will used later in the thesis. All results in this section are based on [7], also the proofs can be found there.

Let a state-space model of the form in Eq. 2-5 be given. The unknown inputs u(k) € R™ and known
inputs b(k) € RY are separated. The state-space model can be denoted as:

z(k +1) = Az(k) + Bu(k) + Eb(k) + Ke(k)
y(k) = Cx(k) + Du(k) + Gb(k) + e(k).

A stationary Kalman Filter, which is unknown input free can be formulated. Let us define ® = A-KC
and £ = F — K@, then a stationary Kalman Filter is given by:

#(k+1) = ®2(k) + Eb(k) + Ky(k) (2-11a)
9(k) = Ci(k) + Gb(k). (2-11b)

When the unknown inputs are non-zero, this estimates of this Kalman filter will be erroneous. The error
dynamics are given by:

zo(k +1) = ®x. (k) + Bu(k) (2-12a)
r(k) = Czc(k) + Du(k) + e(k), (2-12b)

where B = B — KD. Here z.(k) and (k) represent respectively the error state defined as z.(k) =
z(k) — 2(k) and the output residual defined as r(k) = y(k) — §(k). Note that the error dynamics include
the unknown input. The error is namely caused by neglecting the unknown input in the stationary
unknown input free Kalman Filter.

Now, a time window of size L and ending at time instance k is selected, resulting in the time interval
[k — L + 1, k]. The output residual over this time window is then given by:

r(k—L+1) C
r(k—L+2) (X
r(k=L+3)| = | CO* | 4 (kL 41)
r(k) CoL-1
Tk,L Or, (2_13)
D 0 0 -+ O] Juk—L+1) e(k—L+1)
CB D 0 -+ 0| |uk—L+2) e(k—L+2)
+| ¢®B CB D 0| |u(k—L+3) + e(k—L+3)
CcoL-2p Cot=*p ... CB D u(k) e(k)
TL Uk, L €k, L
Eq. 2-13 can be considered a data equation and is denoted compactly as:
Tk, L = OLxe(k—L+l) +7—LUI<:,L+€I@,L- (2—14)

Now the time window of length L is partitioned in a past and a future time window with their
respective sizes p and f, such that p + f = L. The future time window contains the most recent inputs.
The partitioning is applied to the vectors and matrices in Eq. 2-14, which can then be written as:

_ |"k=fp _ |Uk—fp _ |Ck—fp _ | O _| T 0 _
b [ Tk.f } T { Up,f ] BT [ €k, f ]  Or= [qu”’} o Te= {Hf,p Trl’ (2-15)

with O, € RP&*P", Op € RIS T, e ReOPm Tp € RFI™ and Hy , € RIOP™,
Now let us define the transformation matrix:

I 0
T~y 1)
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where () indicates the left pseudo inverse of a matrix, that is, for a matrix M such that MTM = I. By
left multiplying Eq. 2-14 with T, the data equations Eq. 2-14 is transformed into:

O e N R K R

where * indicates values of no direct interest, and where:

g = [~Heo TS I 7hr, (2-17)
Ly= [_Hf,zﬂ;r I] Or,
e, = [—’Hf,;,ﬂ;r I] €k,L-

When only the bottom line of the transformed data equation Eq.2-16 is considered it reduces to:
Tk, f :foe(k—L‘l-l) +7}7.Lk_’f+ék7f. (2-18)

It is shown in [7] that when @ is stable, and the transfer ¥ from r to w, is stable, the product
I'yxe(k—L+1) will go to zero for p — co. An expression for ¥ is given in Lemma 2 and Lemma 3 on on
page 36. K should be chosen such that both matrices are simultaneously stabilized. When p is finite but
sufficiently large, I'ta.(k — L + 1) will be small and only a small error is introduced when it is neglected.
With this result, Eq. 2-18 reduces to:

Thof ~ Ttk g + €k f- (2-19)

This equation can be solved for the unknown input vector using a Least Squares (LS) problem. The
LS problem can be formulated to solve Eq. 2-19 for uy 5 as:

”LALkJ = arg g}:? ||fk7f - ’7}uk7f\|§ . (2—20)
When 7Ty is full column rank, the solution of Eq.2-20 is given by:
~ -1 _
g = (T/Tp) T Thg- (2-21)

It needs to be noted that the LS problem Eq. 2-20 can be solved without constraining the inputs when
m < £. Furthermore it is possible to add constraints to the LS problem to incorporate prior knowledge
on the input.

