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Abstract
This paper presents BIOS (acronym for Biologically Inspired Optimization System), an object-oriented framework written in 
C++, aimed at heuristic optimization with a focus on Surrogate-Based Optimization (SBO) and structural problems. The use 
of SBO to deal with structural optimization has grown considerably in recent years due to the outstanding gain in efficiency, 
often with little loss in accuracy. This is especially promising when adaptive sampling techniques are used. However, many 
issues are yet to be addressed before SBO can be employed reliably in most optimization problems. In that sense, continuous 
experimentation, testing and comparison are needed, which can be more easily carried out in an existing framework. The 
architecture is designed to implement conventional nature inspired algorithms and Sequential Approximated Optimization 
(SAO). The system aims to be efficient, easy to use and extensible. The efficiency and accuracy of the system are assessed 
on a set of benchmarks, and on the optimization of functionally graded structures. Excellent results are obtained.

Keywords Object-oriented framework · Structural optimization · Surrogate-Based Optimization · Sequential Approximated 
Optimization · Composite structures

1 Introduction

In recent years, Surrogate-Based Optimization (SBO) has 
been gaining popularity due to its capability of approximat-
ing otherwise time-consuming functions with much cheaper 
surrogates at the expense of a small accuracy loss (Queipo 
et al. 2005; Forrester et al. 2008; Stork et al. 2020b). Hence, 
SBO can play an important role in structural optimization 
problems, where the high computational cost of finite ele-
ment analysis is typically the main bottleneck (Chen et al. 
2014; Do et al. 2019).

In SBO, a given dataset is used to build a model, which is 
then employed to find the global optimum. For constant sur-
rogates, this model is fixed and, since no a priori knowledge 
is available, the sample must be well distributed so that good 
overall accuracy is obtained (Forrester et al. 2008).

In optimization problems, however, it might be wise to 
improve accuracy in promising regions of the design space, 
which corresponds to the Sequential Approximate Opti-
mization (SAO) (Schmit and Farshi 1974; Kitayama and 
Yamazaki 2011; Ribeiro et al. 2020; Maia et al. 2021). In 
this approach, the surrogate model is continuously updated 
by the addition of new sampling points. These additions aim 
at improving the accuracy near the global optimum (Jones 
et al. 1998; Sobester et al. 2005; Forrester et al. 2008). This 
is also known as adaptive sampling, and usually demands a 
smaller number of High-Fidelity (HF) evaluations than con-
stant models, where accuracy throughout the whole design 
space is vital (Liu et al. 2018; Chunna et al. 2020). Several 
methods have been proposed for choosing the infill points. 
Liu et al. (2018) argue that the combination of variance-
based adaptive sampling and Gaussian Processes (GP) mod-
els is typically a good choice.
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The Efficient Global Optimization (EGO) algorithm, pro-
posed by Jones et al. (1998), was essential to the widespread 
use of SAO as a robust technique to solve costly optimization 
problems. The authors employ Kriging to approximate the 
exact costly function, and the sample is updated by the addi-
tion of the point that maximizes the Expected Improvement 
(EI) at each iteration. Later, Sobester et al. (2005) presented 
a similar approach, but using a Radial Basis Functions 
(RBF) model. The authors also proposed a modification in 
the EI function which allows the user to explicitly balance 
the relative importance of exploitation and exploration.

To this day, there are still important open issues in SAO 
design (Queipo et al. 2005; Stork et al. 2020b), e.g., what 
is the best approach to perform the selection of new data 
points, or how to deal with constrained optimization and 
discrete variables. Thus, further experimentation, testing, 
and comparison are required to establish SAO as a reliable 
technique for global optimization of real-world engineer-
ing problems (Simpson et al. 2002; Wang and Shan 2007; 
Steponavičė et al. 2016; Liu et al. 2018; Ribeiro et al. 2020; 
Maia et al. 2021). For that purpose, the availability of a 
framework that allows further development and comparison 
between different methods is essential.

A multitude of frameworks has been proposed to deal 
with different problems in optimization (Giunta and Eldred 
2000; Jacobs et al. 2004; Wagner and Affenzeller 2005; 
Meza et  al. 2007; Durillo and Nebro 2011; Passos and 
Luersen 2018; Krishnamoorthy et  al. 2002; Sivakumar 
et al. 2004; Zadeh et al. 2009; Martins et al. 2009; Blank 
and Deb 2020). The jMetal framework (Durillo and Nebro 
2011), written in Java, is one of the most renowned. jMetal 
can deal with multi-objective optimization and a number 
of algorithms and methods is available. It is also possible 
to add new problems and algorithms, extending the frame-
work features. In particular for computationally expensive 
applications, open-source software libraries such as Keras 
(Gulli and Pal 2017) and Tensorflow (Abadi et al. 2015) 
in Python, help disseminating the use of machine learning 
techniques, with particular focus on Deep Neural Networks, 
to tackle the issue.

This scenario is much more limited when it comes to 
SAO. Along with some frameworks dedicated to trust-
region based approaches (Giunta and Eldred 2000; Jacobs 
et al. 2004), most open-source software packages available 
can only be employed for simple or very specific problems. 
For Python, scikit-optimize (Kumar 2017) is a very popular 
choice, as it is able to solve box-constrained Bayesian opti-
mization using different acquisition functions. However, it is 
not able to solve problems with implicit constraints or a dis-
crete data structure. SURROGATES toolbox (Viana 2010) is 
a general purpose MATLAB code which performs EGO for 
box-constrained single-objective continuous problems, pro-
viding different Design of Experiments (DoE) and modeling 

techniques. MATSuMoTo (Muller 2014) is another MAT-
LAB toolbox which allows for box-constrained continuous 
and discrete optimization using different surrogate models. 
For R, DiceKriging and DiceOptim (Roustant et al. 2012) 
are packages that can be used together to perform the opti-
mization of expensive functions via the EGO algorithm. 
Another alternative for R users is the Moko package. The 
framework can handle multi-objective optimization and 
approximates all objective functions and constraints using 
Kriging. On that note, it is worth stressing that a general 
framework must be able to consider, in the same problem, 
exact and approximate responses. This way, the approximate 
model is only evaluated when necessary and the cheap-to-
evaluate response can be exactly assessed without an overly 
complex approximation that might result in loss of accuracy.

This paper presents BIOS (Biologically Inspired Opti-
mization System), a framework capable of handling con-
ventional and sequential approximate optimization of 
unconstrained and constrained problems with continuous 
and discrete variables. The use of the Object-Oriented Pro-
gramming (OOP) paradigm and software design patterns 
(Gamma et al. 1994; Alexandrescu 2001) allow the frame-
work to be compact and all-purpose, providing cleaner pro-
jects and codes. Relying on standard libraries, BIOS is a 
cross-platform (Windows, Mac, and Linux) software and 
supports hybrid-parallel computing using OpenMP and MPI.

BIOS was initially developed for performing the optimi-
zation of composite structures using bio-inspired optimiza-
tion algorithms, e.g. Genetic algorithms (GA) and Particle 
Swarm Optimization (PSO). Its effectiveness and robust-
ness was demonstrated in various engineering applications 
(Rocha et al. 2014; Barroso et al. 2017). In these works, par-
allel computing enabled a faster optimization process, which 
is an useful feature if multiple cores are available. BIOS 
also provides relevant routines to help assess the response 
of composite structures.

Later, SAO was integrated into BIOS as a way of pro-
viding a more efficient optimization approach for com-
putationally expensive engineering problems involving 
numerical simulations, using, for example, the Finite Ele-
ment Method (FEM) or the Isogeometric Analysis (IGA). 
The SBO approach allows the use of more complex analysis 
procedures and enables the solution of practical composite 
design problems, which is a field that demands further study 
(Luersen et al. 2015; Jaiswal et al. 2018). BIOS implements 
SAO for different sampling methods, surrogate models, and 
infill criteria and proved to be highly efficient in this type of 
problem (Ribeiro et al. 2020; Maia et al. 2021).

The contributions of this work are summarized as fol-
lows. A framework for structural optimization is presented, 
using SAO algorithms based on Radial Basis Functions 
and Kriging. Conventional optimizations with evolution-
ary and swarm intelligence algorithms are also supported. 
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The framework architecture is discussed in detail, denoting 
its flexibility, modularity, and reusability. Our framework 
contrasts with the alternatives in the literature since it is a 
open-source project using OOP concepts, thus allowing for 
extension and code reuse. Besides, BIOS provides different 
optimization algorithms and modeling techniques, is able to 
deal with continuous and discrete problems and to handle 
constrained and unconstrained optimization, is capable to 
perform SBO approximating only computationally expen-
sive functions (while non-expensive functions are evalu-
ated exactly), and allows for parallel computing. Finally, 
the framework application in benchmarks and in the opti-
mization of functionally graded structures are demonstrated.

The rest of the paper is organized as follows. In Sect. 2, 
the main optimization algorithms implemented in BIOS are 
presented. In Sect. 3, the Surrogate-Based Optimization is 
further discussed. In Sect. 4, the architecture of BIOS is 
presented, while Sect. 5 describes the steps required to use 
the framework SAO algorithms to optimize a computation-
ally expensive structural problem. Application examples are 
presented in Sect. 6 and the conclusions are discussed in 
Sect. 7.

