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Abstract

Rank detection is crucial in array processing applications, as many algorithms rely
on accurately estimating the rank of the data matrix to ensure optimal perfor-
mance. Under Gaussian white noise, rank can be detected through eigenvalue
analysis. However, in arbitrary noise, prewhitening the data matrix with the noise
covariance matrix is necessary, and rank detection is achieved by examining the
generalized eigenvalues. Existing methods often assume the noise covariance struc-
ture or require a large number of noise samples. This thesis focuses on addressing
the rank detection problem in scenarios with limited noise samples and arbitrary
noise environments.

Firstly, we investigate the largest generalized eigenvalue threshold for the
prewhitened data sample covariance matrix according to the random matrix the-
ory. We develop a rank detection algorithm based on the threshold via a sequential
test, and provide the performance analysis. A series of simulations demonstrate
its superiority over conventional methods such as Minimum Description Length
(MDL) and Akaike’s Information Criterion (AIC).

Secondly, since the Short-time Fourier Transform (STFT) is commonly used
for non-stationary signal analysis, we extend our rank detection method to the
STFT domain. The correlations introduced by the STFT have a significant im-
pact on the distribution of the noise. Therefore, we develop a technique to remove
correlations among time-frequency bins based on exact expressions of these corre-
lations. After successfully eliminating these correlations, our proposed rank detec-
tion method achieves enhanced reliability and performance in the STFT domain.

Lastly, we evaluate the effectiveness of our rank detection method in speech
enhancement applications. Simulations confirm that utilizing the estimated rank
improves speech quality compared to using the known number of sources.

5
TUDelft

Delft University of Technology






Rank Detection Based on Generalized Eigenvalue
Threshold in Arbitrary Noise

THESIS

submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE
in
ELECTRICAL ENGINEERING

by

Bingxiang Zhong B.Sc.
born in Jiangxi, China

This work was performed in:

Signal Processing Systems Group

Department of Microelectronics

Faculty of Electrical Engineering, Mathematics and Computer Science
Delft University of Technology



%
TUDelft

Delft University of Technology

Copyright (©) 2023 Signal Processing Systems Group
All rights reserved.



DELFT UNIVERSITY OF TECHNOLOGY
DEPARTMENT OF
MICROELECTRONICS

The undersigned hereby certify that they have read and recommend to the Faculty
of Electrical Engineering, Mathematics and Computer Science for acceptance a thesis
entitled “Rank Detection Based on Generalized Eigenvalue Threshold in Ar-
bitrary Noise” by Bingxiang Zhong B.Sc. in partial fulfillment of the requirements
for the degree of Master of Science.

Dated: 29 June 2023

Chairman:

prof.dr.ir. A.J. van der Veen

Advisor:

prof.dr.ir. A.J. van der Veen

Committee Members:

dr.ir. R.C. Hendriks

dr.ir. R. Heusdens



iv



Abstract

Rank detection is crucial in array processing applications, as many algorithms rely on
accurately estimating the rank of the data matrix to ensure optimal performance. Under
Gaussian white noise, rank can be detected through eigenvalue analysis. However,
in arbitrary noise, prewhitening the data matrix with the noise covariance matrix is
necessary, and rank detection is achieved by examining the generalized eigenvalues.
Existing methods often assume the noise covariance structure or require a large number
of noise samples. This thesis focuses on addressing the rank detection problem in
scenarios with limited noise samples and arbitrary noise environments.

Firstly, we investigate the largest generalized eigenvalue threshold for the
prewhitened data sample covariance matrix according to the random matrix theory.
We develop a rank detection algorithm based on the threshold via a sequential test,
and provide the performance analysis. A series of simulations demonstrate its supe-
riority over conventional methods such as Minimum Description Length (MDL) and
Akaike’s Information Criterion (AIC).

Secondly, since the Short-time Fourier Transform (STFT) is commonly used for non-
stationary signal analysis, we extend our rank detection method to the STFT domain.
The correlations introduced by the STF'T have a significant impact on the distribution
of the noise. Therefore, we develop a technique to remove correlations among time-
frequency bins based on exact expressions of these correlations. After successfully
eliminating these correlations, our proposed rank detection method achieves enhanced
reliability and performance in the STFT domain.

Lastly, we evaluate the effectiveness of our rank detection method in speech en-
hancement applications. Simulations confirm that utilizing the estimated rank improves
speech quality compared to using the known number of sources.



vi



Acknowledgments

It feels like just yesterday when I first arrived in the Netherlands and stepped foot on
the TU Delft campus, even though it was about 2 years ago. Time really flies! Over
these past 2 years, I have experienced a lot of things, both moments of joy and times
when I felt down. Now, I am happy to reach the end of my master’s journey. I want
to express my gratitude to those who have helped, supported and accompanied me on
this journey.

First, I would like to express my heartfelt gratitude to my advisor prof.dr.ir. A.J.
van der Veen for his assistance throughout my thesis research. Not only did he guide
me to complete the final part of my master’s study, but he also taught me valuable life
lessons about facing difficulties, managing stress, and thinking critically. His patience
and support have kept me going and made me feel confident when dealing with research
challenges. His instructions and ideas have always inspired me and made the process
of exploring the unknown enjoyable.

