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1.1. CHROMATIN
Imagine a 30-year old male, 1.72m tall and weighing 70kg. This man contains a total
amount of DNA that, when stretched out, would cover the distance from the earth to the
moon, almost 200000 times.1 Wrapping these 7.6×1013 meters of DNA into a 1.72m male
represents one of the main functions of chromatin.

In addition to wrapping the DNA into the small space of the nucleus of a cell, an im-
portant function of chromatin is the regulation of gene activity, e.g. by dynamic repack-
aging of DNA, by binding of certain proteins to DNA, or by looping of DNA allowing
DNA-DNA contacts. Many specifics regarding this regulation are still unknown. Even to
what precise extent chromatin structure directly determines gene activity, or the other
way around, is still unknown.

Perturbations of chromatin structure can be associated with many diseases [4]. For
example, suppose that our 30-year old male has developed some type of cancer. The
chromatin structure of the DNA in his tumor cells may show cancer-specific perturba-
tions that led to perturbations of gene activity. Perturbations in gene activity could po-
tentially have provided cells with a certain proliferative or survival advantage eventually
leading to tumor formation [5]. He may in fact be treated using drugs that further perturb
chromatin, e.g. by deliberately unwrapping and breaking DNA in tumor cells [6]. Just as
certain chromatin perturbations may cause cells to proliferate and develop into a tumor,
other perturbations may cause cells to die, illustrating the importance of chromatin for
normal cell functioning.

Since the structure of chromatin is so essential for cell functioning, artificially per-
turbing it may give important new insights into its function. In this dissertation, chro-
matin is perturbed by two means, 1) DNA integrating elements that induce mutations
by integrating into host DNA, and 2) anti-cancer drugs that induce unwrapping of chro-
matin and breaking of DNA. The DNA integrating elements are used for sensing the
location-dependent activation potential of chromatin, and the drugs are used for char-
acterizing chromatin in terms of its location-dependent response to these drugs. As
such, this dissertation attempts to go deeper into the relations between chromatin, gene
activity and cancer.

Since chromatin has many facets that interact in intricate ways, and packages a huge
genome, the work presented in this dissertation is strongly based in computational ap-
proaches for integrating all these facets across whole genomes. Therefore, a more elab-
orate introduction into what chromatin actually is, and the computational approaches
for analyzing it, would be appropriate.

1.1.1. MULTI-LEVEL DNA PACKAGING
Chromatin can be defined as the complex of DNA and proteins that are used to package
this DNA in the nucleus of a eukaryotic cell. The main class of DNA packaging proteins
are the histone proteins. At the first level of packaging, ∼146 base pairs of DNA wrap
in 1.65 turns around an octamer of core histone proteins (H2A, H2B, H3, and H4; Fig-

1 A 30-year old, 1.72m tall, male, weighing 70kg, contains ∼ 3.72× 1013 human cells [1]. Each cell contains
∼ 6×109 base pairs of DNA [2]. The distance between two base pairs is ∼ 0.34×10−9m [3]. The average lunar

distance is 384.4×106m. Thus, 6×109×0.34×10−9×3.72×1013

384.4×106 ≈ 200000 times the distance from the earth to the
moon.
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ure 1.1) [7], thus forming the basic structural unit of chromatin, the nucleosome. The
nucleosome is sealed off with the linker histone protein H1, wrapping an additional 20
base pairs, and is connected to neighboring nucleosomes by 10 - 80 base pairs of linker
DNA [8]. Higher levels of packaging consist of folding, looping and coiling, further com-
pacting the nucleosomes into a 30 nm fiber, and eventually forming an ultra-compacted
chromatid, such as seen during the metaphase of a cell. During any phase of the cell
cycle, not all chromatin is compacted to the same degree. There is a large-scale separa-
tion between chromatin that is highly condensed (heterochromatin) and chromatin that
is more relaxed (euchromatin). Contrary to euchromatin, heterochromatin tends to be
associated with low transcriptional activity [9].

Figure 1.1: [10] The packaging of DNA into chromatin.

1.1.2. EPIGENOMICS
The histone proteins within a nucleosome have outward-facing tails, the histone tails.
These tails can be post-translationally modified. An important example of a histone
modification is acetylation at lysine residues, where e.g. the addition of an acetyl group
on lysine 27 on histone H3 is referred to as H3K27ac. Lysine acetylation is catalyzed
by HATs (histone acetyl transferases), such as p300 [11]. Acetyl removal is catalyzed by
HDACs (histone deacetylases). Other notable examples of modifications are methyla-
tion and phosphorylation (Figure 1.2).

A histone modification is an example of an epigenetic modification. The term epige-
netics refers to changes in chromatin composition that can involve anything but changes
in the nucleotide sequence. Moreover, these changes need to be functionally relevant,
i.e. potentially linked to changes in gene expression. As such, epigenetics is at the basis
of cellular differentiation, where different cell types will have the same genome, but a
different epigenome. This is studied in the field of epigenomics, as opposed to genomics
which focuses strictly on DNA structure and function.

In addition to histone modifications, important epigenetic modifications are methy-
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lation of DNA at CpG dinucleotides, which has been linked to cellular differentiation and
transcriptional regulation [12], and the binding of transcription factors to DNA. Tran-
scription factors are proteins that bind to DNA in a sequence-specific manner in order
to activate or repress transcription of nearby genes[13].

Figure 1.2: [14] Histone proteins H3, H4, H2A and H2B and their post-translationally modified tails.

1.1.3. EPIGENOMICS AND GENE EXPRESSION

For many histone modifications, their distribution across the genome correlates very
well with chromatin structure and gene expression, see e.g. [9, 15]. It has been sug-
gested that the reason for this is that histone modifications affect the binding affinities
of chromatin-associated proteins [16]. In support of this, it has indeed been shown that
histone acetylation can form binding sites for bromodomain proteins [17]. However, his-
tone acetylation can also prevent the compaction of chromatin [18], pointing to another
possible mechanism, where modifications exert their effect by changing histone-DNA
binding affinity, thus opening (or closing) the chromatin, and making it more (or less)
accessible for the transcription machinery.

Some histone modifications are known to act in a combinatorial fashion. These spe-
cific combinations of histone modifications (’chromatin states’) may be associated with
specific gene expression patterns. A typical example of this can be seen at some pro-
moters, where tri-methylation of lysine 27 on histone H3 (H3K27me3) in combination
with H3K4me3 signifies a poised promoter [19]. Upon differentiation of a cell, a poised
promoter will typically become either active (loss of H3K27me3) or repressed (loss of
H3K4me3). Another example concerns enhancers, where the presence of H3K27ac can
mark the difference between poised enhancers (only H3K4me1) and active enhancers
(H3K27ac and H3K4me1) [20]. Active enhancers can enhance expression of genes across
large genomic distances, an effect generally attributed to the looping of DNA which
brings the gene in close spatial proximity to the enhancer [21].
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1.1.4. THE CHROMATIN POSITION EFFECT

Although differences in chromatin structure strongly associate with differences in
gene expression, it is still difficult to unambiguously attribute these differences to
epigenomics, since not only the (epi)genomic context is variable (e.g. different levels of
protein binding, different DNA sequence context), but also the genes and promoters
across the genome. To study the ’chromatin position effect’, i.e. the unambiguous
influence of the local chromatin environment on gene expression, the gene/promoter
variable has to be eliminated. DNA integrating elements, such as retroviruses and
transposons can be used to study the chromatin position effect. Retroviruses and
transposons have the ability to insert their genetic material into host DNA. When
genetically engineered to contain a promoter and reporter gene of choice, they can
be used to insert the same gene into different genomic loci, and thus infer causal
relationships between local (epi)genomic context and gene expression [22–24].

1.1.5. CHROMATIN REMODELING

Chromatin remodeling refers to dynamically altering the structure of chromatin and is
closely linked to transcriptional regulation [25]. The relaxing or condensing of chro-
matin by post-translational histone modifications is one example of chromatin remod-
eling (Figure 1.3b). Whereas this type of remodeling is dependent on covalent modifica-
tion of histone proteins, chromatin can also be remodeled by protein complexes in an
ATP-dependent fashion. This includes 1) altering the composition of the nucleosome
by replacing histone proteins with variants (Figure 1.3a), repositioning nucleosomes by
sliding them across the genome (Figure 1.3c) and eviction of nucleosomes from the chro-
matin. A notable example of replacement is histone variant H2A.Z, catalyzed by the
chromatin remodeler SWR1 [26]. Histone variant H2A.Z is known to be involved in tran-
scriptional regulation [27]. Another example is H2A.X which, when phosphorylated, is a
marker for DNA double strand breaks [28].

Figure 1.3: [29] Chromatin remodeling induced by regulatory proteins (Reg). (a) Exchange of histone proteins
within the octamer core of the nucleosome. (b) Post-translational modification of histone proteins by the
addition of e.g. an acetyl group. (c) Sliding of nucleosomes across the DNA.
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1.1.6. CHROMATIN PERTURBATION

Chromatin remodeling can be artificially induced, for example by certain drugs. Notable
examples are chromatin remodeling by cocaine [30] and psychotropic drugs [31]. More
recently, it has also been shown that Doxorubicin, a commonly used anti-cancer drug,
partly relies on its ability to evict histones for its chemotherapeutic effects [6].

Evidently, mutations in chromatin remodeling proteins, such as ARID1A, can affect
transcription and chromatin structure [32]. However, transcription itself can also in-
duce chromatin remodeling [33]. Therefore, many techniques that induce mutations to
influence gene expression, can likely induce remodeling of chromatin. An important ex-
ample here comes from the field of insertional mutagenesis (IM), where retroviruses and
transposons are used for cancer gene discovery. Retroviruses and transposons cause mu-
tations by integrating into host DNA. Once integrated, they can affect the expression of
surrounding genes. Integrations that provide a cell with a proliferative advantage can po-
tentially cause tumors, and as such, retroviral and transposon integrations can be used
to tag cancer genes, e.g. [34–37]. Regarding effects specifically on chromatin, it has in
fact been shown that retroviral integrations can induce methylation of host DNA up to
1kb from the site of integration [38, 39].

1.2. METHODS IN CHROMATIN BIOLOGY AND EPIGENOMICS

The term chromatin was coined by Walther Flemming at the end of the 19th century, af-
ter visualizing it using aniline dyes. Since then, many techniques have been developed
to gain insight into the structure of chromatin, its modifications, and their association
with gene expression. During the last two decades, the development of high-throughput
technologies has revolutionized biology by allowing a shift from hypothesis-driven sci-
ence to a more discovery-driven science. Traditional research focused on relatively small
numbers of elements of interest (genes, proteins, etc.) that were hypothesized or known
to be relevant in a certain setting. However, high-throughput technologies are much less
dependent on such a priori knowledge, allowing a more objective discovery of relevant
elements. Consequently, available data and knowledge have exploded during the last
two decades. In the following, a brief description will be given of some important high-
throughput technologies, with a focus on those that are relevant for the remainder of this
dissertation. These technologies can be array-based technologies or sequencing-based,
and for most technologies discussed below, both options are available. In array-based
technologies, arrays (or biochips) can recognize a limited number of predetermined tar-
get sequences, e.g. representing genes, by hybridization of target sequences to comple-
mentary probes on the array. Since array-based technologies depend on a limited num-
ber of predetermined target sequences, complete coverage of large genomes is difficult.
In other words, the resolution of array-based technologies is often limited. On the other
hand, sequencing-based technologies rely on determining the order of nucleotides of in-
dividual sequences, which are then mapped back to a reference genome. As such, they
can potentially recognize any individual sequence in a pool of sequences, and genome
coverage is generally higher than in array-based technologies.
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1.2.1. GENE EXPRESSION

GENE EXPRESSION MICROARRAYS

Gene expression microarrays were among the first broadly used array-based technolo-
gies [40], and are still used today. They typically work by isolating mRNA, reverse tran-
scribing it to cDNA, and then hybridizing it to a microarray. Microarrays contain a pre-
defined set of probes, each of which is designed to bind a certain target sequence of
interest. In the case of the human and mouse genomes, a gene expression microar-
ray contains probes representing ∼20000 protein coding genes. In addition to a more
discovery-based science, as exemplified among others by the development of prognos-
tic profiles in cancer and cancer subtyping [41–43], gene expression microarrays have
allowed for the large-scale reconstruction of gene networks, see for example [44, 45].

RNA-SEQUENCING (RNA-SEQ)
In RNA-seq (Figure 1.4), mRNA is isolated and reverse transcribed to cDNA, then frag-
mented and finally sequenced. Whereas gene expression microarrays and RNA-seq can
mostly be used for the same purposes, RNA-seq has the advantage that it is genome-
wide. It is not limited to a predefined set of probes representing known genes, and
can therefore be used for the discovery of RNA isoforms (splicing variants), gene fusions
[46, 47], etc.

Figure 1.4: [48] Using a microarray, the relative abundance of transcripts is determined by measuring a fluo-
rescent signal that is bounded in intensity. Measuring relative abundance implies there is no natural zero to
measure the absence of transcripts. In contrast, in RNA-seq, the individual transcripts are counted, thus pro-
viding a natural zero. Furthermore, in principle, there is no upper bound as to the number of transcripts that
can be counted.

1.2.2. OPEN CHROMATIN
The technologies described in this section are used to determine which genomic regions
are free of nucleosomes, i.e. can be considered open chromatin.
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DNASE-SEQUENCING (DNASE-SEQ)
In DNase-seq, DNA is cleaved (’digested’) using the Deoxyribonuclease I enzyme (DNase
I), and subsequently sequenced. Regions that are preferentially cleaved by DNase I,
DNase I hypersensitive sites, are considered to represent open chromatin, and are en-
riched for gene regulatory elements such as active promoters, active enhancers, etc.
[49, 50].

FAIRE-SEQUENCING (FAIRE-SEQ)
Compared to DNase I hypersensitivity assays, Formaldehyde-Assisted Isolation of Reg-
ulatory Elements (FAIRE) is a more recent alternative for probing open chromatin and
regulatory regions. In FAIRE-seq, chromatin is first chemically fixed (’cross-linked’) us-
ing formaldehyde, and then fragmented after which DNA without bound proteins is iso-
lated and sequenced.

There is a strong overlap in regions detected by DNase-seq and FAIRE-seq. However,
each assay also identifies unique regions, and a combination of both was shown to be
more effective in identifying regulatory elements than using any of the two assays in
isolation [51].

1.2.3. PROTEIN-DNA INTERACTIONS

CHIP
Chromatin Immunoprecipitation (ChIP) identifies interactions between DNA and a pro-
tein of interest by using antibodies that specifically bind to that protein. Thus, the pro-
tein is pulled down (’precipitated’) from a solution containing fragmented (’sheared’)
DNA in which the interactions with proteins were temporarily fixed (’cross-linked’) to
allow for precipitation. The DNA enriched by ChIP can be hybridized to an array (ChIP-
chip) to determine interactions with a predefined set of genomic loci. With first stud-
ies appearing at the turn of the century [52, 53], ChIP-chip can be considered the ear-
liest high-throughput application of ChIP, and is still widely used. For example, it has
been used to gain insight into the organization of replication timing domains [54] and
H3K9me2 domains [55] during cell differentiation.

Alternatively, ChIP can be followed by sequencing (ChIP-seq), to potentially identify
all genomic loci that interact with the protein of interest (Figure 1.5). Since the appear-
ance of three landmark studies shortly after another in 2007 [19, 56, 57], ChIP-seq has
grown to dominate chromatin biology as the most widely used high-throughput tech-
nology. A wide range of transcription factors and histone marks have been mapped by
ChIP-seq, enabling numerous breakthroughs in the understanding of chromatin organi-
zation, gene regulation, cellular differentiation, etc. [19, 20, 56–62]

Some examples of variations on ChIP-seq are MeDIP-seq for profiling methylation of
cytosines [63], hMeDip-seq, for hydroxymethylation of cytosines [64], and Repli-seq for
estimating the relative timing of replication of different genomic regions [65].

DAMID
DNA adenine methyltransferase identification (DamID) identifies protein-DNA interac-
tions by fusing a protein of interest to the Dam enzyme. When this protein binds to DNA,
the fused Dam protein catalyses methylation of adenine (at position 6) at nearby GATCs.
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Figure 1.5: [66] Using ChIP-seq, genome-wide profiles of protein binding can be generated. First, DNA-protein
interactions are fixed by cross-linking and DNA is fragmented by shearing. From this fragmented DNA, the
DNA bound to a protein of interest is pulled down (precipitated) using an antibody specific to that protein.
This precipitated DNA is purified and sequenced. Finally, the resulting sequence reads are mapped back to a
reference genome, after which the distribution of tags (mapped reads) across the genome can be studied.
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Adenine methylation at position 6 generally does not occur in eukaryotes, and can there-
fore be used as a marker for protein binding. DamID output is typically hybridized to a
microarray [67–69], but it can also be followed by sequencing [70]. Important results
obtained using the DamID technology include the genome-wide definition of lamina-
associated domains [67, 71], which are large genomic regions preferentially located at
the nuclear lamina and generally associated with transcriptional repression. DamID and
ChIP assays have been shown to give similar results [61, 72, 73].

1.2.4. DNA-DNA INTERACTIONS

HI-C
Hi-C is a technique for the genome-wide detection of 3D chromatin interactions [74].
It works by cross-linking DNA, thus temporarily fixing interacting chromatin segments.
Then, the chromatin is fragmented using a restriction enzyme. This leaves sticky ends,
which, after being filled with nucleotides marked with biotin, are ligated. Finally, frag-
ments with biotin are pulled down and sequenced from both ends to identify regions of
genomes present in spatial proximity

Using Hi-C, it was shown that the log of the contact probability between two loci
linearly decays with the log of the distance between these loci, the slope of which was
consistent with a type of organization called a fractal globule [74]. In another interesting
study, large chromatin interaction domains, termed topological domains, were inferred
using Hi-C and suggested to constitute a fundamental organizing principle of metazoan
genomes [75].

1.3. COMPUTATIONAL EPIGENOMICS
The development of high-throughput technologies has allowed a shift from hypothesis-
driven science to more discovery-based science. With the ever increasing amount of data
generated using the techniques described above, new computational techniques for an-
alyzing these data were also required. This section gives a brief overview of some of
these techniques, with a focus on sequencing-based techniques that map histone mod-
ifications, protein binding and open chromatin, since these are especially relevant for
this dissertation.

1.3.1. PREPROCESSING OF GENOME-WIDE SEQUENCING DATA
This section will give a high-level overview of steps typically taken in preprocessing ChIP-
seq, FAIRE-seq and DNase-seq data. The starting point for preprocessing is assumed to
consist of sequence reads, obtained from a sequencing machine such as built by Illu-
mina or Ion Torrent [76]. Sequence reads are relatively short sequences of nucleotides
(a few 10s to a few 100s), which are intended to represent genomic regions e.g. that
were bound by a certain protein (ChIP-seq), where histones were modified (ChIP-seq),
or where the chromatin was open (FAIRE-seq, DNase-seq).

READ MAPPING

Since the objective is to obtain genome-wide distributions of protein binding, histone
modification or open chromatin, the first step is to map the reads to a reference genome.
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Many tools are available for this, with notable examples being Bowtie [77] and BWA [78].
After mapping, typically a genome-wide coverage profile will be computed by counting
reads in equal-sized consecutive bins across the genome.

NORMALIZATION

The steps taken to generate and map the sequence reads induce biases, for example due
to PCR amplification biases [79], GC-content [80] and mappability problems [81]. This
makes comparing a signal of interest to a control essential in analyzing genome-wide
sequencing data. Irrespective of the type of control experiment [82], the eventual prob-
lem is how to make read counts in the signal quantitatively comparable to read counts
in the control. Normalization techniques can be divided into linear and nonlinear tech-
niques [83]. Nonlinear normalization techniques are often inspired by normalization
techniques originally applied to microarray data, such as locally weighted scatterplot
smoothing (LOWESS) normalization [84, 85], and quantile normalization [86]. On the
other hand, a typical linear technique tries to estimate a factor, the normalization factor,
by which the control profile is scaled such that the number of control reads in any ge-
nomic window is quantitatively comparable to the number of signal reads in the same
window. The most basic, but nevertheless commonly used, estimation of the normaliza-
tion factor is the ratio of signal sequencing depth and control sequencing depth. Other
techniques for estimating normalization factors try to detect regions in the signal that
can be considered background noise, and calculate the normalization factor as the ratio
of signal reads and controls reads in those background regions, e.g. [87, 88].

PEAK CALLING

Often, one is interested in genomic regions that have significantly more reads mapped
to them than expected by chance. In case of ChIP-seq against a transcription factor,
these regions, or peaks, would correspond to transcription factor binding sites. In
the case of FAIRE-seq, the peaks would correspond to regions of open chromatin.
A complicating factor in peak calling is that expected peak widths can differ widely
across datasets. Transcription factors often show very narrow peaks, whereas some
histone marks (H3K36me3, H3K27me3, H3K9me3, etc.) may be more domain-oriented.
There are even chromatin marks such as RNA polymerase II that, depending on
post-translational modifications, can display either narrow peaks (phosphorylation
of serine 5) or broad domains (phosphorylation of serine 2). A common approach
for calling narrow peaks uses a local Poisson background to determine significantly
enriched regions, such as implemented in the software tool MACS [89]. Algorithms
have also been developed that focus on calling broad domains on ChIP-seq data, such
as SICER [90]. SICER uses a global Poisson background to call ’eligible windows’, i.e.
potentially significant regions, which it merges to ’islands’, allowing gaps between
these windows. A closed form for a background island score distribution is analytically
derived, which is then optimized. Both MACS and SICER can optionally call peaks
relative to a control dataset, such as input DNA. For scaling the signal and control, both
algorithms use the sequencing depth normalization approach as outlined above.

While, depending on parameter settings, many peak calling algorithms can be used
both for calling peaks and calling domains, algorithms especially designed for doing
both have also been developed. An example is ZINBA [91], which uses zero-inflated
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negative binomial mixture regression to classify genomic regions into three classes, 1)
background, 2) enrichment and 3) artificial zero count. ZINBA can include any covariate
in the model, e.g. GC content, mappability to the genome, and control datasets.

1.3.2. ANALYSIS OF GENOME-WIDE SEQUENCING DATA

Using the experimental and computational techniques described above, many interest-
ing results have been obtained, e.g. in distinguishing poised promoters from active pro-
moters [19], integrating signaling pathways with the core transcriptional network in em-
bryonic stem cells [58], and distinguishing poised enhancers from active enhancers [20].
With the increase in compute power, especially interesting has been the recent progress
in developing integrative genome segmentation models. These models integrate mul-
tiple genome-wide chromatin marks to segment the genome into ’chromatin states’.
Chromatin states are characterized by specific combinations of marks occurring simul-
taneously. For example, by calling peaks on nine chromatin marks in nine cell types and
adopting a hidden Markov model approach, ChromHMM, the human genome was seg-
mented into 15 chromatin states. By functionally labeling these chromatin states, the
authors systematically characterized regulatory elements, and their cell-type specifici-
ties and functional interactions [62]. In another study, 31 ENCODE tracks [92] were used
to segment the genome into 25 states using a dynamic Bayesian network method, Seg-
way, results of which positively compared to results obtained using ChromHMM [93].
Whereas the aforementioned studies have relied on ChIP-seq data for segmenting the
human genome, a DamID-based genome segmentation of the Drosophila genome has
also been published [68]. Here, the authors identified five types of chromatin by seg-
menting the Drosophila genome using a hidden Markov model approach on 53 DamID-
chip profiles, and assessed functional differences between the states. For example, half
of the genome was found to be in a repressive state that lacks the characteristic hete-
rochromatic marks.

Moving from single genes and genomic regions in the pre-high-throughput era to
arrays and genome-wide sequencing-based profiles, and eventually integrating many
genome-wide signals into single models, has made biology and computation increas-
ingly interdependent. It has also illustrated that computation is a key player in moving
biology from hypothesis-driven research more towards discovery-driven research, and
from a reductionist approach more towards a systems approach. In terms of a muscial
analogy, it could be said that biology is starting to hear the music, where previously it
could only read the notes in the score [94].

1.4. OUTLINE OF THIS DISSERTATION

1.4.1. CHAPTER 2
As outlined above, DNA integrating elements, such as transposons and retroviruses, are
heavily used in many areas of molecular biology, e.g. gene therapy [95, 96], oncogene
discovery [35, 37], gene regulation [22, 24], and functional genetics [97, 98]. In Chap-
ter 2 of this dissertation, Computational identification of insertional mutagenesis targets
for cancer gene discovery (published in Nucleic Acids Research [99]), focus is on the use
of transposons and retroviruses for cancer gene discovery from insertional mutagenesis
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(IM) screens. In IM screens, transposons and retroviruses perturb the genome and chro-
matin by randomly integrating into the DNA, e.g. of cancer-predisposed mice. Resulting
perturbation of expression of nearby genes can lead to the formation of tumors, which
allows to identify putative cancer genes by using the integrations as tags for these genes.
In IM screens, putative cancer genes will show more integrations than would be expected
based on random chance, and thus may be identified by looking for common integra-
tion sites (CISs). For detecting CISs, parametric and nonparametric methods have been
used. A parametric method assumes random integration is a stochastic process with a
certain underlying analytical probability distribution. For example, it has been assumed
that random integration occurrence constitutes a Poisson process [34]. A nonparamet-
ric approach does not assume an analytical distribution, but instead estimates a null
distribution of integration occurrence by Monte Carlo or permutation-based methods.
For example, genome-wide integration probability densities have been estimated using
Gaussian kernel convolution, in combination with random permutations to determine
significance [100]. After CIS calling, putative cancer genes are identified by manually
mapping these CISs to their putative target genes, e.g. [35–37]. These traditional ap-
proaches have two main drawbacks. First, the manual mapping of CISs to genes could
introduce substantial biases. For example, the mapping may be unintentionally skewed
towards well-known cancer genes, thus potentially excluding novel cancer genes. Sec-
ond, properties of individual integrations are not considered, such as distance to genes
and orientation with respect to genes.

Chapter 2 addresses these issues by presenting an alternative to traditional CIS call-
ing, called Kernel Convolved Rule Based Mapping (KC-RBM). The algorithm uses prop-
erties of individual integrations, namely distance, orientation and integration density
across tumors, to map integrations automatically to putative target genes. We apply
our method to two datasets, a Sleeping Beauty transposon (SB) tumor screen and a
Murine Leukemia Virus (MuLV) tumor screen, for which same-sample integration data
and gene expression data are available. By analyzing the associations between the inte-
grations and gene expression, we gain insight into suitable ranges of parameter values
for mapping integrations to putative target genes. By performing an additional aggrega-
tion step after the mapping of integrations to genes, putative cancer genes are identified
as CTGs (commonly targeted genes). In terms of cancer genes found, the algorithm com-
pares positively to existing approaches for automatically retrieving cancer genes from IM
screens.

1.4.2. CHAPTER 3
Integration of elements such as transposons and retroviruses does not occur uniformly
random across the genome. There are substantial biases, which may affect research out-
comes or complicate interpretation of results in any field using these systems. For ex-
ample, in cancer gene discovery (Chapter 2), integration biases may be difficult to dis-
tinguish from cancer-induced integration hotspots, termed Common integration Sites
(CISs). This problem arises from the fact that CIS calling approaches, and also KC-RBM
(Chapter 2), often assume a uniform background integration bias in determining the sig-
nificance of a CIS, e.g. [100–103]. In gene therapy, integration biases are important be-
cause therapeutic use of retroviruses can, depending on the locus of integration, cause
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activation of oncogenes and thus tumor formation [104]. In gene regulation, a strong
bias of integrating elements for active chromatin, such as reported for SB, MuLV and the
piggyBac transposon (PB) [105–107], may limit studying the chromatin position effect to
active chromatin.

In Chapter 3, Chromatin landscapes of retroviral and transposon integration bias
(published in PLOS Genetics [101]), addresses integration bias for three systems heavily
used in many areas of molecular biology: PB, SB, and the mouse mammary tumor virus
(MMTV). Multiple studies have reported on biases in one or more of these systems,
e.g. [105–111]. While these studies have delivered many new insights into target site
selection, they do have some limitations. Examples of these limitations are 1) some
datasets were generated using a selectable marker, e.g. [105, 107, 110], 2) datasets
were relatively small, e.g. [105, 106, 108], 3) datasets were compared to features in
non-matching cell types, e.g. [105], 4) only a limited number of features were analyzed,
e.g. [109, 111].

To address these issues, we generated large datasets for these three systems (∼120000
to ∼180000 integrations), with minimal selective pressure placed upon the integrations,
to allow for properly studying the a priori integration bias. The PB and SB datasets were
generated in mouse embryonic stem cells (mESCs), enabling us to analyze wide range
of (epi)genomic features to characterize, in detail, the preferred chromatin environment
of retroviral and transposon integrations in the same cell type. Taking a scale-based ap-
proach and using a feature ranking method based on Markov blanket discovery and con-
ditional mutual information, a hierarchical model of integration target site selection is
presented: At a domain-oriented scale, target site selection is similar across systems and
mostly directed by the same set of (epi)genomic features. At a small scale, notable dif-
ferences between the systems can be observed, which are characterized by a wide range
of features. In addition to characterizing the insertional chromatin environment, the
three unselected integration profiles are compared to same-system integrations from IM
screens. This shows that 7% - 33% of CISs in these screens may be false positive, i.e. likely
the results of a priori integration bias and not of selective pressure (tumor formation).

1.4.3. CHAPTER 4
The DNA integrating elements that were used for perturbing the chromatin in Chapters
2 and 3 can also be used for studying its transcriptional permissiveness, i.e. the chro-
matin position effect. For this purpose, a DNA integrating element is genetically engi-
neered to contain a promoter and reporter gene of choice. After randomly integrating
these elements into the genome, the transcriptional output of the reporter is measured.
Although this principle has been used successfully to infer causal relationships between
local chromatin context and transcriptional activity [22–24, 112], the studies were gener-
ally laborious and of low throughput, tens to hundreds of integration. As such, perform-
ing comprehensive genome-wide computational analyses of the chromatin position ef-
fect has remained impossible to date.

In Chapter 4, Chromatin position effects assayed by thousands of reporters
integrated in parallel (published in Cell [113]), a new assay is presented for parallel
high-throughput tracking of the expression of thousands of integrated reporter genes.
The piggyBac transposon, for which integration bias was studied in Chapter 3, is used
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as a vector to deliver reporter genes into the genome and study gene regulation by
means of the chromatin position effect on a genome-wide scale. Comprehensive
computational analyses of ∼27000 integrated reporter genes show that lamin associated
domains (LADs) repress transcription by attenuation. Limited access of transcription
factors to DNA is pointed to as a likely mechanism. Results also show that chromatin
compaction is strongly associated with reporter activity, and that on average the
influence of enhancers on transcriptional activity extends to ∼20kb.

1.4.4. CHAPTER 5
Chapter 5, Genome-wide profiling of anti-cancer drug effects on chromatin guides ratio-
nal treatment decisions, takes a low-level and targeted approach to studying chromatin,
by using chemotherapeutic drugs to directly perturb the structure of chromatin. Com-
pared to DNA integrating elements, the mechanistic details by which these drugs perturb
chromatin are relatively uniform and well-described. The focus is on drugs that provide
their effect by either evicting histones (aclarubicin), inducing DNA breaks (etoposide,
topotecan), or doing both of these (daunorubicin). By studying the genomic target-
ing profiles of these drugs, this chapter provides 1) new insights into chromatin struc-
ture, and 2) rationale for improving cancer treatment decisions. More specifically, we
observed that the drugs may be used as chemical profiling agents to allow characteri-
zation of previously un-annotated genomic regions. Furthermore, all drugs seemed to
sense transcriptional activity, and although across drugs similar genomic regions were
targeted for DNA breaks, aclarubicin and daunorubicin differed markedly in their ge-
nomic preference for histone eviction. Specifically H3K27me3-marked regions were ex-
tensively targeted by aclarubicin compared to daunorubicin. As a result, tumor cells with
Ezh2 activating mutations, and consequently high levels of H3K27me3, were observed
to be highly sensitive to treatment with aclarubicin. Combined, these results show that
these anti-cancer drugs are dependent on the local chromatin environment in provid-
ing their chemotherapeutic effect, and open up potential for personalized applications
of these drugs in the clinic. In order to arrive at the results described above, among oth-
ers, a new method for normalizing genome-wide sequencing signals with control was
developed, and the feature ranking method from Chapter 3 was extended by correcting
for the inherent spatial autocorrelation of genome-wide signals.

1.4.5. CHAPTER 6
A central theme of this dissertation is computational epigenomics and data integration.
Computational analyses of genome-wide sequencing data, such as those discussed in
Section 1.3.2, generally have similar ingredients, e.g. a read mapper, a peak caller, a nor-
malization algorithm, etc. However, these ingredients are often not ideal in the sense
that they typically do not give general solutions to the specific problem at hand. There-
fore, most analyses are necessarily highly customized. Many of the analyses in this dis-
sertation are also highly customized. Some techniques can be more generally applied,
such as a new approach for normalizing genome-wide sequencing data (Chapter 5).
These techniques, and some other results, are discussed in more detail in the first part
of Chapter 6.

In the second part of Chapter 6, a number of issues are discussed related to the high
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level of customization of computational analyses of genome-wide sequencing data. For
example, some a priori expected characteristics of the genome-wide sequencing profile
will bias the choice of peak caller and thus also the results, and read mappers come with
many parameters for which it is not always straightforward, or possible, to find a single
set of "correct" values. Nevertheless, in order to deal with these issues, taking decisions
regarding the analysis pipeline is unavoidable. The careful consideration that must go
into taking these decisions is illustrated by demonstrating the substantial impact that
these decisions can have on research outcomes.
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ABSTRACT
Insertional mutagenesis is a potent forward genetic screening technique used to identify
candidate cancer genes in mouse model systems. An important, yet unresolved issue in
the analysis of these screens, is the identification of the genes affected by the insertions.
To address this, we developed Kernel Convolved Rule Based Mapping (KC-RBM). KC-
RBM exploits distance, orientation and insertion density across tumors to automatically
map integration sites to target genes. We perform the first genome-wide evaluation of
the association of insertion occurrences with aberrant gene expression of the predicted
targets in both retroviral and transposon datasets. We demonstrate the efficiency of KC-
RBM by showing its superior performance over existing approaches in recovering true
positives from a list of independently, manually curated cancer genes. The results of
this work will significantly enhance the accuracy and speed of cancer gene discovery in
forward genetic screens. KC-RBM is available as R-package.