2  Bio‑inspired Optimization Algorithms

Bio-inspired heuristic algorithms have been widely 
employed in structural optimization in recent years due to 
their robustness and simplicity. In this type of algorithm, 
only objective and constraint functions need to be defined. 
Hence, they are particularly suitable when gradient infor-
mation is not available, as in optimization problems with 
discrete (or categorical) variables. Furthermore, these algo-
rithms are usually less prone to become trapped in local 
minima (Arora 2017).

On the other hand, heuristic algorithms tend to be com-
putationally expensive in comparison with gradient-based 
approaches. The use of parallel computing and surrogate 
modelling to tackle this issue has been explored in many 
papers (Rocha et al. 2014; Do et al. 2019; Ribeiro et al. 
2020; Zhu et al. 2012; Rouhi et al. 2015; Díaz et al. 2016; 
Keshtegar et al. 2020; Jaiswal et al. 2018), and some of these 
are available in BIOS.

The optimization procedure consists of randomly gen-
erating an initial set of solutions, or population, which is 
continuously improved towards the optimum until a stopping 
criterion is met (Arora 2017). The solutions are improved 
using a set of operators related to the algorithm meta-heu-
ristic logic. The main steps for the optimization procedure 
are depicted in Fig. 1.

A general single-objective optimization problem can be 
described as:

where nc is the number of inequality constraints and �l and 
�u are the lower and upper bounds of the design variables, 
respectively. In BIOS, constraints are handled by a penalty 
approach, such as the static or adaptive penalty methods 
(Deb 2000; Lemonge and Barbosa 2004).

The heuristic operations employed to the population 
improvement vary according to each algorithm. The main 
algorithms available in BIOS are the Genetic Algorihtm 
(GA) (Goldberg 2012), the Particle Swarm Optimization 
(PSO) (Kennedy and Eberhart 1995; Bratton and Kennedy 
2007), and the Differential Evolution (DE) (Storn and Price 
1997; Price et al. 2005). Moreover, the Artificial Bee Col-
ony (ABC) (Karaboga 2005) and Artificial Immune System 
(AIS) (Castro and Zuben 2002) are also available.

GA is an evolutionary algorithm often employed in 
discrete optimization. The improvement of the population 
is performed by applying three operators at each iteration: 
crossover, mutation, and the selection. It is worth empha-
sizing that the BIOS implementation of this algorithm 

(1)

⎧⎪⎨⎪⎩

minimize f (�)

subjected to gi(�) ≤ 0 i = 1, 2,… , nc
with �l ≤ � ≤ �u

Fig. 1  Flowchart of bio-inspired heuristic optimization algorithms



 E. S. Barroso et al.

1 3

203 Page 4 of 27

can handle both discrete and continuous optimization. For 
the interested reader, further discussion can be found in 
Rocha et al. (2014).

PSO is a swarm-intelligence based algorithm first pro-
posed to deal with continuous optimization. Again, in 
BIOS, both discrete and continuous optimization are sup-
ported. At each iteration, particles move based on their 
inertia (previous velocity), their cognitive factor and their 
social factor. A mutation operator can also be applied to 
improve the global convergence (Barroso et al. 2017).

Finally, DE is an evolutionary strategy also aimed at 
dealing with continuous optimization. Here, the operators 
employed to improve the population are differentiation, 
crossover, and selection. Further details can be found in 
Price et al. (2005).

That being said, bio-inspired algorithms often require 
hundreds or even thousands of function evaluations to 
achieve the optimum solution (Steponavičė et al. 2016). 
Furthermore, even though they are more reliable in their 
exploration of the design space, there is no guarantee 
that the algorithms will find even a local optimum solu-
tion. That means that their best design may not satisfy 
the Karush-Kuhn-Tucker (KKT) conditions (Kuhn and 
Tucker 1951).

3  Surrogate‑Based Optimization

Surrogate-Based Optimization can be employed to reduce 
the computational cost of an optimization process. Put 
simply, a SBO may be described by two basic stages: 
sampling and building of the chosen surrogate model. 
There are multiple ways to define the surrogate model 
hyperparameters, ranging from simple cross validation 
techniques and analytical expressions to the optimization 
of a given likelihood function.

A SAO algorithm is obtained by introducing a stage 
where new point(s) (i.e. infill point) are added to the data-
set so that the surrogate model is improved iteratively 
in promising regions of the design space. This process 
is repeated until a stopping criterion is met, as depicted 
in Fig. 2. Generally, two criteria can be considered: the 
maximum number of evaluations nmax or maximum num-
ber of stall iterations Itstall.

The combination of an initial sampling method, sur-
rogate model and infill criteria defines a SAO algorithm. 
The following sections further detail each stage. For a 
more complete review on commonly employed surro-
gate modeling techniques for optimization and recent 
advances, the reader is referred to proper literature (Que-
ipo et al. 2005; Forrester et al. 2008; Forrester and Keane 
2009).

3.1  Initial sampling

On computer experiments, the initial sampling points 
should be well distributed in the design space, since, a 
priori, no information about the behavior of the function is 
available (Simpson et al. 2002; Kleijnen et al. 2005; Tenne 
2014). Thus, the initial sampling is often performed by a 
Design of Experiments (DoE) technique.

In BIOS, deterministic methods (e.g. Hammersley and 
Sobol sequences) and stochastic methods (e.g. random 
sampling and Latin Hypercube Sampling), are available 
(Tenne 2014; Steponavičė et al. 2016). While the former 
group can provide more uniform sampling spaces in some 
cases, the latter can introduce a variability which can be 
helpful when performing multiple optimizations.

Comparison between sampling methods is presented in 
a variety of papers (Jin et al. 2001; Simpson et al. 2002; 
Steponavičė et al. 2016; Cho et al. 2016). Typically, it can 
be said that the method chosen is of minor importance, 
as long as it is capable of providing an uniform dataset 
(Steponavičė et al. 2016). However, it is worth mentioning 
that the Hammersley sequence uniformity is compromised 
in high-dimensions (Steponavičė et al. 2016; Cho et al. 
2016). Steponavičė et al. (2016) also argue that stochastic 
techniques such as the random sampling and, to a lesser 
degree, the Latin Hypercube Sampling (LHS) might also 
occasionally not achieve the desirable uniformity.

Fig. 2  General SAO framework
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In general, the number of points of the initial dataset 
increases exponentially with the number of variables m of the 
problem (Jin et al. 2001; Forrester et al. 2008). This aspect is 
known as the curse of dimensionality (Forrester et al. 2008), 
and is a major concern for surrogate-based optimization. In 
BIOS, the initial number of points is a user-defined parameter, 
and the user should select an adequate value for a specific 
problem. A variation of the LHS is also implemented where 
N different datasets are generated, and the one where the mini-
mum distance between two sampling points is the highest is 
chosen (maximin criterion) (Forrester et al. 2008). The dis-
tance dp between sampling points may be evaluated by:

where dp is the usual Euclidean distance for p = 2 . Here, this 
method is referred to as LHSN . Fig. 3 illustrates some of the 

(2)dp(�
(i), �(j)) =

(
m∑
k=1

|x(i)
k
− x

(j)

k
|p
) 1

p

techniques discussed in this section for a two-dimensional 
problem. In this particular case, the Hammersley sequence 
and the LHS20 presented the highest dp.

3.2  Surrogate modeling

The surrogate models available in the current version of 
BIOS are Radial Basis Functions (RBF) and Kriging. 
These are very robust models able to perform accurate 
predictions in a wide range of problems (Forrester et al. 
2008), and are often regarded as the best surrogate mod-
elling techniques in comparative studies (Jin et al. 2001; 
Simpson et al. 2002; Hussain et al. 2002; Wang and Shan 
2007; Kim et al. 2009; Díaz-Manríquez et al. 2011; Nik 
et al. 2014; Williams and Cremaschi 2021). Both models 
are further discussed in the following sections.

(a) LHS (b) LHS20

(c) Hammersley sequence (d) Sobol sequence

Fig. 3  Comparison between sampling methods
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3.2.1  Radial Basis Functions

The Radial Basis Functions model (Hardy 1971) is a lin-
ear combination of radially symmetric functions centered 
around a set of points (Forrester et al. 2008):

where � is the weight vector, �j are known as the basis func-
tions centers, and � is the basis function vector. Different 
basis functions may be employed (Forrester et al. 2008), 
but the Gaussian is the most popular choice (Sobester et al. 
2005; Kitayama and Yamazaki 2011):

where r is given by |� − �j| and �j is a width parameter. 
This particular basis function is interesting for SAO since 
it allows the use of the theory behind Gaussian Processes 
(Sobester et al. 2005; Liu et al. 2018) to select new infill 
point(s).