Next, I want to extend my thanks to dr.ir. R.C. Hendriks and dr.ir. R. Heusdens
for being my thesis committee members. Their feedback and suggestions have been
incredibly valuable to my thesis. Their support and encouragement have boosted my
confidence throughout this process. I am truly thankful for their expertise and guidance.

Lastly, I want to express my heartfelt appreciation to my friends and family for
their unwavering support and unconditional love throughout this journey. I will never
be who I am today without them. Thank you all for being by my side!

Bingxiang Zhong B.Sc.
Delft, The Netherlands

vil



viii



Contents

Abstract

Acknowledgments

1

Introduction
1.1 Research Question . . . . . ... ... ...
1.2 Thesis Outline . . . . . . . . .. ...

Problem Formulation and Related Work

2.1 Signal Model . . . . . ...

2.2 Tools from Linear Algebra for Rank Detection . . . . . ... ... ...
2.2.1 Eigenvalue Decomposition (EVD) . . . .. ... ... ... ..
2.2.2  Prewhitening Technique . . . . . .. .. ... ... ... ...
2.2.3  Generalized Eigenvalue Decomposition (GEVD) . . . . . . . ..

2.3 Related Work on Rank Detection . . . . . .. .. ... ... ......
2.3.1 Rank Detection for Gaussian White Noise . . . . . . .. .. ..
2.3.2 Rank Detection for Colored and Correlated Noise . . . . . . ..

2.4 Problem Formulation . . . . . . . . . ... ... ... ... ...

Threshold for Prewhitened Sample Covariance Matrix

3.1 Threshold for Gaussian White Noise . . . . . . .. ... ... ... ..

3.2 Threshold for Prewhitened Noise . . . . .. .. ... ... .......
3.2.1 The distribution of Prewhitened Noise . . . ... ... ... ..
3.2.2  Adjustment of the Threshold § for Prewhitened Noise . . . . . .
3.2.3 Threshold for F-type Matrices . . . . . . .. .. ... ... ...

3.3 Threshold in the Signal-plus-Noise Case . . . . . . .. ... ... ...

3.4 Chapter Conclusion . . . . . . . .. ... ... ...

Threshold-based Rank Detection Algorithm

4.1 Sequential Rank Detection Algorithm . . . . . .. ... ... ... ...

4.2 Performance Analysis . . . . . . ... .. Lo Lo

4.3 Rank Detection Simulations . . . . . . .. ... ...
4.3.1 Rank Detection for Ny =00 . . . . . . ... .. ... ... ...
4.3.2 Rank Detection for Ny #oco . . . . . ... ...

4.4 Chapter Conclusion . . . . . . . . . . .. ...

Threshold-based Rank Detection Method in the STFT Domain

5.1 Short-Time Fourier Transform (STFT) . . . ... ... ... ... ...

5.2 Problems of Threshold Methods in the STFT domain . . . . . . . . ..

5.3 Correlation in STET . . . . . . . . . .
5.3.1 Time correlation . . . . . . . . . .. ...
5.3.2 Frequency Correlation . . . . . .. .. ... ... ... .....

ix

vii

N DO =

© 00 1 O UL UL i W W



5.3.3 Time-Frequency Correlation . . . . . . ... ... ... ..... 36

5.4 Removing the Correlations . . . . . . . ... ... ... ... ... .. 37
5.4.1 Temporal Prewhitening (TP) . . . . ... ... ... ... ... 38
5.4.2  Frequential Prewhitening (FP) . . . . . ... ... ... .. ... 38
5.4.3 Time-Frequency Prewhitening (TFP) . . . . .. ... ... ... 39

5.5 Simulations . . . . . ... 40
5.5.1 Eigenvalue Distribution Recheck . . . . . . . ... ... ... .. 40
5.5.2 Rank Detection for Stationary Source . . . . . . . . ... .. .. 42
5.5.3 Rank Tracking for Time-varying Source . . . . . . . . . . .. .. 44

5.6 Chapter Conclusion . . . . . . . . . ... .. ... ... 45

Threshold-based Rank Detection Method for Speech Enhancement 47

6.1 Multi-microphone Signal Model . . . . . .. ... ... A7

6.2 Beamforming . . . . .. ... . 49
6.2.1 GEVD-based Beamformers . . . . . . . . ... ... ... ... . 50
6.2.2 Beamforming After Temporal Prewhitening . . . . .. ... .. 51

6.3 Implementation Detail . . . . . . . .. ... .. ... ... .. ... .. 52

6.4 Simulations . . . . . . .. 54
6.4.1 Simulation Setup . . . . .. ... 54
6.4.2 Evaluation Method . . . . . . . ... ... ... ... ... ... 56
6.4.3 Rank Detection Accuracy of Threshold Method . . . . . .. .. 57
6.4.4 Speech Enhancement Performance . . . . . . . .. .. ... ... 60

6.5 Chapter Conclusion . . . . . . . . . .. ... 61

Conclusion and Future Work 63

7.1 Conclusion . . . . . . . . . 63

7.2 Future Work . . . . . . ... 64
7.2.1 Theoretical Advancements . . . . . . . .. ... ... ... ... 64
7.2.2 Practical Applications . . . . ... ... ... ... 64

