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A variety of quantum systems exhibit Weyl points in their spectra where two bands cross in a point of three-
dimensional parameter space with conical dispersion in the vicinity of the point. We consider theoretically the
soft constraint regime where the parameters are dynamical quantum variables. We have shown that in general
the soft constraints, in the quasiclassical limit, result in Weyl disks where two states are (almost) degenerate in
a finite two-dimensional region of the three-dimensional parameter space. We provide concrete calculations for
two setups: Weyl point in a four-terminal superconducting structure and a Weyl exciton, i.e., a bound state of

Weyl electron and a massive hole.
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The Weyl equation is written to describe the propagation of
massless fermions [1,2]. The 2 x 2 Weyl Hamiltonian is linear
in the particle momenta k and has a conical spectrum with
degeneracy at k = 0. The Weyl equation describes neutrini if
their masses can be neglected [3].

A variety of quantum systems exhibit similar spectral
singularities in the vicinity of crossing of two bands in three-
dimensional (3D) parameter space. The degeneracy points are
referred to as Weyl points (WP). In solid-state physics, the
parameter space is the Brillouin zone of a crystal lattice and
Weyl physics is an active subject in experimental and theoreti-
cal research. WP are predicted theoretically in Refs. [4-6] and
have been recently observed experimentally [7,8]. For reviews
on materials hosting WPs, see Refs. [9,10]. In the case of poly-
atomic molecules, the parameter space for Born-Oppenheimer
energy levels is the positions of the nuclei; the existence of
points of degeneracy is demonstrated in Refs. [11-13]. For
molecular nanomagnets, the parameter space is the direction
and magnitude of the external magnetic field; WPs result in
resonances in tunneling probability [14,15]. In the context of
quantum transport, a setup with a WP in the space of two
gate voltages and a superconducting phases has been proposed
to realize a robust quantized current source [16]. WPs have
been recently predicted [17,18] in the spectrum of Andreev
bound states (ABS) [19] in four terminal superconducting
nanostructures where three independent phases form 3D pa-
rameter space. Quantized topological transconductance has
been predicted. Similarly, WP can be also realized in three
terminal nanostructures [20] and other systems [21,22].

It seems a relevant approximation to treat the parameters
forming the space where the WP occurs as fixed numbers
(hard constraint). However, a much more realistic and general
situation is where the parameters are dynamical quantum
variables, which can be the subject of fluctuations and also
backaction from the system hosting the WP. To describe this
situation of a soft constraint, one would, e.g., promote a
parameter x to an operator £, add an energy term A(X — x¢)?
that attempts to constrain X to x( at sufficiently large A, and
add a Hamiltonian accounting for the dynamics of X.

In this Rapid Communication, we demonstrate the drastic
consequences of a soft constraint in the vicinity of a WP.
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The degeneracy of two bands that has been restricted to a
singular point for a hard constraint, in the quasiclassical limit
spreads over to a finite two-dimensional region that we term
Weyl disk. Quantum effects lift the degeneracy at the disk,
resulting in strong anisotropy of the conical spectrum. We
assess the situation in detail and provide detailed calculation
of the quantum spectrum for two very different and physically
interesting setups. The first setup is a multiterminal super-
conducting nanostructure embedded in a linear circuit. The
second setup is an exemplary band structure where a Weyl
exciton consisting of a Weyl electron and a massive hole can
be formed.

Let us shortly stress the relevance of the setup and the
concrete significance of our results; more details are given in
Ref. [23]. The superconducting nanonstructures (with WPs)
can be easily fabricated and implemented as nanodevices,
and quantum manipulation in similar devices has been ex-
perimentally verified [24]. The Weyl disk regime described
provides extra opportunities for quantum computing owing to
the degeneracy of the quantum states, such degeneracies have
been the basis of holonomic [25,26] and topological quantum
computing [27-29]. We find practical candidates for Weyl
excitons in materials such as graphene, germanene, TaAs, TaP,
and NbAs. We predict a unique property of Weyl excitons: In
the Weyl disk regime, they can only move in one direction.
This can be observed in a simple experiment we describe [23].