2.1. INTRODUCTION
Large-scale insertional mutagenesis screens using retroviruses and transposons are of
great importance in cancer research. By integration into the host DNA, retroviruses and
transposons can mutate the genome. This process is referred to as insertional mutage-
nesis. Insertional mutagenesis can disrupt cellular processes, alter gene expression and
thereby cause cancer. For this reason, large-scale insertional mutagenesis screens have
been successfully employed to identify new putative cancer genes, see e.g. [2–7]. In ad-
dition, retroviral vectors have been shown to be useful in gene therapy, and transposon
based systems also show great potential for this same purpose. However, it is currently
still very difficult to predict which surrounding genes will be affected by insertions.

To identify potential cancer genes from an insertional mutagenesis screen, the initial
step typically involves the definition of common insertion sites (CISs), see e.g. [2, 4, 8–
11]. Insertions are clustered based on inter-insertion distance and clusters that are un-
likely to occur by chance are declared CISs. The CISs are then manually mapped to puta-
tive target genes. This manual mapping could potentially introduce biases. For example,
known cancer genes may be preferred, thus potentially and unintentionally excluding
novel cancer genes. An additional drawback of this approach is that in defining CISs,
properties of individual insertions, such as distances to genes and orientation relative to
genes are disregarded.

In contrast, nearest-gene mapping (NGM), maps each insertion to the nearest gene
(e.g. [12]). While this approach does operate on individual insertions, and takes the
distance of insertions to genes into account, it still disregards the relative orientation of
insertions, and does not aggregate insertion data across tumors.

The orientation of an insertion occurring in the immediate upstream promotor re-
gion of a gene is a highly important modulator of the effect of that insertion on the gene.
More specifically, if the viral promoter has the same orientation as the host promoter it
can take over its function [6]. For larger upstream and downstream distances from genes,
relative orientation also plays a role: enhancing insertions are predominantly oriented
away from target genes [6]. It is therefore clear that the orientation of an insertion should
be taken into account when determining putative target genes. Furthermore, since the
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nearest gene is not necessarily the only or best target gene, it is important to allow the
assignment of multiple target genes to a single insertion.

To address the issues described above, we developed Kernel Convolved Rule Based
Mapping (KC-RBM). KC-RBM integrates GKC [9], a method for identifying statistically
significant CISs, with rule based mapping of individual insertions to genes. Without user
intervention, KC-RBM maps insertions to genes based on orientation-dependent win-
dows defined around transcripts, and exploits the information contained in the repeti-
tive occurrence of insertions at a given locus across tumors, i.e. CIS information. We per-
form extensive analyses of associations between insertion occurrence and same-sample
gene expression to evaluate the parameter choices for KC-RBM. We demonstrate the
benefits of KC-RBM in cancer gene discovery through the more accurate identification of
target genes from two insertional mutagenesis screens, a Murine Leukemia Virus (MuLV)
screen and a Sleeping Beauty (SB) transposon screen. KC-RBM represents the first ever
approach for mapping SB transposon insertions to target genes.

2.2. RESULTS

2.2.1. INSERTION OCCURRENCE AND GENE EXPRESSION

Since the orientation of an insertion relative to a target gene and the distance of an inser-
tion to a target gene determine how an insertion may activate that gene, one may expect
association between orientation, distance, and gene expression. Figure 2.1 depicts an
alignment of all genes. A point represents the average normalized deviation of the gene
expression from the mean as a function of the distance between a gene and an insertion.
A technical explanation of this figure can be found in the Methods section. For both the
MuLV insertions and the SB transposon insertions, it can be seen that association of in-
sertion occurrence with gene expression of nearby genes is dependent on the distance
and orientation of the insertion to the gene.

For MuLV, Figure 2.1a shows higher average expression deviation for insertions inside
and near genes (demarcated by the two vertical black lines). There is a clear peak in
expression levels for antisense insertions (red) just upstream of the gene start site. For
sense insertions (green), a slightly less pronounced peak can be seen just downstream
of the gene start site. These observations are consistent with mechanisms described
in the literature by which retroviral insertions affect their target genes [6, 7, 13]. The
insertion density across all aligned genes is plotted in black below the expression values,
and demonstrates an explicit preference of MuLV insertions for loci near the gene start
site, as previously observed [14].

For the SB transposon, Figure 2.1b suggests that some association does exist, al-
though much less pronounced when compared to the retroviral case. Especially for the
sense insertions inside genes there is some elevation in expression. The insertion den-
sity (depicted in black, below the binned z-values) shows that SB transposon insertions
are predominantly found inside genes.

2.2.2. KC-RBM
Mechanisms described in the literature [6, 7, 13], supported by our own observations
(Figure 2.1), suggest that insertions should be mapped to putative target genes using
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(a) MuLV: Aligning genes (b) SB transposon: Aligning genes
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Figure 2.1: Normalized deviation of gene expression from the mean as a function of insertion distance, for (a)
MuLV and (b) SB transposon. For all genes, all insertions are identified in a window of 500kb around these
genes, from the gene start site and from the gene termination site. All genes are then aligned with respect to
location as well as orientation. z-normalized gene expression values are associated with the relative locations
of the insertions within the 500kb window. For all genes and insertions taken together, these expression values
are binned, and the distinction is made between insertions occurring in sense orientation relative to the gene
(green) and in antisense orientation relative to the gene (red). The blue line represents the all insertions taken
together. The (aligned) insertion density is plotted in black below the binned z-values. The gene boundaries
are represented by two vertical black lines.
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orientation dependent windows defined on either side of transcripts. Depending on
the orientation and location of an insertion, the insertion will fall within or outside the
relevant mapping window. When the insertion falls within a given window, it will be
mapped to the associated gene. This approach, which we will call Rule Based Mapping
(RBM) is outlined in Figure 2.2a. It uses four window size parameters, for upstream-
sense, upstream-antisense, downstream-sense, and downstream-antisense insertions.

The window sizes used by RBM provide strict boundaries outside of which insertions
are not mapped to a gene. However, as it is presented in Figure 2.2a, RBM does not
directly exploit the fact that information from across tumor samples is available. After all,
cancer genes harbor mutations across many independent tumors. Furthermore, it might
be that, in an insertion cluster, a minority of insertions occur that contradict the window
sizes set for RBM. As an example, consider a cluster of insertions, a CIS. Suppose that
a number of these insertions lie outside the mapping window relative to a certain gene,
and the other insertions lie within the mapping window. RBM will not map the insertions
outside the mapping window to the gene. However, since the insertions constitute a
cluster, it is not unreasonable to assume that all these insertions will all target the same
gene. As another example, consider again a cluster of insertions. Let us suppose that a
large majority of the insertions have a sense orientation relative to a target gene, and just
a few insertions are oriented antisense. Here it will again make sense to map the cluster
as a whole to the same target gene, thereby disregarding the antisense orientation of a
small minority of insertions.

The implication of these two examples is that it is sensible to allow exceptions to
the strict application of the rules, when this is suggested by information regarding the
frequency and orientation of insertions across tumors. We therefore propose a hybrid
approach, involving RBM and GKC, to exploit information from across tumor samples
to flexibly apply RBM in a data-driven manner. Recall that GKC [9] detects CISs by es-
timating the insertion density through a Gaussian kernel convolution and identifying
insertion hot spots based on a random permutation approach. The hybrid approach
will be referred to as KC-RBM, and is illustrated in Figure 2.2b. First, given an insertion
profile, a Gaussian kernel convolution is applied to estimate the insertion density, es-
sentially defining clusters of insertions. Second, all insertions are associated with their
nearest peak. This results in a number of insertion clusters, one for each peak. Third, if
a cluster is orientation-wise homogeneous enough, all individual insertions are merged
into a single orientation cluster, otherwise insertions are separated into a sense and an
antisense cluster. The positions of the resulting clusters are taken to be the average posi-
tion of the insertions constituting that cluster. Fourth, all clusters mean loci are mapped
using RBM.

In addition to the four window sizes, KC-RBM depends on two parameters: one for
determining the level of smoothing of the positions of the insertions, and one for de-
termining the orientation homogeneity of a cluster. The parameter that determines the
smoothing is the standard deviation of the Gaussian kernel, and is called the scale pa-
rameter. The parameter that controls the orientation homogeneity of a cluster is defined
as the minimal fraction of the insertions constituting a cluster that need to have the same
orientation. The kernel width reflects the degree of strictness with which one wishes to
enforce the mapping window: the smaller the scale, the less flexibility is allowed in the
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chosen sizes of the mapping windows. The orientation homogeneity parameter con-
trols the level of noise tolerated in the insertion orientation: the higher the orientation
homogeneity fraction, the higher the stringency on the orientation of insertions.

1. Estimate the 
insertion density.

antisense / all = 5 / 6 
>= 0.75 

antisense / all = 1 / 2 
< 0.75 

2. Map each insertion 
to its nearest peak.

Merge into one single 
antisense cluster.

Separate sense and 
antisense clusters.

3. Merge into 
insertion clusters.

Cluster mean locus
sense sense

antisense antisense4. Perform RBM on 
cluster mean loci.

upstream-sense window downstream-sense window

upstream-antisense window downstream-antisense window

transcript

orientation

insertion

(i) Outside transcript

(ii) Inside transcript

(a) (b)

Figure 2.2: (a) RBM for mapping insertions to genes. Distinctions are made based on three properties. In-
sertions are distinguished by occurrence (i) outside or (ii) inside a transcript, upstream or downstream of a
transcript, and in sense or antisense orientation with respect to the orientation of the transcript. (b) KC-RBM
for mapping insertions to transcripts. First, given an insertion profile, a Gaussian kernel convolution is applied
to estimate the insertion density. Second, all insertions are associated with their nearest peak. This results in a
number of insertion clusters, one for each peak. Third, if the cluster is orientation-wise homogeneous enough,
all individual insertions are merged into a single-orientation cluster, otherwise insertions are separated into a
sense and an antisense cluster. Fourth, all clusters mean loci are mapped using RBM. Finally, a gene is consid-
ered a target of an insertion if at least one of its transcripts is a target.

2.2.3. VARYING THE WINDOW SIZES
This section explores the influence of varying the four window size parameters on
insertion-expression association, while setting the scale parameter to 0 and the
orientation homogeneity parameter to 1.0, i.e. strictly applying the mapping window
widths and without smoothing the insertion orientation. When compared to the
analysis represented in Figure 2.1, this analysis is more refined in that for a particular
value of a window size parameter, a Wilcoxon test is performed to determine whether
the median difference between the expression of samples with and without a given
insertion is significantly different from zero (for more detail, please refer to the Methods
section).

For MuLV, Figure 2.3a shows the influence of varying the window sizes on
insertion-expression association, as measured by the fraction of significant associations
(true positive rate) and the number of detected significant associations (number of true
positives). In Figure 2.3a(i), cases with at least one insertion per gene across samples
were taken into account. The insertions oriented away from genes, upstream-antisense
and downstream-sense, show the largest association (large fraction of significant genes).
This is in concordance with the literature, where these cases are often denoted as
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enhancer insertions, and can activate genes across large distances [6, 7, 13]. In contrast,
the association of upstream-sense insertions is very local. This is also in concordance
with the literature, where these insertions are often denoted as promoter insertions
[6, 7, 13]. Downstream-antisense insertions show the least association. However, there
is a clear association for small window sizes (<10kb).

In contrast to Figure 2.3a(i), in Figure 2.3a(ii) we only included genes with at least two
insertions per gene across all samples. This shows that, in general, insertion occurrence
associates even better with elevated expression levels, although for small downstream
window sizes (<20kb) the data are very sparse. In both these figures the association of
downstream antisense insertions is less pronounced than that of downstream sense in-
sertions.

For the SB transposon, Figure 2.3b shows the influence of different window sizes on
insertion-expression association. Also in this figure it is evident that the association is far
less pronounced than for the retroviral case, although it can be seen that SB transposon
insertions are predominantly found inside genes. Requiring at least one insertion per
gene across samples gives a noisy result and only shows a slight association for sense in-
sertions. Requiring at least two insertions (Figure 2.3b(ii)) gives a clearer picture, and re-
sults in higher fractions of significant genes. It shows that the insertion-expression asso-
ciation for the SB transposon is far more localized and less pronounced when compared
to retroviral insertions. Again, the sense insertions associate better with increased ex-
pression. For both downstream-antisense insertions and downstream-sense insertions,
the data are too sparse to draw meaningful conclusions.

One remark should be made on the visual presentation in Figure 2.3. To allow for a
2D presentation, the four window types and the within-transcript case are treated sepa-
rately. i.e. when computing the statistic for one specific window size, the other three are
set to zero. A more comprehensive view is offered in a more complex 4D visualization
in the Supplementary Material (Figures 7, 8, 11 and 12), but does not lead to different
observations.

2.2.4. VARYING THE SMOOTHING

This section explores the influence of varying the Gaussian Kernel Convolution scale pa-
rameter on insertion-expression association, while keeping the orientation homogene-
ity parameter and the four window sizes constant. Figure 2.3 showed there are substan-
tial differences in strength of insertion-expression association for the four window size
parameters. Therefore, while varying the smoothing, these window sizes are fixed to val-
ues reflecting this relative strength of insertion-expression association. This implies that
the upstream-antisense window (ua) is the largest window, followed by the downstream-
sense (ds) window, the upstream-sense (us) window, and the downstream-antisense (da)
window respectively. Furthermore, window sizes are chosen such that the fraction of
significant genes never falls below the permutation threshold of 5%, and a particular
window size is never too small to retrieve at least one significant gene in that window.
This resulted in the window sizes (us,ua,ds,da) = (20kb,120kb,40kb,5kb). Furthermore
the orientation homogeneity minimal fraction was set to 0.75.

For these parameter values, the influence of the scale parameter on the number of
significant genes and the fraction of significant genes is visualized in Figure 2.4. For
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Figure 2.3: The influence of the four window sizes on mapping quality for (a) MuLV and (b) the SB transpo-
son, for requiring (i) at least one insertion per gene across samples, (ii) at least two insertions per gene across
samples, or (iii) at least three insertions per gene across samples. A distinction is made between upstream-
sense, upstream-antisense, downstream-sense, and downstream-antisense windows. For an explanation of
the computation of the fractions and numbers of significant genes (true positive rate and number of true posi-
tives respectively) refer to the Methods section. First, computation is done for multiple window sizes. Second,
when computing the statistics for one of four window sizes, the other window sizes are set to zero. Third, for
all insertions within transcripts association of insertion occurrence with increased expression levels was com-
puted while disregarding the insertions outside transcripts. Permutation thresholds (5%, represented by the
dotted black line) were calculated per window size.
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the MuLV dataset, KC-RBM achieves stronger associations if smoothing is applied, for
all scales larger than 5kb, and especially for scales around 10kb and 35kb (Figure 2.4a).
For scales larger than 35kb the performance deteriorates, with the number of significant
genes increasing and the fraction of significant genes decreasing.

For the SB transposon, Figure 2.4b again shows that the association of SB transposon
insertions with increased gene expression is less pronounced than in the case of MuLV.
However, the strongest association is attained for small scales around 2kb. Furthermore,
similar to the retroviral case, the number and fraction of significant genes diverges for
larger scales. Hence we fixed the the kernel width for MuLV at 10kb and for the SB trans-
poson at 2kb.

nu
m

be
r o

f s
ig

ni
fic

an
t g

en
es

0
25

00
50

00
75

00
10

00
0

12
50

0
15

00
0

17
50

0
20

00
0

22
50

0
25

00
0

27
50

0
30

00
0

32
50

0
35

00
0

37
50

0
40

00
0

42
50

0
45

00
0

47
50

0
50

00
0

60
65

70
75

80
85

0.
12

0.
13

0.
14

0.
15

fra
ct

io
n 

of
 s

ig
ni

fic
an

t g
en

es

scale (bp)

fraction of significant genes
number of significant genes                 

nu
m

be
r o

f s
ig

ni
fic

an
t g

en
es

0
10

00
20

00
30

00
40

00
50

00
60

00
70

00
80

00
90

00
10

00
0

11
00

0
12

00
0

13
00

0
14

00
0

15
00

0
16

00
0

17
00

0
18

00
0

19
00

0
20

00
0

11
0

12
0

13
0

14
0

0.
05

6
0.

06
0

fra
ct

io
n 

of
 s

ig
ni

fic
an

t g
en

es

scale (bp)

0.
06

2

(a) MuLV: The influence of the GKC scale (b) SB transposon: The influence of the GKC scale

Figure 2.4: The influence of the GKC scale parameter on the number of true positives and the true pos-
itive rate, for performing RBM on (a) the MuLV data and (b) the SB transposon data using window sizes
(20kb,120kb,40kb,5kb) (MuLV) and (20kb,10kb,25kb,5kb) (SB transposon) for (upstream-sense, upstream-
antisense, downstream-sense, downstream-antisense) insertions. The orientation homogeneity parameter
was set to 0.75.

2.2.5. USING KC-RBM FOR CANCER GENE IDENTIFICATION

In previous sections we have investigated how the association between insertion pres-
ence and gene expression is modulated by the parameters of KC-RBM (window sizes and
kernel width for a fixed homogeneity parameter), and fixed these parameters to appro-
priate values. Now, we will demonstrate how KC-RBM is employed for the identification
of cancer genes based on the insertion data only.

Recall that for each insertion, KC-RBM identifies a list of putative target genes. How-
ever, for a given insertion, not all identified targets may be of equal importance. As a
first step in extracting interesting genes from a KC-RBM mapping, we will select at most
a single target for each insertion. More specifically, among the targets identified per in-
sertion, we rank the genes according to the number of times they were targeted across
insertions, and select the top ranking gene as the single target for that insertion. This
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selects for genes frequently targeted across insertions. The set of all targeted genes can
subsequently be ranked by counting for each gene the number of times that gene was
targeted by an insertion, resulting in a list of commonly targeted genes (CTGs).

Figure 2.5a shows a top 20 CTG list for the MuLV dataset, obtained by applying the
procedure described above. Figure 2.5d shows the results for the SB transposon dataset.
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Figure 2.5: Comparison between genes identified by CTG mapping and by CIS mapping for MuLV and SB
transposon. The top 20 CTGs identified by KC-RBM for (a) MuLV and (d) SB transposon; on the x-axis the gene
symbol, on the y-axis the number of times a certain gene was identified as a target. KC-RBM was performed
using window sizes (20kb,120kb,40kb,5kb) for the MuLV data and (20kb,10kb,25kb,5kb) for the SB transposon
data, for upstream-sense, upstream-antisense, downstream-sense, and downstream-antisense windows re-
spectively. The scale parameters were set to 10kb (MuLV) and 2kb (SB transposon). The orientation homogene-
ity parameter in both cases was set to 0.75. Venn diagrams for both (b) MuLV and (e) SB transposon depicting
the overlap between the top 20 CTGs identified by KC-RBM-CTG mapping, and the top 20 CIS-nearest-genes.
Gene names in bold face refer to genes that were also identified in the manually curated list of 346 CISs [4]
(MuLV) or in the Cancer Gene Census (SB transposon). For (c) MuLV and (f) SB transposon, the complete lists
of CTGs are also more extensively compared to the manually curated set (MuLV) and the Cancer Gene Census
list (B transposon), again taking the manually curated list as a reference. This shows that KC-RBM performs
better than both CIS-NG and NGM.

2.2.6. EVALUATING KC-RBM
In this section we will evaluate the effectiveness of KC-RBM in identifying cancer genes
by following the steps described in the previous section, and comparing the results ob-
tained with two other methods for computationally identifying cancer genes from inser-
tional mutagenesis screens. The first method performs a GKC-based CIS analysis [9], and
then maps each CIS peak to the nearest gene. We will refer to this method as CIS-nearest-
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gene mapping (CIS-NG). The second method consists of mapping each insertion to the
nearest gene, and then determining the CTGs. We will refer to this method as nearest-
gene mapping (NGM). The results obtained by these three methods will be evaluated by
comparing them to manually curated lists of cancer genes.

For MuLV, a manually curated list exists, based on a subset of the same MuLV in-
sertion data [4]. In Figure 2.5b this manually curated list is taken as a reference and
compared to the top 20 lists for KC-RBM, NGM and CIS-NG mapping. The seven genes
identified in all three mappings were also present in the manually curated list. With
the exception of Med20, all genes in the KC-RBM lists were identified in the manually
curated list as well. The presence of Med20 is explained by its proximity to Ccnd3. In
the manually curated list, the insertions in the neighborhood of Med20 were mapped to
Ccnd3. CIS-NG finds two targets neither of which were present in the other two map-
pings nor in the manually curated list. These two genes, Gm10125 and Fgd2, lie near
Zhfx1a (Zeb1) and Pim1 respectively, which are present in the manually curated list.
NGM finds three targets neither identified in the other two mapping nor in the man-
ually curated list, Gm10826, Al672278.1, and Evi5. These genes lie near Myb, Runx1, and
Gfi1 respectively, which were identified in the manually curated list as the target genes
of corresponding CISs.

For MuLV, the lists of CTGs are also more extensively compared in Figure 2.5c, not
restricting the comparison to only the top 20 CTGs, and again taking the manually cu-
rated list as a reference. This shows that, of all three methods, KC-RBM identifies the
largest number of genes present in the manually curated list. The difference in the num-
ber of genes identified by KC-RBM and the second-best method, NGM, is highly signif-
icant (p < 10−5, based on a permutation approach). Furthermore, the genes identified
by KC-RBM that were also identified in the manually curated list, rank higher (lower av-
erage rank in the KC-RBM list), when compared to the other methods. The difference
in rank between KC-RBM and the second-best method, NGM, is also highly significant
(p < 10−5, based on a permutation approach)

No manually curated list exists for the SB transposon insertions. Therefore, the Can-
cer Gene Census [15] was taken as a reference for evaluating the targets identified by the
three approaches based on this dataset. The results of the comparison of KC-RBM, NGM,
and CIS-NG mapping are depicted in Figure 2.5. Four genes are present in all three map-
pings, Erg, Pten, Notch1, and Nr3c1. All these genes are known cancer-related genes, see
e.g. [16–19], and the first three are also present in the Cancer Gene Census. NGM is the
only approach that identifies Kit as an additional Cancer Gene Census gene. Both CIS-
NG and KC-RBM identify Akt2 in addition to the Cancer Gene Census jointly detected
by all three approaches. However, KC-RBM finds eight additional Cancer Gene Census
genes. Similar to the retroviral case, somewhat more obscure proximal targets can score
very high in CIS-NG mapping and NGM. Examples are AC153556.1, RP23-336G7.3, and
RP23-24E11.3, which are located in the vicinity of Myb, Jak1, and Bach2, respectively.
Myb, Jak1, and Bach2 are identified exclusively by KC-RBM, and have been shown to be
involved in cancer, see e.g. [20–22].

The results in Figure 2.5e are further substantiated by the more extensive comparison
in Figure 2.5c, comparing larger lists of genes (refer to the Methods section), and again
taking the Cancer Gene Census as a reference. KC-RBM again performs best in terms
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of the average rank of the Cancer Gene Census genes it identifies as well as the number
of Cancer Gene Census genes identified. Furthermore, the differences in presence and
rank between KC-RBM and the second-best method (CIS-NG in this case), are again sig-
nificant (p = 0.016 and p = 0.039 respectively). Note that the Cancer Gene Census is less
relevant for the SB insertion data than the manually curated list is for the MuLV data.
It is not based on a SB transposon insertional mutagenesis screen. Furthermore, it is a
list of human genes, which additionally have to be mapped to mouse homologs. Conse-
quently, the overlap between the genes identified by the three methods and the Cancer
Gene Census genes is much smaller compared to the MuLV case, resulting in higher p-
values. Nevertheless, the p-values are significant, and demonstrate clearly that KC-RBM
retrieves more cancer-related genes than the other methods.

2.3. DISCUSSION
In this paper we presented KC-RBM, a method for automatically mapping individual
retroviral and SB transposon insertions to putative target genes. KC-RBM represents the
first ever approach for mapping SB transposon insertions to target genes. In addition,
the analyses presented here constitute the first genome-wide analysis of insertion and
same-sample gene expression for retroviruses and transposons. Such a comprehensive
dataset provides significant power in determining the factors that govern the associa-
tions between insertions and neighboring genes.

It is important to emphasize that, while mapping individual insertions to target
genes, KC-RBM also exploits cross-sample information in multiple ways. The KC-RBM
scale parameter allows for smoothing the positions of insertions based on cross-sample
information. The insertion orientations are smoothed based on cross-sample
information by setting the orientation homogeneity fraction parameter in KC-RBM.
Furthermore, determining CTGs by aggregating insertions also integrates information
from across tumor samples.

Although the presence of insertions is associated with increased gene expression
(Figure 2.1) the analysis presented in Figure 2.1 does not provide sufficient evidence to
distinguish cause from effect. In other words, we cannot conclude from this associative
analysis that the presence of an insertion causes higher or lower gene expression. It is
certainly possible that insertions are more likely to occur in actively transcribed regions,
i.e. near genes with elevated expression levels. This and other factors inducing insertion
biases have, in fact, been demonstrated for retroviruses as well as for transposons, e.g.
[14, 23–29]. However, regardless of the determinants of insertion bias, it is a fact that
insertions cause tumors since there is a statistically significant increase in the tumor in-
cidence in animals infected with MuLV or in animals where SB transposons are activated
[4, 30]. It is therefore very likely that these insertions caused, amongst other, changes in
gene expression that resulted in oncogenesis. To further explore the causal relationship
between insertions and aberrant gene expression, we performed additional analyses, the
results of which are presented in the Supplementary Material.

The first analysis involves the distribution of insertion orientation in CTGs. If in-
sertions were simply occurring in regions that were already transcriptionally active, i.e.
elevated expression being the cause of insertions, one would expect insertions in these
regions to show no preference for orientation. On the other hand, if the insertions were
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the cause of elevated gene expression, one would expect a strong preference for an ori-
entation consistent with activation of the target gene(s). To test this hypothesis, we per-
formed two tests. First, we randomized the insertion orientation in both the MuLV and
SB datasets and regenerated the expression-position-orientation plots as presented in
Figure 2.1. As can be seen in Figures S2 and S10, the orientation-dependent effect on
gene expression disappears. Second, we analyzed the orientation distribution of inser-
tions assigned to the top 214 MuLV CTGs (only including CTGs with 10 or more inser-
tions). The results show a highly significant preference for orientation, consistent with
the known mechanisms employed by retroviruses to activate target genes. (See Figures
S3 and S4). Strong preferences for activating orientations were also established for the SB
transposon (Figure S13). To further explore the causal relationship between insertions
and gene expression, we performed a second analysis where we compared expression
data from normal and tumor tissue. If insertions would simply target genes that are al-
ready active in normal tissue, there will be little difference between the activity of genes
carrying insertions in tumor tissue and the activity of these same genes in normal tissue.
To test this hypothesis, we compared gene expression of MuLV CTGs in cancer tissue to
gene expression of these same genes in normal tissue. For the cancer tissue, only tumors
with insertions in a specific CTG were included in the analysis. These analyses showed
that in the cases where the average expression was higher in the cancer tissue compared
to normal tissue, the increase was significant in 84.2% of the cases. This implies that in
the vast majority of cases a gene carrying an insertion in the tumor tissue was signifi-
cantly differentially expressed with respect to that same gene in normal tissue. For the
cases where the average expression was lower in the tumor tissue with respect to normal
tissue, the decrease was significant in 72.7% of the cases (See Figure S5). This strongly
suggests that frequently targeted genes showing aberrant expression in tumor tissue, are
not already active in normal tissue, hence challenging the aforementioned hypothesis
that insertions simply tend to insert in genes that are already active in normal tissue.

Taken together, the strong orientation preference and the strong association of inser-
tion presence with a change in gene expression suggest that a large fraction of insertions
play a causal role in aberrant gene expression in tumor samples. Lastly and perhaps
most importantly, it should be emphasized that while we employed the association of
insertions and gene expression to obtain settings of the four window sizes in KC-RBM,
this is not a requirement for the approach. In fact, depending on a researcher’s interests,
different window sizes may be appropriate.

As the definitive test for the performance of KC-RBM, and regardless of the direction
of causality, we evaluated its ability to identify known cancer associated genes from a
manually curated list [4], and from the Cancer Gene Census [15]. KC-RBM gives supe-
rior results when compared to automated CIS-NG mapping and NGM. Without the need
for human intervention, it avoids more obscure proximal targets and finds a clean list of
well-known cancer-related genes, as demonstrated by the comparison with a manually
curated list [4], and the Cancer Gene Census [15]. This is important, since human inter-
ference could cause a bias, for example toward known or expected cancer genes, thus
actually preventing the discovery of new or unknown cancer genes. This emphasizes the
added value that a reliable automated insertion mapping procedure such as KC-RBM
can have for analyzing insertional mutagenesis data and discovering novel oncogenes
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and tumor suppressor genes. As such, we believe that KC-RBM will significantly increase
the efficiency of cancer gene discovery from insertional mutagenesis screens.

2.4. MATERIALS AND METHODS

2.4.1. DATASETS

MURINE LEUKEMIA VIRUS (MULV ) DATA.
In total 20312 MuLV insertions were extracted from 8 insertional mutagenesis screens.
These screens produced 1020 tumors in total, and were produced in mice with various
genetic backgrounds [4, 5]. For a subset of 1986 insertions in 97 samples (p19 ko, p53 ko,
and wild-type), Illumina MouseWG-6 v2.0 expression data was available and used.

SLEEPING BEAUTY (SB) TRANSPOSON DATA.
58266 SB transposon insertion loci were extracted from 255 lymphomas collected from
T2/Onc2 and Rosa26 SBase mice. For a subset of 26955 insertions in 135 samples, Illu-
mina MouseWG-6 v2.0 expression data was available and used.

2.4.2. LIST OF MAPPINGS

KC-RBM.
KC-RBM maps insertions to multiple putative target genes, using four window sizes,
one for upstream-sense insertions, one for upstream-antisense insertions, one for
downstream-sense insertions, and one for downstream-antisense insertions (with
respect to transcription start site). Per transcript, these window size parameters are
flexibly applied using two additional parameters, a GKC scale parameter [9] and a
orientation homogeneity parameter. A gene is a target gene of an insertion if at least
one of its transcripts is targeted. As an additional step in selecting a single target gene
for each insertion, a prioritization can be made among the target genes identified by
KC-RBM according to the number of times they were targeted by all insertions taken
together. Then select the gene with the highest count to be the single target gene for
that insertion.

NEAREST-GENE MAPPING (NGM).
For each insertion, find the nearest gene start site, and select this gene to be the single
target gene of that insertion. This method is compared to KC-RBM.

CIS NEAREST-GENE MAPPING (CIS-NG).
Common insertion sites (CISs) are detected using GKC [9]. The peak of each CIS is then
mapped to its nearest gene start site. This method is compared to KC-RBM.

2.4.3. METHODS

ALIGNING GENES (FIGURE 2.1).
The set of tumor samples was reduced to the set for which expression data was available
(n = 97). All gene start sites were aligned with respect to location as well as orientation,
and expression values were z-normalized per gene across samples. For all genes, all
insertions were identified in a window of 400kb around these genes. All resulting (relative
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insertion locus, z-normalized gene expression) pairs were regarded as points in the (x,y)
plane, and were then binned along the y-axis, making a distinction between insertions
occurring in sense orientation relative to the gene and in antisense orientation relative to
the gene start site, and normalizing gene length. The insertion density was computed by
binning the insertions, and computing the number of insertions per base pair for each
bin. These values were then normalized to a scale from 0 to 1.

THE INFLUENCE OF WINDOW SIZE (FIGURE 2.3).
The set of tumor samples was reduced to the set for which expression data was avail-
able. For each window size value and each gene, the following approach was taken.
Tumor samples were divided in two groups. The first group contained the samples for
which at least one insertion was mapped to that gene. The second group contained the
samples for which no insertion was mapped to that gene. Between these two groups, a
Wilcoxon-score was computed for elevated expression in the first group. Having com-
puted this Wilcoxon-score for all genes, a significance threshold was determined per
mapping by permuting (n = 10000) gene-wise expression profiles across samples with
respect to gene-wise insertion profiles across samples, and setting a 5% significance
threshold. Per window, each gene with at least one insertion was classified as signifi-
cant or not significant exactly once. Per gene, each insertion is counted only once. Note
that when computing the statistics for one of four window sizes, the other window sizes
were set to zero. Furthermore, for all insertions within transcripts, association of inser-
tion occurrence with increased expression levels was computed while disregarding the
insertions outside transcripts. Permutation thresholds (5%) were calculated per window
size.

THE INFLUENCE OF THE GKC SCALE (FIGURE 2.4).
For each KC-RBM scale, insertions were mapped to genes, and numbers and fractions
of significant genes were computed as described above. KC-RBM was performed using
window sizes (20kb,120kb,40kb,5kb) (MuLV) and (20kb,10kb,25kb,5kb) (SB transposon)
for (upstream-sense,upstream-antisense,downstream-sense, downstream-antisense)
insertions, and an orientation homogeneity fraction of 0.75. For each scale, all
insertions (for MuLV all insertions from screen 1: p19 ko, p53 ko, and wild-type) were
mapped to genes, but insertion-expression association was necessarily only computed
for the samples for which expression data was available.

COMPARING KC-RBM, RBM, CIS-NG, AND CIS-MANUAL MAPPING (FIGURE 2.5).
All insertions were mapped using KC-RBM, setting the window sizes to (20kb, 120kb,
40kb, 5kb) (MuLV) and (20kb, 10kb, 25kb, 5kb) (SB transposon) for (upstream-sense,
upstream-antisense, downstream-sense, downstream-antisense) insertions. The orien-
tation homogeneity fraction was set to 0.75, and the scale was set to 10kb (MuLV) and
2kb (SB transposon).

For KC-RBM, lists of top 20 CTGs were obtained by counting for each gene the num-
ber of times it was targeted, and then sorting this list, based on the number of times
a gene was identified as a target. Specifically for SB transposon insertions, the CTGs
were corrected for the fact that SB transposons only integrate at TA-sites: In determining
CTGs, SB transposon insertions were each weighted by 1 divided by the local TA-density
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determined using the same kernel width as was used for the mapping of insertions (2kb).
The total SB transposon CTG score across all genes was normalized to be equal to the to-
tal number of insertions. For NGM, also the top 20 CTGs were determined. CISs were
detected using GKC [9], with a scale of 30kb. The 20 CISs with the highest peaks were
then mapped to their nearest gene start site.

