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Summary

Wind farms are one of the most complex engineering systems with multiple stakeholders, each responsible
for a particular element of the wind farm. The conventional industrial approach of designing involves se-
quential optimization of each of these disciplines, leading to a sub-optimal design. To reduce the costs of
offshore wind farms in the future, it is important that a cohesive approach is developed wherein the elements
are designed to minimize the LCOE, while capturing the interactions between all the disciplines.

Multi-disciplinary Design Analysis and Optimization (MDAO) is one such technique that has been explored
in literature and has resulted in lower LCOE values compared to the existing approach. An MDAO tool at a
wind farm level includes models for each of the disciplines in a wind farm : Wake aerodynamics, Turbine,
Support structure, Cabling, Costs, etc.. It is essential that the tool allows agility to the user wherein the user
can decide the variables to be optimized, so that the tool can cater to all the stakeholders involved.

At first, the missing links in the existing wind farm level tools are studied and the existing framework of the
tool being developed at TU Delft is then explained. This research deals with the turbine discipline of the wind
farm, with a focus on rotor optimization. It is already explored in literature that designing a rotor from a wind
farm perspective differs significantly from designing a rotor from a wind turbine perspective. Designing a
rotor from a wind farm perspective captures all the inter-disciplinary influences and results in a completely
different rotor design.

The turbine model that is used currently in the framework is a static model that ignores the dynamic effects,
lacks an aero-servo-elastic coupling in the rotor and uses a factor of 1.5 to compensate for the same. This
research focuses on optimizing the rotor, after incorporating a dynamic model for the rotor in the MDAO tool,
and quantifies the influence of model choice on various rotor and other wind farm parameters. To achieve
the same, FAST, an aero-servo-elastic model is integrated into WINDOW (the existing MDAO tool). Also, a
gradient-based (SLSQP) and a gradient-free (GA) algorithm are tried out with both the models to evaluate the
influence of algorithm choice on all the parameters.

All the possible model-algorithm configurations are tried out and compared. With respect to the algorithm,
it is observed that GA results in a design with a lower LCOE value for both the models, which is attributed to
its better design space search abilities, while SLSQP shows a high starting point dependency with respect to
some variables and has a tendency of getting stuck at a local minimum. With respect to the model choice, a
huge difference in the chord and twist distributions is observed. The low-fidelity static model overestimates
the constraints compared to the high fidelity dynamic model, resulting in a blade design that is stiffer than
necessary.

The design details for these four configurations are evaluated next. The chord distribution is highly depen-
dent on the model choice and does not show any dependence on the optimizer choice. The thickness always
reduces to its lower bound for all the four cases, as the optimizer tries to reduce the blade mass by lower-
ing the thickness and compensates for the stiffness by changing the chord. The twist distribution shows a
high dependence on the starting point being used for SLSQP. The values differ significantly for all the four
model-algorithm configurations. The fine pitch angle (the angle at which the blade is pitched for optimal
performance during partial load operation) shows no dependence on the model-algorithm configuration.
The tip speed ratio shows a decreasing trend with the SLSQP, while the GA results in designs with a higher tip
speed ratio.

As the major differences in the designs are attributed to the choice of model, the best designs with the static
and dynamic model are compared, where it is confirmed that the static model results in a blade that is stiffer
than necessary and is highly sensitive to the amplification factor used (1.5 in this case). The optimized designs
are also checked for fatigue damage where it is observed that fatigue damage is well within limits and does not
emerge as a design driver. Overall, using a dynamic model, coupled with a gradient-free algorithm is observed
to have the best performance in terms of optimality and is recommended for other use cases related to rotor
design, in an MDAO framework.
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1
Introduction

1.1. Overview
Recent studies and trends show a rapid drop in the cost and drastic performance improvements in offshore
wind, resulting in a massive capacity growth. According to the International Renewable Energy Agency [1],
the global averaged Levelized Cost of Electricity (LCOE) reduced from USD 0.17/KWh to USD 0.14/KWh,
while the projects to be commissioned in 2020-2022 in Europe and North America are in the range of 0.06
USD/KWh to 0.10 USD/KWh, as shown in Figure 1.1.

Figure 1.1: Global levelised cost of electricity from offshore wind farms by year of commissioning[1].

The drop in cost can be attributed to the industry becoming more mature, the increased turbine sizes (that
help reduce support structure costs) and a streamlined project development process [1]. Europe, being the
major contributor in offshore wind, now has a total installed capacity of 18,499 MW, where 2,649 MW was
added in 2018 alone. The average turbine size of the turbines installed in 2018 was 6.8 MW, a 15% increase
from 2017 [2].

For offshore wind energy to be viable, the design of a wind farm is as crucial as the design of a wind turbine.
While wind turbine design alone can be challenging, one can imagine the complexity of designing a wind
farm where multiple stakeholders are involved. The different stages of wind farm design are explained in [3],
where the first phase includes choice of site for tendering by national authorities followed by layout design,
cabling design, operation & maintenance strategy and installation optimization, done by the wind project
developer.
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2 1. Introduction

1.2. Background information

Designing offshore wind farms can be quite complex due to the involvement of different aspects like the
behaviour of atmosphere and water, complex seabed, wake interaction of turbines, energy production and
loads, support structure design, layout optimization and electrical grid infrastructure [4]. The design of a
wind turbine itself involves various disciplines such as aerodynamics, structural design, materials engineer-
ing, controller design, control systems, generator design and tower design. Different codes with varying fi-
delity for individual disciplines exist in literature. For instance, Fatigue, Aerodynamics, Structures and Turbu-
lence (FAST) [5], Horizontal Axis Wind Turbine Simulation Code 2nd Generation (HAWC2) [6] and BLADED
[7] are few state of the art aero-elastic codes that accurately couple the aerodynamics and structures of the ro-
tor. A lot of work in the field of wind turbine optimization using these tools has already been done. Fuglsang
et al. [8] optimized the rotor and tower for minimum cost of energy and for specific site conditions, using
existing aero-elastic tools. Bottasso [9] used an aero-servo-elastic tool with multi-body dynamic analysis for
different use cases: To optimize the turbine for maximum annual energy yield, minimize the cost of energy
and optimize the internal layup, taking into account effects of bend-twist coupling. Ashuri [10] used an in-
tegrated multi-disciplinary optimization approach to optimize the rotor and tower, to minimize the turbine
LCOE. Ashuri et al. [11] performed a complete aero-servo-elastic optimization of the wind turbine, wherein
the effect of different controller parameters like generator slip, pitch rate on the LCOE was analyzed.

Currently, there are a large number of stakeholders involved, each responsible for the design of a particu-
lar system. This has made the industry partitioned in nature, which leads to a sequential design optimization
that lacks the interaction between these different disciplines, leading to a sub-optimal design [12]. Multi-
disciplinary Design Analysis and Optimization (MDAO) is a method that involves coupling of various disci-
plines in an automated optimization loop where the performance of the entire system is analysed. An MDAO
could help better integration of wind turbine design and wind farm design. Moreno et al. [12] demonstrate
the superiority of MDAO over traditional sequential optimization, wherein the MDAO technique results in a
lower LCOE value as compared to the sequentially optimized wind farm.

1.3. Existing tools and problem analysis

Denmark Technical University (DTU) and National Renewable Energy Laboratory (NREL) have been spear-
heading the research in the field of MDAO by developing tools like Design Tool for Optimization of Wind
Farm Topology and Operation (TOPFARM) [13] and Wind Plant Integrated System Design and Engineering
Model (WISDEM) [14], respectively. This section provides an elaborate description of the two tools and pos-
sible drawbacks, laying the foundation for the tool being developed at Delft University of Technology.

1.3.1. TOPFARM

TOPFARM is a wind farm topology optimization tool developed by DTU, built to get the optimum economic
output which also takes into consideration, the costs related to component fatigue lifetime consumption. As
the power production and loading patterns of a wind turbine differ when placed in a wind farm, TOPFARM
includes high-fidelity instationary flow models (Dynamic wake meandering model) with dynamic effects to
model the wind flow field, HAWC2 as the aero-elastic tool for load and power prediction and dedicated cost
and control models in an optimization framework [13].

To include the effects of wake-deficits, added wake turbulence by upstream turbines and wake meander-
ing, Reynolds-averaged Navier–Stokes based Computational Fluid Dynamics (CFD) models, together with
experimental evidence were used to formulate and verify simplified CFD models. This flow field was fed
to aero-elastic codes like HAWC2 and Bladed to get detailed information on wind turbine fatigue loads and
power production. To estimate the component degradation cost, the aero-elastic codes were used to deter-
mine the lifetime equivalent fatigue loads of different wind turbine components [15]. A database of all generic
load cases was made with different wind speeds, ambient turbulence intensity, distance from upstream wind
turbine and different azimuth angles. Over 7436 simulations, each of 10 minutes and 6 different seeds, were
carried out by combining HAWC2 and the dynamic wake meandering model, with the 5 MW UPWIND tur-
bine [15].
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Few possible drawbacks of the given tool are listed below:

1. Feasibility: A possible drawback of this tool would be that the generic load cases were determined for a
given wind turbine. As the database is based on the UPWIND 5MW turbine, it is not directly applicable
for wind farms consisting of other wind turbines. However, a first order approximation is suggested to
adapt the current load and production set to different turbine types. The suggested scaling is valid for
geometrically similar turbines equipped with a power and load control system comparable with that
of the applied 5MW turbine. In such cases, the scaling can be simplified to depend on the rotor radius
[15].

2. Agility: While the tool allows a variable fidelity approach, mainly in the wind climate discipline, it still
lacks agility wherein the user can select a particular model for various disciplines to execute a particular
use case [16]. For instance, the user cannot have a quick static model for turbine analysis. The objective
of the tool in the end is to have an optimized farm layout where the main design variables translate to
wind turbine positions and control strategy parameters.

3. Computational time: Most of the models used are high fidelity models which lead to a higher compu-
tational time.

1.3.2. WISDEM

WISDEM, developed by NREL is a multi-disciplinary analysis tool for assessing the overall plant cost of en-
ergy. The system engineering software framework includes model/workflow selection, analysis specification
(optimization, sensitivity analysis), input specification for the turbine and site characteristics [17]. For the
analysis of the rotor, it uses RotorSE, an aero-structural systems engineering model which includes CCBlade
(a steady state aerodynamic model based on blade element momentum theory) and CurveFEM (a finite ele-
ment method based model) for structural analysis of curved blades.

A possible drawback of WISDEM is that it lacks a proper time domain simulation with aero-servo-elastic
coupling to accurately estimate the loads, resulting tip deflection and the fatigue damage of the blades.

WISDEM has a wrapper for FAST called AeroelasticSE but that uses a ‘template-based’ input files ap-
proach, wherein the user supplies with a working set of input files required to run FAST, which are then
parsed into python dictionaries by the wrapper. The user can then modify the inputs based on the simu-
lation requirements and the wrapper writes it back in terms of input files and WISDEM is called.

1.3.3. WINDOW

Given the need to develop a comprehensive system engineering tool for offshore wind farms that accurately
captures the physics, can be tailored to cater to specific use cases and is computationally fast, TU Delft is mak-
ing its own wind farm level optimization tool called ’Windfarm Integrated Design and Optimization Work-
flow (WINDOW)’. What is unique about this multi-discplinary analysis and optimization tool is its ability to
tailor the workflow to suit a particular use case [16].

WINDOW offers feasibility in optimizing multiple parameters (at a wind farm or a wind turbine level),
agility in the form of variable fidelity models and tailored use case according to the user, all of it at a low com-
putational cost. However, similar to WISDEM, WINDOW relies on a static model in the existing framework
and still lacks an aero-servo-elastic simulation of the turbine to predict extremes.

1.3.4. Problem statement

In the current WINDOW framework, the model used for the turbine analysis is a steady state model that fails
to capture the essential dynamics involved. For instance, the existing aerodynamic model misses out on
complex phenomena like dynamic stall, skewed inflow, etc., explained in the Aerodyn theory manual [18],
which can have a significant impact on the loads. Also, the essential aero-elastic coupling needs to be taken
into account, wherein the aerodynamic forces are affected by structural deflections and vice versa. Lastly,
with the existing static model, the controller for the turbine cannot be modelled and the fatigue damage in
the blades cannot be estimated.
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The existing static model in WINDOW uses a safety factor of 1.5 to compensate for the dynamic effects,
which could lead to an over or an underestimation of the extremes, resulting in a completely different design.
Hence, there exists a need to integrate a computationally fast aero-servo-elastic model for turbine analysis
in WINDOW and quantify the differences in the optimized rotor design resulting from the two models of
different fidelities.

1.4. Research objective
In view of the problems discussed in Section 1.3.4, the main objective of this research is ’to provide a compre-
hensive insight into the consequences of having a static and a dynamic wind turbine model, on rotor optimiza-
tion, using different optimization algorithms, in an MDAO tool for offshore wind farms.’

1.5. Scope
In order to accomplish the main research objective, the following milestones are aimed at :

1. Selecting and integrating an aero-servo-elastic model into the existing wind farm tool (WINDOW).

2. Enhancing the capabilities of the tool in terms of pre and post-processing of turbine data.

3. Optimizing the rotor design in order to minimize the farm LCOE, using both gradient based and gradi-
ent free optimization algorithms.

4. Comparing and analyzing how the results (for e.g. LCOE or Blade internal layup) differ for the two
models of different fidelities.

1.6. Report outline
This report starts with introducing the concept of MDAO and the existing framework of the wind farm opti-
mization tool, in which the dynamic model of the turbine will be integrated. The process of model develop-
ment and its integration is then elaborated. Finally, the optimization setup, problems faced and comparison
of results obtained from static and dynamic models are discussed.

Chapter 2 : Provides the reader with a fundamental background of MDAO and a detailed eXtended Design
Structure Matrix (XDSM) of the existing WINDOW framework.

Chapter 3 : Discusses the key changes required in the existing framework with respect to the use case.

Chapter 4 : Elaborates the entire model development procedure. Key elements of this chapter are as fol-
lows :

1. Tool selection to simulate the dynamic effects of the wind turbine.

2. Detailed explanations of the custom made pre-processing module used to extract blade mass and stiff-
ness properties.

3. Detailed explanations of the Dynamics block, that prepares the template files required to run an aero-
servo-elastic model, and post-process its output.

Chapter 5 : Explains the complete optimization setup and the challenges faced.

Chapter 6 : Presents a quantitative comparison of the optimized rotor, resulting from different model-
algorithm configurations.

Chapter 7 : Lists the key findings of the research and discusses the scope for future work to further enhance
the capabilities of the tool.



2
WINDOW: A Systems Engineering Tool

This chapter familiarizes the reader with the basic concepts and terminology used in systems engineering,
particularly in MDAO, as a part of Section 2.1. A brief of the existing framework of the MDAO tool developed
at Delft University of Technology, WINDOW is given in Section 2.2.

2.1. Background

This section gives a basic idea about the concept of Systems Engineering and its application using MDAO.

2.1.1. Systems engineering

"A system is an integrated composite of people, products or processes that provides a capability to satisfy a
stated need or objective" [19]. Systems engineering can have a lot of definitions where most of them exhibit
these particular characteristics [19]:

1. A logical sequence of activities or processes that transform the needs of the user into system perfor-
mance parameters.

2. An interdisciplinary and collaborative approach.

3. An integrated life-cycle balanced set of system solutions.

Systems engineering has been widely used in the aerospace industry over the years [20]. As wind energy
systems are equally complex with large number of stakeholders, systems engineering can play a huge role in
meeting the future design and development needs of the industry. Due to its holistic and inter-disciplinary
approach, the entire wind farm technical system can be simulated in order to have an integrated solution for
all its stake holders [20].

One of the widely used methodologies in systems engineering is MDAO, which relates to physical system
design and has been used for many years in the aircraft industry [20].

2.1.2. MDAO

A lot of work has been done with respect to applications of MDAO in wind turbine design, as explained in
Section 1.2. The same technique can be extended to a wind farm level to include other aspects like O & M
costs, wake interactions , wind farm energy production, etc.

The basic elements of an MDAO framework have been elaborated by Moreno [21]. There are various tools
involved in simulating a system, where each tool represents a given discipline and these coupled tools are
known as an analysis block. A driver at the top controls the logical sequence of execution of the disciplines in
this block. The workflow determines the flow of variables and data between the analysis block and the driver,

5
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which is given for a particular use case. The effectiveness of a particular workflow can be tested with a use
case. For instance, optimization of the turbine to minimize wind farm LCOE is a use case.

Moreno [21] explains the three core aspects of an MDAO workflow: System scope, Model fidelity/Driver
algorithm and MDAO architecture.

System scope
It is important to define the system scope or the number of disciplines involved in a particular workflow, as
the interaction between the disciplines might differ based on what the use case is. An example of this would
be: For the optimization of the wind farm layout, the system should include, along with other models, wake
models and cabling layout models. However, if the use case is to calculate the sensitivity of the wind farm
LCOE with respect to the support structure design, it could be unnecessary to have the wake models and
cabling models running in the loop every time, as the interaction between these modules and the support
structure design could be negligible, which translates to not having discipline C in the loop, with respect to
Figure 2.1. In this case, it can be run once, and the same value can be used in every function evaluation while
checking the sensitivity of the LCOE with respect to the support structure. MDAO is hence a powerful tool that
can also help in determining if there are significant interactions between different modules or not.

Figure 2.1: System scope for two different use cases; Dotted arrows includes disciplines A and B, dashed includes all three [21]

Model fidelity/Driver algorithm
Model fidelity for each discipline is a key consideration as it determines the accuracy of the results, weighed
against the computational costs. The use of a simple low-fidelity tool or a sophisticated high-fidelity tool de-
pends on the use case. Tanmay [16] portrays a nice example of model fidelity for two different use cases, as
shown in Figure 2.2. In the first use case, a steady blade element momentum model and a simple structural
solver would work for a preliminary estimation of the rotor mass. However, the same would not be true for
the second use case, for which, a high-fidelity aero-servo-elastic tool would be necessary to capture the sys-
tem dynamics and hence, aid in controller design. An absurd example of model fidelity selection would be
if one would use the solution of the full Navier-Stokes equation for the first use case, which would capture
irrelevant details and result in an unnecessary increase in computational costs.