Let us describe the setups in detail. As shown in Ref. [17],
the ABS spectrum of a four-terminal superconducting nanos-
tructure can have WPs where ABS energy reaches zero (rel-
ative to Fermi level). This implies that the ground state of
the nanostructure is close to the first excited singlet state. We
count the phases from the WP position. The effective Hamilto-
nian in the vicinity of the WP reads Awp = (h /2€)0(pba
where &, denote the Pauli matrices in the space of ground
and excited singlet states [17]. The soft constraint situation
occurs naturally if one takes into account self-inductances of
the superconducting leads and associated capacitances (see
Fig. 1). This promotes the superconducting phases at the
nanostructure to dynamical variables ¢,, which are softly
constrained to the superconducting phases ¢;, fixed by the
magnetic fluxes in the corresponding superconducting loops.

©2018 American Physical Society
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FIG. 1. The two setups under consideration. Left: the four-
terminal superconducting nanostructure embedded in a linear circuit
made of small inductances L;, 3 and capacitances C; 3. Right: a
model band structure that supports Weyl excitons with energy ~A,,
that are bound states of a Weyl electron and a massive hole, with the
hole mass providing a soft constraint for the electron momentum.

The full Hamiltonian encompasses inductive and capacitive
energy and reads [17,30,31]

P ij2e)? . 2¢N,)?
Hﬂm+2FLQ@_mu%%q,m

Here the number operators N, are canonically conjugate
variables to the phases &n: []\7,,, $m] = —i8,n [19]. Here the
inductive energy provides the soft constraint, and the capaci-
tive energy is responsible for the quantum fluctuations of the
phases.

For a complementary example with very different physical
content, let us consider a solid exemplary band structure
[Fig. 1(b)]. It comprises an electron band with a WP and
a parabolic valence band. To soft constrain the momentum
of the Weyl electron, let us tie it to a massive hole coming
from the valence band. The bond is naturally provided by
the Coulomb interaction and the resulting particle is a sort of
exciton, described by the Hamiltonian

T)2 2
— P ) &
” ;
2m? dmegr

A A 14
Hex = Aex + HWP + Z ( “ (2)
n

where we count all momenta from the quasimomentum of the
Weyl point, Hyp = Uy Pun64, Pn are the components of the
quasimomentum of the Weyl electron, p! are those of the total
exciton quasimomentum, m, are the (possibly anisotropic)
hole masses, and the last term presents Coulomb attraction
between electron and hole, with r = |r| being the distance
between these two particles.

Let us note the close similarity: Hwp and the soft constraint
term in Eq. (2) are brought to the form in Eq. (1) with the
replacements p, — P¢,, Pv,, — (h/2e)l,q, (P2/2m;§) —
(h/2e)?/2L,, where P is a constant with momentum dimen-
sion. Since r is canonically conjugate to p, the Coulomb
energy plays a role similar to the capacitive energy in the
Hamiltonian (1), providing the quantum fluctuations of p.

For both setups, we evaluate the energies of the discrete
quantum states, analyzing their dependence on the parame-
ters, either ¢’ or p?.

Systems described by the Hamiltonians (1) and (2), de-
pending on the parameters, can be in two regimes: the qua-
siclassical and the opposite, deeply quantum one.

To understand the regimes, let us consider the one-
dimensional version of Eq. (1). It is exactly solvable, since
the quasispin part has a single spin component, which can
be diagonalized simultaneously with the Hamiltonian. For
the spin eigenvalue o = +£1, the kinetic part of the Hamilto-
nian is (%/2e)*(1/2L)(¢ — ¢ + o¢o)* — L1%/2, with ¢y =
(2e/R)IL. At ¢" =0, it gives rise to two degenerate min-
ima separated by 2@, with an energy barrier Ez = LI?/2
between them. The Hamiltonian for both values of o is that
of a harmonic oscillator, with frequency w = 1/+/LC. The
quasiclassical parameter Q is defined as the ratio of the barrier
height and the energy quantization of the oscillators, and reads

1(Lle\* h
o=3(%) =z ®

where Z = /L/C is the characteristic impedance of the
oscillator. In Eq. (3), an estimation for the first term is ratio
of the inductance of the circuit to the typical inductance of
the nanostructure, which has to be small to provide good
confinement. However, the second term is large, estimated as
the ratio of vacuum impedance to resistance quantum ~107.
This is why the quasiclassical limit Q >> 1 is well achievable
(see detailed estimations in Ref. [23]). In a 3D case, we define
Q with respect to the maximal L, I,% (easy direction).

