

Delft University of Technology

BIOS
an object-oriented framework for Surrogate-Based Optimization using bio-inspired
algorithms
Barroso, Elias Saraiva; Ribeiro, Leonardo Gonçalves; Maia, Marina Alves; Rocha, I.B.C.M.; Parente,
Evandro; de Melo, Antônio Macário Cartaxo
DOI
10.1007/s00158-022-03302-0
Publication date
2022
Document Version
Final published version
Published in
Structural and Multidisciplinary Optimization

Citation (APA)
Barroso, E. S., Ribeiro, L. G., Maia, M. A., Rocha, I. B. C. M., Parente, E., & de Melo, A. M. C. (2022).
BIOS: an object-oriented framework for Surrogate-Based Optimization using bio-inspired algorithms.
Structural and Multidisciplinary Optimization, 65(7), Article 203. https://doi.org/10.1007/s00158-022-03302-0

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1007/s00158-022-03302-0
https://doi.org/10.1007/s00158-022-03302-0

Green Open Access added to TU Delft Institutional Repository

'You share, we take care!' - Taverne project

https://www.openaccess.nl/en/you-share-we-take-care

Otherwise as indicated in the copyright section: the publisher
is the copyright holder of this work and the author uses the
Dutch legislation to make this work public.

Vol.:(0123456789)1 3

Structural and Multidisciplinary Optimization (2022) 65:203
https://doi.org/10.1007/s00158-022-03302-0

RESEARCH PAPER

BIOS: an object‑oriented framework for Surrogate‑Based Optimization
using bio‑inspired algorithms

Elias Saraiva Barroso1 · Leonardo Gonçalves Ribeiro1 · Marina Alves Maia1,2 ·
Iuri Barcelos Carneiro Montenegro da Rocha2 · Evandro Parente Jr.1 · Antônio Macário Cartaxo de Melo1

Received: 31 October 2021 / Revised: 11 March 2022 / Accepted: 11 June 2022 / Published online: 7 July 2022
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022

Abstract
This paper presents BIOS (acronym for Biologically Inspired Optimization System), an object-oriented framework written in
C++, aimed at heuristic optimization with a focus on Surrogate-Based Optimization (SBO) and structural problems. The use
of SBO to deal with structural optimization has grown considerably in recent years due to the outstanding gain in efficiency,
often with little loss in accuracy. This is especially promising when adaptive sampling techniques are used. However, many
issues are yet to be addressed before SBO can be employed reliably in most optimization problems. In that sense, continuous
experimentation, testing and comparison are needed, which can be more easily carried out in an existing framework. The
architecture is designed to implement conventional nature inspired algorithms and Sequential Approximated Optimization
(SAO). The system aims to be efficient, easy to use and extensible. The efficiency and accuracy of the system are assessed
on a set of benchmarks, and on the optimization of functionally graded structures. Excellent results are obtained.

Keywords Object-oriented framework · Structural optimization · Surrogate-Based Optimization · Sequential Approximated
Optimization · Composite structures

1 Introduction

In recent years, Surrogate-Based Optimization (SBO) has
been gaining popularity due to its capability of approximat-
ing otherwise time-consuming functions with much cheaper
surrogates at the expense of a small accuracy loss (Queipo
et al. 2005; Forrester et al. 2008; Stork et al. 2020b). Hence,
SBO can play an important role in structural optimization
problems, where the high computational cost of finite ele-
ment analysis is typically the main bottleneck (Chen et al.
2014; Do et al. 2019).

In SBO, a given dataset is used to build a model, which is
then employed to find the global optimum. For constant sur-
rogates, this model is fixed and, since no a priori knowledge
is available, the sample must be well distributed so that good
overall accuracy is obtained (Forrester et al. 2008).

In optimization problems, however, it might be wise to
improve accuracy in promising regions of the design space,
which corresponds to the Sequential Approximate Opti-
mization (SAO) (Schmit and Farshi 1974; Kitayama and
Yamazaki 2011; Ribeiro et al. 2020; Maia et al. 2021). In
this approach, the surrogate model is continuously updated
by the addition of new sampling points. These additions aim
at improving the accuracy near the global optimum (Jones
et al. 1998; Sobester et al. 2005; Forrester et al. 2008). This
is also known as adaptive sampling, and usually demands a
smaller number of High-Fidelity (HF) evaluations than con-
stant models, where accuracy throughout the whole design
space is vital (Liu et al. 2018; Chunna et al. 2020). Several
methods have been proposed for choosing the infill points.
Liu et al. (2018) argue that the combination of variance-
based adaptive sampling and Gaussian Processes (GP) mod-
els is typically a good choice.

Responsible Editor: Axel Schumacher

 * Evandro Parente Jr.
 evandro@ufc.br

1 Laboratório de Mecânica Computacional e Visualização,
Departamento de Engenharia Estrutural e Construção Civil,
Universidade Federal do Ceará, Campus do Pici, Bloco 728,
Fortaleza, CE CEP 60455-760, Brazil

2 Faculty of Civil Engineering and Geosciences, Delft
University of Technology, P.O. Box 5048, 2600GA Delft,
The Netherlands

http://orcid.org/0000-0003-0219-1376
http://crossmark.crossref.org/dialog/?doi=10.1007/s00158-022-03302-0&domain=pdf

 E. S. Barroso et al.

1 3

203 Page 2 of 27

The Efficient Global Optimization (EGO) algorithm, pro-
posed by Jones et al. (1998), was essential to the widespread
use of SAO as a robust technique to solve costly optimization
problems. The authors employ Kriging to approximate the
exact costly function, and the sample is updated by the addi-
tion of the point that maximizes the Expected Improvement
(EI) at each iteration. Later, Sobester et al. (2005) presented
a similar approach, but using a Radial Basis Functions
(RBF) model. The authors also proposed a modification in
the EI function which allows the user to explicitly balance
the relative importance of exploitation and exploration.

To this day, there are still important open issues in SAO
design (Queipo et al. 2005; Stork et al. 2020b), e.g., what
is the best approach to perform the selection of new data
points, or how to deal with constrained optimization and
discrete variables. Thus, further experimentation, testing,
and comparison are required to establish SAO as a reliable
technique for global optimization of real-world engineer-
ing problems (Simpson et al. 2002; Wang and Shan 2007;
Steponavičė et al. 2016; Liu et al. 2018; Ribeiro et al. 2020;
Maia et al. 2021). For that purpose, the availability of a
framework that allows further development and comparison
between different methods is essential.

A multitude of frameworks has been proposed to deal
with different problems in optimization (Giunta and Eldred
2000; Jacobs et al. 2004; Wagner and Affenzeller 2005;
Meza et al. 2007; Durillo and Nebro 2011; Passos and
Luersen 2018; Krishnamoorthy et al. 2002; Sivakumar
et al. 2004; Zadeh et al. 2009; Martins et al. 2009; Blank
and Deb 2020). The jMetal framework (Durillo and Nebro
2011), written in Java, is one of the most renowned. jMetal
can deal with multi-objective optimization and a number
of algorithms and methods is available. It is also possible
to add new problems and algorithms, extending the frame-
work features. In particular for computationally expensive
applications, open-source software libraries such as Keras
(Gulli and Pal 2017) and Tensorflow (Abadi et al. 2015)
in Python, help disseminating the use of machine learning
techniques, with particular focus on Deep Neural Networks,
to tackle the issue.

This scenario is much more limited when it comes to
SAO. Along with some frameworks dedicated to trust-
region based approaches (Giunta and Eldred 2000; Jacobs
et al. 2004), most open-source software packages available
can only be employed for simple or very specific problems.
For Python, scikit-optimize (Kumar 2017) is a very popular
choice, as it is able to solve box-constrained Bayesian opti-
mization using different acquisition functions. However, it is
not able to solve problems with implicit constraints or a dis-
crete data structure. SURROGATES toolbox (Viana 2010) is
a general purpose MATLAB code which performs EGO for
box-constrained single-objective continuous problems, pro-
viding different Design of Experiments (DoE) and modeling

techniques. MATSuMoTo (Muller 2014) is another MAT-
LAB toolbox which allows for box-constrained continuous
and discrete optimization using different surrogate models.
For R, DiceKriging and DiceOptim (Roustant et al. 2012)
are packages that can be used together to perform the opti-
mization of expensive functions via the EGO algorithm.
Another alternative for R users is the Moko package. The
framework can handle multi-objective optimization and
approximates all objective functions and constraints using
Kriging. On that note, it is worth stressing that a general
framework must be able to consider, in the same problem,
exact and approximate responses. This way, the approximate
model is only evaluated when necessary and the cheap-to-
evaluate response can be exactly assessed without an overly
complex approximation that might result in loss of accuracy.

This paper presents BIOS (Biologically Inspired Opti-
mization System), a framework capable of handling con-
ventional and sequential approximate optimization of
unconstrained and constrained problems with continuous
and discrete variables. The use of the Object-Oriented Pro-
gramming (OOP) paradigm and software design patterns
(Gamma et al. 1994; Alexandrescu 2001) allow the frame-
work to be compact and all-purpose, providing cleaner pro-
jects and codes. Relying on standard libraries, BIOS is a
cross-platform (Windows, Mac, and Linux) software and
supports hybrid-parallel computing using OpenMP and MPI.

BIOS was initially developed for performing the optimi-
zation of composite structures using bio-inspired optimiza-
tion algorithms, e.g. Genetic algorithms (GA) and Particle
Swarm Optimization (PSO). Its effectiveness and robust-
ness was demonstrated in various engineering applications
(Rocha et al. 2014; Barroso et al. 2017). In these works, par-
allel computing enabled a faster optimization process, which
is an useful feature if multiple cores are available. BIOS
also provides relevant routines to help assess the response
of composite structures.

Later, SAO was integrated into BIOS as a way of pro-
viding a more efficient optimization approach for com-
putationally expensive engineering problems involving
numerical simulations, using, for example, the Finite Ele-
ment Method (FEM) or the Isogeometric Analysis (IGA).
The SBO approach allows the use of more complex analysis
procedures and enables the solution of practical composite
design problems, which is a field that demands further study
(Luersen et al. 2015; Jaiswal et al. 2018). BIOS implements
SAO for different sampling methods, surrogate models, and
infill criteria and proved to be highly efficient in this type of
problem (Ribeiro et al. 2020; Maia et al. 2021).

The contributions of this work are summarized as fol-
lows. A framework for structural optimization is presented,
using SAO algorithms based on Radial Basis Functions
and Kriging. Conventional optimizations with evolution-
ary and swarm intelligence algorithms are also supported.

BIOS: an object‑oriented framework for Surrogate‑Based Optimization using bio‑inspired…

1 3

Page 3 of 27 203

The framework architecture is discussed in detail, denoting
its flexibility, modularity, and reusability. Our framework
contrasts with the alternatives in the literature since it is a
open-source project using OOP concepts, thus allowing for
extension and code reuse. Besides, BIOS provides different
optimization algorithms and modeling techniques, is able to
deal with continuous and discrete problems and to handle
constrained and unconstrained optimization, is capable to
perform SBO approximating only computationally expen-
sive functions (while non-expensive functions are evalu-
ated exactly), and allows for parallel computing. Finally,
the framework application in benchmarks and in the opti-
mization of functionally graded structures are demonstrated.

The rest of the paper is organized as follows. In Sect. 2,
the main optimization algorithms implemented in BIOS are
presented. In Sect. 3, the Surrogate-Based Optimization is
further discussed. In Sect. 4, the architecture of BIOS is
presented, while Sect. 5 describes the steps required to use
the framework SAO algorithms to optimize a computation-
ally expensive structural problem. Application examples are
presented in Sect. 6 and the conclusions are discussed in
Sect. 7.

2 Bio‑inspired Optimization Algorithms

Bio-inspired heuristic algorithms have been widely
employed in structural optimization in recent years due to
their robustness and simplicity. In this type of algorithm,
only objective and constraint functions need to be defined.
Hence, they are particularly suitable when gradient infor-
mation is not available, as in optimization problems with
discrete (or categorical) variables. Furthermore, these algo-
rithms are usually less prone to become trapped in local
minima (Arora 2017).

On the other hand, heuristic algorithms tend to be com-
putationally expensive in comparison with gradient-based
approaches. The use of parallel computing and surrogate
modelling to tackle this issue has been explored in many
papers (Rocha et al. 2014; Do et al. 2019; Ribeiro et al.
2020; Zhu et al. 2012; Rouhi et al. 2015; Díaz et al. 2016;
Keshtegar et al. 2020; Jaiswal et al. 2018), and some of these
are available in BIOS.

The optimization procedure consists of randomly gen-
erating an initial set of solutions, or population, which is
continuously improved towards the optimum until a stopping
criterion is met (Arora 2017). The solutions are improved
using a set of operators related to the algorithm meta-heu-
ristic logic. The main steps for the optimization procedure
are depicted in Fig. 1.

A general single-objective optimization problem can be
described as:

where nc is the number of inequality constraints and �l and
�u are the lower and upper bounds of the design variables,
respectively. In BIOS, constraints are handled by a penalty
approach, such as the static or adaptive penalty methods
(Deb 2000; Lemonge and Barbosa 2004).

The heuristic operations employed to the population
improvement vary according to each algorithm. The main
algorithms available in BIOS are the Genetic Algorihtm
(GA) (Goldberg 2012), the Particle Swarm Optimization
(PSO) (Kennedy and Eberhart 1995; Bratton and Kennedy
2007), and the Differential Evolution (DE) (Storn and Price
1997; Price et al. 2005). Moreover, the Artificial Bee Col-
ony (ABC) (Karaboga 2005) and Artificial Immune System
(AIS) (Castro and Zuben 2002) are also available.