MDAO architecture
MDAO architecture is concerned with the coupling between different disciplines and between the disciplines
and the driver, which is partly responsible for the performance of a particular MDAO workflow [21]. For
instance, in blade optimization, aerodynamics and structures need a tight coupling, as they depend on each
other. The blade outer parameters like chord and twist define its aerodynamic performance while the blade
internal layup determine its ability to withstand the loads resulting from different load cases. Few of the
MDAO architectures include Multidisciplinary Design Feasible (MDF) and Individual Design Feasible (IDF).
In MDF, a consistent solution is passed on in every iteration of the optimization process. In IDF, there is no
interaction between different disciplines while additional constraints and guess variables are added, making
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sure that the solution is consistent by the end of the complete optimization process.

DRIVER

CONTROLLER
DESIGN

Gain Scheduled PI

AERODYNAMICS

Steady

Unsteady

STRUCTURES

Steady

Dynamics

Use Case 1 : Preliminary optimization of rotor mass
Use Case 2 : Optimization of Controller parameters 

Figure 2.2: Model workflow for two use cases with respect to rotor design [16]

2.2. WINDOW explained
The interactions between various disciplines in a multi-disciplinary optimization problem can be well illus-
trated in an XDSM. The XDSM for the existing model of WINDOW with the coupled static RNA model is shown
in Figure 2.3. Each XDSM explains the workflow for a particular use case and the workflow has to be tailored
according to the use case definition.
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Figure 2.3: XDSM of the existing WINDOW framework [16]

The blocks in green along the diagonal represent the various disciplines involved in the given MDAO prob-
lem. The first row consists of various fixed parameters that are given as an input by the user, that remain
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constant throughout the optimization process.

The second row consists of all the design variables. In this simplified XDSM, the downwind and crosswind
spacing between the turbines in a wind farm was optimized in order to minimize the LCOE. The grey boxes
represent the connecting variables between different modules. The vertical lines and the horizontal lines
represent the flow of inputs and the connections between different disciplines, respectively.

The Layout discipline takes in the spacing variables given out by the optimizer and sets the co-ordinates
of the turbine and the substation. It uses the bathymetry data to calculate the water depth at each turbine
location for the given site.

The Rotor Nacelle Assembly (RNA) module, which was recently integrated into WINDOW by Tanmay [16],
gives an added flexibility of optimizing turbine parameters like the rated power (Pr ated ), rotor radius (Rr otor ),
blade design and drivetrain design parameters. RNA’s interaction with the other modules (Wake Aerodynam-
ics, Support Structure and Cost) is shown in the grey boxes.

The Wake Aerodynamics module uses the windrose data and samples it into discrete wind speed and
direction bins. For each of these samples, the power and thrust co-efficient of the turbine is interpolated
and the wind speed deficit due to all the neighbouring turbines is determined. A wake merger module then
calculates the overall wind speed deficit and the corresponding power produced. It is then multiplied by the
probability of the bin and summed over all samples to get the total annual energy yield.

The Support Structure module uses the RNA mass (mr na), yaw bearing radius (Ry aw ), rated wind speed
(Vr ated ) and the maximum thrust (Tmax ) at the rotor from the RNA module, bathymetry data and the turbu-
lence intensity from the wake models to design the support structure.

The Cabling module uses the co-ordinates of the turbines and the sub-station to calculate the cable layout,
length and its cost, based on Esau-Williams heuristic algorithm [21]. Pr ated is used to select the cable type
from a pre-defined database based on capacities.

The Cost module takes the cost of RNA, support structure and cabling, along with the number of turbines
in the farm in order to give an aggregated investment costs. It also returns the O & M costs and decommis-
sioning costs along with total investment costs, which is then used along with the annual energy production
(multiplied with an availability factor) to give the wind farm LCOE, which is sent to the optimizer as the objec-
tive function value along with constraint values. The optimizer then generates a new set of design variables
and the process continues.

Moreno [21] discusses the basic framework of WINDOW in detail, while Tanmay [16] elaborates the static
RNA model.



3
New WINDOW Framework

The essential modifications required in the existing framework of WINDOW in order to run and analyse a
dynamic simulation have been elaborated in this chapter. Section 3.1 describes the use case for which the
rotor will be optimized. Section 3.2 gives a detailed description of the existing static RNA model. Section 3.3
lists down the key modifications to be made (in WINDOW) in order to run a dynamic simulation and post
process it. Lastly, Section 3.3 gives a detailed XDSM of the new WINDOW framework.

3.1. Use case

As defined in Section 2.1.2, the effectiveness of a multi-disciplinary tool can be measured with a use case.
The use case for which the tool will be tested in this research is based on the study conducted by Tanmay [16],
wherein the author explored the benefits of systems engineering by analyzing the effect of system scope on
rotor optimization, using the existing WINDOW framework with the static RNA model.

To achieve this, Tanmay [16] optimized the rotor with respect to certain design variables: Tip speed ra-
tio, fine pitch angle (the angle at which the entire blade is pitched below the rated wind speed) along with
the chord and twist distribution. The optimization was done with an increasing system scope as shown in
Table 3.1, wherein the LCOE is normalized with respect to the highest value. It should be noted that even if
the objective function was different for all the cases, the optimality of that particular scope was always mea-
sured in terms of the LCOE. The study shows how the conventional approach of designing the turbine for its
maximum aerodynamic efficiency results in a higher LCOE while designing the turbine for the LCOE yields
the lowest value. Also, simply increasing the system scope may not result in an increasing optimality. For
instance, increasing the scope from Blade to RNA, resulted in an increase in LCOE. In the case of RNA, the
optimizer tried to reduce the mass of the RNA (dominated by the nacelle mass), which was quite sensitive to
torque and not to rotor thrust. As minimizing the torque then became the implicit objective and not the rotor
thrust, the increase in thrust led to an increase in wake losses, support structure costs and hence, an overall
increase in the LCOE.
However, the LCOE was found to be minimum in the last case with the entire Wind farm as the system scope.
Hence, the use case that will be analyzed in this research, after the integration of the dynamic model, will be
that of the entire wind farm as system scope and minimization of LCOE as the objective. In order to make a
fair comparison, the use case and the design variables will be kept consistent for both, the static and the new
dynamic model.

9
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Table 3.1: System scopes for Use Case 1 of Tanmay [16]

System scope Objective function Normalized LCOE [-]

Aerodynamics Maximize aerodynamic efficiency 1.0000
Blade Maximize ratio of aerodynamic efficiency to blade mass 0.9363
RNA Maximize ratio of aerodynamic efficiency to RNA mass 0.9552
Wind farm Minimize wind farm LCOE 0.9346

The rotor design will be optimized with respect to the given design variables :

1. Blade internal layup (based on a reference layup)

2. Blade chord distribution (at 3 Blade nodes)

3. Blade twist distribution (at 3 Blade nodes)

4. Tip speed ratio

5. Fine pitch angle

These design variables can have a significant impact on the design of the rotor and either affect the objec-
tive function or the constraint evaluation. An impact on the objective function (LCOE) can either be in the
form of overall costs or annual energy production, while the impact on the constraints can be in the form of
out of plane tip deflection or spanwise stresses. For instance, the interaction of the blade internal layup with
the objective function and constraints is shown in Figure 3.1.

Blade Internal Layup

Blade Mass Blade Stiffness

Blade Cost

LCOE

Tip Deflection Spanwise Stresses

Objective Function

Constraints

Figure 3.1: Interaction of blade internal layup with the objective function and constraints

The blade internal layup, which includes the placement and thickness distribution of different materi-
als used has a direct implication on the mass of the blade that determines the cost of the blades and hence,
the LCOE. Similarly, the layup also determines the spanwise flapwise and edgewise stiffness of the blade. The
stiffness properties govern the tip deflection of the blade and bending stresses experienced by different mate-
rials at different sections of the blade that form the constraints in this particular optimization use case.

Having the thickness of different materials at multiple blade spanwise locations would result in a lot of
design variables and ultimately, higher computational times. In order to circumvent this, a reference internal
layup will be developed based on existing studies done on various 5 MW turbines. The thicknesses at multiple
blade locations can then be uniformly scaled with respect to one factor, called the thickness factor (τ). This
thickness factor can then be used as a design variable to optimize the blade internal layup.

The chord distribution (c) directly affects the aerodynamic performance of the blade, the power coeffi-
cient and hence, the overall energy production. Also, blade chord has a direct influence on the thickness of
the airfoil, the overall mass and stiffness and hence, on the tip deflection and stresses. Similarly, the twist
distribution (β) directly affects the aerodynamic performance and hence, the total energy produced. Also,
the twist has a direct influence on the angle of attack and hence, the loads.
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The fine pitch angle (θ) is the angle at which the entire blade is pitched below the rated wind speed in
order to achieve the ideal angle of attack for the respective airfoil throughout the blade. This fine pitch an-
gle is needed separately, as in the existing model, the blade twist at the tip is set to zero, as a convention
adopted for manufacturing ease. Similar to the twist distribution, the fine pitch angle also has an effect on
the aerodynamic performance of the blade.

The tip speed ratio (λ) determines the rotational speed at which the rotor rotates, for a given wind speed.
It directly affects the inflow conditions and hence, the power and thrust coefficients of the turbine. These
coefficients have a direct impact on the power curve, farm wake losses and hence, the annual energy produc-
tion. Also, it has a direct effect on the forces acting on the rotor and hence, the tip deflection and spanwise
stresses.

With the integration of an aero-servo-elastic model, a better evaluation of constraints is expected in the
form of tip deflection, spanwise stresses and fatigue damage, leading to a blade design which would be much
more feasible and a better starting point for a detailed blade design for manufacturing purposes.

3.2. Existing RNA model

This section gives a detailed description of the existing static RNA model in WINDOW, developed by Tanmay
[16].

3.2.1. Inputs

The existing static RNA model requires certain blade properties as an input to determine the loads and
stresses acting on the rotor.

Blade properties
The existing model takes the blade chord and twist at 3 pegged nodes, as shown in Table 3.2.

Table 3.2: Pegged notes for chord and twist distribution in the static RNA model

Parameter Blade sections

Chord
Root section, 70% and 90% of
blade length

Twist
Transition section, 40% and 70% of
blade length

For the chord profile, a linear region is considered between the root and the transition section 1, while
another linear profile runs through the nodes at 70 and 90% of the blade span till the transition section. For
the twist distribution, the twist at the tip is set to zero, which is also the reason why the fine pitch angle is
introduced. The twist at the transition section is defined and held constant till the root section as the twist at
the root has no meaning due to its rotational symmetry.

Figure 3.2 shows the spanwise chord and twist distribution obtained from the three respective pegged
nodes.

The blade mass and stiffness properties are scaled from the NREL5MW reference turbine based on chord,
using the equations listed below, where s is the chord scaling factor and τ is the thickness factor [16]. Also,
with the existing model, no knowledge about the offsets of the center of mass, shear center and tension center
is required.

s = c

cr e f
(3.1)

µ(r ) =µr e f (r ) · s ·τ (3.2)

1Transition section refers to the blade spanwise location where the blade cross section transitions from a circular shape to an airfoil
shape
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Figure 3.2: Complete chord and twist distribution obtained from pegged nodes

E I (r ) = E Ir e f (r ) · s ·τ (3.3)

Where µ is the mass density and EI is the stiffness.

3.2.2. Post-processing

The static moments and tip deflection are amplified by a factor of 1.5 to compensate for not modelling the
dynamic effects.

Blade spanwise stress
The existing model assumes the blade to be characterized uniformly by glass fibre reinforced plastics with a
Young’s Modulus (E) of 36.23 GPa and an Ultimate Tensile Strength (UTS) of 400 MPa. The moment of inertia
of the blade section (I (r )) is then calculated using Equation 3.4.

I (r ) = E I (r )

E
(3.4)

This value of I (r ), along with the amplified moments, is then used in the bending equation to determine
stresses at different blade spanwise locations. It should be noted that this approach would not yield accurate
results as it assumes one constant value of E throughout the blade span and does not use any internal layup
information. As a result, material specific stresses cannot be determined.

3.3. Aero-servo-elastic model integration requirements

It is important to understand the inputs needed to run an aero-servo-elastic (dynamic) model, and post-
processing of the outputs required in order to extract meaningful information from it. This section lists down
the model developments that will be done in order to meet the I/O requirements, and probable constraints
in realizing the same. An aero-elastic simulation of a wind turbine captures the interaction between the
aerodynamics and structural dynamics of the blade. However, an aero-servo-elastic simulation requires the
additional element of controller design that also simulates the transients in the system due to the controller
action. This mainly concerns the pitching action required above rated wind speeds to maintain a constant
rotational speed, and hence, constant power. Unlike the existing static RNA model, running a time domain
simulation using an aero-servo-elastic model requires tower properties, controller parameters and a wind
field (with temporal and spatial variation) as an input, apart from rotor properties.
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3.3.1. Inputs

The inputs required to run an aero-servo-elastic simulation are listed in this section.

Blade properties
The spanwise chord and twist distribution will be determined in the same way as in the existing RNA model.
As an aero-servo-elastic model requires the blade offsets and mass Moment Of Inertia (M.O.I.), a module to
determine the same will also be developed.

To determine the blade mass and stiffness properties, a pre-processing module is needed.

Blade Mass & Stiffness

Scaling Laws Internal Layup

Pre-processing 
Module

External 
Geometry

Figure 3.3: Different types of pre-processing modules to determine blade mass and stiffness

The pre-processing module can rely on scaling laws, as in the existing RNA model, or derive the blade
properties using the external geometry and internal layup data, as shown in Figure 3.3. Having a pre-processing
module based on an internal layup can be advantageous in many ways. At a particular blade spanwise sec-
tion, as the thickness of the different materials and its location along the airfoil is known, material specific
stresses can easily be determined. Also, the thicknesses of these materials can then be optimized by mak-
ing them design variables, either individually, or in the form of a thickness factor that would scale values of
thicknesses from a reference layup. Hence, in this research, the blade mass and stiffness properties will be
derived based on an internal layup and external geometric data (chord, airfoil type and geometry), for which
a reference layup will be developed.

Support structure properties
As the hydrodynamic loading will not be taken into account, only the tower properties will be used to run
the aero-servo-elastic simulations. The tower wall thickness and diameter values will be used from the
existing support structure design module in WINDOW. However, for the farm LCOE calculation, the costs
of the monopile based support structure designed by the same design module will also be taken into ac-
count.

Controller parameters
To design a conventional PI controller for the pitching action above rated wind speeds, a full system lin-
earization about the equilibrium points will be required. It should be noted that linearization at all wind
speeds above rated could be a hindrance in the optimization process and few time reduction techniques will
be devised for the same.

Wind field
The existing static RNA model calculates the moments and tip deflection at the rated wind speed. With the
new aero-servo-elastic model, a time domain simulation with a turbulent wind field will be carried out. To
achieve the same, a wind field generation model will have to be integrated.

Table 3.3 summarizes the specific input parameters required by an aero-servo-elastic tool and the corre-
sponding modifications required in order to meet them.
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Table 3.3: Modifications in WINDOW to incorporate the aero-servo-elastic tool

Input Required Modifications

Blade spanwise Mass, Stiffness,
Chord, Twist, Offsets, M.O.I.

Develop a reference internal layup
Develop a module to calculate mass and stiffness properties based
on an internal layup and external geometry
Develop a module that determines blade offsets and M.O.I.

PI controller gains
Develop a module that performs full system linearization and
analytically determines the controller gains

Support structure parameters
Connect the outputs of the existing support structure module to
the tower inputs of the aero-servo-elastic model

Wind Field with temporal and
spatial variation

Integrate a wind field generator into the existing framework

3.3.2. Post-processing

While the tip deflection output of an aero-servo-elastic simulation can be used as it is for the constraint evalu-
ation, the moments have to be post-processed to calculate spanwise stresses and fatigue damage in the blade.
It should be noted that with the existing static model, the fatigue damage in the blades cannot be evaluated.
To estimate the fatigue damage, a time domain simulation with the normal turbulence model, at each wind
speed is to be carried out and the stress ranges are then used to determine the fatigue damage.

Blade spanwise stress
To convert the spanwise moments to stresses in the blade, a post processing module will be developed that
first calculates the strain in a particular material, at specific spots of a blade section. As the resultant Young’s
Modulus (E) of all the materials is known, the stresses in a particular material can be determined. Although
the bending moments are maximum at the blade root, the stresses need not be highest at the root and hence,
stresses at multiple blade spanwise locations will be determined. The largest stress value for each material
will then be compared against the material specific tensile strength for constraint evaluation.

Fatigue damage
To estimate the fatigue damage of different materials in the blade, the traditional rainflow counting method
will be used to determine the stress range along with the S-N curve data of that respective material to evaluate
the fatigue damage. However, the same process is usually done at all wind speeds between cut-in and cut-
out. As this would drastically increase the time for one function evaluation, the fatigue damage will not be
evaluated every time and only the final optimized design will be checked for fatigue failure.

Table 3.4 summarizes the specific output parameters of an aero-servo-elastic model and the correspond-
ing modifications required in order to convert them into constraints.

Table 3.4: Modifications in WINDOW to incorporate the aero-servo-elastic tool

Output Required modifications

Blade spanwise bending moments
Develop a module to determine material specific
spanwise stresses
Develop a module to determine material specific
fatigue damage based on rainflow counting

3.3.3. Load case

A time domain simulation of the wind turbine under a given set of operating conditions and environmental
conditions defines one load case. In the process of certifying a wind turbine, multiple load cases with differ-
ent operating and wind conditions are simulated for periods of 10 minutes. However, doing the same for a
design optimization process would require unreasonably high computational power. Hence, the optimiza-
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tion with the dynamic model will be done for a particular load case that represents the worst case conditions
for the blade tip deflection and moment values.

Also, time reduction techniques will be needed to reduce the overall time required for one function evalu-
ation, where one function evaluation involves running all the disciplines of WINDOW.

3.4. XDSM : New WINDOW
To meet the research objective stated in Section 1.5 and the modifications required as per Section 3.3, two
new modules will be developed and coupled to the existing WINDOW framework.