Note that the width parameter �j has to be defined prior 
to the model fitting. Figure 4 illustrates the influence of this 
hyperparameter in the response of the Gaussian function. 
For small values, the surrogate model resembles a “needles 
in a haystack” function, where only regions near sampling 
points provide accurate predictions (Forrester et al. 2008), 
while greater values can make the approximate surface 
nearly flat. Such values may also lead to a Runge phenom-
enon in the interpolation, as the Gram matrix can become 
ill-conditioned (Wu et al. 2016).

(3)ŷ(�) = �T
� =

n∑
j=1

wj 𝜓j(|� − �j|)

(4)�j(r) = exp

(
−
r2

�2
j

)

In BIOS, this parameter can be defined using analytical 
approaches, such as the ones proposed by Nakayama et al. 
(2002) and Kitayama and Yamazaki (2011), or by cross vali-
dation techniques, such as the Leave-One-Out Cross Valida-
tion (LOOCV) (Sobester et al. 2005) and the k-Fold Cross 
Validation (k-FCV) (Müller and Shoemaker 2014; Ribeiro 
et al. 2020). By previous testing and experience, the k-FCV, 
with k = 5 , usually provides accurate and efficient results.

The fitting of the model is performed by an interpolation 
procedure. Thus, on data points, ŷ(�) = y(�):

here, � is the Gram matrix, whose elements are given by Eq. 
(4), where �ij = �j(|�i − �j|).

3.2.2  Kriging

Kriging is a widely employed surrogate that models the 
responses as stochastic processes (Forrester et al. 2008). Its 
predictor is given by:

where the first term is related to the global trend and the 
second term refers to the localized autocorrelated deviations.

The correlation matrix � is given by:

where �i is the i-th sampling point response and cor
[
�i, �j

]
 

denotes the correlation between points i and j. Usually, the 
correlation is given by:

This basis function is equivalent to the Gaussian if pl = 2 
and �l is the same for all variables. In fact, pl is often set at 
2 to ease out the model fitting. Another way to describe the 
correlation between data points is the Matérn 5/2 function 
(Maia et al. 2021):

where r = |xi,l − xj,l|.

(5)

⎡⎢⎢⎢⎣

�11 �12 ⋯ �1n

�21 �22 ⋯ �2n

⋮ ⋮ ⋱ ⋮

�n1 �n2 ⋯ �nn

⎤⎥⎥⎥⎦

⎡⎢⎢⎢⎣

w1

w2

⋮

wn

⎤⎥⎥⎥⎦
=

⎡⎢⎢⎢⎣

y1
y2
⋮

yn

⎤⎥⎥⎥⎦
⇒ �� = �

(6)ŷ(�) = �̂� + �
T �−1 (� − � �̂�)

(7)� =

⎡⎢⎢⎢⎣

cor
�
�1, �1

�
cor

�
�1, �2

�
⋯ cor

�
�1, �n

�
cor

�
�2, �1

�
cor

�
�2, �2

�
⋯ cor

�
�2, �n

�
⋮ ⋮ ⋱ ⋮

cor
�
�n, �1

�
cor

�
�n, �2

�
⋯ cor

�
�n, �n

�

⎤⎥⎥⎥⎦

(8)cor
[
�i, �j

]
= exp

(
−

m∑
l=1

�l |xi,l − xj,l|pl
)

(9)cor
�
�i, �j

�
=

m�
l=1

exp

�
−

√
5r

�l

��
1 +

√
5r

�l
+

5 r2

3 �2
l

�

Fig. 4  Gaussian basis functions with different widths
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To build the surrogate model, �l must be defined for each 
variable l. This is obtained through Maximum Likelihood 
Estimation (MLE):

Based on it, the maximum likelihood estimates for � and �2 
are given by:

Substituting these into Eq. (10) and removing the constant 
terms, the concentrated ln-likelihood function is obtained:

Finally, the maximization of this function is solved as an 
unconstrained optimization problem. In BIOS, it is possible 
to instantiate an heuristic optimization algorithm to solve it, 
such as the ones shown in Sect. 2.

3.3  Model update

This stage is of major importance to ensure efficiency in 
the optimization process. The infill criterion needs to be 
able to explore the design space to correctly locate the 
optimal region, which must then be exploited until the 
global minimum is found.

Thus, a good infill criterion must be able to balance 
local exploitation and global exploration (Yao et al. 2014; 
Stork et al. 2020a). In some cases, more than one point 
per iteration is sampled to account for both concepts indi-
vidually (Nakayama et al. 2003; Kitayama et al. 2010; Pan 
et al. 2014; Xiang et al. 2016).

The infill criterion is often represented by the optimiza-
tion of a given acquisition function. A basic example is the 
iterative addition of the point which minimizes the model 
prediction ŷ(�) . However, while this approach may work 
for unimodal problems, it is a pure exploitation method 
that tends to be too greedy (Jones et al. 1998; Mlakar et al. 
2015; Bouhlel et al. 2018).

Variance-based adaptive sampling methods are also a 
popular choice to guide the model improvement (Jones 
et al. 1998; Sobester et al. 2005; Liu et al. 2018). In Gauss-
ian Processes (GP), the posterior variance can be assessed 
by (Chunna et al. 2020):

(10)
ln (L) = −

1

2

(
n ln (2�) + n ln (�2) + ln |�|)

−
(� − ��)T �−1 (� − ��)

2 �2

(11)�̂� =
�T �−1 �

�T �−1 �
and �̂�2 =

(� − � �̂�)T �−1 (� − � �̂�)

n

(12)ln (L) ≈ −
n

2
ln (�2) −

1

2
ln |�|

For Kriging, the evaluation of �̂� is described in Sect. 3.2.2, 
while for the RBF model one may assume that �̂� = 1.0 
(Sobester et al. 2005; Xiang et al. 2016). For trial designs 
close to sampling points, ŝ(�) tends to 0 (low uncertainty) 
and, as it gets farther from them, ŝ(�) goes to �̂�2 (high 
uncertainty).

BIOS currently works with models based on Gaussian 
Processes (GP), and allows the use of four different infill 
criteria of this type: Lower Confidence Bound (LCB), 
Probability of Improvement (PI), Expected Improvement 
(EI), and Weighted Expected Improvement (WEI).

The LCB criterion is a straightforward approach where 
the infill point is found by minimizing the confidence 
bound (Srinivas et al. 2010; Brochu et al. 2010):

where � is a user-defined parameter. Higher values of � favor 
the exploration aspect.

PI, on the other hand, is a probabilistic criterion for 
which the probability that a given � improves upon the 
current best design should be maximized:

This approach is often deemed to be a pure exploitation 
method and, thus, may underperform in multimodal prob-
lems (Brochu et al. 2010; Jones 2001).

In this regard, the EI is often a better choice as a proba-
bilistic approach, being given by (Forrester et al. 2008):

here, the first term is related to exploitation and the second to 
exploration. The EI criterion is one of the most widely used 
methods today due to the popularization of this alternative 
by the EGO algorithm, first proposed by Jones et al. (1998). 
Figure 5 depicts the improvement of the RBF prediction 
of a test function considering the EI as infill criterion. The 
approach is able to precisely identify the optimum region.

WEI consists in a variation of the EI criterion proposed 
by Sobester et al. (2005) with a weight parameter w being 
introduced:
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2ŝ2
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Lower values of w favor global exploration, while higher 
values favor local exploitation. A cycling approach can be 
performed, where w may assume a value that changes itera-
tively in a given order.

Another major concern in SAO is how to handle con-
strained problems, especially when probabilistic infill cri-
teria are employed (Stork et al. 2020b). For easy, cheap to 
evaluate constraints, there is no need to build a surrogate 
model and the constraint may be exactly evaluated. In that 
case, if a design is unfeasible, its EI (or PI) is simply set to 
0 (Sobester et al. 2005).

For constraint functions approximated by a surrogate model, 
the uncertainty of the process should be taken into account. 
Thus, a feasibility function F(�) can be employed, such as the 
Probability of Feasibility (PF) (Schonlau et al. 1998):

where j refers to the j-th expensive constraint function. Other 
feasibility functions can be found in the literature, such as 
the one proposed by Tutum et al. (2014):

or the one proposed by Bagheri et al. (2017):

These feasibility functions can then be used to penalize 
the probabilistic infill criteria. This way, the Constrained 
Expected Improvement (CEI) is evaluated by:

where napc is the number of approximate constraints and F(�) 
is the feasibility function.

Figure 6 illustrates the behavior of F(�) for different 
approaches, where:
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ŝ(�)
√
2

��

(19)

F
(T)

j
(�) =

⎧⎪⎨⎪⎩

2 − erf

�
−
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Fig. 5  Addition of point with the highest EI
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Note that the penalization of unfeasible designs is very dif-
ferent for each feasibility function.

In structural optimization, it is common that the objec-
tive function is cheap and easy to evaluate (e.g. cost or 
mass functions), while the constraints are computation-
ally expensive (e.g. maximum deflection or failure cri-
teria). Admittedly, this combination is another aspect 
in SAO that demands further investigation. In that case, 
BIOS evaluates the actual improvement I(�) of a given 
design, which is then penalized by the feasibility function 
according to (Mathern et al. 2020):

where:

Just as in the case of the MLE maximization, the maximiza-
tion of the acquisition function is carried out by instantiating 
heuristic algorithms in BIOS and solving it as an optimi-
zation problem. This is interesting due to the multimodal 
nature of these functions (Maia et al. 2021).