GA is an evolutionary algorithm often employed in
discrete optimization. The improvement of the population
is performed by applying three operators at each iteration:
crossover, mutation, and the selection. It is worth empha-
sizing that the BIOS implementation of this algorithm

(1)

⎧⎪⎨⎪⎩

minimize f (�)

subjected to gi(�) ≤ 0 i = 1, 2,… , nc
with �l ≤ � ≤ �u

Fig. 1 Flowchart of bio-inspired heuristic optimization algorithms

 E. S. Barroso et al.

1 3

203 Page 4 of 27

can handle both discrete and continuous optimization. For
the interested reader, further discussion can be found in
Rocha et al. (2014).

PSO is a swarm-intelligence based algorithm first pro-
posed to deal with continuous optimization. Again, in
BIOS, both discrete and continuous optimization are sup-
ported. At each iteration, particles move based on their
inertia (previous velocity), their cognitive factor and their
social factor. A mutation operator can also be applied to
improve the global convergence (Barroso et al. 2017).

Finally, DE is an evolutionary strategy also aimed at
dealing with continuous optimization. Here, the operators
employed to improve the population are differentiation,
crossover, and selection. Further details can be found in
Price et al. (2005).

That being said, bio-inspired algorithms often require
hundreds or even thousands of function evaluations to
achieve the optimum solution (Steponavičė et al. 2016).
Furthermore, even though they are more reliable in their
exploration of the design space, there is no guarantee
that the algorithms will find even a local optimum solu-
tion. That means that their best design may not satisfy
the Karush-Kuhn-Tucker (KKT) conditions (Kuhn and
Tucker 1951).

3 Surrogate‑Based Optimization

Surrogate-Based Optimization can be employed to reduce
the computational cost of an optimization process. Put
simply, a SBO may be described by two basic stages:
sampling and building of the chosen surrogate model.
There are multiple ways to define the surrogate model
hyperparameters, ranging from simple cross validation
techniques and analytical expressions to the optimization
of a given likelihood function.

A SAO algorithm is obtained by introducing a stage
where new point(s) (i.e. infill point) are added to the data-
set so that the surrogate model is improved iteratively
in promising regions of the design space. This process
is repeated until a stopping criterion is met, as depicted
in Fig. 2. Generally, two criteria can be considered: the
maximum number of evaluations nmax or maximum num-
ber of stall iterations Itstall.

The combination of an initial sampling method, sur-
rogate model and infill criteria defines a SAO algorithm.
The following sections further detail each stage. For a
more complete review on commonly employed surro-
gate modeling techniques for optimization and recent
advances, the reader is referred to proper literature (Que-
ipo et al. 2005; Forrester et al. 2008; Forrester and Keane
2009).

3.1 Initial sampling

On computer experiments, the initial sampling points
should be well distributed in the design space, since, a
priori, no information about the behavior of the function is
available (Simpson et al. 2002; Kleijnen et al. 2005; Tenne
2014). Thus, the initial sampling is often performed by a
Design of Experiments (DoE) technique.

In BIOS, deterministic methods (e.g. Hammersley and
Sobol sequences) and stochastic methods (e.g. random
sampling and Latin Hypercube Sampling), are available
(Tenne 2014; Steponavičė et al. 2016). While the former
group can provide more uniform sampling spaces in some
cases, the latter can introduce a variability which can be
helpful when performing multiple optimizations.

Comparison between sampling methods is presented in
a variety of papers (Jin et al. 2001; Simpson et al. 2002;
Steponavičė et al. 2016; Cho et al. 2016). Typically, it can
be said that the method chosen is of minor importance,
as long as it is capable of providing an uniform dataset
(Steponavičė et al. 2016). However, it is worth mentioning
that the Hammersley sequence uniformity is compromised
in high-dimensions (Steponavičė et al. 2016; Cho et al.
2016). Steponavičė et al. (2016) also argue that stochastic
techniques such as the random sampling and, to a lesser
degree, the Latin Hypercube Sampling (LHS) might also
occasionally not achieve the desirable uniformity.

Fig. 2 General SAO framework

BIOS: an object‑oriented framework for Surrogate‑Based Optimization using bio‑inspired…

1 3

Page 5 of 27 203

In general, the number of points of the initial dataset
increases exponentially with the number of variables m of the
problem (Jin et al. 2001; Forrester et al. 2008). This aspect is
known as the curse of dimensionality (Forrester et al. 2008),
and is a major concern for surrogate-based optimization. In
BIOS, the initial number of points is a user-defined parameter,
and the user should select an adequate value for a specific
problem. A variation of the LHS is also implemented where
N different datasets are generated, and the one where the mini-
mum distance between two sampling points is the highest is
chosen (maximin criterion) (Forrester et al. 2008). The dis-
tance dp between sampling points may be evaluated by:

where dp is the usual Euclidean distance for p = 2 . Here, this
method is referred to as LHSN . Fig. 3 illustrates some of the

(2)dp(�
(i), �(j)) =

(
m∑
k=1

|x(i)
k
− x

(j)

k
|p
) 1

p

techniques discussed in this section for a two-dimensional
problem. In this particular case, the Hammersley sequence
and the LHS20 presented the highest dp.

3.2 Surrogate modeling

The surrogate models available in the current version of
BIOS are Radial Basis Functions (RBF) and Kriging.
These are very robust models able to perform accurate
predictions in a wide range of problems (Forrester et al.
2008), and are often regarded as the best surrogate mod-
elling techniques in comparative studies (Jin et al. 2001;
Simpson et al. 2002; Hussain et al. 2002; Wang and Shan
2007; Kim et al. 2009; Díaz-Manríquez et al. 2011; Nik
et al. 2014; Williams and Cremaschi 2021). Both models
are further discussed in the following sections.

(a) LHS (b) LHS20

(c) Hammersley sequence (d) Sobol sequence

Fig. 3 Comparison between sampling methods

 E. S. Barroso et al.

1 3

203 Page 6 of 27

3.2.1 Radial Basis Functions

The Radial Basis Functions model (Hardy 1971) is a lin-
ear combination of radially symmetric functions centered
around a set of points (Forrester et al. 2008):

where � is the weight vector, �j are known as the basis func-
tions centers, and � is the basis function vector. Different
basis functions may be employed (Forrester et al. 2008),
but the Gaussian is the most popular choice (Sobester et al.
2005; Kitayama and Yamazaki 2011):

where r is given by |� − �j| and �j is a width parameter.
This particular basis function is interesting for SAO since
it allows the use of the theory behind Gaussian Processes
(Sobester et al. 2005; Liu et al. 2018) to select new infill
point(s).

Note that the width parameter �j has to be defined prior
to the model fitting. Figure 4 illustrates the influence of this
hyperparameter in the response of the Gaussian function.
For small values, the surrogate model resembles a “needles
in a haystack” function, where only regions near sampling
points provide accurate predictions (Forrester et al. 2008),
while greater values can make the approximate surface
nearly flat. Such values may also lead to a Runge phenom-
enon in the interpolation, as the Gram matrix can become
ill-conditioned (Wu et al. 2016).

(3)ŷ(�) = �T
� =

n∑
j=1

wj 𝜓j(|� − �j|)

(4)�j(r) = exp

(
−
r2

�2
j

)

In BIOS, this parameter can be defined using analytical
approaches, such as the ones proposed by Nakayama et al.
(2002) and Kitayama and Yamazaki (2011), or by cross vali-
dation techniques, such as the Leave-One-Out Cross Valida-
tion (LOOCV) (Sobester et al. 2005) and the k-Fold Cross
Validation (k-FCV) (Müller and Shoemaker 2014; Ribeiro
et al. 2020). By previous testing and experience, the k-FCV,
with k = 5 , usually provides accurate and efficient results.

The fitting of the model is performed by an interpolation
procedure. Thus, on data points, ŷ(�) = y(�):

here, � is the Gram matrix, whose elements are given by Eq.
(4), where �ij = �j(|�i − �j|).

3.2.2 Kriging

Kriging is a widely employed surrogate that models the
responses as stochastic processes (Forrester et al. 2008). Its
predictor is given by:

where the first term is related to the global trend and the
second term refers to the localized autocorrelated deviations.

The correlation matrix � is given by:

where �i is the i-th sampling point response and cor
[
�i, �j

]

denotes the correlation between points i and j. Usually, the
correlation is given by:

This basis function is equivalent to the Gaussian if pl = 2
and �l is the same for all variables. In fact, pl is often set at
2 to ease out the model fitting. Another way to describe the
correlation between data points is the Matérn 5/2 function
(Maia et al. 2021):

where r = |xi,l − xj,l|.

(5)

⎡⎢⎢⎢⎣

�11 �12 ⋯ �1n

�21 �22 ⋯ �2n

⋮ ⋮ ⋱ ⋮

�n1 �n2 ⋯ �nn

⎤⎥⎥⎥⎦

⎡⎢⎢⎢⎣

w1

w2

⋮

wn

⎤⎥⎥⎥⎦
=

⎡⎢⎢⎢⎣

y1
y2
⋮

yn

⎤⎥⎥⎥⎦
⇒ �� = �

(6)ŷ(�) = �̂� + �
T �−1 (� − � �̂�)

(7)� =

⎡⎢⎢⎢⎣

cor
�
�1, �1

�
cor

�
�1, �2

�
⋯ cor

�
�1, �n

�
cor

�
�2, �1

�
cor

�
�2, �2

�
⋯ cor

�
�2, �n

�
⋮ ⋮ ⋱ ⋮

cor
�
�n, �1

�
cor

�
�n, �2

�
⋯ cor

�
�n, �n

�

⎤⎥⎥⎥⎦

(8)cor
[
�i, �j

]
= exp

(
−

m∑
l=1

�l |xi,l − xj,l|pl
)

(9)cor
�
�i, �j

�
=

m�
l=1

exp

�
−

√
5r

�l

��
1 +

√
5r

�l
+

5 r2

3 �2
l

�

Fig. 4 Gaussian basis functions with different widths

BIOS: an object‑oriented framework for Surrogate‑Based Optimization using bio‑inspired…

1 3

Page 7 of 27 203

To build the surrogate model, �l must be defined for each
variable l. This is obtained through Maximum Likelihood
Estimation (MLE):

Based on it, the maximum likelihood estimates for � and �2
are given by:

Substituting these into Eq. (10) and removing the constant
terms, the concentrated ln-likelihood function is obtained:

Finally, the maximization of this function is solved as an
unconstrained optimization problem. In BIOS, it is possible
to instantiate an heuristic optimization algorithm to solve it,
such as the ones shown in Sect. 2.

3.3 Model update

This stage is of major importance to ensure efficiency in
the optimization process. The infill criterion needs to be
able to explore the design space to correctly locate the
optimal region, which must then be exploited until the
global minimum is found.

Thus, a good infill criterion must be able to balance
local exploitation and global exploration (Yao et al. 2014;
Stork et al. 2020a). In some cases, more than one point
per iteration is sampled to account for both concepts indi-
vidually (Nakayama et al. 2003; Kitayama et al. 2010; Pan
et al. 2014; Xiang et al. 2016).

The infill criterion is often represented by the optimiza-
tion of a given acquisition function. A basic example is the
iterative addition of the point which minimizes the model
prediction ŷ(�) . However, while this approach may work
for unimodal problems, it is a pure exploitation method
that tends to be too greedy (Jones et al. 1998; Mlakar et al.
2015; Bouhlel et al. 2018).

Variance-based adaptive sampling methods are also a
popular choice to guide the model improvement (Jones
et al. 1998; Sobester et al. 2005; Liu et al. 2018). In Gauss-
ian Processes (GP), the posterior variance can be assessed
by (Chunna et al. 2020):

(10)
ln (L) = −

1

2

(
n ln (2�) + n ln (�2) + ln |�|)

−
(� − ��)T �−1 (� − ��)

2 �2

(11)�̂� =
�T �−1 �

�T �−1 �
and �̂�2 =

(� − � �̂�)T �−1 (� − � �̂�)

n

(12)ln (L) ≈ −
n

2
ln (�2) −

1

2
ln |�|

For Kriging, the evaluation of �̂� is described in Sect. 3.2.2,
while for the RBF model one may assume that �̂� = 1.0
(Sobester et al. 2005; Xiang et al. 2016). For trial designs
close to sampling points, ŝ(�) tends to 0 (low uncertainty)
and, as it gets farther from them, ŝ(�) goes to �̂�2 (high
uncertainty).

BIOS currently works with models based on Gaussian
Processes (GP), and allows the use of four different infill
criteria of this type: Lower Confidence Bound (LCB),
Probability of Improvement (PI), Expected Improvement
(EI), and Weighted Expected Improvement (WEI).

The LCB criterion is a straightforward approach where
the infill point is found by minimizing the confidence
bound (Srinivas et al. 2010; Brochu et al. 2010):

where � is a user-defined parameter. Higher values of � favor
the exploration aspect.

PI, on the other hand, is a probabilistic criterion for
which the probability that a given � improves upon the
current best design should be maximized:

This approach is often deemed to be a pure exploitation
method and, thus, may underperform in multimodal prob-
lems (Brochu et al. 2010; Jones 2001).