• Extract Structural Properties (ESP), to calculate the blade mass and stiffness properties.

• Dynamics, for other pre-processing required, running the aero-servo-elastic simulation and post-processing
its outputs.

The XDSM of the new WINDOW framework can be seen in Figure 3.4. The custom made pre-processor
module, ESP, will be integrated into the RNA block, and hence, is not visible in the XDSM. The interactions of
the Dynamics block with the other disciplines and the optimizer can be clearly seen in the XDSM presented
in Figure 3.4. The Dynamics block requires the blade spanwise properties, airfoil properties, drivetrain gen-
erator and gearbox efficiency values and several nacelle properties to prepare the input files to run the aero-
servo-elastic model and post-process its outputs to give the tip deflection, spanwise stresses and fatigue dam-
age. The Dynamics module consists of four sub-modules, based on their functionalities: PrepSim, Controls,
FAST, Post-processor. The functions of all the newly added blocks, followed by the module/sub-module name
in brackets, are elaborated below.

Integration of the ESP and Dynamics into WINDOW will now enable the tool to :

1. Estimate blade spanwise mass and stiffness properties, and also enable the inclusion of the blade in-
ternal layup as design variables. (ESP)

2. Determine other blade properties required to run an aero-servo-elastic simulation (blade offsets, pitch
axis location, MOI, etc.), along with tower cross sectional stiffness properties. (PrepSim)

3. Automate the design of a PI controller that would be required to run an aero-servo-elastic simulation.
Thus, it also enables the user to have controller parameters as design variables and analyse the effects
at a wind farm level. (Controls)

4. Run an aero-servo-elastic simulation for different International Electrotechnical Commission (IEC)
load cases. (FAST )

5. Accurately estimate the tip deflection and spanwise stresses, for different materials, at multiple blade
spanwise locations. (Post-processor)

6. Estimate fatigue damage for different materials in the blade, as each material would have a different
slope on the S-N curve. (Post-processor)
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4
Model Development

The entire model development process can be broken down into 2 salient modules: ESP, which will be in-
tegrated into the RNA block, and the Dynamics block. The pre-processor module, and the Dynamics block,
highlighted in Figure 3.4, have been elucidated in this chapter. This chapter discusses various existing tools
related to different disciplines of a wind turbine, tool selection and then about its integration into the Dy-
namics block.

4.1. Existing tools

A crucial part of this research is the selection of the aero-servo-elastic model, along with other coupling mod-
els, to be integrated into the Dynamics module. Various models available in literature are explored, as shown
in Table 4.1.

Table 4.1: Existing tools evaluated for model development

Discipline Tool Description Assessment

Wind field

CFD based
models [13]

Dynamic wake meandering models; Calibrated
CFD models to construct simpler CFD models

High fidelity tool; High
computational time

TurbSim [22] Stochastic, full field turbulent wind simulator
Medium-fidelity tool;
Can be coupled to other
aerodynamic modules

Structural
properties

BECAS [23] Based on a finite element method
Highly accurate; High
computational time

Pre-Comp [24]
Based on classical laminate theory and shear
flow approach

Highly accurate; Low
computational time

ESP
Based on a simple weighting method to determine
equivalent cross sectional properties

Fairly accurate; Low
computational time

Aero-servo-
elastic coupling

HAWC2 [6]
Uses BEM with all dynamic effects included;
Structural module based on Multi-body
formulation

High fidelity model;
Highly accurate; High
computational time

FAST [5]
Uses BEM with few dynamic effects included;
Structural module based on modal dynamics
with no bend-twist coupling

Medium/High fidelity
model; Fairly accurate;
Low computational time

17
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As explained in Chapter 3, an external wind field generator is required to simulate a load case using the
aero-servo-elastic model. CFD based models for the wind climate, coupled with HAWC2, are used in TOP-
FARM. While CFD based models are computationally expensive, TurbSim can quickly generate the flow field
that can directly be read by any aero-servo-elastic model. Also, a pre-processing model is required to extract
blade properties used as an input by the aero-servo-elastic model. BECAS is used to calculate the blade struc-
tural properties and generate an input file that can directly be read by HAWC2. Pre-Comp is used to determine
the blade structural properties that can be read by BModes, a module that determines coupled mode shapes
required as an input by FAST. The structural properties can be extracted by using other simplified approaches
as well. The two aero-sevo-elastic models considered for the research are HAWC2 and FAST.

4.2. Tool selection

To accurately simulate a wind field and yet be computationally fast, TurbSim is selected as the wind field gen-
erator. Also, as mentioned previously in Chapter 3, ESP, a custom module will be developed for extracting the
blade structural properties.

While making the selection for the aero-servo-elastic model to be integrated into WINDOW, few selection
criteria considered are explained below:

• Accurately captures the system dynamics

• Computationally fast and accurate

Few advantages that FAST exhibits over HAWC2 are :

• Modularity: Available as a Simulink block; Provides for input of inflow generation in multiple formats;
Design of controller can be performed in Simulink or written as a seperate fortran routine.

• Flexibility: Other NREL tools can be easily coupled to FAST or can be replaced by simple analytical
methods to generate input files.

• Free and open source in nature.

Apart from the reasons mentioned above, the Wind energy group at Delft University of Technology has
built an interface on MATLAB using the Simulink version of FAST. This prior experience would contribute
greatly towards expediting the research process.

Owing to the reasons stated above, FAST developed by NREL, will be integrated into the Dynamics block
of WINDOW.

4.2.1. FAST

FAST is an open source multi-physics simulation tool built by NREL to analyse offshore and land based hor-
izontal axis wind turbines. Figure 4.1 shows the coupling between the FAST driver and its different modules.
The modules in light gray are the modules that are used for this research.

FAST comprises of the modules on the left that are tightly coupled to the main FAST driver. While FAST
is capable of simulating almost all the external effects on wind turbines, many are not considered for this
research. For instance, the HydroDyn module is not used as the hydrodynamics aspect will not be treated.
There are various other modules that haven’t been listed in the diagram but not been taken into account. To
give an example, IceFlow (to simulate ice dynamics) is not shown in Figure 4.1. BeamDyn is a high fidelity
structural dynamics module in FAST that requires a full 6 x 6 cross-sectional mass and stiffness matrix for
the blade. In order to make BeamDyn work, an additional cross sectional analysis tool would be needed.
Also, BeamDyn needs a really fine discrete time step in order to run and the capability of having a full system
linearization with BeamDyn is not possible on FAST v8. As a result, the medium fidelity structural dynamics
tool, ElastoDyn is used. AeroDyn is the module in FAST for aerodynamics, based on BEM, and ElastoDyn
is the module in FAST for structural dynamics, based on modal dynamics. The InflowWind module in FAST
reads the input wind file, which could be a steady wind field or a turbulent wind field generated by an external
tool. ServoDyn is used to simulate the control and drivetrain dynamics in FAST.
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The modules on the right are used to generate data that is eventually read by the modules in FAST. TurbSim
is a tool developed by NREL, used to generate a turbulent wind field which can be easily read by InflowWind,
making it a suitable choice. BModes is another module developed by NREL, that determines the rotating
beam coupled modes for both, the blade and the tower [25] and requires their spanwise properties as an in-
put. Elastodyn reads these mode shapes as an input and uses them to simulate the structural dynamics. To
generate the spanwise stiffness and mass properties of the blade, a cross sectional analysis tool called Pre-
Comp, developed by NREL, is often used. However, PreComp requires a detailed internal layup definition
(the number of plies and its orientation for each material) and generates an output file that can be directly
read by BModes. A model that would better suit the given research purpose would require a more general in-
ternal layup definition (in terms of thicknesses of different materials) and also provide some data that would
be used for post processing purposes. To meet these I/O requirements, a custom module called ESP will be
developed.

FAST 
DRIVER

InflowWind
Wind inflow

AeroDyn
Aerodynamics

ElastoDyn
Structural dynamics

BeamDyn
Finite element blade 
structural dynamics

ServoDyn
Control and Electric Drive 

dynamics

HydroDyn
Hydrodynamics

PreComp

BModes

TurbSim

ESP

BModes

Figure 4.1: Coupling between FAST driver and its modules

4.2.2. FAST: A validated tool

A validation study of FAST against experimental data from the Siemens 2.3 MW turbine and the code BHawC
used by Siemens, is presented by Guntur et al. [26]. It is observed that FAST (with BeamDyn) shows excellent
agreement with BHawc and the experimental data. Also, the predictions from FAST (with BeamDyn) are
compared with FAST (With ElastoDyn), where it is seen that the results using ElastoDyn follow the same trend
as BeamDyn, with a small deviation. From the analysis presented by Guntur et al. [26], it can be concluded
that FAST (with BeamDyn) accurately predicts real life blade conditions (tip deflection, root moments, etc.)
and FAST (with ElastoDyn) shows reasonable agreement with (with BeamDyn). However, due to the various
constraints mentioned in Section 4.2.1, FAST (with ElastoDyn) is chosen for the optimization process in this
research.

4.3. ESP

As mentioned in Section 3.1, in this research, the blade internal layup will also be a part of the optimization
process. To translate this internal layup and external blade geometry into blade spanwise mass and stiffness
properties, required by the aero-servo-elastic tool (FAST), as stated in Section 3.3, the pre-processing module
called ESP is developed. Also, as stated in Section 3.1, having all the thicknesses for different materials at
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variable blade span locations would drastically increase the number of design variables. To circumvent this,
a reference layup will be developed and the thickness factor (τ), that can uniformly scale this reference layup,
will be used as a design variable. Section 4.3.1 describes the reference layup that will be used for the opti-
mization process. Section 4.3.2 elucidates the model used to convert the internal layup and external blade
geometry into spanwise mass and stiffness properties.

An XDSM of the Pre-processor module can be seen in 4.2, where ESP is the custom pre-processing mod-
ule.

Airfoil data

Pre-processor

Chord (r),

Airfoil (r),

Blade Internal layup

EIflap (r), EIedge (r),

GJ (r), EA (r), µ (r)
ESP

Figure 4.2: XDSM of the Pre-processor module

The spanwise distribution of mass and stiffness properties can be derived using ESP that uses few traits of
the classical laminate theory and is based on the methodology explained by Ashuri et al. [27] and Wang et al.
[28].

4.3.1. Reference blade internal layup

The reference blade internal layup is defined based on the studies carried out by SANDIA labs [29] [30] and
the UPWIND 5 MW layup [31]. Table 4.2 lists down the terminology that will be used and its interpretation in
the given context.

Table 4.2: Blade layup terminology

Term Interpretration

UD Uni-directional
LE Leading edge
TE Trailing edge
Blade spanwise location Position along the length of the Blade
Blade segment Position within a particular Blade section

Table 4.3 gives a summary of all the material properties that are used for this research, same as that of the
study conducted by SANDIA labs[29][30].

Table 4.3: Summary of material properties [29][30]

Stack ID
Stack
Name

Material
EL

(MPa)
ET

(MPa)
ρ

(kg /m3)
UTS
(MPa)

UCS
(MPa)

1 Gelcoat Gelcoat 3440 1235
2 Triax Skins SNL (Triax) 27700 13650 1850 700
3 Triax Root SNL (Triax) 27700 13650 1850 700
4 UD carbon Carbon (UD) 114500 8390 1220 1546 1047
5 UD Glass TE E-LT-5500 (UD) 41800 14000 1920 972 702
6 TE foam Foam 256 256 200
7 LE foam Foam 256 256 200
8 Double bias Saertex (DB) 13600 13300 1780 144 213
9 Foam Foam 256 256 200
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Figure 4.3 shows a typical blade internal layup somewhere close to mid span, which was used for the
UPWIND 5 MW turbine. The arrows indicate different segments at a particular blade spanwise location and
the box to its right lists the materials used in the layup at that particular blade segment. A uniform layer of
gelcoat over the entire blade is considered.

Trailing Edge 
Reinforcement

Trailing Edge 
Panel

Spar cap

Leading Edge 
Panel

Shear Web

Trailing Edge

Leading Edge

SNL Triax Skin
UD Glass Fiber
TE Foam
SNL Triax Skin

SNL Triax Skin
TE Foam
SNL Triax Skin

SNL Triax Skin
UD Carbon Fiber
SNL Triax Skin

SNL Triax Skin
LE Foam
SNL Triax Skin

Double Bias
Foam
Double Bias

Stack ID: 2 
Stack ID: 5
Stack ID: 6
Stack ID:  2

Figure 4.3: Typical blade internal layup for a wind turbine [31]

Based on these material properties, the blade internal layup at few blade spanwise locations is pre-defined,
while for the locations in between, the layup is linearly interpolated. A linear interpolation ensures a smooth
increase or decrease in the number of plies/fiber layers. Figure 4.3 also shows an example of the material
distribution along with Stack ID’s. Similarly, Table 4.4 shows the blade spanwise location at which the layup
is defined [29] and the material distribution for all the segments, for each blade spanwise location.

Table 4.4: Spanwise distribution of stack layup [29]

Blade spanwise
location ( r

R )
LE
panel

Spar
cap

TE
panel

TE
reinforcement

Shear
web

0 1,2,3,2 1,2,3,2 1,2,3,2 1,2,3,2 -
0.03 1,2,3,7,2 1,2,3,4,2 1,2,3,6,2 1,2,3,5,6,2 8,9,8
0.1 1,2,7,2 1,2,4,2 1,2,6,2 1,2,5,6,2 8,9,8
0.3 1,2,7,2 1,2,4,2 1,2,6,2 1,2,5,6,2 8,9,8

0.50 1,2,7,2 1,2,4,2 1,2,6,2 1,2,5,6,2 8,9,8
0.75 1,2,7,2 1,2,4,2 1,2,6,2 - 8,9,8
0.95 1,2,2 1,2,2 1,2,2 - -

Additionally, the root Triax layer thickness is linearly terminated to 0 at 0.15 span. Shear webs begin at 0.05
span and end at 0.95 span, holding a constant foam thickness throughout. Similarly, the skin runs throughout
the span with a constant thickness. The UD Glass used in the TE reinforcements terminates at 0.75 span.

The complete internal layup along the length of the blade is shown in Figure 4.4.
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Figure 4.4: Complete blade internal layup

As stated before, this entire layup can now be scaled up or down, using the thickness factor (τ). This τ will
be used as a design variable in the optimization process.

4.3.2. ESP model

For extracting different structural properties, the methodology implemented is explained below.

1. The modulus of elasticity stated in Table 4.3 are along the principle directions of the fibres, as shown
in Figures 4.5a and 4.5b. However, the modulus of elasticity for angled plies can be converted to the
global coordinate system along x and y, using relations as shown in Equation 4.1 [28].

E pl y
x = 1

cos4(α)
EL

+
(

1
G12

− 2ν12
EL

)
· si n2(α) · cos2(α)+ si n4(α)

ET

(4.1)

Where EL and ET are the Moduli of Elasticity in the longitudinal and transverse direction, ν12 is the
Poisson’s ratio and G12 is the Modulus of Rigidity.

Similarly, the shear modulus for the torsional stiffness can be calculated using Equation 4.2 [28].

Gpl y
x = 1(

4
ET

+ 4+8ν12
EL

− 2
G12

)
· si n2(α) · cos2(α)+ si n4(α)+cos4(α)

G12

(4.2)

Where, α is the ply angle. Hence, effective engineering constants for the Triax skin layers and for the
double bias layers used in the shear webs are calculated. Figure 4.5a is a representation of the Triax
skin, where it consists of fibres with an orientation of +45°, -45°and 0°.
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(a) SNL Triax layer representation (b) Laminar co-ordinate system

Figure 4.5: Triax Skin layer and the different laminar co-ordinate systems

2. The airfoil is divided into five different segments, as mentioned before. Each of these segments is fur-
ther divided into really fine elements. An example of a fine element in the leading edge panel region
can be seen in Figure 4.6. Each of these elements is assumed to be a rectangular section, having a stack
of materials, based on Table 4.4. (XE , YE ) is the elastic center of the entire section at that particular
blade spanwise location, while (XC , YC ) is the element centroid.

Figure 4.6: Airfoil layup at a given blade spanwise location

3. The equivalent properties for these elements is determined using a simple weighting method. For in-
stance, the equivalent Modulus of Elasticity of an element in the LE panel segment is given by Equation
4.3 [27].

Figure 4.7: Equivalent Modulus of Elasticity of a given segment [11]
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E el m
eq =

E tr i ax
top · t tr i ax

top +E f oam
LE · t f oam

LE +E tr i ax
bot tom · t tr i ax

bot tom

t tr i ax
top + t f oam

LE + t tr i ax
bot tom

(4.3)

4. Similarly, the equivalent Modulus of Elasticity values are calculated for the elements in the spar caps,
TE panel, TE re-inforcements and shear webs. The same approach is used to determine the equivalent
density, where the Modulus of Elasticity is replaced by density [27].

5. After calculating the equivalent Modulus of Elasticity, the area moment of inertia values of all these in-
dividual elements is calculated about its own centroid, using Equations 4.4 and 4.5. Ix y for a rectangular
segment about its own centroidal axis will be zero.

I el m
xx =

∫
y2d xd y (4.4)

I el m
y y =

∫
x2d xd y (4.5)

6. The moment of Inertia for each of these segments is then rotated to a co-ordinate system along the
elastic axes using Equations 4.6 and 4.7 [28], where φel m is the angle between an individual element
and the elastic axes, as shown in Figure 4.6.

I el m
X X =

I el m
xx + I el m

y y

2
+

I el m
xx − I el m

y y

2
· cos(2φel m)− I el m

x y · si n(2φel m) (4.6)

I el m
Y Y =

I el m
xx + I el m

y y

2
−

I el m
xx − I el m

y y

2
· cos(2φel m)+ I el m

x y · si n(2φel m) (4.7)

7. The overall section elastic center is then determined using Equations 4.8 and 4.9 [28].

X Secti on
E =

∑Nel m
i=1 E i

eq · Ai
eq ·X i

C∑n
i=1 E i

eq · Ai
eq

(4.8)

Y Secti on
E =

∑Nel m
i=1 E i

eq · Ai
eq ·Y i

C∑n
i=1 E i

eq · Ai
eq

(4.9)

8. After the section elastic centers are derived, the area moment of inertia values of the individual ele-
ments are transformed to the section elastic center, using the Huygens-Steiner’s theorem, as shown in
Equations 4.10 and 4.11.