4  BIOS architecture

In this section, the core components of BIOS are shown 
in class diagrams. The roles of each component are 
explained in detail, as well as the hierarchy of abstract 
classes and their main functions.

(23)Ic(�) = I(�)

napc∏
i=1

Fi(�)

(24)I(�) =

{
ymin − y(�) , if y(�) < ymin

0 , otherwise

4.1  Optimization Module

The optimization module contains the classes used to solve 
the optimization problem. The abstract classes and their 
interfaces are presented in Fig. 7. The optimization algo-
rithms are defined in the cOptAlgorithm class. The abstract 
method Solver() implements all steps of the concrete algo-
rithm class to perform Nopt optimizations. The output infor-
mation, such as success rate and mean best, are evaluated in 
the PostProcessing() method. The Init() method initializes 
the variables required for the concrete optimization class.

The current version of BIOS has the following algo-
rithms for single objective function optimization: Genetic 
algorithm (cStandardGA), Particle Swarm Optimization 
(cStandardPSO), Differential Evolution (cStandardDE), 
Artificial Bee Colony (cStandardABC) and Artificial Immu-
nity Sytems (cStandardAIS). A NSGA-II implementation 
is also available for multi-objective optimization problems. 
Moreover, a set of algorithms for laminated composites 
problems are available: cLaminatedGA, cLaminatedPSO, 
and cLaminatedNSGAII. These algorithms use additional 
heuristic operators for this class of problems, with the 
parameters and methods employed by them being defined 
in the abstract class cLamProb. All algorithms mentioned 
above are depicted in Fig. 8.

The cOptSolution class abstracts the optimization agent 
of each algorithm. For instance, individuals from GA and 
DE are implemented in the class cIndividual, while parti-
cles from PSO are implemented in the cParticle class. Each 
optimization agent subclass defines its heuristic operators 
and implements these in their concrete subclasses depend-
ing on the optimization problem variables type. The abstract 
method Evaluate() of the cOptSolution class passes its 
optimization variables directly to the cProblem object for 
evaluation of the corresponding objective function and 
constraints.

We consider four variable types: double precision floating 
point vector for continuous optimization problems; integer 
vector, integer matrix, and binary variables for discrete opti-
mization problems. The integer matrix is used for composite 

Fig. 6  Behavior of different feasibility functions

Fig. 7  Optimization module class diagram
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laminated problems, where each matrix column represents 
ply material, thickness and angle (Rocha et al. 2014; Barroso 
et al. 2017). This encoding scheme facilitates the application 
of heuristic operators for laminates, e.g. layer swap, layer 
addition, and layer deletion. Figure 9 shows the cOptSo-
lution class hierarchy, with the cParticle and cIndividual 
abstract and concrete classes.

The cSelection class implements the selection mecha-
nism, such as the fitness proportional, rank based roulette, 
and tournament selection (Arora 2017).

The cPenalty class implements the penalty objective 
function approach used to handle constrained optimization 
problems. Static and adaptive penalty methods (Deb 2000; 
Lemonge and Barbosa 2004) are currently available.

The cProblem class implements the optimization prob-
lem. The abstract method Evaluate() computes the objective 
function and constraints for a given set of design variables. 
Three versions of this method are defined in the current 

version of BIOS, and can be implemented in the concrete 
problem class to handle optimization problems with con-
tinuous variables (vector< double>), discrete variables with 
integer encode (vector< int>), and discrete variables with 
matrix encode (vector<int*>). The latter is used in the con-
text of composite laminated problems. The cProblem is also 
responsible to decode integer variables, within Evaluate() 
calls. Notice that additional optimization variable types can 
be incorporated to BIOS once a new variant of cProblem’s 
Evaluate() method and a new cOptSolution subclass for the 
corresponding scheme are defined.

4.2  SAO module

The SAO module contains the classes required to imple-
ment the sequential approximated optimization techniques 
discussed in Sect. 3. Figure 10 shows the class diagram of 
this module. The classes of the optimization module are 
reused and expanded with few abstract methods (yellow 
boxes in the class diagram). The cSAO class implements 
the SAO algorithm steps, the evaluation of the initial sam-
ple, the iterative model building, and the selection of new 
data points, as shown in Fig. 2. This class abstracts the sur-
rogate model used, which must be defined in the concrete 
subclass. For instance, the cSAORBF and the cSAOKRG 

Fig. 8  cOptAlgorithm class hierarchy

Fig. 9  cOptSolution class hierarchy Fig. 10  SAO module class diagram



BIOS: an object‑oriented framework for Surrogate‑Based Optimization using bio‑inspired…

1 3

Page 11 of 27 203

classes implement SAO using Kriging and Radial Basis 
Functions, respectively.

The abstract cSURR  class defines the surrogate mod-
els. The approximated prediction for a given input design 
vector is computed by the Evaluate() method. Moreover, 
the evaluation of the infill criteria and the probability of 
feasibility discussed in Sect. 3.3, for a given set of design 
variables, are carried out in the EvalInfillCriteria() and 
EvalProbFeas() methods, respectively. These functions are 
used during the evaluation of the infill points by the cSAO 
class. Model parameters and hyperparameters, as well the 
evaluation of these for given samples, are defined in each 
concrete class of cSURR , such as cKRG and cRBF. Note 
that some input parameters, such as the correlation scheme 
(CorrType) and hyperparameter bounds (HyperParamLow 
and HyperParamUpp) for Kriging, and the width evaluation 
scheme (SigType) for Radial basis functions are passed from 
the corresponding cSAO concrete class.

It is important to note that the number of responses eval-
uated by surrogate models is not necessarily equal to the 
sum of the objective functions and constraints defined in 
the optimization problem. In practice, the surrogate model 
should be employed only in the prediction of computation-
ally expensive objective functions and constraints. Hence, 
the cProblem class defines which objective functions and 
constraints are approximated in the GetApproxConstr() and 
GetApproxObj() methods. These methods set a boolean flag 
for each objective function and constraint, indicating if they 
are approximated or not. The default implementation sets up 
flags to approximate all functions. In practical applications, 
the concrete cProblem should overload these methods to 
approximate only costly functions, increasing computational 
efficiency. The evaluation of a single objective or constraint 
function is performed, respectively, by the EvalExactObj() 
and EvalExactConstr() methods.

Furthermore, the surrogate model input variables are nor-
malized in the [0,1] range. This normalization is carried out 
in the method GetNormVar() of the cProblem class. The 
cSampDblVec class implements the sample optimization 
agent used in cSAO when continuous variables are used, 
which is the case of the examples presented in Sect. 6. The 
addition of integer variable samples is easily done consid-
ering the class architecture presented so far. However, this 
topic is not in the scope of the presented discussion and will 
be explored in future studies.

The pseudocode of the Solver() method of cSAO class is 
illustrated in Fig. 11. The evaluation of the initial dataset 
is done in the SetInitialSample() method, with aid of the 
helper class cSampMethods, which implements the sampling 
techniques discussed in Sect. 3.1. The abstract methods Cre-
ateSurrogate() and UpdateSurrogate() are implemented in 
the concrete classes, as it operates with the concrete cSURR  
object and their specific parameters. The penalty approach 

is used here only to select the current best sample, which 
may be unfeasible depending on the initial sample gener-
ated. The GetCycleWeight() sets wi and � i values used for the 
evaluation of the WEI and LCB, respectively, in the Eval-
InfillPoint() routine.

5  Solving optimization problems using BIOS

In this section, we describe the steps to use BIOS’s SAO 
algorithms to solve an engineering problem with computa-
tionally expensive functions. The problem is discussed in 
Sect. 6.4, and consists of the maximization of the funda-
mental frequency of a circular plate, made of a functionally 
graded material (Al/Al2O3 ), subjected to maximum mass 
and maximum ceramic volume fraction constraints, as for-
mulated in Eq. (34).

The first step is to define a concrete cProblem class, 
which for this example is the cCircularPltFGM class shown 
in Fig. 12. This class also inherits from cFGM class, an aux-
iliary class with common routines employed in optimization 
FG structures (see Fig. 13). It is worth pointing out that a 
similar class for laminated composite optimization is also 
available in BIOS.

*Only abstract methods are written in italic.

Fig. 11  Pseudocode of the Solver() method of the cSAO class

1 class cCircularPltFGM : public cProblem ,
2 public cFGM
3 {
4 public:
5 cCircularPltFGM(void);
6 virtual ~cCircularPltFGM(void) { }
7

8 void Analysis(cVector ,double &);
9 void Evaluate(cVector&,cVector&,cVector &);

10 double EvalExactConstr(int ,cVector &);
11 void GetApproxConstr(bool*);
12 };

Fig. 12  cCircularPlateFGM class definition
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The optimization problem data, such as the number of 
variables, objective functions, and constraints, are set in 
the constructor of the concrete problem class. The evalu-
ation of the objective functions and constraints for a given 
design vector is performed by the Evaluate() method shown 
in Fig. 14. The Analysis() method (line 14) processes the 
expensive numerical response, which in this case consists 
in finding the first natural frequency of the circular plate 
model defined by a given input design variable vector. Next, 
the mass and ceramic fraction are evaluated, and the output 

constraint vector � (lines 16–34) is computed. Finally, the 
objective function is returned.