A Tracy-Widom Distribution in the Real Case 65

Temporal Prewhitening Algorithm 67

B.1 General Temporal Prewhitening . . . . . . . ... ... ... ... ... 67

B.2 Cholesky-Forward-Substitution Algorithm . . . . ... ... ... ... 68
B.2.1 Algorithm for D=1 . . . .. .. ... ... ... ... ... 69
B.2.2 Algorithm for D >1 . . . . . .. ... ... ... ... 70



List of Figures

3.1

3.2

3.3

3.4

3.5

4.1
4.2

4.3

4.4

4.5

4.6

0.1
5.2

2.3

5.4

2.5
2.6

Empirical CDF of the largest eigenvalue of the SCM of prewhitened
noise, compared to the theoretical CDF and the modified CDF. M =
4, N, =200, Ny =200, N, =80. . . . . . . . .

Empirical CDF of the largest eigenvalue of the SCM of prewhitened
noise, compared to the theoretical CDF when Ny =o00. . . . . . . . ..
Theoretical and empirical CDF of the largest eigenvalue of the SCM of
prewhitened noise. . . . . . ...
CDF of the largest eigenvalue of the SCM of prewhitened noise for the
correlated noise. . . . . . ...
CDF of the d + 1-st eigenvalue of the SCM of prewhitened data matrix

with d number of sources, and the Tracy-Widom model with parameters
(M —d, Ny —d, Np). . o oo

Empirical and theoretical CDF of the d-th eigenvalue with d sources.

Empirical and theoretical probability detection as a function of M, with
N,=Ny=8M. . . e
Empirical and theoretical probability detection for three sources when
changing the signal strength of the third source ps, and fixing the first
two signals strengths p; = 12,p, =10.. . . . . . . . .. ... ... ..
Probability detection as a function of signal strength for M = 8 N, =
Ny =200. . . . .
The rank detection performance of different methods for N, = oo, while
varying the rank d, N,. . . . . . . . . .. L

The rank detection performance of different methods, while varying the
rank d, Noand N, . . . . . . .

Diagram of STFT on a data vector. . . . . . ... ... ... ... ...
Empirical CDF of the largest eigenvalue of the SCM of prewhitened
noise after STFT, compared to the CDF of the Tracy-Widom model for
different window functions . . . . . . .. ...
Time correlation for the same frequency bin (k = 2) as a function of
time lag 7, considering different window functions, for L = 256, K =
256, H = 128. . . . . .
Frequency correlation for the same time frame (m = 3) as a function of
frequency difference 9, considering different window functions, for L =
256, K =256, H = 128. . . . . . . . . ..
Sliding window processing diagram. . . . . . . . .. ... ... ... ..
Empirical CDF of the largest eigenvalue of the SCM of prewhitened noise
after TFP and CDF of the Tracy-Widom model for different window
functions. . . . . ..

xi

13

14

16

18

20

24

24

25

25

27

29

32

33

35

36
39



2.7

5.8

2.9
5.10

5.11
5.12

6.1
6.2

6.3

6.4
6.5

6.6

6.7

6.8

6.9

6.10

6.11

Empirical CDF of the largest eigenvalue of the SCM of prewhitened noise
after TFP and CDF of the Tracy-Widom model when including the first
frequency bin (k=0). . .. ... ...
Empirical CDF of the largest eigenvalue of the SCM of prewhitened
noise after TP and CDF of the Tracy-Widom model for different window
functions at the same frequency bin (k=2). . .. ... ... ... ...
The probability of detection as a function of SNR for d = 1 in STFT
domain at one frequency bin (k=2). . . . ... ... ...
True rank of the generated signals in the time domain. . . . . . . . ..
The probability of detection when the rank is changing over time.

Rank tracking results of SF and MF settings at 30 dB SNR. . . . . ..

Implementation diagram of threshold method in speech enhancement. .
Probability of detection as a function of SNR of microphone self-noise
for different window functions. . . . . . .. ...
The room geometry for simulations with M = 6 microphones and d = 2
SOUTCES.  © v v v v e e e e e e e e e e e
Plots of speech signals and their VAD labels used in the simulations.

Spectrum plots of target speech signals at the reference microphone,
when the noise is not presented. . . . . .. ... ... L.
Rank detection probability using threshold method for (a) one target
source and (b) two target sources. . . . . . . ... ...
Rank estimation results for one or two target sources at frequency bin
20, input SNR 25dB. . . . . .. ...
Detection probability for two target sources at frequency bin 20, input
SNR 25 dB, N, =20, N, =100. . . . . . .. ... ... ...
Rank estimation results for two target sources at frequency bin 20, input
SNR 25 dB, N, =20, N, =100. . . . . . .. ... ... ... ...
Speech enhancement performance using the maximum rank and the es-
timated rank of the threshold method, for one target source. . . . . . .
Speech enhancement performance using the maximum rank and the es-
timated rank of the threshold method, for two target sources. . . . . .

xil

42

60



List of Tables

6.1 Simulation parameters

xiii



xiv



Introduction

Among the recent decades, array processing has become increasingly an indispens-
able technology with wide-ranging applications in various domains, revolutionizing our
daily lives and industrial practices. From enabling seamless wireless communication
to enhancing medical imaging, radar systems, industrial quality control, and speech
processing, array processing techniques have become integral to modern society.