In this regard, the EI is often a better choice as a proba-
bilistic approach, being given by (Forrester et al. 2008):

here, the first term is related to exploitation and the second to
exploration. The EI criterion is one of the most widely used
methods today due to the popularization of this alternative
by the EGO algorithm, first proposed by Jones et al. (1998).
Figure 5 depicts the improvement of the RBF prediction
of a test function considering the EI as infill criterion. The
approach is able to precisely identify the optimum region.

WEI consists in a variation of the EI criterion proposed
by Sobester et al. (2005) with a weight parameter w being
introduced:

(13)ŝ2(�) = �̂�2

⎡
⎢⎢⎣
1 − �

T�−1𝜓 +

�
1 − �T�−1

�
�2

�T�−1
1

⎤
⎥⎥⎦

(14)yLCB(�) = ŷ(�) − 𝜅 ŝ(�)

(15)P[I(�)] =
1

2

�
1 + erf

�
ymin − ŷ(�)

ŝ
√
2

��

(16)

E[I(�)] = (ymin − ŷ(�))

�
1

2
+

1

2
erf

�
ymin − ŷ(�)

ŝ
√
2

��

+
ŝ√
2𝜋

exp

�
−(ymin − ŷ(�))2

2ŝ2

�

 E. S. Barroso et al.

1 3

203 Page 8 of 27

Lower values of w favor global exploration, while higher
values favor local exploitation. A cycling approach can be
performed, where w may assume a value that changes itera-
tively in a given order.

Another major concern in SAO is how to handle con-
strained problems, especially when probabilistic infill cri-
teria are employed (Stork et al. 2020b). For easy, cheap to
evaluate constraints, there is no need to build a surrogate
model and the constraint may be exactly evaluated. In that
case, if a design is unfeasible, its EI (or PI) is simply set to
0 (Sobester et al. 2005).

For constraint functions approximated by a surrogate model,
the uncertainty of the process should be taken into account.
Thus, a feasibility function F(�) can be employed, such as the
Probability of Feasibility (PF) (Schonlau et al. 1998):

where j refers to the j-th expensive constraint function. Other
feasibility functions can be found in the literature, such as
the one proposed by Tutum et al. (2014):

or the one proposed by Bagheri et al. (2017):

These feasibility functions can then be used to penalize
the probabilistic infill criteria. This way, the Constrained
Expected Improvement (CEI) is evaluated by:

where napc is the number of approximate constraints and F(�)
is the feasibility function.

Figure 6 illustrates the behavior of F(�) for different
approaches, where:

(17)

WE[I(�)] = w (ymin − ŷ(�))

�
1

2
+

1

2
erf

�
(ymin − ŷ(�))

ŝ
√
2

��

+ (1 − w)
ŝ√
2𝜋

exp

�
−(ymin − ŷ(�))2

2ŝ2

�

(18)Pj[F(�)] =
1

2

�
1 + erf

�
−ĝj(�)

ŝ(�)
√
2

��

(19)

F
(T)

j
(�) =

⎧⎪⎨⎪⎩

2 − erf

�
−
ĝ(�)

ŝ(�)

�
, if 0 < erf

�
−
ĝ(�)

ŝ(�)

�
≤ 1

0 , otherwise

(20)F
(B)

j
(�) = min

(
2Pj[F(�)], 1

)

(21)E[Ic(�)] = E[I(�)]

napc∏
i=1

Fi(�)

(22)g(�) = −
ĝ(�)

ŝ(�)

0 1.5 3 4.5 6 7.5 9
-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

True Function
Surrogate Model

(a) Initial RBF model

0 1.5 3 4.5 6 7.5 9

0.02

0.06

0.1

0.14

0.18

(b) Behavior of the EI(x) function

0 1.5 3 4.5 6 7.5 9
-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

True Function
Surrogate Model

(c) Updated RBF model

Fig. 5 Addition of point with the highest EI

BIOS: an object‑oriented framework for Surrogate‑Based Optimization using bio‑inspired…

1 3

Page 9 of 27 203

Note that the penalization of unfeasible designs is very dif-
ferent for each feasibility function.

In structural optimization, it is common that the objec-
tive function is cheap and easy to evaluate (e.g. cost or
mass functions), while the constraints are computation-
ally expensive (e.g. maximum deflection or failure cri-
teria). Admittedly, this combination is another aspect
in SAO that demands further investigation. In that case,
BIOS evaluates the actual improvement I(�) of a given
design, which is then penalized by the feasibility function
according to (Mathern et al. 2020):

where:

Just as in the case of the MLE maximization, the maximiza-
tion of the acquisition function is carried out by instantiating
heuristic algorithms in BIOS and solving it as an optimi-
zation problem. This is interesting due to the multimodal
nature of these functions (Maia et al. 2021).

4 BIOS architecture

In this section, the core components of BIOS are shown
in class diagrams. The roles of each component are
explained in detail, as well as the hierarchy of abstract
classes and their main functions.

(23)Ic(�) = I(�)

napc∏
i=1

Fi(�)

(24)I(�) =

{
ymin − y(�) , if y(�) < ymin

0 , otherwise

4.1 Optimization Module

The optimization module contains the classes used to solve
the optimization problem. The abstract classes and their
interfaces are presented in Fig. 7. The optimization algo-
rithms are defined in the cOptAlgorithm class. The abstract
method Solver() implements all steps of the concrete algo-
rithm class to perform Nopt optimizations. The output infor-
mation, such as success rate and mean best, are evaluated in
the PostProcessing() method. The Init() method initializes
the variables required for the concrete optimization class.

The current version of BIOS has the following algo-
rithms for single objective function optimization: Genetic
algorithm (cStandardGA), Particle Swarm Optimization
(cStandardPSO), Differential Evolution (cStandardDE),
Artificial Bee Colony (cStandardABC) and Artificial Immu-
nity Sytems (cStandardAIS). A NSGA-II implementation
is also available for multi-objective optimization problems.
Moreover, a set of algorithms for laminated composites
problems are available: cLaminatedGA, cLaminatedPSO,
and cLaminatedNSGAII. These algorithms use additional
heuristic operators for this class of problems, with the
parameters and methods employed by them being defined
in the abstract class cLamProb. All algorithms mentioned
above are depicted in Fig. 8.

The cOptSolution class abstracts the optimization agent
of each algorithm. For instance, individuals from GA and
DE are implemented in the class cIndividual, while parti-
cles from PSO are implemented in the cParticle class. Each
optimization agent subclass defines its heuristic operators
and implements these in their concrete subclasses depend-
ing on the optimization problem variables type. The abstract
method Evaluate() of the cOptSolution class passes its
optimization variables directly to the cProblem object for
evaluation of the corresponding objective function and
constraints.

We consider four variable types: double precision floating
point vector for continuous optimization problems; integer
vector, integer matrix, and binary variables for discrete opti-
mization problems. The integer matrix is used for composite

Fig. 6 Behavior of different feasibility functions

Fig. 7 Optimization module class diagram

 E. S. Barroso et al.

1 3

203 Page 10 of 27

laminated problems, where each matrix column represents
ply material, thickness and angle (Rocha et al. 2014; Barroso
et al. 2017). This encoding scheme facilitates the application
of heuristic operators for laminates, e.g. layer swap, layer
addition, and layer deletion. Figure 9 shows the cOptSo-
lution class hierarchy, with the cParticle and cIndividual
abstract and concrete classes.

The cSelection class implements the selection mecha-
nism, such as the fitness proportional, rank based roulette,
and tournament selection (Arora 2017).

The cPenalty class implements the penalty objective
function approach used to handle constrained optimization
problems. Static and adaptive penalty methods (Deb 2000;
Lemonge and Barbosa 2004) are currently available.

The cProblem class implements the optimization prob-
lem. The abstract method Evaluate() computes the objective
function and constraints for a given set of design variables.
Three versions of this method are defined in the current

version of BIOS, and can be implemented in the concrete
problem class to handle optimization problems with con-
tinuous variables (vector< double>), discrete variables with
integer encode (vector< int>), and discrete variables with
matrix encode (vector<int*>). The latter is used in the con-
text of composite laminated problems. The cProblem is also
responsible to decode integer variables, within Evaluate()
calls. Notice that additional optimization variable types can
be incorporated to BIOS once a new variant of cProblem’s
Evaluate() method and a new cOptSolution subclass for the
corresponding scheme are defined.

4.2 SAO module

The SAO module contains the classes required to imple-
ment the sequential approximated optimization techniques
discussed in Sect. 3. Figure 10 shows the class diagram of
this module. The classes of the optimization module are
reused and expanded with few abstract methods (yellow
boxes in the class diagram). The cSAO class implements
the SAO algorithm steps, the evaluation of the initial sam-
ple, the iterative model building, and the selection of new
data points, as shown in Fig. 2. This class abstracts the sur-
rogate model used, which must be defined in the concrete
subclass. For instance, the cSAORBF and the cSAOKRG

Fig. 8 cOptAlgorithm class hierarchy

Fig. 9 cOptSolution class hierarchy Fig. 10 SAO module class diagram

BIOS: an object‑oriented framework for Surrogate‑Based Optimization using bio‑inspired…

1 3

Page 11 of 27 203

classes implement SAO using Kriging and Radial Basis
Functions, respectively.

The abstract cSURR class defines the surrogate mod-
els. The approximated prediction for a given input design
vector is computed by the Evaluate() method. Moreover,
the evaluation of the infill criteria and the probability of
feasibility discussed in Sect. 3.3, for a given set of design
variables, are carried out in the EvalInfillCriteria() and
EvalProbFeas() methods, respectively. These functions are
used during the evaluation of the infill points by the cSAO
class. Model parameters and hyperparameters, as well the
evaluation of these for given samples, are defined in each
concrete class of cSURR , such as cKRG and cRBF. Note
that some input parameters, such as the correlation scheme
(CorrType) and hyperparameter bounds (HyperParamLow
and HyperParamUpp) for Kriging, and the width evaluation
scheme (SigType) for Radial basis functions are passed from
the corresponding cSAO concrete class.

It is important to note that the number of responses eval-
uated by surrogate models is not necessarily equal to the
sum of the objective functions and constraints defined in
the optimization problem. In practice, the surrogate model
should be employed only in the prediction of computation-
ally expensive objective functions and constraints. Hence,
the cProblem class defines which objective functions and
constraints are approximated in the GetApproxConstr() and
GetApproxObj() methods. These methods set a boolean flag
for each objective function and constraint, indicating if they
are approximated or not. The default implementation sets up
flags to approximate all functions. In practical applications,
the concrete cProblem should overload these methods to
approximate only costly functions, increasing computational
efficiency. The evaluation of a single objective or constraint
function is performed, respectively, by the EvalExactObj()
and EvalExactConstr() methods.

Furthermore, the surrogate model input variables are nor-
malized in the [0,1] range. This normalization is carried out
in the method GetNormVar() of the cProblem class. The
cSampDblVec class implements the sample optimization
agent used in cSAO when continuous variables are used,
which is the case of the examples presented in Sect. 6. The
addition of integer variable samples is easily done consid-
ering the class architecture presented so far. However, this
topic is not in the scope of the presented discussion and will
be explored in future studies.

The pseudocode of the Solver() method of cSAO class is
illustrated in Fig. 11. The evaluation of the initial dataset
is done in the SetInitialSample() method, with aid of the
helper class cSampMethods, which implements the sampling
techniques discussed in Sect. 3.1. The abstract methods Cre-
ateSurrogate() and UpdateSurrogate() are implemented in
the concrete classes, as it operates with the concrete cSURR
object and their specific parameters. The penalty approach

is used here only to select the current best sample, which
may be unfeasible depending on the initial sample gener-
ated. The GetCycleWeight() sets wi and � i values used for the
evaluation of the WEI and LCB, respectively, in the Eval-
InfillPoint() routine.

5 Solving optimization problems using BIOS

In this section, we describe the steps to use BIOS’s SAO
algorithms to solve an engineering problem with computa-
tionally expensive functions. The problem is discussed in
Sect. 6.4, and consists of the maximization of the funda-
mental frequency of a circular plate, made of a functionally
graded material (Al/Al2O3), subjected to maximum mass
and maximum ceramic volume fraction constraints, as for-
mulated in Eq. (34).

The first step is to define a concrete cProblem class,
which for this example is the cCircularPltFGM class shown
in Fig. 12. This class also inherits from cFGM class, an aux-
iliary class with common routines employed in optimization
FG structures (see Fig. 13). It is worth pointing out that a
similar class for laminated composite optimization is also
available in BIOS.

*Only abstract methods are written in italic.

Fig. 11 Pseudocode of the Solver() method of the cSAO class

1 class cCircularPltFGM : public cProblem ,
2 public cFGM
3 {
4 public:
5 cCircularPltFGM(void);
6 virtual ~cCircularPltFGM(void) { }
7

8 void Analysis(cVector ,double &);
9 void Evaluate(cVector&,cVector&,cVector &);

10 double EvalExactConstr(int ,cVector &);
11 void GetApproxConstr(bool*);
12 };

Fig. 12 cCircularPlateFGM class definition

 E. S. Barroso et al.

1 3

203 Page 12 of 27

The optimization problem data, such as the number of
variables, objective functions, and constraints, are set in
the constructor of the concrete problem class. The evalu-
ation of the objective functions and constraints for a given
design vector is performed by the Evaluate() method shown
in Fig. 14. The Analysis() method (line 14) processes the
expensive numerical response, which in this case consists
in finding the first natural frequency of the circular plate
model defined by a given input design variable vector. Next,
the mass and ceramic fraction are evaluated, and the output

constraint vector � (lines 16–34) is computed. Finally, the
objective function is returned.