For both the MuLV and the SB transposon dataset, the top 20 results as well as the
overall results were compared to a reference list. For MuLV a manually curated list based
on the same dataset exists ([6]). The complete lists of genes identified by the three meth-
ods KC-RBM, NGM, and CIS-NG were compared to this manually curated list (CIS-M)
with respect to presence and rank in this list. Regarding the presence of genes in either
of the three methods in the CIS-M list, the three lists were made the same size by tak-
ing the top N of each list (where N is the length of the shortest list), to allow for a fair
comparison. For each resulting list, the number of genes in that list also present in the
CIS-M list was counted. For the comparison between the top two methods, KC-RBM and
NGM, significance of the difference in numbers present in the CIS-M list was determined
by permutation (n = 100000). Regarding rank, the following steps were taken. First, all
lists were restricted to genes also occurring in CIS-M. Then, the three lists were made
the same size by selecting only the top N from each list (where N is the length of the
shortest list). This is necessary since the highest ranking CISs and CTGs are the easiest
to retrieve, which may negatively affect the average rank of longer lists. Then, for each
of the three lists, the average rank in that list of the genes also present in the manually
curated list was calculated. For the comparison between the top two methods, KC-RBM
and NGM, significance of the difference in average rank was determined by permutation
(n = 100000).

For the SB transposon insertions a similar approach was taken, using as a reference
the Cancer Gene Census [15], a list of human cancer-related genes. Mouse homologs
were identified by mapping the human EntrezGene identifiers to mouse EntrezGene and
Ensembl identifiers using the Bioconductor biomaRt 2.2.0 package [31].
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ABSTRACT
The ability of retroviruses and transposons to insert their genetic material into host DNA
makes them widely used tools in molecular biology, cancer research and gene therapy.
However, these systems have biases that may strongly affect research outcomes.

To address this issue, we generated very large datasets consisting of ∼120000 to
∼180000 unselected integrations in the mouse genome for the Sleeping Beauty (SB)
and piggyBac (PB) transposons, and the Mouse Mammary Tumor Virus (MMTV).
We analyzed ∼80 (epi)genomic features to generate bias maps at both local and
genome-wide scales. MMTV showed a remarkably uniform distribution of integrations
across the genome. More distinct preferences were observed for the two transposons,
with PB showing remarkable resemblance to bias profiles of the Murine Leukemia Virus.
Furthermore, we present a model where target site selection is directed at multiple
scales. At a large scale, target site selection is similar across systems, and defined by
domain-oriented features, namely expression of proximal genes, proximity to CpG
islands and to genic features, chromatin compaction and replication timing. Notable
differences between the systems are mainly observed at smaller scales, and are directed
by a diverse range of features.

To study the effect of these biases on integration sites occupied under selective pres-
sure we turned to insertional mutagenesis (IM) screens. In IM screens, putative cancer
genes are identified by finding frequently targeted genomic regions, or Common Inte-
gration Sites (CISs). Within three recently completed IM screens, we identified 7% - 33%
putative false positive CISs, which are likely not the result of the oncogenic selection
process. Moreover, results indicate that PB, compared to SB, is more suited to tag onco-
genes.

3.1. INTRODUCTION
DNA integrating elements, such as transposons and retroviruses, are an important tool
in many areas of molecular biology, e.g. gene therapy [2, 3], oncogene discovery [4, 5],
gene regulation [6, 7], and functional genetics [8, 9]. A current limitation to the use of
retroviruses and transposons is that, even without selective pressure, integration loci are
not uniformly distributed across the genome. There are significant biases, the molecular
determinants of which are still largely unknown. Such biases can pose problems, for
example in the discovery of novel cancer genes by insertional mutagenesis (IM), because
it can be difficult to distinguish clusters of integrations arising purely through integration
bias from those giving a selective growth advantage to the cell. More insight into target
site selection would also benefit gene therapy, where adverse integrational activation of
oncogenes resulting from treatment with retroviral vectors has been observed [10].

Three of the main integrating elements currently used in the fields mentioned above
are the Sleeping Beauty transposon (SB), the piggyBac transposon (PB), and the mouse
mammary tumor virus (MMTV). During the last decade, some studies have reported on
integration biases in the mouse genome for one or more of these systems. SB does not
integrate randomly on a micro-scale, since it is dependent on local DNA deformabil-
ity, and the presence of a TA dinucleotide at the site of integration [11, 12]. At larger
scales integration target site selection was found to be relatively random [13, 14], al-
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though (sometimes conflicting) associations have been observed for CpG islands, gene
density, and actively transcribed loci [15, 16]. PB integration is TTAA-specific, although
slight variations on this target sequence have been observed [17]. PB was found to be bi-
ased towards transcriptional units, CpG islands and transcription start sites (TSSs) and
actively transcribed loci, and in general marks of open chromatin [15, 18–20]. MMTV
is the least well-characterized of the three. In mouse and human cell lines, no bias was
detected with respect to genes, TSSs and CpG islands, and MMTV was suggested to be
the retrovirus least biased in its target site selection [21].

While the studies mentioned above have provided valuable insights into retroviral
and transposon target site selection for SB, PB and MMTV in the mouse genome, they
do have some limitations with respect to gaining insight into de novo integration target
site selection. These limitations can be subdivided into three categories. First, there are
limitations regarding the individual integration datasets. For example, some datasets
were generated using cells that were enriched with a selectable marker, e.g. [16, 19, 20].
Also, considering only the datasets that were not under selective pressure, the sample
sizes were fairly small compared to current standards, mostly in the range of several
tens to several hundreds of integrations, e.g. [15–17]. Note that having large numbers
of integrations is important for gaining sufficient statistical power to detect even rela-
tively weak biases. Second, some limitations complicate the comparison between in-
tegration datasets. For example, integration datasets have been compared that differed
substantially in the cell lines used, as well as the degree of selection imposed on those
cell lines, e.g. [16]. Third, other limitations concern the features used to analyze the in-
tegration datasets. For example, integration datasets have been compared to features
in non-matching cell types [16], while for example Murine Leukemia Virus target site
selection within the human genome has been suggested [22] and shown [23] to have a
cell type dependent component. Interesting to note here is that for a resurrected hu-
man endogenous retrovirus, no cell type specific integration into the human genome
could be detected [24]. Also, many studies focused only on a limited number of features,
e.g. genomic features [18, 21], or genomic features and DNase I hypersensitivity [16].
Moreover, the features, such as ChIP-seq profiles, were not necessarily preprocessed in
similar ways, for example in terms of sequence alignment, e.g. [19]. This complicates
the comparison of features across different systems.

To address these questions, we generated large datasets of SB and PB integrations in
mouse embryonic stem cells (mESC). In order to directly compare the two transposons,
they were mobilized from the same construct containing inverted repeats (IRs) for both
PB and SB. This eliminates any other possible cause than the IR (or the transposon-
specific transposase) for the observed differences between the two systems. In addi-
tion, we generated a large dataset of MMTV integrations in normal murine mammary
gland epithelial (NMuMG) cells. All three datasets were generated under minimal selec-
tive pressure, and are henceforward referred to as unselected integration profiles. They
are considerably larger than previously published datasets of unselected integrations,
∼120000, ∼130000, and ∼180000 integrations respectively.

We associated the three integration profiles with a large number of genomic and
epigenomic features. In particular, for SB and PB, the recent explosive growth in publicly
available ChIP-seq datasets [25] enabled us to analyze a large number of epigenomic fea-
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tures (∼70), all in mESCs. To allow for a better comparison between these datasets, they
were preprocessed from the raw sequence reads in exactly the same way.

Additionally, the impact of selective pressure on an unselected integration profile,
which is important in using IM for cancer gene discovery, has never been addressed ex-
tensively. Previous work can be classified as either knowledge-based or data-driven. The
knowledge-based approaches use modeling of previously described integration biases to
avoid CIS calls that can be explained by these biases, such as SB TA sequence specificity
[26], or γ-retroviral TSS specificity and lentiviral gene specificity [27]. Alternatively, by
assuming that a genic region harboring a true positive CIS should contain significantly
more integrations than its flanking genes, three out of nine CISs from gene therapeutic
clinical trials were labeled false positive [28]. These knowledge-based approaches are
necessarily limited in their modeling of integration bias, for example in the number of
features that are considered. Conversely, data-driven approaches treat integration bias
as a black box, and compare integration datasets that were under substantial selective
pressure to integration datasets that lacked this pressure. Using this approach, one study
suggested a 47% false positive rate for a MuLV tumor screen [29], and another observed
6 control CISs from SB integrations present in mouse tail DNA, where 79 CISs could be
found in the corresponding SB tumor screen [30]. To analyze the impact of selective
pressure on integration bias profiles, we take the data-driven approach and compare our
three unselected datasets with CIS integration profiles from three previously published
tumor screens [4, 31–33].

Taken together, this allows us to present the most extensive analysis of SB, PB and
MMTV target site selection to date, the results of which include previously undetected
biases and differences between selected and unselected integration profiles. Another
focal point of the analysis is the influence of scale. By analyzing differences between
small-scale (within ∼800bp from integrations) and large-scale (∼800bp or further from
integrations) associations of genomic and epigenomic features with the proximity of in-
tegrations, we reveal a hierarchical organization in integration bias. On a global scale,
target sites of different systems are selected in similar ways, whereas differences mainly
exist in fine-tuning on a local scale.

3.2. RESULTS
The integration datasets used in this study are described in Table 1. For each tumor
screen, the numbers of singleton integrations and CIS integrations is given. Here, a CIS
is a genomic region with more integrations across tumors than expected by chance (see
Material and Methods section and [4, 34]). An integration falling (not falling) within a
CIS is referred to as a CIS (singleton) integration.

The features for which integration bias was studied are summarized in Table 2. Sta-
tistical procedures used for each figure are listed in Table S1.

3.2.1. SB, PB, AND MMTV EXHIBIT UNIQUE SEQUENCE AND GENE SPECI-
FICITY

We started our analysis by studying the sequence specificity at integration sites of the
three systems. As expected, PB and SB mostly, but not exclusively, integrate at TTAA
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Table 3.1: Integration datasets used in this chapter.

System Cell type Size Selected #CIS insertions #Singleton insertions Reference

MuLV B/T-cell tumors 20312 Yes 8707 11605 [4, 35]
SB Mouse ES cells 131594 No NA NA This work
SB B/T-cell tumors 58266 Yes 1945 56321 [31]
PB Mouse ES cells 122667 No NA NA This work
PB Haematopoietic tumors 5590 Yes 306 5284 [33]
MMTV Mouse mammary cells 180469 No NA NA This work
MMTV Mouse mammary tumors 34753 Yes 2834 31919 [32]

Table 3.2: Genome and chromatin profiling data used in this chapter.

Description Technique Cell type Reference

Gene expression mESC RNA-seq mESC This work
Gene expression NMuMG Microarray NMuMG [36]
Replication timing ChIP-chip mESC [37]
H3K9me2 ChIP-chip mESC [38]
LaminB1 DamID mESC [39]
Hi-C Hi-C mESC [40]
mC; hmC Bisulfite sequencing; hMeDIP mESC [41]
CpG island proximity; gene proximity NA NA [42]
Dnase I hypersensitivity ChIP-seq mESC [43]
H3K4me3; H4K20me3 ChIP-seq mESC [44]
H3K9me3 ChIP-seq mESC [45]
H3K27me3; H3K36me3; H2AZ ChIP-seq mESC [46]
Atrx ChIP-seq mESC [47]
BrgJ1 ChIP-seq mESC [48]
cMyc; E2f1; Esrrb; Klf4; nMyc; Oct4;
Smad1; Sox2; Stat3; Suz12; Tcfcp2|1; Zfx

ChIP-seq mESC [49]

H3K79me2; Nanog; Tcf3 ChIP-seq mESC [50]
Ezh2 ChIP-seq mESC [51]
SetDB1 ChIP-seq mESC [52]
Jarid2; Mtf2 ChIP-seq mESC [53]
Tbx3 ChIP-seq mESC [54]
Ctr9; Pol2-Ser2P; Pol2-Ser5P ChIP-seq mESC [55]
Luzp1 ChIP-seq mESC [56]
Chd7 ChIP-seq mESC [57]
Med1; Med12; Smc1; Smc3 ChIP-seq mESC [58]
H3K27ac; H3K4me1 ChIP-seq mESC [59]
Yy1 ChIP-seq mESC [60]
CTCF; p300 ChIP-seq mESC [61]
H3K9ac ChIP-seq mESC [62]
Taf3 ChIP-seq mESC [63]
Jaridb1 ChIP-seq mESC [64]
Smad2/3; Smad3 ChIP-seq mESC [65]
Kap1 ChIP-seq mESC [66]
H3K4me2 ChIP-seq mESC [67]
macroH2A1 ChIP-seq mESC [68]
p53; p53S18P ChIP-seq mESC [69]
Cbx7; Ring1b ChIP-seq mESC [70]
CoREST; Hdac1; Hdac2; Lsd1; Mi-2b ChIP-seq mESC [71]
Dpy30 ChIP-seq mESC [72]
Mbd3 ChIP-seq mESC [73]
Mcaf1 ChIP-seq mESC [74]
Pol2-Ser7P ChIP-seq mESC [75]
Tbp ChIP-seq mESC [76]
Ell ChIP-seq mESC [77]
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and TA sites respectively, accounting for 93% (PB) and 94% (SB) of the integrations (Fig-
ure S1). The remaining integrations show sequences that are relatively similar to these
motifs and often differ by only one nucleotide (Figure S1). MMTV has little integration
site sequence specificity. Focusing instead on integration-flanking sequences (50bp on
either side), de novo motif discovery using the HOMER software [78] revealed no enrich-
ment of non-trivial motifs (i.e. not TTAA for PB, and not TA for SB), except for two motifs
in the case of MMTV (binding TFAP2A and Tcfap2e respectively; Figure S2).

The bias of an integrating element with respect to genes is of particular interest in
IM and gene therapy. In IM screens, more integrations near genes are desired whereas
in gene therapy integrations proximal to genes pose a potential threat to the patient,
since such integrations may give rise to cancer. We, therefore, compared the integration
density of the three systems in and around genes, by aligning all genes (Figure 1A). PB
shows a strong bias for TSSs. The PB bias profile with respect to genes is remarkably
similar to that of MuLV, see e.g. [79, 80], as well as Figure S3 which shows singleton MuLV
profiles, based on a previously published tumor screen [4, 35]. While PB has a strong bias
for TSSs, SB is enriched uniformly along the body of genes. MMTV shows the weakest
bias, although it does slightly prefer TSSs, and has a mild bias against gene bodies.

The significance of the observations made above was assessed using the binomial
test, and visualized at a 5% FDR threshold in Figures 1B and 1C, for different gene and
transcript related regions. Refer to Table S2 for the raw p-values associated with these
statistical tests. It confirms the strong bias of PB for TSSs, and indicates that PB prefers
integrating with its transcription unit oriented towards the TSS. When landing within
genes, MMTV prefers a sense orientation relative to the host gene, and SB and PB an an-
tisense orientation. In general, MMTV shows the least biased profile, with weak but sig-
nificant biases for TSSs, and against genic regions. PB integrations are mainly enriched
in the 5’UTR, weakly enriched in exons and the 3’UTR, and biased against introns. This
pattern is highly similar to that observed for singleton MuLV integrations (Figure S4). Re-
garding orientation biases within transcripts, MMTV shows sense orientation biases for
exons and introns, whereas the two transposons show only antisense orientation biases,
SB in introns, and PB in 3’UTRs and exons.

3.2.2. INTEGRATION PROFILES OF SB AND PB ARE SHAPED BY ENDOGE-
NOUS GENE EXPRESSION

Next, we analyzed the influence of expression status of endogenous genes on integra-
tion bias. This revealed interesting differences between the unselected integration pro-
files of the three systems (Figure 2), significance of which was assessed by the Cochran-
Armitage trend test, unless mentioned otherwise. Across genes and TSSs, PB is strongly
influenced by the a priori gene expression levels (p < 10−7 for genic, TSS_upstream
and TSS_downstream). For SB this same positive trend is only apparent for intragenic
integrations (p < 10−7), whereas around TSSs, the numbers of integrations decrease
with increasing gene expression (p = 1.2 × 10−6 and p < 10−7 for TSS_upstream and
TSS_downstream respectively). Within weakly expressed genes, there is a depletion of
PB integrations (binomial test; p < 10−7). MMTV target site selection is largely inde-
pendent from the expression levels of endogenous genes (p = 1.5× 10−3, p = 0.58 and
p = 0.97 for genic, TSS_upstream and TSS_upstream respectively). Although it is evident
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Figure 3.1: Biases with respect to genes and transcripts. A) Gene alignment plots showing the distribution of
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(TTS), and 5kb downstream. The red line depicts the integrations with sense orientation relative to the gene,
blue depicts antisense. B) Biases with respect to genes for the unselected integration datasets. We distinguish
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stream of the TSS (TSS_downstream), and other integrations (other). On the left, the color scale blue-gray-red
represents increasing numbers of integrations, relative to expected. On the right, the color scale blue-gray-red
represents the integration orientation bias relative to genes, from antisense to sense. Associations that are not
significant (binomial test; FDR-corrected p > 0.05) are white. C) Biases with respect to transcripts, distinguish-
ing between integrations in 5’UTRs, 3’UTRs, exons and introns.
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that there are more MMTV integrations in TSS regions than within genes (Figures 1 and
2), this preference is clearly independent from gene expression.
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Figure 3.2: Influence of gene expression on integration bias. For each of the systems SB, PB, and MMTV, the
unselected integrations are divided into genic integrations, integrations occurring within 1kb upstream of the
TSS (TSS_upstream), and integrations occurring within 1kb downstream of the TSS (TSS_downstream). Genes
are divided into 5 groups, based on expression level. The sizes of these groups are indicated on the x-axis. For
each pair of gene expression level and system, the number of observed integrations is counted, and compared
to the number of expected integrations.

3.2.3. TOPOLOGICAL DOMAIN INTERFACES ARE HOTSPOTS OF INTEGRA-
TION

In addition to gene structure, the integration site selection of an integrating element can
also be influenced by other features such as organization of the genome, state of chro-
matin compaction and transcription factor binding events, as well as by epigenetic mod-
ifications. Considering that an important barrier for integration of viral or transposon
DNA into host DNA can be how tightly the DNA is packed in chromatin, we looked at
the influence of the a priori chromatin organization on the unselected integration pro-
files. Hi-C [81] is a technique for studying chromatin compaction and organization by
determining interaction frequencies between different genomic loci on a genome-wide
scale. Analysis of Hi-C data has suggested that the genome is organized into chromatin
modules, called topologically associated domains (TADs), which are stable across dif-
ferent cell types [40]. TADs are separated by less organized (showing fewer 3D interac-
tions) regions called TAD boundaries. It is conceivable that chromatin is relatively less
compact in and near TAD boundaries as compared to TADs. We asked if this 3D orga-
nization of the genome has any influence on the integration bias of systems. In gen-
eral, we found that more integrations are close to the interface between TADs and their
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boundaries (Figure 3), i.e. all systems have a preference for inserting at the border of
TADs, which are tightly organized, but not necessarily in the less organized chromatin
of boundary regions. It is interesting to note that for MMTV, which is generally the least
biased system, the bias for the TAD - TAD boundary interface is stronger than that of
SB (Cochran-Mantel-Haenszel test in a window of 10kb on either side of the interface;
p < 10−7).
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Figure 3.3: Unselected integration profiles with respect to TAD - TAD boundary interface. The x-axis repre-
sents genomic distance from the interface. The y-axis represents the log2 ratio of observed number of integra-
tions versus the expected number of integrations.

3.2.4. TRANSPOSONS SHOW HIGHLY DIVERGENT BEHAVIOR IN INTEGRATIVE

(EPI)GENOMIC CONTEXT
In the previous two sections, we demonstrated that there are strong biases of the
unselected integration profiles with respect to genes, transcripts, gene expression, and
genome organization. However, these features themselves have strong spatial ties with
other features, such as histone marks and transcription factor binding. Therefore,
we asked the following two questions. First, how do these features associate with
integration proximity? Second, do they provide extra information with respect to
integration bias, in addition to what gene proximity and gene expression provide? The
features we analyzed are listed in Table 2. To maximize comparability between the
features, the ChIP-seq datasets were preprocessed from the raw sequencing reads in
exactly the same way. Since these features are not available in NMuMG cells, which
were used for generating the MMTV integrations, we restricted all analyses based on
these data to SB and PB.

First, we analyzed the orientation biases with respect to these features (Figures S5
and S6). This showed that the two transposons preferably integrate with the transcrip-
tion cassette cloned in them oriented towards regions of high feature signal. Although
for individual marks this bias is not very substantial, it is highly consistent across dif-
ferent marks, especially for SB. It is important to note that an orientation bias of these
systems relative to genes cannot explain this bias for SB, and only partly for PB (Figures
S5 and S6).

Using a limited number of mostly genomic features, it has been observed before
that associations of integration occurrence with these features depend on the scale cho-
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sen for the analysis [16]. Therefore, we analyzed our genomic and epigenomic features
across different scales, by comparing feature scores at the site of integration with fea-
ture scores at increasing distances (scales) from the integration site. Features were then
clustered based on their association profiles across scales (Figure 4A). Resulting asso-
ciations can be positive, i.e. higher feature scores at integration sites compared to their
neighborhood, or negative, i.e. lower feature scores at integration sites compared to their
neighborhood.

A clustering of the association profiles results in four groups of features generally
associated with activation (Clusters 1, 2, 3 and 5), and three groups associated with re-
pression (Clusters 6, 7 and 8). The remaining Cluster 5 is more mixed (Figure 4C).

Another characterization of the resulting clusters is into groups of features for which
the behavior is either fairly similar (Clusters 2, 3, 6 and 8), or groups for which SB and
PB behave very differently (Clusters 1, 4, 5, and 7). Especially striking when observing
the differences is that PB is positively associated (Clusters 1, 4 and 5) with far more fea-
tures than SB (Cluster 7). Since for both PB and SB, association with the many gene-
related features in Cluster 3 is mostly positive, this indicates that SB does prefer gene-
rich regions and active genes over heterochromatin, but in these regions, compared to
PB, generally avoids regulatory units such as histone modifications and transcription
factor bound regions. Interestingly, the single cluster positively associating with SB but
negatively with PB (Cluster 7) contains mostly repressive features. Combined, these ob-
servations suggest that PB is much more biased to active chromatin than SB, whereas SB
is also partly biased towards more repressed chromatin.

The scale-based approach reveals that the sign of association can change across dif-
ferent scales. For example, SB shows negative association with some of the features in
Cluster 3 on a small scale, but a positive association on larger scales. This implies that
SB has a bias for larger scale domains containing these features such as Ctr9, H3K79me2
and 5hmC, but within these domains integration sites will generally avoid overlap with
these marks.

Conversely, association changing from positive to negative for increasing scales is
seen for example for PB and Stat3 in Cluster 5. This indicates that PB prefers domains
relatively devoid of these features. However, given a PB integration in such a domain, it
will be mildly biased towards Stat3.

The above observations suggest a hierarchy in target site selection, which is further
illustrated by the fact that some features, for both SB and PB, are consistently non-
significant at smaller scales (Figures 4A and 4B). For example, at smaller distances from
integrations, associations with features such as gene proximity and expression, CpG is-
land proximity, replication timing and H3K9me2 are not significant for both SB and PB.
They are however consistently significant on larger scales. On the other hand, most
transcription factors and other histone marks show strong associations already at small
scales. Henceforward, features that are significant only at larger scales will be referred to
as ’macrofeatures’, as opposed to ’microfeatures’, which are significant already at smaller
scales (refer to Table S3 for a list of macrofeatures and microfeatures). For a selected set
of macrofeatures that were available for NMuMG cells, we performed a similar analysis
showing that these features also behave as macrofeatures in MMTV, an unrelated system
(Figure S7).
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3.2.5. INTEGRATION SITE SELECTION IS DIRECTED AT MULTIPLE LEVELS

Biases of unselected integration profiles with respect to the macrofeatures are similar
across the systems and scales. This suggests that on a large scale, integration bias is
regulated in similar ways for both systems, and that this large scale bias is mainly deter-
mined by the macrofeatures. However, within a distance of ∼800bp, macrofeatures pro-
vide no information with regard to integration locus, contrary to the microfeatures. This
indicates that microfeatures may in fact be determinants of integration bias at a higher
resolution, which prompted us to ask the following question: Are macrofeatures needed
at all to explain integration proximity, or are microfeatures sufficient for this purpose?

To address this question, we needed to take into account that the features in Figure 4
show a high degree of multicollinearity. Multicollinearity implies that a strong associa-
tion between a certain feature A and integration proximity may potentially be explained
by the association of A with another feature B that also strongly associates with inte-
gration proximity, i.e. integration proximity may be conditionally independent from A,
given B . Then, rephrasing the question above, for each system we wanted to identify
a set of features such that integration proximity is conditionally independent from all
other features, given this set of features.

BANJO [82] is designed to identify such conditional independencies in the form of
Bayesian networks [83], and thus allowed us to determine for each feature its importance
for integration proximity. For this, we used two measures derived from the Bayesian net-
works. The first measure (’log10 % bootstraps’; see Material and Methods) represents
the confidence that a feature is truly relevant for integration proximity. The second mea-
sure (’log10 mean CMI’, or conditional mutual information; see Material and Methods)
represents the strength of association between integration proximity and a feature.

Interestingly, the results show that seven macrofeatures are consistently of great im-
portance, i.e. of high-confidence and strongly associating, in both systems (Figure 5).
These features are gene / TSS / TTS proximity, TSS expression (the expression of the
gene with the nearest TSS), replication timing, CpG island proximity, and Hi-C alpha (a
measure of chromatin compaction; see Material and Methods section). This shows that
in addition to microfeatures for explaining local differences between systems (Figure 4),
macrofeatures are needed to explain integration bias in each of these systems on large
scales (Figure 5). Furthermore, it indicates that on a large scale, biases of the two systems
are similar, and that differences between the systems are mainly found in the microfea-
tures.

3.2.6. INTEGRATION BIAS IS A POTENTIAL CAUSE OF SPURIOUS COMMON

INTEGRATION SITES

Insertional mutagenesis (IM) using retroviruses and transposons is an important tool
in the discovery of new putative cancer genes. These elements mutate the genome by
inserting into the host DNA. Mutations providing cells with a proliferative and/or sur-
vival advantage can cause tumors. Because the integration loci can be retrieved using
sequencing, these mutations can act as cancer gene tags, allowing discovery of novel
cancer genes, e.g. [4, 5, 30, 35, 84–86]. However, integration biases can pose problems
because they can be difficult to distinguish from the accumulation of integrations in cells
that are under selective pressure to retain these integrations. Therefore, we compared
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the BNI approach, are not shown in this figure.
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the unselected integration profiles with CIS integration profiles [4, 31–33].
Generally, the orientation biases of CIS integrations for genes and transcripts are

much stronger than those of the unselected integrations (Figure S4). This indicates that
in tumors, the orientation bias is mainly the result of selective pressure. For all systems
and especially for PB and SB, there are significantly more unselected integrations than
CIS integrations in regions other than genes and TSSs (Figure 6A; visualized at a 5% FDR
threshold based on the binomial test. Refer to Table S2 for the raw p-values). Addition-
ally, biases of unselected integrations for intergenic CIS regions (>100kb from genes) are
relatively strong, compared to the biases for genic CIS regions (+/- 100kb) (Figure 6C;
visualized at a 5% FDR threshold based on the binomial test. Refer to Table S2 for the
raw p-values). Combined, these observations show that in regions far from genes, un-
selected integration profiles correlate relatively strongly with CIS profiles, compared to
regions close to genes. Therefore, to avoid calling spurious CISs in IM screens, higher
statistical stringency should be required for CISs found far from genes.

Combined, these observations suggest that CISs found far away from genes are more
likely to be spurious, i.e. arise from the integration bias of the system. Conversely, the
observations suggest that true CISs, i.e. CISs arising from selective pressure, are more
often found in the vicinity of genes than would be expected based on an unselected in-
tegration profile.

To identify potentially spurious CISs, we tested for all CISs if the corresponding CIS
regions contained significantly more CIS integrations than unselected integrations. This
revealed a number of potentially spurious CISs, 13%, 33% and 7.4% of all CISs for SB, PB
and MMTV respectively (Figure 6D, Tables S4, S5 and S6). For MMTV, it could be con-
firmed that potentially spurious CISs tended to be relatively far away from genes (One-
sided Mann-Whitney U test; p = 1.0×10−2). For SB and PB, when ranking CISs according
to increasing p-value, the potentially spurious CISs consisted mainly of lower ranking
CISs (Mann-Whitney U test; p = 4.7×10−4 and p < 10−7 for SB and PB respectively).

Next, we asked whether integration bias has an influence on the types of CISs that are
found in screens. For this purpose, we separated CISs into activating and repressing CISs,
based on orientation homogeneity and occurrence within or outside genes. We observed
more activating CISs for PB than for SB (Figure 6B). Considering that the constructs used
for the SB and PB tumor screens are similar [33, 87], this indicates that for use in IM
screens, PB is more efficient at finding oncogenes, whereas SB would find more tumor
suppressor genes.

3.3. DISCUSSION
In this study, we have analyzed the integration biases of unselected integrations of a
retrovirus and two transposons. For generating these sets of integrations, cells were
grown in culture for three to four weeks. This implies that a few of our integration
loci could potentially have been selected for. However, non-acute retroviruses, such as
MMTV, induce tumors only very slowly (months to years) due to the absence of onco-
genes in their genome [88]. Similarly, our transposon constructs can be described as
non-acute in the sense that they do not carry oncogenes. Moreover, they do not contain
any gene-trap or enhancer-trap elements, limiting the potential of disrupting endoge-
nous gene expression. Hence, three or four weeks of cell culturing is a very short time



3.3. DISCUSSION

3

61

D potentially spurious
non spurious

A

B

C

genomic

genic +/-100kb

intergenic >100kb

MMTV

PB

SB

unselected integration counts:
log2 ( #integrations / #controls )

1.5 2.5

C
IS

 c
ou

nt
s:

lo
g2

 ( 
#a

ct
iv

at
in

g 
/ #

re
pr

es
si

ng
 )

−0.5

0.0

0.5

1.0

p 
= 

0.
00

25

p 
= 

0.
01

p 
= 

0.
00

62

p 
= 

0.
02

6

M
uL

V S
B

P
B

M
M

TV

log2 ( #unselected / #CIS ) log2 ( #unselected / #CIS )

ut
r5

ut
r3

ex
on

in
tro

n

MMTV

PB

SB

ge
ni

c

TS
S

_u
ps

tre
am

TS
S

_d
ow

ns
tre

am

ot
he

r

MMTV

PB

SB

−3 −1 1 −1.5 0

log10 (CIS integration count + 1)

MMTV

1.0 1.5 2.0 2.5

0.
5

1.
0

1.
5

2.
0

Wnt1
Lrrc4cFgf3

Alkbh8

Wnt3a

Fbxw4

Coro2a

Ate1

Sel1l

Rspo2

Tacstd2

ErasMap3k8

Pdgfra

Fgfr1

Wnt3

Ate1Sfmbt2

Irs4

Chl1

Sfi1

Rspo3

Igf2

Pdgfrb

Rpusd4

B3gntl1Hbegf

Insr

Rab10
Pak3

Mid1

Notch2
Snai1Fgfr3

Tgif1

Irs2

Ly6c2

Wdr11

Hbs1lBin3

Gm15319

Frmd8

Gpc5

Sox11Klhdc9

Fezf1
Foxd2

Rspo3

Rbbp8
Nkx2−3

Pgap3

Lrrc4

Pgk2

Gadd45a
Inpp5f

Cd24aEgfr

Tfap2c

Gnl2

Bysl

Dnaja3

Ptrf

Gsc

Tfap2cUtp11l

LfngGrhl1

Prkcd

Egr2

Fam172a

Dnajb8

Zfp217

Sema4d

Dmbx1

S1pr2

Kazn

BC034090

Btbd3

Fut4

Grik4

Ubash3b

lo
g1

0 
(u

ns
el

ec
te

d 
in

te
gr

at
io

n 
co

un
t +

 1
)

PB

0.4 0.6 0.8 1.0 1.2 1.4

0.
0

0.
5

1.
0

1.
5

Pten Tulp4

Ikzf1Mecom
Notch1

Bach2

Cebpa

Foxp1

Prdm16

Hdac6

Klf14

Mecom

Spic
Ezr

Pip4k2a

Nras

Pik3r5

Fuca1
Prr5l

Mef2c

Cbfa2t3

Kcnj15

Rapgef3

Mkln1Ezr
Cgnl1

Ptpn1

Rassf3

Eml4
Chrd

Farsb
Selp

Plac8

Tmem181a

2010111I01Rik

Asap1
Ndrg1

Bcl11bWwp2

Ccdc160

Rasgrf1

Prdm15

Hbp1
Il2rb

Trib2

2810422J05Rik

Fbxl18

Atg14

Bcmo1

Tnfaip8

Ss18
Prkaa1

Slc14a1

Nob1

Irs2
Ubc

Hs1bp3

Gga1

Mad1l1

ChgaZfp516

Arhgap26

Rbmy1a1

Calm1

lo
g1

0 
(u

ns
el

ec
te

d 
in

te
gr

at
io

n 
co

un
t +

 1
)

log10 (CIS integration count + 1)

lo
g1

0 
(u

ns
el

ec
te

d 
in

te
gr

at
io

n 
co

un
t +

 1
)

SB

1.0 1.2 1.4 1.6 1.8

0.
0

0.
5

1.
0

1.
5

2.
0

Tshz3

Kcnj15Sec16a

Pten
Ikzf1

Hbs1l

CebpaNr3c1

Eras
Mecom

Akt2

Stat5b

Jak1

Bach2
Kit

Sfi1

Kdm6a

Flt3

Il2rb

Cblb
Raf1Ascl2Rasgrp1

Klf14

Trap1

Cdc42se2

EporSos1

KdrFoxp1

Nf1
Galnt11

Jarid2Setd2

Jdp2

Zeb2

Tmem189Bmpr1b

Picalm

Foxr2
Eed

Kit

Gm17359
Ets1

Mecom

Slc39a8

Ppp3cb

NfycTcf12

Rap1aNfatc1

Fbxw7Jak2

Rbm15
McamMyc

Myc

Malt1
Zmiz1

Tcf20

Itpr2
Mef2cXrn2

Rasgrf1

Gfi1

Ndufb2

Reep3

Sik3

Pum2

Atl2

Wapal

Prdm16

Cul1

Il3

Slc41a2
Dap3

Slc23a2

Gja10Tnrc6b

Pik3r5

Zfml

Jup

Fem1c

Csf1r

Nin

Trp53

Nemf
Cyth3

Srsf7

Nfia
4933426M11Rik

Tspyl3

Lmtk2

Ccnd1

Gpr183

Rnf214
Syk

Baz1a

Srbd1
Gfod1

Rras2

2310022B05Rik

Mid1

Tmem164

log10 (CIS integration count + 1)

Figure 3.6: Unselected integration profiles and CIS designation. A) The bias of unselected integrations rela-
tive to CIS integrations, on a scale from blue (more CIS integrations) to red (more unselected integrations). B)
log2 ratio of activating CISs and repressing CISs. A CIS is activating if it is not within a gene, or within a gene
and 90% homogeneous with regard to orientation relative to that gene. Otherwise it is repressive. C) Bias of
unselected integrations for CIS regions in a (i) genome-wide background, (ii) genic background (+/- 100kb),
and (iii) intergenic background (whole genome except genes +/- 100kb), as measured by the log2 ratio of ob-
served (unselected integrations) and expected (matched controls). D) CIS integration counts vs. unselected
integration counts. CISs are annotated with the nearest TSS. Note that a single gene can be associated with
multiple CISs. Spurious CISs were determined by a one-sided binomial test to determine if the CIS contained
more CIS integrations than unselected integrations (p < 0.01, FDR-corrected).
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frame compared to the latency to integration-induced tumor formation, and the influ-
ence of selected integration loci will be minimal at best. This is also supported by the
observations that 1) we find a large number of unique integration sites, whereas in the
case of substantial selection a relatively small number of (selected) integrations would
be expected, and 2) while both PB and SB were mobilized from the same construct, we
do obtain completely different insertion profiles for each transposon.

