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Abstract: All drivers have individual ways of driving. Still, there are groups of drivers with more or less similar characteristics. 
In this research, 28 drivers from Chengdu city (P.R. China) participated in an experiment where car following behaviour was 
measured with GPS devices. In every measured trip there was a leading and a following vehicle both equipped with a GPS 
device. Drivers are classified based on a Driver Behaviour Questionnaire and observed acceleration and deceleration 
behaviour. The result shows four distinct classes of drivers: macho drivers, careful/inexperienced drivers, smooth 
going/professional drivers, and experienced/fast drivers. Drivers in the different classes give different emission of air 
pollution and fuel consumption. Saturation flows are determined from the trajectories and vary between different driver 
types. The measured trajectories have been analysed in detail to determine some parameters for the Wiedemann 74 model. 
Most default parameters in the VISSIM program appear to be unsuited for the simulation of driving behaviour measured in 
the experiment. The emissions and fuel consumption calculated by a simulation model with default parameters are not 
consistent with the empirical data. The calibration done for different driver types shows that several model parameters are 
significantly different for the different driver classes. 
 

1. Introduction 

Every driver has his or /her own characteristic way of 

driving. However, it is practically impossible to have an 

individual behavioural model for every driver. Most traffic 

simulations models have one, two or at most three types of 

drivers of passenger cars and in most studies the difference in 

behaviour is based on assumptions. The fact that drivers all 

have passed an examination before they got a driver license 

makes the driving behaviour uniform to a certain extent. Still, 

Li [1] found that there are important differences in the way 

drivers apply the rules of the road, both within a group of 

Chinese drivers and a group of Dutch drivers. Drivers develop 

their own driving style based on experience, character, skills, 

and the context of their journey [2]. 

One’s experience is an important factor influencing the 

driving style. Novice drivers are often more careful and 

hesitating than experienced drivers. In many countries, 

novice drivers have to get sufficient experience of driving in 

real traffic before they obtain a driving license. In these 

countries the novice’s skills just to operate and control a 

vehicle are not considered to be sufficient to obtain a driving 

license. 

The research reported in this paper has been done in 

China with Chinese drivers. In China the situation with 

respect to drivers, driving licenses and driver experience 

differs from most Western countries. The driving 

examination in China is limited to the knowledge of the rules 

of the road and the skill to operate and control a vehicle. 

Driving in real traffic is only a minor part of the examination. 

That has the consequence that novice drivers still have to 

learn how to drive in real traffic. Furthermore, the percentage 

of drivers in China who have their license less than 3 years is 

much higher than that is in a Western country, such as the 

Netherlands (38% novice drivers in China versus 3.2% in the 

Netherlands in 2012 [1]). The learning process of novice 

drivers is not controlled in the sense that they don’t learn how 

to develop a uniform driving style.  

It appears that drivers can be categorized in groups of 

people who have similar driving behaviour. Some researchers 

have reported on the classification of drivers based on their 

actual driving behaviour (e.g. [3],[4]) using in-car monitoring 

systems. These researchers wanted to classify drivers in order 

to develop driver specific in-car support systems. 

Making a distinction in aggressive, average, sensation 

seeking and cautious drivers (e.g. [5], [6]) requires first of all 

criteria to classify the drivers. Rather few studies have been 

done to investigate the relation between driver characteristics 

and driving behaviour in real life conditions. Brackstone [7] 

studied the possible relation between psychological types and 

driving behaviour using instrumented vehicles on a freeway. 

He referred to previous studies showing that the headway at 

higher speeds has a relationship with driver’s age [8]. 

Brackstone registered some characteristics of the drivers such 

as aggressiveness / passiveness and sensation seeking 

attitudes and found several correlations between 

psychological traits and driving behaviour. His research was 

based on a small number of drivers and his statistical analysis 

has a limited depth.  
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Nam et al. [9] used a simple aggressiveness 

characteristic to investigate the impact of this characteristic 

on emissions. Also, Tang et al. [5] studied the impact of driver 

characteristics on fuel consumption and emissions. They 

developed a car following model for three types of drivers 

(aggressive, neutral and conservative). However, Tang et al. 

[5] didn’t have specific criteria for the classification of drivers 

and didn’t have any empirical data to calibrate their models. 

Constantinescu et al. [10] used driving characteristics like 

speeds and accelerations to classify drivers into six groups. 

Soria et al. [6] classified drivers into three classes based on 

lane changing behaviour and speeds. They measured car 

following behaviour by analysing video data from an 

instrumented car. The speed and distance to the car in front 

were measured and analysed. They found differences in the 

calibrated parameters of the CORSIM simulation model for 

different driving conditions. Ma and Andréasson [11] also 

used a single instrumented vehicle to record car following 

behaviour, without considering characteristics of the driver.  

Li et al. [12] and Lu et al. [13] analysed videos to 

extract trajectories of several vehicles. These trajectories 

were used to calibrate parameters of the car following model 

in VISSIM. Both Li et al. [12] and Lu et al. [13] observed 

traffic at urban intersections and they both showed how 

acceleration, deceleration and speed profiles could be 

determined from trajectories. However, no information about 

the drivers was considered in their research. 

Wolshon and Hatipkarasulu [14] used GPS data of 

leading and following cars to measure distance and speeds. 

They used the data to calibrate CORSIM, but they did not 

distinguish different driver behaviour. Durrani et al. [15] 

investigated the effect of the vehicle class on the parameters 

of the Wiedemann 99 model. They found that the class of the 

leading vehicle (passenger car or heavy vehicle) has an 

important effect on the model parameters. Ossen and 

Hoogendoorn [16] analysed trajectories of vehicles on 

freeways and concluded that the match between driver 

behaviour and car following models were variable: the best 

matching model differs per driver and even the most suitable 

model for the behaviour of one driver could change in time. 