Within the field of array processing, rank detection, also known as the detection of
the number of independent sources, is of utmost importance as it serves as the necessary
first step for subsequent array processing applications. For instance, signal processing
algorithms based on subspace methods, like the ESPRIT or MUSIC algorithms that are
used in radar systems for direction-of-arrival (DoA) estimation, rely on accurate rank
detection [1, 2]. Speech enhancement and separation tasks require precise knowledge of
the number of sources to ensure optimal speech quality. Similarly, in wireless commu-
nications, the identification and mitigation of the interference also need the accurate
estimation of the number of independent sources. Therefore, achieving an accurate
estimation of the rank plays a vital role in optimizing system performance and overall
operational efficiency.

Ideally, the rank can be determined by observing the eigenvalues of the sample
covariance matrix of the collected data samples. However, in scenarios with limited
observations, low signal-to-noise ratio (SNR), and the presence of noise, observing the
eigenvalues becomes challenging, necessitating the use of more advanced methods. Nu-
merous techniques have been developed to accurately detect the rank, with a specific

focus on scenarios involving Gaussian white noise [3, 41, 5, 6]. Prominent approaches
include the Minimum Description Length (MDL) and Akaike’s Information Criterion
(AIC), which leverage information theoretic criteria [3]. Additionally, methods such as

[7] have established precise thresholds for eigenvalues obtained from noise, enabling the
development of robust rank detection algorithms.

However, rank detection becomes more challenging when dealing with colored and
correlated noise environments. In such cases, a prewhitening technique is often em-
ployed to decorrelate the noise by using the noise covariance matrix, and the estima-
tion of the noise covariance matrix is required in practice. The rank detection then is
achieved by analyzing the generalized eigenvalues of the matrix pencil formed by the
data and noise covariance matrices. Although methods originally designed for Gaus-
sian white noise can be used, their effectiveness may be compromised when working
with a limited number of noise records used for prewhitening. Many existing spe-
cialized methods rely on the assumptions of the structure of noise covariance matrix
or the availability of a large number of noise samples to ensure reliable performance
[8, 9, 10]. Therefore, the development of specialized techniques capable of overcoming
these limitations is necessary.

Motivated by these research gaps, this thesis aims to address the challenges of rank



detection in the presence of arbitrary noise. Specifically, we will focus on utilizing the
threshold method to determine the rank. This method involves counting the number
of generalized eigenvalues that exceed a certain threshold. Additionally, we will extend
this method to the domain of Short-time Fourier Transformation (STFT), which is
commonly used for analyzing and processing non-stationary signals.

1.1 Research Question

The primary research question that guides this study is as follows:

e How can we achieve precise rank detection based on the threshold method in the
presence of colored or correlated noise, considering the finite number of data sam-
ples and noise samples?

1.2 Thesis Outline

To answer the research question, the thesis consists of seven chapters. In this current
chapter, we provide a brief introduction to the rank detection problem and outline the
main research questions explored in this thesis. The subsequent chapters are organized
as follows:

Chapter 2: This chapter begins by presenting essential mathematical concepts for
a comprehensive understanding of the research, including the basic signal model and
relevant linear algebra tools. Additionally, a brief literature review will be provided.
Finally, we present the problem formulation and outline specific research objectives
based on the findings from the literature review.

Chapter 3: In this chapter, we review the eigenvalue threshold for Gaussian white
noise and investigate its applicability to prewhitened noise. Furthermore, we present the
precise mathematical expression of the threshold for the largest generalized eigenvalue
of prewhitened noise. Lastly, we introduce a more accurate threshold for the signal-
plus-noise case.

Chapter 4: We propose a sequential test approach for the rank detection algorithm
based on the threshold method, followed by an analysis of its performance. We also
present the simulation results of the proposed rank detection algorithm and compare
them with those obtained using MDL and AIC.

Chapter 5: This chapter extends the rank detection method to the STFT domain.
Firstly, we discuss the time and frequency correlations introduced by the STF'T, which
can impact the performance of the proposed rank detection method. Subsequently,
we present techniques to mitigate these correlations, and show simulations of rank
detection after removing the correlations, comparing the results with those obtained
without removing them.

Chapter 6: In this chapter, we introduce the proposed rank detection method
into the context of speech enhancement. Simulations are employed to evaluate the
effectiveness of the rank detection method in this application.

Chapter 7: The final chapter concludes our findings and provides recommendations
for future research.



Problem Formulation and
Related Work

In this chapter, we will begin by providing fundamental mathematical concepts, includ-
ing the signal model and important linear algebra tools, which are crucial for better
understanding the subsequent chapters of this thesis. Next, we will present a review of
existing literature on rank detection. By analyzing the related work, we gain valuable
insights and motivation for our own research. Furthermore, we will provide a more
specific problem formulation for the main research question.