Similar analysis for the Hamiltonian (2) yields in one di-
mension (1D) a barrier height of Eg = m*v?/2. The parame-
ter Q is defined as the ratio of the barrier height to the ground-
state Coulomb binding energy Ej, o (€2/4mey)*m* /2h%,
yielding

o— (sz4neo>2 . @

2
€

If one estimates the Weyl velocity v with the typical Fermi ve-
locity for metals vy ~ 10°ms~!, and the dielectric constant as
€ ~ 10, Q ~ 25, the quasiclassical limit is well achievable
in solids. In a 3D case, we define Q with the parameters in the
easy direction (maximal mv?).

The deeply quantum limit @ « 1 is in fact not interesting,
since there the Weyl energy is not modified by the soft
constraint, except for trivial perturbative corrections.

In this study, we concentrate on the quasiclassical limit. We
give analytical results valid at @ > 1 and numerical results
for Q ~ 5.

In the quasiclassical regime, we neglect the fluctuations of
the phases ¢, and replace the quasispin term Hwp with one
of its eigenvalues. The matrix I, can be diagonalized by a
coordinate transformation 1,,, — 1,,6,, [23]. Then we need to
minimize

_oh | A\ (60— 9p)
Ege, = 2% ;1”2453 + <2_e> ; T (5)
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FIG. 2. The Weyl disk. Left: The region in parameter space ¢;,
(or pI') where three quasiclassical energy minima exists. The two
minima are degenerate at the disk in the plane (¢, ¢3). Right: The
quasiclassical energy spectrum in the easy direction (top) and in a
direction within the disk (bottom). The dots mark the region edges.
(The parameter choiceis L, = L/nand [, = I.)

If |¢;,| > ¢o, the minimization reproduces the two cones of
the Weyl spectrum, (o//2e)/>_, I}(¢})?. In the vicinity of
the Weyl point |¢,| ~ ¢g, the Weyl spectrum is drastically
modified (see Fig. 2). Most important, the minimization gives
two minima for o = —1 in the 3D region shown in the figure.
These two minima are precisely degenerate at a 2D Weyl disk,
which is perpendicular to the easy direction, where L,I? is
maximal (n = 1 for the easy direction). The disk is an ellipse
with dimensions (4e/Fz)(L1112 — Lmlyi)/lmy m=2,3.

In Fig. 2, we plot the energies along the easy direction
and in the plane of the disk. There is a linear dependence of
the energies in the easy direction. The second minimum for
o = —1 disappears at a critical value of ¢{. For even larger

1> the Weyl spectrum E ~ (i /2e)l 0 ¢} is seen again. If we
move along the disk, two minima remain degenerate until they
merge at the disk edge.

The same minimization applies to the Weyl exciton setup.
In this case, the lowest curves in Fig. 2 define the lower
boundary of the continuous spectrum. The bound exciton
states follow the edge at slightly lower energy, with binding
energy E;, < Ep. If we move along the disk, all bound states
remain doubly degenerate, until the edge of the disk. They
split linearly if we move in the easy direction.

This brings us to the main conclusion of the paper: In
the quasiclassical limit Q > 1, soft constraints extend the
isolated degeneracy in the WP into a finite 2D region. This
property of WP can be used for the purposes of quantum
manipulation and computation.

At large but finite values of Q, the degeneracy at the disk
is lifted, albeit the corresponding energy splittings remain
relatively small at moderate values of Q. We illustrate this
with numerical results for both setups. In Fig. 3, we plot the
full energy spectrum of the superconducting nanostructure
for Q@ = 5. Besides the ground state, the spectrum includes
the corresponding excitations in three oscillators. For com-
parison, in Fig. 3, we plot in red the quasiclassical results
from Fig. 2. Upon a small shift, the lowest curves give good
approximations for the numerical energies of the lowest states.