The routines described above are enough to process the 
optimization problem with conventional optimization algo-
rithms. If no further specification is provided for the SAO 
algorithms, the default settings will build approximations 
for all objectives and constraints. However, in this particular 
problem, only the objective function evaluation is compu-
tationally expensive. Hence, we implement GetApproxCon-
str(), which sets an approximation flag for each constraint, 
and EvalExactConstr(), which evaluates the i-th constraint 
for a given design variable vector. The implementation of 
these methods is depicted in Fig. 15.

With the concrete problem established, the optimization 
is performed using the BIOS modules described earlier. 
The code can be easily integrated into any C++ program. 
Nevertheless, BIOS includes a main function file for the 
optimization of a single problem, for reading input text files 
and writing results into an output file. The input file contain-
ing the optimization parameters of the circular FGM plate 
problem is shown in Fig. 16. Additionally, an input file for 
specific problem data can be defined. In this case, the FGM 
material properties are specified in a new file with extension 
.fgm, as shown in Fig. 17.

It is worth pointing out that software design patterns are 
used to simplify usability, i.e., the creational patterns single-
ton and abstract factory are employed (Gamma et al. 1994; 
Alexandrescu 2001). One benefit in the use of these patterns 
is that all code required to add a new problem to the system 
can be placed into new files, and no modifications need to 
be done to the main code. In the problem described here, the 
registration of concrete problem class into the problem fac-
tory object is performed on its implementation file, Fig. 14 
at line 1, where the extension of the problem data file is also 
specified.

1 class cFGM
2 {
3 void MoriTanaka(vector <double >,vector <double

>&);
4 void CalcABDG(cMatrix &);
5 void CalcMb(cMatrix &);
6 void QMatrix(double ,cMatrix &);
7 void EvalVolumeRatio(cVector ,double &);
8 };

Fig. 13  cFGM class definition

1 static const bool r = cProblemFactory ::
Register("CircularPltFGM", MakeProb <
cCircularPltFGM >,".fgm");

2

3 double cCircularPltFGM :: cCircularPltFGM( )
4 {
5 NumVar = 6;
6 NumObj = 1;
7 NumConstr = 2;
8 }
9

10 double cCircularPltFGM :: Evaluate(vector <
double > &x, vector <double > &c)

11 {
12 // Frequency evaluation.
13 double w;
14 Analysis(x, w); // IGA modal analysis.
15

16 // Get volume fraction at control points.
17 int numcp = NumVar *2 - 1;
18

19 vector <double > Vcp(numcp);
20 for (int i = 0; i < NumVar; i++)
21 Vcp[i] = Vcp[numcp -1-i] = x[i];
22

23 // Evaluate mass and ceramic volume fraction.
24 double rho = 0;
25 EvalDens(Vcp , rho);
26 double area = PI *0.5*0.5;
27 double mass = rho*area*x[0];
28

29 double vcrat;
30 EvalVolumeRatio(Vcp , vcrat);
31

32 // Evaluate problem constraints.
33 c[0] = (mass - 100) /100; // Eq. (35).
34 c[1] = (vcrat - 0.35) /0.35; // Eq. (36).
35

36 // Return problem objective function.
37 return -w; // Frequency maximization.
38 }

Fig. 14  Circular FGM plate implementation file

1 void cCircularPltFGM :: GetApproxConstr(bool*
approxc)

2 {
3 approxc [0] = 0;
4 approxc [1] = 0;
5 }
6

7 double cCircularPltFGM :: EvalExactConstr(int i,
vector <double > &x)

8 {
9 // ...

10 // Lines 8-24 from Evaluate method (Fig. 14).
11 // ...
12

13 if (i == 0)
14 return (mass - 100) /100;
15 else
16 return (vcrat - 0.35) /0.35;
17 }

Fig. 15  Implementation of approximated constraint flags and exact 
constraint evaluation
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6  Applications

In this section, the capabilities of BIOS are assessed over 
several well-known test functions and three structural 
engineering problems to highlight the potential of SAO 
in increasing the efficiency of the optimization process.

Here, two surrogate models were considered, namely 
RBF with the Fivefold Cross Validation (5-FCV) tech-
nique to define the width parameter and Kriging with a 
Gaussian correlation function and the MLE approach to 
define its hyperparameters. The lower and upper bounds of 

the Kriging hyperparameters were set to log(�L) = −1 and 
log(�U) = 2 , respectively. In addition, two different criteria 
to choose the new infill points were investigated, the EI 
and the WEI. In the latter, the cycling approach considered 
weights w ∈ [0.2, 0.35, 0.5].

Thus, four different algorithms were investi-
gated. They were named RBF-EI, RBF-WEI, KRG                                                                                                                                              
                                                                                              -E
I, and KRG-WEI. The optimization of the acquisition func-
tions (EI and WEI) was performed using the DE algorithm. 
Table 1 presents the values of the parameters used for opti-
mization the acquisition functions and the likelihood estima-
tor (for fitting the Kriging model). Moreover, the parameters 
used for the PSO are also shown, which is employed in the 
conventional optimization carried out for comparison pur-
poses in Sect. 6.4.

The SAO algorithms were terminated when the number 
of high-fidelity evaluations exceeded nmax , or when the algo-
rithm failed to improve upon the optimal design for Itstall 
consecutive iterations. These parameters depend on the 
dimensionality and complexity of each problem. Since the 
EI and the MLE are cheap to evaluate functions, the size of 
the population and the number of iterations used by DE were 
increased to 100 and 500, respectively, with no additional 
stopping criterion.

Due to the stochastic nature of the optimization algo-
rithms used in this paper, each problem was run 10 times. 
The comparison between the SAO algorithms is given in 
terms of accuracy and efficiency.

To assess the accuracy of the optimum found, the 
NRMSE was considered, which corresponds to the average 
of the Normalized Root Mean Squared Error (NRMSE) of 
all runs. The error of each run was evaluated by comparing 
the best sampling point found by the algorithm and the true 
optimum.

To assess the efficiency, the average number of high 
fidelity evaluations ( nev ) performed until reaching a stop-
ping criterion was considered. In the case of the structural 

1 %OPTIMIZATION.ALGORITHM
2 ’SAORBF ’
3

4 %INDIVIDUAL.TYPE
5 ’DoubleVector ’
6

7 %OPTIMIZATION.NUMBER
8 10
9

10 %INITIAL.SAMPLE.SIZE
11 40
12

13 %MAXIMUM.ITERATIONS
14 150
15

16 %STALL.ITERATIONS
17 20
18

19 // continue.

20 %CONSTRAINT.TOLERANCE
21 1.0e-5
22

23 %USE.CYCLIC.WEI
24 ’true’
25

26 %PROBLEM.TYPE
27 ’CircularPltFGM ’
28

29 %SIGMA.TYPE
30 ’KFCV’
31

32 %PENALTY.METHOD
33 ’Adaptive ’
34

35 %END

Fig. 16  Optimization data input file of the Circular FGM plate prob-
lem

1 %MATERIAL
2 2
3

4 %MATERIAL.ISOTROPIC
5 2
6 1 70e9 0.30 0.00 0.00
7 2 380e9 0.30 0.00 0.00
8

9 %MATERIAL.DENSITY
10 2
11 1 2707
12 2 3800
13

14 %FGM.MATERIALS
15 2
16 1
17 2
18

19 %FGM.MODEL
20 ’Mori -Tanaka ’
21

22 %FGM.VOLUME.DISTRIBUTION
23 ’BSpline ’
24

25 %FGM.CONTROL.POINT.NUMBER
26 5
27

28 %FGM.THICKNESS.RANGE
29 0.01 0.0001 0.05

Fig. 17  Problem data input file of the Circular FGM plate problem

Table 1  Parameters for the bio-inspired algorithms

General Np 60
G

max
150

G
stall

20
DE Differentiation method Current-to-Best

Crossover rate ( Cr) 0.80
Scale factor (F) 0.85

PSO Topology Global
Inertia (w) 0.70
Cognitive factor ( c

1
) 1.50

Social factor ( c
2
) 1.50

Mutation ( �
mut

) 0.05
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engineering problem, the gain in computational efficiency 
was measured using:

where Talg is the average time spent by a given algorithm 
and Tslw is the time spent by the slowest algorithm. Thus, � 
represents how much faster a given algorithm is compared 
to the least efficient one.

All numerical computations were performed on a com-
puter with two processors  Xeon® with 2.8 GHz clock speed 
and 32 GB of RAM, each with 10 cores, resulting in 20 
cores in total. In BIOS, paralellization affects essentially 
two procedures: the evaluation of the population in heuristic 
algorithms and the evaluation of the initial sample for SAO 
methods.

