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SUMMARY

The uncertainty associated with public transport services can be partially counteracted by developing
real-time models to predict downstream service conditions. In this study, a hybrid approach for predicting
bus trajectories by integrating multiple predictors is proposed. The prediction model combines schedule,
instantaneous and historical data. The contribution of each predictor as well as values of respective
parameters is estimated by minimizing the prediction error using a linear regression heuristic. The hybrid
method was applied to five bus routes in Stockholm, Sweden, and Brisbane, Australia. The results indicate
that the hybrid method consistently outperforms the timetable and delay conservation prediction method for
different route layouts, passenger demands and operation practices. Model validation confirms model
transferability and real-time applicability. Generating more accurate predictions can help service users
adjust their travel plans and service providers to deploy proactive management and control strategies to
mitigate the negative effects of service disturbances. Copyright © 2017 John Wiley & Sons, Ltd.

KEY WORDS: travel time prediction; hybrid model; real-time information; vehicle trajectory; bus reliability;
linear regression heuristic

1. INTRODUCTION

Reliability is one of the most important determinants of public transport level of service as well as
service efficiency. Service attributes such as reliability of operations and prior timely information on
unplanned changes are among the most important determinants of travellers’ satisfaction with public
transport service [1]. Public transport services, in particular urban bus services, are subject to inherent
sources of uncertainty. In addition to physical, operational and technological measures to improve
service reliability, service providers can improve service predictability by developing more accurate
and reliable predictions concerning downstream service conditions. Generation and provision of bus
travel time/departure time predictions relies on the acquisition and transmission of instantaneous data
and is one of the primary online applications of advanced public transport systems. In this study, a
method that integrates multiple data sources for generating projections of downstream vehicle
trajectories is proposed. The predictions facilitate the dissemination of real-time travel information
as well as support real-time control and fleet management decisions.

Bus travel times are determined by various inter-dependent stochastic factors such as traffic
congestion, intersection delay, passenger demand, driver’s behaviour and weather conditions. A
disturbance in any of these factors can potentially propagate and consequently lead to deterioration
in schedule adherence. The provision of real-time bus arrival/departure predictions can help service
users to adjust their travel plan, make more informed decisions and thus reduce the adverse effect of
service irregularity [2]. It hence can yield increase of the service ridership [3]. Moreover, accurate
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predictions of downstream conditions facilitate the deployment of proactive management and control
strategies designed to mitigate the negative effects of service disruptions.

Several methods have been introduced for bus downstream trajectories prediction in the last two
decades, all aiming at providing fast and more accurate travel time prediction in various prediction
circumstances (e.g. prediction horizon, route characteristics, traffic condition and data availability).
However, it is still contentious to choose the ‘best model’ being capable of delivering fast and accurate
prediction over a wide range of transportation networks. Moreover, existence of such model is
doubtful and unverified in the literature [4]. Hence, development of a fusion framework, in which
the advantage of different models and data sources considering the targeted prediction circumstance
are combined, is highly desirable. The combination process has been generally performed in two
different ways: serial and parallel. In the first way, two methods are employed with a different
functionality. The former is implemented to pre-process, simplify or group the input data (e.g. clustering
to diminish the number of data features). The latter method then obtains predictions using the first
method output [5, 6]. In a parallel way, two (or more) models are parallely implemented to sum up
the advantages of each individual model [7, 8]. In this study, the second approach is considered, because
the relevant data are wildly available in the appropriate format and can therefore be integrated
simultaneously to improve the performance of the prediction models.

This study proposes a hybrid prediction model that combines the advantages of three independent
prediction methods. The hybrid model integrates prediction methods, which are based on schedule,
instantaneous and historical. In the training phase, a weight for each prediction method is determined
by a heuristic algorithm on the basis of its prediction error. Prediction is performed on a rolling horizon
basis with each prediction projecting the remaining bus trajectory (i.e. departure time predictions for all
the downstream stops). Previous work tested the feasibility of estimating parts of the prediction model
using a genetic algorithm [9] and compared the performance of the model from passengers’ and
operators’ perspective when estimated for each route separately as opposed to joint estimation [10].
This study builds up on the rolling horizon prediction approach while devising an efficient model
calibration technique and performing an extended validation. The main contribution of this study is
developing and implementing a methodology for integrating and estimating the contribution of
different prediction models and data sources while satisfying practical requirements related to the
generation of real-time information. In addition, the prediction model is calibrated and validated on
the basis of data of five routes from two public transport systems, confirming method transferability.
This study builds up on our previous works [9, 10] by devising a hybrid prediction model with
significant advances in prediction methodology, parameter calibration and an extended validation.

The remaining of this paper is organized as follows: we first review previous studies in the context
of bus travel time prediction (Section 2). Then, the proposed hybrid prediction method is described in
detail (Section 3). Five bus routes in two case study areas, Brisbane and Stockholm, are described
(Section 4), followed by an explanation of implementation details including data processing and
specifications for the optimization process (Section 5). Then, the proposed method is applied to the
case study routes, and the results are benchmarked against the currently deployed prediction methods
in Brisbane and Stockholm (Section 6). Finally, we conclude with an overall assessment of the
proposed approach, discuss its advantages and shortcomings and outline directions for further research
(Section 7).

2. LITERATURE REVIEW

Previous research in traffic predictions has developed a large range of methodologies that are often
categorized into data-driven and model-driven methods.

Data-driven methods are generally empirical models that statistically model the relationships
between the variables. Such models can be classified into parametric and non-parametric models.
Parametric methods are based on a structural pre-defined function with a number of independent
variables, whereas the structure and parameters of the model are mined from data in the case of
non-parametric methods. In the context of bus travel time predictions, the two most commonly used
parametric models are linear regression models and time-series models. Linear regression models
formulate bus travel time as a linear function of independent variables [2, 11, 12] such as distance,
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2132 FADAEI M. ET AL.

number of stops, dwell times, boarding information and weather descriptor parameters [13].
Time-series models assume that travel time patterns are recurring, and therefore, past patterns can be
used for predicting travel times in the future. Kalman filter techniques are commonly used for
estimating these models [14—16]. The main drawback of parametric models is that their simple
structure may not depict the complex inter-actions that are inherent to urban bus operations and
underlie its uncertainty. Non-parametric data-driven methods consist of various machine learning
techniques that have been deployed to predict bus travel times. In particular, artificial neural networks
and support vector machines have gained popularity among data scientists in recent years [12, 17-19],
thanks to their capability to capture complex non-linear relationships [20]. However, the training and
estimation of these methods require large amounts of data and the application of designated techniques
to reveal the underlying relation between inputs and outputs [21].