Higgs et al. [17] investigated the behaviour of several truck 

drivers using instrumented vehicles. They calibrated the 

parameters of the Wiedemann 74 model for each driver 

separately, assuming that each driver behaves 

deterministically and mechanically. They optimized all 

parameters simultaneously. Therefore, no information was 

derived about the sensitivity of the model performance on the 

values of the different parameters. Higgs et al. [17] also 

showed that the boundary values in the Wiedemann 74 model 

depend on the speed of the drivers and the driver 

characteristics, which was not considered in the original 

Wiedemann 74 model. Asamer et al. [18] calibrated 

parameters of the Wiedemann model for snowy weather 

conditions. They found that only a few parameters were 

relevant for the calibration of the model.  Also, Li et al. [12] 

showed that several model parameters did not have a 

significant influence on the quality of the calculations with 

the Wiedemann model. 

The research questions of this paper are, whether 

characteristics of drivers can be classified in uniform groups, 

whether the different groups of drivers give differences for 

the parameters of a simulation program, and what the impact 

of the differences in characteristics is on traffic performance 

such as saturation flow, speed, fuel consumption and 

emissions. This paper discusses the results based on the 

analysis of measurements of trajectories from 56 trips made 

by 28 different Chinese drivers. Section 2 describes how to 

classify these drivers into 4 groups. The trajectories were 

measured on an urban route with 20 signalized intersections 

in Chengdu city (P.R. China) using GPS devices installed in 

two cars following each other. Section 3 gives details of these 

observations. In section 4 the relation between trajectories 

and fuel consumption and emissions of air pollution is 

discussed.  The trajectories are analysed in section 5, where 

the research question is whether the typology of the driver has 

a significant influence on certain characteristics of a trip. In 

section 6 the relation between driver characteristics and 

parameters of a simulation model is investigated (the 

Wiedemann 74 model). The research question is whether one 

simulation model fits all kinds of drivers. Section 7 concludes 

the paper with discussion.  

In this paper we will use the masculine (‘he’ and ‘his’) 

for drivers, although 21% of the drivers in our test are women. 

The results apply to all drivers involved in the experiment. 

Gender appears not to be an important factor in the 

classification of drivers. 

2. DRIVER CLASSIFICATION 

Although all drivers have to follow the same rules of 

the road traffic, there are major differences in their styles of 

driving. The rules of the road leave considerable 

opportunities to choose your own way of driving, e.g., the 

cruising speed – as long as it remains below the maximum 

speed – the acceleration, lane changing, merging, the reaction 

time, and the deceleration. Furthermore, drivers may ignore 

certain rules, for instance in overtaking and choice of lanes. 

Giving and taking priority is also done according to an 

individual style. The difference between drivers of passenger 

cars and truck drivers is evident, but there are also differences 

between drivers of the first category. Of course, differences 

in driving style will lead to different traffic behaviour. This 

has been taken into account in some simulation programs 

where a distinction can be made between different driving 

types, e.g. aggressive and cautious drivers.  

Even though all drivers are different, it is practically 

impossible and also unnecessary to have a specific 

behavioural model for every driver. It appeared that drivers 

can be categorized in groups of people who have similar 

driving behaviour. Li et al. [19] used not only the driving 

behaviour but also the outcomes of a self-assessment to 

characterize drivers. They investigated the characteristics of 

30 drivers in Changsha. By applying factor analysis, they 

found that the drivers could be classified in 4 groups. Within 

a group the characteristics of the drivers are similar with 

respect to acceleration at low, medium and high speeds, 

cruise speed and aggressiveness, while between the groups 

there are significant differences. Four factors could be 

identified that explained 75.9% of the variation in all driving 

characteristics. This reduction of the driver characteristics to 

four factors is possible because of the correlation that exists 

between all characteristics, so that not all characteristics have 

to be retained.  

For the drivers participating in the car-following 

experiment in Chengdu we followed the same classification 

procedure. All drivers are Chinese with different background 
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and experience. The drivers were asked to fill in a Driver 

Behaviour Questionnaire (DBQ) with questions about their 

personal characteristics, driving behaviour and their history 

as a driver. The DBQ gave a self-assessment of the drivers. 

The relation between the answers to the DBQ and real in-car 

driver behaviour was investigated and the results showed that 

there was consistency between self-assessed driving 

behaviour and reality. From the answers to the DBQ an 

aggressiveness score of the driver was determined. The 

aggressiveness score is calculated from several items in the 

DBQ, such as ‘crossing stop-line during the red phase’, 

‘offences in the last year’, etc. This score appears to be an 

important explanatory variable for the driving behaviour. The 

characteristic ‘aggressiveness’ is much wider than the 

definition given by the NHTSA [20]. It deals with behaviour 

that is not necessarily aimed at ‘terrorizing’ other road users 

and also includes behaviour that is against the rules of the 

road. The DBQ answers are combined with characteristics of 

the driving behaviour such as the acceleration and 

deceleration rates at different speeds.  The characteristics of 

drivers are described by the following parameters: 

• DBQ aggressiveness score, 

• Driving experience, 

• Mean acceleration and its standard deviation at 

low speeds, 

• Mean acceleration and its standard deviation at 

higher speeds, 

• Mean deceleration and its standard deviation at 

low speeds, and 

• Mean deceleration and its standard deviation at 

higher speeds. 

The characteristics of the drivers (from self-assessment 

and in-car test) are analysed with factor analysis with the 

objective to obtain a classification of the drivers in groups 

with similar characteristics. The factors from the factor 

analysis are: 

F1 related to deceleration and acceleration at low 

speeds; 

F2 related to accelerations at higher speeds; 

F3 related to aggressiveness score and decelerations at 

higher speeds; 

F4 related to accelerations at very low speeds and 

driving experience. 

The following typology was identified [1]: 

1. Aggressive, macho, unsteady; 

2. Conservative, cautious, novice; 

3. Professional, smooth going; 

4. Experienced, fast driving. 

The main characteristics of each group are given in  

Table 1. The procedure as developed for the 30 drivers in 

Changsha was also followed in the experiment in Chengdu. 

Table 2 shows the classification and the main characteristics. 

The average characteristics of the drivers are similar in the 

initial data set in Changsha and the group drivers in Chengdu. 

Therefore, we classified the Chengdu test drivers according 

to the same four factors as was done with the drivers in 

Changsha. These four factors explain 67% of the variance of 

the properties of the Chengdu drivers. 