I elm
X X = I el m

xx + Ael m
eq ·

(
Y el m

C − Ȳ Secti on
E

)2
(4.10)

I el m
Y Y = I el m

y y + Ael m
eq ·

(
X el m

C − X̄ Secti on
E

)2
(4.11)

9. The overall stiffness properties at a particular blade span location is then determined by summing up
the contributions from all individual elements in the LE, spar cap, shear web, TE and TE reinforcement
segments, as shown in Equations 4.12, 4.13 and 4.14 [28].

E I Secti on
X X =

Nel m∑
i=1

E el m,i
eq · I el m,i

X X (4.12)
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E I Secti on
Y Y =

Nel m∑
i=1

E el m,i
eq · I elm,i

Y Y (4.13)

E ASecti on =
Nel m∑
i=1

E el m,i
eq · Ael m,i

eq (4.14)

For calculating the torsional stiffness, the modulus of elasticity is replaced by the modulus of rigidity
[27].

10. The mass distribution along the blade is also be determined using a similar approach, as shown in
Equation 4.15 [27].

( M

L

)
sect i on

=
Nel m∑
i=1

ρel m,i
eq · Ael m,i

eq (4.15)

Although the NREL5MW reference turbine is widely used for research purposes, no data about the inter-
nal layup of the blade existed. Resor [29], from Sandia National laboratories, presented a study in which an
internal layup was developed to best match the spanwise mass and stiffness properties of the NREL5MW ref-
erence turbine [32]. While doing so, the layup developed was designed to satisfy basic failure criteria, mainly
tip deflection, fatigue damage and buckling. The analytical model developed as a part of this research (ESP),
is validated against the data developed by Sandia Labs. For this, the same internal layup is used and the re-
sulting blade mass and stiffness properties from the analytical model are compared with the values obtained
by SANDIA labs. It should be noted that, for the layup developed by SANDIA labs, not all properties showed
good agreement with the actual values of the NREL5MW turbine.

Figures 4.8 and 4.9 show three of the several properties extracted, where a good agreement with the val-
ues from Sandia Labs is observed. However, it can be seen how the actual values of the NREL5MW turbine
(indicated by the red line) are not in complete agreement with SANDIA labs.

Figure 4.8: Comparison of flapwise and edgewise stiffness

Figure 4.8 show a comparison of the flapwise and edgewise stiffness values obtained from ESP, with the
respective values obtained by SANDIA labs and the actual values of the NREL5MW turbine. The inconsistency
in the stiffness values can be attributed to the fact that the standard layup values were defined at locations
defined in Table 4.4, while the rest were linearly interpolated.
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Figure 4.9: Comparison of blade mass density

A comparison of the mass densities is shown in Figure 4.9, which shows good agreement with the data from
SANDIA, except for at the root. Again, the difference can be attributed to interpolation of layup values.

4.4. XDSM: Dynamics module

Figure 4.10 shows a detailed XDSM of the Dynamics module. The Dynamics module performs the neces-
sary pre-processing to call FAST, runs an IEC load case on FAST and post-processes data to convert it into
constraints.

Airfoils,

Nacelle design

Airfoils,

Blade internal layup

Dynamics

Chord (r), Twist (r),

Airfoil (r), Mass (r),

Blade Stiffness(r), ηdt ,

dtower , ttower

PrepSim
Blade design,

Tower design

Blade design,

Tower design,

Drivetrain design

Blade design

Controls Controller design

δtip FAST Internal moments (r)

σflap (r, material),

σedge (r, material),

dfatigue (r, material)

Post-processor

Figure 4.10: XDSM of the Dynamics module

The main module can further be broken down into sub-modules that perform these tasks. The PrepSim
module takes in all the available blade, airfoil, drivetrain and tower properties, from the user and from other
modules, and converts them into all the template files which are required to run BModes and FAST, ensur-
ing its integration into WINDOW. As explained in Section 4.1, BModes is a module developed by NREL that
calculates the mode shapes for the blade and the tower, that serve as an input for ElastoDyn, the structural
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dynamics module of FAST. The Controls module performs full system linearization and calculates the PI con-
troller gains. The FAST module makes a call to the aero-servo-elastic model, FAST for the user defined load
case. The internal moment reactions from FAST are used by the Post-processor module to convert them into
spanwise stresses and fatigue damage. Many of the MATLAB scripts and the analytical expressions used to
build the python wrapper for FAST, have been constructed over years to make an interface for the Simulink
version of FAST, by the Delft University of Technology.

4.5. Dynamics: Sub-modules

The submodules, PrepSim, Controls, FAST and Post-processor have been elaborated in this section.

4.5.1. PrepSim

PrepSim or ’Preparation for Simulation’ serves as the module that fills in the missing links between the other
modules in WINDOW and the Simulink version of FAST.

The spanwise mass and stiffness properties from the ESP module serve as an input for PrepSim. From all
the available inputs as shown in Figure 4.10, few other Blade parameters that are derived have been listed
below:

1. Offsets for the center of gravity, tension and shear center.

2. Pitch axis location, based on standard parameters available at few sections, using which, the values at
the other stations were interpolated.

3. Blade mass moment of inertia values based on blade mass and blade thickness.

For the Tower, the wall thickness and diameter values at the top and bottom are taken as input from the
support structure module, while tower extra mass is taken as a user-defined input. The tower extra mass
compensates for the cables and transformer stationed inside the tower. The Modulus of Elasticity and the
Shear Modulus for the tower are the same as that of Steel (210 GPa and 80 GPa respectively). Based on these
values, the following parameters are derived :

1. Spanwise distribution of the tower diameter, which is a linear interpolation using the given values of
tower top and bottom diameter.

2. Tower mass, based on the tower section details and tower density, with added tower extra mass.

3. Tower axial and torsional stiffness, using the respective modulus and tower section details.

4. Tower mass moment of inertia using tower mass and tower section details.

The airfoil, drivetrain and nacelle data is defined externally by the user. PrepSim takes in this data, along
with the complete blade and tower design, and generates files that can be read by the MATLAB interface for
the Simulink version of FAST.

4.5.2. Controls

The main purpose of having a controls module is to automate the process of calculating the proportional and
the integral gain values of the PI controller, so as to make it a part of the optimization loop. The drivetrain
parameters coming in as user-defined inputs are the gearbox ratio, gearbox efficiency and the generator effi-
ciency. The blade pitch rates, startup pitch values and braking parameters are taken to be the same as that of
the standard NREL5MW turbine [32]. The step-wise methodology to calculate the gains is explained in this
section.

Rated wind speed

The pitching action of the controller is for wind speeds above rated. The rated wind speed, which is taken as
an input from the RNA block (refer to Figure 3.4) is calculated using Equation 4.16, once the power coefficient
(CP ) value is known.
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Ur ated =
( Pr ated

0.5 ·CP ·ρ · Ar otor

)1/3
(4.16)

Cp −λ curve

The first step is to determine the operating power co-efficient at the given tip speed ratio and fine pitch angle
for the given rotor design. This module uses a BEM script that is a part of the interface developed at the Delft
university of technology. The CP −λ curve is obtained by solving the BEM theory for a given fine pitch angle
and tip-speed ratio (λ), which are design variables and hence, will be guessed by the optimizer. The value of
CP at the λ guessed by the optimizer is then used to calculate the rated wind speed.

Torque-control curve

The next step in control design, is to obtain the torque control curve. A torque control curve has various
regions of operation, as shown in Figure 4.11 , wherein the various rotational speed values and the corre-
sponding torque values need to be determined.

1 1 1/2 2

2 1/2

3

Figure 4.11: Torque control curve of the NREL5MW turbine [11]

The different control regions have been explained by Ashuri [10]. In region 1, no power is produced, as
the cut-in rpm is decided by the cut-in wind speed. Region 2 is the partial load region, wherein the turbine
operates at optimal power producing conditions. The relation between the torque and rotational speed in
region 2 is given by Equation 4.17, where the Torque (T) and the rotational speed (ω) are related by the optimal
mode gain (kopt ).

T = kopt ·ω2 (4.17)

In region 3, the turbine operates in the full load region and to keep the power constant, torque decreases
with increasing rotational speed. Regions 1 1/2 and 2 1/2 represent linear transition regions, wherein the
slope of region 2 1/2 represents the slip of an induction generator [10]. In the model, the relative difference
in the operational range, of the rotational speed, for regions 1 1/2 and 2, is taken to be the same as that of the
NREL5MW turbine [32].

Using the existing model developed at the Delft university of technology, the drivetrain high speed shaft

inertia is scaled using Equation 4.18, where I r e f
hss represents the high speed shaft inertia of the NREL5MW

turbine andωr e f
hss,r ated represents the high speed shaft rotational speed at rated conditions, for the NREL5MW

turbine. The high speed shaft inertia is scaled so as to prevent the generator from reaching very high values
of rotational speed during linearization.
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Ihss = Ihss,r e f ·
(Pr ated

5 ·106

)5/3
·
(ωhss,r ated ,r e f

ωhss,r ated

)2
(4.18)

The low speed shaft inertia is then calculated using Equation 4.19, where rg is the gearbox ratio.

Il ss = Ihss · (rg )2 (4.19)

Automated controller design

As most systems in the world are non-linear while the conventional Proportional-Integral-Derivative (PID)
controllers are based on linear theory, the first step towards controller design involves linearization of the
turbine at specific steady state operating points. A linearized model is only valid in some vicinity of the steady
state operating point. For each of these operating points, the controller design differs, leading to different
proportional and integral gain values.

Using scripts from the existing TU Delft model, the steady state rotational speed of the rotor, generator
speed, generator torque and the collective blade pitch angle are determined for different windspeeds. The
Controls module then makes a call to FAST with the linearization flag ’on’, in the main input file for FAST.
The system is then linearized about these steady state operating points with all structural degrees of freedom
turned off and with the frozen wake toggle on [33].

The main purpose of linearization is to determine the sensitivity of aerodynamic power to rotor collective
blade pitch, which is then used to calculate the proportional and integral gains. The variation of aerodynamic
power sensitivity ( ∂P

∂θP
) with different pitch angles for the NREL5MW turbine is shown in Figure 4.12.

Figure 4.12: Aerodynamic power sensitivity v/s collective blade pitch angle [32]

It can be seen how the aerodynamic power sensitivity changes linearly with the pitch angle (θP ). This
dependence of the aerodynamic power sensitivity on the pitch angle explains the need for gain scheduling,
as seen in Equations 4.20 and 4.21 [32]. Using these equations, the proportional and integral gains, as a
function of the pitch angle, are calculated, where ideal response characteristics given by ωφn=0.6 rad/s and
ζφ=0.6-0.7 are assumed, as recommended by Hansen et al. [34].

KP (θP ) = 2 · Id t ·Ω0 ·ζφ ·ωφn

NGear ·
[
− ∂P

∂θ (θP = 0)
] ·GK (θP ) (4.20)

K I (θP ) =
Id t ·Ω0 ·ω2

φn

NGear ·
[
− ∂P

∂θ (θP = 0)
] ·GK (θP ) (4.21)
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where GK (θP ) is the gain correction factor, given by Equation 4.22.

GK (θP ) = 1

1+ θP
θk

(4.22)

θk is the pitch angle at which the aerodynamic power sensitivity has doubled from its value at rated.

The gain and gain correction factor values for the NREL5MW turbine are shown in Figure 4.13.

Figure 4.13: Gain and Gain correction factor values for different pitch angles [32]

4.5.3. FAST

The FAST module performs two important tasks :

• Calls the wind field generator, TurbSim, which then generators a three dimensional flow field with spa-
tial and temporal variation. The wind conditions, namely the mean wind speed and the wind type, are
load case dependent. Various options for the wind type include: steady wind speed, stepped wind pro-
file, normal turbulence model, extreme turbulence model, etc. The load case used for this research will
be defined later, in Chapter 5.

• For the defined load case, it makes a call to the Simulink version of FAST and runs the simulation for
the stipulated time, generating the output file that is read by the Post-processor module.

4.5.4. Post-processor

The Post-processor module converts the internal reaction moments obtained along the span of the blade into
stresses and fatigue damage, in different materials.

Spanwise stresses

Even though the moment at the root is the highest, it does not necessarily translate to maximum stress. As
the blade external geometry and internal layup thicknesses are different throughout the blade span, a need to
check stresses at different locations arises. For the same, 5 different spanwise locations ( r

R ) are chosen : 0.15,
0.3, 0.5, 0.75 and 0.95. As a result, stresses at 6 different points along the blade are calculated. The quantities
that are checked at each of these locations are given in Table 4.5.

Figure 4.14 points out the exact locations along the blade where these parameters are calculated. The
flapwise stresses are calculated at the maximum thickness point of the airfoil, in the spar cap segment, while
the edgewise stresses are calculated at the maximum chord point, in the TE reinforcement segment. In the
spar cap segment, the flapwise stresses are determined for the skin and the UD carbon fibers, while in the TE
reinforcement segment, the edgewise stresses are determined for the skin and the UD glass fibers.
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Table 4.5: Quantities calculated for stress check

Parameter Material

Flapwise stress SNL Triax
Flapwise stress UD Carbon
Edgewise stress UD Glass fiber
Edgewise stress SNL Triax

Spar cap segment : 
• SNL Triax Skin
• UD Carbon 

TE Reinforcement 
segment : 
• SNL Triax Skin
• UD Glass fiber 

Flapwise axis

Edgewise axis

XE, YE

Figure 4.14: Locations selected for stress calculation

The internal bending moment values at different spanwise locations are obtained as an output of FAST,
while the stiffness properties and the farthest point are taken from the pre-processing model, ESP. The strain
experienced at the farthest point is then obtained using Equation 4.23.

ε= Msect i on · y

E I
(4.23)

The stresses resulting in a particular material is then determined from the strain in the fibers and its mod-
ulus of elasticity. For instance, the stress in the skin can be calculated using Equation 4.24.

σski n = ETr i ax ·εski n (4.24)

Fatigue damage

The fatigue damage is evaluated for stresses at all the four points shown in Figure 4.14. To evaluate fatigue
damage, the method adopted is the same as that used by Griffith and Ashwill [30], based on Minor’s rule,
given by Equation 4.25.

d f at i g ue =
∑

i

ni

NF · (γ f ·γm ·Si )
≤ 1.0 (4.25)

where
ni = number of cycles in the stress range Si

NF = number of cycles to failure
γ f = Safety factor for consequences of failure
γm = Material safety factor
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The detailed methodology adopted is explained below:

1. For fatigue analysis, 6 simulations with different wind speeds are considered, between cut-in and the
cut-out wind speed, in steps of 4 m/s, with a normal turbulence model.

2. The spanwise stresses calculated are then converted into cyclic stress ranges using the rain flow count-
ing method, a histogram of which is made and the number of occurrences (ni ) of each stress range is
determined.

3. For each of these stress ranges, the number of cycles to failure (NF ) are obtained from the S-N curve
given material, using equation 4.26. The S-N curve for a material is derived from test results, where the
number of cycles to failure for a given stress range is determined and the same process is repeated for
different stress ranges. A linear fit to these points, also known as the S-N curve, can be defined with the
help of two important parameters, the inverse slope of the line, and the effective single cycle strength.
Effective single cycle strength is the value of the y-intercept of the S-N curve, or the value of stress range,
for which the material fails after one cycle.

NF =
( 1

C
·S

)−b
(4.26)

where
C = effective single cycle strength of the material
b = inverse of the slope of the S-N curve obtained from test results for a particular material

Equation 4.26 can be rearranged into a logarithmic form given by Equation 4.27.

logS = logC − 1

b
· log NF (4.27)

Different values for the slope and UCS for the blade materials are given in Table 4.6 [29].

Table 4.6: Material properties for Fatigue

Material b C (Mpa)

E-LT-5500 (UD) 10 700
Carbon (UD) 14 1047
SNL Triax 10 700

4. A simple summation of n
N values for each stress range gives the total 10 min damage due to a particular

wind speed at the point where the stress is calculated.

5. To get the total damage due to a particular wind speed in a turbine’s lifetime, at first, the number of 10
min periods of that particular wind speed are evaluated. The probabilities of different wind speed bins
are calculated using the cumulative density function given by the IEC standards, as shown in Equation
4.28. The probability of a particular wind speed bin is found out by simply substituting the upper and
lower limits of the bin, in Equation 4.28 and then taking the difference of the probabilities.

P (U ) = 1−e
−
(

U
ascale

)k

(4.28)

6. The total damage for a particular wind speed is just a product of the damage in one 10 min period and
the number of ten minute periods.

7. The same procedure is followed for all the wind speed bins and the damage for each of these bins is
summed up to get the total fatigue damage.
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Optimization Setup

Before delving into the optimization setup, it is important to evaluate the function evaluation time, which
is the overall time taken to run the analysis block in the new WINDOW framework, once. Running a wind
farm level optimization, with FAST in the loop, for multiple load cases, would drastically increase the overall
function evaluation time and prove to be computationally expensive. Hence, a need to reduce the number of
load case arises. The chapter starts off with defining the load case for which FAST will be run and it also elab-
orates the methodology used to reduce the overall function evaluation time. The reader is then familiarized
with some basic optimization terminology. Lastly, the use case specific objective function, design variables,
constraints and driver algorithms used are elaborated.

5.1. Load case selection

In a usual design certification process of a wind turbine, the wind turbine manufacturers simulate all the IEC
load cases, as specified in the IEC standards. However, the certification cases are ran during the detailed de-
sign phase and doing the same for preliminary rotor design optimization would not be a viable option, given
the limited computational time and resources. Hence, for design optimization purposes, a need to reduce
the number of load cases arises.