Model-based methods are generally mathematical models that provide functional relationship
between different variables. These models can be classified into analytical [23, 24] and numerical
models [25], where the former provides a closed-form solutions whereas the latter generally consider
a time stepping function to obtain model behaviour over time. While the advantage of model-based
methods is that they provide direct insight into the impact of independent variables on travel time
predictions, their performance depends on model capability to represent the related mechanisms.

In addition to data-driven and model-driven methods, two simple prediction rules were proposed in
the literature that requires no training or estimation. The first rule is based on the assumption that travel
times remain constant during the same period of time on different days [26]. The second rule assumes
that travel time remains stable within a sufficiently short time interval, and thus, short-time predictions
are equal to the latest travel time that has been recorded for the same road segment [27]. While the first
rule neglects day-to-day variations, the latter neglects within-day variations. However, empirical
analysis suggests that both kinds of variations are not negligible [13]. Timetables are often constructed
by implicitly assuming the former for a given day category (e.g. summer weekdays, and holidays).
Predictors that rely solely on historical or instantaneous data are simple, fast and easily applicable.
Mori et al. [4] concluded that instantaneous predictors yield better results for short prediction horizons
(one-step-ahead, which is generally 5 minutes) while historical predictors were found superior for
longer horizons.

The complexity of bus travel time variations and the advantages of individual prediction methods
call for the development of a hybrid prediction scheme that allows the integration of several methods
and data sources.

Hybrid models have recently emerged as a promising prediction approach in the context of freeway
traffic where it obtained high-accuracy predictions [8, 28—30]. However, on the basis of a review of the
literature and to the best of our knowledge, no hybrid prediction model has been developed and applied
hitherto for real-time predicting bus travel times. Although hybrid models perform well, simple models
are still popular in the most recent advanced travel information system [4]. Furthermore, simple
prediction models remain popular among real-time information system providers in practice [31].
The inherent complexity of hybrid models presented in the literature can hinder their deployment.
Methods for generating real-time information need to be fast, to be reasonably simple, handle noisy
data from various sources, to be scalable (to generate predictions for the entire network) and to be
robust when unexpected disruptions occur. The following section describes the modelling approach
adopted in this study to address the aforementioned requirements.

3. METHODOLOGY

The proposed hybrid model is a linear combination of three prediction methods.

» Scheduled: The static time-dependent schedule is used as a source of information (Zimetable) for the
former.

* Instantaneous based: This method can be considered an extension of simple methods where instead
of choosing the last observed value for prediction, the last few observed values are taken into
account for prediction. This number of observations should be selected so that the prediction error
is minimized.

Copyright © 2017 John Wiley & Sons, Ltd. J. Adv. Transp. 2016; 50:2130-2149
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* Historical based: This part mines historical data on the basis of certain selection criteria designed to
maximize prediction accuracy.

Automated vehicle location (AVL) data are used for the aforementioned two latter cases.

In the following section, the model and its components are described. In the next step, linear
regression-based heuristic is introduced as an estimator of model parameters (Section 3.2). The
proposed model is evaluated by measuring model accuracy (to be defined later in Section 3.3.1) and
compared with two benchmarks (Section 3.3.2). Finally, model validity is examined in the last part
of model evaluation procedure (Section 3.3.3).

3.1. Model description

Assume a bus trip k assigned to a route consisting of an ordered set of stops, S={sy, ...,s,5}. As bus
trip k departs from stop s, €S, the prediction for the remaining bus departure times regarding all
downstream stops s;€ {Sy, 4 1, ..., S5} is updated (Figure 1).

Let /7€ and I1° be the matrices of scheduled and observed departure times, respectively (¢ stands for
constant because scheduled times are assumed to be taken from the respective timetable; o stands for
observed). I} and [I} . are specific cell entries corresponding to the scheduled and observed
departure times of trip k€K at stop s; €S, respectively. K is the set of bus trips scheduled for the route
under consideration. Hence, each row of /7¢, denoted by 775, refers to a single trip k€ K and the same
for 71°. Also, each column of /7, denoted by /7, refers to all the departure times corresponding to stop
s; and the same applies to /7°.

A rolling horizon procedure is proposed for generating bus trajectory predictions on the basis of the
hybrid scheme. In this procedure, predicted departure time from stop s; depends on predicted departure
time from the previous stop s; _ |, and the departure time is an incrementally accumulated value, con-
stituting a Markov process. Hence, the predicted departure time from each stop depends solely on the
summation of the predicted departure time from the previous stop and the marginal addition of the
travel time predicted between the last pair of stops (with the exception of stop s, , ;, where the depar-
ture time from the previous stop, 17 Z’SP, has already been observed):

. =1 + it 1)

k,SpSi kySpSi

where Hi;sp,s,- denotes the predicted departure time (f stands for forecast) for trip k& from stop s;

generated when the bus departs from stop s, (H Z_Sp> and #; 5, , denotes predicted travel time for trip

k connecting two successive stops, §; | to stop s;.

Bus operators commonly apply a schedule-based control strategy where bus drivers are instructed to
hold at a designated set of time point stops (TPS), S” €S, in order to maintain the timetable in case they
run ahead of schedule [22]. In case that this holding strategy is implemented, the control strategy logic
can be explicitly incorporated into the prediction method by introducing the following condition:

it

'h“

Fp1 ¥ (5] =1 5|5

= = = = =

Figure 1. Rolling predictions for all downstream stops.
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p max (Hi,spﬁs,;l + lks s Him) if  ses
Hk.sp,s,- = . R (2)
Hi.spAS,,] + trs otherwise

It is thus assumed that drivers fully comply with the control scheme and hold the bus at time point
stops in case of an early arrival, and therefore, overtaking does not occur under this control scheme.