The main differences between the three systems regarding integration bias are sum-
marized in Table 3. Generally, MMTV was observed to be the system least biased in its
integration profile. Although many associations were found to be significant, they were
generally not very substantial. In this context, it is surprising that only a small set of
oncogenes has been tagged with this virus in IM screens [32, 89]. This could be due to
activation of a limited set of promoters by the MMTV enhancer. Alternatively, certain un-
known aspects of murine mammary tissue biology might allow only a limited number of
tumorigenic mechanisms. In any case, our data rules out integration bias as a reason for
the limited potential of IM by MMTV.

Recent availability of data describing the three-dimensional architecture of the
genome [40] has allowed us to identify TAD - TAD boundary interfaces as hotspots of
integration. Of the three systems, PB is most strongly affected, from a strong enrichment
at TAD interfaces to a strong depletion towards the inner regions of TADs. While MMTV
is largely indifferent regarding these inner TAD regions, its bias for TAD - TAD boundary
interfaces is relatively strong. Although the TADs were defined in a different cell type
(Tables 1 and 2), they have been shown to be stable across different cell types [40].
Altogether, our data show that integration target site selection is strongly associated
with the topological organization of the genome.

The two transposons were found to have very different integration profiles. Gener-
ally, it is unknown to what extent certain sequences cloned into an IM construct affect
the integration bias of that construct, which complicates the interpretation of differ-
ences observed between systems. However, the construct that was used in this study
contained both the SB and PB IRs. Therefore, any difference between the two profiles
can only be explained by the IR or the transposon-specific transposase, indicating that
the IR and transposase are major defining elements of integration bias.

Although the SB and PB profiles are very different, they were shown to share a bias
for activating macrofeatures and a bias against repressive macrofeatures. Analysis of a
subset of macrofeatures for MMTV suggested that these may also operate as macrofea-
tures in a wider range of systems. Differences between SB and PB were mostly seen for
the microfeatures. Together, these observations support a model where integration sites
are selected at two levels (Figure 7). On larger scales, both systems target the same type
of domains, determined by the macrofeatures. In particular, gene / TSS / TTS proxim-
ity, TSS expression, replication timing, CpG island proximity, and Hi-C alpha were found
consistently indispensable for integration site selection in both systems (Figure 5). Once
these domains have been selected, fine tuning of integration site selection is dependent
on different microfeatures for each system. These microfeatures appear to be indispens-
able for integration site selection as well (Figure 4).

For the current study, the mESC model system was selected because it is the
most thoroughly studied model system, with the broadest availability of (epi)genomic
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Table 3.3: Summary of main observations.

SB PB MMTV

Sequence TA TTAA Very weak bias
Genes Whole gene; bias against TSS TSS; whole gene TSS; weakly intergenic; bias against

gene body
Transcripts 3’UTR; bias against 5’UTR / exon Exon; 5’/3’UTR 5’/3’UTR
Orientation Antisense within genes (introns) Towards TSS Sense within genes; upstream away

from TSS
CIS targets Tumor suppressor genes Oncogenes Oncogenes
spurious CISs Lower ranking CISs Lower ranking CISs Farther away from genes
gene expression Intermediate bias Strong bias Weak bias
TAD interface Weak bias Strong bias Intermediate bias
Orientation w.r.t. chro-
matin marks

Towards chromatin marks (weak but
consistent)

Towards chromatin marks (weak but
consistent)

NA

macrofeatures Relatively strong biases, consistent
across systems: TSS expression, repli-
cation timing, Hi-C alpha, CpG island
/ TSS / TTS / gene proximity

Relatively strong biases, consistent
across systems: TSS expression, repli-
cation timing, Hi-C alpha, CpG island
/ TSS / TTS / gene proximity

NA

microfeatures Relatively many associations are nega-
tive

Strong positive associations with
many features

NA

datasets. While limited cell type specificities have been demonstrated for retroviral
integration profiles [23], earlier studies have used epigenomic features in non-matching
cell types to analyze retroviral integration profiles [16, 24], noting that differences due
to experimental error are generally greater than differences due to cell type [24]. We do
not expect our transposon integration profiles to be highly cell type specific. This is
supported by a supplementary analysis comparing the SB and PB integration profiles
to a selected set of epigenomic features available for both mESC and mouse embryonic
fibroblasts (mEF) [44, 58, 59, 90, 91], which shows that the mEF associations are highly
similar to the mESC associations (Figure S8). This strong similarity suggests that cell
type specificities are relatively weak. Nevertheless, it is interesting to note that the mEF
associations are consistently slightly weaker than the mESC associations, indicating
that cell type specificities, while weak, do exist.

In large scale IM screens, identification of overwhelming numbers of CISs is a seri-
ous impediment in distinguishing true CISs from spurious ones. In such screens, a true
CIS arises through tumorigenic selection, whereas a spurious CIS is defined by the a pri-
ori integration bias of the IM system that was used. Our large datasets of unselected
integrations can be used as a valuable resource for prioritizing candidate cancer genes
emerging from IM screens. As a proof of principle, we showed that a substantial number
of CIS regions in three recent IM screens do not contain more integrations than would be
expected based on the unselected integration profiles. Although the cell types between
PB and SB tumor screens and their corresponding unselected profiles are different, this
nevertheless indicates that these CISs can potentially be explained by an a priori inte-
gration bias, and therefore likely represent passenger mutations.

In conclusion, the large numbers of integrations for three of the main systems used in
IM, unselected integrations from cell lines and selected integrations from tumor screens,
as well as the wide range of publicly available datasets, has enabled us to assess integra-
tion bias at unprecedented resolution, and assess its relation to CIS designation.
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Insertion profile A
Insertion profile B

Macrofeature
Microfeature

Figure 3.7: Hierarchical model of integration target site selection. On a large scale, target site selection is di-
rected by macrofeatures for all three systems in similar ways. Differences between the systems are determined
by microfeatures.

3.4. MATERIALS AND METHODS

3.4.1. DATA GENERATION

All integration data generated in this study are available on http://mutapedia.nki.nl.

PB AND SB INTEGRATION SITE DATA

mES cells EBRTcH3 expressing the tetracycline-controlled transactivator (tTA) from the
endogenous ROSA26 promoter [92] were cultured in 60% BRL cell-conditioned medium
in the presence of leukemia inhibitory factor, MEK inhibitor PD0325901 and GSK-3 in-
hibitor CHIR99021 [93]. pPB-SB-CMV-GFP was constructed by cloning GFP CDS in PB-
MSCV [94] at Nru-I and BstXI sites. 4 hr before transfection, 6×106 EBRTcH3 cells were
seeded on a 10cm dish. The cells were transfected with 12.5µg of pPB-SB-CMV-GFP and
either 5µg of mPB transposase plasmid [95] or 12.5µg of SB100X transposase plasmid
[96] using Lipofectamine 2000 (Invitrogen). Mock transfected and non-transfected con-
trols were included. After 48 hr, 60000-80000 cells were isolated and further propagated
(Figure S9). After three weeks of culturing post-transfection the genomic DNA was iso-
lated using Qiagen DNeasy Blood & Tissue kit. 2µg of genomic DNA was digested with
20 units of Dpn-II (New England Biolabs) at 37◦C for overnight in a 100µl reaction. 1µg
of purified digested DNA was ligated with 0.8µM of splinkerette adapter using 10 units of
T4 DNA ligase (Roche Applied Science) in a 50µl reaction. The splinkerette adapter was
prepared by annealing equimolar amounts (40µM each) of Universal US1 and Sau-3A-1
LS 2 oligos. The ligation reactions were amplified in two (SB) or three (PB) rounds of PCR
to generate libraries for high throughput sequencing (for details see Table S7).

Sequencing was done on an Illumina HiSeq 2000 instrument to obtain single 100bp
reads. The reads contained ends of IRs and the neighboring genomic DNA. The genomic
DNA sequences were extracted from sequencing reads, and aligned against mouse
genome assembly mm9 using Bowtie 2 [97] to determine the sites and orientation of
integrations, using parameter ’–very-sensitive-local’. Only those positions which were
represented by five or more reads in the data, were retained and used for subsequent
analyses.

1GTTCCCATGGTACTACTCATATAATACGACTCACTATAGG
2GATCCCTATAGTGAGTCGTATTATAATTTTTTTTTCAAAAAAA
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MMTV INTEGRATION SITE DATA

Mm5MT (MMTV producing cells) and NM-Pbabe/2 (NMuMG cells harboring PuroR
transgene) were cultured in DMEM/F-12 + GlutaMAX-I medium supplemented with
serum (10%) and Insulin (10µg/ml). For infection 0.5 million Mm5MT cells were plated
in a T25 flask in the presence of 1.0µM Hydrocortisone. Next day the cells were treated
with 25µg/ml of Mitomycin C in serum-free medium for two hours. Then 0.5 million
NMuMG cells were cultured on top of the Mitomycin C treated Mm5MT cells in the
presence of 1.0µM Hydrocortisone. Three days later the mixed cell culture was treated
with 4.0µg/ml of Puromycin to remove Mm5MT cells. The remaining cells (NMuMG)
were grown till passage 8 before the isolation of genomic DNA for integration site
mapping (Figure S9). By using a primer pair, which was specific to MMTV in Mm5MT
and did not amplify endogenous MMTV sequences in NMuMG cells, it was confirmed
that NMuMG cells got infected. The integration sites were measured by two methods:
either shearing the DNA with sonication and blunt end ligation of adapters as described
previously [32] or cutting the DNA with Nla-III and ligation of adapters with sticky ends.
2µg of genomic DNA was digested with 20 units of Nla-III (New England Biolabs) at 37◦
C for overnight in a 100µl reaction. 1.0µg of purified digested DNA was ligated with
0.8µM of splinkerette adapter using 10 units of T4 DNA ligase (Roche Applied Science)
in a 50µl reaction. The splinkerette adapter was prepared by annealing equimolar
amounts (40µM each) of Universal LS3 and Nla-III US4 oligos. The ligated DNA was
cut with Dra-I (New England Biolabs). The ligation reactions were amplified in two
rounds of PCR to generate high throughput sequencing libraries (for details see Table
S7). Sequencing was done on an Illumina HiSeq 2000 instrument to obtain single 100bp
reads. The reads contained ends of MMTV LTR and the neighboring genomic DNA. The
genomic DNA sequences were extracted from sequencing reads, and aligned against
mouse genome assembly mm9 using Bowtie [98] to determine the sites and orientation
of integrations.

3.4.2. DATA PREPROCESSING

MATCHED RANDOM CONTROLS

Given an integration dataset (either one of SB, PB, or MMTV), each integration in that
dataset was matched to 10 random controls. These random controls were subject to a
number of criteria. First, specifically for SB and PB, matched controls were restricted to
loci containing the system-specific integration motif (TA and TTAA respectively). Sec-
ond, the distance of the matched control to the nearest restriction site upstream of the
integration was required to be the same as that of the integration itself. Third, matched
controls were not allowed to fall within ’unmappable’ regions. Here, unmappable re-
gions were defined in a dataset-dependent manner. Given an integration dataset (either
one of SB, PB, or MMTV), the sequence read length n was determined. Then, the mouse
genome (mm9) was cut up into all possible sequences of length n. These artificial reads
were mapped to the mm9 genome using the same tool and parameter settings as used to
generate the integration datasets (see above). Unmappable regions were then defined as
regions that did not have any reads mapped to them using this approach, and controls

3CCTATAGTGAGTCGTATTATAATTTTTTTTTCAAAAAAA
4GTTCCCATGGTACTACTCATATAATACGACTCACTATAGGCATG
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were excluded from these regions.

CHIP-SEQ

To maximize the comparability of the ChIP-seq datasets, they were processed from the
sequence read archives as obtained from GEO [99], where possible, in exactly the same
way. Sequence read archives were converted to FASTA format and then aligned against
mouse genome assembly mm9 using Bowtie 0.12.7 [98], allowing at most 2 mismatches
in end-to-end alignment (the following settings were used: -M 1 –best –tryhard -v 2 –
chunkmbs 1024). Duplicate reads were removed, and a 25bp coverage was computed by
counting the number of reads in 25bp consecutive bins. These coverage profiles were
normalized to a sequencing depth of 109, smoothed (running mean with window n =
6), and sampled (to 100bp spacing). Then, all available input DNA datasets (9 in total)
were collected and clustered based on the coverage profile. A cluster of 6 input DNA
datasets with a correlation of at least 0.97 was selected to be pooled and used as control
for all non-histone mark features. This was done because 1) not for all datasets controls
were available, 2) not for all datasets controls of the same type (input DNA, GFP, mock IP,
etc.) were available. The 6 selected input DNA datasets were used as a control dataset.
First, after normalizing to total read count, they were averaged to obtain a pooled control
coverage profile, and then used to normalize all non-histone mark features by comput-
ing log2(signal/control). For the histone marks, a similar approach was taken, using all
available pan-H3 datasets (2 in total).

BISULFITE SEQUENCING

Bisulfite sequencing reads [41] were processed using Methylcoder [100], with
"–mismatches=0", and Bowtie to align the reads, with "-M 1 –best –tryhard -v 2
–chunkmbs 1024". A coverage profile was computed by selecting only methylation
context ’CG’ for CpG methylation, and counting in 25bp consecutive bins the numbers
of unconverted Cs c, converted Cs t , and methylable basepairs n, and calculating c

n(c+t ) .
The resulting profile was smoothed and sampled as explained above.

RNA-SEQ

The RNA-seq reads were processed using Cufflinks [101] to compute the log2(FPKM+1)
for each gene, where FPKM refers to the number of fragments per kilobase of exon per
million fragments mapped.

PREPROCESSING OF MICROARRAY DATASETS

The H3K9me2, late replication timing data, and LaminB1 data were downloaded from
GEO and processed as in the corresponding publications [37–39].

3.4.3. DATA ANALYSIS

GENE ALIGNMENTS (FIGURE 1A)
Gene locations were retrieved from the Ensembl database (release 66). Partially over-
lapping genes were removed (40%). In case of complete overlap, the larger gene was re-
tained. The remaining genes (n = 22822) were aligned with respect to transcription start
sites and transcription termination sites. For each integration dataset, integrations and
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controls (see above) were counted in equal-sized bins outside genes, and gene length
dependent bins within genes. Then, for each bin a ratio was computed of integration
counts versus control counts. This ratio was normalized by multiplication with the ratio
of control dataset size and integration dataset size. Then the base 2 logarithm was taken.

BIAS WITH RESPECT TO GENES AND TRANSCRIPTS (FIGURE 1B)
For genes (Ensembl release 66), integrations and controls (see above) were counted
within genic regions, TSS upstream regions (defined as the union of those regions
within 1kb upstream of a TSS), TSS downstream regions (defined as the union of those
regions within 1kb downstream of a TSS), and everything else. Note that these classes
can overlap. Then, the ratio was computed of integration counts versus control counts.
This ratio was normalized by multiplication with the ratio of control dataset size and
integration dataset size. Then the base 2 logarithm was taken. A similar approach was
taken for the transcript-related classes 5’UTR, 3’UTR, exon, and intron.

BIAS WITH RESPECT TO GENE EXPRESSION (FIGURE 2)
Genes were divided into five quantiles, based on their expression level. For SB and PB,
Group 1 consisted of all genes with an FPKM of zero in the RNA-Seq dataset. The re-
maining genes were divided across four equal quantiles. The NMuMG microarray ex-
pression dataset for MMTV was divided according to the same expression quantiles.
Subsequently, the same approach as above was taken for determining the numbers of
integrations within each of these subsets of genes.

TOPOLOGICALLY ASSOCIATED DOMAINS (FIGURE 3)
Domain definitions were adopted from [40]. Interfaces between TADs and TAD bound-
aries were aligned, and integrations and controls (see above) were counted until halfway
into the TAD as well as halfway into the TAD boundary region. Then, a log2 ratio between
the two was calculated.

ASSOCIATION OF INTEGRATION OCCURRENCE WITH GENOME-WIDE FEATURES (FIGURE 4)
For each feature and integration, a feature score was computed at exponentially increas-
ing distances (scales) from that integration. For all deep sequencing based features, this
was done by taking the mean normalized read count within a 200bp window, from the
genome-wide binned read count profiles computed as outlined above. For CpG islands,
genes, and TSSs, this score was calculated by taking the negative log2 transformed dis-
tance (+ 1) to the nearest CpG island, gene, or TSS. For the microarray features, this
score represented the value of the nearest probe. The Hi-C score was computed as fol-
lows. Normalized Hi-C contact frequency matrices (20kb bins) were downloaded from
(http://chromosome.sdsc.edu/mouse/hi-c/mESC.norm.tar.gz). For each locus, defined
by an integration and a scale, average contact frequencies as a function of distance from
that locus, were calculated within a window of 400kb. The Hi-C α was computed as the
slope of a linear regression fit to the log10 transformed distances and log10 transformed
contact frequencies. Once the feature scores for all triples (feature, scale, and integra-
tion) were calculated, feature scores were rank-normalized on a per-feature basis, and a

t-score, t integration
i , j , was computed for each scale i and feature j as follows:
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t integration
i , j = x0, j −xi , j

s0,i , j ×
√

1
n + 1

2n

(3.1)

where

s0,i , j =
√

(n −1)s2
0, j + (2n −1)s2

i , j

3n −2
(3.2)

Here, x0, j represents the mean of all scores of feature j at the sites of integration, xi , j

the mean of all scores of feature j at scale i , and s2
0, j and s2

i , j their respective variances.

n represents the number of integrations.
The same was done for the 10 sets of control loci, since we have 10 matched controls

for each integration. This resulted in 1 set of integration t-scores, t integration
i , j , and 10 sets

of control t-scores, t controlk
i , j . Then, the difference between the set of integration t-scores

and the mean of the control t-scores was computed (and plotted in Figure 4):

t∆i , j = t integration
i , j −

∑10
k=1 t controlk

i , j

10
(3.3)

To compute p-values for the t∆i , j , we can take advantage of the fact that for large

degrees of freedom, the t-distribution converges to the standard normal distribution.
Thus, the calculated t-scores can be interpreted as normally distributed with mean 0

and standard deviation 1, i.e. as 1 set of integration z-scores, z integration
i , j , and 10 sets of

control z-scores, zcontrolk
i , j :

z∆i , j = z integration
i , j −

∑10
k=1 zcontrolk

i , j

10
(3.4)

Now, note that if:

x ∼ N (µx ,σ2
x )

y ∼ N (µy ,σ2
y )

z = x + y

Then

z ∼ N (µx +µy ,σ2
x +σ2

y )

Note furthermore, that if a is some constant and
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x ∼ N (µx ,σ2
x )

z = a ×x

Then

z ∼ N (a ×µx , a2 ×σ2
x )

Therefore

z∆i , j ∼ N (0,11/10) (3.5)

The p-values for this distribution are readily computed.

CONDITIONAL INDEPENDENCIES (FIGURE 5)
For each integration, the feature values were normalized by division with the average of
the 10 corresponding control feature values (or subtraction in case of log-transformed
feature values). Then, all data was discretized into three quantiles. To identify condi-
tional independencies in the discretized data we took the approach of Bayesian net-
works [83]. Bayesian networks specify for each feature a set of other features, the Markov
blanket. A Markov blanket of a feature represents a minimal set of features sufficient
to characterize the distribution of that feature. More formally, given its Markov blanket,
a feature is conditionally independent from all other features. In addition to modeling
conditional independencies, Bayesian networks can capture nonlinear effects, such as
the changes of sign of association across scales in Figure 4. For inferring Bayesian net-
works, we used BANJO [82]. Since BANJO relies on stochastic optimization (simulated
annealing), we inferred Bayesian networks for 400 bootstraps of size 20000. For each
bootstrap, the Markov blanket of the integration proximity node was determined, and
the importance of a feature was represented in two dimensions: First, the fraction of
bootstraps a feature occurred in a resulting Markov blanket. This conveys the degree of
confidence we have that this feature is truly relevant. Second, the conditional mutual
information between integration proximity and a feature from its Markov blanket, given
the other features in its Markov blanket, averaged across all inferred Markov blankets.
This coveys the strength of association between integration proximity and this feature,
where this strength could not be explained by any of the other features that were inferred
to be relevant.

UNSELECTED VS. CIS INTEGRATIONS (FIGURE 6A)
For each of the three systems, CISs were called on the tumor screens, using the approach
outlined in [34], with a 30kb kernel width and a 5% Bonferroni-corrected p-value thresh-
old. CIS regions were defined as those regions where the Gaussian smoothing kernel
exceeded the significance threshold, extended on either side with 30kb (kernel width
used for calling the CISs). CIS integrations were defined as those integrations from the
tumor screen that fell within a CIS region, and log2 ratios of unselected integrations and
CIS integrations were calculated as described above, replacing control loci with CIS in-
tegrations.
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ACTIVATING/REPRESSING CISS (FIGURE 6B)
CISs were called as outlined above. A CIS was defined to be an activating CIS if its peak
location was either not within a gene, or within a gene and orientation-wise homoge-
neous, requiring 90% of integrations falling within a CIS to be of the same orientation.

CIS REGION BIAS OF UNSELECTED INTEGRATIONS (FIGURE 6C)
For the union of genic regions (+/- 100kb) it was counted how many unselected inte-
grations were found within CIS regions, how many outside CIS regions, and the corre-
sponding numbers of expected unselected integrations in those regions; p-values were
calculated based on a binomial test. This procedure outlined for genic regions was re-
peated for the whole genome, and for intergenic regions.

POTENTIALLY SPURIOUS CISS (FIGURE 6D)
For all CISs, it was determined how many CIS integrations and unselected integrations
fell within the corresponding CIS region. CIS regions were defined as above. To deter-
mine whether a CIS contained significantly more CIS integrations than unselected in-
tegrations, a one-sided binomial test was performed, testing the significance of ns suc-
cesses in (ns +nu) trials, and corrected for multiple testing (FDR). Here, ns is the number
of tumor screen integrations within a CIS region, and nu is the number of unselected
integrations within a CIS region. Low (high) p-values correspond to true (spurious) CISs.
The probability of success for each binomial test was defined as s

s+u , where s is the tumor
screen dataset size, and u is the unselected integration dataset size.

CISs were annotated with the name of the gene of nearest TSS, where the TSSs were
restricted to Ensembl IDs that had corresponding UCSC, EntrezGene, MGI, and Uni-
Gene IDs. To determine whether the non-significant CISs tended to be farther away from
genes, the genome-wide TSS density was estimated using a Gaussian smoothing kernel
(standard deviation 1Mb), and sampled at 1kb intervals. Integrations were then mapped
to the nearest sampled density estimation point, and a Mann-Whitney U test was per-
formed on selected integrations within CIS regions versus unselected integrations within
CIS regions.
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ABSTRACT
Reporter genes integrated into the genome are a powerful tool to reveal effects of regu-
latory elements and local chromatin context on gene expression. However, so far such
reporter assays have been of low throughput. Here we describe a multiplexing approach
for the parallel monitoring of transcriptional activity of thousands of randomly inte-
grated reporters. More than 27000 distinct reporter integrations in mouse embryonic
stem cells, obtained with two different promoters, show ∼1000-fold variation in expres-
sion levels. Data analysis indicates that lamina-associated domains act as attenuators of
transcription, likely by reducing access of transcription factors to binding sites. Further-
more, chromatin compaction is predictive of reporter activity. We also found evidence
for cross-talk between neighboring genes, and estimate that enhancers can influence
gene expression on average over ∼20 kb. The multiplexed reporter assay is highly flexi-
ble in design and can be modified to query a wide range of aspects of gene regulation.

4.1. INTRODUCTION
Control of gene expression in eukaryotes is a complex process regulated at multiple lev-
els, such as the local action of enhancers and other regulatory DNA elements, compart-
mentalization of the genome into various types of chromatin domains, and spatial po-
sitioning of genes within the nucleus [2, 3]. One powerful traditional approach to study
the influence of the local environment on gene expression involves the use of a reporter
transgene integrated in the genome as a sensor. Activity of such an integrated reporter
(IR) depends on its genomic location, which is known as "position effect" [4]. This phe-
nomenon has been exploited extensively to deduce causal relationships in the interplay
among DNA sequence, chromatin context, and gene activity. For example, detailed anal-
ysis of position effects in yeast and Drosophila have contributed to a thorough under-
standing of heterochromatin [5, 6], and IRs have also been used widely as "enhancer
traps" to identify regulatory elements that promote transcription [7–9].

To study position effects, reporter genes can be either targeted to selected genomic
loci or inserted at random positions. Random integration is achieved by stable transfec-
tion or transposon- or virus-based delivery. Even though in the latter approach plenty of
random IRs can be obtained at once, the bottleneck is the establishment of clonal lines
each harboring a single reporter, followed by the mapping of each integration site. The
largest systematic reporter integration studies have yielded dozens to hundreds of char-
acterized clonal lines [9–13], but these studies were extremely laborious. Furthermore,
studies with IRs so far have required the transgene to be expressed at least to some de-
gree, which is necessary to identify integration events. As a consequence, the results may
suffer from biases that favor genomic regions that promote gene expression, whereas re-
pressive loci are missed.

Here, we combined the traditional transgene reporter assay with random barcod-
ing technology [14, 15] and high-throughput sequencing to develop a method, termed
Thousands of Reporters Integrated in Parallel (TRIP), that is designed to study position
effects genome-wide, without the need to isolate clonal cell lines. We demonstrate the
utility of this approach by the analysis of the activity of two different promoters inte-
grated at >27000 locations (in total) throughout the genome of mouse embryonic stem
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(mES) cells. Because of the flexible design of the reporter vector, TRIP is a generally ap-
plicable technique to study many facets of gene regulation.

4.2. RESULTS

4.2.1. PRINCIPLE OF TRIP
TRIP is based on a large set of reporter genes, which are all identical except for a short
random nucleotide "barcode" inserted in the 3’ UTR (Figure 1). These barcodes serve
as unique tags used to track each reporter independently. Using a transposable element
vector, the reporters are randomly integrated into the genomes of a pool of cells. This
pool is then expanded, and the integration sites are identified together with the barcodes
by high-throughput sequencing. Next, the expression level of each IR is determined by
counting the occurrence of each barcode in mRNA isolated from the cell pool and nor-
malizing these counts to the corresponding barcode representation in the genomic DNA.
Combining the mapping and the expression information yields expression variation as
a function of genomic position, without the need to derive a clonal cell line for each
integration.

4.2.2. EXPERIMENTAL DESIGN

As a proof of concept, we applied TRIP to study how the behavior of two active promoters
depends on genomic context in mES cells. We chose the mouse phosphoglycerate kinase
(mPGK) promoter, which is a housekeeping promoter containing all the cis-regulatory
elements required for its full activity [16] and the tet-Off promoter, which offers the ad-
vantage that its activity can be tuned by changing the concentration of doxycycline (Dox)
in the medium [17]. For integration of barcoded reporters, we used the piggyBac (PB)
transposition system because of its high efficiency [18] and the relatively small sizes of
the essential terminal repeats (TRs) [19].

We generated a PB transposon plasmid library of reporters for each promoter driv-
ing the enhanced GFP (eGFP) transcription unit with one of hundreds of thousands of
random DNA barcodes (16 bp each) between the reporter and polyadenylation signal
(Figure 1). This library was transfected into mES cells together with a plasmid express-
ing PB transposase to randomly integrate the reporters throughout the genome. The
transfected cells were cultured for 7 days before about 1000 cells were subcultured to
generate a pool of cells (a TRIP pool). We generated six TRIP pools with the mPGK pro-
moter construct (mPGK-A to mPGK-F) and four pools with the tet-Off promoter con-
struct (tet-Off-A to tet-Off-D). Further, each TRIP pool was split into two halves, and
each half was separately cultured for an additional week and analyzed independently
(Figure S1A available online). These split pools served as technical replicates.

4.2.3. MAPPING OF REPORTER INTEGRATION SITES

By quantitative PCR, we estimated that cells in the pools harbor on average 23 ± 3 IRs per
cell (mean ± SD across all pools). We mapped the IR integration sites and linked them
to the corresponding barcodes by an inverse PCR method coupled to paired-end high-
throughput sequencing (Figure 1). Our mapping of the locations of barcodes was highly
accurate, because more than 98% of barcodes mapped independently in two technical



4

84 4. CHROMATIN POSITION EFFECTS

AAAAAAAA

Promoter Reporter
Barcode

3’-TR

poly(A) signal

5’-TR

DpnII DpnII

Digestion with DpnII
and circularization

Inverse PCR with
specific primers

High throughput
sequencing

Barcode locations

PCR with
specific primers

Barcode counts 
in genomic DNA

Reverse
transcription

Barcode counts 
in cDNA

High throughput sequencing

RNA

+

PB transposase

PB based promoter reporter construct

Random integrations in the genome

AAAAAAAA

TTTTTT

Barcoded transgene
library

Transcription

DNA

Normalized expression for each barcode

Cells of interest

Transfection

PCR with
specific primers

AAAAAAAA

AAAAAAAA
AAAAAAAA

AAAAAAAA

locus C

locus A

AAAAAAAA
AAAAAAAA

locus B

locus A
locus C

locus B

Figure 4.1: Overview of TRIP. A library of transcription reporters containing short random (16 bp) barcode
sequences upstream of the polyadenylation signal is integrated randomly in the genome of cells of interest
using piggyBac (PB) transposition. The locations of the IRs are determined by inverse PCR followed by high-
throughput sequencing. The expression level of each IR is measured in a pool of cells by high-throughput
sequencing of the barcodes in cDNA. These cDNA counts are normalized to the corresponding counts from
the genomic DNA. See also Figure S1.
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replicates were located at the same base position in the genome (Table S1). After merg-
ing of the technical replicates and application of stringent data quality filters, each cell
pool yielded roughly 2300-3300 mapped IRs (Figures S1B and S2A; Table S1). In total, we
unequivocally mapped the locations of 17857 and 10903 barcodes in six mPGK and four
tet-Off pools, respectively (Figure 2A; Data S1 and S2). We checked the accuracy of the
mapping by integration-specific PCR and Sanger sequencing. For all 11 IRs tested, the
mapping and the associated barcode were correct, and these integrations were absent in
a different TRIP pool (Figure 2B).

PB is known to have a preference for integration near transcription start sites (Huang
et al., 2010). We estimate this bias to be ∼3-fold; however, the vast majority of integra-
tions occurs in other areas of the genome (Figures S2B and S2C; see also below).

4.2.4. IR EXPRESSION STRONGLY DEPENDS ON INTEGRATION SITE

The expression of the set of mapped barcodes was determined by high-throughput se-
quencing of the barcodes in the cDNA from corresponding pools. Strikingly, we observed
an ∼1000-fold range in expression of the same reporter integrated at distinct genomic
locations ( Figure 2C). This large variation is not due to experimental noise, because ex-
pression levels of technical replicates were highly correlated (Spearman’s ρ = [0.90-0.94];
Figure 2D).

We considered that some barcodes could spuriously contain binding motifs of tran-
scription factors, microRNAs or RNA-binding proteins and thereby affect their own ex-
pression. We investigated this using three independent approaches. First, our TRIP
pools were made from a single large pool of cells transfected with the reporter library,
giving rise to situations where the same barcode sequence was present in different pools
either at the same location (essentially the same clonal cell line grown in different pools)
or at different locations (the constructs with the same barcode sequences but integrated
independently in different cells). Comparison of such barcode pairs showed that the
barcodes with identical sequences at the same location were highly correlated (Spear-
man’s ρ = [0.85-0.89]), whereas the sets of identical barcode sequences but integrated
at different locations showed no correlation (Figure 2E). Thus, genomic location has a
much stronger overall effect on IR expression than barcode sequence.

Second, we searched for any motifs in our barcode sequences that may account for
variation in IR expression. Employing the MatrixREDUCE algorithm [20], we identified
a few motifs that significantly correlate with barcode expression levels of IRs; however,
they had an almost negligible contribution to expression. MatrixREDUCE estimates that
<10% of the total expression variance can be explained by sequence motifs present in
the barcodes (Figure S2D).

Third, we chose 19 barcodes that showed extremely high and 19 barcodes that
showed extremely low expression in IRs (Figure 2F). These barcodes were reinserted
into the mPGK promoter vector and transiently transfected as two pools of "low" and
"high" reporters, in the absence of transposase. Under these conditions, these reporters
are not integrated in the genome, allowing us to directly estimate the effects of sequence
differences between barcodes on reporter expression. Quantitation of the expression
showed no significantly elevated expression of the "high" pool compared to the "low"
pool (Figure 2F). We conclude that the effects of the barcode sequences are of such low
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magnitude that they do not compromise our studies of position effects.

4.2.5. NONRANDOM PATTERNS OF IR EXPRESSION
Next, we investigated the positional variation in IR expression in detail. We first focused
on the mPGK IRs, because this data set is larger than that of the tet-Off IRs. The mPGK
IRs have a median interinsertional distance of 65 kb. Besides the somewhat nonhomoge-
neous spacing of integration sites (a known feature of PB transposition [21], we noticed
that IRs tend to cluster according to their expression level, with alternating patches of
highly and lowly expressed IRs (Figure 3A). Indeed, genome-wide we found a significant
autocorrelation of IR expression levels extending over many neighboring IRs (Figure 3B).
Thus, IRs landing in the same areas of the genome tend to have similar levels of expres-
sion.