To reduce the number of load cases, majority of the IEC load cases are run for the NREL5MW reference tur-
bine. Few critical load cases, with high values of tip deflection and moment, are shown in Table 5.1, where the
mentioned external conditions include Extreme Turbulence Model (ETM), Normal Turbulence Model (NTM),
Extreme Wind Shear (EWS) and Extreme Direction Change (EDC). The maximum value of tip deflection is ob-
served for the normal power production mode with ETM while the highest root moments are observed in the
start up mode with a change in the wind direction. The work carried out by Ashuri [35] involved using FAST
to optimize the turbine LCOE, and the tip deflection was found out to be the main design driver for the rotor.
Hence, of all the load cases, Design Load Case (DLC) 1.3 at the rated wind speed is chosen to be the most
critical load case, based on its highest tip deflection value. Also, the stress values for the moments given in
Table 5.1 are found to be way below the ultimate strength and hence, tip deflection is chosen to be the main
driver behind the load case selection.

Table 5.1: Results of critical load cases, simulated for the NREL5MW turbine

DLC Design situation
External
condition

Wind
Speed

Tip Deflection
(m)

Resultant moment
(KNm)

1.3 Power production ETM Rated 7.793 15689
1.5 Power production EWS Rated 7.634 14519

2.1
Power production +
Occurrence of fault

NTM Rated 7.147 15043

3.3 Start-up EDC Cut-in 0.297 15972

33
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DLC 1.2, for the fatigue limit state, requires a 10 minute simulation for all wind speeds between cut-in and
cut-out, with a normal turbulence model , in the normal production mode of the turbine. As mentioned in
Section 3.3.2, including fatigue check in the main optimization loop would be highly infeasible due to limited
computational resources. As a result, the fatigue limit state will only be checked for the final optimized design
given out by the optimizer. To summarize, the two load cases that will be simulated are given in Table 5.2, of
which, DLC 1.3 will be included in the main optimization loop and DLC 1.2 will only be checked for the final
optimized turbine. The fatigue damage evaluation for the final optimized design will be done only to check
the feasibility of the design with respect to fatigue. If fatigue is found out to be the main design driver, only
changes in the design will be recommended and the main optimization run with the design update will not
be carried out again.

Table 5.2: Final load cases to be simulated

DLC Design situation External condition Wind Speed

1.3 Power production ETM Rated
1.2 Power production NTM Cut-in : 4 : Cut-out

In reality, each of these load cases is run for a period of 10 minutes and with at least 6 different seeds. Each
seed gives a different realization of the wind speed profile, for the same mean wind speed. Consequently, the
simulations are run for different seeds and then the maximum value is used. However, running a simulation
for 10 minutes with 6 different seeds, in an optimization loop, would drastically increase the total time elapsed
and hence, is not a feasible option. A need to reduce the time taken per load case arises and the techniques
used in this research have been elaborated in Section 5.2.

5.2. Function evaluation time

This section mainly addresses the issue regarding the time taken for one function evaluation. In a problem
as complex as wind turbine rotor optimization where in every function evaluation, a dynamic simulation is
involved, the total time taken for one function evaluation becomes critical.

The total time taken to run the analysis block in the new WINDOW framework once, also known as the
function evaluation time, along with the break up of time taken by individual disciplines is shown in Table
5.3. The time taken by the Dynamics block is considering a 10 minute simulation with a single seed.

Table 5.3: WINDOW function evaluation time break up

Module Computation time (s)

RNA 85
Wake Aerodynamics 70
Support Structure 20
Dynamics 1480
Other 3

1658

With the given function evaluation time, it would be highly infeasible to run multiple optimization runs
with different drivers and settings, especially gradient free algorithms that require many more function eval-
uations as compared to gradient based optimizers.

At first, the time taken by different sub-modules of the Dynamics block is calculated and each time con-
suming sub-module is individually dealt with. The most time consuming modules identified, include the
Controls and FAST sub-modules. The Controls sub-module involves a full system linearization at wind speeds
from rated to cut-out, while the FAST sub-module involves running FAST for the given load case. The ap-
proach used to reduce the overall time taken by the Controls and FAST sub-modules is elaborated in this
section.
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5.2.1. Controller design time

In the controls module, full system linearization is the most time consuming process. Jonkman et al. [32] rec-
ommend linearizing at all wind speeds above rated, to determine the PI controller gains, as a function of the
pitch angle. To achieve a time reduction in the linearization process, without compromising on the controller
design, the following parameters are tuned : Simulation time before linearization and the Linearization wind
speeds. The simulation time before linearization is the time for which FAST is run before linearizing, to get rid
of the transients.

As aerodynamic power sensitivity is the only output of linearization that is used, the time taken for the
power output transients to die out is plotted, as shown in Figure 5.1, and a time of 20 s is selected, instead of
the recommended value of 60 s.

Figure 5.1: Power output during linearization at 15 m/s

Also, as shown in Figure 4.12 from Chapter 4, the aerodynamic power sensitivity varies linearly with the
wind speeds. Hence, the linearization is tried out in steps of 2 m/s, instead of the recommended value of 1
m/s. The overall effect of changing the simulation time before linearization and the linearization wind speeds
on the controller gains is analyzed, and it shows a good agreement with the recommended parameters, as
shown in Figure 5.2.

Figure 5.2: Comparison of proportional and integral gains before and after changing linearization parameters
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5.2.2. Load case simulation time

The biggest hindrance while running a dynamic simulation in an optimization loop is the simulation time
itself. The effect of different simulation times on the tip deflection can be seen in Figure 5.3, where a 10 minute
simulation is run, for the NREL5MW reference turbine, with 10 different seeds (10 different realizations of the
wind profile about the same mean wind speed). The black line indicates the mean value trend line while the
red points represent the maximum deflection values for a simulation time of 60 s and 600 s. A similar trend is
observed for the root moment values.

Figure 5.3: Tip deflection for different simulation time and seeds

Based on these observations, two clear conclusions can be drawn :

1. Reducing the simulation time results in missing out on an extreme which may occur later in the 10
minute simulation.

2. The effect of running multiple seeds becomes prominent as the simulation time reduces. For instance,
the scatter in the points for a simulation time of 60 s is higher as compared to the scatter for 600 s.

To reduce the simulation time while still capturing the worst extreme, a simulation time of 60 s is chosen
and is compensated by an additional safety factor that accounts for this reduction in simulation time. Also,
the seed chosen for the optimization is the seed for which the highest value of extreme is observed, for a sim-
ulation time of 60 s.

The safety factor that compensates for the reduction in simulation time is given by Equations 5.1 and
5.2, where δt i p,600 is the maximum tip deflection observed for a simulation time of 600 s and δt i p,60 is the
maximum tip deflection for a period of 60 s. Similarly Mr oot ,600 is the maximum root moment for a period of
600 s while Mr oot ,60 is the maximum root moment for a period of 60 s.

γ
t i p
st = δt i p,600

δt i p,60
(5.1)

γstr ess
st = Mr oot ,600

Mr oot ,60
(5.2)

In an ideal scenario, it would always be advisable to run the load cases for a period of 10 minutes for mul-
tiple seeds and then consider the maximum value. Also, the same seed can have a different outcome when
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a completely different turbine design is tried out and consequently, the same compensation factor may not
hold completely true. It is nevertheless assumed that the main reason for the extreme response of the design
to the chosen seed for the 60 s simulation, is the shape of the corresponding wind field realization.

To analyze the effects of the methodology adopted above, a simulation with a completely different rotor
design is tested and analyzed for the chosen seed and for a time of 60 s. This value, multiplied with the
compensation factor, is then compared with the extreme value for 600 s, which resulted in a deviation of 0.09
m, which is within acceptable limits. However, it should be noted that this stochastic nature of the interaction
between different designs and seeds cannot be completely eliminated.

Using the same seed throughout the optimization process produces the same wind profile every time it’s
run and hence, ensures a fair comparison between different turbine designs. Having a different seed in every
function evaluation would induce its own stochastic nature which would again have negative implications.
For instance, a stiffer design could still give a tip deflection higher than a design not as stiff, just because of a
different realization of the wind profile.

5.2.3. Reduced function evaluation time

With these added changes explained in Sections 5.2.2 and 5.2.1 , the overall time taken by the Dynamics
module drastically reduces, as shown in Table 5.4. With the incorporated changes in the Dynamics module,
the overall function evaluation time of WINDOW is now reduced to an average value of about 420 s.

Table 5.4: Dynamics block time break up comparison

Dynamics block:
Sub-modules

Initial time (s) Final time (s)

PrepSim 1 1
Controls 1030 170
FAST 450 85
Post-processor 1 1

5.3. Optimization terminology

Most optimization problems are formulated to either maximize or minimize a particular quantity. For in-
stance, maximizing profits or minimizing overall costs. The quantity to be optimized is called the objective
function, given by f. This objective function is a function of a set of variables that can be controlled by the op-
timizer, known as the design variables. The design variables can be represented by a vector x = [x1, x2, ....xn]T ,
where n is the number of dimensions of the problem. The aim of an optimization problem involving mini-
mization is to find the set of design variables, (x*), such that f(x*) = min(f(x)).

In most real life problems, the design space is restricted, which can be given by a set of constraints imposed
on the optimizer and in the form of bounds for the design variables . These constraints could be inequality
constraints, given by g (x) ≤ 0 or equality constraints, given by h(x) = 0. While for the design variables, they can
only take values between the limits specified in the form of bounds. A constrained minimization optimization
problem with n design variables, l inequality constraints and m equality constraints can be summarized as
:

minimize
x

f (x)

subject to gi (x) ≤ 0, i = 1,2, . . . , l .

h j (x) = 0, j = 1,2, . . . ,m.

where x = [x1, x2, . . . , xn]T

xl ower ≤ x ≤ xupper

The constraints can be implemented in different ways, depending on the algorithm. For instance, in the
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Genetic Algorithm (GA), the constraints are implemented in the form of a penalty to the objective function
for violating a constraint [36]. Also, not all optimizers can handle a constrained optimization problem.

5.4. Objective function

The wellness or fitness of the optimization problem is evaluated in terms of the objective function. For a com-
plex multifarious system like a wind farm, only minimizing the overall costs of the various elements involved
or only maximizing the overall energy production, would always result in a sub-optimal design. A parameter
that accurately represents the trade-offs between the overall costs and annual energy production is the LCOE
of the wind farm.
As a result, for the minimization problem in this use case, the objective function is the LCOE of the wind farm,
given by Equation 5.3. The LCOE depends on the total investment costs (Ci nv ), operation and maintenance
costs (CO&M ), decommissioning costs (Cdecomm), the Annual Energy Production (AEP), electrical transmis-
sion efficiency (ηtr ans ) and the annuity factor (a), which depends on the interest rate (r ).

LCOE = Ci nv

a · AEP ·ηtr ans
+ CO&M

AEP ·ηtr ans
+ Cdecomm · (1+ r )−T

a · AEP ·ηtr ans
(5.3)

where Annuity is given by Equation 5.4, T being the total lifetime of the project.

a = (1+ r )T −1

r
(5.4)

5.5. Design variables

The numerical input values that are in control of the optimizer are called the design variables. In real life
conditions, each of these design variables has a lower limit and an upper limit, also known as bounds. For
instance, when designing the blade planform, the chord values cannot be negative or infinitely large, as that
would be physically impossible and hence, has to be restricted within certain limits. Each of these design
variables is expected to influence the objective function, which in this case, is the LCOE of the wind farm.

For a comparison between the static and dynamic models with different optimization algorithms, the
NREL5MW reference turbine is redesigned. Hence, the NREL5MW rotor design is used as a reference and
the bounds for the design variables are decided based on these reference values. As stated in Section 3.1, the
design variables with respect to which the rotor will be optimized are :

1. Chord (c) at 3 pegged nodes : At the root, 70% and 90% of the blade span

2. Twist (β) at 3 pegged nodes: At the transition section, 40% and 70% of the blade span

3. Tip speed ratio (λ)

4. Fine pitch angle (θ)

5. Thickness factor (τ)

The thickness factor (τ) will be used to scale the reference layup developed in Section 4.3.1, based on the
study conducted by Resor [29]. The layup developed by SANDIA labs was based on manual optimization
techniques and just enough to satisfy the ultimate limit states, fatigue and buckling. As buckling is not mod-
elled in this research, the lower bound of the thickness factor is limited to 0.7, so to avoid blade designs that
might fail in buckling. While checking the response of LCOE with respect to the fine pitch angle, it is observed
that values lower than -1° lead to high values of LCOE. This can be attributed to conditions similar to ’pitch
to stall’, resulting in a significant drop in the energy production. Consequently, the lower bound is set to -1°,
and the solutions will be checked for their closeness to the lower bound while performing the optimization
runs.

The design variables along with their respective bounds, are summarized in Table 5.5.
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Table 5.5: Design variables for the defined use case

Design variables Reference value Lower bound Upper bound

cr oot ,0.7,0.9 [3.54, 3.01, 2.31] m 0.75 · Reference 1.25 · Reference
βtr ans,0.4,0.7 [13.31, 9.0, 3.13]° 0.7 · Reference 1.3 · Reference
λ 7.6 6.5 8.5
θ 0.1° -1° 3.5°
τ 1 0.7 1.3

5.6. Constraints

The constraints that are imposed relate to the structural aspects of the blade. The spanwise internal mo-
ments from FAST are converted into stresses and multiplied with the safety factors, while the tip deflection
values from FAST are simply multiplied with the safety factors, by the Post-processor module, and fed into the
optimizer as constraints. As described in Section 4.5.4, the stresses are calculated for six different spanwise
locations and for each of the three materials : SNL Triax in the skins, UD-Carbon in the spar and UD-Glass
fiber in the TE-Reinforcement. The maximum stress value (σmax ) for all the three materials is then used
for constraint evaluation and compared with the respective material’s Ultimate Compressive Strength (UCS),
listed in Table 4.6. The tip deflection (δt i p ) is compared with the maximum allowable tip deflection for the

NREL5MW reference turbine (δr e f
t i p ), which is calculated to be 7.07 m.

Constraints : γt ·δt i p ≤ δr e f
t i p

γt ·σmax
ski n ≤UC Sski n

γt ·σmax
spar ≤UC Sspar

γt ·σmax
te−r ei n f ≤UC Ste−r ei n f

The γt factor multiplied includes both, the partial safety factors and the additional γst for reduction in
simulation time. The partial safety factors used are further elaborated next.

Partial safety factors

It is a common practice in the wind turbine industry to use partial safety factors in order to account for all
the discrepancies in the design and manufacturing procedures. Ashuri [10] made a comparison of the partial
safety factors given in two well known certification bodies, IEC and Germanischer Lloyd (GL).
For the materials used in manufacturing process, GL provides an extensive list of safety factors that comes up
to a total of 2.94, whereas IEC provides a general material factor of 1.3 [29].

Tables 5.6 and 5.7 give the IEC partial safety factors that will be used for ultimate limit states and fatigue
load analysis.

Table 5.6: Partial safety factor for ultimate load analysis

Type of safety factor IEC

Loads, γ f 1.35
Blade consequence of failure, γn 1.0
Materials, γm 1.3
Total 1.755
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Table 5.7: Partial safety factors for fatigue load analysis

Type of safety factor IEC

Loads, γ f 1.0
Blade consequence of failure, γn 1.15
Materials, γm 1.2
Total 1.38

For the fatigue damage, a material factor of 1.2 for the IEC standards is assuming SN curve data with a
confidence level of 95%, adopted from Resor [29]. For this research, partial safety factors of 1.755 for the
ultimate limit states and 1.38 for the fatigue damage, based on the IEC standards, are used, so as to draw a
quantitative comparison with the results of Resor [29], which was also based on the IEC standards. However,
it should be noted that the optimum design changes with the use of a different standard. Also, the design
driver is highly dependent on the selection of safety factors. For instance, the ultimate stresses or fatigue
damage might emerge as the design driver for the blade when using GL standards while the tip deflection
might still be the main design driver when using IEC standards. For the critical deflection analysis, the partial
safety factors as shown in Table 5.8 are the same as those used by Resor [29].

Table 5.8: Partial safety factors for critical deflection analysis

Type of safety factor IEC

Loads, γ f 1.35
Blade consequence of failure, γn 1.0
Materials, γm 1.1
Total 1.485

The total safety factors used for the ultimate limit states and fatigue damage, including the simulation
time safety factor, are summarized in Table 5.9.

Table 5.9: Total safety factor for constraints

Constraint γps f γst γt

Tip deflection 1.485 1.1 1.63
Stress Check 1.755 1.1 1.93
Fatigue damage 1.38 - 1.38

5.7. Driver algorithm

The choice of the optimization algorithm can have a significant impact on the final design. A gradient based
algorithm performs well for problems with a smooth function but it also faces an issue of getting stuck at a
local minimum. To avoid this, multiple optimization runs with different starting points are usually carried
out. Gradient free algorithms have a better ability of searching the entire design space and giving a global
optimum. As they lack any gradient information, they are much slower than gradient based algorithms and
require a higher number of function evaluations. Hybrid configurations also exist where at first, a gradient
free algorithm is used to search the design space globally and its optimum is used as the starting point for
gradient based algorithms.

The choice of an optimizer always requires a trade-off between various factors namely computational
time, reliability, repeatability of results, etc. A lot of work has been done in the field of wind turbine opti-
mization with different types of optimization algorithms. Jureczko et al. [37] optimized the blade internal
composite structure using Genetic Algorithm. Ashuri et al. [35] performed a comprehensive optimization of
the rotor and the tower in order to minimize the turbine LCOE, for which FAST was used in the framework
with a bi-level optimization using a gradient based optimizer. However, Ashuri et al. [35] did not test the
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optimizer for different starting points as the aim of the authors was to execute the overall framework and not
find a global optimum.

For the static model, the objective function and the constraints are expected to have a smooth response
with respect to the design variables, making it suitable for a gradient based method as compared to the dy-
namic model. Also, a gradient free algorithm is expected to have better design space search capabilities. For
this research, a gradient based Sequential Least Squares Quadratic Programming (SLSQP) algorithm and a
gradient free Genetic Algorithm (GA) will be used and the differences in the behaviour of the optimizer for
the given use case will be elucidated. Also, the results for a hybrid configuration, wherein the optimum results
from GA are used as the starting point for SLSQP, will be presented in Appendix A.2. A brief introduction to
the optimization algorithms is given in Sections 5.7.1 and 5.7.2.