As mentioned earlier in this section, scheduled, instantaneous and historical travel time information
is fused to make a prediction for travel time. For trip k& on a specific road segment connecting two
successive stops, s; _ | to stop s; a hybrid prediction is formulated as

2 h
lks = ﬁc.ti,si +lBr.tlrc,s,- +ﬁh.tk.s,- 3)

where 7 .1 . and tzsi correspond to scheduled, instantaneous and historical travel time predictions,
respectively (r stands for real time) for trip & on road segment connecting stops, s; | and s;. ., f,
and £, denote the weights assigned to the corresponding predictors. As described earlier, the scheduled
travel time is obtained from a timetable, and the instantaneous and historical travel times are calculated
on the basis of AVL data or can be potentially inferred from automatic passenger count and automatic
fare collection data (Figure 2). While #* is obtained by mining AVL data archive, ¢ refers to recent
vehicle position probes. In this study, travel times refer to the time between bus departure times and
hence include running times between stops and dwell times at the downstream.
Scheduled travel time is retrieved from the timetable and is formulated as follows:

ti,s,- = Hi,si — 115 “)

kysio

where lis, is the scheduled travel time between two consecutive stops s; _ | and s;. The timetable is the
outcome of the negotiations between the regulator (i.e. public transport authority) and the service
provider (i.e. operator). The timetable is then used as a reference for regulating the service by control
centre dispatchers and drivers through the deployment of control strategies and speed adjustments. The
timetable is therefore also a determinant of bus travel times and not merely an outcome of traffic
conditions. Therefore, the scheduled travel time can be informative in forecasting downstream vehicle
trajectories.

Instantaneous travel time refers to the most recently observed travel time. On the one hand, using a
single observation can potentially introduce bias due to interruption in data collection system or by an
unexpected circumstance (e.g. vehicle failure). On the other hand, this numerical range should not be
too large in order to still remain representative of the instantaneous information. A numerical range can
be defined for each route segment. The optimal value, #, is estimated in this study using a heuristic
algorithm. Thus, the predicted travel time between two consecutive stops (s; _ 1, ;) depends on the 5
most recent downstream bus travel times, which passed the same road segment.

The set of trips that are used for estimating downstream travel times is defined separately for each
route segment. This is illustrated in Figure 3 where bus trip & passed stop s, and we are interested
in calculating instantaneous prediction for all downstream stops (marked by stars). Here, for simplicity
of illustration, the value of # is two. The statuses of six downstream buses are illustrated, where the first
two (shown in black) have already arrived at the last stop and the rest (shown in green) are still on their

Tir_netable_ Hybrid Method
(1 - -;{ Scheduled based |
) s Instantaneousbased | f---- »  Prediction
AL m &l Historical based |

Figure 2. Schematic block diagram of proposed hybrid prediction method. AVL, automated vehicle location.
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4 Spt1  Spi2 Sis-2 Sisl-1 S|s)

k-4 =Y = — = L=
Trins t .
P k=3[ I T SR
k-2 g - &5 -
P
k—1] et )
L m— T 3 ; « . 4 A

Figure 3. Instantaneous prediction, 7 = 2.

way. The trips considered when generating travel time predictions between each pair of consecutive
stops are indicated by red dashed ellipse.

For a given road segment, the median value of the observed travel times pertaining to the last
buses is computed. The median rather than the mean value is taken to reduce the impact of extreme
values. The instantaneous part of the prediction method between two consecutive stops s; _; and s;
is formulated as follows, where 7 is subject to calibration and Md denotes median.

r 0 0 g
tkp‘,v(”) =Md kan,s,- - ®)

k—n.s; n—1

Historical travel time refers to previous instances that exercise similarity to the circumstances of the
target trip. For historical travel time to be indicative of future conditions, some discriminative traits
need to be determined. Then, a similarity function is defined on the basis of these discriminative traits
to select the most relevant travel time observations. The discriminative traits in this study are time and
location (road segment). Regarding time, it could be discriminative to check if historical data for the
same road segment exist in the same day of the week and time of day (denoted reference time in the
rest of paper) from the previous week. While last week might be the most informative historical source
of information, data over a longer period of time might allow for more robust predictions. The
determination of the optimal number of past weeks that should be considered in the prediction is left
for future research. In this context, the similarity function constitutes a time window pointing to
records archived from 7 days ago. The time window is determined by ¢+, where 7" is the reference
time and ¢ is a tolerance parameter. The calibration of the latter is explained in detail in Section 3.2.

Thus, the set of trips included in the historical travel time component of the prediction scheme for
the road segment connecting stops s; _; and s; is

R(sint',0) = {Vk"eK™ i =5 <M, <0 + 6} ©6)

where £ is an observation from the set of bus trips (K~ ") observed in the same day of the last week
(i.e. 7 days ago) for the same route.

For the most relevant historical data for each road segment to be referred to, the time window is
dynamically shifted forward on the basis of scheduled travel times. In other words, for any stop s,
the reference time equals to the observed time (/7 ;;Sp) for the currently passed stop s, plus a summation

over all scheduled travel times for road segments connecting s, and s;. For example, if bus A just
departed from stop 1 at 15:10 h, then scheduled departure times from stops 1, 2, 3 and 4 are 15:05,

Copyright © 2017 John Wiley & Sons, Ltd. J. Adv. Transp. 2016; 50:2130-2149
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2136 FADAEI M. ET AL.

15:15, 15:30 and 15:40 h accordingly. The reference time will be 15:20 (15:10 + [15:15 — 15:05]),
15:35 and 15:45 h for stops 2 to 4.

r=my, + (s, - 1) )

Finally, the median of all involved historical travel times is computed for the road segments
connecting s; _; to s;. Mean has been widely used to summarize the data because of its ease of
computation; however, recently the use of median in travel time estimation is advocated owing to
its robustness to the extreme values. For the current modelling, we have used median. The historical
part of the hybrid prediction method is formulated as

h
0 () =Md|ITg-  — I} ko) (8)

By integrating the aforementioned elements, Equation (3) can be re-written as

frs, = Bty + Bty (n) + Bitg, (6) )

By integrating the aforementioned elements, the general form of the proposed prediction method
(Equation (2)) is obtained:

max (I |+ Bty + B0, () + Bl (0, M) i seS

H'kf.sp,s,.,, +B. s T B ;S(r/) +lb)h.tl};,s,- (9) otherwise

n, . =

k,SpSi

(10)

3.2. Model calibration
The aforementioned hybrid prediction model involves the specification of five parameters:

* Three prediction weights (f.,f,. and f,) pertaining to scheduled, instantaneous and historical
predictors.

e Number of buses used in the instantaneous predictor (7).