 

 

 

Table 1 Driving type category as determined in the survey in 

Changsha [1] 

Type Factor Description Type Name 

1 High F2; 

High F3 

High aggressive 

score, high 

acceleration and high 

deceleration, high 

speed, and more 

accidents 

Aggressive, 

macho, 

unsteady 

2 Low F2; 

Low F3; 

Low F4 

Low aggressive score, 

short driving 

experience, low 

acceleration at all 

kinds of speed, low 

deceleration at high 

speed, and more 

accidents 

Conservative, 

cautious, 

novice 

3 High F1; 

High F4 

Experienced, high 

acceleration and 

deceleration at low 

speed, more offences 

registered 

Professional, 

smooth-going 

4 High F2; 

Low F3; 

High F4 

Experienced, low 

aggressive score, 

always high 

acceleration, but low 

deceleration at high 

speed, less recorded 

offences and less 

accidents 

Experienced, 

fast driving. 

Table 2 Characteristics of the DBQ and in-car test sample in 

Chengdu (The standard deviation of the scores are in brackets) 

Item  (n =28) Note 

Mean age (years) 38.04(8.74)  

Males (%)  78.6  

Professional driver (%) 16  

Mean driving experience 

in years  
8.27 (5.00)  

Enjoy driving 8.43(2.04) 

{1 = dislike;  

10 = enjoy 

very much} 

Self-estimated driving 

type  
4.82(2.36) 

{1 = very 

conservative;  

10 = very 

aggressive} 

Others-estimated driving 

type  
4.64(2.31) 

{1 = very 

conservative;  

10 = very 

aggressive} 

Self-estimated driving 

skill 
7.46(1.86) 

{1 = very 

poor;  

10 = very 

excellent} 

Drivers with offence(s) 

recorded last year (%) 
57.1  

Drivers involved in 

accident(s) in previous 5 

years (%) 

42.9  

DBQW Aggressive score

  
63.07 (12.14)  
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Table 3 Classification of the 28 participants of the car 

following test 

Type Description Number Percent 

1 
Aggressive, macho, 

unsteady 
5 17.86% 

2 
Conservative, 

cautious, novice 
14 50.00% 

3 
Professional, 

smooth-going 
5 17.86% 

4 
Experienced, fast 

driving 
4 14.29% 

Total  28  

 

From further analysis it becomes clear that group 2 

represents the novice drivers, young with pleasure to drive. 

Both type 2 and 4 have few recorded offenses. In the group 

of type 3 there was one driver who was involved in 4 

accidents, the others 0 or 1. Driver type 4 has the lowest 

aggressiveness score.  

3. In-car test data collection  

The driving patterns of these 28 drivers were measured 

while they were driving as leader-follower pairs in two 

consecutive driving cars. Test trips were made on a track in 

the city of Chengdu by drivers using their own ordinary 

passenger car. The length of the track is 8.390 km (5.25 mi) 

and is shown in Fig. 1; the track consisted of ordinary urban 

roads with 22 signalized intersections and the test trips were 

executed in normal traffic conditions. The maximum speed is 

50 km/h. The two drivers of each pair were asked to follow 

each other in the way as they normally would do. The roles 

of the driver and follower were interchanged resulting in 56 

test drives with duration of on the average 1840 seconds each. 

This results in more than 51500 observations.  

 

The data were obtained with portable GPS devices 

(Garmin 64S) installed in each car. The position and speed 

were registered with 1 Hz frequency. Other researchers, e.g. 

Song et al. [21][22][23] and Constantinescu [10] have 

collected trajectory data for car-following model calibration 

and driver classification using the same observation method 

with satisfactory results.  

The accuracy of the GPS is determined with the method 

which is also applied by Ser et al. [24]. The GPS device was 

placed for a longer time on the same place and the positions 

were registered once per second. The standard deviation of 

the position is 1.4 m for the north-south direction and 1.29 m 

for the east-west direction, and the 95-percentile of the 

distance to the mean position was 3.17 m (see Fig. 2)  

 

 

Fig. 2. Example of histogram of position measured with the 

GPS on a fixed position 

The changes in position between two measurements 

can be interpreted as wrongly measured speeds. These errors 

were not relevant because 95% of these erroneous speeds 

were less than 0.09 m/s.  

The speed measurements by the GPS device were 

tested by a car driving on a flat, straight road using cruise 

control with a speed of 100 km/h (27.8 m/s, 62.5 mi/h). The 

standard deviation of the measured speeds was 0.094 m/s 

(0.33 km/h, 0.21 mi/h), and 95% of the speeds were within a 

range of 0.37 m/s (1.33 km/h, 0.83 mi/h). Accelerations have 

a standard deviation of 0.11 m/s2. These two tests showed 

that the GPS equipment has acceptable accuracy and can 

determine the position of the cars within 3 m in 95 % of the 

measurements.  

Another test was made by measuring the distance 

between two GPS receivers placed in a car on a distance of 

3.6 m. After the initial phase (10 minutes) the measured 

distance between the two devices remains rather constant 

with a standard deviation of the measured distances of 1.5 m 

(Fig. 3). The application of a Kalman filter reduces the 

standard deviation of the measured distances to 1.2 m. The 

difference between the speeds measured by both devices had 

a standard deviation of 0.36 km/h and 95% of the measured 

speeds differences were less than 1.07 km/h. 

 

 

Fig. 3. Measured distance between two GPS receivers in a 

car. The real distance was 3.6 m 

Fig. 1 The route of the test track in Chengdu, the lower 

left part of the route was used for detailed analysis of 

emissions and fuel consumption 
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The GPS data were collected with a frequency of 1 Hz, 

which can be considered as sufficient for a car following 

model calibration [25]. The time scale of processes that were 

studied is mainly determined by the driver reaction time 

which is in the order 1 to 2 seconds. The positions measured 

by GPS were matched to a digital road map and the errors in 

the positions were reduced by applying a Kalman filter. 

Situations that another car merged between the leading and 

the following car were eliminated from the observations. The 

same was done for moments that the following car didn’t 

drive on the same lane as the leading vehicle. We used the 

resulting positions to create the vehicle trajectory and to 

determine the number of stops and waiting time for each test 

trip. 