The routines described above are enough to process the
optimization problem with conventional optimization algo-
rithms. If no further specification is provided for the SAO
algorithms, the default settings will build approximations
for all objectives and constraints. However, in this particular
problem, only the objective function evaluation is compu-
tationally expensive. Hence, we implement GetApproxCon-
str(), which sets an approximation flag for each constraint,
and EvalExactConstr(), which evaluates the i-th constraint
for a given design variable vector. The implementation of
these methods is depicted in Fig. 15.

With the concrete problem established, the optimization
is performed using the BIOS modules described earlier.
The code can be easily integrated into any C++ program.
Nevertheless, BIOS includes a main function file for the
optimization of a single problem, for reading input text files
and writing results into an output file. The input file contain-
ing the optimization parameters of the circular FGM plate
problem is shown in Fig. 16. Additionally, an input file for
specific problem data can be defined. In this case, the FGM
material properties are specified in a new file with extension
.fgm, as shown in Fig. 17.

It is worth pointing out that software design patterns are
used to simplify usability, i.e., the creational patterns single-
ton and abstract factory are employed (Gamma et al. 1994;
Alexandrescu 2001). One benefit in the use of these patterns
is that all code required to add a new problem to the system
can be placed into new files, and no modifications need to
be done to the main code. In the problem described here, the
registration of concrete problem class into the problem fac-
tory object is performed on its implementation file, Fig. 14
at line 1, where the extension of the problem data file is also
specified.

1 class cFGM
2 {
3 void MoriTanaka(vector <double >,vector <double

>&);
4 void CalcABDG(cMatrix &);
5 void CalcMb(cMatrix &);
6 void QMatrix(double ,cMatrix &);
7 void EvalVolumeRatio(cVector ,double &);
8 };

Fig. 13 cFGM class definition

1 static const bool r = cProblemFactory ::
Register("CircularPltFGM", MakeProb <
cCircularPltFGM >,".fgm");

2

3 double cCircularPltFGM :: cCircularPltFGM()
4 {
5 NumVar = 6;
6 NumObj = 1;
7 NumConstr = 2;
8 }
9

10 double cCircularPltFGM :: Evaluate(vector <
double > &x, vector <double > &c)

11 {
12 // Frequency evaluation.
13 double w;
14 Analysis(x, w); // IGA modal analysis.
15

16 // Get volume fraction at control points.
17 int numcp = NumVar *2 - 1;
18

19 vector <double > Vcp(numcp);
20 for (int i = 0; i < NumVar; i++)
21 Vcp[i] = Vcp[numcp -1-i] = x[i];
22

23 // Evaluate mass and ceramic volume fraction.
24 double rho = 0;
25 EvalDens(Vcp , rho);
26 double area = PI *0.5*0.5;
27 double mass = rho*area*x[0];
28

29 double vcrat;
30 EvalVolumeRatio(Vcp , vcrat);
31

32 // Evaluate problem constraints.
33 c[0] = (mass - 100) /100; // Eq. (35).
34 c[1] = (vcrat - 0.35) /0.35; // Eq. (36).
35

36 // Return problem objective function.
37 return -w; // Frequency maximization.
38 }

Fig. 14 Circular FGM plate implementation file

1 void cCircularPltFGM :: GetApproxConstr(bool*
approxc)

2 {
3 approxc [0] = 0;
4 approxc [1] = 0;
5 }
6

7 double cCircularPltFGM :: EvalExactConstr(int i,
vector <double > &x)

8 {
9 // ...

10 // Lines 8-24 from Evaluate method (Fig. 14).
11 // ...
12

13 if (i == 0)
14 return (mass - 100) /100;
15 else
16 return (vcrat - 0.35) /0.35;
17 }

Fig. 15 Implementation of approximated constraint flags and exact
constraint evaluation

BIOS: an object‑oriented framework for Surrogate‑Based Optimization using bio‑inspired…

1 3

Page 13 of 27 203

6 Applications

In this section, the capabilities of BIOS are assessed over
several well-known test functions and three structural
engineering problems to highlight the potential of SAO
in increasing the efficiency of the optimization process.

Here, two surrogate models were considered, namely
RBF with the Fivefold Cross Validation (5-FCV) tech-
nique to define the width parameter and Kriging with a
Gaussian correlation function and the MLE approach to
define its hyperparameters. The lower and upper bounds of

the Kriging hyperparameters were set to log(�L) = −1 and
log(�U) = 2 , respectively. In addition, two different criteria
to choose the new infill points were investigated, the EI
and the WEI. In the latter, the cycling approach considered
weights w ∈ [0.2, 0.35, 0.5].

Thus, four different algorithms were investi-
gated. They were named RBF-EI, RBF-WEI, KRG
 -E
I, and KRG-WEI. The optimization of the acquisition func-
tions (EI and WEI) was performed using the DE algorithm.
Table 1 presents the values of the parameters used for opti-
mization the acquisition functions and the likelihood estima-
tor (for fitting the Kriging model). Moreover, the parameters
used for the PSO are also shown, which is employed in the
conventional optimization carried out for comparison pur-
poses in Sect. 6.4.

The SAO algorithms were terminated when the number
of high-fidelity evaluations exceeded nmax , or when the algo-
rithm failed to improve upon the optimal design for Itstall
consecutive iterations. These parameters depend on the
dimensionality and complexity of each problem. Since the
EI and the MLE are cheap to evaluate functions, the size of
the population and the number of iterations used by DE were
increased to 100 and 500, respectively, with no additional
stopping criterion.

Due to the stochastic nature of the optimization algo-
rithms used in this paper, each problem was run 10 times.
The comparison between the SAO algorithms is given in
terms of accuracy and efficiency.

To assess the accuracy of the optimum found, the
NRMSE was considered, which corresponds to the average
of the Normalized Root Mean Squared Error (NRMSE) of
all runs. The error of each run was evaluated by comparing
the best sampling point found by the algorithm and the true
optimum.

To assess the efficiency, the average number of high
fidelity evaluations (nev) performed until reaching a stop-
ping criterion was considered. In the case of the structural

1 %OPTIMIZATION.ALGORITHM
2 ’SAORBF ’
3

4 %INDIVIDUAL.TYPE
5 ’DoubleVector ’
6

7 %OPTIMIZATION.NUMBER
8 10
9

10 %INITIAL.SAMPLE.SIZE
11 40
12

13 %MAXIMUM.ITERATIONS
14 150
15

16 %STALL.ITERATIONS
17 20
18

19 // continue.

20 %CONSTRAINT.TOLERANCE
21 1.0e-5
22

23 %USE.CYCLIC.WEI
24 ’true’
25

26 %PROBLEM.TYPE
27 ’CircularPltFGM ’
28

29 %SIGMA.TYPE
30 ’KFCV’
31

32 %PENALTY.METHOD
33 ’Adaptive ’
34

35 %END

Fig. 16 Optimization data input file of the Circular FGM plate prob-
lem

1 %MATERIAL
2 2
3

4 %MATERIAL.ISOTROPIC
5 2
6 1 70e9 0.30 0.00 0.00
7 2 380e9 0.30 0.00 0.00
8

9 %MATERIAL.DENSITY
10 2
11 1 2707
12 2 3800
13

14 %FGM.MATERIALS
15 2
16 1
17 2
18

19 %FGM.MODEL
20 ’Mori -Tanaka ’
21

22 %FGM.VOLUME.DISTRIBUTION
23 ’BSpline ’
24

25 %FGM.CONTROL.POINT.NUMBER
26 5
27

28 %FGM.THICKNESS.RANGE
29 0.01 0.0001 0.05

Fig. 17 Problem data input file of the Circular FGM plate problem

Table 1 Parameters for the bio-inspired algorithms

General Np 60
G

max
150

G
stall

20
DE Differentiation method Current-to-Best

Crossover rate (Cr) 0.80
Scale factor (F) 0.85

PSO Topology Global
Inertia (w) 0.70
Cognitive factor (c

1
) 1.50

Social factor (c
2
) 1.50

Mutation (�
mut

) 0.05

 E. S. Barroso et al.

1 3

203 Page 14 of 27

engineering problem, the gain in computational efficiency
was measured using:

where Talg is the average time spent by a given algorithm
and Tslw is the time spent by the slowest algorithm. Thus, �
represents how much faster a given algorithm is compared
to the least efficient one.

All numerical computations were performed on a com-
puter with two processors Xeon® with 2.8 GHz clock speed
and 32 GB of RAM, each with 10 cores, resulting in 20
cores in total. In BIOS, paralellization affects essentially
two procedures: the evaluation of the population in heuristic
algorithms and the evaluation of the initial sample for SAO
methods.

6.1 Branin function

The first example is the minimization of the Branin function,
a two-dimensional problem commonly employed in SBO
(Jones et al. 1998; Sobester et al. 2005; Forrester et al. 2008;
Song et al. 2019):

Figure 18 depicts its surface. This function has 3 global
minima: f (x) = 0.3979 at x = [−�, 12.275] , x = [�, 2.275] ,
and x = [9.425, 2.475].

(25)� =
Tslw

Talg

(26)
f (�) =

(
x2 −

5.1

4�2
x1 +

5

�
x1 − 6

)2

+ 10
(
1 −

1

8�

)
cos x1 + 10

In this example, for replication purposes, nine initial sam-
pling points are generated via the Hammersley sequence, a
deterministic sampling method. In this case, the algorithm
is terminated if it does not improve its best solution for
Itstall = 10 consecutive iterations. In addition, the algorithm
is also stopped when the maximum number of samples is
achieved, which is set to nmax = 40.

Figure 19 illustrates one of the optimization runs using the
RBF-EI approach. In the first iteration, the EI maximization
leads to a point at the edge of the design space, at x = [10, 0] .
For the next several iterations, the algorithm tends to exploit
the region around one of the global optima (right corner).
After some more exploration and exploitation of the optimum
region (note how the solution begins to cluster around the opti-
mum), one of the optimum designs is found at Iteration 18.

Table 2 compares different SAO algorithms on the Branin
function minimization. The Kriging-based algorithms per-
formed exceptionally well, but the RBF also presented small
errors. While the conventional approaches would require hun-
dreds or even thousands of evaluations of the true function,
these methods were able to find very good results with less
than 50 evaluations. The results found are compared to the
ones shown by Jones et al. (1998), where the EGO algorithm
is applied, showing that the results are in agreement with what
is expected. It is worth to note that the EGO algorithm uses a
different stopping criterion, related to the maximum Expected
Improvement (EI) found in each iteration, which may explain
the difference in nev.

Finally, Fig. 20 presents the boxplots showing the NRMSE
of each approach. The blue × depicts the average response.
The results show the robustness of the SAO approaches, which
are able to reliably find individuals very close to the global
optimum.

6.2 Hartmann 6 function

The Hartmann 6 function is a six-dimensional problem also
commonly employed in SBO (Jones et al. 1998; Sobester et al.
2005). The function is given by:

where � = [1.0, 1.2, 3.0, 3.2] and:

(27)f (�) = −

4∑
i=1

�i exp

(
−

6∑
j=1

Aij (xj − Pij)
2

)

(28)A =

⎡⎢⎢⎢⎢⎢⎢⎣

10.0 0.05 3.00 17.0

3.00 10.0 3.50 8.00

17.0 17.0 1.70 0.05

3.50 0.10 10.0 10.0

1.70 8.00 17.0 0.10

8.00 14.0 8.00 14.0

⎤⎥⎥⎥⎥⎥⎥⎦

T

Fig. 18 Branin function

BIOS: an object‑oriented framework for Surrogate‑Based Optimization using bio‑inspired…

1 3

Page 15 of 27 203

(a) E[I(x)] surface on Iteration 1

1 1

1

10

10

10

10

10

50

50

50

50 50

100

100

100

150

150 150

200

200

-5 -2 1 4 7 10
0

3

6

9

12

15

(b) Point added on Iteration 1

1 1

1

10

10

10

10

10

50

50

50

50 50

100

100

100

150

150 150

200

200

-5 -2 1 4 7 10
0

3

6

9

12

15

(c) Points added until Iteration 6

1 1

1

10

10

10

10

10

50

50

50

50 50

100

100

100

150

150 150

200

200

-5 -2 1 4 7 10
0

3

6

9

12

15

(d) Points added from Iteration 7 to 18

Fig. 19 Addition of infill points for the Branin function

Table 2 Average results for the
Branin function

Method NRMSE nev

RBF-EI 0.50% 37
RBF-WEI 0.71% 33
KRG-EI 0.01% 37
KRG-WEI 0.03% 40
EGO (Jones

et al. 1998)
0.20% 28 N

R
M
SE

(%
)

0

0.5

1

1.5

2

2.5

3

RBF-EI RBF-WEI KRG-EI KRG-WEI

Fig. 20 NRMSE boxplot for the Branin function

 E. S. Barroso et al.

1 3

203 Page 16 of 27

This function has 6 local minima. The global optimum is
located at x = [0.202, 0.150, 0.477, 0.275, 0.312, 0.657] ,
where f (x) = −3.322 . Here, the initial sample consists of
30 points, selected via the LHS20 method. In this example,
the stopping criteria are given by nmax = 150 and Itstall = 10 .
The results using BIOS are shown in Table 3, along with
the results found by Jones et al. (1998). The best results
were found with the KRG-WEI approach, where a very small
NRMSE was found. Also, the RBF-based approaches seem
to be slightly more efficient, as they required fewer evalua-
tions of the true function.