2.1 Signal Model

Consider a common signal model in array processing, where a sensor array of M sensors
is used to collect N independent observations from d sources. Each observation is
denoted as the vector x[n] of dimension M, for n = 1,..., N. The observation vector is
modelled as

x[n] = Hs[n] + n[n|,n=1,.... N (2.1)
where n[n| denotes a M-dimensional complex noise vector, H = [hy,...,h,] is the
complex steering matrix of size M x d, s[n] = [si[n], ..., sq[n]]T is a d-dimensional

complex source vector. ()T denotes the transpose operator.

Few assumptions are made for this signal model. The number of sources d is smaller
than the number of sensors M. The column vectors in matrix H contain the transfer
function of the source from source position to sensors. These vectors are assumed to
be linearly independent, resulting in H being a full-column rank matrix. The source is
assumed to follow a complex zero-mean Gaussian distribution with covariance matrix
E[ss’] = Rg, where E[-] represents the expectation operator. The covariance matrix
Rg has a size of d x d and is a full-rank matrix. We assume that the noise is drawn
from a complex Gaussian distribution CN (0, Ry), and the covariance matrix Ry is a
full-rank matrix of size M x M. Additionally, the noise is assumed to be independent
of the source, i.e., E[snf] = 0. The covariance matrix of x[n] is then given by

Ry = HRsH” + Ry (2.2)
=® + Ry,
with (-)f the complex conjugate transpose. Matrix ® is of rank d, given the assump-
tions defined above.
We can stack all the observations column-wise, resulting in the signal model given
by
X=HS+N

2.3
= Xg+ N, ( )



where X = [x[1],...,x[N]] € CM*¥ denotes the data matrix, S = [s[1], ..., s[N]] € C*¥
is the source matrix, and N = [n[1],...,n[N]] € CM*¥ is the noise matrix.

In practice, the covariance matrix is often unknown and needs to be estimated. One
common approach is to use the sample covariance matrix (SCM), which is obtained by
averaging the outer products of observations. The SCM of X is given by

. 1
Ry = —XX*. 2.4
X = (2.4)
As N approaches infinity, the sample covariance matrix becomes an increasingly accu-
rate estimate of the true covariance matrix. Estimation of the noise covariance matrix
follows a similar procedure, where noise samples are collected during signal-free periods.

2.2 Tools from Linear Algebra for Rank Detection

The rank detection problem is to find the number of sources, denoted by d, based on the
noisy observations. The number of observations, the SNR, and the noise distribution
can all affect the rank detection performance. Before we delve into more specific meth-
ods, the necessary tools from linear algebra are introduced first for the rank detection
in this section.

2.2.1 Eigenvalue Decomposition (EVD)

As matrix Ry is Hermitian, the EVD of the data covariance matrix is given by [11]
Ry = UAU”Y, (2.5)

where the matrix U, with dimensions M x M, contains the eigenvectors, while A =
diag{ A1, ..., Ay} is a diagonal matrix of size M x M consisting of the eigenvalues. Since
the covariance matrix is Hermitian and positive definite, the eigenvector matrix U is a
unitary matrix, i.e., UU = I,;, and the eigenvalues are real and positive.

The rank of the data matrix can be determined by examining its eigenvalues. In an
ideal scenario without noise, the collected data matrix X is equal to the matrix Xg. If
d < M, we can observe d non-zero eigenvalues and M — d zero eigenvalues. Therefore,
the rank of the data matrix can be straightforwardly determined by analyzing the
eigenvalues.

In the case of Gaussian white noise, the noise covariance matrix is given by Ry =
021y, where o2 represents the noise power and Iy, denotes the identity matrix of size
M x M. The presence of noise influences the eigenvalues by increasing each eigenvalue
by the noise power o2. Consequently, if the eigenvalues are sorted in descending order,
we will have

)\1 Z Z)\dZ)\dJrl:...I)\M:O'i. (26)

Hence, by setting the noise power as the threshold, it becomes convenient to determine
the rank of the data matrix. This can be achieved by simply counting the number of
eigenvalues that surpass the threshold value.



2.2.2 Prewhitening Technique

In practical scenarios, it is common to encounter non-white noise, where the noise co-
variance matrix does not exhibit uniform diagonal entries. For example, in the case of
uncalibrated sensors, the noise power in every sensor is different, making it challenging
to determine an eigenvalue threshold to accurately detect the number of sources. More-
over, when the noise is spatially correlated, the eigenvectors of the signal subspace are
affected, rendering the threshold method ineffective. To overcome these challenges, the
prewhitening technique is often employed. This technique transforms the noise distri-
bution into a 'white noise’ distribution, where the covariance matrix becomes diagonal
and equal to the identity matrix. By applying prewhitening, the correlated noise no
longer influences the eigenvectors, allowing for a more reliable determination of the
number of sources.

The prewhitening technique involves a linear transformation of the data matrix
using a whitening matrix. The whitening matrix is typically defined as the inverse of
the square root of the noise covariance matrix, denoted as R;,l/ ’. The square root of
the noise covariance matrix can be computed through the EVD of the noise covariance
matrix, Cholesky decomposition, or QR decomposition. For example, with EVD, we

can write Ry as
Ry = UyAyU%

= UyAUHU G AYPUR
= R{’Ry’,

where Uy are the eigenvectors and Ay are the eigenvalues. R}\{Z is the unique Hermi-
tian square root of Ry.