 Tolerance of the time window used in the historical predictor (o).

The search space is defined by the 5-D space including four continuous float (5., f,, f,and J) and
one discrete integer variable (7). In accelerating the convergence of the optimization process, the
search space is constrained by considering the dependency among the relative prediction weights by
normalizing their contribution (f.+f,+f,=1, i.e. each pair strictly determines the third weight).
Therefore, the optimization problem dimensionality is reduced to 4-D with the two prediction weights
constrained into the feasible range of [0, 1].

Suitable ranges have to be defined also for # and ¢ on the basis of data availability and case study
circumstances according to the following considerations:

I. The more frequent the service is, the larger the number of recent bus trips that should be included in
the instantaneous predictor because they can convey information on recent travel conditions.
Conversely, a large number of # can potentially induce bias in case of infrequent or irregular
services. Hence, the upper limit for this variable should be kept reasonably low.

II. The more frequent the service and vehicle probes are, the shorter the tolerance parameter that can
be used. In contrast, infrequent services or sparse data transition will require longer tolerance to
ensure that a sufficient number of observation is available for estimating the historical predictor.

Copyright © 2017 John Wiley & Sons, Ltd. J. Adv. Transp. 2016; 50:2130-2149
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Thus, the upper limit should be sufficiently large to accommodate the lower end of the range of
data availability and service headway.

Given the discontinuity (including maximum function) and complexity (involve median expressions
and integer 77) associated with the optimization problem, a heuristic algorithm is needed for estimating
the model parameters. A linear regression heuristic algorithm is proposed for estimating departure time
prediction model parameters.

Two main assumptions have been made to convert the proposed prediction model into a linear
model: (i) the control strategy constraint (i.e. holding at time point stop if bus is ahead of time) is
relaxed and (ii) the sets of # and 0 values are exogenously fixed. The former has been applied by
realizing the implemented schedule-based control strategy introduced in Equation (2). It leads that

Equation (2) simplified and transformed into /7 i;s,, 5= yigh + ?kaSH. These assumptions transform

k.Sp,si-1

the proposed model into

I, =10, 4Bty + Bt (1) + Bith () (1)

Given the linear form of Equation (11), S., S, and 3, are optimized using a linear regression method.
The optimum weights are calculated for a different combination of # and J. The combination, resulting
in the lowest prediction error, represents the final solution for all five parameters. The pseudo-code of
the heuristic algorithm is detailed as follows, where RMSE denotes root mean square error between
predicted and observed values and is explicitly defined in the next section.

The Linear Regression Heuristic Algorithm
Given Timetable and AVL data
Set the suitable range for n and 6 (ne{l, ...,H},0€[0,4])
Discretize the continuous range of d into M discrete counterparts
fora=1, ... H
form=1, ... M
Set n=a and 6 =mA/M
Calculate t; ¢ .t , and tz"sp_’smVsp,smeS7p<m and keK
Given (ITy , — IT} . )Vs,,s,€S, p<m and keK
Deploy Linear Regression to estimate weights in Eq 11
Calculate RMSE®™ obtained by (ﬁ‘;mﬁﬁm, Ah"m7 a, mA/M)

end for
end for
Find arg min, ,,RMSE*"
Return the 5 and 6 values and estimated weights as estimates for the hybrid model

3.3. Model evaluation

First, the prediction method performance is evaluated on the basis of its capability to predict actual
departure times. Second, prediction errors are benchmarked against the errors yield by static
information (timetable) and a commonly deployed prediction method. The combination of this two
is instrumental in assessing prediction discrepancy and the added value of the hybrid scheme in
generating short-term predictions. Finally, the model is validated by testing the performance of the
prediction scheme with the estimated parameter values when applied on a different dataset.

3.3.1. Prediction accuracy

Root mean square error is used in this study as the primary measure of performance in evaluating the
discrepancy between predicted and actual departure times. Deployment of RMSE penalizes variance in
prediction error in which larger residuals obtain higher weight than smaller ones. The RMSE is
computed at the stop-to-stop level over all trajectory predictions that were made at stop s,, for stop s;:

Copyright © 2017 John Wiley & Sons, Ltd. J. Adv. Transp. 2016; 50:2130-2149
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, 2
kz}( [min(O,H-,’{(Jp_Si — HZ"S’,) + o max (O,H‘,{_Swsi — 20}
RMSE®* = | k<

12
K| 12)

As late arrival is more adverse than earliness from operational management approach, a higher
weight is assigned to overestimations of the departure time in order to reflect the operator perspective
in the evaluation process. In this study, the penalty associated with overestimated predictions is
doubled in the RMSE formula; hence, a=2. Conversely, higher weight could be assigned to underes-
timations to tailor predictions to passengers’ perspectives (e.g. a=0.5).

This measure can then be aggregated at the origin and destination levels as well as for all predictions
made along the route. The aggregate RMSE value could be summarized over all stops and their
respective upstream predictions as

1 s|-1 1 s
RMSE = ST IS (SI - Yul, \RMSE, ) (13)

This global measure of performance enables us to directly compare the performance of alternative
prediction methods in terms of root mean square prediction error. Consequently, this performance
indicator is used as the objective function in the optimization process when estimating model
parameters.

3.3.2. Added value of hybrid method

The relative improvement of the proposed model over the static timetable information and a conven-
tional prediction method is used to assess its potential added value. On the basis of the timetable, the
operator expects trip & to arrive at stop s; at time /7  , regardless of the time and place that the pre-

diction is made. This can be formulated as

mj, =1 ;  VYp<i (14)

k,SpSi

Alternatively, operator expectations may rely on a delay conservation prediction method, which is
commonly used for generating real-time passenger information [31]. According to the delay conserva-
tion method, the predicted departure time of trip & from stop s; generated at bus departure time from

stop s, (HZ’SP) is

, g, if (113, <15, A 3ip<j<iiges)
nl, ;= (15)
I3 + (His. — 1T ) otherwise
»p ks »p

The scheduled departure time is used for prediction if the vehicle runs ahead of schedule and there is
an intermediate time point stop. In all other cases, the fundamental assumption underlying this
prediction method is that the latest schedule deviation will be maintained.