When the matrix D has no full column rank the current input u(k) which is the last element of the
vector ug, f, cannot be estimated since insufficient data about this input is present in the output data.
To be able to solve the LS problem Eq.2-20, 7 should be made full column rank despite D not being
full column rank.

This can be done by removing the first ¢ elements of 7 and the last m columns and the first £ rows
of 7; . Then by solving the LS problem as in Eq.2-21 one obtains 7;_1,y—1 instead of 4y, ;. This is the
best that can be done since the current output contains no information about the current input.
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Chapter 3

Propagating model uncertainty

A fundamental problem in applying estimation algorithms is that a model is required. When accurate
estimates are desired naturally accurate models are required. On the other hand, in case the input, the
output, or both can not be measured, it is not trivial to use System IDentification (SID) techniques since
they required input/output data of the system.

An option to obtain an model is to use a different or modified setup such that the inputs and output
can be measured. Another option is to use physical modeling. In both cases the obtained model will
have a certain error.

In this chapter it is studied how the modeling error can be propagated through the Receding Horizon
Input (RHI) estimator such that an upper-bound on the estimation error is obtained. The RHI estimator
is chosen as a case study but the same methodology can be applied for the static shape estimator.

First, the estimation problem is formulated and the modeling errors will be introduced. Then, Markov
parameters are introduced as an effective way to study model uncertainty. Then, it is discussed how the
Markov parameters and their uncertainty can be obtained. Hereafter, it is shown how the RHI estimator
can be constructed using Markov parameters only.

Finally, it will be presented how the uncertainty on the Markov parameters can be propagated such
that an upper-bound on the estimation error is obtained. Different approaches are considered of which
the last determines a realistic upper-bound on the estimation error.

3-1 Problem formulation

Both estimation algorithms discussed in Chapter 2 are based on solving the Least Squares (LS) problems
Eq. 2-3 on page 21 and Eq.2-20 on page 25 respectively. In the presence of modeling error an extension
to this formulation is required which is presented in this section.

In the presence of modeling errors the LS problem denoted in Eq. 2-20 which for ease of the reader is
repeated here,
5 (3-1)

lig,p = argmin |7y 5 — Trug, s
ukﬁf

From now on to 7y and 7, ¢ is also referred to as respectively LS data matriz and LS measurement vector.
The matrix 7; is computed based on system matrices. When the model is uncertain, so is 7;. The
same is true for vector 7 ¢ which is computed based on measurements and system matrices. Clearly, 7
and 7y are uncertain so is the estimated input 4y 5.
In order to denote the size of the uncertainty the operator §(-) is introduced which is formally defined
in the following definition.

Definition. Operator ()

The operator §(-) that gives an upper-bound on uncertainty on the elements of its operand. For
example the uncertainty on the elements of matrix M € R**? is given by the elements of matrix
§(M) € R**® such that the true value My, € R*¥:

Mypye €M £ 6(M).

0(M) contains only positive elements. The true sign and size of the error on M is unknown.
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In the prescience of model uncertainty, Eq. 3-1 becomes:
A A . — —_ 2
i+ 8(i 1) = argmin | (Fros +8@0.0) = (77 + 8T e | (3-2)

The goal of this section is to compute (U, r) which represents an upper bound on the uncertainty
on the estimated input. In addition 6(7y) and 0(7x, ) are computed which are used to compute (4 f).
In addition they can be used by solving Eq. 3-2 in a robust manner using Robust Least Squares (RLS)
methods. They attempt to reduce the uncertainty at the cost of adding bias. The RLS methods and
their performance will be investigated in Chapter 4.

3-2 Markov parameters and model uncertainty

Before proceeding with propagating the model uncertainty through the RHI estimator, first a way of
studying this model uncertainty needs to be determined. A certain input/output transfer can be rep-
resented by an infinite number of state-space realizations. Therefore, it is difficult to compare different
candidate state-space models.

In this section it will be proven that Markov parameters are invariant to the state-space realization
of the system. In other words, they are unique. This makes them a suitable tool for studying model
uncertainty since different candidate Markov parameters can be compared. Their difference provide a
measure for the uncertainty.

The Markov parameters are defined as:

B;=[C®~'B C®~2B ... CB]
K;=[C®~'K C®2K ... CK]
D =D,

where j € N*t. Each block element in B; or K; denotes a Markov parameter. D is also a Markov
parameter.

In this section it will be proven that hey are unique and suitable methods to obtain a model and its
uncertainty are discussed.