4. Driver style specific emissions and fuel 
consumption  

From the GPS measurements the trajectories are 

determined. Fig. 4 shows an example of the trajectories of a 

leader and a following car. From the trajectories the free 

driving speed, stops, acceleration and deceleration can be 

determined. In total 56 trajectories were analysed. The first 

analysis of the trajectories was made to determine whether 

driving style has an influence on fuel consumption and the 

emission of air pollution. 

 

Fig. 4 . Trajectories of a leading (blue) and a following car 

(red, dashed) on the route shown in Fig. 1 

Emissions and fuel consumption of single vehicles can 

be measured directly by Portable Emissions Monitoring 

Systems (PEMs) and fuel flow meters. Alternatively, one can 

use a model to estimate these quantities from the 

characteristic of the car, the road and the driving pattern.  

Several models to estimate emissions have been 

developed (e.g. [26], [27], [28], and [29]). The US 

Environmental Protection Agency [30] has developed 

MOBILE6 model for this purpose. The model is based on 

measurements of fuel consumption and emissions of different 

cars in a laboratory environment. In 2006 the Comprehensive 

Modal Emission Model (CMEM) has become available based 

on MOBILE6, which contains a database of various motor 

vehicles. This model not only calculates emissions and fuel 

consumption in different driving conditions, but also 

simulates the effect of the age of a motor vehicle, the state of 

maintenance, ambient air temperature etc. [31]. These 

quantities are given as a function of the Vehicle Specific 

Power (VSP) which is the power that the engine should 

deliver for driving at a certain speed v and achieving an 

acceleration a. In the Comprehensive Modal Emissions 

Model (CMEM) manual a simplified formula is given. This 

formula is applicable for the most common passenger cars in 

the USA (formula 4.1 in the CMEM manual): 

 

 𝑉𝑆𝑃/𝑡𝑜𝑛 = 0.132𝑣 + 0.000302𝑣2 + 1.1𝑣 ∙ 𝑎[𝑘𝑊/𝑡𝑜𝑛] 
(1) 

Where v is the vehicle speed (in m/s) and a is the 

vehicle acceleration (in m/s2). The first term, proportional to 

v can be considered as the rolling resistance, the second one 

as the air resistance and the third one as the power needed to 

accelerate the vehicle. 

There are some other emission models common in the 

literature, such as the one developed by Jimenez-Palacios [28] 

and used by Song et al. [21][22][23]: 

 

  𝑉𝑆𝑃 = 0.132𝑣 + 1.1𝑣 ∙ 𝑎 + 0.0003202𝑣3             (2)     

 

The first two terms represent the power for rolling 

resistance and acceleration; the last term with v3 is rather 

peculiar, since the air resistance is generally proportional to 

v2.  

Because the CMEM is widely available and used by 

many researchers, we use the formula (1) for the calculation 

of the VSP and later we use the CMEM software to analyse 

emissions and fuel consumption. 

For the comparison of fuel consumption and air 

pollution emission between different drivers, we calculated 

these quantities from their measured trajectories, assuming 

that they would all drive in the same car. The calculation 

according to eq. (1) was done for every trajectory and 

averaged per driver type. The hypothesis is that different 

driver types will have different values for the VSP. Table 4 

shows the comparison between different driver types. The 

hypothesis H0 that driver type 1 has the same average VSP as 

type 2 is less probable than 1% and should be rejected, also 

the hypothesis that type 1 and 3 have the same VSP is less 

probable than 1% and for the comparison between type 1 and 

4 the probability that the VSP values are the same is less than 

1%. The difference between driver type 3 and driver type 4 is 

significant at P<1%. Driver type 2, 3 and 4 are not 

significantly different from each other [32]. 

It is noteworthy that this global analysis does not look 

in detail into the different characteristics of the trajectories. 

Even though the routes taken by all participants are the same, 

there might be differences in number of stops and queues per 

trip. This has been analysed in more detail for the trajectories 

on the South branch of the test route (see Fig. 1) with 4 

signalized intersections. The number of stops, delay, waiting 

time are estimated from the trajectories. The emission of 

hydrocarbons [HC], carbon dioxide [CO2] and nitrogen 

monoxide and dioxide [NOx] and fuel consumption per stop 

are estimated from the trajectories and the CMEM. It is 

obvious in these results that there are significant differences 

in the additional air pollution emission and fuel consumption 

from one stop for different types of drivers. The differences 

between driver types 2, 3 and 4 are too small to be significant. 
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Table 4 Comparison of the average Vehicle Specific Power 

for 56 trips and the standard deviations 

Driver 

type  

Number of 

measured trips 

Mean VSP, 

[kW/ton/m] 

Standard 

deviation 

[kW/ton/m] 

1 10 1.632 0.027 

2 28 1.571 0.026 

3 10 1.598 0.055 

4 8 1.571 0.026 

 

Fig. 5 shows the relation between the fuel 

consumption and the number of stops for different types of 

driver. Every stop is a sequence of deceleration and 

acceleration and the acceleration requires more fuel than 

driving at constant speed. The fuel consumption Fci for driver 

type i as a function of stops on a journey can be written as 

Fci (ns) = Fci (0) + ai ∙ns                                          (3) 

Where Fci (0) is the fuel consumption for the journey 

without stops for driver type i; ai is the additional fuel 

consumption per stop for driver type i and ns is the number of 

stops. 

The linear relations between fuel consumption and 

stops are shown in Fig. 5. Each point in the graph represents 

a trip with the fuel consumption calculated for the trip and the 

number of stops made. Apparently, the trajectories of driver 

type 4 do not make difference between driving at a constant 

speed and making a stop. Table 5 shows also the regression 

coefficients for the influence of stops on carbon dioxide CO2, 

carbon monoxide CO, unburned fuel HC, and nitrogen oxides 

NOx. The trajectories of driver type 4 do not show any 

significant influence of stops on emissions. Driver 

trajectories of driver type 3 don’t show a relation between 

stops and HC and NOx emissions. 

 

Fig. 5. Fuel consumption as a linear function of the number 

of stops for the four driver types 

 

Table 5 Estimated fuel/ emission per stop for each driver type 

(Between brackets the standard deviation) 

Besides, the cruise speed differs per driver type (see 

Table 6), where driver type 1 has the highest cruise speed and 

type 2 has the lowest. The t-test of the differences in cruise 

speed shows that there is no significant difference between 

type 1 and 3, and between type 4 and 3. 