Let X denote the prewhitened data matrix, and X = R;,l/ °X. The prewhitened
data covariance matrix then is given by

R; = R]—Vl/Q(I)R]—Vl/Q n R]—Vl/QRNR]—Vl/z

(2.7)
— Ry?®Ry? + 1,

This suggests that the EVD of the covariance matrix of the prewhitened data X can
be expressed as follows:

R; = U(Ag +I,,)U", (2.8)

where if the number of sources is assumed to be d < M, the eigenvalues of R ¢ will
exhibit the relationship:

M> >N > A== Ay = L. (2.9)

Thus, the number of sources can be easily determined by counting the eigenvalues of
R ; that are greater than one.

2.2.3  Generalized Eigenvalue Decomposition (GEVD)

However, calculating the square root of Ry to obtain R%Q may introduce inaccuracies
in the data. To avoid this issue, an alternative approach is to employ the generalized



eigenvalue decomposition (GEVD) on the matrix pencil (®,Ry) [11]:

® = FASF?

2.10
Ry = FI,,F?, (2.10)

where the matrix F corresponds to the generalized eigenvectors and has dimensions
M x M, Ags represents the diagonal matrix containing the generalized eigenvalues. It
is important to note that obtaining the source data matrix directly is often impossible.
To address this limitation, we can employ the GEVD on the matrix pencil (Rx, Ry)
with slight modifications made to the generalized eigenvalues. According to Eq. (2.2),
we have

Ry = F(Ag + I,)F. (2.11)
The prewhitened data covariance matrix then can be expressed as
Ry = Ry/*F(Ag + I )FIR,2. (2.12)

By comparing Eq. (2.12) with Eq. (2.8), we can observe that the prewhitening
method and GEVD are equivalent. Specifically, we have R;\,l/ °F = U and Ag = Ag.
Therefore, the generalized eigenvalues of the matrix pencil (Rx,Ry) are identical to
the eigenvalues of the prewhitened data covariance matrix.

The GEVD of the matrix pencil (Rx, Ry) can also be viewed as the EVD of Ry' Ry,

since we have
Ry Rx = F 71, F'F(Ag + I)F?

=F H(Ag +1)FH.
Denote F~# as K. Then, we have
Ry Ry =K(As+ I )K" (2.14)

which is the EVD of Ry'Ryx. It is evident from Eq. (2.11) and Eq. (2.14) that the
generalized eigenvalues of the matrix pencil (Rx, Ry) are identical to the eigenvalues of
Ry'Ryx. However, as Ry' Ry is not Hermitian, K is not a unitary matrix (K# # K=1).
In conclusion, the eigenvalues of the covariance matrix of X are equivalent to those of
RR,IRX, and to the generalized eigenvalues of the matrix pencil (Ry,Ry).

(2.13)

2.3 Related Work on Rank Detection

In practical applications, the true covariance matrices are typically unknown and need
to be estimated. Additionally, the number of observations is finite, resulting in distinct
eigenvalues that prevent a straightforward separation between the source and noise
components using a simple threshold, as described in Eq. (2.6) or Eq. (2.9). To address
these challenges, more sophisticated methods and algorithms are required to detect the
rank or determine a suitable threshold.

This section presents several commonly used methods for rank detection, considering
different noise distributions, namely Gaussian white noise and non-white noise. The
methods are presented separately for each noise type, taking into account the specific
characteristics and challenges associated with each.



2.3.1 Rank Detection for Gaussian White Noise
2.3.1.1 Information Theoretic Criteria

For Gaussian white noise, AIC and MDL based on the information theoretic criteria
are two well-known and popular rank detecting methods [3]. The rank is set to the
argument ¢ = 0, ..., M —1 that minimizes the defined criteria, which balances the trade-
off between high likelihood and a low number of free parameters [3]. Let \;;i = 1,..., M
denote the eigenvalues of Ry. The MDL estimator is given by

X HM AL/ (M—q)
dypr, = argmin — (M — q)N In [ leqﬂ z\; — | +
g T—g Duicgr1 i (2.15)
1
and the AIC estimator is given by
X ‘ Hf\i Xg/(M_Q)
darc = argmin — 2(M — q)N In [ ;qﬂ ITENY + (2.16)
q M—q Lai=q+1 "\ :

2q(2M — q).

Comparing MDL and AIC, we observe that the first term of MDL is the same as
AIC when we ignore the constant factor 2 in AIC. However, MDL introduces an extra
factor of % In N in the second term. This difference greatly impacts the performance of
MDL, making it a consistent estimator. In other words, as the number of observations
approaches infinity, the estimated rank converges to the true rank with a probability of
one [3]. MDL generally provides reliable estimation results, but it may not be effective
in scenarios with very low SNR. On the other hand, AIC exhibits good performance
at low SNR but tends to overestimate the rank and is not a consistent detector [1]. It
is important to note that both MDL and AIC are based on large sample asymptotics
and may encounter challenges when dealing with small sample sizes.