6.1  Branin function

The first example is the minimization of the Branin function, 
a two-dimensional problem commonly employed in SBO 
(Jones et al. 1998; Sobester et al. 2005; Forrester et al. 2008; 
Song et al. 2019):

Figure 18 depicts its surface. This function has 3 global 
minima: f (x) = 0.3979 at x = [−�, 12.275] , x = [�, 2.275] , 
and x = [9.425, 2.475].

(25)� =
Tslw

Talg

(26)
f (�) =

(
x2 −

5.1

4�2
x1 +

5

�
x1 − 6

)2

+ 10
(
1 −

1

8�

)
cos x1 + 10

In this example, for replication purposes, nine initial sam-
pling points are generated via the Hammersley sequence, a 
deterministic sampling method. In this case, the algorithm 
is terminated if it does not improve its best solution for 
Itstall = 10 consecutive iterations. In addition, the algorithm 
is also stopped when the maximum number of samples is 
achieved, which is set to nmax = 40.

Figure 19 illustrates one of the optimization runs using the 
RBF-EI approach. In the first iteration, the EI maximization 
leads to a point at the edge of the design space, at x = [10, 0] . 
For the next several iterations, the algorithm tends to exploit 
the region around one of the global optima (right corner). 
After some more exploration and exploitation of the optimum 
region (note how the solution begins to cluster around the opti-
mum), one of the optimum designs is found at Iteration 18.

Table 2 compares different SAO algorithms on the Branin 
function minimization. The Kriging-based algorithms per-
formed exceptionally well, but the RBF also presented small 
errors. While the conventional approaches would require hun-
dreds or even thousands of evaluations of the true function, 
these methods were able to find very good results with less 
than 50 evaluations. The results found are compared to the 
ones shown by Jones et al. (1998), where the EGO algorithm 
is applied, showing that the results are in agreement with what 
is expected. It is worth to note that the EGO algorithm uses a 
different stopping criterion, related to the maximum Expected 
Improvement (EI) found in each iteration, which may explain 
the difference in nev.

Finally, Fig. 20 presents the boxplots showing the NRMSE 
of each approach. The blue × depicts the average response. 
The results show the robustness of the SAO approaches, which 
are able to reliably find individuals very close to the global 
optimum.

6.2  Hartmann 6 function

The Hartmann 6 function is a six-dimensional problem also 
commonly employed in SBO (Jones et al. 1998; Sobester et al. 
2005). The function is given by:

where � = [1.0, 1.2, 3.0, 3.2] and:

(27)f (�) = −

4∑
i=1

�i exp

(
−

6∑
j=1

Aij (xj − Pij)
2

)

(28)A =

⎡⎢⎢⎢⎢⎢⎢⎣

10.0 0.05 3.00 17.0

3.00 10.0 3.50 8.00

17.0 17.0 1.70 0.05

3.50 0.10 10.0 10.0

1.70 8.00 17.0 0.10

8.00 14.0 8.00 14.0

⎤⎥⎥⎥⎥⎥⎥⎦

T

Fig. 18  Branin function
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(a) E[I(x)] surface on Iteration 1
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(b) Point added on Iteration 1
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(c) Points added until Iteration 6
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(d) Points added from Iteration 7 to 18

Fig. 19  Addition of infill points for the Branin function

Table 2  Average results for the 
Branin function

Method NRMSE nev

RBF-EI 0.50% 37
RBF-WEI 0.71% 33
KRG-EI 0.01% 37
KRG-WEI 0.03% 40
EGO (Jones 

et al. 1998)
0.20% 28 N

R
M
SE
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Fig. 20  NRMSE boxplot for the Branin function
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This function has 6 local minima. The global optimum is 
located at x = [0.202, 0.150, 0.477, 0.275, 0.312, 0.657] , 
where f (x) = −3.322 . Here, the initial sample consists of 
30 points, selected via the LHS20 method. In this example, 
the stopping criteria are given by nmax = 150 and Itstall = 10 . 
The results using BIOS are shown in Table 3, along with 
the results found by Jones et al. (1998). The best results 
were found with the KRG-WEI approach, where a very small 
NRMSE was found. Also, the RBF-based approaches seem 
to be slightly more efficient, as they required fewer evalua-
tions of the true function.

Figure 21 presents the boxplots of the NRMSE for this 
problem. Due to the higher dimensionality and the multiple 
local minima, this function is more complex and harder to 
optimize. The KRG-WEI approach stands out as the most 
robust method.

6.3  Kitayama’s constrained problem

This problem was shown by Kitayama et al. (2010) as a illus-
trative example for constrained SAO. The objective function 
is the negative of a two-dimensional sphere function, centered 
at x = [1.0, 0.5]:

This function is subjected to the following constraints:

(29)P = 10−4

⎡⎢⎢⎢⎢⎢⎢⎣

1312 2329 2348 4047

1696 4135 1451 1451

5569 8307 3522 8732

124 3736 2883 5743

8283 1004 3047 1091

5886 9991 6650 381

⎤⎥⎥⎥⎥⎥⎥⎦

(30)f (�) = −
(
x1 − 1.0

)2
−
(
x2 − 0.5

)2

(31)g1(�) =

[(
x1 − 3

)2
+
(
x2 + 2

)2]
exp(−x7

2
)

12
− 1 ≤ 0

(32)g2(�) =

(
x1 + 0.5

)2
−
(
x2 − 0.5

)2
0.2

− 1 ≤ 0

In this problem, all constraints will be approximated by sur-
rogate models, similar to the objective function, and the fea-
sibility function proposed by Tutum et al. (2014), Eq. (19), 
is used to deal with the approximate constraints. Figure 22 
presents the constrained design space, where the unfeasi-
ble space is being highlighted. The feasible region is non-
convex and consists of two separate small regions in the 
design space.

The problem has a local optimum at x = [0.262, 0.122] , 
with f (x) = −0.687 , but the global optimum is at 
x = [0.202, 0.833] , with f (x) = −0.748 . For constrained 
optimization, it is interesting to increase the initial sampling 
size, especially for functions with multiple constraints and 
such complex feasible space. It is very hard for SBO to iden-
tify the feasible region if there are no points in it.

The initial model is built using 12 sampling points, gen-
erated via the Hammersley sequence. Here, the stopping 
criteria for the SAO algorithms are given by nmax = 80 and 

(33)g3(�) =
10 x1 + x2

7
− 1 ≤ 0

Table 3  Average results for the 
Hartmann 6 function

Method NRMSE nev

RBF-EI 0.71% 74
RBF-WEI 2.47% 72
KRG-EI 1.80% 79
KRG-WEI 0.04% 79
EGO (Jones 

et al. 1998)
1.90% 84
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Fig. 21  NRMSE boxplot for the Hartmann 6 function
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Fig. 22  Kitayama’s problem (Kitayama et al. 2010) constrained space
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Itstall = 20 . Figure 23 illustrates one of the optimization runs 
using RBF-EI. Note that only three points are in the feasible 
design space in the initial sample and one of those is actually 
very close to the local optimum. Nevertheless, the algorithm 
is able to select, in the first iteration, an infill point very close 
to the global optimum. The actual global optimum is found 
on Iteration 11, and the algorithm stops after 20 iterations 
with no noticeable improvement upon the objective func-
tion. One should note that, on very small feasible spaces, 
it might be hard to locate a non-zero region for the Con-
strained Expected Improvement defined by Eq. (21), which 
further explains why heuristic algorithms are a good choice 
for these applications.

A comparison of the performance of the different SAO 
algorithms for this problem is presented on Table 4. Once 
again, the Kriging-based algorithms performed exception-
ally well. The RBF also presented minor errors and, as 

will become more evident in the next section, at a lower 
computational cost. The results are compared to the ones 
found by Kitayama et al. (2010) using their proposed SAO 
algorithm.

Finally, Fig. 24 presents boxplots with the performance 
of each algorithm, in terms of the NRMSE. Again, the 
algorithms seem to be very robust, being able to find the 
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(d) Points added until Iteration 11

Fig. 23  Addition of infill points for Kitayama’s constrained problem

Table 4  Average results for Kitayama’s constrained problem

Method NRMSE nev

RBF-EI 0.28% 50
RBF-WEI 0.33% 47
KRG-EI 0.02% 38
KRG-WEI 0.00% 37
Kitayama et al. (2010) 0.20% 50



 E. S. Barroso et al.

1 3

203 Page 18 of 27

optimum with high reliability, particularly the ones based 
on Kriging.

6.4  Optimization of a unidirectional FG circular 
plate

In this section, the fundamental frequency of a simply sup-
ported FG circular plate made of Al/Al2O3 is maximized, 
while subjected to mass and ceramic fraction constraints. 
The material gradation is defined by a B-Spline func-
tion with 9 control points symmetrically spread along the 
plate thickness. Thus, in addition to the plate thickness, 
5 designs variables related to the volume fraction distri-
bution are considered. Material properties are Em = 90 
GPa, �m = 2707 kg∕m3 , Ec = 380 GPa, �c = 3800 kg∕m3 , 
�m = �c = 0.30 . The effective material properties are evalu-
ated via the Mori-Tanaka scheme (Shen 2009; Do et al. 
2019; Ribeiro et al. 2020). The plate geometry and bound-
ary conditions are shown in Fig. 25. Rigid body motion is 
prevented by constraining the u and v displacements in two 
radially symmetric points on the x − y plane.