To further characterize this domain-like expression pattern, we trained a hidden
Markov model (HMM) on the mPGK IR data set to divide the genome into two states,
transcriptionally permissive and nonpermissive (Figure S3). This yielded domains with
a median size of 1.23 Mb (Figures 3A and 3C), with a striking banding pattern along
the chromosomes (Figure S3A). Various approaches to inferring an HMM gave highly
similar results (Figures S3B-S3E). In contrast, HMM fitting after random permutation of
the expression values (but keeping the IR positions unaltered) resulted in domains of
much smaller size (median 0.18 Mb). Therefore, the pattern of large domains cannot be
explained by random expression patterns among the IRs. Furthermore, the tet-Off IR
expression values were generally high in the mPGK permissive domains and low in the
mPGK nonpermissive domains (Figures 3A and 3D), demonstrating that this pattern is
overall consistent between the two different reporter constructs.

4.2.6. IR EXPRESSION PATTERNS REFLECT CHROMATIN DOMAIN ORGANIZA-
TION

We compared the IR expression domain pattern to various chromatin features
known to form large domains (Figures 3A and 3E). Interestingly, this revealed that
nonpermissive IR domains significantly overlap with lamina-associated domains
(LADs), late-replicating domains, and to a lesser extent with regions marked by the
histone modification H3K9me2 [22–24]. These three domain types are known to
coincide substantially with one another, and harbor mostly inactive endogenous
genes [3]. Conversely, permissive IR domains tend to coincide with gene-dense and
transcriptionally active segments of the genome (Figures 3A, 3F, and 3G). We found no
substantial overlap between the borders of topologically associated domains (TADs)
[25, 26] and borders of IR domains (Figure 3A; data not shown). Although we note
that the accuracy of mPGK permissive/nonpermissive HMM domain definitions is
compromised by the irregular spacing of IRs, these results nevertheless indicate that
IR expression patterns correspond to some known aspects of large-scale domain
organization of chromatin.

4.2.7. ATTENUATED TRANSCRIPTION IN LADS
LADs are of particular interest because they are confined at the nuclear periphery and
harbor mostly genes that are expressed at very low levels [23, 27]. The IRs in LADs show
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between two technical replicates for mPGK (left) and tet-Off (no Dox) (right) pools. ρ is Spearman’s rank cor-
relation coefficient. (E) Correlation between the expression levels of barcodes that were coincidentally present
in two different mPGK pools (left) or tet-Off pools (right). Identical barcodes mapped to the same location
in the two distinct pools are shown in green; identical barcodes integrated at different genomic locations are
shown in orange. (F) Barcodes do not affect the reporter expression after transient transfection. Barcodes from
mPGK IRs with very high (n = 19; red color dots) or low (n = 19; green color dots) expression (left) were recloned
into the reporter plasmid. Plasmids for each group of barcodes were mixed together in equal proportions and
transiently transfected. Their pooled expression levels were measured by RT-qPCR of eGFP (right). Error bars
(right) represent SD from three transfection experiments. See also Figure S2.
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on average a 5- to 6-fold lower expression compared to IRs in inter-LADs (Figures 4A
and 4B). The average profile of IR expression across the borders of LADs shows a sharp
transition that is again highly similar to that of endogenous genes (Figure 4C). Thus, LAD
positions are predictive of reduced IR expression.

Because LADs and IR expression are both strongly correlated with local gene density,
gene activity, H3K9me2 domains, and replication timing (Figures 3A and 3E-3G), these
parameters could form confounding factors in linking IR expression to LADs. To resolve
this issue, we conducted a partial correlation analysis, taking into account all of these
factors. The partial correlation is a conservative approach, because all joint variance
between the variables is removed. However, even using this conservative approach, it
can be seen that the association between LADs and reduced IR expression cannot be
fully explained by the other variables (Figure 4D), suggesting a role for LADs in repression
of transcription.

We reasoned that LADs could reduce gene expression in at least two distinct ways.
First, LAD chromatin could pose a threshold to gene activation that may be overcome
only if a promoter reaches a certain minimum strength (which depends on the types
of activators and their occupancy). Second, LAD chromatin could act as an attenuator
that reduces all transcriptional activity by a roughly constant factor, without a threshold
effect and independent of intrinsic promoter strength. To discriminate between these
models, we took advantage of the tet-Off IRs. Here, the concentration of Dox controls
the occupancy of the promoter by its activator and, as a result, the promoter strength.
To test whether the efficacy of LAD repression is dependent on promoter strength, we
treated cell pools carrying the tet-Off IRs with four different concentrations of Dox and
measured the expression level of all barcodes throughout the genome (Figure S1A).

Quantitative PCR confirmed that the overall expression level of the IRs depended on
the Dox level, over an ∼50-fold range (Figure S4). However, individual IRs showed sub-
stantial differences in induction strengths (Figure 4E). Grouping the IRs by LAD/inter-
LAD location revealed that, for all four Dox concentrations, the expression levels of IRs
within LADs were systematically lower compared to outside LADs (Figure 4F). Even at
the highest induction ([Dox] = 0), the expression level of IRs in LADs was more than
4-fold lower than in inter-LADs. Thus, LADs appear to act primarily as attenuators, al-
though we cannot rule out a modest thresholding effect.

4.2.8. LAD CHROMATIN REDUCES DNA BINDING OF ACTIVATORS

We wondered how LADs might cause such a consistent attenuation of gene activity. One
possibility is that LAD chromatin is less permissive to the binding of activating factors to
their cognate binding motifs. To test this, we used previously published chromatin im-
munoprecipitation (ChIP) data sets in mES cells [28–31] to analyze the binding of various
factors to their motifs inside and outside LADs (Figure 4G). Remarkably, occupancies of
all six factors at their binding motifs were consistently lower inside LADs, by 2- to 4-fold.
This inefficient binding of transcription factors to their motifs inside LADs may explain
in part the reduced expression levels of IRs and endogenous genes that are embedded in
LADs.
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4.2.9. IR EXPRESSION IS RELATED TO LOCAL CHROMATIN CONFORMATION

A popular model is that gene activity is controlled by the degree of chromatin com-
paction [32]. For endogenous genes, this model is, however, difficult to test, because
compaction may be the consequence rather than the cause of gene activity. In contrast,
with IRs, one can ask whether the local chromatin compaction state prior to integration
has predictive value for IR expression levels. A quantitative way to describe chromatin
compaction is the rate of decay in contact probability between two loci with increasing
genomic distance. This decay function can be inferred from Hi-C data and approximated
by a power law with a scaling exponent α [33, 34]. Low (i.e., more negative) α values cor-
respond to a steep decay function, which reflects decondensed chromatin, whereas α
values close to 0 correspond to a flat decay function, reflecting a more compacted chro-
matin configuration (Figures 5A and 5B). Using published Hi-C data for mES cells [25],
we found that for most integration sites the local decay function fitted a power law rea-
sonably well if a window size of 400 kb was used (Figures 5A, 5B, and S5A), with highly
reproducible α values between replicate Hi-C data sets (Figure S5B). The α values of in-
tegration sites ranged from ∼1.0 to ∼0.31 (5th and 95th percentile; Figure S5C). We then
investigated the relationship between IR expression and the local α value.

Strikingly, in integration sites that do not overlap with LADs, we found a significant
inverse correlation (Spearman’s ρ = -0.80; p < 2.2×10−16) between local α values and IR
expression (Figure 5C). This result suggests that the local chromatin configuration con-
tributes to the regulation of IR activity, with IRs being more active in more decompacted
regions. In contrast, integration sites that overlap with LADs have a very narrow distri-
bution ofα values that is centered around ∼0.5 (Figure S5C), suggesting that they tend to
share a particular chromatin configuration. The IR expression levels in LADs are another
2- to 3-fold lower compared to inter-LAD IRs with similar α values (Figure 5C). Together,
these results indicate that the local chromatin compaction state is partially predictive
for IR expression levels, but chromatin compaction alone (as measured by Hi-C) cannot
fully explain the difference in IR expression between LADs and inter-LADs.

4.2.10. PROXIMITY EFFECTS OF ACTIVE GENES AND ENHANCERS

Although LADs and chromatin compaction explain part of the variation in IR expression,
much of the 1000-fold range in IR activity remained unaccounted for. This prompted us
to study the possible contribution of smaller elements in the genome. Previous correl-
ative analyses of genome-wide expression data sets have suggested regulatory crosstalk
between neighboring genes in mammals [35, 36]. In line with these studies, we found
that IRs proximal to genes are on average ∼10-fold more active than those located far
from any gene. This effect is similar in magnitude for IRs upstream and downstream
of genes, decreases gradually with distance, but is still detectable at ∼100-200 kb from
genes. Splitting the data according to the expression level of the endogenous genes in-
dicates that active genes contribute much more to this effect than inactive genes (Figure
6A).

The remarkably long distance over which IRs appear to be affected by neighboring
active genes could have several explanations. One possibility is that active transcription
units themselves promote the activity of neighboring transcription units, for example,
because they are tethered to a "transcription factory" [37] and thereby promote recruit-
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ment of cis-linked genes into the same factory. Alternatively, active genes may be sur-
rounded over a long-distance range by multiple enhancers, which could be responsible
for the activation of IRs. Consistent with the latter model, we find that active enhancers
- as identified by occupancy of H3K4me1, H3K27ac, and p300 - are distributed around
genes over an ∼200 kb range ( Figure 6B), which is in agreement with observations in
human cells [38]. To test whether these enhancers might stimulate expression of nearby
IRs, we plotted IR expression versus the distance to the nearest enhancer, while exclud-
ing IRs within 50 kb from genes in order to remove confounding effects of transcription
units ( Figure 6C). This revealed a significant correlation between enhancer proximity
and IR expression, with the effect extending over∼20 kb. Similarly, plotting IR expression
versus the distance to the nearest gene after removal of all IRs with an enhancer within
50 kb showed a significant residual effect of gene proximity, again over ∼20 kb (Figure
6D). These data indicate that enhancers as well as transcription units individually pro-
mote the activity of IRs over a distance of ∼20 kb. We propose that their collective action
results into transcription-promoting regions that cover on average ∼100-200 kb on each
side of active genes.

We investigated whether IRs might reciprocally affect the expression of neighboring
genes. For this purpose, we established a set of 11 clonal cell lines that each carry 11-
131 mPGK IRs of which the genomic location could be mapped. We subjected each cell
line to mRNA sequencing (RNA-seq) to determine the expression levels of the nearest
flanking genes (Data S3 and S4). We focused our analysis on the 264 IRs that were inter-
genic. The expression levels of 178 of the 197 endogenous genes located within 100 kb
from these IRs were not significantly altered, whereas 16 genes were significantly upreg-
ulated and 3 were significantly downregulated. Interestingly, all 19 misregulated genes
reside within 20 kb distance from IRs (Figure 6E). However, only a minority (19/118) of
the genes within this distance is significantly affected. Together, these data indicate that
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the transcription of one gene can affect the activity of some neighboring genes, and these
effects are mostly limited to a range of ∼20 kb.

Based on these results, we considered that the low expression levels of IRs in LADs
may be explained by a lack of nearby enhancers and active genes. However, partial cor-
relation analysis indicates a significant residual correlation when taking into account the
local density of these features (Figure 6F), suggesting the presence of an active repressive
mechanism inside LADs.

4.2.11. HISTONE MODIFICATION STATES AND IR EXPRESSION

Finally, we investigated how IR expression is linked to the local histone modification
state. We used published mES cell chromatin immunoprecipitation sequencing (ChIP-
seq) data sets for 11 histone modifications as well as CTCF [30, 39–42] to identify the 15
most prevalent combinations ("chromatin states") in mES cells (Figures S6A and S6B)
by applying a classification algorithm that was previously reported (Ernst et al., 2011).
H3K9me2 was not included because a matching ChIP-seq data set was not available. Be-
tween the 15 states, average IR expression varied over more than 10-fold (Figures S6C-
S6F). For the mPGK IRs, highest expression was observed in the states (#2 and #3) en-
riched in H3K4me1 and H3K27ac, which are characteristic of enhancer regions. Lowest
expression occurred in a highly prevalent state (#12) that lacks any of the mapped his-
tone marks, and in a state (#15) marked by H3K9me3 and H4K20me3. State #8, which
is enriched exclusively for H3K27me3, showed moderate IR expression levels. A similar
expression pattern was observed for the tet-Off IRs except that the highest expression
was detected in the bivalent state (#9). Except for two rare states of unclear biological
relevance (#13 and #14), all states were covered by dozens or hundreds of IRs, providing
sufficient statistical power to compare their expression distributions (Figures S6G and
S6H).

4.3. DISCUSSION

4.3.1. GENOME-WIDE SURVEYS OF POSITION EFFECTS BY TRIP
We combined random reporter integration with barcoding and deep sequencing to de-
velop TRIP, a method to measure position effects in a high-throughput mode. TRIP helps
to establish causal relationships, because it directly tests the functional consequence of
integration into a certain chromatin environment. At the same time, the thousands of
IRs provide enough statistical power to infer general, genome-wide relationships. TRIP
thus bridges a gap between reductionist mechanistic studies of single loci on the one
hand, and descriptive genome-wide mapping approaches such as ChIP, DamID, and
RNA sequencing (Southall and Brand, 2007, Hawkins et al., 2010 and Furey, 2012) on
the other hand. Because all IRs are identical (except for the short barcode) and can be
custom designed, TRIP is more suited for the systematic decoding of regulatory mech-
anisms than genome-wide studies of endogenous gene expression, where every gene is
different and cannot be easily manipulated.

Although PB integrations exhibit some preference for transcriptional start sites
(TSSs) and genes, the thousands of integrations elsewhere provide sufficient statistical
power to determine the correlation of IR expression with most genomic features.
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Naturally, for TRIP studies of rarer features (or combinations of features) it may be
necessary to generate larger data sets in order to probe these features sufficiently
frequently. Other delivery vehicles, e.g., Sleeping Beauty, which has a more random
integration profile (Huang et al., 2010), could further reduce any bias issues.

The cells used in this study harbored about two dozen IRs on average. Because each
barcode is unique, each IR could nevertheless be tracked individually. Although some
IRs could potentially interrupt the genome sequence at critical sites, cells with such IRs
would likely be lost during culture. We note that the 11 clonal lines with 11-131 IRs
show highly similar RNA-seq profiles (pairwise genome-wide correlation coefficients
0.96-0.99; data not shown), suggesting that the IRs in the established cell pools rarely
cause major changes in the genome-wide expression program. We cannot completely
rule out interference between IRs in the same cell, e.g., because they compete for limit-
ing amounts of certain transcription factors, but this seems unlikely because most tran-
scription factors are sufficiently abundant to occupy thousands of sites in the genome
(Kind and van Steensel, 2010).

4.3.2. FUTURE APPLICATIONS OF TRIP
The design of TRIP vectors is highly flexible. The only essential components are the short
PB TRs and a random barcode of 16-20 bp. A variety of sequence elements in many ar-
rangements can be added to study the influence of chromatin context on a wide range
of processes (Figure 7). In the present study, we placed the barcode in the 3’ UTR of
the reporters as a transcriptional readout. This approach can also be used to study how
chromatin context affects the regulatory activity of other elements such as enhancers,
silencers, insulators, and synthetic transcription factor binding sites, alone or in combi-
nation. The barcode can also be put in other locations of a transcription unit; with only
minor modifications in the experimental design, it will then be possible to explore links
between chromatin context and pre-mRNA processing events, such as mRNA alternative
splicing and polyadenylation.

Furthermore, the barcode may be placed outside of the transcribed region, for ex-
ample, next to a promoter or enhancer. In this case, ChIP, DamID, and MeDIP methods
[43–45] could be used to investigate how the binding of specific transcription factors and
the deposition of histone modifications, chromatin proteins, and DNA methylation near
the barcode is affected by different chromatin environments. We anticipate that TRIP
may also be applicable to study other genome-related functions, such as DNA replica-
tion and DNA repair.

4.3.3. GENE REGULATORY PATTERNS ACROSS THE GENOME

The expression pattern of IRs across the genome is not random and correlates partially
with the previously described LADs and inter-LADs [23, 27]. In part, the reduced activity
of IRs in LADs may be explained by the low density of functional enhancers and active
genes in LADs. Partial correlation analysis indicates that another aspect of chromatin
architecture at LADs contributes to attenuated transcription. How this attenuation is
achieved is not clear, but it is likely to involve reduced binding of transcription factors to
their cognate binding sites.

IR expression also correlates with the local compaction of chromatin prior to inte-
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gration. We note that we calculated the α values over a 400 kb window, which is large
compared to the size of the IRs; estimates of α values in smaller windows will require
Hi-C data of yet higher resolution. We do not know whether the differences in chro-
matin conformation are a direct determinant of IR expression, or merely reflective of
another key feature of chromatin, such as the presence of various repressive or activat-
ing proteins. Interestingly, the IR expression in LADs is consistently lower compared to
inter-LAD regions with similar α value. This indicates that chromatin compaction alone
does not fully explain the attenuation of transcription in LADs; other features such as
their contacts with the nuclear lamina or their distinct histone modification state may
render LADs less permissive to transcription [46]. The lack of a clear relationship be-
tween IR expression patterns and TADs may be attributed to the relatively low precision
at which both the IR expression domains and TADs are currently defined; alternatively,
TADs and IR expression domains may be biologically distinct aspects of chromosome
organization.

Our data reveal that IRs are generally more active when located within ∼200 kb from
active genes. This substantial crosstalk suggests that the linear order and spacing of
genes along chromosomes is of importance for gene regulation. Indeed, bioinformat-
ics studies have shown that neighboring genes tend to be coexpressed [47, 48]. Previous
experimental studies noted a transcription "ripple effect" between neighboring genes
[35] and activation of IRs nearby active gene clusters [11], but these studies lacked the
statistical power needed to identify the origin of the activating signals. Our analysis sug-
gests that the crosstalk arises in part from the active transcription units themselves, and
in part from enhancers that surround active genes. Which component of active tran-
scription units is responsible for the observed crosstalk remains to be determined. Re-
ciprocal effects of the IRs on neighboring genes are also limited to a range of ∼20 kb, but
only a minority of neighboring genes appears sensitive. It will be interesting to further
investigate the basis of this differential sensitivity of genes.

Although our initial data analyses point to regulatory contributions of LADs, chro-
matin states that differ in the degree of compaction, neighboring genes, and enhancers,
we note that these features do not fully explain the large dynamic range (∼1000-fold)
in IR expression levels. Further computational modeling of the data may uncover addi-
tional features that determine gene expression.

4.4. MATERIALS AND METHODS

4.4.1. CONSTRUCTION OF BARCODED PIGGYBAC PLASMID LIBRARIES

The pPTK-Gal4-mPGK-Puro-IRES-eGFP-sNRP-pA ("mPGK") and pPTK-Gal4-tet-Off-
Puro-IRES-eGFP-sNRP-pA ("tet-Off") piggyBac (PB) reporter constructs (GenBank
accession numbers KC710227 and KC710228) contain the following elements, some of
which were not used in this study. As a transcription unit, we used a bicistronic gene
consisting of the Puromycin resistance cassette (PuroR) and enhanced green fluorescent
protein (eGFP), linked by an encephalomyocarditis virus internal ribosome entry site
(IRES). The PuroR cassette was not used in this study. The transcription unit is driven by
either the mouse phosphoglycerate kinase (mPGK) promoter or tetracycline-dependent
(tet-Off) promoter and ends with a short polyA signal from the soluble neuropilin-1
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(sNRP-1) gene [49]. We also placed 14 repeats of the Gal4 binding site upstream of
the promoters; this element was not used in this study but may serve to target Gal4
fusion proteins. All elements were cloned between the terminal repeats (TRs) of the PB
element in the 5’-PTK-3’ plasmid [18].

To generate the barcoded plasmid libraries, the 3’-TR of the PB was amplified with
primers PB-barcode-long-71, which contains a 16 base long random barcode sequence
with the preceding DpnII site) and PB-barcode-short-72, using the pPTK-Gal4-tet-Off-
Puro-IRES-eGFP-sNRP-pA-trim1 plasmid (a modified version of "tet-Off" with 3’-TR of
PB shortened to only the last 67 bp; GenBank accession number KC710229) as a tem-
plate. The PCR product was digested with PstI and MluI (the underlined sequences in
the primers), ligated into the same sites into "mPGK" and "tet-Off" vectors and trans-
formed into E. coli cells. For each construct, ∼250000 transformed bacterial colonies
were grown on plates and pooled before plasmid DNA purification. This resulted in the
preparation of the "mPGK" and "tet-Off" PB plasmid libraries with random barcodes
(GenBank accession numbers KC710230 and KC710231). The barcode cloning step re-
duced the length of the 3’-TR from 242 bp down to 67 bp, which is sufficient for PB
transposition ( Meir et al., 2011) and lacks DpnII sites.

After completion of the TRIP experiments we discovered that ∼16% of the plasmid
molecules in all libraries carry a point deletion (at positions 4002 and 3914 in GenBank
sequences KC710230 and KC710231, respectively) in the 3’TR. Transient transfection as-
says indicate that this mutation causes a 2-fold increase in reporter expression. Because
the barcodes are randomly linked to either the unmutated or the mutated 3’TR, this
causes some noise (∼2-fold) in the estimates of expression levels. Future builds of the
libraries without this mutation should therefore allow for even more accurate measure-
ments.

4.4.2. MOUSE EMBRYONIC STEM CELL CULTURE AND TRANSFECTION
mES cells EBRTcH3 expressing the tetracycline-controlled transactivator from the en-
dogenous ROSA26 promoter [50] were cultured in 60% BRL cell-conditioned medium
in the presence of leukemia inhibitory factor, MEK inhibitor PD0325901, and GSK-3
inhibitor CHIR99021 [51]. Four hours before transfection, 6× 106 EBRTcH3 cells were
seeded on a 10 cm dish. The cells were transfected with 22.5 µg of barcoded PB plasmid
library and 2.5 µg of mouse codon-optimized version of PB transposase (mPB) plasmid
[18] using Lipofectamine 2000 (Invitrogen). Mock-transfected and nontransfected con-
trols were included. After 36-48 hr, the cells were sorted with fluorescence-activated cell
sorting (FACS) into three populations with respect to eGFP signal. We discarded cells
without any detectable eGFP signal, because they most likely failed to take up any plas-
mid. We also discarded cells with very high eGFP signals because typically these cells
have a large number of integrations per cell. The cells with medium levels of eGFP ex-
pression were used to establish the cell pools with IRs. Note that the sorting of cells was
done within a time window when most eGFP expression is coming from free plasmid;
hence, a possible bias caused by this selection step is most likely minor. Furthermore, a
significant number (>1%) of IRs had undetectable level of expression according to our

15’-GTGACACCTGCAGGATCA(N)16CTCGAGTTGTGGCCGGCCCTTGTGACTG-3’
25’-GACATAACGCGTATACTAGATTAACCCT-3’
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measurements (see below). After sorting, the medium-eGFP population was grown for
5 days before several aliquots of ∼1000 cells were subcultured to establish the "biolog-
ical replicate" mES cell pools, each with a different collection of integrated transgenes.
Because sequencing of each pool identified ∼7000-11000 barcodes ( Table S1) of the ex-
pected ∼23000 (1000 cells times ∼23 IRs/cell on average according to quantitative PCR),
it is possible that we overestimated the number of cells subcultured, that not all cells
survived the subculturing step, or that barcodes were missed in the sequencing (which is
less likely considering large overlap and strong correlation between the technical repli-
cates). Two weeks after transfection, each cell pool was split into two "technical repli-
cates," which were grown independently for another week before the isolation of total
RNA and genomic DNA (gDNA) ( Figure S1A).

4.4.3. PREPARATION OF SAMPLES FOR HIGH-THROUGHPUT ILLUMINA SE-
QUENCING

Mapping of the barcoded PB insertion sites was done by inverse PCR (Ochman et al.,
1988) coupled with high-throughput sequencing. Briefly, 2 µg of gDNA was digested
with 20 units of DpnII (New England Biolabs) overnight at 37◦C in a volume of 100 µl.
Subsequently, 600 ng of purified digested DNA was self-ligated with 40 units of high-
concentration T4 DNA ligase (Promega) overnight at 4◦C in a volume of 400 µl (two
times for each technical replicate of the TRIP pool). The ligation reactions were phe-
nol/chloroform/isoamylalcohol extracted and ethanol precipitated. DNA pellets were
dissolved in 30 µl of water. Five microliters of each sample was used as a template for
amplification of fragments containing both the barcodes and flanking genomic DNA re-
gions. PCR was performed in three rounds (for details, see Table S2), and purified prod-
ucts were directly used for high-throughput Illumina paired-end sequencing.

To measure the barcode expression levels, 2 µg of total RNA was reverse transcribed
in a 50 µl reaction containing 50 ng of oligo(dT) primer and 1 µl of Superscript II (In-
vitrogen). One microliter of cDNA was used as a template for amplification of barcode
sequences. PCR was performed in two rounds (for details, see Table S2), and purified
products were directly used for high-throughput Illumina single-read sequencing. To
quantify the barcode abundances for normalization, 100 ng of gDNA instead of cDNA
was used as a template.

4.4.4. VALIDATION OF MAPPED PIGGYBAC INSERTIONS

For the validation of mapping of insertion sites by inverse PCR, 11 IRs were randomly
chosen from the pool mPGK-A. gDNA (100 ng) from each technical replicate of mPGK-A
was used as a template for amplification with a nested set of the reporter-specific and
the location-specific primers (Figure 2B; Tables S3 and S4). The PCR products were run
on a 1.5% agarose gel for visualization. To verify the barcode sequence, the PCR products
were Sanger sequenced using the primer PB-Valid.Gen.Seq-1 (Table S3). The gDNA from
pool mPGK-B was used as a negative control.
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4.4.5. ESTIMATION OF AVERAGE NUMBERS OF IRS PER CELL IN TRIP POOLS

To estimate the average copy number of IRs in TRIP pools, gDNA from each pool was
subjected to qPCR using primers against eGFP (eGFP-qPCR-for3 and eGFP-qPCR-rev4),
murine lamin B receptor gene (mLBR-2-for5 and mLBR-2-rev6) and ampicillin (qAmp-37

and qAmp-48). A plasmid harboring one copy each of the three amplicons (construction
details are available upon request) was used as a reference for quantification.

4.4.6. ANALYSIS OF BARCODE HIGH-THROUGHPUT SEQUENCING DATA

Sequencing was done on an Illumina HiSeq 2000 instrument and resulted in two types
of sequencing reads, (1) the "expression" and "normalization" reads (single reads of 100
bp) corresponding to the quantification of barcodes in cDNA and gDNA samples, re-
spectively, and (2) the "mapping" reads (paired-end reads of 100 bp) from inverse PCR
fragments. The latter reads contain the barcode and the genomic sequence next to DpnII
site in the forward read, and the end of the PB transposon and the neighboring genomic
DNA sequence in the reverse read. The scheme of data analysis pipeline is shown in
Figure S1B.

Because the identity of integrated barcodes was not known a priori and some bar-
codes might be absent in the expression and mapping reads (due to the full repres-
sion or an inappropriate location of the DpnII site in flanking genomic DNA region,
respectively), we focused the initial analysis on the normalization reads. The barcode se-
quences (15-17 base long) were extracted from sequencing reads using R (http://www.R-
project.org) and Bioconductor [52] packages. For each replicate of the normalization
reads, only the barcodes with at least 5 counts were taken for the subsequent analysis.
To eliminate aberrant barcodes arising from mutations during PCR and sequencing, we
used the following algorithm. First, we sorted barcodes according to their counts. Then,
for each barcode (starting from the most frequent one), we identified and removed all
its mutant versions, defined as barcodes within a Hamming distance of 2. The remain-
ing sequences were regarded as "genuine" barcodes and demonstrated a large overlap
between the replicates (Figure S2A). The barcodes identified only in one technical repli-
cate were mostly with low counts and frequently were lost in the other replicate due to
the threshold of 5 counts (data not shown).

The set of genuine barcodes found in both replicates was used as a reference to iden-
tify and count the barcodes in the expression and normalization reads independently
for each replicate. For the mPGK integrations, a pseudocount of 1 was added to all ex-
pression and normalization counts to account for zeros in the expression data (fully re-
pressed IRs), and expression and normalization counts for all replicates were normalized
to a total read count of 1. Subsequently, expression values were normalized by dividing
by corresponding normalization values, and replicates were averaged to obtain the ex-
pression for each barcode. For the tet-Off data set, a similar approach was taken for each

35’-CGACAACCACTACCTGAGCA-3’
45’-GAACTCCAGCAGGACCATGT-3’
55’-CTCCACTTCCCTCCACCTCT-3’
65’-GAGAGCTTGAACGAAAAACCA-3’
75’-CGATCGTTGTCAGAAGTAAGTTGG-3’
85’-CACAGAAAAGCATCTTACGGATGG-3’
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of the induction levels. Additionally, the resulting expression values were multiplied by
the relative level of eGFP mRNA for each induction level as determined by RT-qPCR (Fig-
ure S4), to make the different levels of induction comparable. For qPCR, we used 1.0µl of
the same cDNA that was used for amplifying the barcodes for high-throughput sequenc-
ing. The primers used were eGFP-qPCR-for and eGFP-qPCR-rev (see above). Signal in
each sample was normalized to TBP levels for which following primers were used: TBP-
forward9 and TBP-reverse10.

The genomic regions associated with genuine barcodes were extracted from the
mapping reads and aligned against mouse genome assembly mm9 using Bowtie2
[53] independently for each replicate. It should be noted that during the inverse PCR
step, there is a slight chance of intermolecular ligation, resulting in a small fraction
of fragments where the barcode is associated with an unexpected genomic region.
Additionally, one barcode might be present at two distinct genomic locations either
because of random chance or as a result of re-transposition of the reporter in one of
the daughter cells during early days of culturing when PB transposase is still present.
Therefore we applied a stringent set of criteria to select only those barcodes which are
unambiguously associated with unique genomic locations. Specifically, only those
barcodes were retained that had at least 3 reads in the mapping data and more than
90% of the reads were associated with the most frequent genomic location and less than
2.5% were associated with the second most frequent location.

During the mapping process, a number of genuine barcodes was filtered out at differ-
ent steps (Table S1). About 28% were lost, as they did not have any reads in the mapping
data, primarily for two reasons. First, sequencing in mapping data is not saturating.
This is because preparation of inverse PCR samples is complex and the chance to lose
a rare barcode is very high. This is also evident from the fact that there is a direct cor-
relation between the abundance of a barcode (counts in normalization data) and the
reads of that barcode in the mapping data (Spearman’s ρ = 0.631 for mPGK pools and
Spearman’s ρ = 0.415 for tet-Off pools; data not shown). Second, some barcodes are
integrated at places where the DpnII site is not at an optimal distance from the site of
integration. A little over 2% were associated with DNA that could not be aligned at all
to the genome. About 30% could not pass the stringent criteria (described above) for
being associated to a single genomic location. About 15% of barcodes were integrated
in the repetitive parts of the genome. A small fraction of barcodes was redundant be-
ing present in more than one pool (same location in each pool) and thus only one of
the entries was retained for the analysis. Despite these losses about 35% of the genuine
barcodes could be mapped unequivocally. Ideograms of mouse chromosomes with the
positions of mapped IRs and HMM domains were generated with the help of idiograph-
ica (http://www.ncrna.org/idiographica) [54].

4.4.7. BARCODE EXPRESSION LEVELS AFTER TRANSIENT TRANSFECTION
To assess the effect of barcode sequences on the IR expression, two sets of 19 barcodes
each were randomly selected from 30 least and 30 most expressed IRs in mPGK TRIP
pools and individually cloned into the pPTK-Gal4-mPGK-Puro-IRES-eGFP-sNRP-pA

95’-CTGGAATTGTACCGCAGCTT-3’
105’-TCCTGTGCACACCATTTTTC-3’
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vector at the PstI and MluI sites as described above. Next, equal amounts of resulting
constructs were pooled to make small libraries (19 barcodes each) of the "low" and
"high" expressed barcodes. 4 µg of each 19-plasmid library was transiently transfected
(in triplicate; without the mPB transposase plasmid) into 1.5×106 EBRTcH3 cells using
Lipofectamine 2000 (Invitrogen). RNA was isolated 24 hr posttransfection and analyzed
by RT-qPCR using eGFP and TBP primers as described above.

4.4.8. MPGK DOMAIN CALLING
To show domain-oriented behavior, the Spearman autocorrelation function was com-
puted for different lags, using per-pool mean-centered log2(expression) values. The con-
fidence bounds were determined by the following formula:

± fz (1− α
2 )p

N
(4.1)

where α is the significance level (5%), fz is the standard normal quantile function
and N is the number of IRs. For each chromosome individually, a Hidden Markov
Model (HMM) was inferred on the sequence of mean-centered expression values
using the Baum-Welch algorithm assuming Gaussian distribution of the emission, and
states were called using the Viterbi algorithm as implemented in the R package RHmm
(http://www.r-project.org/), assuming equidistant spacing between the integrations.
Domain boundaries were placed halfway between the flanking IRs. The probability
density of the resulting domain sizes was estimated by convolving the domain sizes
with a Gaussian kernel, while automatically selecting the standard deviation of this
smoothing kernel with Silverman’s "Rule of Thumb" [55]. The nonhomogeneous HMM
was inferred using the BioHMM algorithm [56], as implemented in the Bioconductor
package snapCGH [52]. Several domain-oriented epigenetic features were tested
for their fractional overlap with these mPGK domains. LADs were taken from [23].
For late replication timing [22] and H3K9me2 [24], domains were called using the
RHmm package, assuming equidistant spacing between the probes. For computing
significance of overlap, the mPGK permissive domains were circularly permuted
genome-wide, starting with a shift the size of the largest mPGK permissive domain for
the first permutation, and equally distributing the remaining permutations across the
remainder of the genome. The test-statistic used was the fold difference of the mPGK
nonpermissive domain fractions.

4.4.9. PREPROCESSING OF PREVIOUSLY PUBLISHED CHIP-SEQ DATA
To maximize the comparability of the ChIP-seq data sets, they were processed from the
sequence read archives as obtained from GEO [57]. Sequence read archives were con-
verted to FASTA format and then aligned against mouse genome assembly mm9 using
Bowtie [53], allowing at most two mismatches in end-to-end alignment (the following
settings were used: "-M 1 –best –tryhard -v 2 –chunkmbs 1024").

Additionally, duplicate reads were removed. Peaks were called on the aligned reads
with MACS [58] using default settings, and corresponding GFP, whole-cell extract, pan-
H3 or input DNA data sets as background. Additional filtering of peaks was performed
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by requiring a minimum fold enrichment of 3 with respect to the background.
For the HMM chromatin state classification (Figure S6), we used the following ChIP-

seq data sets: H3K4me1, H3K27ac [40], H3K4me2 [42], H3K4me3, H3K9me3, H3K27me3,
HeK36me3, H4K20me3 [39], H3K9ac [41], CTCF [30], and input DNA pooled from [30, 31,
59–62]. The multivariate HMM was trained using the ChromHMM software [63]. First,
aligned sequences, as described above, were binarized using the BinarizeBed function at
a binsize of 200 bp. Second, the HMM was trained and states were called using the Learn-
Model function. The number of 15 states was chosen to correspond with [64]. Third, all
integrations were mapped to the resulting states.