5.7.1. SLSQP

The main ingredient of a gradient-based optimizer is the derivative of the objective function with respect to
the design vector. Three key elements of a gradient based optimizer are :

1. Search Direction: The search direction enables the optimizer to take a step in the direction of the steep-
est descent, where the gradient of the objective function with respect to a particular variable x is given

by δ f
δx and by ∇ f (x), for a multivariate system.

2. Step size: Once the derivative is known, the optimizer moves in that direction with a particular step
size, where too large a step size can cause the optimizer to cross the point of interest (minimum) and
too small a step size would mean high computational times.

After the search direction and the step size is known, the optimizer can guess the design vector for the
next iteration, given by Equation 5.5 [38], where αk is the step size and d k is the search direction.

xk+1 = xk +αk ·d k (5.5)

3. Convergence: Finally, the optimizer reaches a local or a global minimum when δ f
δx = 0 or when the

change in the objective function is less than the specified tolerance.

A gradient based optimizer requires the objective function and the constraint function to be continuous
and differentiable. To check for the same, the response curves of the objective function and constraints with
respect to the design variables are checked, using the new WINDOW framework with the dynamic model.
The response of the objective function is found to be smooth with respect to most of the variables and as an
example, the response of the LCOE with the tip speed ratio can be seen in Figure 5.4.

Figure 5.4: Smooth response of LCOE with respect to the tip speed ratio
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However, the response of the constraints (stresses and tip deflection) with respect to few of the design
variables is found to be erratic compared to the smooth response with the static model, as seen in Figure
5.5. With the dynamic model, the response of a new design to the wind profile depends on its mode shapes
and cannot be predicted beforehand. Consequently, the stochastic nature of the constraints when using the
dynamic model, is expected. Hence, a gradient based algorithm might not be the best option for all the cases
and a need to explore a gradient free algorithm arises.

Figure 5.5: Difference in response of ultimate limit states with λ, for the static and dynamic model

5.7.2. Genetic Algorithm

For problems as complex as rotor optimization with 9 variables and some discontinuities of the constraints
and the objective function with respect to the design variables, a gradient-free algorithm, like the GA may
perform better than a gradient-based algorithm.

The Genetic Algorithm emulates Darwin’s theory of evolution and ensures ’Survival of the fittest’. When
translated to an optimization problem, the fitness is measured in terms of the fitness function, φ(x). In the
GA, the design variables are encoded into binary numbers, where the number of bits per variable are defined
by the user. The number of bits define the accuracy desired with respect to a particular variable. Each of
these encoded design variables, also called genes, are appended, to form one chromosome, where each chro-
mosome represents one individual in the entire population. Also, in the GA, constraints are implemented
in the form of a penalty function, wherein, if there is a constraint violation, a penalty is added to the fitness
function. The overall fitness function is given by Equation 5.6, where f(x) is the objective function, p is the
penalty co-efficient, Ng is the number of inequality constraints, gi being the inequality constraint violation
value, k is the penalty exponent, Nh is the number of equality constraints and h j is the equality constraint
violation value.

φ(x) = f (x)+p ·
Ng∑
i=1

(δi · g k
i )+p ·

Nh∑
j=1

|h j |k (5.6)

Where δi = 0 when the constraint is satisfied and 1 otherwise. It can be seen how the fitness function value
increases whenever there is a constraint violation. For the given use case in this research, f(x) is the LCOE of
the wind farm, gi being the inequality constraint violation values for tip deflection and stresses, while p and
k are user defined parameters.
Figure 5.6 displays a simplified example of a two-dimensional problem, where each of the variables are en-
coded into a 5 bit binary number. To better explore the design space, Mutation is introduced, which randomly
flips a particular gene of an individual.
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Figure 5.6: Genetic Algorithm basic terminology

At first, a random set of individuals is generated, based on the population size defined by the user. For
each of these individuals, the objective function and the constraints are evaluated, based on which, each in-
dividual is assigned a fitness score. Based on these fitness values, the best individuals are selected to be the
parents for the next generation. A mating process then takes place, wherein there is a crossover between the
parents to produce the offsprings, or the new generation of individuals. The crossover method is usually de-
fined by the user. Also, the new set of individuals may not necessarily be better than the previous generation,
but it tends to reach the optimum set. To better explore the design space, mutation is introduced, defined
by the user, where a gene of a particular individual is randomly changed. The overall process continues till
the number of generations reach the maximum allowable generations or when the change in average fitness
function value between the N and (N + 1)th generation is within the user defined tolerance. It explores the
complete design space and hence, has a higher chance of reaching a global minima.

A Genetic Algorithm exhibits the following process :

1. Initialization : Random selection of individuals as the initial population, where the population size is
defined by the user.

2. Fitness function evaluation : The entire model is run for each of these individuals and a fitness score is
assigned based on the LCOE and constraint violation values.

3. Selection : A percentage of individuals with the best fitness score is selected for mating. Alternate selec-
tion methods also exist that are based on ranking.

4. Crossover : A crossover between these parents takes place, depending on the crossover probability. For
a uniform crossover with 50% probability, the offspring takes half the genes from one parent and the
rest from the second parent.

5. Mutation : If a mutation probability is specified by the user, a random individuals’ gene is flipped (0
becomes 1 or 1 becomes 0). Mutation usually helps in better exploration of the design space.

The process of selection and uniform cross-over can be seen in Figure 5.7, where the best two individuals
are selected as parents and a uniform crossover produces two off-springs for the next generation.
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Figure 5.7: Genetic Algorithm selection and uniform crossover explained

5.8. Wind farm parameters
For this research, the existing framework developed by Moreno [21] will be used, in which the IEA Borssele
wind farm is modelled. Figure 5.8 [39] shows the layout of the wind farm along with the water depth, where
the regular configuration includes standard spacing rules for the downstream and crosswind spacing while
the irregular configuration is a layout that was obtained by minimizing just the wake losses. For this research,
the baseline irregular layout will be used for the optimization use case, for both, static and dynamic mod-
els.
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Figure 5.8: IEA Borssele irregular layout used for the research

All the modules used in WINDOW have a certain set of assumptions and a list of farm parameters has to
be given as an input by the user. The assumptions made and the parameters used for all the optimization
runs are listed below :

1. The support structure designed by the support structure module of WINDOW uses a monopile config-
uration.

2. A total of 74 turbines and 2 substations are placed in the farm.

3. A transmission efficiency of 95% and a collection electrical efficiency of 99% is assumed.

4. For the objective function evaluation, an interest rate of 7.5% and an operational lifetime of 25 years is
assumed.
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Results & Discussion

The discussion of the optimization results presented in this chapter are aimed at giving valuable insight into
understanding the consequences of having a static/dynamic turbine model, coupled with the selection of the
driver algorithm, in a wind farm level optimization framework. To quantify the same, the use case described
in Section 3.1 is carried out for both the static RNA model and the new dynamic model. With each of these
models, a gradient-based SLSQP and a gradient-free GA are tried out. Both the algorithms have been briefly
explained in Chapter 5. Section 6.1 presents the optimized designs obtained using SLSQP, for both the static
and the dynamic model, while Section 6.2 presents the optimized designs obtained using the GA. Section 6.3
summarizes the best designs obtained from all the four configurations and assesses the performance of each
model-optimizer configuration. Lastly, in Section 6.4, the fatigue damage for the best designs resulting from
the static and the dynamic model is evaluated. This is done in order to check regions sensitive to fatigue and
to see if fatigue emerges as a design driver.

6.1. Gradient-based SLSQP

The SLSQP driver from the ScipyOptimizer written in openMDAO [40] is used for this research. For the con-
vergence criteria, the number of iterations are limited to 50 and a tolerance is set to 1e−3. As an analytical
form of gradient does not exist, the gradients are obtained using the finite difference method. The behaviour
of the algorithm with the two models is first explored. Few typical characteristics of SLSQP observed during
the initial optimization runs are listed below:

• For the dynamic model, the constraints (mainly tip deflection output of FAST) are not sensitive to ex-
tremely small changes (of the order 1e−6) in the design variables, which may have resulted in a loss of
essential gradient information. This is mainly a limitation of the FAST output format.

• The optimizer has a tendency to get stuck at a local minimum or an infeasible region, which is highly
dependent on the starting point of the optimization run. As a result, optimization runs with multiple
starting points are performed.

• The design space explored by the gradient-based optimizer is quite limited.

It should be noted that multiple starting points with SLSQP are tried out but the two most relevant points
are presented in Sections 6.1.1 and 6.1.2, where the NREL5MW design is used as the first starting point, re-
sulting in the highest LCOE, and the second starting point presented is the point that gave the lowest value
of LCOE. The two starting points are represented by sp1 and sp2. The results for the third starting point
can be found in Appendix A.1. Also, the constraints presented are normalized with respect to the allowable
limit.

45
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6.1.1. Optimization results: Static model

To circumvent the problem of getting stuck at a local minimum, with the SLSQP, optimization runs with
different starting points are tried out. The results of the optimized rotor design, using a static model, for two
different starting points are presented in this section.

Starting point # 1

The first starting point uses the values for the NREL5MW reference turbine as the initial values. Table 6.1
compares the initial and optimum values of the design variables, some constraints, objective function and
few other important parameters, where CP and CT are the power and thrust coefficients respectively. As
mentioned previously, the stresses are calculated for all the materials throughout the blade span but only
the stress with the lowest safety margin is presented. The lowest safety margin is observed for the stresses in
Uni-Directional Carbon (UD-C) fibers placed in the spar caps, at 75% blade span.

Table 6.1: Initial and optimized results for Starting point # 1

Parameter Units Initial value Optimum value

Design variables
λ - 7.6 6.5
Fine Pitch ° 0.1 0.39
τ - 1 0.7

Constraints
Tip deflection - 1.07 1
Stress - spar - 0.67 0.66

Others

Blade mass kg 17956 13027
RNA mass kg 367480 308516
CP - 0.481 0.459
CT - 0.803 0.678
Farm efficiency - 0.919 0.931
Farm energy production kWh 1.35E+9 1.34E+9
LCOE ect/kWh 8.934 8.491

The spanwise chord and distributions for the initial and optimum point can be seen in Figure 6.1.

Figure 6.1: Chord and twist distribution comparison between initial and optimum point

The overall costs and energy production are the two factors that influence the LCOE of a wind farm. A
reduced LCOE can either result from a higher energy production or a reduction in costs. The overall chord
and twist distribution, along with the fine pitch angle and the operating tip speed ratio, govern the power and
thrust coefficient values of the rotor. From Table 6.1, it can be observed that the optimum design results in
a lower power and thrust coefficient. A lower CT results in a higher farm efficiency due to lower wake losses
in the farm, but a decreased overall energy production can be attributed to a lower CP value, which has a
significant impact on the power produced by an individual turbine at any given wind speed.
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As the optimum design results in a lower energy production, the drop in the LCOE value can then be
attributed to the reduced overall costs. The overall farm costs can be broken down into three main compo-
nents: total investment costs, Operations and Maintenance (O&M) costs and decommissioning costs. The total
investment costs include the capital cost of the turbine, the support structure, cabling and few other admin-
istrative costs; the O&M costs are a function of the energy production; the decommissioning costs are mainly
dependent on the RNA mass.

Hence, it is clear that a reduced energy production results in lower O&M costs for the optimized design
and a reduced RNA mass results in lower decommissioning costs . As the layout of the farm remains constant
throughout the optimization process, the cabling and electrical costs of the farm do not change. The effect
of the total investment costs can then be analyzed by zooming into the support structure costs and the RNA
costs. The support structure costs are mainly driven by the rotor thrust, which leads to the bending of the
support structure, and the RNA mass. A reduction in the rotor thrust and RNA mass for the optimized design,
as shown in Table 6.1, result in lower support structure costs. An approximate component wise breakdown of
the RNA costs, for the NREL5MW turbine, is shown in Figure 6.2a. It can be inferred that the blade and the
gearbox costs are the major contributors to the overall RNA costs, where the blade costs are mainly driven by
the rotor thrust and the gearbox costs are governed by the rotor torque. As the tip speed ratio for the optimal
design decreases, a higher torque is required to produce the same power (rated power is constant), resulting
in higher gearbox costs. A decrease in blade costs can be clearly attributed to a significant reduction in the
blade mass. Figure 6.2b shows the difference in the initial design and the optimal design, for the main drivers
of the total investment costs, where the costs are normalized with respect to the initial point costs.

(a) A component wise breakdown of the RNA costs for
the NREL5MW turbine

(b) Component wise cost comparison for the initial
and optimum design

Figure 6.2: Component wise cost breakdown for RNA followed by cost comparison between initial and optimum design

A clear drop in the blade mass and stiffness is evident from the reduction of the thickness factor to its
lower bound and a reduced value of chord at most spanwise locations. However, the extreme tip deflection
and stresses are still within limits due to an overall design that results in a lower loading, reflected in the thrust
coefficient. To understand the same, Figure 6.3 illustrates all the forces acting on a blade element. The lift
force (dL) acting on the element dr is given by Equation 6.1, where CL is the lift coefficient, c is the chord and
Vr es is the resultant of the rotational velocity and the wind velocity (at the rotor). The drag force (dD), which
is much lower than dL, can be obtained by simply replacing CL with the drag coefficient (CD ).

dL = 1

2
·CL ·ρ · c ·dr ·V 2

r es (6.1)

The thrust force (dFn) acting on the blade element dr is given by Equation 6.2, φ being the inflow an-
gle.

dFn = dL · cos(φ)+dD · si n(φ) (6.2)
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Figure 6.3: Forces acting on a given blade element

To analyze how the forces acting on an element for the initial and optimum design change, a section
near the tip can be considered, where the rotational velocity component of the wind (ωr ) has a much larger
magnitude than the U (1−a) component. A lower tip speed ratio for the optimum design reducesωr , resulting
in a much lower Vr es . A lower ωr component increases the inflow angle. As the total twist close to the tip is
nearly the same for both the designs, the angle of attack increases, resulting in a higher value of CL . Also, the
optimum design has a lower chord at the tip compared to the initial design. Consequently, a lower Vr es and
c contribute towards decreasing the lift force while a higher CL contributes towards increasing the lift force.
However, as the Vr es is the most dominant factor, the overall lift force and hence the thrust, reduces, indicated
by a lower CT value in Table 6.1.

Starting point # 2

The second starting point presented is the point that resulted in the lowest value of LCOE and hence, the most
optimum design.

Table 6.2: Initial and optimized results for Starting point # 2

Parameter Units Initial value Optimum value

Design variables
λ - 8.36 6.55
Pitch ° -0.35 0.51
τ - 0.75 0.7

Constraints
Tip deflection - 0.88 0.99
Stress - spar - 0.70 0.65

Others

Blade mass kg 16249 13021
RNA mass kg 332292 307301
CP - 0.474 0.456
CT - 0.857 0.656
Farm efficiency - 0.911 0.934
Farm energy production kWh 1.33E+9 1.34E+9
LCOE ect/KWh 9.008 8.438

The spanwise chord and distributions for the initial and optimum point can be seen in Figure 6.4.
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Figure 6.4: Chord and twist distribution comparison between initial and optimum point

As seen in Table 6.2, the arbitrarily chosen second starting point resulted in a lower LCOE as compared
to the first starting point. The decrease of LCOE can be attributed to both decreased costs and an increased
energy production. A lower CT value for the optimum design leads to a significant increase in the overall farm
efficiency, resulting in higher energy production.

As the tip speed ratio decreases, an increase in the torque is required and hence, the gearbox costs increase.
Also, a decrease in the blade mass results in lower blade costs. As illustrated previously in Figure 6.2a, the
blade has the highest share in the RNA costs and hence, governs the same. Also, a significant decrease in
the support structure costs is observed due to a lower thrust coefficient for the optimum design. A relative
comparison between the costs for the initial and optimum designs is shown in Figure 6.5.

Figure 6.5: Component wise cost comparison for the initial and final design

In this case, the decrease in the blade mass is found to be the biggest contributor towards decreasing the
LCOE. The decrease in blade mass led to a lower RNA mass, reducing the decommissioning costs. Also, the
reduced RNA costs resulted in an overall decrease in the total investment costs.

As explained by Tanmay [16], the mass and stiffness of the blade have a dependency on the chord and the
thickness factor, given by Equation 6.3 and Equation 6.4.

µ∝ c2 ·τ (6.3)

E I ∝ c4 ·τ (6.4)
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Hence, as the mass and stiffness is sensitive to small changes in the chord, the chord is slightly increased,
as seen in Figure 6.4, while the thickness factor is reduced to its lower bound to decrease the blade mass.

Comparing the optimum designs

A typical characteristic of the SLSQP algorithm is to get stuck at a local minimum and this can be better
explained when the two optimum designs, resulting from different starting points, are compared. This trait
can be better studied by analyzing the dependency of the design variables on the starting point.

1. The final chord distribution is found to be independent of the starting point and produces nearly simi-
lar results for both the starting points, which can be seen in Figure 6.6.

2. The twist distribution is found to be highly dependent on the starting point and hence, has a direct
impact on the loading conditions and the aerodynamic performance of the rotor, as seen in Figure 6.6.

Figure 6.6: Chord and twist distribution comparison between the two optimum points

3. The fine pitch angle is also found to be dependent on the starting point.

4. The tip speed ratio (λ) always shows a decreasing trend with respect to the starting point. A decreasing
λ reduces in a lower lift generation and hence a lower thrust. However, it also has a direct impact on
the power coefficient and hence, the energy production.

5. The thickness factor (τ) always settles to its lower bound value to reduce the blade mass, as explained
before using Equation 6.4.

6.1.2. Optimization results: Dynamic model

The results of the optimized rotor design with two starting points, using the dynamic model and SLSQP are
presented in this section.

Starting point # 1

Similar to the static model, the first initial point presented is that of the NREL5MW design. A comparison
between the initial design and the optimized design can be seen in Table 6.3.
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Table 6.3: Initial and optimized results for Starting point # 1

Parameter Units Initial value Optimum value

Design variables
λ - 7.6 6.5
Fine Pitch ° 0.1 0.53
τ - 1 0.7

Constraints
Tip deflection - 0.86 0.96
Stress - spar - 0.43 0.52

Others

Blade mass kg 17956 12492
RNA mass kg 367480 305481
CP - 0.481 0.470
CT - 0.803 0.726
Farm efficiency - 0.919 0.927
Farm energy production kWh 1.35E+9 1.35E+9
LCOE ect/kWh 8.934 8.524

The spanwise chord and twist distributions for the initial and optimum point can be seen in Figure 6.7,
where no significant deviation of the twist, from the starting design, is observed. The reduction in CT can be
attributed to a decrease in the tip speed ratio, resulting in a lower overall lift.