3-2-1 Uniqueness of Markov parameters

In order to prove that Markov parameters are unique, assume a transformation matrix 7" that transforms
state x into state ¢ = Ta. Then the transformed system matrices (denoted with subscript ¢) are given
by:

A,=TAT™', B,=TB, C,=CT', D,=D, K,=TK.
Then the Markov parameters are given by:

qu)fzéq =Cq (Aq — chq)i (Bg — KqDqg)
—CT ' (TAT"' = TKCT ) (TB-TKD) = CT" (T(A— KC)T~")' T (B — KD)
=CT 'T(A—-KC)'T™'T(B—-KD)=C(A—- KC)" (B—KD)
=C'B.

In addition we can conclude that ®, = T®7T~! and éq = TB. This will be used to simplify a proof
presented later in this chapter.

From the latter proof it can be concluded that the Markov parameters are indeed unique. They are
thus independent of the choice of state coordinates in a State Space model. This is a big advantage when
analyzing model uncertainty. While it might be hard to compare two different realizations of slightly
different state space models it is much easier to compare the Markov parameters since their difference
gives an impression of the size of the modeling difference.
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3-2-2 Obtaining a model and its uncertainty

Now we know how to compare multiple models. It is interesting to provide a small background on how
to obtain a model and its associated uncertainty. When a model and its uncertainty are available, the
uncertainty on the RHI estimator matrices can be computed. Two approaches are considered. The first
approach is to obtain a model from SID experiments. The second approach is to obtain a model from
physical modeling. Both approach are covered in this subsection.

System identification techniques

From an academic point of view, it is interesting to address the matter of obtaining a model starting
from a SID experiment. From practical point of view, this experiment can be executed on, for example,
a system that is modified such that both the inputs and outputs are measurable. The resulting model
will however be perturbed because of measurement noise and process noise in combination with a limited
number of samples.

In order to identify a model using SID techniques, first a suitable SID method must be selected. A
very short summary of available techniques will given such that a suitable method can be selected.

Output-error vs subspace methods Typically, the model to be identified is first parametrized, that
is, its structure is fixed within a class of models. Then, a cost function of the model parameters is
formulated which is optimized using an optimization framework to obtain the model parameters. These
approaches can be classified as output-error parametric model estimation. When the goal is to obtain the
parameters of a parametrized predictor model or Kalman filter, they can be classified as prediction-error
parametric model estimation which follows a very similar methodology as the output-error methods.

The system under consideration, a wafer chuck, is in general a Multiple-Input Multiple-Output
(MIMO) system. In general, the output-error or prediction-error methods will result for MIMO sys-
tems in a cost-function that is non-convex (see e.g. [18]). This makes it hard to solve the formulated
optimization problem efficiently.

Another class of SID methods are based on projecting data onto linear subspaces mainly by using LS
[19]. These methods are called subspace identification methods and are much more suitable for estimating
MIMO models because they do not rely on parametrization and optimization.

Since the considered system is clearly a MIMO systems the subspace identification methodology is
selected.

Subspace identification techniques There are many subspace identification methods. In the past,
mainly open-loop methods where developed. However, for many practical applications it was also desir-
able to perform the identification experiments under closed-loop conditions. For subspace identification
this posed a challenge for many years but recently closed-loop algorithms have been developed, such as
the Predictor Based Subspace IDentification (PBSID) method [18].

There are many open-loop methods. An overview can be found in [20] amoung which we mention
the: Multivariable Output-Error State-sPace (MOESP), Numerical algorithm for Subspace IDentification
(N4SID) and Canonical Variate Analysis (CVA) methods. Many of these algorithms show similarities
and there are unifying theorems such as the one presented in [21].

Figure 3-1 shows a concise summary illustrating the different approach between the open and closed-
loop methods. In essence the open-loop methods have in common that they compute a subspace matrix
based on the input output data. The subspace matrix enjoys the property that it can be factorized in an
extended observability matrix and another matrix whose properties depend on the selected method.

In contrast, the closed-loop method PBSID computes the Markov parameters. This makes PBSID
an interesting option since we require the Markov parameters to study model uncertainty. When the
Markov parameters are obtained directly less numerical operations are performed which makes the the
results more traceable. Furthermore PBSID can be used in closed-loop scenarios making it more flexible.
PBSID also provides means to compute the estimation uncertainty on the estimated Markov parameters.
For the interested reader the working principles of PBSID is explained in more detail in Chapter A.