Figure 21 presents the boxplots of the NRMSE for this
problem. Due to the higher dimensionality and the multiple
local minima, this function is more complex and harder to
optimize. The KRG-WEI approach stands out as the most
robust method.

6.3 Kitayama’s constrained problem

This problem was shown by Kitayama et al. (2010) as a illus-
trative example for constrained SAO. The objective function
is the negative of a two-dimensional sphere function, centered
at x = [1.0, 0.5]:

This function is subjected to the following constraints:

(29)P = 10−4

⎡⎢⎢⎢⎢⎢⎢⎣

1312 2329 2348 4047

1696 4135 1451 1451

5569 8307 3522 8732

124 3736 2883 5743

8283 1004 3047 1091

5886 9991 6650 381

⎤⎥⎥⎥⎥⎥⎥⎦

(30)f (�) = −
(
x1 − 1.0

)2
−
(
x2 − 0.5

)2

(31)g1(�) =

[(
x1 − 3

)2
+
(
x2 + 2

)2]
exp(−x7

2
)

12
− 1 ≤ 0

(32)g2(�) =

(
x1 + 0.5

)2
−
(
x2 − 0.5

)2
0.2

− 1 ≤ 0

In this problem, all constraints will be approximated by sur-
rogate models, similar to the objective function, and the fea-
sibility function proposed by Tutum et al. (2014), Eq. (19),
is used to deal with the approximate constraints. Figure 22
presents the constrained design space, where the unfeasi-
ble space is being highlighted. The feasible region is non-
convex and consists of two separate small regions in the
design space.

The problem has a local optimum at x = [0.262, 0.122] ,
with f (x) = −0.687 , but the global optimum is at
x = [0.202, 0.833] , with f (x) = −0.748 . For constrained
optimization, it is interesting to increase the initial sampling
size, especially for functions with multiple constraints and
such complex feasible space. It is very hard for SBO to iden-
tify the feasible region if there are no points in it.

The initial model is built using 12 sampling points, gen-
erated via the Hammersley sequence. Here, the stopping
criteria for the SAO algorithms are given by nmax = 80 and

(33)g3(�) =
10 x1 + x2

7
− 1 ≤ 0

Table 3 Average results for the
Hartmann 6 function

Method NRMSE nev

RBF-EI 0.71% 74
RBF-WEI 2.47% 72
KRG-EI 1.80% 79
KRG-WEI 0.04% 79
EGO (Jones

et al. 1998)
1.90% 84

N
R

M
SE

 (%
)

0

2

4

6

8

10

12

RBF-EI RBF-WEI KRG-EI KRG-WEI

Fig. 21 NRMSE boxplot for the Hartmann 6 function

-1

-1 -0
.8

-0.8

-0
.6

-0.6

-0.
4

-0.4

-0.2

-0
.2

-0.2

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Fig. 22 Kitayama’s problem (Kitayama et al. 2010) constrained space

BIOS: an object‑oriented framework for Surrogate‑Based Optimization using bio‑inspired…

1 3

Page 17 of 27 203

Itstall = 20 . Figure 23 illustrates one of the optimization runs
using RBF-EI. Note that only three points are in the feasible
design space in the initial sample and one of those is actually
very close to the local optimum. Nevertheless, the algorithm
is able to select, in the first iteration, an infill point very close
to the global optimum. The actual global optimum is found
on Iteration 11, and the algorithm stops after 20 iterations
with no noticeable improvement upon the objective func-
tion. One should note that, on very small feasible spaces,
it might be hard to locate a non-zero region for the Con-
strained Expected Improvement defined by Eq. (21), which
further explains why heuristic algorithms are a good choice
for these applications.

A comparison of the performance of the different SAO
algorithms for this problem is presented on Table 4. Once
again, the Kriging-based algorithms performed exception-
ally well. The RBF also presented minor errors and, as

will become more evident in the next section, at a lower
computational cost. The results are compared to the ones
found by Kitayama et al. (2010) using their proposed SAO
algorithm.

Finally, Fig. 24 presents boxplots with the performance
of each algorithm, in terms of the NRMSE. Again, the
algorithms seem to be very robust, being able to find the

(a) E[Ic(x)] surface on Iteration 1

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

(b) E[Ic(x)] contour on Iteration 1

-1

-1 -0
.8

-0.8

-0
.6

-0.6

-0.
4

-0.4

-0.2

-0
.2

-0.2

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

(c) Point added on Iteration 1

-1

-1 -0
.8

-0.8

-0
.6

-0.6

-0.
4

-0.4

-0.2

-0
.2

-0.2

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

(d) Points added until Iteration 11

Fig. 23 Addition of infill points for Kitayama’s constrained problem

Table 4 Average results for Kitayama’s constrained problem

Method NRMSE nev

RBF-EI 0.28% 50
RBF-WEI 0.33% 47
KRG-EI 0.02% 38
KRG-WEI 0.00% 37
Kitayama et al. (2010) 0.20% 50

 E. S. Barroso et al.

1 3

203 Page 18 of 27

optimum with high reliability, particularly the ones based
on Kriging.

6.4 Optimization of a unidirectional FG circular
plate

In this section, the fundamental frequency of a simply sup-
ported FG circular plate made of Al/Al2O3 is maximized,
while subjected to mass and ceramic fraction constraints.
The material gradation is defined by a B-Spline func-
tion with 9 control points symmetrically spread along the
plate thickness. Thus, in addition to the plate thickness,
5 designs variables related to the volume fraction distri-
bution are considered. Material properties are Em = 90
GPa, �m = 2707 kg∕m3 , Ec = 380 GPa, �c = 3800 kg∕m3 ,
�m = �c = 0.30 . The effective material properties are evalu-
ated via the Mori-Tanaka scheme (Shen 2009; Do et al.
2019; Ribeiro et al. 2020). The plate geometry and bound-
ary conditions are shown in Fig. 25. Rigid body motion is
prevented by constraining the u and v displacements in two
radially symmetric points on the x − y plane.

The optimization problem is defined as:

where x1 is the plate thickness, x2 , x3 , ..., x6 are the control
points, hmin = 0.01 m, and hmax = 0.05 m. The constraints
g1(�) and g2(�) represent the mass and ceramic fraction con-
straints, respectively given by:

Here, mmax = 100 kg and Vc,max = 35% . Since the evaluation
of these constraints is cheap, there is no need to approxi-
mate them. The implementation of this problem is described
in Sect. 5. The structural analysis is performed using the
Finite element AnalysiS Tool (FAST), an in-house software,
but any software that can be integrated with C++ can be
employed. A 1024-element cubic NURBS mesh is employed
as shown in Fig. 26. The IGA formulation employed, con-
sidering the First-order Shear Deformation Theory (FSDT),
can be found in Maia et al. (2021).

In this problem, 40 initial sampling points are generated
via the LHS20 method and DE is used to maximize the EI
or the WEI. The stopping criteria are given by nmax = 150
and Itstall = 20 . Along with SAO algorithms, the optimiza-
tion is conducted using two conventional meta-heuristics
suitable for dealing with continuous optimization, PSO

(34)

⎧
⎪⎪⎨⎪⎪⎩

maximize �(�)

subjected to g1(�) ≤ 0

g2(�) ≤ 0

with hmin ≤ x1 ≤ hmax

0 ≤ xi ≤ 1 for i = 2, 3,… 6

(35)g1(�) = � R2 �
h∕2

−h∕2

�(z) dz − mmax ≤ 0

(36)g2(�) =
1

h �
h∕2

−h∕2

Vc dz − Vc,max ≤ 0

N
R

M
SE

 (%
)

0

0.1

0.2

0.3

0.4

0.5

0.6

RBF-EI RBF-WEI KRG-EI KRG-WEI

Fig. 24 NRMSE boxplot for Kitayama’s constrained problem

Fig. 25 Simply supported circular plate Fig. 26 Circular plate NURBS mesh

BIOS: an object‑oriented framework for Surrogate‑Based Optimization using bio‑inspired…

1 3

Page 19 of 27 203

and DE. The values of the optimization parameters con-
sidered in this problem are presented in Table 1.

The global optimum of this problem is found at
x = [0.0412, 1.0, 1.0, 0.4, 0.0, 0.0] , with �(�) = 2077.33 Hz.
Figure 27 shows the distribution of the volume fraction of
the ceramic through the thickness of the optimum design.
The first vibration mode for the optimum design is shown
in Fig. 28. This solution is validated using ABAQUS with a
4800-element mesh of quadratic shell elements and reduced
integration (S8R). The result obtained was �(�) = 2069.60
Hz, which is only 0.37% smaller than the frequency calcu-
lated by FAST.

Table 5 presents a comparison on the performance of
different SAO algorithms and two conventional algorithms.

The parameter � is given with respect to the computational
cost of DE, which was the least efficient algorithm in this
example. The paralellization procedure is performed by tak-
ing advantage of all 20 cores of the local machine.

Here, it is clear that the SAO algorithms are much more
efficient than the conventional optimization due to the
much lower number of evaluations (nev) of the high fidel-
ity function carried out using IGA. Furthermore, Kriging-
based methods were able to achieve a lower NRMSE than
the conventional optimization using PSO. The RBF-based
approaches also achieved small errors, while presenting even
higher gains in efficiency. It is important to highlight that the
serial SAO methods presented an outstanding performance
even when compared to the conventional optimization using
parallelization.

Finally, Fig. 29 presents the boxplots of the NRMSE for
this problem. The robustness of KRG-EI and KRG-WEI
approaches is evident, as they were able to find the global
optimum in all cases, similar to conventional approach using
DE.

6.5 Optimization of a tridirectional FG square plate

In this section, the maximization of the buckling load factor
of a simply supported SUS304/Si3N4 FG square plate is per-
formed, considering a ceramic volume fraction constraint.
Here, the material gradation is given by a tridirectional
B-Spline function with 144 control points, and material
properties are Em = 201.04 GPa, �m = 0.3262 , Ec = 348.43
GPa, and �c = 0.24 . The gradation is symmetric in all three
directions, and the effective material properties are evalu-
ated via the Mori-Tanaka scheme (Do et al. 2020). The plate
geometry and boundary conditions are shown in Fig. 30.

Two different meshes are used for distinct purposes: the
design and the analysis mesh. The design mesh is used to
define the material gradation, and is given by a 3D 3 × 3 × 1
cubic NURBS mesh. On the other hand, the analysis mesh
is used to perform the structural analysis, and is given by a
2D 16 × 16 cubic NURBS mesh. These meshes are shown

0 0.2 0.4 0.6 0.8 1
-0.5

-0.3

-0.1

0.1

0.3

0.5

Ceramic fraction variation

Control points

Fig. 27 Ceramic volume fraction variation of optimum design

Fig. 28 First vibration mode of optimum design

Table 5 Average results for the FG circular plate

Method NRMSE nev �

Serial Parallel

PSO 0.06% 5646 1.33 21.25
DE 0.00% 7620 1.00 15.96
RBF-EI 1.09% 64 100.93 249.86
RBF-WEI 0.50% 65 97.35 259.17
KRG-EI 0.00% 63 53.65 202.37
KRG-WEI 0.00% 61 58.89 203.06

N
R

M
SE

 (%
)

0

1

2

3

4

5

6

7

PSO DE RBF-EI RBF-WEI KRG-EI KRG-WEI

Fig. 29 NRMSE boxplot for the maximization of �(�)

 E. S. Barroso et al.

1 3

203 Page 20 of 27

in Fig. 31. The design variables of this problem are the con-
trol points for the design mesh. This mesh has 144 con-
trol points, but due to symmetry in all three directions, the
optimization problem has 18 design variables. It should be
noted that this is a significant number of variables for SBO
problems (Díaz-Manríquez et al. 2011). The optimization
problem is defined as:

where the constraint g1(�) represents the ceramic fraction
constraint:

with Vc,max = 30 %. Again, this constraint is not approxi-
mated by a surrogate model since its evaluation is not expen-
sive. Moreover, the non-dimensional buckling load is given
by �n = Ncr a

2∕(�2 Dc) , where Dc = Ec h
3∕[12 (1 − �2

c
)].

This problem was first proposed by Do et al. (2020), who
used a Deep Neural Network to improve the efficiency of the
optimization process. Thus, 10,000 sampling points were
used to train and validate the model. The authors evaluated
the buckling load using a Higher-order Shear Deformation
Theory (HSDT). In the present work, SAO is employed
using BIOS, and 40 initial sampling points are generated
via the LHS20 method and, once again, the DE is used to
maximize the acquisition function. The stopping criteria are
nmax = 150 and Itstall = 20 , and conventional meta-heuristic
will also be used to carry out the optimization process. The
optimization parameters are shown in Table 1.

Table 6 shows the optimum design for this problem.
The value for the buckling load using the HSDT was taken
from Do et al. (2020), while the FSDT value was found
using an in-house analysis software. It is important to note
that the optimum found in this work presents a slightly
higher (1.5%) buckling load when compared to the refer-
ence solution using the FSDT (Do et al. 2020). Figure 32
shows that material distribution for the optimum design is
very complex in the plate domain. Note that, since load is
applied in the x axis, the optimum design favors the addi-
tion of ceramic material in the loaded face. The buckling
mode for the optimum design is depicted in Fig. 33.

The performance evaluation of SAO variants and con-
ventional algorithms is presented in Table 7. The param-
eter � is given with respect to the computational cost of the
conventional optimization with DE algorithm, since it was
the least efficient alternative in this example. The boxplots
of the NRMSE for this problem are presented in Fig. 34.