The optimization problem is defined as:

where x1 is the plate thickness, x2 , x3 , ..., x6 are the control 
points, hmin = 0.01 m, and hmax = 0.05 m. The constraints 
g1(�) and g2(�) represent the mass and ceramic fraction con-
straints, respectively given by:

Here, mmax = 100  kg and Vc,max = 35% . Since the evaluation 
of these constraints is cheap, there is no need to approxi-
mate them. The implementation of this problem is described 
in Sect. 5. The structural analysis is performed using the 
Finite element AnalysiS Tool (FAST), an in-house software, 
but any software that can be integrated with C++ can be 
employed. A 1024-element cubic NURBS mesh is employed 
as shown in Fig. 26. The IGA formulation employed, con-
sidering the First-order Shear Deformation Theory (FSDT), 
can be found in Maia et al. (2021).

In this problem, 40 initial sampling points are generated 
via the LHS20 method and DE is used to maximize the EI 
or the WEI. The stopping criteria are given by nmax = 150 
and Itstall = 20 . Along with SAO algorithms, the optimiza-
tion is conducted using two conventional meta-heuristics 
suitable for dealing with continuous optimization, PSO 

(34)

⎧
⎪⎪⎨⎪⎪⎩

maximize �(�)

subjected to g1(�) ≤ 0

g2(�) ≤ 0

with hmin ≤ x1 ≤ hmax

0 ≤ xi ≤ 1 for i = 2, 3,… 6

(35)g1(�) = � R2 �
h∕2

−h∕2

�(z) dz − mmax ≤ 0

(36)g2(�) =
1

h �
h∕2

−h∕2

Vc dz − Vc,max ≤ 0
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Fig. 24  NRMSE boxplot for Kitayama’s constrained problem

Fig. 25  Simply supported circular plate Fig. 26  Circular plate NURBS mesh
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and DE. The values of the optimization parameters con-
sidered in this problem are presented in Table 1.

The global optimum of this problem is found at 
x = [0.0412, 1.0, 1.0, 0.4, 0.0, 0.0] , with �(�) = 2077.33 Hz. 
Figure 27 shows the distribution of the volume fraction of 
the ceramic through the thickness of the optimum design. 
The first vibration mode for the optimum design is shown 
in Fig. 28. This solution is validated using ABAQUS with a 
4800-element mesh of quadratic shell elements and reduced 
integration (S8R). The result obtained was �(�) = 2069.60 
Hz, which is only 0.37% smaller than the frequency calcu-
lated by FAST.

Table 5 presents a comparison on the performance of 
different SAO algorithms and two conventional algorithms. 

The parameter � is given with respect to the computational 
cost of DE, which was the least efficient algorithm in this 
example. The paralellization procedure is performed by tak-
ing advantage of all 20 cores of the local machine.

Here, it is clear that the SAO algorithms are much more 
efficient than the conventional optimization due to the 
much lower number of evaluations ( nev ) of the high fidel-
ity function carried out using IGA. Furthermore, Kriging-
based methods were able to achieve a lower NRMSE than 
the conventional optimization using PSO. The RBF-based 
approaches also achieved small errors, while presenting even 
higher gains in efficiency. It is important to highlight that the 
serial SAO methods presented an outstanding performance 
even when compared to the conventional optimization using 
parallelization.

Finally, Fig. 29 presents the boxplots of the NRMSE for 
this problem. The robustness of KRG-EI and KRG-WEI 
approaches is evident, as they were able to find the global 
optimum in all cases, similar to conventional approach using 
DE.

6.5  Optimization of a tridirectional FG square plate

In this section, the maximization of the buckling load factor 
of a simply supported SUS304/Si3N4 FG square plate is per-
formed, considering a ceramic volume fraction constraint. 
Here, the material gradation is given by a tridirectional 
B-Spline function with 144 control points, and material 
properties are Em = 201.04 GPa, �m = 0.3262 , Ec = 348.43 
GPa, and �c = 0.24 . The gradation is symmetric in all three 
directions, and the effective material properties are evalu-
ated via the Mori-Tanaka scheme (Do et al. 2020). The plate 
geometry and boundary conditions are shown in Fig. 30.

Two different meshes are used for distinct purposes: the 
design and the analysis mesh. The design mesh is used to 
define the material gradation, and is given by a 3D 3 × 3 × 1 
cubic NURBS mesh. On the other hand, the analysis mesh 
is used to perform the structural analysis, and is given by a 
2D 16 × 16 cubic NURBS mesh. These meshes are shown 
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Fig. 27  Ceramic volume fraction variation of optimum design

Fig. 28  First vibration mode of optimum design

Table 5  Average results for the FG circular plate

Method NRMSE nev �

Serial Parallel

PSO 0.06% 5646 1.33 21.25
DE 0.00% 7620 1.00 15.96
RBF-EI 1.09% 64 100.93 249.86
RBF-WEI 0.50% 65 97.35 259.17
KRG-EI 0.00% 63 53.65 202.37
KRG-WEI 0.00% 61 58.89 203.06
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Fig. 29  NRMSE boxplot for the maximization of �(�)
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in Fig. 31. The design variables of this problem are the con-
trol points for the design mesh. This mesh has 144 con-
trol points, but due to symmetry in all three directions, the 
optimization problem has 18 design variables. It should be 
noted that this is a significant number of variables for SBO 
problems (Díaz-Manríquez et al. 2011). The optimization 
problem is defined as:

where the constraint g1(�) represents the ceramic fraction 
constraint:

with Vc,max = 30 %. Again, this constraint is not approxi-
mated by a surrogate model since its evaluation is not expen-
sive. Moreover, the non-dimensional buckling load is given 
by �n = Ncr a

2∕(�2 Dc) , where Dc = Ec h
3∕[12 (1 − �2

c
)].

This problem was first proposed by Do et al. (2020), who 
used a Deep Neural Network to improve the efficiency of the 
optimization process. Thus, 10,000 sampling points were 
used to train and validate the model. The authors evaluated 
the buckling load using a Higher-order Shear Deformation 
Theory (HSDT). In the present work, SAO is employed 
using BIOS, and 40 initial sampling points are generated 
via the LHS20 method and, once again, the DE is used to 
maximize the acquisition function. The stopping criteria are 
nmax = 150 and Itstall = 20 , and conventional meta-heuristic 
will also be used to carry out the optimization process. The 
optimization parameters are shown in Table 1.

Table 6 shows the optimum design for this problem. 
The value for the buckling load using the HSDT was taken 
from Do et al. (2020), while the FSDT value was found 
using an in-house analysis software. It is important to note 
that the optimum found in this work presents a slightly 
higher ( 1.5% ) buckling load when compared to the refer-
ence solution using the FSDT (Do et al. 2020). Figure 32 
shows that material distribution for the optimum design is 
very complex in the plate domain. Note that, since load is 
applied in the x axis, the optimum design favors the addi-
tion of ceramic material in the loaded face. The buckling 
mode for the optimum design is depicted in Fig. 33.

The performance evaluation of SAO variants and con-
ventional algorithms is presented in Table 7. The param-
eter � is given with respect to the computational cost of the 
conventional optimization with DE algorithm, since it was 
the least efficient alternative in this example. The boxplots 
of the NRMSE for this problem are presented in Fig. 34.

(37)

⎧
⎪⎨⎪⎩

maximize �n(�)

subjected to g1(�) ≤ 0

with 0 ≤ xi ≤ 1 for i = 1, 2,… 18

(38)g1(�) =
1

V � Vc dV − Vc,max ≤ 0

N   1

Fig. 30  Simply supported square plate

(a) Design mesh

(b) Analysis mesh

Fig. 31  Meshes used for the square plate problem

Table 6  Optimum design for the tridirectional FG plate

Source Design variables ( �) Buckling load

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 HSDT FSDT

Do et al. (2020) 1 1 0 1 1 0 0 0.526 1 0 0 0 0 0 0 0 0 0 2.906 2.832
This work 1 0 1 1 0.023 1 1 0 1 0 0 0 0 0 0 0 0 0 2.876
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The SAO algorithms presented superior efficiency in 
comparison to the conventional optimization algorithms, 
even when comparing the serial version of SAO algorithm 
with parallel version of conventional algorithms. Again, 
Kriging-based methods outperform the PSO algorithm in 
terms of accuracy and achieve similar results in comparison 
to the DE algorithm. RBF-based methods were the most effi-
cient alternative, and also presented good accuracy. Finally, 
the number of required structural analyses was drastically 
reduced for all SAO algorithms with respect to the conven-
tional optimization.

6.6  Optimization of a tridirectional FG panel 
with a cutout

In this final problem, the multi-objective optimization of a 
SUS304/Si3N4 FG panel with a circular cutout is performed. 
Again, material gradation is described by a tridirectional 
B-Spline function, but now with 256 control points, symmet-
ric in all three directions. Material properties are the same as 
the ones from the previous example. Equivalent properties 
are evaluated via the Mori-Tanaka scheme.