3.3.3. Model validation

A sound validation of the developed hybrid prediction method is essential prior to any further
applications. In the case of a prediction method, the result of the validation process should reflect a
degree of consistency for predicted values. The prediction model is validated by predicting bus

Copyright © 2017 John Wiley & Sons, Ltd. J. Adv. Transp. 2016; 50:2130-2149
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trajectories for a period other than the one used for model calibration, while model parameters are
specified on the basis of the values estimated in the calibration phase.

The validation results are assessed by comparing the forecasted vehicle trajectories with the
corresponding actual departure times available from the respective AVL dataset. The average value
of the mean absolute error (MAE), maximum relative error (MRE) and RMSE are calculated for the
validation experiment. The RMSE is computed as described in Section 3.3.1, and MAE and MRE
are calculated for all predictions, as follows:

1 1S ~1 53] s 0
MAE = K8 = 1) Ziek 2pt 2impit Mg, — i, (16)
Lo — 1T
MRE = max# Vs, sieS,p<iand k € K (17)
ks — ks,

In addition, the degradation in prediction accuracy due to the usage of parameters that were not
specifically tailored for the analysis period is assessed by comparing the aforementioned measures with
those obtained when optimizing their values for the validation period.

4. CASE STUDIES

A total of five bus routes (three in Stockholm, Sweden, and two in Brisbane, Australia) were chosen as
case studies for the proposed hybrid prediction scheme. The two distinctive case study areas allow test-
ing the performance of the hybrid scheme under different operational and urban environments. More-
over, the five routes vary in their length, demand patterns and service headway. This diversity is
important for investigating model transferability. The prediction scheme was tested for three
time-of-day periods: morning peak (07:00-09:00 h), off peak (09:00-15:00 h) and afternoon peak
(15:00-19:00 h), in order to assess model performance under different levels of passenger demand
and traffic congestion.

4.1. Stockholm, Sweden

The first case study area is located in Stockholm, Sweden. Four trunk bus routes (labelled 1 to
4) operate in Stockholm inner city. These routes are the busiest and the most frequent bus routes in
Stockholm and enhance the backbone of the rapid rail services by offering frequent connections
between main points of interest and transport hubs along the main urban arterials. They account for
58% of the total passenger-kilometre by bus in the inner city.

Prediction methods are applied and evaluated for both directions of three of the trunk bus routes: 1, 2
and 4. Route 3 was excluded from the analysis because of incomplete data. Table I presents a summary
of route characteristics, and Figure 4 presents the case study routes and their corresponding stops. Time

Table I. Summary of route characteristics in Stockholm.

Distance No. Planned headway [min, max]; Stop distance avg; std; No. data

Route (km) stops avg (minutes) [min, max] (meters) records
1_Eastbound 11.5 33 [5,7]; 6 335; 133; [166, 750] 181 104
1_Westbound 11 32 [5,7]; 6 340; 118; [169, 754] 159 040
2_Northbound 7.9 22 [5,7]; 6 380; 158; [163, 803] 125 352
2_Southbound 8 24 [5,7]; 6 342; 145; [149, 718] 116 402
4_Northbound 12.1 31 [4,6];5 410; 243; [213, 1264] 182 100
4_Southbound 12.1 30 [4,6];5 418; 239; [223, 1239] 186 124
Copyright © 2017 John Wiley & Sons, Ltd. J. Adv. Transp. 2016; 50:2130-2149
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Figure 4. Case study network—Stockholm. TPS, time point stop.

point stops are also visible. These stops are of particular importance from operator’s perspective when
evaluating the prediction accuracy because they are used as driver relief points and potential locations
for fleet management strategies. Route 1 connects the main eastern harbour to a residential area in the
western part of the city through the commercial centre. Route 2 serves as a south—north connection
through Stockholm’s old city. Its route provides a cross-radial service on the main urban arterials. Route
4 is the longest route with a daily ridership of 60 000 passengers, the highest in Sweden, which is about
22% of all travel by bus in Stockholm inner city, while the share for routes 1 and 2 are 13% and 10%,
respectively [32].

The AVL data were available for this study from all buses running on routes 1, 2 and 4. AVL
devices report the time and location of bus arrival and departures from each stop along the route.
We consider two datasets: (i) AVL data from 1 Dec 2011 to 31 Jan 2012 for all four routes and (ii)
AVL data from 1 Aug 2011 to 30 Oct 2011 for route 1. A schedule-based control strategy was imple-
mented in Stockholm during the analysis period. Only records generated on working days are used in
the analysis. The datasets contain a total of 1 546 721 data records of which 596 599 are of the dataset
used for validation, each record representing a stop visit. The second dataset is used solely for model
validation. The validation of the hybrid model using AVL data is explained in detail in Section 6.3.

4.2. Brisbane, Australia

Brisbane (the capital city of Queensland) is the third largest city in Australia. Translink, a division of
the Department of Transport and Main Roads, is the regulator for the entire South East Queensland
public transport [33]. The network has an integrated ticketing options allowing for a seamless travel
between Translink buses, train, ferries and trams. For this study, two routes-route 60 (known as Blue
CityGlider) and route 555 from Brisbane-are selected (refer to Figure 5; the top left map illustrates the

Copyright © 2017 John Wiley & Sons, Ltd. J. Adv. Transp. 2016; 50:2130-2149
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relative geographical locations of the two routes; the top route map is for route 60 and the bottom route
map is for route 555).

* Route 60 connects Brisbane central business district and its nearby north-east and south-west
suburbs. It is one of the highest-frequency bus services in Brisbane. It runs every 5 minutes between
07:00-09:00 h and 16:00-18:00 h on weekdays, and every 10 to 15 minutes during other operation
hours.

* Route 555 connects Logan city (Loganholme station) with Brisbane central business district
(Elizabeth Street stop) with a frequency of four buses per hour serving 12 stops inbound and 13
stops outbound. The route spans over both busway and motorway. The green line in Figure 5 for
route 555 indicates the corresponding path to the considered time period (07:00-19:00 h) in the
case study.

Table II presents a summary of these two route characteristics.
5. IMPLEMENTATION

The proposed linear regression heuristic was applied for estimating the values of the hybrid model
parameters. The aggregate RMSE value calculated using Equation (13) is used as the objective
function for evaluating each individual solution, which consists of a combination of # and J and
obtained weights (8., f, and ;) from linear regression. Considering the aforementioned criteria in
Section 3.2, suitable ranges for the instantaneous and historical predictors’ parameters were defined
(ne{1, ...,4},0€l0, 1]). Then, the range for ¢ is discretized into 10 distinct counterparts (M = 10). Forty
different combinations of # and ¢ are hence considered in the estimation procedure.