(37)

⎧
⎪⎨⎪⎩

maximize �n(�)

subjected to g1(�) ≤ 0

with 0 ≤ xi ≤ 1 for i = 1, 2,… 18

(38)g1(�) =
1

V � Vc dV − Vc,max ≤ 0

N 1

Fig. 30 Simply supported square plate

(a) Design mesh

(b) Analysis mesh

Fig. 31 Meshes used for the square plate problem

Table 6 Optimum design for the tridirectional FG plate

Source Design variables (�) Buckling load

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 HSDT FSDT

Do et al. (2020) 1 1 0 1 1 0 0 0.526 1 0 0 0 0 0 0 0 0 0 2.906 2.832
This work 1 0 1 1 0.023 1 1 0 1 0 0 0 0 0 0 0 0 0 2.876

BIOS: an object‑oriented framework for Surrogate‑Based Optimization using bio‑inspired…

1 3

Page 21 of 27 203

The SAO algorithms presented superior efficiency in
comparison to the conventional optimization algorithms,
even when comparing the serial version of SAO algorithm
with parallel version of conventional algorithms. Again,
Kriging-based methods outperform the PSO algorithm in
terms of accuracy and achieve similar results in comparison
to the DE algorithm. RBF-based methods were the most effi-
cient alternative, and also presented good accuracy. Finally,
the number of required structural analyses was drastically
reduced for all SAO algorithms with respect to the conven-
tional optimization.

6.6 Optimization of a tridirectional FG panel
with a cutout

In this final problem, the multi-objective optimization of a
SUS304/Si3N4 FG panel with a circular cutout is performed.
Again, material gradation is described by a tridirectional
B-Spline function, but now with 256 control points, symmet-
ric in all three directions. Material properties are the same as
the ones from the previous example. Equivalent properties
are evaluated via the Mori-Tanaka scheme.

The composite panel is shown in Fig. 35. It has length
L = 1 m, bending radius R = 5 m, and � = 0.1 rad. The cir-
cular cutout is located in the center of the shell with radius
r = 0.1 m.

The analysis is performed using a finite element model
consisting of 1536 quadratic eight-node shell elements with
reduced integration. Due to the cutout, the model should
be well-refined to guarantee that stresses are accurately
computed. Figure 36 shows how the membrane force in
x-direction due to a unit distributed load (Nx) for the case of
Vc = 50% . We see that there are major stress concentrations
near the hole, but this refined mesh allows for an accurate
approximation of internal forces. Figure 37 depicts the buck-
ling mode for this panel.

Again, a design mesh is considered to assist in defining
material volume fractions in the structure’s domain. This
time, the design mesh is given by a 3D 5 × 5 × 1 cubic

(a) Optimum gradation

(b) x = a/3

(c) y = a/3

Fig. 32 Optimum design for the square plate problem

Fig. 33 Critical buckling mode for the square plate

Table 7 Average results for the FG square plate

Method NRMSE nev �

Serial Parallel

PSO 0.45% 6786 1.30 11.73
DE 0.05% 9060 1.00 9.36
RBF-EI 0.50% 61 38.52 58.03
RBF-WEI 0.77% 61 38.08 57.87
KRG-EI 0.04% 64 15.19 46.62
KRG-WEI 0.01% 62 16.42 44.23

N
R

M
SE

(%
)

0

0.5

1

1.5

PSO DE RBF-EI RBF-WEI KRG-EI KRG-WEI

Fig. 34 NRMSE boxplot for the maximization of �n(�)

 E. S. Barroso et al.

1 3

203 Page 22 of 27

NURBS mesh parametrized in coordinates x and y, and
in shell thickness, as depicted in Fig. 38. Note that the
cutout is not explicitly included in the design mesh but
is nevertheless taken into account by the analysis model.
There are 256 control points but, due to symmetry in the

three directions, 32 design variables are considered in the
optimization problem. It is worth pointing out that this is
a very high number of variables for SBO (Díaz-Manríquez
et al. 2011).

This time, we perform the multi-objective optimization of
the FG panel. Here, two objectives are considered: maximi-
zation of the buckling load �n and minimization of the total
cost Ct . The optimization problem is defined as:

where f1 = −�n(�) and f2 = Ct(�) . The total cost is evalu-
ated by:

where Cc = 50 USD/kg and Cm = 3 USD/kg are the costs for
the ceramic and metal, respectively (Franco Correia et al.
2021), and �c = 2730 kg/m3 and �m = 8000 kg/m3 are the
material densities for the ceramic and metal, respectively.
The non-dimensional buckling load is evaluated by the same
expression as the previous example.

The multi-objective optimization is solved using the
Weighted Compromise Programming (WCP) method (Athan
and Papalambros 1996; Rouhi et al. 2015; Barroso et al.
2017), where multiple single-objective problems are defined
considering weighted objectives. Thus, the final objective
function is defined as:

where m = 2 , f1,min and f2,min are the minimum objectives for
f1 and f2 , and f1,max and f2,max are the maximum objectives
for f1 and f2 . Since f1(�) = −�n(�) and f2(�) = Ct(�) , we
can find f1,min = −2.1406 and f2,max = 2639.6916 USD for
the isotropic Si3N4 shell, and we can find f1,max = −1.1700
and f2,min = 464.1216 USD for the isotropic SUS304 shell.
By continuously changing the weight factor w, one is able
to draw the Pareto front of the multi-objective optimization
problem.

(39)
{

minimize f1(�), f2(�)

with 0 ≤ xi ≤ 1 for i = 1, 2,… 32

(40)Ct = Cc�c
1

V ∫ Vcdv + Cm�m
1

V ∫ Vmdv

(41)

f (�) =

[
w

f1 − f1,min

f1,max − f1,min

]m
+

[
(1 − w)

f2 − f2,min

f2,max − f2,min

]m

Fig. 35 FG panel with a circular cutout

Fig. 36 Force in x-direction for unit loading

Fig. 37 Critical buckling mode for the FG panel

Fig. 38 Design mesh for the FG panel

BIOS: an object‑oriented framework for Surrogate‑Based Optimization using bio‑inspired…

1 3

Page 23 of 27 203

In this problem, the SAO algorithms use 60 initial sam-
pling points defined by the LHS20 method. Here, only the
Weighted Expected Improvement variant of Kriging and
RBF are used as surrogates. These models are chosen since
they perform well in other examples. The stopping crite-
ria are nmax = 150 and Itstall = 20 . In addition to the SAO
algorithms, the Differential Evolution meta-heuristic will
also be used to carry out the optimization process, using the
optimization parameters shown in Table 1. Due to the high
cost of the FE simulations, only parallel optimizations are
considered in this case.

The Pareto front obtained by each algorithm is presented
in Fig. 39. The Differential Evolution (DE) and Kriging
obtained similar optimal designs, while RBF obtained
slightly worse solutions. Table 8 presents the optimal

designs and their objective functions and ceramic fraction
(Vc) for each point in Pareto’s front.

Computation times are shown results are shown in
Table 9. Here, the parameter � is given with respect to the
computational cost of parallel DE. The time spent by RBF
and Kriging was 29 and 14 times faster than DE, respec-
tively. Again, the RBF algorithm has superior efficiency but
inferior accuracy in comparison to the Kriging algorithm.
Note that RBF performed 2.1 times faster than Kriging for
this problem, while being 1.3 times faster for the problem in
Sect. 6.5. The efficiency of RBF in comparison to Kriging
increases as bigger sample set are used since the training
of RBF models has a lower computational complexity in
comparison to Kriging.

The optimal gradations for three different designs of
Pareto’s front are illustrated in Fig. 40 for the design mesh.
As the weight w decreases, ceramic becomes more present
in the design, since the buckling-related objective becomes
more important than the cost-related one.

7 Conclusion

This paper presented BIOS, a framework for design opti-
mization using nature inspired search and Sequential
Approximated Optimization, with focus on the optimiza-
tion of composite structures. The framework architecture
was described in detail, through exposition of its modules

n
 /

n
,m

ax

0.5

0.6

0.7

0.8

0.9

1.0

1.1

Ct / Ct,max

0.2 0.4 0.6 0.8 1.0

DE
RBF
KRG

Fig. 39 Pareto’s front for the FG panel

Table 8 Results for the FG panel

w Design variables (�) f (�) C (USD) �n Vc (%)

0.0 [1 1] 0.0000 2639.6916 2.1406 100
0.1 [1 1 1 1 0.8683 1 0.1229 1 1 0.4519] 0.0099 2619.5050 2.1298 99
0.2 [1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 0 0 1 1 0 0 0.6708 1 0 1 1 1 0.3646] 0.0357 2383.2830 2.0589 88
0.3 [1 0 1 0 0 0 0.2792 0 0 1 1 1 1] 0.0657 1985.1140 1.9361 70
0.4 [1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 0.4633 0 0 0 0 0 0 0 0 0.3534 1 1 0] 0.0848 1731.9480 1.8583 58
0.5 [1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] 0.0957 1552.1820 1.7869 50
0.6 [1 1 1 1 0 1 0.8384 0 0 1 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] 0.0951 1172.6030 1.5616 33
0.7 [1 1 1 1 0 0.007 0.6586 0 0 0 0.2086 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] 0.0696 831.4536 1.3777 17
0.8 [0 1 0.8 1 0 0 0 0 0 0 0 0 0 0.7047 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] 0.0356 624.4876 1.2705 7
0.9 [0.3262 0 0 0 0 0 0 0.2054 0 0 0 0 0 0 0.0467 0.2831 0.2757 0 0 0 0 0 0 0 0 0 0 0

0.1369 0 0 0.2886]
0.0099 488.4376 1.1796 1

1.0 [0 0] 0.0000 464.1216 1.1700 0

Table 9 Processing time for the
FG panel

Method Time per opti-
mization (s)

�

DE 6023 1.0
RBF 209 28.8
KRG 430 14.0

 E. S. Barroso et al.

1 3

203 Page 24 of 27

and discussion regarding its classes responsibilities and
most important methods.

The theoretical aspects concerning the SAO algorithms
based in Radial Basis Functions and Kriging and their
impact on the system architecture were also discussed. The
effectiveness of both strategies were assessed using well-
known benchmarks problems, for which excellent results
were obtained. A multi-objective problem was also solved,
successfully obtaining its Pareto front.

To assess the capabilities of BIOS in terms of effi-
ciency, the optimization of functionally graded structures
with costly objective functions were solved, combining
parallel computing and surrogate modeling features pre-
sented here. The results show that the SAO algorithms
outperform the conventional algorithms, such as PSO and
DE, by orders of magnitude, with negligible differences
in the optimum design.

BIOS is a powerful tool for sequential approximate
methods, as well as for optimization of laminate and
functionally graded structures. Moreover, BIOS can
be employed in the solution of optimization problems
from different engineering fields, requiring only minor
modifications and adjustments to the code. It is worth
emphasizing that the framework is cross-platform and
open-source, which provides a resourceful alternative for
future researchers in this lively field. For future works, the
authors intend to extend the framework, by including new
methods for solving constrained optimization problems,
multi-objective optimization problems, and problems with
discrete variables.

Funding This study was financed by CNPq (Conselho Nacional de
Desenvolvimento Científico e Tecnológico), CAPES (Coordenação
de Aperfeiçoamento de Pessoal de Nível Superior), and FUNCAP
(Fundação Cearense de Apoio ao Desenvolvimento Científico e Tec-
nológico). The authors gratefully acknowledge the financial support
provided by these agencies.

Data availability The datasets generated during the current study are
available at BIOS repository: https:// github. com/ lmcv- ufc/ BIOS.

Code availability BIOS source code is available at https:// github. com/
lmcv- ufc/ BIOS.

Declarations

Conflict of interest The authors declare that they have no conflict of
interest.

Replication of results In addition to the material available as supple-
mentary material, the authors believe that sufficient details have been
provided in this paper, allowing the replication of experiments.