1.0 T T 1

Q%

TS \
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FIG. 3. The energy spectrum of the circuit shown in Fig. 1
for @ =5 in the easy direction (left panel) and in the plane of
the disk (center panel). The parameters are L, = L/n, C, = C =
W*Q?/LE%, I, =1,and Q =5 (L and I arbitrary). We also show
the “velocities” d E /0¢;, versus the quasiclassical parameter Q in the
ground state (right panel).

At ¢" =0, all levels are doubly degenerate. If we move in
the easy direction, the levels are split with AE o (fi/e)]1¢7.
The levels become increasingly dense at higher energies.
Since the levels begin to cross, this behavior is restricted to
increasingly small values of ¢]. At ¢] < 0.5¢y, the crossings
are avoided at an exponentially small energy scale corre-
sponding to the tunneling amplitude between the minima. The
amplitude increases with energy owing to a bigger overlap of
the oscillator excited states in two minima.

If we move in a perpendicular direction, we observe an
exponentially small energy splitting at ¢, 3 & 0.4¢,. At small
@5 5. the splitting is AE = (h/e)l, 3¢5 ;> in the ground
state [23]. We see this suppression in the plot of the nor-
malized “velocities” of the lowest state, (2e/h11)0E/0¢); at
¢" — 0 (Fig. 3, right panel). In the deep quantum limit,
Q < 1, all velocities remain the same as for the original Weyl
spectrum. The velocity in the easy direction stays closer to this
value at any Q.

In Fig. 4, we show the spectrum of the exciton Hamiltonian
(2) for @ = 20. For the sake of numerical efficiency, we
have computed the spectrum in the 2D limit. This is valid
in the highly anisotropic limit m3 < m7,. Also, graphene
provides a practical example of a stable conical spectrum in
2D. With graphene data, v & vp and a substrate with a relative
permittivity ~10, Q ~ 20 [32]. The continuous spectrum is
shown by the shaded region. Its lower edge is given by the
quasiclassical result (Fig. 2). Below the edge, we plot the
energies of the five lowest bound states. If we go in the easy
direction, we observe an almost unmodified Weyl spectrum
for the lowest and the first excited states. In contrast to this,
the splitting between these states remains small in the plane
of the disk. This is seen for the lowest and the first excited
states as for third and fourth excited states that are close to
the edge. In the right panel of Fig. 4, we plot the normalized
velocities of the lowest state versus Q. Similarly to the case of
the superconducting nanostructure, the Weyl velocity in the
easy direction is hardly modified, while that in perpendicular
direction is strongly suppressed with increasing Q. In fact,
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FIG. 4. The energy spectrum of a two-dimensional anisotropic
Weyl exciton for @ = 20 in the easy direction (left panel) and in the
plane of the disk (center panel). The parameters are m,, = m/n, v, =
v, ei = hv4neo/@, and Q = 20 (v and m arbitrary). We also show
the velocities 9 E/dpT versus the quasiclassical parameter Q in the
lowest state of the exciton (right panel).

the wave function of the bound state near one of the minima is
singular in coordinate space owing to the the singularity of the
Coulomb potential at » — 0. The calculation of the amplitude
of tunneling between the minima demonstrates that the value

of the amplitude is determined by this singularity. This results
in power-law suppression dE /dp! = v, /2Q* in the ground
state [23]in 3D. In 2D, 9E /dp! = +v,/2(Q/4). [In 2D, we
use the definition @ = 4E 3/ E,, to obtain Eq. (4).]

In conclusion, we have shown that a Weyl spectrum is
essentially modified by soft constraints of the spectral param-
eters in the quasiclassical limit. A Weyl disk emerges in the
vicinity of the WP. There are two degenerate states at the disk,
that are slightly split at moderate values of the quasi-classical
parameter Q.

We illustrate this general statement with two examples of
very different physical systems. The first system is a mul-
titerminal superconducting nanostructure where the spectral
parameters are the superconducting phases and the soft con-
straint is realized by an external circuit. The second example
concerns a Weyl exciton that is the bound state of a Weyl elec-
tron and a massive hole. The mass provides a soft constraint
of the total exciton quasimomentum to the momentum of the
Weyl electron. We show that in both examples, the quasi-
classical regime can be achieved with a reasonable parameter
choice.

This project has received funding from the European Re-
search Council (ERC) under the European Union’s Horizon
2020 research and innovation programme (Grant Agreement
No. 694272).
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