Improvements have been made to address the problems of MDL and AIC. Many
methods take into account the statistical characteristics of the eigenvalues of the sample
covariance matrix. For example, in [5], authors considered the exact distribution of the
eigenvalues of Wishart matrices, while in [6], authors employed the order statistics to
give a more accurate estimation of the eigenvalues in small data samples.

2.3.1.2 Threshold Method

Another approach is to employ a threshold-based method where a threshold is set for
the eigenvalues, and the number of signals is determined by counting the number of
eigenvalues that exceed the threshold. If we assume the eigenvalues from the signals
are much larger than from the noise, a reasonable threshold then can be the largest
eigenvalue from noise. Therefore, many threshold-based rank detection methods focus
on the behavior of the largest eigenvalue from the noise.

Bai and Yin [12] provided an upper bound of the largest eigenvalue of the SCM of
Gaussian white noise. This upper bound is determined by the noise power and the size



of the matrix. As the number of observations increases, the largest eigenvalue tends to
converge to this upper bound. Using this upper bound as a threshold can be an effective
approach to detect the rank when the eigenvalues of the signals are significantly larger
than those of the noise, or when a large number of data samples are available.

A more accurate threshold considering the finite data samples is given in [13, 1],
based on the random matrix theory. This theory shows that the largest eigenvalue of
the noise SCM follows the Tracy-Widom distribution to the order of O(n~2/3). Based
on this distribution, it is possible to determine a threshold that achieves a constant
false alarm rate (CFAR), ensuring a desired level of accuracy in detecting the rank.
In the work of Zhou et al. [15], a computationally efficient method called SURV was
proposed as a counterpart to generalized singular value decomposition (GSVD). SURV
utilizes the largest eigenvalue threshold derived from the Tracy-Widom distribution to
perform noise removal by eliminating the noise components from the data.

In [7], Kritchman and Nadler developed a rank estimator based on this random
matrix theory, in which the rank is found via a sequence of hypothesis tests. The
authors also proved that the estimator is weakly consistent, but if the false alarm rate
decreases with the sample size, then it will be strongly consistent. The performance of
this rank estimator based on random matrix theory was shown to outperform traditional
methods such as MDL and AIC in various scenarios.

Authors in [16] made further advancements in refining the threshold when signals are
present. Moreover, they discovered that the largest eigenvalue of the Hankel structure
of the noise SCM follows a generalized extreme value (GEV) distribution. The authors
also provided an empirical expression for the eigenvalue distribution based on extensive
experimental analysis.

2.3.2 Rank Detection for Colored and Correlated Noise

Things would become differently for the non-white noise, characterized by a covariance
matrix that is not diagonal with identical elements. In such cases, a prewhitening
technique is commonly employed to transform the noise into a 'white’ noise model.
This can also be achieved through the GEVD on the matrix pencil (Rx,Ry). If the
noise covariance matrix is known or the number of noise samples used for prewhitening
is sufficiently large, the prewhitened noise approximates Gaussian white noise, enabling
the utilization of methods designed for Gaussian white noise.

However, challenges arise when the noise covariance matrix is unknown and esti-
mated from a limited number of noise data samples. In such cases, the prewhitening
process may not fully eliminate the non-white characteristics of the noise. Conse-
quently, the prewhitened noise may exhibit different properties from Gaussian white
noise, rendering the application of methods designed for Gaussian white noise invalid
for rank detection in this context.

Addressing rank detection in the presence of non-white noise is an area that has
received relatively limited attention. Some approaches extend the information theo-
retic criteria to address colored and correlated noise. For instance, in [8], the authors
considered colored noise and assume a specific model for the noise covariance matrix,
leading to the development of modified versions of MDL and AIC based on this model.
Another approach, described in [10], proposes a quasi-maximum likelihood (quasi-ML)



estimator of the data covariance matrix to account for colored noise, which is then
used to construct criteria for rank detection. Furthermore, Zhao et al. [9] extended
the criteria to arbitrary noise settings and provided a consistent estimator, although
the performance with finite data samples is not explicitly discussed. Additionally, [17]
shed light on rank detection based on random matrix theory, building upon the work

of Johnstone [18]. However, the rank detection algorithm proposed in [17] lacks a con-
solidated derivation, performance comparison with other methods, and comprehensive
analysis.

Furthermore, it is important to note that the aforementioned methods, whether
designed for Gaussian white noise or non-white noise, all assume stationarity of the
signal. For non-stationary signals such as speech and audio, the STFT is commonly
employed, and the characteristics of the noise and signal may change. This can affect
the effectiveness of methods based on these characteristics for rank detection.

2.4 Problem Formulation

Motivated by the related work, this thesis is aimed to solve the rank detection problem
using the threshold-based method when the noise is colored or correlated. We will
mainly base ourselves on the theory from Johnstone [18]. To answer the main research
question, given the finite number of noisy observations X and pure noise samples N,
we are going to solve the following problems:

e Find the threshold for the largest generalized eigenvalue from noise subspace of
the GEVD on the matrix pencil (Rx,Ry).

e Develop a reliable rank detection algorithm based on the threshold.
e Extend the rank detection method to the STFT domain.