References

Abadi M, Agarwal A, Barham P, Brevdo E, Chen Z, Citro C, Corrado
GS, Davis A, Dean J, Devin M, Ghemawat S, Goodfellow I, Harp
A, Irving G, Isard M, Jia Y, Jozefowicz R, Kaiser L, Kudlur M,
Levenberg J, Mané D, Monga R, Moore S, Murray D, Olah C,
Schuster M, Shlens J, Steiner B, Sutskever I, Talwar K, Tucker P,
Vanhoucke V, Vasudevan V, Viégas F, Vinyals O, Warden P, Wat-
tenberg M, Wicke M, Yu Y, Zheng X (2015) TensorFlow: large-
scale machine learning on heterogeneous systems. https:// www.
tenso rflow. org/, software available from http:// tenso rflow. org/

Alexandrescu A (2001) Modern C++ design: generic programming
and design patterns applied. Addison-Wesley Longman Publish-
ing Co., Inc., Boston

Arora JS (2017) Introduction to optimum design, 3rd edn. Academic
Press, Cambridge

Athan TW, Papalambros PY (1996) A note on weighted criteria meth-
ods for compromise solutions in multi-objective optimization.
Eng Optim 27(2):155–176. https:// doi. org/ 10. 1080/ 03052 15960
89414 04

Bagheri S, Konen W, Allmendinger R, Branke J, Deb K, Fieldsend J,
Quagliarella D, Sindhya K (2017) Constraint handling in efficient
global optimization. Proc Genet Evol Comput Conf 17:673–680.
https:// doi. org/ 10. 1145/ 30711 78. 30712 78

Barroso ES, Parente E, Cartaxo de Melo AM (2017) A hybrid PSO-
GA algorithm for optimization of laminated composites. Struct
Multidisc Optim 55(6):2111–2130. https:// doi. org/ 10. 1007/
s00158- 016- 1631-y

Blank J, Deb K (2020) Pymoo: multi-objective optimization in python.
IEEE Access 8:89497–89509

Bouhlel M, Bartoli N, Regis RG, Otsmane A, Morlier J (2018) Efficient
global optimization for high-dimensional constrained problems by
using the Kriging models combined with the partial least squares
method. Eng Optim 50(12):2038–2053. https:// doi. org/ 10. 1080/
03052 15X. 2017. 14193 44

Bratton D, Kennedy J (2007) Defining a standard for particle swarm
optimization. In: 2007 IEEE swarm intelligence symposium.
https:// doi. org/ 10. 1109/ SIS. 2007. 368035

Brochu E, Cora VM, de Freitas N (2010) A tutorial on Bayesian opti-
mization of expensive cost functions, with application to active

(a) V c = 33%, w = 0.6 (b) V c = 50%, w = 0.5 (c) V c = 70%, w = 0.3

Fig. 40 Optimal gradation for the FG panel

https://github.com/lmcv-ufc/BIOS
https://github.com/lmcv-ufc/BIOS
https://github.com/lmcv-ufc/BIOS
https://www.tensorflow.org/
https://www.tensorflow.org/
http://tensorflow.org/
https://doi.org/10.1080/03052159608941404
https://doi.org/10.1080/03052159608941404
https://doi.org/10.1145/3071178.3071278
https://doi.org/10.1007/s00158-016-1631-y
https://doi.org/10.1007/s00158-016-1631-y
https://doi.org/10.1080/0305215X.2017.1419344
https://doi.org/10.1080/0305215X.2017.1419344
https://doi.org/10.1109/SIS.2007.368035

BIOS: an object‑oriented framework for Surrogate‑Based Optimization using bio‑inspired…

1 3

Page 25 of 27 203

user modeling and hierarchical reinforcement learning. arXiv:
1012. 2599

Castro LD, Zuben FV (2002) Learning and optimization using the
clonal selection principle. IEEE Trans Evol Comput 6(3):239–
251. https:// doi. org/ 10. 1109/ tevc. 2002. 10115 39

Chen YT, Xiang S, Zhao WP (2014) Generalized multiquadrics with
optimal shape parameter and exponent for deflection and stress
of functionally graded plates. Appl Mech Mater 709:121–124.
https:// doi. org/ 10. 4028/ www. scien tific. net/ amm. 709. 121

Cho I, Lee Y, Ryu D, Choi DH (2016) Comparison study of sampling
methods for computer experiments using various performance
measures. Struct Multidisc Optim 55(1):221–235. https:// doi. org/
10. 1007/ s00158- 016- 1490-6

Chunna L, Hai F, Chunlin G (2020) Development of an efficient global
optimization method based on adaptive infilling for structure
optimization. Struct Multidisc Optim. https:// doi. org/ 10. 1007/
s00158- 020- 02716-y

Deb K (2000) An efficient constraint handling method for genetic
algorithms. Comput Methods Appl Mech Eng 186(2–4):311–338.
https:// doi. org/ 10. 1016/ s0045- 7825(99) 00389-8

Díaz J, Cid Montoya M, Hernández S (2016) Efficient methodologies
for reliability-based design optimization of composite panels.
Adv Eng Softw 93:9–21. https:// doi. org/ 10. 1016/j. adven gsoft.
2015. 12. 001

Do D, Lee D, Lee J (2019) Material optimization of functionally graded
plates using deep neural network and modified symbiotic organ-
isms search for eigenvalue problems. Composites B 159:300–326.
https:// doi. org/ 10. 1016/j. compo sitesb. 2018. 09. 087

Do DT, Nguyen-Xuan H, Lee J (2020) Material optimization of tri-
directional functionally graded plates by using deep neural net-
work and isogeometric multimesh design approach. Appl Math
Model 87(107):501–533. https:// doi. org/ 10. 1016/j. apm. 2020. 06.
002

Durillo JJ, Nebro AJ (2011) jMetal: a Java framework for multi-objec-
tive optimization. Adv Eng Softw 42(10):760–771. https:// doi.
org/ 10. 1016/J. ADVEN GSOFT. 2011. 05. 014

Díaz-Manríquez A, Toscano-Pulido G, Gómez-Flores W (2011) On
the selection of surrogate models in evolutionary optimization
algorithms. In: 2011 IEEE congress of evolutionary computation
(CEC), pp 2155–2162

Forrester AI, Keane AJ (2009) Recent advances in surrogate-based
optimization. Progress Aerosp Sci 45(1–3):50–79. https:// doi. org/
10. 1016/j. paero sci. 2008. 11. 001

Forrester AIJ, Sobester A, Keane AJ (2008) Engineering design via
surrogate modelling: a practical guide. Wiley, Hoboken

Franco Correia V, Moita JS, Moleiro F, Soares CMM (2021) Opti-
mization of metal-ceramic functionally graded plates using the
simulated annealing algorithm. Appl Sci. https:// doi. org/ 10. 3390/
app11 020729

Gamma E, Helm R, Johnson R, Vlissides JM (1994) Design patterns:
elements of reusable object-oriented software. Addison-Wesley
Professional, Boston

Giunta AA, Eldred MS (2000) Implementation of a trust region model
management strategy in the DAKOTA optimization toolkit. In:
8th symposium on multidisciplinary analysis and optimization.
https:// doi. org/ 10. 2514/6. 2000- 4935

Goldberg DE (2012) Genetic algorithms in search, optimization, and
machine learning. Addison-Wesley, Boston

 Gulli A, Pal S (2017) Deep learning with Keras: Implementing deep
learning models and neural networks with the power of Python.
Packt Publishing

Hardy RL (1971) Multiquadric equations of topography and other
irregular surfaces. J Geophys Res 76(8):1905–1915. https:// doi.
org/ 10. 1029/ jb076 i008p 01905

Hussain MF, Barton RR, Joshi SB (2002) Metamodeling: radial basis
functions, versus polynomials. Eur J Oper Res 138(1):142–154.
https:// doi. org/ 10. 1016/ s0377- 2217(01) 00076-5

Jacobs JH, Etman LF, Van Keulen F, Rooda JE (2004) Framework
for sequential approximate optimization. Struct Multidisc Optim
27(5):384–400. https:// doi. org/ 10. 1007/ s00158- 004- 0398-8

Jaiswal P, Patel J, Rai R (2018) Build orientation optimization for addi-
tive manufacturing of functionally graded material objects. Int J
Adv Manuf Technol 96(1–4):223–235. https:// doi. org/ 10. 1007/
s00170- 018- 1586-9

Jin R, Chen W, Simpson TW (2001) Comparative studies of meta-
modelling techniques under multiple modelling criteria.
Struct Multidisc Optim 23(1):1–13. https:// doi. org/ 10. 1007/
s00158- 001- 0160-4

Jones DR (2001) A taxonomy of global optimization methods based on
response surfaces. J Glob Optim 21(4):345–383. https:// doi. org/
10. 1023/a: 10127 71025 575

Jones DR, Schonlau M, Welch WJ (1998) Efficient global optimization
of expensive black-box functions. J Glob Optim. https:// doi. org/
10. 1023/A: 10083 0643

Karaboga D (2005) An idea based on honey bee swarm for numerical
optimization. Tech. rep. Erciyes University

Kennedy J, Eberhart R (1995) Particle swarm optimization. In: Pro-
ceedings of ICNN95—international conference on neural net-
works, vol 4

Keshtegar B, Nguyen-Thoi T, Truong TT, Zhu SP (2020) Optimization
of buckling load for laminated composite plates using adaptive
Kriging-improved PSO: a novel hybrid intelligent method. Def
Technol. https:// doi. org/ 10. 1016/j. dt. 2020. 02. 020

Kim BS, Lee YB, Choi DH (2009) Comparison study on the accu-
racy of metamodeling technique for non-convex functions. J
Mech Sci Technol 23(4):1175–1181. https:// doi. org/ 10. 1007/
s12206- 008- 1201-3

Kitayama S, Yamazaki K (2011) Simple estimate of the width in gauss-
ian kernel with adaptive scaling technique. Appl Soft Comput
11(8):4726–4737. https:// doi. org/ 10. 1016/j. asoc. 2011. 07. 011

Kitayama S, Arakawa M, Yamazaki K (2010) Sequential approximate
optimization using radial basis function network for engineering
optimization. Optim Eng 12(4):535–557. https:// doi. org/ 10. 1007/
s11081- 010- 9118-y

Kleijnen JPC, Sanchez SM, Lucas TW, Cioppa TM (2005) State-of-
the-art review: a user’s guide to the brave new world of designing
simulation experiments. INFORMS J Comput 17(3):263–289.
https:// doi. org/ 10. 1287/ ijoc. 1050. 0136

Krishnamoorthy CS, Prasanna Venkatesh P, Sudarshan R (2002)
Object-oriented framework for genetic algorithms with applica-
tion to space truss optimization. J Comput Civil Eng 16(1):66–75.
https:// doi. org/ 10. 1061/ (ASCE) 0887- 3801(2002) 16: 1(66)

Kuhn HW, Tucker AW (1951) Nonlinear programming. In: Proceed-
ings of the second Berkeley symposium on mathematical statistics
and probability, 1950, University of California Press, Berkeley,
pp 481–492

Kumar M (2017) scikit-optimize: sequential model-based optimization
toolkit. https:// scikit- optim ize. github. io/ stable/

Lemonge AC, Barbosa HJ (2004) An adaptive penalty scheme for
genetic algorithms in structural optimization. Int J Numer Meth-
ods Eng 59(5):703–736. https:// doi. org/ 10. 1002/ nme. 899

Liu H, Ong YS, Cai J (2018) A survey of adaptive sampling for global
metamodeling in support of simulation-based complex engineer-
ing design. Struct Multidisc Optim 57(1):393–416. https:// doi. org/
10. 1007/ s00158- 017- 1739-8

Luersen MA, Steeves CA, Nair PB (2015) Curved fiber paths optimiza-
tion of a composite cylindrical shell via kriging-based approach. J
Compos Mater 49(29):3583–3597. https:// doi. org/ 10. 1177/ 00219
98314 568168

http://arxiv.org/abs/1012.2599
http://arxiv.org/abs/1012.2599
https://doi.org/10.1109/tevc.2002.1011539
https://doi.org/10.4028/www.scientific.net/amm.709.121
https://doi.org/10.1007/s00158-016-1490-6
https://doi.org/10.1007/s00158-016-1490-6
https://doi.org/10.1007/s00158-020-02716-y
https://doi.org/10.1007/s00158-020-02716-y
https://doi.org/10.1016/s0045-7825(99)00389-8
https://doi.org/10.1016/j.advengsoft.2015.12.001
https://doi.org/10.1016/j.advengsoft.2015.12.001
https://doi.org/10.1016/j.compositesb.2018.09.087
https://doi.org/10.1016/j.apm.2020.06.002
https://doi.org/10.1016/j.apm.2020.06.002
https://doi.org/10.1016/J.ADVENGSOFT.2011.05.014
https://doi.org/10.1016/J.ADVENGSOFT.2011.05.014
https://doi.org/10.1016/j.paerosci.2008.11.001
https://doi.org/10.1016/j.paerosci.2008.11.001
https://doi.org/10.3390/app11020729
https://doi.org/10.3390/app11020729
https://doi.org/10.2514/6.2000-4935
https://doi.org/10.1029/jb076i008p01905
https://doi.org/10.1029/jb076i008p01905
https://doi.org/10.1016/s0377-2217(01)00076-5
https://doi.org/10.1007/s00158-004-0398-8
https://doi.org/10.1007/s00170-018-1586-9
https://doi.org/10.1007/s00170-018-1586-9
https://doi.org/10.1007/s00158-001-0160-4
https://doi.org/10.1007/s00158-001-0160-4
https://doi.org/10.1023/a:1012771025575
https://doi.org/10.1023/a:1012771025575
https://doi.org/10.1023/A:100830643
https://doi.org/10.1023/A:100830643
https://doi.org/10.1016/j.dt.2020.02.020
https://doi.org/10.1007/s12206-008-1201-3
https://doi.org/10.1007/s12206-008-1201-3
https://doi.org/10.1016/j.asoc.2011.07.011
https://doi.org/10.1007/s11081-010-9118-y
https://doi.org/10.1007/s11081-010-9118-y
https://doi.org/10.1287/ijoc.1050.0136
https://doi.org/10.1061/(ASCE)0887-3801(2002)16:1(66)
https://scikit-optimize.github.io/stable/
https://doi.org/10.1002/nme.899
https://doi.org/10.1007/s00158-017-1739-8
https://doi.org/10.1007/s00158-017-1739-8
https://doi.org/10.1177/0021998314568168
https://doi.org/10.1177/0021998314568168

 E. S. Barroso et al.

1 3

203 Page 26 of 27

Maia MA, Parente E, de Melo AMC (2021) Kriging-based optimiza-
tion of functionally graded structures. Struct Multidisc Optim.
https:// doi. org/ 10. 1007/ s00158- 021- 02949-5

Martins JRRA, Marriage C, Tedford N (2009) pyMDO: an object-
oriented framework for multidisciplinary design optimization.
ACM Trans Math Softw 36(4):1–25. https:// doi. org/ 10. 1145/
15553 86. 15553 89