There are a few issues that require special consideration when processing AVL data. In both case
study areas, each route is also operated by several partial service patterns-traversing only a subset of
the route’s stops. The respective AVL records require special treatment in order to ensure the correct
inclusion of partial trips in the prediction scheme. In addition, some trips have incomplete information
for some stops. This happens occasionally in case the bus drives through the stop without stopping. In
such cases, missing records are generated by linear interpolating on the basis of the distances between
successive stops. Finally, bus drivers are in rare cases instructed by control centre dispatchers to termi-
nate their trip and disembark passengers, a fleet management strategy known as short turning. In these
unusual cases, no records are added and the trip is handled as a partial trip. The estimation of model
parameters, generation of predictions and model evaluation were all programmed in MATLAB.

6. RESULTS

The proposed hybrid method was applied to five bus routes in the case study areas of Stockholm and
Brisbane, enabling the investigation of its performance under different circumstances. Model
parameters were estimated separately for each bus route direction on the basis of the estimation method
described in Section 3.2. We first report the attained values for the model parameters-weights of
prediction elements (8., S, f,), number of considered buses in instantaneous part (1) and the tolerance
parameter in historical part (d)-and discuss the influence of route characteristic and time-of-day periods
(Section 6.1). The added value of the hybrid method is then assessed by comparing its performance
with the reference cases (Section 6.2). Finally, the validity of the method is examined using a separate
dataset (Section 6.3).

Table II. Summary of route characteristics in Brisbane.

Distance No. Planned headway [min, Stop distance (approx.) No. data
Route (approx.) (km) stops max]; avg (minutes) avg; std; [min, max] (m) records
60_Inbound 8 13 [5, 15]; 10 700; 220; [450, 1230] 31512
60_Outbound 8 13 [5, 15]; 10 700; 200 [370, 1110] 32 409
555_Inbound 30 12 [15, 15]; 15 2800; 2400 [800, 8800] 57 984
555_Outbound 35 13 [15, 15]; 15 3000; 3500 [480, 13 500] 67 405
Copyright © 2017 John Wiley & Sons, Ltd. J. Adv. Transp. 2016; 50:2130-2149
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6.1. Hybrid method calibration

Model calibration was performed separately for each route direction and time-of-day period (morning,
off peak, evening). The estimated values of the hybrid method parameters are listed in Table III. The
objective function value-the average over the RMSE values of all the predictions in the study period
(Equation (13))-is reported for the final solution obtained from the heuristic algorithm. The aggregate
RMSE reports the overall error for the prediction method, quantifying prediction accuracy. The lower
the RMSE, the more trustworthy it is for estimating passenger waiting time and as a real-time manage-
ment tool for operators. In the case of route 4 in Stockholm and routes 60 and 555 in Brisbane, a lower
prediction error is attained in the off-peak periods when compared with that in the morning peak and
evening peak. These routes run along radial corridors that are characterized by peak commuting
congestion, where off-peak periods are more predictable owing to lower levels and lesser fluctuations
in passenger demand and traffic flow. In contrast, routes 1 and 2 in Stockholm serve the main streets of
the commercial core, where the differences among time-of-day periods are less pronounced.

As evident in Table III, the parameter values vary over routes and time periods. The historical
predictor parameter, S, ranges from a low weight of 26% for the inbound direction of route 60 at
the off peak to 82% for the northbound direction of route 4 for the off-peak period. The relative
contribution of instantaneous data varies from 15% for the northbound direction of route 4 to 72%
for the inbound direction of route 60, both under the off-peak period. For all routes and time periods,
the scheduled travel time is assigned with the lowest share compared with historical and instantaneous
data. This indicates that in most cases, instantaneous and even archived AVL records are more
indicative of the prevailing traffic conditions than the untrustworthy schedule. This is especially
remarkable in the Stockholm case, where drivers are instructed to hold until the scheduled time at
selected time point stops.

Table III. Estimated parameters of the hybrid prediction method.

Route Time period B. B, B o0 (hours) n Objective function value
1_Eastbound Morning peak 0.06 0.42 0.52 0.5 2 105.8
Off peak 0.05 0.50 0.45 1 4 105.8
Evening peak 0.05 0.39 0.56 0.7 4 112.1
1_Westbound Morning peak 0.04 0.31 0.65 0.4 2 91.8
Off peak 0.05 0.34 0.61 0.7 4 94.8
Evening peak 0.04 0.42 0.54 0.6 4 105.1
2_Northbound Morning peak 0.06 0.31 0.63 0.8 2 95.8
Off peak 0.06 0.29 0.65 0.8 4 98.8
Evening peak 0.06 0.26 0.67 0.7 4 95.7
2_Southbound Morning peak 0.03 0.20 0.77 0.4 2 85.5
Off peak 0.04 0.21 0.75 1 4 80.2
Evening peak 0.03 0.30 0.67 0.7 4 92.2
4_Northbound Morning peak 0.05 0.31 0.64 0.6 2 105.0
Off peak 0.04 0.15 0.82 1 2 89.3
Evening peak 0.05 0.23 0.72 0.9 4 103.3
4_Southbound Morning peak 0.05 0.26 0.69 0.7 2 106.8
Off peak 0.05 0.55 0.40 0.9 4 97.3
Evening peak 0.04 0.60 0.35 0.9 4 135.2
60_Inbound Morning peak 0.09 0.37 0.54 0.7 4 1314
Off peak 0.02 0.72 0.26 0.5 4 108.2
Evening peak 0.04 0.69 0.27 0.4 4 151.5
60_Outbound Morning peak 0.06 0.46 0.49 0.3 2 111.4
Off peak 0.00 0.69 0.31 0.2 4 88.2
Evening peak 0.07 0.53 0.40 0.7 4 140.6
555_Inbound Morning peak 0.04 0.60 0.36 1 1 180.6
Off peak 0.00 0.49 0.51 1 2 88.6
Evening peak 0.02 0.38 0.60 1 1 106.2
555_Outbound Morning peak 0.06 0.39 0.55 0.9 2 311.3
Off peak 0.03 0.36 0.61 1 4 84.1
Evening peak 0.03 0.36 0.61 1 4 84.1
Copyright © 2017 John Wiley & Sons, Ltd. J. Adv. Transp. 2016; 50:2130-2149
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Although all the bus routes in our case study in Stockholm operate in the inner city and are all
high-frequency trunk routes, parameter values vary. This suggests that the results of the prediction
method are dependent on route’s characteristics such as day-to-day and within-day regularity of traffic
conditions and passenger demand. Therefore, the model should be calibrated for routes with different
characteristics.