Table 6 Cruise speed per driver type 

Driver 

class 

Cruise speed 

(km/h) 

Standard 

deviation 

(km/h) 

Type 1 55.8 3.3 

Type 2 48.2 3.5 

Type 3 54.0 4.6 

Type 4 51.1 2.9 

 

This analysis to the trajectories shows that there are 

differences between drivers of different types. The 

differences are not always statistically significant. That is due 

to the limited number of test drivers and possibly because the 

differences are small. A more detailed analysis is necessary 

to find out in what way the driving style has an influence on 

the characteristics of trajectories and the fuel consumption 

and air pollution emissions. This has been done by analysing 

the car following behaviour of the different kind of drivers in 

more detail in the following section. From the observed 

trajectories some flow characteristics and parameters of a car 

following model are calibrated for each driver type separately. 

5. Trajectory analysis 

The differences between the different driver types with 

respect to the emissions and fuel consumption are visible and 

for a part statistically significant. Due to the small sample of 

drivers, not all differences are statistically significant. In the 

previous section we analysed the trajectories without 

considering that they are obtained pairwise. In this section we 

analyse trajectory pairs in order to find out the specific car 

following features. 

First of all, we analyse the space between cars at a stop 

and the time headway between two cars after a stop. That time 

headway is an indicator for the saturation flow [33]. The 

questions to be answered is whether the saturation flows that 

can be realized and the queueing distance at a stop depend on 

the type of drivers. Fig. 6 shows the typical trajectories of two 

cars. The distance AX between the cars when they stop behind 

each other is determined as the mean distance during the time 

that the vehicles have a speed close to zero (to take into 

account that speeds are not fully accurately measured). 

Speeds less than 0.1 m/s are considered as zero speed. 

The distance of two cars when stopped is given in 

Table 7. The table shows also the time headway between the 

leading and the following vehicle after they drive again after 

a stop. The saturation flow at intersections is inversely 

proportional to this time headway [33][32]. 
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Fuel (grams/stop) 18.8 (7.0) 16.5 (2.1) 16.4 (3.5) Not sig. 

HC (grams/stop) 0.07 (0.03) 0.02 (0.003) Not sign. Not sig. 

CO2 (grams/stop) 52.6 (21.7) 51.7 (6.6) 53.7 (10.8) Not sig. 

NOx(grams/stop) 0.09 (0.03) 0.03 (0.005) Not sig. Not sig. 
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Fig. 6. Example of trajectories of a pair of vehicles stopping, 

waiting and accelerating. 

Table 7 Measured distances between vehicles when stopped 

and time headway after a stop 

Type Distance 

AX 

[m] 

St.dev. 

[m] 

Error 

[m] 

Headway 

[s] 

Error 

[s] 

1 8.08 2.79 0.51 2.87 0.33 

2 8.99 2.68 0.28 2.86 0.55 

3 10.42 2.42 0.55 1.94 0.21 

4 8.81 1.29 0.65 2.09 0.18 

 

The distance between two vehicles (including the 

length of the leading vehicle which is 4.5 m) differs 

significantly at p < 5% comparing driver type 1 versus type 3, 

and type 2 versus type 3. The differences between type 1 

versus type 2 and type 3 versus type 4 are significant at the 

level p < 10%. The differences in (time) headway are 

significant (at p < 5% level) between type 1 and type 3, as 

well as between type 1 and type 4. The differences are 

significant at 10% level between type 2 and type 3, and 

between type 2 and type 4. If we take the saturation flow at 

intersections to be inversely proportional to the time headway, 

this result gives evidence that the saturation flows for type 1 

and 2 are much lower than the standard saturation flow (1800 

veh/h) which is observed in most Western countries [33]. 

This finding confirms the analysis of Li et al. [34] who found 

that saturation flows at intersections in some Chinese cities 

are about 30% lower than the values observed on some 

intersections in the Netherlands. Both the macho (type1) and 

novice drivers (type 2) have these remarkable longer 

headways, while the experienced and smoothly driving types 

have headways and consequently a saturation flow that are 

similar to what is measured in most Western countries.  

The saturation flow is an important factor for traffic 

control. A low saturation flow gives a low capacity of 

intersections which could lead to congestion. Congestion 

increases the fuel consumption for all drivers. Therefore, the 

low saturation flow has a collective, not an individual effect. 

Most simulation programs don’t have the saturation flow as a 

model specification parameter, but the saturation flow is the 

result of the driver model and a correct saturation flow is 

often used as target for calibration [12], [18]. 

In the characteristics of drivers, the acceleration and 

deceleration at different speeds are distinguishing features, as 

described in Table 1. For the four types of the drivers the 

relation between speeds and maximum acceleration and 

deceleration were determined from the 95-percentile of 

accelerations and decelerations for speeds in bins of 1 km/h. 

In the Stimulus-Response car following models the 

assumption is that the acceleration and deceleration of a 

following vehicle depends on the speed difference and the 

distance between the leader and the following vehicle [36]. In 

the next section we calibrate the Wiedemann74 model, where 

the accelerations and decelerations are assumed to depend on 

the general status of the following vehicle (e.g. free driving, 

braking, accelerating) and the characteristic of the driver 

behaviour, i.e. the maximum accelerations and decelerations. 

We determine these characteristics according to the measured 

trajectories. Fig. 7 shows the relation graphically and the 

linear regression line for driver type 1. The common 

assumption is that the acceleration is the highest at low speeds. 

In Fig. 7, it is visible that this assumption is not completely 

realistic since the accelerations do not fit the regression line 

well at speeds lower that 5 km/h [17]. Still the regression has 

significant coefficients for all driver types, as shown in Table 

8 and Table 9. The regression relation is given by:  

 

                   𝑏𝑚𝑎𝑥 =  𝑝1𝑣 + 𝑝2                                (4) 

     

Where p1 and p2 are regression coefficients and bmax is the 

maximum acceleration desired by a driver (approximated by 

the 95 percentile of the observed accelerations). In the same 

way the relation between the maximum deceleration and the 

speed is determined. 