Mathern A, Steinholtz OS, Sjöberg A, Önnheim M, Ek K, Rempling
R, Gustavsson E, Jirstrand M (2020) Multi-objective constrained
Bayesian optimization for structural design. Struct Multidisc
Optim. https:// doi. org/ 10. 1007/ s00158- 020- 02720-2

Meza JC, Oliva RA, Hough PD, Williams PJ (2007) OPT++: an
object-oriented toolkit for nonlinear optimization. ACM Trans
Math Softw 33(2):12-es. https:// doi. org/ 10. 1145/ 12364 63. 12364
67

Mlakar M, Petelin D, Tušar T, Filipič B (2015) GP-DEMO: differen-
tial evolution for multiobjective optimization based on Gaussian
process models. Eur J Oper Res 243(2):347–361. https:// doi. org/
10. 1016/j. ejor. 2014. 04. 011

Muller J (2014) Matsumoto: the matlab surrogate model toolbox for
computationally expensive black-box global optimization prob-
lems. arXiv: 1404. 4261

Müller J, Shoemaker CA (2014) Influence of ensemble surrogate mod-
els and sampling strategy on the solution quality of algorithms
for computationally expensive black-box global optimization
problems. J Glob Optim 60(2):123–144. https:// doi. org/ 10. 1007/
s10898- 014- 0184-0

Nakayama H, Arakawa M, Sasaki R (2002) Simulation-based optimiza-
tion using computational intelligence. Optim Eng 3(2):201–214.
https:// doi. org/ 10. 1023/a: 10209 71504 868

Nakayama H, Arakawa M, Washino K (2003) Optimization for black-
box objective functions. In: Series on computers and operations
research optimization and optimal control, pp 185–210, https://
doi. org/ 10. 1142/ 97898 12775 368_ 0013

Nik MA, Fayazbakhsh K, Pasini D, Lessard L (2014) A compara-
tive study of metamodeling methods for the design optimization
of variable stiffness composites. Compos Struct 107:494–501.
https:// doi. org/ 10. 1016/j. comps truct. 2013. 08. 023

Pan G, Ye P, Wang P, Yang Z (2014) A sequential optimization sam-
pling method for metamodels with radial basis functions. Sci
World J 2014:1–17. https:// doi. org/ 10. 1155/ 2014/ 192862

Passos AG, Luersen MA (2018) Multi-objective optimization with
Kriging surrogates using ‘moko’, an open source package. Lat
Am J Solids Struct. https:// doi. org/ 10. 1590/ 1679- 78254 324

Price KV, Storn RM, Lampinen JA (2005) Differential evolution: a
pratical approach to global optimization. Springer, Berlin

Queipo NV, Haftka RT, Shyy W, Goel T, Vaidyanathan R, Kevin
Tucker P (2005) Surrogate-based analysis and optimization. Pro-
gress Aerosp Sci 41(1):1–28. https:// doi. org/ 10. 1016/j. paero sci.
2005. 02. 001

Ribeiro LG, Maia MA, Parente E Jr, Melo AMC (2020) Surrogate
based optimization of functionally graded plates using radial basis
functions. Compos Struct. https:// doi. org/ 10. 1016/j. comps truct.
2020. 112677

Rocha IB, Parente E Jr, Melo AMC (2014) A hybrid shared/distributed
memory parallel genetic algorithm for optimization of laminate
composites. Compos Struct 107(1):288–297. https:// doi. org/ 10.
1016/j. comps truct. 2013. 07. 049

Rouhi M, Ghayoor H, Hoa SV, Hojjati M (2015) Multi-objective design
optimization of variable stiffness composite cylinders. Composites
B 69:249–255. https:// doi. org/ 10. 1016/j. compo sitesb. 2014. 10. 011

Roustant O, Ginsbourger D, Deville Y (2012) Dicekriging, diceop-
tim: two r packages for the analysis of computer experiments
by kriging-based metamodeling and optimization. J Stat Softw
51(1):1–55. https:// doi. org/ 10. 18637/ jss. v051. i01

Schmit L, Farshi B (1974) Some approximation concepts for struc-
tural synthesis. AIAA J 12(5):692–699. https:// doi. org/ 10. 2514/3.
49321

Schonlau M, Welch WJ, Jones DR (1998) Global versus local search in
constrained optimization of computer models. New Dev Appl Exp
Des 34:11–25. https:// doi. org/ 10. 1214/ lnms/ 12154 56182

Shen HS (2009) Functionally graded materials: nonlinear analysis of
plates and shells. CRC Press, Boca Raton

Simpson TW, Lin DKJ, Chen W (2002) Sampling strategies for
computer experiments: design and analysis. Int J Reliab Appl
2:209–240

Sivakumar P, Rajaraman A, Samuel Knight GM, Ramachandramurthy
DS (2004) Object-oriented optimization approach using genetic
algorithms for lattice towers. J Comput Civil Eng 18(2):162–171.
https:// doi. org/ 10. 1061/ (ASCE) 0887- 3801(2004) 18: 2(162)

Sobester A, Leary SJ, Keane AJ (2005) On the design of optimization
strategies based on global response surface approximation models.
J Glob Optim. https:// doi. org/ 10. 1007/ s10898- 004- 6733-1

Song X, Lv L, Sun W, Zhang J (2019) A radial basis function-based
multi-fidelity surrogate model: exploring correlation between
high-fidelity and low-fidelity models. Struct Multidisc Optim
60(3):965–981. https:// doi. org/ 10. 1007/ s00158- 019- 02248-0

Srinivas N, Krause A, Kakade S, Seeger M (2010) Gaussian process
optimization in the bandit setting: no regret and experimental
design. In: ICML 2010—proceedings, 27th international confer-
ence on machine learning, pp 1015–1022. https:// doi. org/ 10. 1109/
TIT. 2011. 21820 33

Steponavičė I, Shirazi-Manesh M, Hyndman RJ, Smith-Miles K, Vil-
lanova L (2016) On sampling methods for costly multi-objective
black-box optimization. In: Advances in stochastic and determin-
istic global optimization springer optimization and its applica-
tions, pp 273–296. https:// doi. org/ 10. 1007/ 978-3- 319- 29975-4_ 15

Stork J, Eiben AE, Bartz-Beielstein T (2020a) A new taxonomy of
continuous global optimization algorithms. Nat Comput. https://
doi. org/ 10. 1007/ s11047- 020- 09820-4

Stork J, Friese M, Zaefferer M, Bartz-beielstein T, Fischbach A, Brei-
derhoff B, Naujoks B, Tusar T (2020b) Open issues in surrogate-
assisted optimization. Springer, Cham, Switzerland. https:// doi.
org/ 10. 1007/ 978-3- 030- 18764-4

Storn R, Price K (1997) Differential evolution—a simple and efficient
heuristic for global optimization over continuous spaces. J Glob
Optim 11(4):341–359. https:// doi. org/ 10. 1023/a: 10082 02821 328

Tenne Y (2014) Initial sampling methods in metamodel-assisted opti-
mization. Eng Comput 31(4):661–680. https:// doi. org/ 10. 1007/
s00366- 014- 0372-z

Tutum CC, Deb K, Baran I (2014) Constrained efficient global optimi-
zation for pultrusion process. Mater Manuf Processes 30(4):538–
551. https:// doi. org/ 10. 1080/ 10426 914. 2014. 994752

Viana F (2010) SURROGATES toolbox user’s guide. Gainesville, FL,
USA, version 2.1 edn, http:// sites. google. com/ site/ felip eacvi ana/
surro gates toolb ox

Wagner S, Affenzeller M (2005) HeuristicLab: a generic and extensi-
ble optimization environment. Adaptive and natural computing
algorithms. Springer, Vienna, pp 538–541. https:// doi. org/ 10.
1007/3- 211- 27389-1- 130

Wang GG, Shan S (2007) Review of metamodeling techniques in sup-
port of engineering design optimization. J Mech Des 129(4):370.
https:// doi. org/ 10. 1115/1. 24296 97

Williams B, Cremaschi S (2021) Selection of surrogate modeling tech-
niques for surface approximation and surrogate-based optimiza-
tion. Chem Eng Res Des 170:76–89. https:// doi. org/ 10. 1016/j.
cherd. 2021. 03. 028

Wu Z, Wang D, Patrick Okolo N, Jiang Z, Zhang W (2016) Uni-
fied estimate of Gaussian kernel width for surrogate models.

https://doi.org/10.1007/s00158-021-02949-5
https://doi.org/10.1145/1555386.1555389
https://doi.org/10.1145/1555386.1555389
https://doi.org/10.1007/s00158-020-02720-2
https://doi.org/10.1145/1236463.1236467
https://doi.org/10.1145/1236463.1236467
https://doi.org/10.1016/j.ejor.2014.04.011
https://doi.org/10.1016/j.ejor.2014.04.011
http://arxiv.org/abs/1404.4261
https://doi.org/10.1007/s10898-014-0184-0
https://doi.org/10.1007/s10898-014-0184-0
https://doi.org/10.1023/a:1020971504868
https://doi.org/10.1142/9789812775368_0013
https://doi.org/10.1142/9789812775368_0013
https://doi.org/10.1016/j.compstruct.2013.08.023
https://doi.org/10.1155/2014/192862
https://doi.org/10.1590/1679-78254324
https://doi.org/10.1016/j.paerosci.2005.02.001
https://doi.org/10.1016/j.paerosci.2005.02.001
https://doi.org/10.1016/j.compstruct.2020.112677
https://doi.org/10.1016/j.compstruct.2020.112677
https://doi.org/10.1016/j.compstruct.2013.07.049
https://doi.org/10.1016/j.compstruct.2013.07.049
https://doi.org/10.1016/j.compositesb.2014.10.011
https://doi.org/10.18637/jss.v051.i01
https://doi.org/10.2514/3.49321
https://doi.org/10.2514/3.49321
https://doi.org/10.1214/lnms/1215456182
https://doi.org/10.1061/(ASCE)0887-3801(2004)18:2(162)
https://doi.org/10.1007/s10898-004-6733-1
https://doi.org/10.1007/s00158-019-02248-0
https://doi.org/10.1109/TIT.2011.2182033
https://doi.org/10.1109/TIT.2011.2182033
https://doi.org/10.1007/978-3-319-29975-4_15
https://doi.org/10.1007/s11047-020-09820-4
https://doi.org/10.1007/s11047-020-09820-4
https://doi.org/10.1007/978-3-030-18764-4
https://doi.org/10.1007/978-3-030-18764-4
https://doi.org/10.1023/a:1008202821328
https://doi.org/10.1007/s00366-014-0372-z
https://doi.org/10.1007/s00366-014-0372-z
https://doi.org/10.1080/10426914.2014.994752
http://sites.google.com/site/felipeacviana/surrogatestoolbox
http://sites.google.com/site/felipeacviana/surrogatestoolbox
https://doi.org/10.1007/3-211-27389-1-130
https://doi.org/10.1007/3-211-27389-1-130
https://doi.org/10.1115/1.2429697
https://doi.org/10.1016/j.cherd.2021.03.028
https://doi.org/10.1016/j.cherd.2021.03.028

BIOS: an object‑oriented framework for Surrogate‑Based Optimization using bio‑inspired…

1 3

Page 27 of 27 203

Neurocomputing 203:41–51. https:// doi. org/ 10. 1016/j. neucom.
2016. 03. 039

Xiang H, Li Y, Liao H, Li C (2016) An adaptive surrogate model based
on support vector regression and its application to the optimiza-
tion of railway wind barriers. Struct Multidisc Optim 55(2):701–
713. https:// doi. org/ 10. 1007/ s00158- 016- 1528-9

Yao W, Chen X, Huang Y, Tooren MV (2014) A surrogate-based opti-
mization method with RBF neural network enhanced by linear
interpolation and hybrid infill strategy. Optim Methods Softw
29(2):406–429. https:// doi. org/ 10. 1080/ 10556 788. 2013. 777722

Zadeh PM, Toropov VV, Wood AS (2009) Metamodel-based collabora-
tive optimization framework. Struct Multidisc Optim 38(2):103–
115. https:// doi. org/ 10. 1007/ s00158- 008- 0286-8

Zhu W, Meng Z, Huang J, He W (2012) Optimization design for lami-
nated composite structure based on kriging model. Appl Mech
Mater 217–219:179–183. https:// doi. org/ 10. 4028/ www. scien tific.
net/ AMM. 217- 219. 179

Publisher's Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1016/j.neucom.2016.03.039
https://doi.org/10.1016/j.neucom.2016.03.039
https://doi.org/10.1007/s00158-016-1528-9
https://doi.org/10.1080/10556788.2013.777722
https://doi.org/10.1007/s00158-008-0286-8
https://doi.org/10.4028/www.scientific.net/AMM.217-219.179
https://doi.org/10.4028/www.scientific.net/AMM.217-219.179

	BIOS: an object-oriented framework for Surrogate-Based Optimization using bio-inspired algorithms
	Abstract
	1 Introduction
	2 Bio-inspired Optimization Algorithms
	3 Surrogate-Based Optimization
	3.1 Initial sampling
	3.2 Surrogate modeling
	3.2.1 Radial Basis Functions
	3.2.2 Kriging

	3.3 Model update

	4 BIOS architecture
	4.1 Optimization Module
	4.2 SAO module

	5 Solving optimization problems using BIOS
	6 Applications
	6.1 Branin function
	6.2 Hartmann 6 function
	6.3 Kitayama’s constrained problem
	6.4 Optimization of a unidirectional FG circular plate
	6.5 Optimization of a tridirectional FG square plate
	6.6 Optimization of a tridirectional FG panel with a cutout

	7 Conclusion
	References