In Brisbane, instantaneous travel time and historical travel time generally take the highest
weights for route 60 and 555, respectively. This indicates that the accuracy of model based on
timetable in Brisbane is generally low. This finding should encourage further study to evaluate
the timetable in Brisbane. Our observation on the timetable for route 555 indicates that the trip
travel time, as per the timetable, for route 555 during peak period considers only 5 minutes of
the delay compared with that during off peak (e.g. trip staring at 07:15 h from Loganholme station
should arrive at 08:00 h at Elizabeth Street (travel time 45 minutes) and 10:15 h from Loganholme
station should arrive at 10:55 h at Elizabeth Street (travel time 40 minutes)). Past research on the
day-to-day variability of bus travel time during peak and off-peak period in Brisbane is reported
over 40% and around 20%, respectively [34]. High day-to-day variability generally makes timetable
less effective.

The value for the historical travel time window, J, fluctuates between +12 minutes (0.2 hour) to
1 hour. The minimum value has been obtained for the inbound direction of route 60 at the off peak,
while J = 1 is reported for several instances. In addition, the most common value for # is 4. Services
with lower frequency may need wider time window (larger tolerance) to capture sufficient number of
observations from historical data. This is demonstrated by the larger values of J for route 555, which
has the lowest frequency among our case study routes.

6.2. Added values of the proposed method

Bus departure time predictions were generated for the case study routes for all downstream vehicle
trajectories by applying the hybrid method. In addition, the prediction accuracy when relying on
the timetable and the delay conservation method is evaluated by calculating the aggregate RMSE
value for each prediction method. Table IV presents the results for each of the five bus routes in
both directions, and the percentage difference obtained by hybrid method compared with the
timetable and the delay conservation method is presented in brackets on the last column. The
results reported for the hybrid prediction method are based on the estimated parameter values
reported in Table III.

The hybrid method yields the highest prediction accuracy and consequently more reliable service. In
this context, reliability refers to deviation of actual departure time from predicted value. Reliability
improvement hence enables passengers to reduce their waiting time. The added value of the hybrid
method varies considerably among bus routes and time periods. The deployment of the hybrid method
reduced the prediction error from [215, 1608] and [136, 710] seconds for timetable and delay conser-
vation predictions, respectively, down to [80, 311] seconds when calculated over bus trajectories of
different routes. Overall, the accuracy of predictions obtained from the hybrid method is improved
by 72% and 48% when compared with timetable and delay conservation prediction method. The
largest relative improvement in prediction accuracy is observed in the case of the inbound direction
of route 555 in Brisbane during the morning-peak period, with a decrease of 89% and 75% in the
RMSE compared with the timetable and delay conservation predictions. Bus departure time
predictions, also when generated by the hybrid scheme, are in general more reliable for the
Stockholm case study routes. This is presumably attributed to the more balanced demand patterns
and lesser traffic congestion as well as the more rigorous control scheme.

The performance of the aforementioned methods is further investigated by analyzing how their
performances evolve spatially. Figure 6 shows the RMSE values for the timetable, delay conservation
and hybrid methods along each route (note that the scale varies for different routes). It can be observed
that the hybrid method yields persistently more accurate predictions than the timetable and delay
conservation methods with only few exceptions. However, the magnitude of the improvement varies
considerably. Also, regardless of the prediction method considered, some of the routes are consistently
more predictable than others as discussed earlier. In Stockholm, the prediction error of the delay
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Table IV. Root mean square error (in seconds) of prediction methods.

Route Period Timetable Delay conservation Hybrid
1_Eastbound Morning peak 374.5 201.1 105.8 [=72%; —47%]
Off peak 442.5 207.7 105.8 [—76%; —49%]
Evening peak 446.6 216.8 112.1 [-75%; —48%]
1_Westbound Morning peak 374.3 165.0 91.8 [-75%; —44%]
Off peak 408.4 176.9 94.8 [-77%; —46%]
Evening peak 406.2 191.7 105.1 [=74%; —45%]
2_Northbound Morning peak 263.7 145.4 95.8 [—64%; —34%]
Off peak 295.9 160.9 98.8 [-67%; —39%]
Evening peak 326.0 155.4 95.7 [-T1%; —38%]
2_Southbound Morning peak 304.0 177.7 85.5 [=72%; —52%]
Off peak 264.2 151.6 80.2 [—70%; —47%]
Evening peak 343.0 178.4 92.2 [-T3%; —48%]
4_Northbound Morning peak 331.3 162.6 105 [—68%; —35%]
Off peak 366.0 136.1 89.3 [=76%; —34%]
Evening peak 628.1 162.9 103.3 [—84%; —37%]
4_Southbound Morning peak 474.2 205.4 106.8 [—77%; —48%]
Off peak 366.3 165.1 97.3 [-73%; —41%]
Evening peak 668.1 282.6 135.2 [-80%; —52%]
60_Inbound Morning peak 234.1 228.8 131.4 [—44%; —43%]
Off peak 215.1 196.1 108.2 [—-50%; —45%]
Evening peak 508.6 292.3 151.5 [-70%; —48%]
60_Outbound Morning peak 237.2 261.7 111.4 [-53%; —57%]
Off peak 2232 198.5 88.2 [-60%; —56%]
Evening peak 458.8 309.6 140.6 [-69%; —55%]
555_Inbound Morning peak 1608.2 709.9 180.6 [—89%; —75%]
Off peak 392.0 187.9 88.6 [=77%; —53%]
Evening peak 532.8 207.5 106.2 [-80%; —49%]
555_Outbound Morning peak 1588.8 668.7 311.3 [-80%; —53%]
Off peak 545.7 180.0 84.1 [—85%; —53%]
Evening peak 828.3 322.2 84.1 [-90%; —74%]

conservation method tends to increase further downstream because the delay preservation assumption
is more likely to be invalidated the longer the prediction horizon is. In Brisbane, two distinctive pat-
terns are observed for the relation between the prediction errors of the timetable and delay
conservation method. For route 60, the prediction errors of both schemes follow the same pattern,
suggesting that the error is induced by the scheduled travel times. In contrast, the prediction error of
the delay conservation method levels with the hybrid scheme rather than with the timetable. This
pattern arguably pertains to unreliable dispatching times while the travel times follow closely the
scheduled ones.