 

Fig. 7. Relation between speed and 95 percentiles of the 

acceleration for driver type 1 

Table 8 Regression coefficients and their standard deviations 

of the maximum accelerations bmax depending on the speed v 

bmax=p1*v+p2 R2 

type p1 (standard dev) p2 (standard dev) 

1 -0.011 (0.002) 1.52 (0.06) 0.42 

2 -0.016 (0.001) 1.47 (0.04) 0.78 

3 -0.016 (0.001) 1.64 (0.07) 0.75 

4 -0.019 (0.001) 1.62 (0.04) 0.86 

Table 9 Regression coefficients between speed v and 

maximum deceleration bmin 

bmin=p1*v+p2 R2 

type p1 (standard dev) p2 (standard dev)  

1 0.010 (0.002) -1.56 (0.08) 0.259 

2 0.008 (0.002) -1.35 (0.07) 0.251 

3 0.010 (0.02) -1.59 (0.09) 0.275 

4 0.006 (0.002) -1.28 (0.07) 0.143 
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The regression coefficients for deceleration are all 

significant, but the difference between driver types is not 

significant.  

The conclusion from the analysis of trajectories for the 

different driver types is that there is evidence that driver type 

has a significant effect on headways, stopping distances and 

acceleration characteristics. The next analysis of the 

trajectories is on the question which parameters of a car 

following model depend on the driver type. We have chosen 

to analyse the Wiedemann 74 model and evaluate the 

performance of the model with respect to emissions and fuel 

consumption. 

6. Calibration of Wiedemann-74 driving model 

The next question is whether the classification of 

drivers is also relevant with respect to the car following 

simulation. Several car following models have been 

developed and published. Brackstone and McDonalds [35] 

gave an overview 

. Car following models can be classified into five categories: 

• Safety distance models; 

• Stimulus-reaction model or Gazis, Herman and 

Potts (GHP) model [36] 

• Action point models (Wiedemann [37], 

Fritzsche[38]); 

• Fuzzy logic/rule-based models [39], 

• Collision avoidance models, Intelligent driving 

model [40]. 

The Wiedemann-74 is used as one of the car-following 

models in the VISSIM microsimulation program. The model 

assumes that a driver adapts his speed when he has the 

perception that he drives too close to or too far from the 

leading vehicle, or when the speed of the follower is higher 

than his own speed or when he is approaching the leading 

vehicle too much [37] 

 

 

Fig. 8. Representation of car following behaviour 

In the driver model of Wiedemann the following driver 

will adapt his speed in order to get a safe and comfortable 

position. Furthermore, the model assumes that drivers are not 

always busy with their driving task. In non-emergency 

situations they may not always adapt their speeds directly in 

response to the car in front. In the diagrams of Fig. 8 and Fig. 

9 one can observe indeed points in the diagram where the 

driver changes his (relative) speed, but also areas where he 

seems to adapt his speed rather randomly, especially when the 

speed difference is small and the distance is sufficiently large. 

Wiedemann [37] introduced certain areas with specific 

behaviour. In Fig. 9 these areas are shown in the background 

with an example of a real trajectory as observed. The regions 

are shown in colour with the transition states: AX stands for 

the distance at stops; BX stands for the distance at which a 

driver has to stop for a stopped vehicle in front; CLDV is the 

critical value after which the driver has to decelerate; SDV is 

where the driver becomes aware of the fact that he is 

approaching the vehicle in front; OPDV is where the driver 

decides to accelerate because the vehicle in front is moving 

forwards and SDX is the distance above which the driver does 

not see a reason to react on the vehicle in front because it is 

on a safe distance while under SDX and with small differences 

in speed the driver can change speeds without caring about 

the distance and differences in speeds. 

A first observation of this model of the driver 

behaviour is that it is rather vague. Both the descriptions of 

the actions in the different regions of the ∆(speed) – distance 

space as in the actions, there is a lot of vagueness. As we can 

see in the real trajectories in Fig. 9 the driver doesn’t take 

actions precisely in a certain area. Wiedemann considered 

this vagueness in the model by making the boundaries 

between the regions stochastic. The consequence is that a 

driver at a certain point in the diagram would react as being 

in the slow-reaction area, while on a next moment he would 

be – on the same coordinates – in the area where he has to 

decelerate. This apparent stochasticity in the driver behaviour 

makes it difficult to reproduce vehicle trajectories precisely 

in a simulation. Especially the accelerations calculated from 

a simulation program have remarkable differences from the 

observed accelerations at many moments. Still, a traffic 

simulation model can be calibrated by minimizing the Root 

Mean Square Error (RMSE) between observed and simulated 

speeds or accelerations. Several other methods are suitable 

for the calibration of car following models based on trajectory 

data (e.g. [41], [42]).  For instance, we can use a macroscopic 

characteristic of trips namely fuel consumption (e.g. [12]) as 

the calibration objective.  

 

 

Fig. 9.  Driver behaviour areas 

Fig. 9 illustrates the different areas in the space of 

speed difference and distance between the leader and the 

following car. In the upper part of the diagram the distance 

between the cars is so large that the following driver can drive 

at his desired speed. In the lowest part of the diagram the 

distances between the cars is delimited by AX which is the 
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distance at zero speed or the queuing distance. In the right 

half of the diagram the following car is approaching the leader.  

If the distance is really short, e.g. shorter than BX, the 

following car has to brake in order to avoid a collision. This 

braking is assumed to be done with the maximum 

deceleration. In the diagram there is the area between BX and 

the boundary CLDV (Closing Difference in Velocity) where 

the distance is short and the following car is still approaching 

the leader. Then the follower has to decelerate quickly. In the 

area between CLDV and SDV the reaction doesn’t have to be 

too fast: the follower should know that he should reduce his 

speed.  

On the other half of the graph the situation is that the 

leader is increasing the distance by accelerating. The follower 

will accelerate and try to reduce the speed difference and keep 

close to the leader. In the middle area delimited by OPDV 

(Opening Difference in Velocity), SDX and SDV the follower 

can adjust his speed and distance gradually, without the need 

to modify his position and speed with respect to the leader. 