A remark must be made when using any SID technique to obtain a model. When the system is
modified to make the inputs and outputs and outputs measurable that the system might be changed.
The estimated model will correspond to this different system and as such the model might be biased. The
estimation uncertainty obtained from PBSID will relate to the estimation uncertainty of the modified
system and not the uncertainty with respect to the original unmodified system.
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Input-output data

MOESP, N4SID, V PBSID

Subspace matrix Markov parameters

State-space matrices

Figure 3-1: A short overview of the fundamental difference between the mentioned different subspace methods.

Physical modeling

We have seen that PBSID is a suitable SID method to obtain a model. There might be scenarios where
performing a SID experiment is impossible or undesired. Then one can use physical modeling to obtain
an estimate of the model.

One can write down all physical relations and solve the system of equations. Alternatively models
can be discretized using finite elements. Such a model can (if required) be linearized and converted to
a discrete time state-space model of the form Eq.2-5. Then the Markov parameters can be computed
based on the system matrices. This way one can acquire a model and the Markov parameters.

The next step is to get an estimate of the model uncertainty. Usually several parameters of the
model are uncertain e.g. the density, the effective stiffness or the amount of damping. One can create
several models for different, extreme choices, of these parameters. Then the largest difference between
these Markov parameters and the expected Markov parameters give a measure of the uncertainty. This
approach can be classified as a Monte Carlo approach.

3-2-3 Construct the RHI estimator using only Markov parameters

Now it is known that Markov parameters are an effective method to study model uncertainty. It has also
been seen how models can be obtained and the corresponding Markov parameters. This includes also
their uncertainty.

The next step is to propagate these uncertainties to the RHI estimator matrices. However, the
RHI estimator requires system matrices for which we have discussed that it is difficult to obtain their
uncertainty. Therefore, it is first analyzed how the RHI estimator can be formulated using Markov
parameters only. Then the uncertainty of the Markov parameters can be propagated to the RHI estimator
matrices. For ease of the reader we start by repeating the definitions of the most important variables.

Definitions

In Section 2-2 definitions for certain parameters have been introduced. The most important once are now
repeated for ease.

First of all, a time window of size L is chosen, and later it is partitioned in a past time window of size
p and a future time window of size f, such that L = p+ f. Based on these time windows, in Eq.2-13 on
page 24 the matrix 7y, is first defined and later in Eq. 2-15 on page 24 is partitioned as:

D 0 0 -+ 0
- CB D 0 - 0
0 g g
| T _ | c®B CB D - 0 )
T, = it @
col—2B C®L3B ... CB D

The parts of this partitioned matrix will be used later in this chapter.
Next, in Eq.2-11 on page 24 the unknown input free Kalman filter is formulated and the output
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residual can be computed by evaluating:
2k +1) =02(k) + Eb(k) + Ky(k) (3-4a)
9(k) =Cz(k) + Gb(k) (3-4b)
r(k) =y(k) = 9(k). (3-4c)
Then the output residual over the time window L is denoted as 7y, 1, and is partitioned as:
_ |Tk—fp ~
Tk,L = |: Thof :| . (3 5)
Next in Eq.2-17 on page 25 the output residual is transformed as:
Thg = [~HppTS ] 7L, (3-6)

where (-)T indicates the left pseudo inverse of a matrix, that is, for a matrix M such that MTM = I.
Finally, the RHI estimator is defined in Eq.2-20 on page 25 as:

(3-7)

U,y = argmin ||7y f —
Uk, f
The RHI estimator effectively consists of two parts, matrix 7; and vector 7 ¢.

Constructing 7; from Markov parameters

As was seen in Eq. 3-7 , the RHI estimator effectively consists of two parts, matrix 7¢ and vector 7 ¢. The
matrix T only consists of model information. By close inspection of Eq. 3-3 it can be seen that 7; only
consists of Markov Parameters. Therefore, it can be constructed directly from the Markov parameters,
together with its uncertainty 6(7;) based on the uncertainty on the Markov parameters denoted as 6(By),
0(Ky) and 6(D).

This also holds for 7,, 6(7,), Hsp and d(Hyp) defined in Eq.3-3 which are intermediate results
required for computing the vector 74, and 0(7g, f).

Computing the output residual using Markov parameters

As has been seen, the matrix 7; and 0(7y) can be directly constructed from the Markov parameters.
This is not the case for 7 s.

The vector 7, ¢ is computed in Eq. 3-6. In order to compute it, we require: H¢p, T, and 7y 1. It has
been seen that #Hy , and 7, can also be constructed by using solely Markov parameters. However, this is
not the case for ry r. The vector ry 1 can be computed by evaluating Eq. 3-4 recursively which requires
the system matrices.