Figure 6.7: Chord and twist distribution comparison between initial and optimum point

As seen in Table 6.3, to minimize the LCOE, the optimum design favors a clear reduction in blade costs. A
decrease in CT increases the farm efficiency, which is compensated by a slight reduction in Cp , resulting in a
near similar energy production.

Also, a reduction in the tip speed ratio increases the torque required and the gearbox costs. However, a
reduction in LCOE can be observed because of a design that clearly favors a reduction in overall costs. A
significant reduction in blade mass can be seen in Table 6.3, which also results in a reduction of the RNA
mass. Also, the reduction in support structure costs can be attributed to a lower thrust force acting on it,
indicated by a lower CT value.

A comparison of costs between the initial and final design can be seen in Figure 6.8, where the drop in
blade costs and support structure costs is apparent.
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Figure 6.8: Cost comparison between the initial and optimum design

Starting point # 2

Similar to the static model, the second starting point presented is the point that resulted in the lowest value
of LCOE and hence, the most optimum design among the different trials.

Table 6.4: Initial and optimized results for Starting point # 2

Parameter Units Initial value Optimum value

Design variables
λ - 7.68 7.26
Pitch ° 2.28 2.13
τ - 0.75 0.7

Constraints
Tip deflection - 0.77 0.95
Stress - spar - 0.48 0.53

Others

Blade mass kg 13985 12078
RNA mass kg 304117 292727
CP - 0.460 0.456
CT - 0.679 0.663
Farm efficiency - 0.931 0.933
Farm energy production kWh 1.34E+9 1.34E+9
LCOE ect/KWh 8.442 8.370

Figure 6.9: Chord and twist distribution comparison between initial and optimum point

The spanwise chord and distributions for the initial and optimum point can be seen in Figure 6.9. From Table
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6.4, it can be clearly seen that the optimum design lies close to the initial design, indicating that the starting
point is located near a local/global minimum. A similar value for the energy production is observed for the
optimum design as the farm efficiency and CP do not experience a significant change. A lower chord and tip
speed ratio reduce the overall lift acting on the blade, resulting in a lower CT . The only factor contributing to
the reduction of LCOE is the blade mass. The lower thickness factor results in a lower blade mass and hence,
RNA mass. This results in lowering of the blade costs and support structure costs.

The component wise cost comparison is shown in Figure 6.10, where a higher drop in the blade costs,
compared to the increase in gearbox costs, can be seen.

Figure 6.10: Component wise cost comparison for the initial and final design

Comparison of two optimums

Different starting points used resulted in completely different optimum designs, which is expected when
using a gradient-based algorithm. Similar to the comparison made for the static model, the dependency of
the variables on the starting point is evaluated for the results with the dynamic model.

The design vector shows a similar trend with both the static and the dynamic model. The chord distri-
bution obtained using the dynamic model, also shows a low dependency on the starting point. The twist
distribution and fine pitch angle are highly dependent on the starting point and do not show a significant
deviation from the initial design. A decreasing trend for the tip speed ratio (λ) is observed, so as to reduce
the overall lift force and hence, the thrust generated. The thickness factor (τ) always reaches its lower bound,
irrespective of the initial point, to reduce the blade mass.

6.2. Gradient-free GA

As observed in Section 6.1, a gradient-based algorithm needs to be tested at multiple starting points and
the optimum designs show a significant difference for different initial points. Also, many variables showed
a strong dependency on the initial design point. Consequently, the results of a gradient-based algorithm for
the given use case cannot be completely trusted and a need to test the models with a gradient-free algorithm
arises.

Based on the observations from initial optimization runs, a few typical characteristics of how the GA be-
haves with both the models, are listed below:

• Constraint implementation is challenging as the value for penalty co-efficient and penalty exponent
have to be tuned for a particular optimization problem.

• The convergence of the solution depends on the initial population size, number of generations allowed,
crossover, mutation rate, etc. Hence, the solution depends on a lot of parameters, for which, no rule
of thumb exists and the parameters have to be tuned for a particular type of a problem. A high pop-
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ulation size with a low mutation probability always gives a better result but leads to a high number of
generations to converge, increasing the computational time.

• Exploration of the design space is much better with the GA, as compared to SLSQP.

• A degree of randomness that exists with a GA could also lead to an unfair comparison. Starting with the
same initial population always may not result in the exact same solution.

This section discusses the different user defined parameters specific to the genetic algorithm and the val-
ues selected for this research. Once these parameters are established, the optimum designs for the static and
the dynamic model are discussed.

6.2.1. GA parameters

As mentioned above, there are certain problem specific parameters in the Genetic Algorithm that need to be
tuned. The parameters that are dealt with in this research are listed below:

1. Penalty coefficient: The multiplication factor for the constraint violation, that gets added to the overall
fitness function.

2. Population size: The number of individuals per generation used throughout the optimization process.

3. Mutation rate: The probability with which a gene of an arbitrarily selected individual is randomly
flipped.

Multiple optimization runs are done to study the effect of these parameters on the objective function,
constraints and the resulting rotor design. As running the entire optimization with a new value of a particu-
lar parameter is a computationally expensive process, the optimization runs are carried out using the static
model. The final parameters are then used to run the optimization use case with the dynamic model as well.
It should be noted that the tuned parameters selected may slightly differ for the dynamic model due to a
difference in response for the two models. However, as the effect of these algorithm-specific parameters on
the response of the objective function and the constraints is mainly dependent on the nature of the design
problem and not the model fidelity per se, the values obtained using the static model are assumed to hold
true for the dynamic model as well.

Penalty coefficient

The formulation of the penalty coefficient is already described before in Section 5.7.2, where an additional
term p ·δ ·g k is added to the objective function ( f (x)), for every inequality constraint. The penalty parameter
(p) has to be tuned in such a way that its product with the constraint violation (g ) would add a value that is at
least of the same order of magnitude as the objective function. Also, values that are too high or too low lead
the optimizer to be stuck in the feasible or the infeasible region respectively. Penalties could be implemented
either in the form of a static penalty coefficient, that remains constant throughout the optimization process,
or a dynamic penalty coefficient, that changes over generations [41]. In this research, a static penalty coeffi-
cient, supported by the SimpleGADriver in openMDAO, is implemented, while the penalty exponent (k) holds
a constant value of 1 for all the optimization runs. Also, a population size of 20 and a maximum number of 15
generations are used for all the runs made to determine the optimal penalty coefficient. A low population size
of 20 is selected so as to try multiple penalty coefficients with the given computational resources. Also, from
the initial runs, it is observed that the value of the best individual converges within 15 generations.

For the optimization runs with different penalty coefficients, the objective function and the constraint
values are checked to evaluate the performance of the algorithm, as shown in Figures 6.11a and 6.11b. The tip
deflection values are normalized with respect to the maximum allowable value, while the LCOE is normalized
with respect to the highest value obtained.
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(a) LCOE values of optimum designs for different
penalty coefficients

(b) Tip deflection of optimum designs for different
penalty coefficients

Figure 6.11: Variation of objective function and constraints of the optimum design, for different values of the penalty coefficient

It can be observed that the LCOE shows a decreasing trend as the penalty coefficient is lowered. As the
LCOE values observed for large penalty coefficients (10 and 15) are quite high, only one optimization run is
performed for each. Higher LCOE values for higher penalty coefficients are expected, as the optimizer has a
higher chance of getting locked in the feasible region and not have any individuals in the infeasible region,
that might have violated the constraint even by a small margin. This explains why lower penalty coefficients
perform slightly better. Also, some variations in the LCOE value observed with multiple runs can be attributed
to GA’s inherent degree of randomness.

Another performance indicator for the penalty coefficient is the tip deflection constraint. The margin
between the allowable deflection and the tip deflection for the optimum design is also a measure of how
close the optimum design is to the constraint boundary. For high penalty coefficients, the optimizer directly
discards any individual in the infeasible region and only contains individuals that are far away from the con-
straint boundary, in the feasible region. This can be avoided with having a high number of individuals so
that at least few of them have a feasible solution that lies close to the constraint boundary. This can be seen
in Figure 6.11b, where a penalty coefficient of 15 gives a solution with a tip deflection much lower than the
allowable deflection value. However, for such a low population size, the differences in LCOE and constraint
margin, for different penalty coefficients, are minimal. Based on the performance with respect to LCOE, dis-
tance from the constraint boundary and the magnitude added by the penalty coefficient relative to the LCOE
value, a penalty coefficient of 0.5 is selected and used in all subsequent optimizations.

Population size

In this research, two population sizes of 20 and 40 are tried out to evaluate the differences in the resulting
optimum design. Obviously, a higher number of individuals results in a better design because of better design
space exploration. However, running the dynamic model later on, with a higher number of individuals would
be computationally expensive. Hence, the deviation in the optimum results for these two population sizes
is analyzed. The maximum number of generations are kept at 15 for both the cases. However, a population
size of 40 did not converge within the given generation size and could have resulted in a better design if the
maximum number of generations were increased.

Table 6.5 compares the optimum designs resulting from the two different population sizes of 20 and 40,
represented by Opti mum20 and Opti mum40 respectively.
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Table 6.5: Comparison of optimum designs for different population sizes

Parameter Units Opti mum20 Opti mum40

Design variables
λ - 8.11 7.47
Pitch ° 2.34 2.34
τ - 0.7 0.7

Constraints
Tip deflection - 0.95 0.91
Stress - spar - 0.65 0.61

Others

Blade mass kg 13489 13489
RNA mass kg 297006 301691
CP - 0.461 0.461
CT - 0.687 0.673
Farm efficiency - 0.931 0.932
Farm energy production kWh 1.34E+9 1.34E+9
LCOE ect/KWh 8.416 8.406

The chord and the twist distribution for the two optimum designs are shown in Figure 6.12.

Figure 6.12: Chord and twist distribution comparison for different population sizes

It can be seen that the optimum design for a higher population size of 40 does not differ significantly.
The exact same points for certain design variables can be seen because every variable can only take certain
values between its bounds governed by the number of bits assigned. As a significant deviation in results is
not observed, a population size of 20 is selected for all subsequent optimization runs.

Mutation rate

The mutation rate allows the algorithm to better search the design space but at the same time, also requires
higher number of generations to converge. While mechanisms like cross-over are meant to converge towards
one solution (the global optimum), mutation rate tends to diverge from same, at the cost of better design
space exploration. Consequently, mutation rates are usually low for most optimizations using GA. Three dif-
ferent configurations tried out for the given problem are shown in Table 6.6, where the cases with a finite
mutation rate are allowed 20 generations to converge. It should be noted that Case 1 does not include muta-
tion and hence requires a lesser number of generations to converge compared to the other two cases.

Table 6.6: Cases with different mutation rates

Parameter Case 1 Case 2 Case 3

No. of generations 15 20 20
Mutation rate 0 0.005 0.05
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Optimum designs for the three mutation cases are presented in Table 6.7. The comparison of the chord
and twist distribution is shown in Figure 6.13.

Table 6.7: Comparison of optimum designs for different mutation rates

Parameter Units Case 1 Case 2 Case 3

Design variables
λ - 8.11 7.85 8.11
Pitch ° 2.34 2.77 3.06
τ - 0.7 0.7 0.7

Constraints
Tip deflection - 0.95 1 0.98
Stress - spar - 0.65 0.65 0.68

Others

Blade mass kg 13489 13098 13230
RNA mass kg 297006 295465 293733
CP - 0.461 0.462 0.448
CT - 0.687 0.685 0.658
Farm efficiency - 0.931 0.931 0.932
Farm energy production kWh 1.34E+9 1.34E+9 1.33E+9
LCOE ect/KWh 8.416 8.396 8.431

Figure 6.13: Chord and twist distribution comparison for different mutation rates

It is observed that a mutation rate of 0.5 % gives a lower LCOE value compared to the other two cases. Also,
having some mutation results in slightly higher twist distributions, that are not observed before in earlier
designs. As mentioned before during the analysis with a gradient-based algorithm, the chord distribution
shows a similar trend for most cases. The differences observed even with a slight variation in design variables
can be attributed to the fact that the pegged nodes are defined at the root, 70% and 90% of the blade span.
Consequently, even a small difference in the last 2 values of chord, can lead to a significant difference in the
overall chord distribution. The value of thickness factor and fine pitch angle observed is nearly the same for
all the designs. Because of a lower LCOE achieved using a mutation rate of 0.5% along with better design space
exploration, compared to case 1 and 3, a mutation rate of 0.5% is chosen to carry out the final optimization
run.

A summary of the optimal parameters selected for this research is presented in Table 6.8.

The next two sections present the optimization results obtained using GA with the static and the dynamic
model. Also, the results will be compared against the NREL5MW reference design.

6.2.2. Optimization results: Static Model

The results of the optimized rotor design with the static model and the tuned GA parameters are the same
as Case 3 presented in Table 6.7 along with Figure 6.13. The optimum values are compared against the
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Table 6.8: GA tuned parameters

Parameter Value

Bits 5
Population size 20
No. of generations 20
Mutation rate 0.005
Penalty coefficient 0.5
Penalty exponent 1

NREL5MW reference design in Table 6.9 and Figure 6.14.

Table 6.9: Comparison of NREL5MW design vs optimum design obtained using GA with the static model

Parameter Units NREL5MW Optimum

Design variables
λ - 7.6 7.85
Pitch ° 0.1 2.77
τ - 1 0.7

Constraints
Tip deflection - 1.07 1
Stress - spar - 0.67 0.65

Others

Blade mass kg 17956 13098
RNA mass kg 367480 295465
CP - 0.481 0.462
CT - 0.803 0.685
Farm efficiency - 0.919 0.931
Farm energy production kWh 1.35E+9 1.34E+9
LCOE ect/KWh 8.934 8.396

Figure 6.14: Chord and twist distribution comparison between NREL5MW and optimum design obtained using GA

It can be seen that with the GA, a significant decrease in the LCOE is achieved. The design shifts towards
a rotor that has a lower loading (indicated by the lower CT ), while showing a notable decrease in the blade
mass. This reduction in blade mass leads to a lower RNA mass, resulting in lower RNA costs. Also, a significant
decrease in the support structure costs can be attributed to a lower CT . It should be noted that a similar trend
was also observed with SLSQP.
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6.2.3. Optimization results: Dynamic Model

The GA parameters that are tuned with the static model, listed in Table 6.8, are also used to run the opti-
mization with the dynamic model. Table 6.10, along with Figure 6.15 compares the optimum values with the
NREL5MW reference design.

Table 6.10: Comparison of NREL5MW design vs optimum design obtained using GA with the dynamic model

Parameter Units NREL5MW Optimum

Design variables
λ - 7.6 7.79
Pitch ° 0.1 1.18
τ - 1 0.7

Constraints
Tip deflection - 0.86 0.95
Stress - spar - 0.43 0.55

Others

Blade mass kg 17956 12278
RNA mass kg 367480 284978
CP - 0.481 0.463
CT - 0.803 0.683
Farm efficiency - 0.919 0.931
Farm energy production kWh 1.35E+9 1.34E+9
LCOE ect/KWh 8.934 8.350

Figure 6.15: Chord and twist distribution comparison between NREL5MW and optimum design obtained using GA

The dynamic model with GA leads to a twist distribution and tip speed ratio that is unexplored before, ow-
ing to the design space search capabilities of the GA. A high tip speed ratio increases the lift and reduces the
inflow angle. However, a higher twist reduces the angle of attack and hence the CL . This reduced CL , along
with lower chord profiles, reduce the overall lift generated and hence, the thrust, indicated by the decreased
CT value in Table 6.10. However, it shows a trend similar to the static model wherein lower blade costs, gear-
box costs, and support structure costs are observed.

6.3. Performance of the model-algorithm configuration

In the results presented so far, the static and dynamic model are optimized using both a gradient-based and a
gradient-free algorithm. The performance of each of these model-optimizer configurations will be evaluated
using some key performance indicators, in Section 6.3.1. After that, several design details resulting from the
four model-optimizer configurations will be compared in Section 6.3.2.
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6.3.1. Key performance indicators

The defined performance indicators used are enumerated below :

1. Optimality : A measure of the overall performance of the algorithm-model configuration. This can
simply be based on the lowest value of objective function, which in this case is the LCOE.

2. Starting point dependence : A measure of how the design changes if the initial point is changed. A
parameter that mainly depends on the optimization algorithm.

3. Repeatability : The extent to which the algorithm gives the same result every time it is run with the same
intial conditions (For SLSQP) or settings (For GA), where a high repeatability indicates high reliability
on the optimizer.

4. Constraint margin : A parameter that indicates how close the optimum design is to the design driv-
ing constraint boundary. In this use case, it is indicated by the difference between the tip deflection
constraint value and the allowable tip deflection, normalized with the allowable tip deflection limit.

The behaviour of the optimization algorithms in combination with the turbine model, based on the optimiza-
tion results presented earlier, can be summarized in a concise design matrix as shown in Table 6.11.

Table 6.11: Design matrix to summarize optimum designs for different algorithms and turbine models

SLSQP GA

Static

Optimality (LCOE) 8.438 Optimality (LCOE) 8.396

Starting point dependence High Starting point dependence Low

Repeatability High Repeatability Low

Constraint margin Low Constraint margin Low
(0 - 0.01) (0-0.01)

Dynamic

Optimality (LCOE) 8.370 Optimality (LCOE) 8.350

Starting point dependence High Starting point dependence Uncertain

Repeatability High Repeatability Low

Constraint margin Uncertain Constraint margin Uncertain
(0-0.05)

Clearly, the GA is proven to have a better optimality for both static and dynamic models, compared to
SLSQP. This can be attributed to GA’s design space search capibilities which leads to combinations that are
unexplored by SLSQP. SLSQP, being a gradient-based algorithm, shows a typical characteristic of getting stuck
at a local minimum, closest to the starting point defined by the user. The GA implemented in this research
takes one point out of the entire population as an input from the user. Although not as high as SLSQP, the
optimum results with the GA show some dependence on the user defined point. In terms of repeatibility,
SLSQP performs better than the GA, for both, static and dynamic models as it returns the exact same results
with the same initial conditions, every time it is run. For the GA, the results show a slight deviation for every
run made with the same settings, which can be attributed to GA’s inherent degree of randomness. However,
if a higher number of generations are allowed for convergence, this trait of GA can be mitigated.