Changes in speed and distance are rather random. 

 

Table 10 Definition of the model parameters for the 

boundaries of the Wiedemann 74 model 

In Fig. 9 the real trajectories are not exactly according 

to sharp boundaries. Drivers may have different behaviour in 

two situations with the same physical condition. Wiedemann 

introduced random terms in the boundary formulas to deal 

with the diversity in behaviour. 

Table 10 provides the expressions for the boundaries of 

the Wiedemann 74 model. 

The quantities NRND, RND1n, and NRD2n are 

random numbers, specific for a driver. These random 

numbers represent the variation of behaviour between drivers. 

The variation of behaviour of one driver who reacts 

differently at different moments is not represented in the 

Wiedemann model. Therefore, the calibration of the model 

for one single driver can be done while the random terms are 

ignored [17].  

Apart from the model parameters described in Table 10 

the acceleration and deceleration behaviour of the drivers has 

to be specified when they are in one of the four areas. 

Wiedemann assumes that the maximum acceleration and 

deceleration depends linearly on the speed. When a driver 

comes in the free-driving region he will accelerate with 

acceleration rate bmax according to  

 

    𝑏𝑚𝑎𝑥 = 𝐵𝑀𝐴𝑋𝑚𝑢𝑙𝑡 ∗ (𝑣𝑚𝑎𝑥 − 𝑣 ∗ 𝐹𝑎𝑐𝑡𝑜𝑟𝑉)                (5) 

 

where BMAXmult and FactorV are calibration parameters and 

vmax is the maximum speed. 

When the driver in the free-driving region passes the 

CDV threshold, his deceleration will be 

 

         𝑏𝑛 =
1

2
∗

(∆𝑣)2

𝐴𝐵𝑋−(∆𝑥−𝐿𝑛−1)
+ 𝑏𝑛−1              (6) 

 

where ABX is a calibration parameter and bn-1 is the 

deceleration rate of the leading vehicle. In the emergency 

braking area (distance ∆x less that BX) the deceleration is 

 

𝑏𝑛
′ =

1

2
∗

(∆𝑣)2

𝐴𝐵𝑋−(∆𝑥−𝐿𝑛−1)
+ 𝑏𝑛−1 + 𝑏𝑚𝑖𝑛 ∗

𝐴𝐵𝑋−(∆𝑥−𝐿𝑛−1)

𝐵𝑋
  (7) 

 

where bmin is the maximum deceleration of the driver. 

In the region of the unconscious speed changes (speed 

differences between OPDV and SDV), the following driver 

accelerates with a rate bnul when he approaches OPDV, and 

decelerates with -bnul when he approaches SDV.  

The Wiedemann car following model has a very large 

number of parameters. Most of them are shown in Table 11. 

For most purposes it is not necessary to calibrate all 

parameters ([12] and [18]). Some parameters have a small, 

even negligible, influence on saturation flows, fuel 

consumption, and emissions. 

Table 11 Parameters for the Wiedemann 74 car following 

model 

Parameter Default value Suitable value for the four 

driver types 

Ln-1 4.5 m 4.5 m 

AXadd 1.25 m 3.58 / 3.49 / 5.94 / 4.31 

(Table 7) 

AXmult 2.5 m 2.79 / 2.68 / 2.42 / 1.29 

(Table 7) 

BXadd 2.0 m - 

BXmult 1.0 m - 

EXadd 1.5 m - 

EXmult 0.55 m - 

CXconst 40 40 

CLDV - - 

OPVadd 1.5 - 

OPVmult 1.5 - 

BNUL 0.1 - 

BMAX 3.5-3.5v/40 - 

vmax - 60 km/h 

vdes 80 km/h Cruise speed 55.8 / 48.2 / 

54.0 / 51.1 km/h 

BMINadd -20+1.5v/60 - 

Model parameters Expressions Explanations 

AX Ln-1+AXadd+RND1n*AXmult AXadd and AXmult are parameters to be calibrated, Ln-1 is 

length of the leading car 

BX(v) (BXadd+BXmult*RND1n) *v0.5 BXadd and BXmult are parameters to be calibrated 

v =min (vn ,vn-1) 

SDX AX+EX*BX EX = EXadd+EXmult*(NRND-RND2n), EXadd and EXmult 

are calibration parameters 

SDV(∆x) ((∆x-Ln-1-AX)/CX)2 CX = CXconst*(CXadd+CXmult*(RND1n+RND2n)) 

CXconst, CXadd and CXmult are calibration parameters 

CLDV ((∆x-Ln-1-AX)/CX2)2 CX2 is a calibration parameter 

OPDV CLDV*(-OPDVadd-OPDVmult*NRND) OPDVadd and OPDVmult are calibration parameters 
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The parameters that determine the boundaries between 

the different areas in Fig. 9 are AX, ABX, CLDV, SDV, SDX, 

and OPDV. In the previous section the distance at a stop, AX,  

is directly calibrated from the trajectories. The cruise speed 

and acceleration and deceleration behaviour depending on the 

speed have also been calibrated directly from the trajectories. 

These model parameters depend significantly on the driver 

type. 

The parameter SDX is determined by BXadd, BXmult, 

EXadd, and EXmult and AX (which has been determined 

directly). The other possibly important parameter is CX which 

determines the transition SDV between free driving and 

closing in / deceleration. These parameters are difficult to 

calibrate directly from trajectories.  

For the calibration of the model parameters CX and 

SDX we use the Vehicle Specific Power (VSP) of the 

following vehicles as the characteristic of a trip and try to 

minimize the difference between the simulated and observed 

VSP. This is analogous to the method used by Song et al. [23] 

– apart from the facts that they don’t consider a leading 

vehicle and do not distinguish different driver types and they 

apply the formula (2) instead of the CMEM formula (1). 

Some authors use random search methods to calibrate 

all parameters of the Wiedemann model simultaneously (e.g. 

[43] and [17]). Since we already calibrated some parameters 

directly from trajectories and also wanted to calculate the 

estimation error of the calibrated parameters, we have 

calibrated two model parameters one by one. Interaction 

effects have been negligible since the estimated value of the 

first parameter did not differ from the default value. By this 

procedure we could determine the significance of the 

differences in the estimation of the calibrated parameters 

between the different driver types as illustrated in Fig. 10. 