The composite panel is shown in Fig. 35. It has length 
L = 1 m, bending radius R = 5 m, and � = 0.1 rad. The cir-
cular cutout is located in the center of the shell with radius 
r = 0.1 m.

The analysis is performed using a finite element model 
consisting of 1536 quadratic eight-node shell elements with 
reduced integration. Due to the cutout, the model should 
be well-refined to guarantee that stresses are accurately 
computed. Figure 36 shows how the membrane force in 
x-direction due to a unit distributed load ( Nx ) for the case of 
Vc = 50% . We see that there are major stress concentrations 
near the hole, but this refined mesh allows for an accurate 
approximation of internal forces. Figure 37 depicts the buck-
ling mode for this panel.

Again, a design mesh is considered to assist in defining 
material volume fractions in the structure’s domain. This 
time, the design mesh is given by a 3D 5 × 5 × 1 cubic 

(a) Optimum gradation

(b) x = a/3

(c) y = a/3

Fig. 32  Optimum design for the square plate problem

Fig. 33  Critical buckling mode for the square plate

Table 7  Average results for the FG square plate

Method NRMSE nev �

Serial Parallel

PSO 0.45% 6786 1.30 11.73
DE 0.05% 9060 1.00 9.36
RBF-EI 0.50% 61 38.52 58.03
RBF-WEI 0.77% 61 38.08 57.87
KRG-EI 0.04% 64 15.19 46.62
KRG-WEI 0.01% 62 16.42 44.23
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Fig. 34  NRMSE boxplot for the maximization of �n(�)
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NURBS mesh parametrized in coordinates x and y, and 
in shell thickness, as depicted in Fig. 38. Note that the 
cutout is not explicitly included in the design mesh but 
is nevertheless taken into account by the analysis model. 
There are 256 control points but, due to symmetry in the 

three directions, 32 design variables are considered in the 
optimization problem. It is worth pointing out that this is 
a very high number of variables for SBO (Díaz-Manríquez 
et al. 2011).

This time, we perform the multi-objective optimization of 
the FG panel. Here, two objectives are considered: maximi-
zation of the buckling load �n and minimization of the total 
cost Ct . The optimization problem is defined as:

where f1 = −�n(�) and f2 = Ct(�) . The total cost is evalu-
ated by:

where Cc = 50 USD/kg and Cm = 3 USD/kg are the costs for 
the ceramic and metal, respectively (Franco Correia et al. 
2021), and �c = 2730 kg/m3 and �m = 8000 kg/m3 are the 
material densities for the ceramic and metal, respectively. 
The non-dimensional buckling load is evaluated by the same 
expression as the previous example.

The multi-objective optimization is solved using the 
Weighted Compromise Programming (WCP) method (Athan 
and Papalambros 1996; Rouhi et al. 2015; Barroso et al. 
2017), where multiple single-objective problems are defined 
considering weighted objectives. Thus, the final objective 
function is defined as:

where m = 2 , f1,min and f2,min are the minimum objectives for 
f1 and f2 , and f1,max and f2,max are the maximum objectives 
for f1 and f2 . Since f1(�) = −�n(�) and f2(�) = Ct(�) , we 
can find f1,min = −2.1406 and f2,max = 2639.6916 USD for 
the isotropic Si3N4 shell, and we can find f1,max = −1.1700 
and f2,min = 464.1216 USD for the isotropic SUS304 shell. 
By continuously changing the weight factor w, one is able 
to draw the Pareto front of the multi-objective optimization 
problem.

(39)
{

minimize f1(�), f2(�)

with 0 ≤ xi ≤ 1 for i = 1, 2,… 32

(40)Ct = Cc�c
1

V ∫ Vcdv + Cm�m
1

V ∫ Vmdv

(41)

f (�) =

[
w

f1 − f1,min

f1,max − f1,min

]m
+

[
(1 − w)

f2 − f2,min

f2,max − f2,min

]m

Fig. 35  FG panel with a circular cutout

Fig. 36  Force in   x-direction for unit loading

Fig. 37  Critical buckling mode for the FG panel

Fig. 38  Design mesh for the FG panel
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In this problem, the SAO algorithms use 60 initial sam-
pling points defined by the LHS20 method. Here, only the 
Weighted Expected Improvement variant of Kriging and 
RBF are used as surrogates. These models are chosen since 
they perform well in other examples. The stopping crite-
ria are nmax = 150 and Itstall = 20 . In addition to the SAO 
algorithms, the Differential Evolution meta-heuristic will 
also be used to carry out the optimization process, using the 
optimization parameters shown in Table 1. Due to the high 
cost of the FE simulations, only parallel optimizations are 
considered in this case.

The Pareto front obtained by each algorithm is presented 
in Fig. 39. The Differential Evolution (DE) and Kriging 
obtained similar optimal designs, while RBF obtained 
slightly worse solutions. Table  8 presents the optimal 

designs and their objective functions and ceramic fraction 
( Vc ) for each point in Pareto’s front.

Computation times are shown results are shown in 
Table 9. Here, the parameter � is given with respect to the 
computational cost of parallel DE. The time spent by RBF 
and Kriging was 29 and 14 times faster than DE, respec-
tively. Again, the RBF algorithm has superior efficiency but 
inferior accuracy in comparison to the Kriging algorithm. 
Note that RBF performed 2.1 times faster than Kriging for 
this problem, while being 1.3 times faster for the problem in 
Sect. 6.5. The efficiency of RBF in comparison to Kriging 
increases as bigger sample set are used since the training 
of RBF models has a lower computational complexity in 
comparison to Kriging.

The optimal gradations for three different designs of 
Pareto’s front are illustrated in Fig. 40 for the design mesh. 
As the weight w decreases, ceramic becomes more present 
in the design, since the buckling-related objective becomes 
more important than the cost-related one.

7  Conclusion

This paper presented BIOS, a framework for design opti-
mization using nature inspired search and Sequential 
Approximated Optimization, with focus on the optimiza-
tion of composite structures. The framework architecture 
was described in detail, through exposition of its modules 
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Fig. 39  Pareto’s front for the FG panel

Table 8  Results for the FG panel

w Design variables ( �) f (�) C (USD) �n Vc (%)

0.0 [1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1] 0.0000 2639.6916 2.1406 100
0.1 [1 1 1 1 0.8683 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0.1229 1 1 0.4519] 0.0099 2619.5050 2.1298 99
0.2 [1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 0 0 1 1 0 0 0.6708 1 0 1 1 1 0.3646] 0.0357 2383.2830 2.0589 88
0.3 [1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 0 0 0.2792 0 0 1 1 1 1] 0.0657 1985.1140 1.9361 70
0.4 [1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 0.4633 0 0 0 0 0 0 0 0 0.3534 1 1 0] 0.0848 1731.9480 1.8583 58
0.5 [1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] 0.0957 1552.1820 1.7869 50
0.6 [1 1 1 1 0 1 0.8384 0 0 1 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] 0.0951 1172.6030 1.5616 33
0.7 [1 1 1 1 0 0.007 0.6586 0 0 0 0.2086 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] 0.0696 831.4536 1.3777 17
0.8 [0 1 0.8 1 0 0 0 0 0 0 0 0 0 0.7047 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] 0.0356 624.4876 1.2705 7
0.9 [0.3262 0 0 0 0 0 0 0.2054 0 0 0 0 0 0 0.0467 0.2831 0.2757 0 0 0 0 0 0 0 0 0 0 0 

0.1369 0 0 0.2886]
0.0099 488.4376 1.1796 1

1.0 [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] 0.0000 464.1216 1.1700 0

Table 9  Processing time for the 
FG panel

Method Time per opti-
mization (s)

�

DE 6023 1.0
RBF 209 28.8
KRG 430 14.0



 E. S. Barroso et al.

1 3

203 Page 24 of 27

and discussion regarding its classes responsibilities and 
most important methods.

The theoretical aspects concerning the SAO algorithms 
based in Radial Basis Functions and Kriging and their 
impact on the system architecture were also discussed. The 
effectiveness of both strategies were assessed using well-
known benchmarks problems, for which excellent results 
were obtained. A multi-objective problem was also solved, 
successfully obtaining its Pareto front.

To assess the capabilities of BIOS in terms of effi-
ciency, the optimization of functionally graded structures 
with costly objective functions were solved, combining 
parallel computing and surrogate modeling features pre-
sented here. The results show that the SAO algorithms 
outperform the conventional algorithms, such as PSO and 
DE, by orders of magnitude, with negligible differences 
in the optimum design.

BIOS is a powerful tool for sequential approximate 
methods, as well as for optimization of laminate and 
functionally graded structures. Moreover, BIOS can 
be employed in the solution of optimization problems 
from different engineering fields, requiring only minor 
modifications and adjustments to the code. It is worth 
emphasizing that the framework is cross-platform and 
open-source, which provides a resourceful alternative for 
future researchers in this lively field. For future works, the 
authors intend to extend the framework, by including new 
methods for solving constrained optimization problems, 
multi-objective optimization problems, and problems with 
discrete variables.
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