In this section a method is presented to compute 7y, also only based on the Markov Parameters,
without requiring the actual system matrices. This method is later used to compute §(7, s) based on the
uncertainty on the Markov parameters.

The output residual can be obtained by recursively solving Eq. 3-4. The first A time instants can are
written as:

r(0) = y(0) — Cz(0) — Gb(0)

r(1) = y(1) — CPx(0) — CEb(0) — CKy(0) — Gb(1)

r(2) = y(2) — CP%x(0) — CPEDB(0) — CBu(1) — COKy(0) — CKy(1) — Gb(2)

r(3) = y(3) — CP3(0) — CB2Eb(0) — CPBu(1) — CBu(2) — CO?Ky(0) — COKy(1) — CKy(2) — Gb(3)
h—1 h—1

r(h) = y(h) — C®"x(0) = > C®Eb(h —1—j) — Y _ CP Ky(h—1— j) — Gb(h).
j=0 j=0

This shows that r(h) is dependent on the Markov parameters, input/output data and the term C®"x(0).
In order to compute r(h) only in terms of Markov parameters this last term needs to be eliminated.
For systems with a stable @, this can be done by selecting h large enough such that the term C®"z(0)
becomes small. The inputs and outputs data are known so they pose no problem.
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Selecting the initial state. The expressions above assumes that the time instant of the initial state
is equal to the time instant of the oldest computed output residual over the time window. When inputs
and outputs from before this time instant are known, they can be used to express the equations in terms
of an initial state before the time instant of this oldest computed output residual. Here it is assumed
that these required inputs and outputs are known and the goal is to selected a suitable initial state.

With respect to the initial state, the output residual r can be considered over a time window in two
ways, namely:

o from an initial state that is ¢ steps before the oldest computed output residual in the time window;
e from an initial state that is 7 steps before each computed output residual in the time window.

Both methods can be used but both have clear advantages and disadvantages.

An advantage of the first option would be that: |[C®“+x(0)||r = 0 becomes a better approximation
when increasing j € N°. This comes at the cost of relying more on the model information. When the
model contains errors these errors will accumulate. The second option uses less Markov parameters in
total. In the presence of model errors, the error will remain approximately constant. The assumption
[|C®ix(0)||F = 0 remains equally valid.

If [|C®'z(0)||F = 0 needs to be better approximated it is easy to choose a bigger i. Requiring the
Markov parameters to be more certain can in practice be a difficult problem to solve. Therefore, the
second option is the logical choice.

For stable predictor models it holds that:

lim ||C®'z|, = 0.
Jim [|Co'z],
In a practical case, when i is chosen sufficiently large then ||C®‘x||r = 0. Remember from Section 2-2
that the RHI estimation required a choice of the past window p such that ||[C®Pz||p = 0. Therefore, a
good choice is ¢ = p which will be used in the sequel.

Expressing the output residual in terms of this initial state. The solution is constructed step
by step. Now the output residual is written over a time window of size L starting on time instant p up to
time instant p + L — 1. It is expressed relative to the choice initial state which is p time instances before
each output residual’s time instant. This results in:

p—1 p—1
r(p) =y(p) — CPx(0) — > CEb(p—j—1)— Y CHKy(p—j—1) - Gb(p)
j=0 j=0
p—1 _ p—1
r(p+1) =y(p+1) - C®x(1) = Y CYEb(p— j) — Y C®/Ky(p - j) - Gb(p+1)
j=0 j=0
p—1 _ p—1
r(p+2)=y(p+2) — CPPx(2) — ZC"I)JEb(p —j+1) - Z C¥Ky(p—j+1)—Gbp+2)
j=0 j=0
p—1 ~ p—1
r(p+L—1)=y(p+L—1) - COz(L—-1)- Y CHEb(p—j+L—2)—Y CHKylp—j+L-2)
j=0 j=0
—Gb(p+ L —1).

When p is chosen properly, as it should be in order to successfully construct the RHI estimator, then
[|C®Pz||p < 0 which is in the sequel considered zero.

Shifting the output residual window towards the current time instant. Now consider the
output residual r over the time window L from time instant k¥ — L + 1 up to the current time instant
k. This time window is also used by the RHI estimator presented in Section 2-2. The expression for the
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output residual then becomes:

r(k—L+1)=y(k—L+1) —pioqﬂ‘Eb(k —L—3j) fIiC’(I)jKy(k —~L—j)—Eb(k—L+1) (3-8a)
j=0 j=0
MM:w%)ijC@EMkf1ijf§iO@KwalijfEMM, (3-8b)
j=0 j=0

which c