The calibration of SDV was done by searching for the 

best fit of the trip VSP by modifying these parameters. The 

Root Mean Square Error (RMSE) of the simulated versus the 

observed VSP is calculated. 

 

        RMSE = √
∑ (𝑆𝑖−𝑇𝑖)2𝑛

𝑖=1

𝑛
                                       (8) 

 
 𝑆𝑖   is the simulated value of VSP at time step i and 𝑇𝑖is the 

VSP calculated from the observed speeds and accelerations; 

n is the number of time steps of the observations.  The 

simulation is done by a Matlab simulation based on the 

specification of Wiedemann, where parameters are varied. 

The parameters are optimized with the objective of 

minimizing the RMSE. This was done for the observations 

for each driver types. 

Table 10 describes the relation between SDV and CX. 

Varying CX shows that this parameter has a small influence 

on the RMSE. The difference between the values found by 

the optimization and the default value 40 is not significant as 

shown in Table 12. The differences between the various 

driver types is not significant as well. 

Table 12 The optimum value of CX for different driver types 

 type 1 type 2 type 3 type 4 

Optimum value (m) 34.25 41.16 50.65 39.84 

Standard deviation (m) 65.39 19.33 120.36 28.92 

 

The influence of SDX on the trip VSP is clearer: the 

simulated VSPs becomes closer to the observed ones for 

optimum values of SDX. Table 13 shows the values that have 

been found for the different driver types. They appear to 

differ significantly for some cases. Driver types 2 and 4 have 

values that are not significantly different, while differences 

between other types (e.g., type 1 and 2, type 1 and 3, type 1 

and 4, type 2 and 3, type 3 and 4) are significant. 

Table 13 Calibrated values for SDX 

 Type 1 Type 2 Type 3 Type 4 

 Optimum value (m) 77.62  65.42  85.63  65.69  

Standard deviation(m) 
17.57  11.59  13.60  10.11  

 

 

Fig. 10. Result of VSP-RMSE after calibration of SDX 

Fig. 11 shows the probability distribution of the 

measured VSP and VISSIM simulated VSP with calibrated 

SDX, AX, and acceleration / deceleration parameters. The 

variation of the other boundaries ABX, CLDV and OPDV 

shows that they don’t have a significant influence on the VSP. 

 

 

Fig. 11.  Distribution of the measured and simulated VSP for 

driver type 2, after calibration of SDX, AX, and acceleration 

/ deceleration parameters 

7. Conclusions and discussion 

Drivers have their characteristics in driving style and 

attitude. No driver is the same but some drivers are more 

similar than others (analogue to the famous statement of 

Orwell [44]: “All animals are equal but some animals are 

more equal than others”). Drivers with similar characteristics 

can be united in homogeneous groups. The drivers are 
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classified in four types (from type 1 to type 4 as discussed in 

section 2) based on their self-assessment and acceleration 

behaviour. This was done for two groups of Chinese drivers 

in two cities, Changsha and Chengdu. The results show that 

the characteristics of drivers of these two cities are similar.  

The group drivers that were studied consists of 28 

persons. The numbers of drivers per type were rather small. 

Only the number of the cautious type 2 drivers is larger (14 

persons). The small number of persons per driver type made 

it necessary to be very careful with the statistics of the 

observed characteristics. Several differences that we found 

are not sufficiently significant to distinguish between driver 

types. Important, significant differences between the driver 

types were found for  

• fuel consumption and emissions,  

• cruise speed, 

• acceleration characteristics, 

• distance in a queue,  

• time headways when accelerating from the queue, and  

• the transition distance that drivers start to accelerate. 

The fuel consumption and emissions for stops are 

lowest for the cautious type 2 drivers, while for type 4 drivers 

no significant relation could be found between fuel 

consumption / emissions and the number of stops. The cruise 

speed of cautious drivers type 2 is about 6 to 12% lower than 

that of drivers of the other types.  

The time headways for type 3 and 4 drivers are 

significantly lower than those for other driver types and 

similar to the headways observed in the Netherlands. The 

time headway of type 1 and type 2 drivers (aggressive and 

cautious drivers) is about 40% higher than the headway of 2 

seconds that is commonly used in capacity calculations for 

signalized intersections. This is a confirmation of the earlier 

finding that saturation flows at several intersections in 

Chinese cities are much lower than the saturation flows in 

Western countries. The reason behind this difference is 

probably that experienced and smooth drivers are better able 

to predict what a driver in front will do so that they can better 

anticipate that and drive with a shorter headway. 

For the dependence of the maximum acceleration on 

the speed, it appears that a type 1 driver does not accelerate 

much less when driving at high speeds than at low speeds. 

Drivers of type 4 have a reduced acceleration rate at higher 

speeds. Since in the VSP model (equation 1) the third term 

contains the product of speed and acceleration, the 

acceleration strategy of driver type 4 is more fuel saving. 

Some parameters of the Wiedemann 74 model have 

been calibrated and most of them are different for the 

different types of drivers. This makes it obvious that 

microscopic simulation programs of traffic should have the 

possibility to represent different types of drivers and it should 

be possible to compose the traffic as a mixture of different 

kinds of drivers. Specifying each driver type can be done as 

described in several publications, e.g. [12][18][29]. 

This experiment was executed in China with Chinese 

drivers. The group of novice drivers (with less than 3 years 

driving experience) is much higher in China than those in 

most countries with a longer history of motorization [1]. 

Furthermore, the examination for a driver license in China 

concentrates on the skills to operate and control the car 

instead of the skills to drive in traffic. Novice drivers feel 

themselves uncertain and hesitating when they have to drive 

in real traffic. That can be observed in the result for driver 

type 2. The development of the driver population in the future 

will probably change the quantitative results shown in the 

paper. Still the main conclusions will hold: drivers with 

different characteristics have to be modelled with different 

models and their performance on the road will be different. 

The direct practical application of this research for the 

situation in China is that the Chinese road authorities should 

reconsider the requirements for a driver license and include a 

test of driving in real traffic. That will reduce the number of 

type 2 drivers who give a bad traffic performance. 
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