4.4.10. ANALYSIS OF LADS

To visualize the behavior of transgenes around LAD boundaries, all LAD boundaries
were aligned. mPGK, tet-Off IRs, and endogenous transcriptional start sites (TSSs) were
located around each LAD boundary, within a window of 500 kb, but no further than
halfway toward the next LAD boundary. Average expression values were computed in
20 kb bins. Per-pool mean-centered log2(expression) values of the mPGK and tet-Off IRs
and the log2(FPKM+1) values of the endogenous genes were used. Here, FPKM refers to
the number of fragments per kilobase of exon per million fragments mapped, as deter-
mined by Cufflinks (Trapnell et al., 2010).

For the partial correlation analysis, the ordinary Spearman correlation was com-
puted between mPGK and tet-Off expression on one hand, and the Lamin B1 signal (the
probe values) [23] on the other hand. These correlation coefficients were then compared
to the partial Spearman correlation coefficients of mPGK and tet-Off expression, with the
Lamin B1 signal, given H3K9me2, replication timing (for both variables using the probe
values), and TSS proximity. TSS proximity was defined as the negative distance from an
IR to the nearest TSS.

To get an impression of the variation in induction strengths, a linear model was fitted
to the non-log2-transformed expression values across the four different induction levels,
for each individual tet-Off IR. For the independent variable, the Dox concentrations for
the different induction levels were taken. The highest concentration of 100 ng/ml was
approximated by 1 ng/ml, since the results for 1 ng/ml and 100 ng/ml are highly similar
(data not shown). The absence of Dox was approximated by 0.001 ng/ml. The prob-
ability density of the slope coefficients (induction strengths) was estimated by a Gaus-
sian kernel convolution, and Silverman’s "Rule of Thumb" for automatically selecting
the bandwidth of the kernel.

Binding of transcription factors within LADs and inter-LADs was assessed by com-
paring position weight matrix (PWM) scores to transcription factor (TF) binding sites
determined by ChIP-seq. For the six TFs, PWMs were downloaded from TRANSFAC [65].
The mouse genome assembly mm9 was scanned and a potential binding site was called
for a locus if, centered on that locus, the PWM score was at least 80% of information con-
tent of motif. Actual TF binding sites were determined by peak-calling of ChIP-seq data
as outlined above. Subsequently, the fraction of PWM hits covered by a ChIP-seq peak
was computed for each TF, for LADs as well as inter-LADs. For computing significance of
overlap, LADs were circularly permuted genome-wide, starting with a shift the size of the
largest LAD for the first permutation, and equally distributing the remaining permuta-
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tions across the remainder of the genome. The test-statistic used was the fold difference
of the inter-LAD fraction and the LAD fraction.

4.4.11. CHROMATIN INTERACTIONS
To compare mPGK domains and topologically associated domains (TADs) [25], the over-
lap of boundary areas between the data sets was assessed. mPGK boundary areas were
defined as the areas between two adjacent IRs in a different HMM state. TAD boundaries
were defined as in [25] with a 40 kb margin added to each side to account for resolution
uncertainty.

For each mPGK IR, the local chromatin contact probability as a function of genomic
distance was fitted to a power-law curve. For this we used normalized Hi-C contact fre-
quency matrices (20 kb bins) from mES cells downloaded from the RenLab website [25].
Average contact frequencies were calculated as a function of genomic distance within a
window of 400 kb centered around each IR. Genomic distance and contact frequencies
were then log10-transformed and α value was calculated as the slope of a linear regres-
sion fit. To visualize the relationship betweenα value and IR expression, IRs were divided
into LAD and inter-LAD groups, and for each the α values were binned into 10 quantiles.
For each mPGK pool and bin, the median expression of the IRs was then computed. This
resulted in six medians per bin, which were then averaged, and the standard error of the
mean of the six pool medians was computed.

4.4.12. ANALYSIS OF GENE PROXIMITY AND ENHANCER PROXIMITY
The association between gene proximity and mPGK IR expression was analyzed by
matching each IR with its nearest endogenous gene start or gene end (depending on
which one was closest). Here, endogenous genes were separated according to their
expression level (FPKM = 0, and FPKM > 0). Distances between IRs and nearest gene
start or gene end were binned into 10 quantiles, and expression values were binned
accordingly. Per-pool median expression values were computed, and their mean and
standard error of the mean were determined. Similar analyses were performed for
gene starts and gene ends excluding IRs with an enhancer within 50 kb, as well as
for enhancers excluding IRs with a gene start within 50 kb. Enhancers were defined
as regions with both an H3K4me1 peak and an H3K27ac peak within 500 bp, or
alternatively a p300 peak. Regions that were close to (<5 kb) an H3K4me3 peak were
removed to avoid overlap with transcription start sites, and remaining regions were
called enhancers (median size ∼1 kb).

Enhancer density around genes was analyzed by determining for each enhancer its
nearest gene start or gene end (depending on which one was closest). The distance be-
tween a gene start or gene end and the midpoint of the enhancer, and distances were
binned and counted. The same was done for a set of 106 randomly selected genomic
coordinates, and within bins a ratio of observed versus expected was calculated.

4.4.13. EXPRESSION OF ENDOGENOUS GENES NEAR IRS
mES cells were transfected with barcoded PB mPGK plasmid library and mPB trans-
posase plasmid [18]. The transfected cells with very high levels of eGFP were selected by
FACS sorting. The sorted cells were grown for 5 additional days before they were plated

http://chromosome.sdsc.edu/mouse/hi-c/mESC.norm.tar.gz
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sparsely on 10-cm dishes. After two weeks, colonies were picked and further propagated
to generate 11 clones with multiple IRs. RNA-seq was performed for each of these cell
lines, using an Illumina HiSeq 2000 instrument and standard protocol. To assess the
change in the expression of genes near an IR in one sample, the other 10 samples were
used as reference. The change in gene expression was thus defined as the log2 ratio of
the raw read count for a gene and the mean read count for the same gene in the 10 ref-
erence samples. p-values of differential expression were calculated using the R package
DESeq [66], and were corrected for multiple testing after pooling the p-values of all 11
comparisons (Holms’ method). The distance between a gene and an IR was defined as
the distance between the closest of the gene’s transcription start site or transcription ter-
mination site, and the position of the IR. IRs located within genes were discarded.

4.4.14. ACCESSION NUMBERS
The GenBank accession numbers for the TRIP vectors and libraries are KC710227-
KC710231. TRIP and RNA-seq data are available from the Gene Expression Omnibus,
accession number GSE48606.
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ABSTRACT

Many anti-cancer drugs induce DNA breaks to eliminate tumor cells. The anthracycline
topoisomerase II inhibitors additionally cause histone eviction. Here, we performed
genome-wide high-resolution mapping of chemotherapeutic effects of various topoiso-
merase I and II inhibitors and integrated this mapping with a wide range of established
(epi)genomic features. These anti-cancer drugs appeared to have a marked selectivity
for defined areas in the genome. The topoisomerase I inhibitor topotecan and the topoi-
somerase II inhibitor etoposide induce DNA damage at the same transcriptionally active
regions in the genome. The anthracycline daunorubicin induces DNA breaks and evicts
histones from active chromatin, thus quenching local DNA damage responses. Another
anthracycline, aclarubicin, has a different genomic specificity and evicts histones from
H3K27me3-marked heterochromatin with consequences for diffuse large B-cell lym-
phoma cells with elevated levels of H3K27me3. The chemical profiling of the genome
with different anti-cancer drugs reveals their unique genomic selectivity including pre-
viously un-annotated regions, and provides information critical for treatment decisions
of specific tumors with altered epigenetics.

5.1. INTRODUCTION

The anthracycline topoisomerase II (TopoII) inhibitors daunorubicin (Daun) and dox-
orubicin (Doxo; also called hydroxydaunorubicin) have been cornerstones of oncology
for many decades. Millions of cancer patients have been treated with these drugs with
varying success [1]. Given the serious side effects of Daun and Doxo, alternative com-
pounds have been developed. These include anthracycline variants such as aclarubicin
(Acla; now only used in Japan and China for cancer treatment), and the chemically un-
related TopoII inhibitor etoposide (Etop) and topoisomerase I (TopoI) inhibitor topote-
can (TPT). These drugs all intercalate into the DNA to trap their target topoisomerases,
but have different effects in the clinic. Although the mechanism of Etop to induce DNA
breaks is assumed to be similar to that of the anthracyclines, it is far less effective in
the clinic and also presents with fewer side effects to patients. This suggests that the
effectiveness of anthracyclines depends on additional mechanisms of action. Indeed,
the anthracycline anti-cancer drugs were recently shown to also have the ability to evict
histones from loose chromatin structures [2] and enhance nucleosome turnover in pro-
moter regions [3]. Another anthracycline variant, Acla, does not induce DNA breaks but
still evicts histones from chromatin [2]. Thus, histone eviction and DNA break forma-
tion are independent mechanisms. Although Acla does not induce DNA breaks, it is an
effective anti-cancer drug [4]. This implies that DNA break formation is not necessarily
the only anti-cancer mechanism provided by the anthracyclines. As histone H2AX is also
evicted by Doxo and Daun, this histone is not available for phosphorylation by ATM/ATR
following DNA breaks. As a result, DNA repair is attenuated after Doxo and Daun treat-
ment when compared to Etop that does not evict histones [2]. In addition, since the
evicted histones are replaced by new ones after anthracycline exposure, the epigenetic
code is altered, as is the transcription [2]. As such, these anti-cancer drugs can also be
considered epigenetic modifiers, rather than merely DNA damaging agents.

The recent development of genome-wide sequencing in combination with
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chromatin immunoprecipitation (ChIP-seq) technologies has enabled detailed profiling
of the genome. It has been estimated that 80% of the genome can now be annotated as
transcriptionally active, repressed or silent, or related to other biochemical functions,
as illustrated by the presence of various histone marks and transcription factors or
repressors [5]. Closely related to transcriptional activity is the degree of compaction
of chromatin: chromatin should be more ‘open’ in order to facilitate transcription.
The transcriptional machinery recruits topoisomerases to unwind DNA [6, 7], which
can be targeted by TopoI and TopoII inhibitors to generate DNA double-strand breaks
[8, 9]. These breaks are assumed to induce mitotic catastrophe, which may selectively
eliminate cancer cells as opposed to normal, more slowly dividing, cells.

While it is known that the different anti-cancer drugs target the genome for DNA
damage and/or histone eviction, it is usually assumed that the targeting is more or less
uniformly random across the genome. However, it is possible that different anti-cancer
drugs have distinct genomic specificities, which can have important implications for the
use of these drugs in the treatment of cancer. Distinct genomic targeting specificities
can also affect the epigenome, which is increasingly recognized as an important deter-
minant in tumor formation. In many tumors, the epigenome is perturbed, including in
gliomas, prostate tumors, breast tumors and various lymphomas and leukemias [10, 11].
Consequently, targeting the epigenome through the use of HDAC and histone methyl-
transferase inhibitors is explored as a new strategy in cancer treatment [12, 13]. Since
it was recently realized that the anthracyclines also affect the epigenome by virtue of
histone eviction [2] and enhancement of nucleosome turn-over around open chromatin
[3], a deeper insight into the epigenomic landscape preferentially targeted by these drugs
has become even more relevant [14].

Despite these recent advances in understanding the mechanisms of action of
topoisomerase inhibitors, the analyses of drug targeting regions were limited to the
cis-regulatory elements such as promoters or gene regions, since comprehensive
data on the chromatin structure and (epi)genetic modifications were unavailable in
the systems used in these studies. As a result, a number of key issues still need to be
addressed. First, do anti-cancer drugs have a random genome-wide activity or are DNA
damage and histone eviction restricted to particular areas in the genome? Second,
while anthracycline drugs induce both DNA damage and histone eviction and then
attenuate phosphorylation of H2AX (γ-H2AX), is the DNA repair attenuated throughout
the genome or more restricted to particular sites in the genome? To address these
questions, we generated a high-resolution genomic profile of the regions of action of
various TopoI and TopoII anti-cancer drugs. We used the human erythroleukemia
cell line K562 because this cell line has been extensively profiled for (epi)genomic
modifications as part of the ENCODE project [5, 15]. The genomic regions of action of
the TopoI inhibitor TPT, as well as those of the TopoII inhibitors Etop, Acla and Daun,
were determined by ChIP-seq with γ-H2AX antibodies for the DNA damage response,
and by FAIRE-seq (Formaldehyde-Assisted Isolation of Regulatory Elements) for the
regions of histone eviction. Based on these data, we show that each anti-cancer drug
has a distinct (epi)genomic profile of histone eviction and/or DNA damage induction.
The clinical observations that some drugs (particularly Etop and TPT) provide no
additional effect when used in combination therapies [16] may be explained by
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overlapping (epi)genomic targeting profiles of these drugs. In addition, the selectivity
of these drugs for specific types of chromatin predicts selective sensitivity for specific
tumors. We illustrate this with diffuse large B-cell lymphoma (DLBCL) cells. These cells
are characterized by high levels of H3K27me3 [17, 18], and are –as predicted from our
chemical profiling– highly sensitive to Acla, which targets chromatin regions marked
with H3K27me3. This demonstrates the potential of chemical profiling of the genome
using DNA intercalating anti-cancer drugs for finding new applications of single or
combination therapies in cancer.

5.2. RESULTS

5.2.1. ANTHRACYCLINES INDUCE HISTONE EVICTION WITH DISTINCT

PREFERENCES

In oncology, compounds that induce DNA damage are widely used. These compounds
include TopoI and TopoII inhibitors, which generate DNA breaks [8, 9]. Anthracyclines
present an additional mechanism of action that enhances the effect of DNA breaks: evic-
tion of histones and enhancement of nucleosome turnover from particular open areas
of the chromatin [2, 3]. Histone eviction by anthracyclines was not observed in mitotic
cells when the chromatin was fully condensed, as illustrated in Figure 1a. This simple
experiment suggested that anthracycline-induced histone eviction may be dependent
on specific properties of the local chromatin structure. To obtain a genome-wide, high-
resolution mapping of histone eviction by different anthracyclines, we exposed K562
cells, a model cell line in the ENCODE project [15], with either the anthracyclines Daun
(induces histone eviction and DNA breaks [2]) or Acla (induces histone eviction only [2]),
or the chemically unrelated TopoII inhibitor Etop (induces DNA breaks only [2]). FAIRE-
seq was performed to profile histone eviction in a genome-wide fashion (Figure 1b and
Supplementary Table 1). The resulting profiles were normalized against the histone evic-
tion profile of untreated K562 cells, using an autocorrelation-based approach for detect-
ing background regions in the FAIRE-seq data (see Methods). We first assessed genome-
wide pairwise correlations between the normalized FAIRE-seq profiles (Figure 1c). As ex-
pected [2], Etop did not induce histone eviction, as illustrated by the strong correlation of
its FAIRE-seq profile with that of untreated control cells (Figure 1c). In contrast, the rel-
atively weak correlation of the Daun and Acla FAIRE-seq profiles with the untreated and
Etop-exposed cells indicated that Daun and Acla did induce widespread histone evic-
tion. Note that the correlation between Daun and Acla was substantially weaker than
that between Etop and untreated cells (Figure 1c; ρ = 0.73 for Daun and Acla; ρ = 0.87 for
Etop and Control; p < 10−10 for their difference using a Fisher z-transformation). This
suggests that the anthracyclines Daun and Acla target overlapping, but not identical ge-
nomic regions for histone eviction. Because promoter regions are preferentially targeted
by both anthracyclines [2, 3], we first determined the average drug-induced histone evic-
tion around transcription starting sites (TSS) (Supplementary Figure 1). Although both
anthracycline drugs induced histone eviction in these regions, there was also a marked
difference. Daun appeared to sense the transcriptional activity in these regions, as il-
lustrated by a preference for evicting histones at and around TSSs associated with the
most strongly expressed genes (Supplementary Figure 1b). Acla, however, also induced
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histone eviction around TSSs of intermediately expressed genes (Supplementary Figure
1a). This indicates that different anthracycline anti-cancer drugs selectively evict his-
tones in different genomic regions.

Figure 5.1: Different anthracycline drugs induce histone eviction from unique chromatin regions. (a)
MelJuSo cells expressing PAGFP-H2A were pre-treated with nocodazole for 6 hrs to arrest cells in M phase.
Part of the nucleus of a mitotic (top panel) or interphase cell (bottom panel) in the same treatment condition
was photoactivated (left) followed by 9µM Doxo exposure for another 1 hr. Green color represents photoacti-
vated histone H2A tagged with PAGFP. Redistribution of activated PAGFP-H2A in the interphase cell indicates
histones were evicted by Doxo treatment, whilst activated PAGFP-H2A in the mitotic cell remained bound to
the chromatin. Red color visualizes Doxo intercalated into chromatin; see also [2]. Scale bar, 10µm. (b) A snap-
shot of an area on chromosome 11, showing FAIRE-seq data after normalization against input DNA, aligned
with selected ChIP-seq profiles from the ENCODE consortium, including H3K4me1, H3K4me2, H3K4me3,
H3K27me3, H3K9me3, H3K36me, H3K9ac, H4K20me1, CTCF. (c) Genome-wide comparison of the FAIRE-seq
profiles of untreated, Daun-, Acla- or Etop-treated cells, normalized to input DNA. (d and e) Enrichment of
two selected histone marks (H3K27me3 and H3K36me3) in FAIRE-seq quantiles from Daun (blue line) or Acla
(red line) exposed cells. The FAIRE-Seq profile was normalized to untreated cells and then sorted based on
the level of histone eviction. The relative enrichment of a selected set of (epi)genomic marks was calculated
within these regions as a log2 odds ratio (see Methods for further details). The x-axis represents FAIRE-seq
signal strength, and the y-axis represents the enrichment of (d) H3K27me3 and (e) H3K36me3.

5.2.2. ANTHRACYCLINE DRUGS TARGET DISTINCT HISTONE MODI-
FICATIONS AND CHROMATIN BINDING FACTORS FOR HISTONE

EVICTION

Daun and Acla target promoter regions with distinct transcriptional activity. Since tran-
scriptional activity is associated with specific histone modifications, these two drugs
may thus target different types of modified histones for eviction. Therefore, we com-
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pared the genome-wide distributions of a wide range of (epi)genomic marks to our hi-
stone eviction profiles (Supplementary Figure 2). In Etop-treated cells, no specific en-
richment of any histone modifications or other chromatin-associated factors was ob-
served (Supplementary Figure 2c), as Etop does not induce histone eviction [2]. With
respect to Daun and Acla, the distributions of two histone marks were of particular inter-
est, namely H3K36me3 and H3K27me3, both determined by ChIP-seq as part of the EN-
CODE project [5]. H3K36me3 is generally associated with transcriptionally active gene
bodies [19], whereas H3K27me3 is associated with transcriptional repression [20, 21].
Indeed Daun preferentially evicted histones in H3K36me3-marked regions, while leav-
ing H3K27me3-marked regions relatively untouched (Figure 1d and e). Moreover, its
preference extended to a wide range of marks generally associated with transcriptional
activation (Supplementary Figure 2 and 3). This suggests that Daun has the ability to
sense active and relatively loose chromatin, as reported previously for its close homo-
logue Doxo [2, 3]. Additionally, Daun also targeted regions enriched in H3K9me1 and
H4K20me1 (Supplementary Figure 2), features that are associated with both transcrip-
tional activation and repression [22–24].

Whereas Daun preferentially evicted H3K36me3-marked histones over H3K27me3-
marked histones, the reverse was observed for Acla (Figure 1d and e). Acla evicted
H3K27me3-marked histones, typically considered facultative heterochromatin [20, 21],
but failed to evict histones from H3K9me3-marked constitutive heterochromatin
(Supplementary Figure 2).

Thus, our FAIRE-seq data specify different patterns of histone eviction for different
anthracyclines. Daun-induced histone eviction is more strongly associated with tran-
scriptional activation, and Acla-induced histone eviction with transcriptional repression
(Supplementary Figure 2 and 3).

5.2.3. A FINE-MAPPING OF CHROMATIN STATES SELECTIVELY TARGETED BY

DAUN OR ACLA FOR HISTONE EVICTION

The previous analyses provided important insights into the (epi)genomic marks that are
present in the specific regions targeted by the different drugs. However, the (epi)genomic
features used for the analyses (Figure 1d and e and Supplementary Figure 2) are strongly
correlated. Hence, based on these pairwise associations, it is difficult to establish which
of the features are most likely the ‘true’ determinants of the histone eviction profile. To
find these determinants of histone eviction by the respective anthracyclines, we em-
ployed a feature ranking method [25] (for details, see Methods). This method ranks fea-
tures according to two criteria: 1) the confidence in the relevance of a feature for predict-
ing histone eviction, and 2) the strength of association of a feature with histone eviction.
The results reveal that H3K27me3, compared to the other features, is a likely and strong
determinant of Acla-induced histone eviction (Figure 2a). For Daun, the most likely and
strongest determinants are early replication timing and the binding of Nsd2, which is
the methyltransferase for H3K36 [26] (Figure 2b). This is in line with the analysis shown
in Supplementary Figure 2. The association strength score of H3K27me3 with the Acla
profile is much stronger than that of early replication timing and Nsd2 with Daun. This
indicates that Acla is more specific in inducing H3K27me3-associated histone eviction
than Daun in evicting histones associated with early replication timing and Nsd2 bind-
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ing.

By means of these analyses (Figure 2A and B), the strongest (epi)genomic deter-
minants of histone eviction induced by the anthracycline drugs could be inferred in a
genome-wide fashion. On a genome-wide scale, this demonstrated interesting differ-
ences between the drugs. However, it provided only limited insight into the local differ-
ences and similarities between the different drugs, i.e. which genomic regions are dif-
ferent or shared between the different drugs, and which combinations of (epi)genomic
features are found in these regions. To address these questions, histone eviction profiles
were binarized to segment the genome into regions where histones are either evicted
or not evicted, as compared to untreated K562 cells (see Methods). After binarization,
the genome was segmented into regions that can be defined by specific combinations
(“states”) of histone eviction induced by different drugs. By including Etop in the anal-
ysis, in total three drugs gave rise to eight states. An additional state was included to
represent histone-free DNA in untreated K562 cells, which defines the background sig-
nal. The relative fold enrichment of a selected set of (epi)genomic features was then
computed for each state (Figure 2c; for the complete set of features, see Supplementary
Figure 4). Regions where only Daun evicted histones, and not Acla, were highly enriched
in H3K36me3 (Figure 2c, State F5 and Figure 2d; for other states see Supplementary Fig-
ure 5), in line with the analyses shown in Figure 1e. H3K36me3 marks active gene bodies,
as reflected by a strong enrichment of Pol2b and H3K79me2, features that associate with
transcriptional elongation. This shows that histone eviction by Daun is more selective
for transcriptionally active chromatin, as was confirmed by RNA-seq data monitoring
the transcriptional activity in the respective states (Supplementary Figure 3). These data
may provide an additional explanation for the relative selectivity of Daun for cancer cells
over healthy cells. Many cancer cells can show global transcriptional amplification in re-
sponse to, for example, c-Myc over-expression [27]. This would make their DNA more
susceptible to the anthracycline drugs like Daun, thus providing a therapeutic window
over normal healthy cells.

The genomic targeting profile of Acla differed from that of Daun. Acla preferentially
evicted histones in H3K27me3-marked genomic regions (Figure 2c, State F4 and Figure
2d). As expected, histone modification writers of H3K27me3, such as SUZ12 and EZH2
[28], were also relatively enriched in this state. H3K27me3 represents facultative hete-
rochromatin, which is relatively more condensed, and linked to cell-type specific tran-
scriptional silencing (Supplementary Figure 6). Despite the more condensed nature of
these regions, H3K27me3-marked histones can still be evicted by Acla. This is in contrast
to State F8 in Figure 2c, where no histone eviction was observed following either Acla
or Daun treatment. Here, chromatin is decorated with H3K9me3, a mark of constitutive
heterochromatin. Although H3K9me3 and H3K27me3 are both considered marks of het-
erochromatin, H3K9me3-marked heterochromatin may be more tightly compacted than
H3K27me3-marked heterochromatin, thus preventing intercalation and/or the eviction
process. Yet, these two types of chromatin regions can be distinguished on the basis of
chemical profiling with the two anthracycline drugs.

While Daun and Acla can be distinguished by their preferential eviction of histones
in H3K36me3-marked and H3K27me3-marked regions respectively, some other regions
targeted by Daun or Acla displayed canonical loose chromatin structures (H3K4me3,
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H3K27ac, H3K9ac, CpG islands and early replication) (Figure 2c, States F1 and F2; Sup-
plementary Figure 5, State F1 and F2). Some genomic regions targeted by both Daun and
Acla displayed also a non-typical loose chromatin composition (Figure 2c, State F3; Sup-
plementary Figure 5, State F3). For instance, the activating marks H3K27ac and Pol2b in
combination with the repressive mark H3K27me3 were relatively enriched in this state.
This indicates that Daun and Acla also target a more bivalent type of chromatin that
may be poised for transcription [29], which is different from the more facultative type
of heterochromatin observed in state F4 in Figure 2c. This also illustrates how chemical
profiling allows a further dissection of the different chromatin states in cells.

To facilitate a functional interpretation of the drug-specific histone eviction prefer-
ences, we labeled genomic regions based on combinations of chromatin marks (Figure
2e; see Methods). Although both Daun and Acla evicted histones in most of the active
promoter regions, Daun was more selective for active gene bodies, in concordance with
the preferential eviction of H3K36me3 by Daun. Acla additionally targeted relatively
silent and more condensed regions for histone eviction, such as poised promoters and
some heterochromatin (Figure 2e), as expected based on its preference for the eviction
of H3K27me3. The Etop enrichment profile (Figure 2e, State F7) was highly similar to
the control case (Figure 2e, State F9), confirming that no specific histone eviction was
induced by Etop [2].

In conclusion, the genome can be chemically profiled through the similar but
not identical histone eviction effects of two members of the anthracycline class of
anti-cancer drugs, Daun and Acla.

5.2.4. DRUG-INDUCED HISTONE EVICTION MAY ALLOW ANNOTATION OF

PREVIOUSLY UN-ANNOTATED GENOMIC REGIONS
The analyses of the histone eviction profiles, as measured by FAIRE-seq in K562 cells ex-
posed to Daun or Acla, also revealed some histone-evicted genomic regions that could
not be annotated by any of the (epi)genomic marks that were included for analyses in
this study. Based on this extensive set of (epi)genomic features, we defined 13% of the
genome as currently un-annotated. Within these un-annotated regions, some regions
were selectively sensed for histone eviction by the different anthracyclines. Notably, re-
gions sensed by Acla differed from those sensed by Daun. To characterize these regions,
we analyzed their genomic sequence specificity. The regions targeted for histone evic-
tion by Acla were enriched in G and C bases, and also showed high GC-content (Figure
3a and b). This differed markedly from the regions in the un-annotated genome that
were targeted by Daun for histone eviction. These were rich in A and T bases, and also
showed high AT-content (Figure 3c and d). This indicates that mapping the genome with
chemical compounds may allow annotation of genomic regions that were previously un-
annotated by any of the (epi)genomic marks tested in genome-wide analyses.

5.2.5. MAPPING γ-H2AX SIGNALING FOLLOWING DNA DAMAGE INDUCED

BY TOPOISOMERASE I OR II INHIBITORS
Contrary to Acla, the anthracycline Daun also induces DNA damage, as do the chemi-
cally unrelated TopoII inhibitor Etop and the TopoI inhibitor TPT. Although these drugs
have been used in the clinic for decades, it is unknown whether DNA damage occurs uni-
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Figure 5.2: Unique chromatin features and states are associated with drug-induced histone eviction. (a and
b) Determinants of the genome-wide Acla and Daun FAIRE-seq profiles. A Bayesian network based feature
ranking method24 is employed to rank features according to two measures, 1) the confidence that a feature is
relevant for explaining the FAIRE-seq profile (y-axis and color scale), calculated as bootstrap fraction; and 2)
the strength of association of a feature with the FAIRE-seq profile (indicated by the size of the bubbles), calcu-
lated as the mean conditional mutual information given the Markov blanket (see Methods for further details).
(c) Segmentation of the genome into states based on histone eviction induced by different drugs. The black-
and-white heatmap relates the different drug effects to the different states, with black and white indicating
histone eviction and no histone eviction, respectively. The heatmap shows the association of chromatin fea-
tures with the different states, ranging from blue (weak association) to red (strong association), expressed as a
log2 odds ratio (for details, see Methods). Significance was determined using a permutation-based approach
(n=1000; see Methods). Non-significant associations are depicted as white boxes. The labels on the y-axis right
represent the fraction of the genome that is covered by each state. (d) Histone modifications in two selected
drug-defined genomic states, F4 and F5. Within each state, 104 genomic regions were randomly sampled (size-
weighted) and visualized proportional to their size. For each region, the fraction of that region covered by a
certain histone modification was visualized on a scale from white (no overlap) to black (complete coverage). (e)
Association of the drug-defined genomic states with a range of functionally annotated (epi)genomic elements.
For a definition of these elements, see Methods.
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Figure 5.3: Definition of unique regions targeted by Acla or Daun in the un-annotated parts of the genome.
Nucleotide distribution of regions showing Acla-induced histone eviction (a and b) and Daun-induced histone
eviction (c and d) that were not covered by any other (epi)genomic features. For (a and c) mononucleotides and
(b and d) dinucleotides are shown. Enrichment of (di)nucleotides is represented by the log2 ratio of observed
number of (di)nucleotides to expected number of (di)nucleotides. Here, a positive score indicates more than
expected by chance, and a negative score indicates less than expected by chance.
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formly across the genome, or only at distinct genomic sites. A canonical DNA damage re-
sponse includes the phosphorylation of histone variant H2AX by ATM/ATR kinases [30].
To profile the DNA damage response and relate this to histone eviction, we performed
γ-H2AX ChIP-seq experiments on K562 cells after exposure to the various anti-cancer
drugs (Supplementary Table 1). Similar to Etop, TPT did not induce histone eviction,
as shown by a cell biology experiment (Supplementary Movie 1). γ-H2AX ChIP-seq pro-
files of drug-exposed cells generally showed stronger signals compared to untreated cells
(Figure 4a). Overall, Daun-treated cells induced less γ-H2AX than Etop- and TPT-treated
cells (Figure 4a). This can be the result of eviction of histone H2AX during anthracy-
cline treatment. After its eviction, H2AX is no longer available for phosphorylation by
the ATM/ATR kinases [2].

Similar to the FAIRE-seq signals, the γ-H2AX signals showed a diffuse domain-
oriented profile, as ATR/ATM phosphorylates H2AX in relatively broad areas around the
initial sites of DNA damage [31]. The computational analyses of the ChIP-seq data were
performed analogous to those of the FAIRE-seq data (Figure 1 and 2). First, the γ-H2AX
profiles were normalized to the γ-H2AX profiles as obtained from untreated K562 cells.
Then, the feature ranking method was used to extract those features that are most
predictive of the γ-H2AX profiles, in a genome-wide fashion. Compared to the other
features, H3K27me3 is a likely and strong determinant of the Daun-induced γ-H2AX
profile (Figure 4b). Nsd2, H3K27me3 and replication timing are likely and strong
determinants of Etop-induced DNA damage signals (Figure 4c). The DNA damage
response of the TopoI inhibitor TPT is determined by many of the same (epi)genomic
features as the Etop profile (Figure 4d), with the exception of H3K27me3, which is
more specific for Etop and Daun. This suggests that the various anti-cancer drugs
induce overlapping, but also distinct, local responses to DNA damage, as visualized by
phosphorylation of histone H2AX during the DNA repair process.

In order to identify which specific genomic regions are different or shared between
the different drugs, and to characterize these regions in terms of combinations of
(epi)genomic features, we binarized all γ-H2AX ChIP-seq profiles by applying a
cut-off based on the signal from untreated cells after normalization to input DNA
(see Methods). After binarization, the genome was segmented based on the three
binarized profiles from drug-exposed cells (Figure 4e; for the complete set of features,
see Supplementary Figure 7 and 8), similar to our strategy with the FAIRE-seq profiles
in Figure 2. Both Etop and TPT elicited strong γ-H2AX responses in transcriptionally
active regions, as shown by co-localization of γ-H2AX with histone marks H3K36me3
and H3K79me2, and with Pol2b (Figure 4e, States C1, C2 and C3). This was further
confirmed by an analysis of gene expression levels in these states (Supplementary
Figure 9), and was in line with the observation that topoisomerases TopoI and TopoII
often target transcriptionally active regions, especially surrounding promoter regions
[7, 33]. Yet, the other TopoII inhibitor Daun is not associated with these transcriptionally
active regions. Possibly, upon eviction of H2AX by Daun in these regions, no H2AX was
available for phosphorylation by ATM/ATR and hence no γ-H2AX was detected by the
subsequent ChIP-seq procedure (visualized in more detail in Supplementary Figure
10). This indicates that the loss of γ-H2AX is locally coupled to drug-induced histone
eviction. In addition, there were regions where Daun treatment induced a γ-H2AX
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Figure 5.4: Chromatin features and states associate with γ-H2AX induced by TopoI and TopoII inhibitors.
(a) A snapshot of an area on chromosome 11, showing FAIRE-seq and γ-H2AX ChIP-seq profiles after normal-
ization against input DNA, aligned with selected ChIP-seq profiles from the ENCODE consortium, including
H3K4me1, H3K4me2, H3K4me3, H3K27me3, H3K9me3, H3K36me, H3K9ac, H4K20me1, CTCF. (b to d) Deter-
minants of the genome-wide γ-H2AX profiles from cells following exposure to Daun, Etop or TPT. A Bayesian
network based feature ranking method [32] was employed to rank features according to two measures, 1) the
confidence that a feature is relevant for explaining the γ-H2AX profile (y-axis and color scale), calculated as
bootstrap fraction; and 2) the strength of association of a feature with the γ-H2AX profile (indicated by the
size of the bubbles), calculated as the mean conditional mutual information given the Markov blanket (see
Methods for further details). (e) Segmentation of the genome into states based on DNA damage induced γ-
H2AX following exposure of K562 cells to the different drugs. The black-and-white heatmap relates the states
to drugs, with black and white indicating γ-H2AX and no γ-H2AX, respectively. The heatmap shows the associ-
ation of chromatin features with these states, ranging from blue (weak association) to red (strong association),
expressed as a log2 odds ratio (for details, see Methods). Significance was determined using a permutation-
based approach (n=1000; see Methods). Non-significant associations are depicted as white boxes. The labels
on the y-axis represent the fraction of the genome covered by each state.
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response (Figure 4e, States C6 and C7). These were likely regions where Daun induced
DNA breaks but failed to induce histone eviction, such as the H3K27me3-marked
regions (Figure 2). Since Daun induced DNA breaks in these regions, as detected
by γ-H2AX, it apparently successfully intercalated into the genome, but failed to
additionally induce histone eviction. Consequently, phosphorylation of H2AX was still
possible. This explains why the primary γ-H2AX response following Daun exposure
concentrated in these H3K27me3-marked regions (see also Supplementary Figure 10).