6.3. Validation

The results presented in Section 6.2 demonstrate that the proposed hybrid method outperforms the
reference methods. The transferability of the model is also confirmed for different route layouts,
passenger demands and operation practices. The average computational time for generating a
prediction is 5x10~* seconds and is thus well suited for real-time applications. However, the
calibration of the hybrid model parameters is computationally expensive (e.g. approximately 1 hour
for route 1, eastbound direction, morning peak). Therefore, it is necessary to test the following
hypothesis to validate model capability for real-time application: ‘Estimated values for the proposed
hybrid model parameters can be successfully applied for generating future predictions.’

The parameters estimated using the first dataset for route 1 were applied to the second dataset for the
same route to test its validity for future predictions (both datasets are described in Section 4.1.).
Furthermore, model parameters were also estimated for the second dataset to assess the extent of
performance deterioration caused by the usage of a non-tailored hybrid method. Table V presents
the performance indicators described in Section 3.3.3 for both cases. Evidently, prediction accuracy
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Figure 6. RMSE (y-axis) of the timetable, delay conservation and hybrid prediction schemes along each bus route
(x-axis) during each of the time-of-day periods in (a) Stockholm and (b) Brisbane. RMSE, root mean square error.
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Table V. Validation results for route 1 in Stockholm.

RMSE (seconds) MRE (%) MAE (seconds)

Route 7-9 9-15 15-17 79 9-15 15-17 7-9 9-15 15-17

1_Eastbound Calibration  113.0  105.0 137.8 8.0 6.8 12.0 80.5 76.4 84.4
Validation 114.8 105.2 140.9 7.9 6.7 12.2 81.1 76.3 83.7
1_Westbound  Calibration 91.3 93.6 109.5 4.0 4.0 3.6 64.3 66.7 76.0
Validation 92.7 93.8 109.9 4.0 4.0 3.6 64.7 66.8 75.6

RMSE, root mean square error; MRE, maximum relative error; MAE, mean absolute error.

is almost unaffected—a maximum of 3-second difference in RMSE—by the application of model
parameters that have been estimated for a different period. The mean absolute error even decreased
slightly for evening-peak period. However, no significant change was observed in maximum error with
the MRE remaining almost unchanged in both applications. The validation results indicate that the
hybrid method is robust with respect to the estimated parameter values, confirming the aforementioned
hypothesis. Hence, the computational effort associated with model calibration can be conducted once
at the route level and then be applied in future predictions, enabling real-time applications of the hybrid
prediction method.

7. CONCLUSION

Various hybrid models have been developed in the last two decades in the context of freeway travel
time prediction. These hybrid models combine different predictors and proved to outperform
individual models [8, 29, 30]. Hitherto, no such model has been proposed and evaluated in the public
transport domain. A hybrid model was constructed in this paper on the basis of a linear combination of
schedule, instantaneous and historical predictors. Model specification requires estimating the
contribution of each predictor as well as parameters associated with the extent of instantaneous and
historical data to be considered in the prediction.

The proposed hybrid method was applied to five bus routes in the case study areas of Stockholm
and Brisbane. Prediction accuracy of the hybrid method is then assessed by comparing its perfor-
mance with that of alternative prediction methods that are used in practice. Overall, the hybrid
method results with an improvement of 72% and 48% in prediction accuracy when compared with
timetable and delay conservation prediction method, respectively. The accuracy level attained by
the proposed prediction scheme is 132.5, 93.5 and 112.6 seconds in morning-peak, off-peak and
evening-peak periods, respectively. More reliable predictions can potentially result with operational
efficiency gains, and improvement in users’ satisfaction and their loyalty to the system. Although
the added value for the hybrid method varies among bus routes and time periods, the results confirm
the transferability of the model for different route layouts, passenger demands and operation
practices. Model validation suggests that model parameters can be estimated once and then used in
subsequent applications with high accuracy, enabling real-time applications. While model parameters
are estimated separately for different route directions and time-of-day periods, the parameters are
used uniformly throughout the route. The prediction model could be further enriched by updating
individual predictors’ weights dynamically, for example, by incorporating time-series analysis
methods. This learning mechanism will allow the prediction scheme to evolve so that the contribution
of each predictor on the basis of its recent performance is dynamically altered. The performance of such
improvements can be benchmarked against state-of-the-art machine learning algorithms for bus travel
time predictions.

The hybrid method proposed in this study can embrace a wide range of predictors and be used in
various applications. The method could be extended to predict total journey time to support travel
journey planners by inferring expected headways and thus deduce the transfer times. Moreover, the
prediction method could be embedded in a decision support system to facilitate the implementation
of proactive fleet management and control measures.
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8. SYMBOL DEFINITION

Bus trip

Bus stop i

Matrix of scheduled departure times

Matrix of observed departure times

Matrix of predicted departure times

Scheduled departure time of trip & at stop s;

Observed departure time of trip & at stop s;

Predicted departure time of trip k& from stop s; generated when the bus departs from stop s,
Set of time point stops

Predicted travel time for trip & connecting two successive stops, s; _ | to stop s;

Scheduled travel time prediction for trip & on road segment connecting stops, s; _ 1 and s;
Instantaneous travel time prediction for trip k on road segment connecting stops, s; _ ; and s;
Historical travel time predictions for trip £ on road segment connecting stops, s; _ | and s;
Weight assigned to a scheduled travel time prediction

Weight assigned to an instantaneous travel time prediction

Weight assigned to a historical travel time prediction

Number of downstream bus travel times which is considered in instantaneous prediction
Reference point of a time window in a historical travel time prediction

Tolerance parameter of a time window in a historical travel time prediction

Median

9. ABBREVIATION

Advanced Public Transport Systems
Artificial Neural Networks

Support Vector Machines
Automated Vehicle Location
Automatic Passenger Count
Automatic Fare Collection

Time Point Stop

Root Mean Square Error

Mean Absolute Error

Maximum Relative Error
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