SLSQP with the static model performs the best when it comes to the constraint margin. This can be at-
tributed to the smooth response of the constraints, with the static model, to the small steps in design variables
taken by SLSQP, for gradient information. A similar trait is observed with the static model when using GA. It
should be noted that the constraint margin mentioned for GA is after all the user defined parameters have
been tuned to fit the given optimization problem. However, the stochastic nature of the dynamic model and
its rough response result in a design that may be close to the constraint boundary or far away in the feasible
region. The constraint margin for the dynamic model with GA is observed to be 0.05. As the dynamic model,
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coupled with GA, is run only once, the constraint margin and starting point dependence parameters are not
defined with certainty.

6.3.2. Design details

The optimality performance indicator discussed in the design matrix is an end result of the overall design of
the rotor. Hence, it is important to analyze not just the key performance indicators, but also the differences
in the design resulting from each of these model-algorithm configurations. Table 6.12 compares the design
parameters for all the four configurations.

Table 6.12: Design comparison of all algorithm-model configurations

Parameter Units
Static
SLSQP

Static
GA

Dynamic
SLSQP

Dynamic
GA

Design
variables

λ - 6.55 7.85 7.26 7.79
Pitch ° 0.51 2.77 2.13 1.18
τ - 0.7 0.7 0.7 0.7

Constraints
Tip deflection - 0.99 1 0.95 0.95
Stress-spar Mpa 0.65 0.65 0.53 0.55

Others

Blade mass kg 13021 13098 12078 12278
RNA mass kg 307301 295465 292727 289432
CP - 0.456 0.462 0.456 0.463
CT - 0.656 0.685 0.663 0.683
Farm efficiency - 0.934 0.931 0.933 0.931
Farm Energy
production

kWh 1.34E+9 1.34E+9 1.34E+9 1.34E+9

LCOE ect/KWh 8.438 8.396 8.370 8.350

The chord and twist distributions for all the four configurations can be seen in Figure 6.16.

Figure 6.16: Chord and twist distribution comparison between all the four configurations

As shown in Section 6.1, the twist distribution for SLSQP is largely dependent on the starting point and
does not deviate much from the same, while the GA results in completely different twist distributions due to
its better search capabilities. However, this dependence on the algorithm can be seen for both the models
where the difference in twist distributions resulting from SLSQP and GA is consistent. From Figure 6.16, a
large difference in the chord distributions resulting from the static and dynamic model is apparent, while the
dependence of chord distribution on the used optimizer is not observed. Table 6.12 shows a dependency be-
tween the blade mass and the choice of model, where the dynamic model results in a design with lower blade
and RNA costs. As the thickness factor values are the same for the two models, the lower chord distributions
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from the dynamic model result in a reduced blade mass and a lower LCOE. As many differences in the con-
figurations are dependent on the choice of the model, the variations can be better explained by analyzing the
best designs (lowest LCOE) resulting from the static and the dynamic model, which are both obtained using
the GA.

The consequences of the choice of turbine model can be better explained if the optimum design resulting
from the low fidelity static model is run using the dynamic model and then compared with the optimum
design resulting from the dynamic model. In this section, the optimum design resulting from the static model
(using GA) will be referred to as st ati copt while the optimum design resulting from the dynamic model (using
GA) will be referred to as d ynami copt . Figure 6.17 compares the rotor thrust and the tip deflection of the
st ati copt , run with the dynamic model, and d ynami copt .

Figure 6.17: Rotor thrust and tip deflection comparison between optimum designs: Static vs Dynamic

When st ati copt is run using the dynamic model, it can be seen that a similar thrust is experienced by both
the designs, which is apparent from the similar thrust coefficient values listed in Table 6.12. However, the tip
deflection values for st ati copt are much lower than d ynami copt , which can be attributed to the higher blade
stiffness of st ati copt . As the thickness factor for both the designs is the same, the higher blade stiffness of
st ati copt can be explained by its larger chord distributions, seen in Figure 6.16. It is obvious that the static
model estimates higher tip deflection values compared to the dynamic model, leading to an over-designed
stiffer blade, as seen in Table 6.12. The higher chords produced by st ati copt are to meet the overestimated
tip deflection values resulting from the static model.

The differences in the ultimate limit states are highlighted in Table 6.13, where the constraints are normal-
ized with respect to their allowable limits.

Table 6.13: Results for running st ati copt with the static and dynamic model

St ati copt

Model Tip deflection Spar stress
Static 1 0.65
Dynamic 0.80 0.53

The static model used for this research uses a factor of 1.5 to account for not modeling the dynamic effects.
It is clear that st ati copt , obtained by using the static model, leads to a stiffer blade and behaves differently
when run with the dynamic model. A factor lower than 1.5 could also lead to an underestimation of the
tip deflection, resulting in more flexible blades. Consequently, a direct implementation of a factor with the
static model may not be valid for many designs. To summarize, it is apparent that rotor optimization using a
dynamic model leads to a better evaluation of the constraints and hence, an accurate rotor design.
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6.4. Fatigue damage

Based on the methodology to estimate fatigue damage, along with the material properties, elaborated in Sec-
tion 4.5.4, the fatigue damages for the optimum designs, resulting from the static and dynamic model, are
presented in this section. This is done in order to assess the implications of not including fatigue check in the
constraint evaluation for all the optimization runs.

At first, the blade spanwise locations with maximum stresses are determined for all the materials. For the
Uni-directional carbon fibers (UD-C), placed in the spar caps, the flapwise stresses are of interest while for
the Uni-directional glass fibers (UD-G), in the TE reinforcements, the edgewise stresses are of interest, due to
their respective positions with respect to the two neutral planes. Figure 6.18 shows the spanwise distribution
of stresses for UD-C and UD-G respectively, for d ynami copt .

Figure 6.18: Stresses in UD-C and UD-G fibres

Figure 6.19: Stresses in SNL Triax

Figure 6.19 shows the flapwise stresses in the spar cap region and edgewise stresses in the trailing edge re-
inforcement region, for the SNL-Triax skins present throughout the blade span. From the stresses determined
for all the materials, it can be noted that the maximum flapwise stress for UD-C and SNL-Triax is observed
at 75% blade spanwise location while the edgewise stress for UD-G and SNL-Triax is observed at 15% blade
spanwise location. As a result, these locations are selected for fatigue evaluation.

The mean wind speed at the hub height follows a Rayleigh distribution, according to the IEC standards.
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The distribution is given by Equation 6.5, where an average velocity (Vav g ) of 10 m/s is defined for the
NREL5MW turbine based on its wind turbine class (I B).

P (Vhub) = 1−e
−π·

(
Vhub

2·Vav g

)2

(6.5)

Table 6.14 and 6.15 show the fatigue damage for st ati copt and d ynami copt respectively, where Node
7 and Node 37 indicate 15% and 75% of the blade length respectively. As SNL Triax is present in the skins
throughout the blade span, the fatigue damage is evaluated at the root and the two nodes. For the other two
materials, the fatigue damage is only determined at the node where it experiences the maximum stress.

Table 6.14: Fatigue damage for optimum design obtained using the static model

St ati copt

SNL Triax UD-G UD-C
Root 3.73E-06 - -
Node 7 3.10E-07 2.27E-04 -
Node 37 3.27E-06 - 0.0059

Table 6.15: Fatigue damage for optimum design obtained using the dynamic model

D ynami copt

SNL Triax UD-G UD-C
Root 3.97E-06 - -
Node 7 6.43E-07 4.68E-04 -
Node 37 2.7E-06 - 0.0035

It is clear that UD-C and UD-G, in the spar caps and the TE reinforcement sections respectively, show
higher fatigue damage values compared to the other materials. However, they are far below the allowable
value of 1 for both the optimum designs, clearly indicating that fatigue is not the main design driver for the
tested use case.

When optimizing the rotor in a wind farm level MDAO tool, including fatigue in the loop as a constraint
would prove to be computationally expensive and can be avoided in the preliminary design phase. For the use
case tested in this research, the tip deflection is found to be the main design driver and not fatigue. However,
the same might not hold true for a different use case, wherein the layup definition is modified or larger blades
are optimized. For larger blades, gravity loads can cause fatigue to be the main design driver for blade design
[42]. Hence, it is yet important to check the blade design resulting from the optimization run for fatigue
damage.
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To recapitulate the research objective of this project, the aim was to provide a wind turbine designer with
valuable insights into the consequences of the rotor model and optimization algorithm choice, on the final
rotor design, in an MDAO tool for offshore wind farms. To accomplish the same, the milestones listed in
Section 1.5 were achieved. This chapter presents the key findings of this research along with the implications
of the assumptions, in Section 7.1, and recommendations for future research, in Section 7.2.

7.1. Key findings

It is clear that MDAO, as an approach applied in the wind energy industry, results in lower LCOE values com-
pared to the existing sequential execution of each wind farm discipline. However, how the choice of turbine
model and optimization algorithm influence the optimal rotor design and the resulting LCOE, has not been
explored earlier. This research paints a clear picture of how the model-algorithm configuration affects rotor
design by comparing the results for the same. To achieve the same, optimization runs with the existing static
rotor model, and with the newly integrated dynamic model are performed. Each of these models is optimized
using a gradient-based (SLSQP) and a gradient-free (GA) algorithm. The key findings can be classified into
two broad categories : Algorithm specific and Model specific.

7.1.1. Algorithm specific

The differences in results, with the static and dynamic model, that can be attributed to the choice of the
algorithm are listed below :

1. For the optimum values of twist (β), tip speed ratio (λ) and fine pitch angle (θ), a high dependency
on the initial design point is observed with a gradient-based SLSQP . This starting point dependency
leads the optimizer to the nearest local minimum instead of the global minimum. As a consequence, a
gradient-based algorithm, for the given or a similar use case, has higher chances of resulting in a design
that is a local optimum. Nevertheless, it does lead to a design that follows a trend similar to a gradient
free algorithm, with respect to the loading, costs, and energy production. Hence, it can be used to
develop insights into rotor optimization in an MDAO framework.

2. With both the models, the GA performs better in terms of LCOE, even with a low population size. In-
creasing the population size, while keeping the maximum number of generations constant, does not
lead to a significant improvement in results for the static model. However, given the low population size
and number of generations allowed to converge, the optimum values show a small deviation in results
for different runs even with the same settings. Given this degree of randomness within a certain range,
even higher penalty coefficients might give results similar to lower penalty coefficients.

3. When using the GA, having mutation is highly beneficial as it better explores the design space and
also prevents the algorithm from converging into a local minimum. With respect to rotor design, the
effect of mutation can be mainly observed in better exploration of twist distributions. However, a low
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mutation rate is observed to give the best results. A higher mutation rate leads to a better diversity but
prevents the optimizer from converging to a global optimum.

7.1.2. Model specific

The differences in results that can be attributed to the choice of the model, are listed below :

1. For the static model, the constraints show a smooth response with respect to the design variables, un-
like for the dynamic model. With the dynamic model, the interaction between a given rotor design and
the wind field leads to an erratic response of the constraints to the changes in the design variables. The
effect can be directly observed in the constraint margin parameter, where a high degree of uncertainty
can be seen with the dynamic model. With the GA, a high population size can mitigate this uncertainty
in the constraint margin to a certain extent.

2. The optimal rotor design with the static model is highly sensitive to the amplification factor considered
to account for not modelling the dynamic effects. This safety factor leads to an overestimation of the
constraints, resulting in a blade design that is stiffer than necessary. However, it is difficult to establish
a calibrated value for the same as it may differ from turbine to turbine. To conclude, when optimizing
the rotor in an MDAO framework, the dynamic model performs better in terms of the optimality, giving
a lower LCOE value compared to the static model (as used in this case study).

7.1.3. Concluding remarks

Designing a wind turbine rotor at a wind farm level captures all the inter-disciplinary interactions and gives
deeper insights into the trade-offs between loading, costs and energy production. A commonality observed
in all the model-algorithm configurations, relates to an optimum design with a lower thrust coefficient (CT ),
indicating a design with lower loading. This lower loading can then allow a lower blade mass and hence, RNA
mass. Also, a lower CT leads to a significant reduction in the support structure costs and an increase in the
energy production due to lower wake losses. Time reduction techniques for the dynamic model, similar to
the ones used in this research, can be adopted to get reasonable results with limited computational resources.
Also, the GA parameters used in this research may have to be tuned again for a different use case. Overall,
integrating a dynamic model in an MDAO framework, coupled with a gradient-free algorithm, results in the
most optimal rotor design.

7.2. Recommendations
To further enhance the capabilities of the existing WINDOW framework, with the newly integrated dynamic
model, the recommended changes in the model are enumerated in this section.

1. Implementation of buckling check for the blade. The buckling check is an important criterion for the
sandwich foam used in most parts of the blade. With buckling check being implemented, the lower
bound limit on the thickness factor can be further lowered and its effect on chord distribution can also
be analyzed.

2. Tuning the GA parameters using a higher population size (twice or thrice the chromosome length) with
a higher number of generations to converge. This should then be compared with the results for the
parameters obtained using a low population size.

3. Implementing a method to accurately estimate the stresses. This would be of importance especially for
turbines with large blades, where the stresses due to gravity loading can be the design drivers. A better
estimation of stresses would also give valuable insights into the fatigue damage for blade locations
sensitive to fatigue.

4. Using the dynamic model for purposes other than constraint evaluation. For instance, the average
power produced over a given time period can be determined, for each wind speed, and used for energy
production calculations in the objective function.

5. Implementing a Campbell diagram check wherein for every design, the natural frequencies are deter-
mined and checked for resonance.
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A
Appendix

A.1. SLSQP: Starting point #3

Results for the third starting point with SLSQP are presented in this section, where the design shows a trend
similar to the one observed with the first two starting points.

A.1.1. Static model

Table A.1 compares the initial and optimum values for the third starting point with the static model. Similar
to the first two starting points, a decrease in the thrust coefficient (CT ) can be seen, which allows a lower
blade mass and hence, a lower RNA mass.

Table A.1: Initial and optimized results for Starting point # 3

Parameter Units Initial value Optimum value

Design variables
λ - 7.83 6.50
Fine Pitch ° 2.28 1.92
τ - 1 0.7

Constraints
Tip deflection - 0.96 1
Stress - spar - 0.57 0.64

Others

Blade mass kg 16795 12723
RNA mass kg 324591 304603
CP - 0.449 0.448
CT - 0.650 0.636
Farm efficiency - 0.933 0.935
Farm energy production kWh 1.33E+9 1.33E+9
LCOE ect/kWh 8.575 8.442

The spanwise chord and distributions for the initial and optimum point can be seen in Figure A.1.

71



72 A. Appendix

Figure A.1: Chord and twist distribution comparison between initial and optimum point

A.1.2. Dynamic model

Table A.2 compares the initial and optimum values for the third starting point with the dynamic model.

Table A.2: Initial and optimized results for Starting point # 3

Parameter Units Initial value Optimum value

Design variables
λ - 7.83 7.58
Fine Pitch ° 2.45 1.95
τ - 0.75 0.7

Constraints
Tip deflection - 0.76 0.90
Stress - spar - 0.49 0.51

Others

Blade mass kg 14230 12508
RNA mass kg 308006 292316
CP - 0.431 0.452
CT - 0.614 0.658
Farm efficiency - 0.935 0.933
Farm energy production kWh 1.31E+9 1.33E+9
LCOE ect/kWh 8.510 8.389

The spanwise chord and twist distributions for the initial and optimum point can be seen in Figure A.2.

Figure A.2: Chord and twist distribution comparison between initial and optimum point
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A higher tip deflection is observed because of an increase in the thrust coefficient. However, the reduction
in LCOE can be observed due to a significant reduction in the blade costs and an increase in the annual energy
production.

A.2. Hybrid configuration
For the hybrid configuration, optimum results obtained using the GA are used as a starting point for SLSQP.
The results for the hybrid configuration, with the static and dynamic model, are presented in this section.
It is observed that this configuration shows minimal improvement over the optimum results obtained using
GA.

A.2.1. Static model

The results for the static model are summarized in Table A.3, where the optimum design resulting from GA is
used as the starting point for SLSQP.

Table A.3: Improvement in results obtained using the hybrid configuration

Parameter Units Initial value Optimum value

Design variables
λ - 7.85 7.58
Fine Pitch ° 2.77 2.70
τ - 0.7 0.7

Constraints
Tip deflection - 1 1
Stress - spar - 0.65 0.65

Others

Blade mass kg 13098 13009
RNA mass kg 295465 296403
CP - 0.462 0.462
CT - 0.685 0.679
Farm efficiency - 0.931 0.932
Farm energy production kWh 1.34E+9 1.34E+9
LCOE ect/kWh 8.396 8.391

The spanwise chord and twist distributions for the optimal design from GA and the hybrid configuration
can be seen in Figure A.3.
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Figure A.3: Chord and twist distribution comparison between initial and optimum point

A.2.2. Dynamic model

The results for the dynamic model are summarized in Table A.4, where a minimal change in the design is
observed.
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Table A.4: Improvement in results obtained using the hybrid configuration

Parameter Units Initial value Optimum value

Design variables
λ - 7.79 7.77
Fine Pitch ° 1.18 1.17
τ - 0.7 0.7

Constraints
Tip deflection - 0.95 0.96
Stress - spar - 0.55 0.56

Others

Blade mass kg 12278 12277
RNA mass kg 289432 289566
CP - 0.463 0.463
CT - 0.683 0.683
Farm efficiency - 0.931 0.931
Farm energy production kWh 1.34E+9 1.34E+9
LCOE ect/kWh 8.350 8.348

The optimal design from GA and the hybrid configuration produce nearly the same spanwise chord and
twist distribution, as seen in Figure A.4.
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