The sensing of transcriptional activity by the various anti-cancer drugs may have im-
portant implications for the tissue and tumor selectivity of these drugs. Promoter re-
gions are strongly affected by anthracycline drugs [2, 3], as was also shown above (Sup-
plementary Figure 1). Therefore, we analyzed regions surrounding TSSs for enrichment
of the FAIRE-seq and γ-H2AX ChIP-seq signals. TSSs were categorized based on tran-
script levels as determined by RNA-seq of untreated K562 cells, in order to relate DNA
damage responses to local histone eviction and gene expression (Figure 5). We included
FAIRE-seq and ChIP-seq profiles from untreated K562 cells as a control. Unlike Daun
(Figure 5b and e), the TopoII inhibitor Etop (Figure 5c) showed no histone eviction. The
γ-H2AX signal was markedly increased –both upstream and downstream of TSSs– fol-
lowing Etop as well as TPT exposure in a manner strongly associated with the transcrip-
tional activity of genes (Figure 5f and g). Daun treatment markedly reduced the γ-H2AX
signal around the TSS of highly expressed genes (Figure 5e), probably following Daun-
induced histone eviction around highly expressed genes (Figure 5b).

The precise application of the different DNA damaging anti-cancer drugs in treat-
ment of different tumors is mainly based on clinical experience. Genome-wide chemi-
cal profiling of their effects on chromatin showed distinct selectivity both related to his-
tone eviction and to DNA damage response processes, which may have important con-
sequences for single as well as combination therapies of cancer.

5.2.6. CHEMICAL PROFILING OF THE GENOME FOR PROGNOSIS OF ANTI-
CANCER DRUG SENSITIVITY

Acla is an anthracycline that was considered in the treatment of cancer in Europe and
the USA, but was later abandoned due to disappointing sales (P. Brown, pers. comm.).
However Acla is still actively used in China and Japan, mainly in the treatment of AML
[4, 34]. Rational use of the different drugs would require a better understanding of their
distinct specificities of action. We have shown above that Acla preferentially induces hi-
stone eviction in genomic regions marked by H3K27me3 (Figure 2), unlike Daun, which
instead induces a γ-H2AX response in these regions (Figure 4). Given this selectivity, we
wondered whether these drugs could be more effective in the treatment of tumors re-
lying on H3K27me3 modifications as a driving feature. A large fraction of diffuse large
B-cell lymphomas (DLBCL) have elevated levels of H3K27me3, due to activating muta-
tions of the histone methyltransferase EZH2 [17], a subunit of the Polycomb Repressive
Complex 2 (PRC2) [35]. Increased H3K27me3 levels drive survival of these tumors, and
silencing EZH2 or chemically inhibiting EZH2 eliminates these tumors in experimental
mouse models [18]. Since Acla evicted histones in H3K27me3-marked regions, we won-
dered whether Acla showed different efficacy compared to Daun on DLBCL cell lines
harboring EZH2 activating mutations with corresponding elevated levels of H3K27me3.
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Figure 5.5: Loss ofγ-H2AX DNA damage signal is related to histone eviction during Daun treatment. (a) K562
cells were treated with the respective drugs for 4 hrs. Equal amounts of cell lysates were analyzed by 4%-12%
gradient SDS-PAGE and Western blot. No cleavage of PARP was observed, indicating that no apoptosis was
initiated during treatment. Actin was used as a loading control. Left, the position of protein weight markers;
right, the different proteins probed. (b to d) Average FAIRE-seq signal (normalized to input DNA) in a region
10 kb around transcription start sites (TSSs) upon treatment with Daun (b) and Etop (c), as well as without
treatment (d). TSSs were grouped based on high (blue), medium (green) and low (red) expression of the asso-
ciated gene, based on RNA-seq data from K562 cells. The dashed line shows the FAIRE-seq signal in untreated
conditions. (e to g) Average γ-H2AX signal (normalized to input DNA) in a region 10 kb around transcription
start sites (TSSs) upon treatment with Daun (e), Etop (f) or TPT (g), as indicated. TSSs were grouped based
on high (blue), medium (green) and low (red) expression of the associated gene, based on RNA-seq data from
K562 cells. The dashed line shows the FAIRE-seq signal in untreated conditions.



5.2. RESULTS

5

127

We analyzed four different lymphoma and leukemia cell lines: the erythroleukemia cell
line K562, the ALL cell line HPB-ALL and two DLBCL cell lines SU-DHL-4 and Pfeiffer.
The two DLBCL cell lines showed high levels of H3K27me3 due to activating mutations
in EZH2 [18] (Figure 6a). On the other hand, HPB-ALL has an activating mutation in
Nsd2 and thus increased levels of H3K36me3 [36], but has almost no H3K27me3 (Figure
6a). The four cell lines were treated with the different drugs, as well as with a chemical
inhibitor of EZH2. Induction of apoptosis was determined by the cleavage of PARP [37].
Acla was most effective in inducing apoptosis in the DLBCL cells (Figure 6b). To further
decipher differences in selectivity of the different anti-cancer drugs, the four cell lines
were exposed to different concentrations of Acla, Daun or Etop, and viability was mea-
sured 24 hrs after drug exposure. The DLBCL cells were about 10-fold more sensitive
to Acla than to Daun, while Daun and Acla were equally active in the other cells (Figure
6c). The DLBCL cells were not sensitive to the different concentrations of Etop that were
tested (Figure 6c). This suggests that Acla induced histone eviction from H3K27me3-
marked genomic regions was more efficient in eliminating DLBCL than the DNA damage
induction by Daun or Etop. In conclusion, different anti-cancer drugs show selectivity
for distinct genomic regions. This selectivity can potentially be translated into personal-
ized applications of these drugs in oncology, as illustrated for DLBCL.

Figure 5.6: DLBCL tumors accumulating H3K27me3 modifications are more sensitive to Acla exposure. (a)
SU-DHL-4 and Pfeiffer cells that harbor EZH2 activating mutations, HPB-ALL cells with an NSD2 activating
mutation, and K562 cells were lysed and analyzed by 4%-12% SDS-PAGE and Western blotting for the proteins
indicated. Total H3 and tubulin were used as loading control. Left, the position of the protein markers; right,
the different proteins probed. (b) K562, SU-DHL-4, Pfeiffer and HPB-ALL cells were treated with drugs for 4
hrs at the concentrations indicated. Equal amounts of protein in cell lysates were analyzed by 4%-12% SDS-
PAGE and Western blotting for the proteins indicated. Tubulin was used as loading control. The position of the
marker proteins is indicated. (c) K562, SU-DHL-4, Pfeiffer and HPB-ALL cells were exposed to serial dilutions
of different drugs (as indicated) for 24 hrs. Cell viability was determined by a metabolic cell titer blue assay. The
data points were related to the values of untreated cells that were set at 100% survival. Data points represent
the average of three independent experiments with SD.
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5.3. DISCUSSION
Millions of cancer patients have been, or are currently being, treated with the anti-cancer
drugs studied here [1]. These drugs are known to intercalate in the patient’s DNA and,
after trapping TopoI or TopoII, induce DNA damage [38, 39]. As tumor cells are likely
more sensitive to DNA damage than normal cells, this is supposed to provide a thera-
peutic window. Whether these drugs have specificity for distinct genomic regions, and,
if so, whether these specificities have any clinical consequences, are unknown. We per-
formed a chemical profiling of the human genome with anti-cancer drugs, considering
their histone eviction and DNA damage induction properties. Using the K562 cell line
as a reference cell line, we profiled, at high resolution, the chromatin structure following
treatment with different drugs. The computational analyses of the FAIRE-seq and ChIP-
seq data showed that the different anti-cancer drugs manipulated the genome in distinct
ways, with various consequences.

Chemical profiling may distinguish regions within un-annotated genomic regions.
Histone eviction requires no enzymes, but only the presence of the drug at an eviction
site [2]. It is dependent on the aminosugar group attached to the tetracycline group
of the anthracycline, which is different between Daun and Acla. This structural differ-
ence is likely the cause of the observed differences in genomic targeting profiles of Daun
and Acla. Differences are also observed within the previously un-annotated parts of the
genome. Here, segments can be identified as targeted for histone eviction by Daun or
Acla. These segments do not have any characteristics other than being rich in A, T and
AT (Daun), or C, G and GC (Acla). It is currently unknown what structural differences
between the two drugs cause this sequence bias. However it has been suggested that
poly(dA:dT) sequence is less favorable for nucleosome binding [39, 40], which may be
energetically easier for Daun to evict histones. This illustrates that profiling the genome
with chemical compounds may allow further annotation of the human genome, as illus-
trated here with anti-cancer drugs.

Topoisomerase I and II inhibitors sense transcriptional activity. TopoI and TopoII in-
hibitors are supposed to provide a therapeutic window by virtue of the higher sensitivity
of cancer cells to DNA damage. This would certainly be expected from tumors that grow
faster than normal cells. Whether this sensitivity provides the only explanation for this
therapeutic window in the clinic, is unclear. The analyses of the sites of action of the
various inhibitors used here show that these inhibitors typically act in regions that con-
tain active promoters that are enriched for histone marks such as H3K4me3, H3K27ac
and H3K9ac, as well as enriched for CpG islands. Indeed, transcript levels, as deter-
mined by RNA-seq, associated strongly with DNA damage response signals and histone
eviction around transcription start sites, as measured by γ-H2AX ChIP-seq and FAIRE-
seq, respectively. This suggests that the different anti-cancer drugs tested here sense
transcriptional activity. This could reflect the de-compacted nature of transcriptionally
active chromatin, which would facilitate histone eviction. Transcriptional activity may
be an important factor for tumor selectivity by the different TopoI and TopoII inhibitors.
This is best exemplified by the c-Myc-oncogene, which is found over-expressed in many
tumors and amplifies transcription of thousands of other genes [27]. As a result, c-Myc
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over-expression may thus render tumor cells more sensitive to anti-cancer drugs sensing
transcriptional activity, such as identified in our study.

Different anthracyclines evict histones from different genomic regions. The drugs
from the anthracycline class of TopoII inhibitors trap TopoII after the formation of tran-
sient DNA double-strand breaks, as such preventing ligation of the DNA breaks. Al-
though, as an exception in this class of inhibitors, Acla is not able to induce DNA breaks,
it is active in cancer treatment4. In addition to inducing DNA breaks, anthracyclines
evict histones [2] and enhance nucleosome turnover [3]. The evicted histones will be re-
placed by other mostly nascent histones, as such changing the epigenetic code. Analyses
of FAIRE-seq data show that the histone eviction profiles of the two anthracyclines only
partially overlap. Acla efficiently targets genomic regions marked by H3K27me3, which
typically contain repressed genes, while Daun targets more transcriptionally active re-
gions for histone eviction. The different specificities of these homologous drugs suggest
that new anthracycline variants can be developed that would target other unexplored
regions of the genome, which would provide new options for selectively targeting tumor
cells.

The similarity of topotecan and etoposide DNA damage targeting profiles, and its con-
sequences for combination therapies. The genome-wide chemical profiling of the γ-
H2AX response induced by TPT or Etop shows that DNA damage responses locate in
transcriptionally active regions. Etop induces additional DNA damage signals in tran-
scriptionally repressed regions marked by H3K27me3. Whether this provides an addi-
tional advantage of Etop over TPT in the clinic is unclear. Nevertheless, the fact that
TopoI inhibitor TPT and TopoII inhibitor Etop generally target highly similar genomic
regions may have been expected, since both enzymes are required in the unwinding of
genomic regions for allowing transcription to occur [7]. Still, this observation has an in-
teresting implication for the use of these inhibitors in combination treatments, as it in-
dicates that combining Etop and TPT in treatment may not yield additional anti-cancer
effects and only additional toxicity, which was indeed observed in the clinic [16, 41].

The DNA repair following daunorubicin exposure. Compared to Etop and TPT, the
activity of the anthracycline Daun on DNA break formation is more complex because of
the additional histone eviction activity that quenches phosphorylation of histone H2AX
and DNA repair. Indeed, Daun targets genomic regions for histone eviction that are
highly similar to the regions targeted for DNA damage by Etop and TPT. As a result, γ-
H2AX is not detected in genomic regions where histones are evicted by Daun. However,
γ-H2AX is induced by Daun in genomic regions marked by H3K27me3 because Daun
fails to evict histones in these regions, as was observed in the FAIRE-seq experiments.
This indicates that Daun does successfully intercalate into these regions for inducing
DNA breaks, but fails to additionally evict histones, as was also observed in the FAIRE-
seq data. Consequently, histone H2AX can still be phosphorylated, and DNA damage
responses continue in these regions.
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Conventional anti-cancer drugs act as epigenetic modifiers for personalized applica-
tions in the clinic. Recently, it has been recognized that many tumors can be specified
by their epigenetic make-up, as they activate, over-express or repress histone modifying
enzymes [11]. Our results suggest that the conventional anti-cancer drugs tested here
elicit DNA damage signals and/or evict histones in genomic regions characterized by
specific epigenetic make-ups, while ignoring other types of chromatin. Since histones
are modified and evicted following drug treatment, the local epigenetic code may be
(temporarily) reset. As such, the different anthracycline TopoII inhibitors may alter the
epigenetic state of cells, with major effects on tumors dependent on a particular epi-
genetic state. We illustrate this by using DLBCL cell lines, where PRC2-subunit EZH2
is frequently mutated yielding a hyper-activated H3K27 histone methyltransferase and
thus high levels of H3K27me3 [17]. EZH2 inhibitors are currently under development
for specifically targeting these tumors [18]. Yet, the conventional compound Acla, by
virtue of preferentially evicting histones in H3K27me3-marked regions, may be equally
effective in eliminating these types of tumors. The current treatment for DLBCL patients
involves Doxo in combination with four other drugs, known as the R-CHOP therapy [42].
We showed that DLBCL cells with EZH2 activating mutations are some 10-fold more sen-
sitive to Acla than to Daun, while insensitive to Etop. This suggests that the local eviction
of histones from H3K27me3-marked genomic regions by Acla may have more potent
anti-cancer effects than the local DNA break formation by Etop, and that Acla could be
a more effective additional drug in the R-CHOP therapy than the current alternatives
Doxo or Daun. As increased H3K27me3 levels are also observed in other human tumors
such as esophageal squamous cell carcinomas [43], hepatocellular carcinomas [44] and
breast tumors [45], reconsidering Acla for such patients may provide new and personal-
ized treatment opportunities.

The high-resolution genome-wide chemical profiling of the sites of action of a se-
lected set of anti-cancer drugs shows that these drugs have strong selectivity for dis-
tinct types of chromatin and are able to sense different levels of transcriptional activity.
Our analyses may provide rationale for the failure of particular combination therapies.
Furthermore, they provide a basis for new combinatorial applications of conventional
chemotherapeutic drugs, and for new applications of anthracycline drugs in treating
specific types of cancer by sensing and manipulating their epigenetic make-up.
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5.4. MATERIALS AND METHODS

5.4.1. DATA GENERATION

CELL CULTURE

K562 cells were maintained in RPMI 1640 media with penicillin/streptomycin and 8%
FCS, according to the ENCODE recommended culture conditions. Cell density reached
around 0.5×106/ml before treatment. MelJuSo/PAGFP-H2A cells were maintained in
IMDM with penicillin/streptomycin, G-418 and 8% FCS.

REAGENTS

Doxorubicin and etoposide were obtained from Pharmachemie (The Netherlands).
Daunorubicin was obtained from Sanofi-Aventis (The Netherlands). Topotecan was
obtained from GlaxoSmithKline (UK). Aclarubicin was obtained from Santa Cruz (US)
and dissolved in dimethylsulphoxide at 20 mg/ml concentrations, aliquoted and stored
at -20◦C for further use.

WESTERN BLOTTING

Cells were lysed directly in RIPA buffer (50 mM Tris-HCl pH 7.4, 1% NP-40, 0.5%
Na-deoxycholate, 150 mM NaCl, 1 mM EDTA, 1 mM EGTA). All buffers were supple-
mented with a protease inhibitor cocktail (Roche). Lysates were quantified and equal
amounts of total proteins were analyzed by SDS–polyacrylamide gel electrophoresis for
subsequent Western blotting analysis. The following primary antibodies were used:
γ-H2AX(1/1000; Millipore), poly(ADP-ribose) polymerase (1/1000; Cell Signaling), actin
and tubulin (1/2000; Sigma), EZH2 (1/1000; Millipore), Top2α (1/1000; Bethyl).

CELL VIABILITY ASSAY

Cells were seeded in 96-well plate at the density of 5×104 cells/well. Then drugs were
added to the cells at the indicated final-concentration. Drug-treated cells were further
cultured for 24 hours, and CellTiter-Blue® (Promega) was used for the quantification of
viable cells.

FAIRE-SEQ AND CHIP-SEQ

For FAIRE-seq, 5×107 K562 cells in two 15cm dishes were treated with 10 µM Daun, 60
µM Etop or 20 µM Acla for 4 h, fixed and processed as described [46]. For ChIP-seq,
5×107 K562 cells in two 15 cm dishes were treated with 10 µM Daun, 60 µM Etop or 10
µM Topo for 4 h, fixed and processed as previously descrived [47]. Anti-γ-H2AX (10 µg
per ChIP sample; Millipore05-636) antibodies were used for ChIP. All DNA samples were
processed and sequenced on Illumina HiSeq 2000 platforms, according to the provider’s
kits and protocols for ChIP samples. Two biological replicates were included for each
treatment and for all ChIP-seq or FAIRE-seq experiments. All samples were quality con-
trolled and processed in the same way before further analyses.

5.4.2. COMPUTATIONAL ANALYSES

NORMALIZATION

Normalization of a high-throughput signal x with a control y representing the back-
ground, such as input DNA or whole-cell extract, is commonly performed by estimating
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a normalization factor f to linearly scale y such that it can be quantitatively compared
to x. For our data, we divided the reference genome into consecutive 500bp bins, and
computed a normalized signal as follows:

xnorm
i = log2(

xi +1

yi × f +1
) (5.1)

Here, xnorm
i is the normalized signal in bin i , xi represents the number of signal reads

in bin i , yi represents the number of control (whole-cell extract) reads in bin i , and we
added a pseudocount of 1 to account for bins with no reads. Note that if and only if
xi > yi × f , then xnorm

i > 0, implying there is enrichment of our signal of interest over the
background.

The normalization factor f can be computed by identifying those bins x j that can be
considered devoid of signal, i.e. containing only background reads, and then computing
the ratio of the sums of signal reads and control reads in these bins:

f =
∑

j x j∑
j y j

(5.2)

To find these background bins, consider that in a normalized signal, a relatively large
genomic region a containing only background bins should show up as white noise with a
mean of 0. Suppose a contains n bins, namely bins m to m +n −1, then white noise can
be identified by computing the autocorrelation in this genomic region a, for a certain
number of lags k:

r (k) = c(k)

c(0)
(5.3)

Here, c(k) is the autocovariance function in our genomic region a:

c(k) = 1

n

m+n−k−1∑
i=m

(xnorm
i −xnorm

m )(xnorm
i+k −xnorm

m ) (5.4)

Where xnorm
m is the mean value of xnorm in a:

xnorm
m = 1

n

m+n−1∑
i=m

xnorm
i (5.5)

If the theoretical autocorrelation ρ(k) = 0, then the sampling autocorrelation r (k) is
roughly normally distributed, which can be used to determine significance:

r (k) ∼ N (− 1

n
,

1

n
) (5.6)
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Note that until now, the assumption was that our signal was properly normalized,
although the normalization factor f was still unknown. Therefore, to actually identify
background regions, we temporarily set f = 1. We normalized x using f = 1 and y , and
slid a 5Mb window across the genome, at 100kb steps. Since our bin size was 500bp, we
had 2500 data points in each 5Mb window, and for each window w we computed the
mean autocorrelation across 10 lags:

r w = 1

10

10∑
k=1

r (k) (5.7)

Bearing in mind that rw ∼ N (− 1
2500 , 1

2500 ), the autocorrelation in a 5Mb window
was deemed significant if the above statistic was larger than the 99% upper confidence
bound:

r w > z1− 0.01
2

× 1

50
− 1

2500
(5.8)

Using the above approach, we estimated which genomic bins could be considered
background, based on setting f = 1. Now, let I be the set of indices representing the bins
that fall within 5Mb windows called as background regions. We then computed our final
estimate of the normalization factor f as follows:

f =
∑

i∈I xi∑
i∈I yi

(5.9)

UCSC GAPS

From all FAIRE-seq and ChIP-seq profiles, those 500bp bins were removed that overlap
with the genomic regions defined by the UCSC gaps track.

BINARIZATION

Considering that a bit over 1% of the genome represents open chromatin in K562 cells
[48], the 99th percentile of the untreated FAIRE-seq profile was used as a threshold to bi-
narize the drug-treated FAIRE-seq profiles. For a drug-treated FAIRE-seq profile, a 500bp
bin was called as enriched if the normalized read count exceeded the 99th percentile
of the untreated FAIRE-seq profile, and if the normalized read count of the untreated
FAIRE-seq itself did not exceed this threshold. The same approach was taken for the
γ-H2AX profiles.

(EPI)GENOMIC DATA

Gene-related data was downloaded from the Ensembl website (GRCh37; release 70).
Repli-seq data was downloaded from the ENCODE website and processed as in [49].
RNA-seq data was downloaded from the ENCODE website, and processed using TopHat
v2.0.9 [50], Bowtie v2.1.0 [51] and Cufflinks 2.1.1 [52] with default parameter settings.
All other transcription factor and histone modification related data were downloaded as
processed peak sets from the ENCODE website. Gene sets (MSigDB, gene symbols, v4.0)
were downloaded from the Broad Institute website, and were restricted to those gene
symbols that could be mapped by name to gene symbols in the Ensembl release 70.
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PAIRWISE SCATTER PLOTS

Data were normalized against whole-cell extract, as described above, and 105 points
were randomly selected and plotted.

TSS ALIGNMENT PLOTS

Data were normalized against whole-cell extract, as described above, and the average
normalized read count was calculated in 50 equal-sized bins around the TSS.

GENOME-WIDE QUANTILE PLOTS

All drug-treated FAIRE-seq profiles were normalized against untreated FAIRE-seq by
subtracting the untreated FAIRE-seq that was normalized against whole-cell extract
from the drug-treated FAIRE-seq profile that was normalized against whole-cell extract.
For each individual profile, the bins were divided into 100 quantiles, and for each
quantile and each (epi)genomic mark, the overlap was computed as a log2 odds ratio.
As such, a log2 odds ratio of 2 for a certain feature and a certain FAIRE-seq quantile
indicates that a twice as large fraction of genomic regions marked by that feature was
covered by that FAIRE-seq bins of that quantile, compared to genomic regions not
marked by that feature.

GENOME SEGMENTATION BASED ON DRUG-TREATED FAIRE-SEQ OR γ-H2AX PROFILES

The FAIRE-seq profiles were binarized as explained above. Having three binarized
FAIRE-seq profiles (Aclarubicin, Daunorubicin and Etoposide) thus resulted in eight
possible configurations or states for each 500bp bin. For each of these states, the
chromatin composition was determined by computing overlap with (epi)genomic
marks as a log2 odds ratio. As such, a log2 odds ratio of 2 for a certain feature and a
certain state indicates that a twice as large fraction of genomic regions marked by
that feature was covered by that state, compared to genomic regions not marked by
that feature. Significance of the resulting associations was determined by circular
permutation (p = 103 equidistant permutation shifts) of states across genomic 500bp
bins. To avoid contamination of the null distribution by artificial autocorrelation, the
first permutation shift was set equal to the size of the largest region of consecutive bins
defining a single state. A log-odds ratio for an (epi)genomic mark was called significant
if none of the permutation log2 odds ratios were more extreme (i.e. 0 < p < 0.001).

GSEA
All drug-treated FAIRE-seq profiles were normalized against untreated FAIRE-seq by
subtracting theuntreated FAIRE-seq that was normalized against whole-cell extract
from the drug-treated FAIRE-seq profile that was normalized against whole-cell extract.
For each gene (GRCh37; Ensembl release 70), the mean FAIRE-seq normalized read
count was calculated, by averaging the read counts in those 500bp bins that overlapped
the gene. For each pair of drug-treated FAIRE-seq profile and MSigDB gene set, a
GSEA score was computed by performing a Mann-Whitney U-test of genes in the gene
set against genes not in the gene set. A similar GSEA was performed using the gene
expression values, instead of the FAIRE-seq normalized read counts.
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SEQUENCE COMPOSITION

From the set of eight binarized FAIRE-seq and ChIP-seq profiles (see above), those bins
were removed that 1) overlap with the genomic regions defined in the UCSC gaps track
and 2) overlap with any of the (epi)genomic marks used in our analyses, or with more
than one of our binarized FAIRE-seq or ChIP-seq profiles. Therefore, the remaining re-
gions are strictly unique for a single drug, and cannot be characterized in terms of other
(epi)genomic marks. For each of these sets of drug-profiled regions, mononucleotide
counts as fractions of total mononucleotide count, i.e. discrete probability distributions,
were determined:

f (x) = Nx∑
y∈{A,C,G,T} Ny

, x ∈ {A,C,G,T} (5.10)

Here, Nx and Ny represent the counts of a certain nucleotide x or y . Then, corre-
sponding frequencies were determined for the whole genome:

g (x) = Nx∑
y∈{A,C,G,T} Ny

, x ∈ {A,C,G,T} (5.11)

Normalized mononucleotide frequencies used for plotting were computed by taking
the log2 ratio of the drug-profiled region frequencies with the whole-genome frequences:

log2
f (x)

g (x)
(5.12)

For determining statistical significance of the observed nucleotide distribution f (x),
the base 2 Shannon entropy of this distribution was computed:

H f =− ∑
x∈{A,C,G,T}

f (x)× log2( f (x)) (5.13)

Then, a null distribution of expected frequencies f (x) was generated by circularly
permuting the identified bins across the genome (p = 104 equidistant permutation
shifts), counting mononucleotide occurrences, and determining their Shannon en-
tropies. To avoid contamination of the null distribution by artificial autocorrelation, the
first permutation shift was set equal to the size of the largest consecutive drug-profiled
region.

Dinucleotide frequencies were determined in similar fashion. However, in the dinu-
cleotide case, significance was inferred by comparing each of the individual dinucleotide
frequencies to their corresponding null distribution, resulting in a single p-value for
each dinucleotide.

MARKOV BLANKET / CONDITIONAL MUTUAL INFORMATION ANALYSIS

Broadly, the approach as previously applied to retroviral and transposon integration tar-
get site selection [25] was used. Genome-wide FAIRE-seq and γ-H2AX profiles were bi-
narized as outlined above, resulting in a value of 0 or 1 for each 500bp bin. Resulting bi-
narized profiles were normalized with the untreated profiles by setting to 0 each bin for
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which the untreated showed a 1. For the (epi)genomic features, a 500bp bin was set to 1
if a particular feature overlapped with that bin, and 0 otherwise. For each drug-treated
profile in combination with the binarized (epi)genomic profiles, we inferred Bayesian
networks using BANJO [32]. Since BANJO employs simulated annealing for determin-
ing the network structure, we performed 400 bootstraps of size 40000. In each resulting
network, we identified the Markov blanket of the drug-treated node. Using the Markov
blankets, the importance of an (epi)genomic feature for drug-specific histone eviction
or γ-H2AX was determined in two dimensions. First, the fraction of times was deter-
mined that a certain feature occurred in the Markov blanket. This represented the con-
fidence that this feature is truly relevant. Second, the conditional mutual information
was computed of this feature with the drug-treated profile given the remaining features
in the Markov blanket, taking the average across all Markov blankets. This measure rep-
resented the unique strength of association of this feature with the drug-treated profile,
that can not be explained by any of other (epi)genomic features in the analysis.

To take into account the strong autocorrelation along the genome of any
(epi)genomic profile, we included an autocorrelation node for each feature in the
Bayesian network, which represented the ceiling of the average binarized feature
values of this (epi)genomic mark in the neighboring bins. During the network
structure learning using BANJO, these autocorrelation nodes were fixed parents of their
corresponding (epi)genomic feature node, and were allowed no connections to other
nodes.

DEFINITION OF REGULATORY ELEMENTS

1. Active promoters: An H3K4me3 or H3K9ac peak within 3kb upstream of a TSS or
1kb downstream of a TSS, but no H327me3 or H3K9me3 peaks.

2. Poised promoters: An H3K4me3 and H3K27me3 peak within 3kb upstream of a
TSS or 1kb downstream of a TSS.

3. Inactive promoters: An H3K9me3 or H3K27me3 peak within 3kb upstream of a
TSS or 1kb downstream of a TSS, but no H3K4me3 or H3K9ac peaks.

4. Active gene bodies: An H3K36me3 peak within a gene body, but no H327me3 or
H3K9me3 peaks.

5. Inactive gene bodies: An H3K36me3 or H3K9me3 within a gene body, but no
H3K36me3.

6. Active enhancers: An H3k4me1 peak and an H3k27ac spaced at most 500bp apart,
or alternatively a p300 peak alone suffices. All regions within 5kb of an H3K4me3
peak are removed.

7. Poised enhancers: An H3k4me1 peak with a 250bp slack. All regions within 5kb of
an H3K4me3, p300 or H3K27ac peak are removed.

8. Heterochromatin: An H3K27me3 or H3K9me3 peak.
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5.5. SUPPLEMENTARY MATERIAL

5.5.1. SUPPLEMENTARY FIGURES

Figure S 5.1: Drug-induced histone eviction around promoter regions. Average FAIRE-seq signal (normalized
to input DNA) around transcription start sites (TSSs) upon treatment with a) Acla, b) Daun and c) Etop. The
dashed line shows the FAIRE-seq signal in untreated samples.
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Figure S 5.2: (Epi)genomic features enriched in drug-induced histone eviction regions. Association of
the FAIRE-seq profile from Etop-treated cells (normalized to FAIRE-seq in untreated samples) with various
(epi)genomic features. The genome-wide FAIRE-seq profile is divided into 100 quantiles, and sorted along the
y-axis. For each pair of chromatin feature and FAIRE-seq quantile, the overlap is calculated between the ge-
nomic bins representing that FAIRE-seq quantile, and the genomic regions marked by that chromatin feature,
ranging from blue (weak overlap) to red (strong overlap).
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Figure S 5.3: Transcriptional activity in drug-induced histone eviction regions. Association of FAIRE-seq
profiles (normalized to FAIRE-seq in untreated condition) with RNA-seq. A gene was associated with a drug
if it was located within 2kb of one of the top 5% FAIRE-seq bins for that drug. Then, a Mann-Whitney test
was performed to test the difference in expression levels between genes associated with one drug and genes
associated with another drug.
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Figure S 5.4: Comparison of gene sets targeted by different drugs for histone eviction. Gene set enrichment
analysis (GSEA) based on the Mann-Whitney U test, using Daun and Acla FAIRE-seq read counts (normalized
to untreated samples), and RNA-seq RPKM (see Methods). Each point represents a gene set. On the x-axis,
gene sets are scored by GSEA expression z−score. On the y-axis gene sets are scored by the difference of the
GSEA Daun FAIRE-seq score and the GSEA Acla FAIRE-seq score. The correlation is positive, showing that
Daun targets more highly expressed gene sets for histone eviction, compared to Acla.
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Figure S 5.5: (Epi)genomic features targeted differently or similarly by distinct drugs for histone eviction.
Segmentation of the genome into states based on histone eviction induced by different drugs. The black-and-
white heatmap relates the different drug effects to the different states, with black and white indicating histone
eviction and no histone eviction, respectively. The blue-to-red heatmap shows the association of chromatin
features with the different states, ranging from blue (weak association) to red (strong association). The measure
of association is the log2 odds ratio (see Methods for details), where for example a value of 2 for a certain
feature and a certain state indicates that a twice as large fraction of genomic regions marked by that feature was
covered by that state, compared to genomic regions not marked by that feature. Significance was determined
using a permutation-based approach (p =1000; see Methods). Non-significant associations are depicted as
white boxes. The labels on the y-axis represent the fraction of the genome that is covered by each state.
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Figure S 5.6: Representative of major histone modifications in drug-defined genomic states (FAIRE-seq).
Within each state, 104 genomic regions were randomly sampled (size-weighted), and visualized proportional
to their size. For each region, the fraction of that region that was covered by a certain histone modification was
visualized on a scale from white (no overlap) to black (complete coverage).
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Figure S 5.7: Transcriptional activity in drug-defined genomic states based on drug-induced histone evic-
tion. Gene expression in drug-defined genomic states (FAIRE-seq). Genes were mapped to states if their re-
spective TSS (+/-2kb) overlapped a region called as a certain state.
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Figure S 5.8: (Epi)genomic features targeted differently or similarly by distinct drugs for DNA damage re-
sponse. Segmentation of the genome into states based on DNA damage induced γ-H2AX following exposure
of K562 cells to the different drugs. The black-and-white heatmap relates the states to drugs, with black and
white indicating γ-H2AX and no γ-H2AX, respectively The blue-to-red heatmap shows the association of chro-
matin features with these states, ranging from blue (weak association) to red (strong association). The measure
of association is the log2 odds ratio (see Methods for details), where for example a value of 2 for a certain fea-
ture and a certain state indicates that a twice as large fraction of genomic regions marked by that feature was
covered by that state, compared to genomic regions not marked by that feature. Significance was determined
using a permutation-based approach (p =1000; see Methods). Non-significant associations are depicted as
white boxes. The labels on the y-axis represent the fraction of the genome covered by each state.
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Figure S 5.9: Representative of major histone modifications in drug-defined genomic states (γ-H2AX ChIP-
seq). Within each state, 104 genomic regions were randomly sampled (size-weighted), and visualized propor-
tional to their size. For each region, the fraction of that region that was covered by a certain histone modifica-
tion was visualized on a scale from white (no overlap) to black (complete coverage).

Figure S 5.10: Transcriptional activity in drug-defined genomic states based on drug-induced DNA damage
response. Gene expression in drug-defined genomic states (γ-H2AX ChIP-seq). Genes were mapped to states
if their respective TSS (+/-2kb) overlapped a region called as a certain state.
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Figure S 5.11: Attenuated γ-H2AX response correlated to drug-induced histone eviction in Daun-treated
cells. Comparison of Daun γ-H2AX ChP-seq, Etop γ-H2AX ChIP-seq, and Daun FAIRE-seq (normalized to
untreated samples of the respective experiment procedure). This shows that there are genomic regions where
the Etop-treated profile shows DNA damage signaling, but Daun-treated one does not, likely because of the
high levels of histone eviction induced by Daun in these same genomic regions.
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6.1. CHROMATIN PROFILING

In this dissertation, we studied DNA integrating elements and anti-cancer drugs for the
purpose of perturbing chromatin. DNA integrating elements were used for inducing mu-
tations and studying chromatin position effects, and as such for improving cancer gene
discovery and gaining insights into gene regulation. Anti-cancer drugs were used for
histone eviction and inducing DNA breaks, and as such for gaining insights into chro-
matin structure and opening up potential for new cancer treatment designs. In perturb-
ing chromatin using these techniques, monitoring the response of chromatin to these
perturbations can be considered chromatin profiling, as the response is dependent on
physical properties of the chromatin.

6.1.1. INSERTIONAL MUTAGENESIS

Insertional mutagenesis (IM; Chapter 2) can be considered genome-wide profiling of
oncogenic potential. While oncogenic potential can be seen as a genome-wide variable,
eventually researchers are interested in specific genes involved in tumorigenesis, e.g. [1–
3]. As was discussed in Chapter 2, a typical approach for identifying genes involved in
tumorigenesis from IM screens is to find the signficant peaks (CISs) in an integration
profile, and manually map these peaks to putative target genes, e.g. [4, 5]. Not only does
this manual mapping introduce bias, also disregarding properties of individual integra-
tions describing their tumorigenic selection bias, such as distance to genes, orientation
relative to genes, expression of nearby genes and chromatin environment, can poten-
tially lead to high numbers of false positive CISs. Chapter 2 made a first step in address-
ing these issues by presenting KC-RBM, a tool for automatically mapping integrations
to putative target genes. An additional aggregation step allowed for retrieving putative
cancer-related genes from IM screens by finding commonly targeted genes (CTGs). KC-
RBM used orientation and distance relative to genes for mapping integrations, and fur-
thermore gene expression was analyzed in conjunction with integration profiles to gain
insight into the genes targeted by integrations.

In Chapter 3, the influence of integration bias on cancer gene discovery was demon-
strated using paired unselected and selected integration datasets, which led to the con-
clusion that 7%-33% of CISs retrieved from IM screens could well be false positive. This is
likely no different for CTGs, and is therefore also a potential problem for KC-RBM. In KC-
RBM, integration bias could be addressed explicitly by drawing inspiration from Chapter
3. Due to integration bias, some genes will a priori have more integrations assigned to
them, not strictly due to selective pressure. As was shown in Chapter 3, integration bias
can be described in detail using a wide range of (epi)genomic features. Thus, a nonlin-
ear classifier, such as a randomForest classifier, could be trained to distinguish (unse-
lected) integration loci from random control loci. This classifier could estimate, for each
base pair in the genome, the likelihood of it being a potential integration locus given the
chromatin context. In essence, this would provide a genome-wide a priori integration
probability distribution. By comparing the CTG counts to integration counts expected
based on this a priori integration probability distribution, CTGs could be corrected for a
priori integration bias.
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6.1.2. INTEGRATION BIAS

Genome-wide integration profiling (Chapter 3) can be considered chromatin profiling
of integration sensitivity. Integration sensitivity may provide insights into chromatin
structure. In Chapter 3, the existence of a hierarchy in integration target site selection
was inferred by virtue of comparing the integration profiles of different DNA integrating
systems, in terms of a large amount of data describing the chromatin. It was shown that
on large genomic scales, target site selection is similar across systems, whereas on small
genomic scales, integration target site selection is system-specific. It is not unlikely that
this hierarchy in target site selection represents a hierarchy in genome organization as
well, as some genomic regions are inherently more accessible, not only for DNA integrat-
ing elements, but also for DNA binding proteins. This is illustrated by the observation
that this large-scale division into two classes of genomic regions roughly corresponds to
the distinction between heterochromatin and euchromatin, between LADs and iLADs,
and between early and late replicating domains. These are chromatin features that are
all strongly associated with genome organization and chromatin accessibility [6–8]. On a
smaller scale, the integrating systems each recognize distinct types of chromatin, as such
profiling the chromatin on two levels that could be distinguished by studying multiple
DNA integrating elements in parallel.

In studying the integration targeting profiles among different systems, MMTV was
found to be remarkably unbiased, compared to SB and PB. One possible explanation
could be given by cell phase dependent integration. For another species of retrovirus,
MuLV, it has been shown that cells must pass through mitosis in order for MuLV to be
able to enter the nucleus [9]. If this requirement would also hold for MMTV, and addi-
tionally, for some reason, MMTV would only be active during this same phase, it would
find chromatin in a highly compacted state. In this highly compacted state, perhaps
most genomic regions equally (in)accessible to integration, possibly with the exception
of some "fundamental regulatory and structural building blocks of chromosomes" [10]
such as the genomic loci that define TADs by virtue of their strong 3D interactions in
only one direction along a chromosome [11]. Indeed, in Chapter 3, in contrast to other
(epi)genomic features, these TAD boundary interfaces were shown to be hotspots of
MMTV integration.

6.1.3. CHROMATIN POSITION EFFECTS

TRIP (Chapter 4) provides a way of profiling transcriptional permissiveness. TRIP can
be adapted to study many other processes that are dependent on local chromatin state.
A number of possibilities were outlined in the Discussion of Chapter 4. Given the re-
cent advances and growing interest in CRISPR-based genome editing [12], an interesting
additional possibility is to assess the efficiency of the CRISPR/Cas9 system in different
chromatin states. It has been suggested that this efficiency is dependent on the local
chromatin state [13, 14]. Using TRIP, the efficiency could be studied at the exact same
site in different chromatin states, which is not possible in an endogenous setting.

TRIP can be considered genome-wide in the sense that it can generate expression
values for thousands of randomly integrated reporter genes, without pre-imposed re-
strictions to integrating into certain genomic regions. However, as was shown in Chapter
3, integration of reporter genes into the genome does come with substantial biases.
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One may wonder what the importance of these integration biases is for computing
associations of reporter gene expression with any (epi)genomic features. For example,
in the TRIP study [15] we computed the association of reporter gene expression with a
number of binarized (epi)genomic features, such as lamina-associated domains (LADs)
[7, 16]. It is known that there is an integration bias against LADs, i.e. there are rela-
tively few integrations within LADs [17]. To demonstrate the influence of this bias on
the association of reporter gene expression with LADs we ran a simple simulation. We
randomly generated 104 integrations in silico, and distributed these in an increasingly
uneven fashion across two classes, e.g. LADs and inter-LADs [7, 16], from completely
even (i.e. 5000 in one class and 5000 in the other) to highly uneven (i.e. 9998 in one class
and 2 in the other). For each integration, depending on the class of an integration, we
simulated expression values by sampling from a certain class-specific expression distri-
bution, i.e. a normal distribution with mean 0.1 and standard deviation 1 for Class 1, and
a normal distribution with mean 0 and standard deviation 1 for Class 2. Then, for each
distribution, we performed Welch’s t-test to distinguish between the two classes. The
results of the simulation are shown in Figure 6.1. It shows two measures, 1) the statistical
significance of the t-test, expressed as a z-normalized t-statistic, and 2) the effect size,
expressed as the difference in mean reporter gene expression between the two classes.
As could be expected, it clearly illustrates that with an increasingly uneven distribution,
the expected effect size remains the same. However, the variance in the effect size in-
creases, and with it the statistical significance reduces. In other words, given a certain
distribution of a number of integrations across two classes, a more asymmetric distri-
bution will require a larger total number of integrations to detect a certain effect size as
statistically significant.

Not for all questions it is equally straightforward to determine the (lack of) influence
of integration bias. In these cases, it may be needed to regularize the genome-wide inte-
gration profile. We provided one such example when inferring PGK domains reflecting
genome-wide domains of transcriptional permissiveness, using a hidden Markov model
(HMM) [15]. Since by inferring an HMM, equidistant spacing of integrations on the
genome was assumed, we asked to what extent integration bias affected the eventual
domain calling. For this purpose, a non-homogeneous HMM was additionally inferred,
with the HMM transition probabilities depending on the distance between IRs [18]. The
domains inferred using both approaches were highly similar.

In conclusion, while in the case of interpreting TRIP results it should always be kept
in mind that integration is random but biased, the impact of these biases on results
seems often limited. However, an important drawback of integration bias, is that it re-
duces statistical power.

6.1.4. HISTONE EVICTION AND DNA DAMAGE INDUCTION

On a large scale, the three types of profiles mentioned above, oncogenic potential, inte-
gration sensitivity and transcriptional permissiveness are all strongly associated. For ex-
ample, all profiles somehow relate to chromatin compaction, a basic characterization of
chromatin structure. In Chapter 5, we used anti-cancer drugs to directly manipulate this
structure, for example by drug-induced eviction of histones from chromatin. Monitoring
the response of chromatin to these drugs can be considered profiling of drug-dependent
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Figure 6.1: 5×103 integrations were generated in silico, and distributed across two classes (Class 1 and Class 2)
in an increasingly uneven fashion. Depending on the assigned class, reporter gene expression was simulated
by drawing from a class-specific distribution. Then, (A) the significance of the difference between the two
classes was determined by Welch’s t-test as a function of the size of Class 2 (dashed red line: two-sided 5%
significance threahold; black solid line: theoretical expected value of the z-normalized t-statistic), and (B)
the effect size was determined as the difference in means between the two classes as a function of the size of
Class 2 (black solid lines: theoretical expected value and standard deviation of the sample distribution of the
difference). The x-axes represents the size of Class 2 which indicates how uneven the distribution across the
two classes is.
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nucleosome integrity.

For proper interpretation of the profiles in Chapter 5, an appropriate technique for
normalizing the profiles with respect to input DNA was essential. The problem of nor-
malizing genome-wide sequencing data is as yet unsolved in the general case. Many
approaches exist, which generally work well only in a limited set of cases. There are
nonlinear approaches, for example based on LOWESS regression [19] and quantile nor-
malization [20], which assume that genome-wide distributions of tag counts are compa-
rable between the two samples. Another nonlinear method focuses only on peaks, and
normalizes based on the relative intensities of peaks shared between the two samples
[21], assuming that similar binding mechanisms underlie shared peaks. In our case of
normalizing diffuse, genome-wide, profiles against more peaky control profiles, these
nonlinear approaches were not suitable. In addition to nonlinear approaches, there are
linear approaches for normalizing genome-wide sequencing data. As a justification, it
has been shown that, in its background regions, a ChIP-seq profile shows linear correla-
tion with its control [22, 23]. A typical linear approach estimates the background regions
in the ChIP-seq signal and scales the control by a constant, the ratio of total signal read
count and total control read count in these background regions [22, 24]. On our data,
these approaches performed relatively poorly. The reason for this is likely twofold. First,
for our data it could not be assumed that the vast majority of the genome represents
background. Second, both approaches try to estimate the complete set of background
regions, by identifying a break point in a certain representation of the genome-wide pro-
file. For more diffuse, domain-oriented profiles these break points can be difficult to un-
ambiguously detect. Therefore, we implemented a custom-designed autocorrelation-
based approach for normalizing our data. Our approach bears some similarity to the
NCIS method [22]. However, it does not assume that the large majority of the genome
can be considered background, and furthermore exploits the spatial dependence be-
tween adjacent genomic bins. Furthermore, contrary to NCIS, it does not try to estimate
the complete set of background regions. Instead, it finds a limited set of genomic re-
gions, a subset of the complete set of background regions, for which there is sufficient
statistical evidence (see Chapter 5: Methods) to call these regions background. As such,
this algorithm fills a gap in the current repertoire of normalization techniques.

6.2. ANALYSIS OF GENOME-WIDE SEQUENCING DATA

Regarding the results presented in this dissertation, it is important not to forget that con-
clusions drawn are often strongly dependent on the quality and processing of the data.
In studying biology through sequencing technology, there can be many issues that com-
plicate the interpretation of results, especially when analyzing large numbers of datasets,
potentially from different labs, simultaneously. In the analyses that we performed as
part of this dissertation, we observed many such issues, some of which have received
relatively little attention in the literature to date. This section will present a number of
these issues, and the impact these can have on the results.
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6.2.1. NORMALIZATION: THE PSEUDOCOUNT
As was explained in Chapter 5, a commonly used approach for normalizing a binned
genome-wide sequencing profile with a corresponding input DNA profile, is the follow-
ing:

xnorm
i = log2

xi +1

c yi +1
(6.1)

Here, xnorm
i is the normalized signal in bin i , xi represents the number of signal

reads in bin i , yi represents the number of control (whole-cell extract) reads in bin i .
c is the normalization constant used to make signal and control quantitatively compa-
rable. Often, the ratio of sequencing depths is used, but in Chapter 5, an alternative
autocorrelation-based method was presented. To account for bins with no reads, a pseu-
docount of 1 is typically added, as such avoiding division by zero. However, adding a
pseudocount can give surprising, and questionable, results. As an example, consider the
hypothetical ChIP-seq signal and ChIP control in Figure 6.2(A). On each position, the
control has exactly twice as many reads as the signal. Therefore, calculating an ordinary
log2 ratio without pseudocount results in a flat profile. However, adding a pseudocount
of 1 results in a profile that is negatively correlated with both signal and control. While
this may seem a contrived example, in our analyses for Chapter 4 we have observed ex-
actly this on a genome-wide scale. After normalization of a Nanog binned coverage with
input DNA, the resulting normalized signal was negatively correlated with both the orig-
inal Nanog binned coverage and the input DNA (Figure 6.2(B)). Additionally, the signal
negatively correlated with the PGK IRs (Chapter 4). This is unexpected given the demon-
strated role of Nanog as a transcriptional activator [25–27], and further suggests that the
normalized profile may not be representative of the actual Nanog binding profile. The
underlying problem may be a combination of pseudocount, sequencing depth and bin-
size: Combined, the replicates constituted 17802070 reads, which is below the ENCODE
standard of 20×106 [28]. Note that in case of low sequencing depth and fixed, relatively
small, bin size, the contribution of each pseudocount to the normalized signal is rela-
tively large. As such, this example emphasizes the need to find an optimal compromise
between the resolution of an analysis, i.e. the bin size, and the relative contribution of
the pseudocount. The nature of this compromise is dependent on sequencing depth,
and on the distribution of the available reads across the binned coverage.

6.2.2. CALLING PEAKS ON CHIP-SEQ DATA

THE FOLD-ENRICHMENT THRESHOLD

For the analyses of the TRIP datasets, summarized in Chapter 4, one topic we were inter-
ested in was the genome-wide associations of IR expression status with a wide range of
chromatin marks, as profiled using ChIP-seq or one of its variants. A typical final step in
processing ChIP-seq data is to determine regions of significantly enriched signal, i.e. to
call peaks. In addition to setting a significance threshold, a fold-enrichment threshold is
commonly applied to select from all significantly enriched regions those regions that are
considered substantially enriched relative to a control. The choice of fold-enrichment
threshold can sometimes have a surprising impact on the results of an analysis. Figure
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Figure 6.2: The influence of the pseudocount on normalizing a ChIP-seq signal with a control. (A) Normal-
ization of an example signal with an example control, with and without pseudocount. (B) Normalization of a
Nanog ChIP-seq binned coverage with input DNA.
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6.3 shows the results of applying 5 different fold-enrichment thresholds on a set of signif-
icant Kap1 ChIP-seq peaks. For each threshold, the Spearman correlation was computed
of IR expression status with negative distance of an IR to the nearest peak. Strikingly, it
can be seen that, depending on the fold-enrichment threshold, the correlation can vary
from significantly positive (taking all peaks) to significantly negative (taking only top 20%
of peaks). Given that Kap1 is mostly associated with transcriptional repression [29] and
that a background signal such as input DNA will generally positively correlate with tran-
scriptional activation, a possible explanation for this change of sign is that many of the
weaker peaks still represent background signal, even though peaks were called relative
to a control sample. The underlying cause for this could be the sequencing depth scaling
of signal and control as performed internally by the MACS peak calling algorithm [30],
which could be addressed by the normalization approach proposed in Chapter 5. Alter-
natively, it may be caused by an expression bias inherent to the ChIP procedure which
can be strong enough for transcriptional repressors to appear as activators [31, 32].

Although the correlations are not very strong, in conventional statistics these results
would be considered highly significant. As such, these results stress the importance of a
strong focus on effect size, rather than statistical significance [33], which in the case of
Figure 6.3 is relatively small.
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Figure 6.3: Spearman correlation of the PGK IR expression level with a set of Nanog ChIP-seq peaks, as a func-
tion of fold-enrichment treshold on the Nanog ChIP-seq peaks.

COMPUTING GENOME-WIDE ASSOCIATIONS USING PEAKS

After calling peaks on ChIP-seq profiles, one may be interested in computing genome-
wide associations, e.g. the Spearman correlation, between different (epi)genomic fea-
tures, such as between Kap1 binding sites and IR expression status above. For comput-
ing correlations between (epi)genomic features and IR expression, first each IR has to be
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assigned a score for the particular feature of interest. There are many ways in which such
a score can be computed. In Figure 6.4(A), the results of seven of these are given, after
calling peaks on genome-wide sequencing profiles, and applying a typical threshold of
1.5 fold-enrichment over the background:

1. presence_vs_absence: 1 if a peak is found within 1kb of the IR, otherwise 0.

2. coverage: The fraction of base pairs that is covered by the feature in a window of
1kb on either side of the IR.

3. peak_weighted_coverage: As above, and additionally multiply the contribution of
each individual peak within the window with its peak height.

4. max_peak: The height of the highest peak within a 1kb window on either side of
the IR.

5. gaussian_weighted_coverage: The surface area of a Gaussian (σ = 1000bp) cen-
tered at the IR, restricted to those genomic regions that are covered by peaks.

6. peak_and_gaussian_weighted_coverage: As above, and additionally multiply the
contribution of each individual peak within the window with its peak height.

7. peak_proximity: Negative distance towards the nearest peak.

Some observations can be made from Figure 6.4(A). First, it does not really seem to
matter which method for scoring IRs is used, since the correlations are very comparable
across different methods. However, generally, the strongest associations are found for
approaches that do not binarize distance by taking a fixed window around the IR (meth-
ods 5, 6 and 7). Second, in addition to using the genomic region that is covered by a
peak, taking into account peak height hardly leads to any differences (methods 3 and
4, as well as 5 and 6), which suggests that at least a substantial part of the variation in
peak heights is due to noise. Third, the genome-wide correlations are almost exclusively
positive, which is unexpected given that Figure 6.4(A) also includes many repression-
associated features. In this light, it is interesting to compare the peak-based correlations
with an approach based on a genome-wide binned coverage approach (Figure 6.4(B)).
In this approach, the average of a genome-wide binned coverage (normalized to input
DNA) within a window of 1kb on either side of the IR is computed, and used to estimate
the correlation between the IR expression status and the feature of interest. It can be
directly seen that more features are negatively correlated with IR expression status than
when adopting a peak-based approach. In fact, the features that are negatively corre-
lated with IR expression are mostly features associated with repression. One possible
explanation is the usage of a pseudocount in computing the normalized profile. How-
ever, the changes of sign mostly conform to what can be expected based on the literature.
Therefore, a more likely explanation is that the local strength of a particular signal is just
a better measure than a measure that is based on a significancly enriched region (i.e.
peak) at an arbitrary distance. Another explanation, as was similarly suggested in the
case of Figure 6.3, is that many significant peaks still represent background signal, even
when calling peaks using a control such as input DNA. One of the underlying causes may
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be that many peak calling algorithms, such as MACS and SICER, scale the signal and con-
trol proportional to the ratio of their sequencing depths, which may not necessarily be
appropriate. To address this issue, an approach such as the one presented in Chapter
5 for computing a normalization factor between two sequencing datasets, could be im-
plemented in these tools. This example demonstrates that the decision whether to call
peaks on the ChIP-seq profile is not straightforward.
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Figure 6.4: (A) Using different methods to compute the Spearman correlation between the PGK IR expression
levels and sets of ChIP-seq peaks. (B) Using a genome-wide binned coverage approach (normalized to input
DNA) to compute the Spearman correlation between the PGK IR expression levels and set of ChIP-seq datasets.

THE IMPACT OF PEAK CALLER CHOICE ON THE ANALYSIS

From the above it seems that, once peaks are called on ChIP-seq data, the eventual ap-
proach for computing genome-wide associations is of secondary importance. However,
the initial choice of peak caller can be of crucial importance to the outcome of anal-
yses, as can be demonstrated by segmenting the genome using the ChromHMM soft-
ware [34]. The input to ChromHMM is a series of binarized genome-wide profiles of
features of interest. After providing a resolution, i.e. specifying consecutive bins of e.g.
200bp, ChrommHMM models the observed combinations of features as a product of in-
dependent Bernoulli random variables, and learns a multivariate hidden Markov model
(HMM) [34] that identifies a given number of states. For each state, the HMM specifies 1)
the emission probability distribution: the probability of observing a certain combination
of features in that state, and 2) the transition probability distribution: the probability of
that state being adjacent to a certain other state. The emission probability distribution
represents the chromatin composition of each state, and in combination with the tran-
sition probability distribution it is used to segment the genome by assigning each bin to
the most likely state. In the original application of this approach [35], ChIP-seq profiles
of ten features in nine human cell types from the ENCODE project were binarized as-
suming a Poisson background distribution on the number of reads in a sliding window
of fixed size. For each feature, the resulting nine binarized profiles were concatenated,
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and an HMM was inferred from the concatenated profiles [35] (Figure 6.5(A)). These re-
sults can be fairly accurately reproduced when restricting the analysis to only one cell
type, the K562 cell type, and using the same Poisson background distribution approach
for the initial calling of peaks (Figure 6.5(B)): All states but States 4, 13 and 15 can be said
to have close relatives in Figure 6.5(A). However, these results change dramatically when
using the same K562 ENCODE data, but now binarized as provided on the ENCODE web-
site, using Scripture [36] (Figure 6.5(C)): In this case, it is safe to say that less than half of
the states (States 1, 6, 11, 13, 14, 15) have analogues in Figure 6.5(A). It is interesting to
note that Scripture also uses a Poisson background for detecting significant enrichment.
However, the discrepancy between Figures 6.5(A) and 6.5(B) and Figure 6.5(C) is likely
caused by the fact that Scripture uses a wide range of window sizes to slide across the
genome, in order to also detect more diffuse enrichment, whereas the approach as ap-
plied in the original paper mainly finds focal points of enrichment [35]. Furthermore, in
addition to using a wide range of window sizes, substantial post-processing of the called
peaks was performed, as reported on the ENCODE website. This is reflected by the ob-
servation that in Figure 6.5(C), only State 14 can be considered devoid of any chromatin
marks, and accounts for roughly 55% of the genome. However, in Figure 6.5(B), these
percentages are roughly 86% (States 2, 3, 6) or 70% (States 2, 6). Finally, in Figure 6.5(A),
it is even higher: Roughly 88% (States 10, 11, 12) or 84% (States 10, 12) of the genome
is almost entirely devoid of any features, and as such, the analyses presented [35] are
mostly based on 12%–16% of the genome.

This example demonstrates the importance of thoroughly considering what
approach to use for determining enrichment. However, it should also be noted that,
to a certain extent, choosing a peak caller can be a self-fulfilling prophecy. If a signal
is expected to show mainly focal enrichment, then applying a peak caller suitable for
detecting focal enrichment will mainly detect focal enrichment. The same principle
applies to detecting more diffuse enrichment. For this reason, approaches for detecting
enrichment simultaneously across multiple scales, such as Scripture and a more recent
approach for multiscale segmentation of genomic signals [37], are crucial for making
peak calling from ChIP-seq data more robust and unbiased.

(A) (B) (C)

Figure 6.5: Using ChromHMM to learn HMMs from ENCODE data [34]. (A) Emission probabilities resulting
from learning an HMM on 10 chromatin features across nine cell types [35], using the peak calling specified
by ChromHMM. (B) Emission probabilities resulting from learning an HMM on 10 chromatin features for only
one cell type, the K562 cell type, using the peak calling specified by ChromHMM. (C) Emission probabilities
resulting from learning an HMM on 10 chromatin features for only one cell type, the K562 cell type, using the
set of ENCODE peaks.
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6.2.3. VARIABILITY BETWEEN DATA FROM DIFFERENT LABS
As was shown above, processing a sequencing dataset in different ways can occasionally
lead to apparently inconsistent results. However, even a comparison between datasets
representing the same epigenomic feature, and processed in exactly the same way, can
present with inconsistent results. Whereas the demonstrated substantial between-lab
variability of ChIP-chip [38] is a good indication that substantial variability also exists
for ChIP-seq, no such comprehensive study for ChIP-seq has been published to date.

Figure 6.6(A) shows three epigenomic features associated with the Polycomb repres-
sive complex number 2 (PRC2). PRC2, represented by Ezh2 and Suz12, is involved in
the trimethylation of lysine 27 on histone H3 (H3K27me3) through the presence of Ezh2
[39]. For each of these features, the Spearman correlation with PGK IR expression (Chap-
ter 4) was computed, using the genome-wide binned coverage approach as it was also
used for Figure 6.4(B). Note that in the current situation, the 0.01 significance level is to
be found at a correlation coefficient of about 0.019, rendering all correlation coefficients
highly significant according to that commonly used standard. It is interesting to see that
although the two H3K27me3 datasets and the two Suz12 datasets were processed in ex-
actly the same way, the results are contradicting in terms of correlation.

Another good indication of the variability between different datasets can be given by
comparing different mESC input DNA datasets by correlating their genome-wide binned
coverage profiles (Figure 6.6(B)). It is immediately evident that there is a high degree of
variability between the different datasets. The dataset most dissimilar to the others is
GSM706675, which can be expected since this is a 5hmC control. Contrary to the other
controls, there is no cross linking step in generating the 5hmC control. The strong dis-
similarity between this control and the others suggests that cross linking induces a very
strong bias. In other words, for any arbitrary ChIP-seq profile, a large portion of the vari-
ation in the profile can likely be explained by the cross linking step. While the remaining
controls were all generated in comparable ways (i.e. cross linking, fragmenting, reverse
cross linking, sequencing) there is still substantial variation across the datasets. In part,
this may be explained by the specific strain of mESC used, indicated between brackets in
Figure 6.6(B). This is reflected by the single cluster of four V6.5 (C57BL/6-129) datasets
correlating relatively strongly. However, the same strain can also be found mixed with
other strains such as E14 in other clusters. Considering that the differences between
the input DNA datasets are fairly large, and that the differences partly associate with the
specific strain of mESC that was used, this suggests that part of the differences in cor-
relations between different features observed in Figure 6.4 can be attributed to strain
specificities as well.

The two examples presented in this section demonstrate that between-lab variability
can be substantial to the point of leading to contradicting conclusions. This makes a
strong case for setting, and adhering to, clear standards and quality controls, such as
initiated by the ENCODE consortium [28].
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Figure 6.6: Variability between data from different labs. (A) Spearman correlation of PGK IR expression levels
with genome-wide binned coverage profiles (normalized to input DNA) for four different features, each repre-
sented by two different labs. (B) Spearman correlation based clustering of a range of input DNA datasets, after
computing their genome-wide binned coverage profiles.
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6.3. FUTURE PERSPECTIVES
The computational examples discussed in this chapter show that specific decisions any-
where in the data analysis pipeline can have major implications for research outcomes.
Consequently, for the quality of the research results, it is detrimental to carefully con-
sider the available options, determine whether suitable approaches exist, and if needed
develop tailor-made computational solutions. Specifically, with the increase in avail-
ability and variety of data, there has also been an increasing need for tools that integrate
different datasets, either for direct comparison by normalization or for more complex
modeling to study biology at a systems level. This integration is not trivial, and often it is
difficult to develop generic solutions, i.e. solutions applicable to more than just the spe-
cific problem at hand. Future applications will no doubt become computationally even
more challenging, with Hi-C data of increasing resolution to study the 3D architecture
of the genome in more detail, time-resolved epigenomics datasets to study chromatin
dynamics, etc.

The work presented in this dissertation dealt substantially with data integration, and
provided many tailor-made solutions. However, some are also more generally applica-
ble. For example, the feature ranking method (Chapter 3) can be used for many types
of data. Similarly, the autocorrelation-based normalization algorithm (Chapter 5) is not
limited to FAIRE-seq data, but can be applied to a wide range of genome-wide sequenc-
ing data. However, the last example on variability between data from different labs has
also shown that not all problems can be solved using computational tools. Therefore,
elaborate standardization, such as has been initiated by the ENCODE consortium [28],
is essential.
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SUMMARY

DNA is packaged together with proteins, such as histones, in the nucleus of a cell to form
a fiber called chromatin. The nature of this packaging, the chromatin structure, is essen-
tial for proper cell functioning. This is illustrated by the fact that perturbating chromatin
can be associated with many diseases. Hence, artificial perturbation of chromatin may
give important new insights into its function. In this dissertation, we have perturbed
chromatin by 1) inducing mutations by integrating retroviruses and transposons into
DNA, and 2) evicting histones from chromatin and inducing DNA breaks, by the appli-
cation of anti-cancer drugs.

By virtue of their ability to integrate into foreign DNA, DNA integrating elements such
as retroviruses and transposons are used in gene regulation and cancer research, among
others. In cancer research, DNA integrating elements are used for detecting cancer genes
in tumor screens. We presented a novel algorithm that fully automates this detection,
thus removing any potential for bias induced by manual analysis. In gene regulation,
DNA integrating elements can be used for studying the chromatin position effect by the
location-dependent activation of transgenes present within randomly integrated trans-
posons. We presented a high-throughput method for studying the chromatin position
effect using DNA integrating elements, and studied genome-wide transgene expression
values generated using this method, especially in relation to enhancers and domains as-
sociated with the nuclear lamina. For both applications of DNA integrating elements,
it was important to realize that integrations are randomly, but not uniformly randomly,
distributed across the genome. To further investigate this, we generated large datasets
of integrations that were under minimal selective pressure, for two transposons and one
retrovirus. We compared the integration profiles with a wide range of (epi)genomic fea-
tures to generate bias maps across multiple genomic scales. This revealed a hierarchical
organization in target site selection, and showed that a substantial fraction of cancer
genes retrieved from tumor screens may be false positives.

The application of anti-cancer drugs to directly perturb chromatin structure allowed
us to take a very low-level approach in studying chromatin. We showed that different
drugs target different types of chromatin in evicting histones from chromatin and/or
inducing DNA breaks, which can have implications for their chemotherapeutic efficacy.

Central themes throughout this dissertation were computational epigenomics and
data integration. Due to the complexity of the biology and the data, many of the compu-
tational methods were highly customized. Some are more generally applicable, includ-
ing a method for the normalization of genome-wide sequencing data with control, and a
feature ranking method. However, in general, high levels of customization are unavoid-
able. Therefore, as a conclusion, the careful consideration that must go into decisions
regarding this customization was illustrated by demonstrating the substantial impact
that these decisions can have on research outcomes.
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SAMENVATTING

DNA wordt samen met eiwitten, zoals histonen, verpakt in de celkern in een complex dat
chromatine wordt genoemd. De aard van dit verpakken, ofwel de chromatinestructuur,
is essentieel voor het normaal functioneren van een cel, en veel ziektebeelden gaan dan
ook samen met verstoring van deze structuur. Daarom kan bewuste perturbatie ervan
belangrijke nieuwe inzichten opleveren in de functie van chromatine. In dit proefschrift
perturbeerden we chromatine door 1) retrovirussen en transposons te laten integreren
in het DNA, en 2) het uitstoten van histonen uit chromatine, en het veroorzaken van
DNA-breuken met behulp van geneesmiddelen tegen kanker.

Het vermogen van retrovirussen en transposons om te integreren in het DNA van
een gastheercel is van belang in het onderzoek naar, onder andere, genregulatie en kan-
ker. In het kankeronderzoek worden retrovirussen en transposons gebruikt om genen
te detecteren die betrokken zijn bij het ontstaan van kanker, op basis van de analyse
van grote aantallen tumoren. In dit proefschrift beschreven we een nieuw algoritme dat
deze detectie volledig automatiseert. In het onderzoek naar genregulatie worden retro-
virussen en transposons gebruikt om te bestuderen hoe de genomische locatie van een
geïntegreerd transgen (het gen in een retrovirus of transposon) zijn activiteit beïnvloedt.
In dit proefschrift beschreven we een methode waarbij dit voor grote aantallen transge-
nen tegelijkertijd kan worden gedaan, en konden zo hun activiteit genoomwijd bestu-
deren, voornamelijk in relatie tot enhancers en gebieden geassocieerd met het nucleaire
lamina. Voor beide bovenstaande toepassingen was het belangrijk te beseffen dat de
integraties niet geheel willekeurig verdeeld zijn over het genoom. Om meer inzicht te
krijgen in integratievoorkeuren, genereerden we grote aantallen integraties voor twee
transposons en een retrovirus, onder minimale selectiedruk. Deze datasets vergeleken
we met een groot aantal (epi)genomische kenmerken. Hieruit bleek dat integratievoor-
keur hierarchisch is georganiseerd, en dat bij de detectie van kanker-gerelateerde genen
zich veel fout-positieven kunnen voordoen.

Met behulp van bepaalde geneesmiddelen tegen kanker konden we de chromati-
nestructuur direct beïnvloeden, en zo chromatine op zeer laag niveau bestuderen. We
toonden aan dat verschillende geneesmiddelen zich richten op verschillende types chro-
matine, in hun vermogen om histonen uit te stoten en DNA-breuken te veroorzaken, wat
implicaties heeft voor hun chemotherapeutische doeltreffendheid.

Centrale thema’s in dit proefschrift waren computational epigenomics en
data-integratie. Vanwege de complexiteit van de biologie en de data waren veel van
de gebruikte computationele methoden maatwerk. Enkele van de methoden zijn ook
meer algemeen toepasbaar, zoals de methode voor het normaliseren van genoomwijde
sequencing data met controle data, en de feature-ranking methode. Echter, in het
algemeen vereisen kwesties zoals beschreven in dit proefschrift vaak maatwerk. Daarom
illustreerden we, ter conclusie, het belang van het maken zorgvuldige afwegingen in het
ontwikkelen van maatwerk met behulp van enkele voorbeelden.
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