Finally, we will test the effectiveness of the rank detection method in an array processing
application.
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Threshold for Prewhitened
Sample Covariance Matrix

In this chapter, we will investigate the threshold for the largest eigenvalue of the
prewhitened SCM. We will begin by reviewing the eigenvalue threshold for the Gaussian
white noise, and check if this threshold can be applied to the prewhitened covariance
matrix. Next, we will present the Tracy-Widom approximation of the distribution of
the largest eigenvalue for F-type matrices, which also represents the theoretical distri-
bution of the largest eigenvalue of the prewhitened covariance matrix. To demonstrate
the validity of the theory, we will provide simulations.

3.1 Threshold for Gaussian White Noise

We first review the results summarized in [13, 1] of the largest eigenvalue distribution
of the white Gaussian covariance matrix. Consider the complex Gaussian white noise
matrix A € CM*No from the distribution CA/(0,I;). The SCM is given by Ry =
N%AAH and follows the Wishart distribution. For M, N, — oo and M/N, — ( €
(0,00), the distribution of the largest eigenvalue A1 of R, then can be approximated
by the Tracy-Widom distribution of order 2:

NgA1 — PM,N,
UM, N,

B TW,, (3.1)

with centering and scaling constants as

pun, = (VNa + VM),

1 1

g 3

UM,N, (\/Fa‘i‘ \/M)<m+ m) )
where slight modifications are required when the data matrix is real. See Appendix A.
For the largest eigenvalue, we are interested in a threshold 3 that achieves a certain
false alarm rate 1 — p, such that the probability P(A\; > 8) = 1 — p. Let F, ' denote
the inverse Cumulative Distribution Function (CDF) of Tracy-Widom distribution of

order 2. The probability can be written as

Naj\l — PM,Ng < Naﬁ — PM,N,y

P(S\1>5):1—P<:>P(

UM,N, UM,N,
Naﬁ — PM,N, _
B Y ()]
UM,N,
The threshold § is given by
1 _
p= F(PM,NQ +vnn, I '(p)). (3.2)

a
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where F,; ' can be approximated by an inverse gamma distribution [14]. If the noise
power is 02, the threshold should be adjusted to be o2 4.

3.2 Threshold for Prewhitened Noise

The purpose of using prewhitening or GEVD is to whiten the noise data and ensure
that it exhibits the property of white noise. However, it is important to determine
whether the prewhitened noise is truly white noise or not. If it is, then the threshold
for Gaussian white noise can be used. In this section, we will investigate this issue and
test the effectiveness of that threshold. The correct threshold then will be given.

3.2.1 The distribution of Prewhitened Noise

Without loss of generality, assume we have two complex Gaussian random matrices
A € CM*Ne and B € CM*M where both matrices are observations from CN'(0, ;).
Their corresponding SCMs are given by Ry = 1 LAA" and Ry = 1bBBH respectively.
To ensure the invertibility of the SCM, the number of snapshots N, of B should be
greater than or equal to the number of sensors.

We use the matrix B to prewhiten matrix A, and the prewhltened noise matrix is
given by A = R 27 € CM*Na, The prewhitened matrix A can be regarded as the
linear transformatlon of the Gaussian white noise, and the observations in A follow the
distribution CA’(0, R5'). The SCM of the prewhitened noise is given by R ; = NLGAAH .

If N, is finite, the matrix f{gl will not be equal to the identity matrix. As a
result, the threshold defined in Equation Eq. (3.2) is invalid and inappropriate for the
largest eigenvalue of the prewhitened covariance matrix. Therefore, modifications to
the parameters of the threshold are required.

3.2.2 Adjustment of the Threshold § for Prewhitened Noise

Since the prewhitened noise is not exactly equal to white noise, the largest eigenvalue
of the SCM of the prewhitened noise does not follow the Tracy-Widom distribution
described in Eq. (3.2). Asshown in Fig. 3.1, the empirical CDF of the largest eigenvalue
of the SCM of prewhitened noise deviates greatly from the Tracy-Widom model with
parameter (M = 4, N, = 200), which is represented by the green line. However,
the empirical CDF exhibits a similar shape to the Tracy-Widom distribution, and its
behavior is constant with fixed M, N,, and N,.

We have observed that the threshold can still be useful by modifying the parameter
N, to a smaller value denoted by N,. The modified Tracy-Widom model with N, = 80
fits better to the empirical CDF, as shown by the red curve in Fig. 3.1. However, a
mathematical method for finding the parameter N, is currently unknown. 3

One possible solution is to use empirical results to determine the suitable N, for
all triples of (M, N,, N,) and fit them into a certain type of function. However, this
approach is time-consuming and prone to overfitting if not all possible parameter triples
are included. Additionally, when the number of observations is small, N, might be
smaller than the number of sensors or might not exist.
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Figure 3.1: Empirical CDF of the largest eigenvalue of the SCM of prewhitened noise, com-
pared to the theoretical CDF and the modified CDF. M = 4, N, = 200, N, = 200, N, = 80.

The threshold is valid without any modifications when the length of matrix B is
infinite. In that case, the sample covariance matrix of B equals the identity matrix.
Hence, we have

lim A= lim R;A=1,/°A=A,

Np—o0 Np—o0

which indicates that the prewhitened data matrix will have the Gaussian distribution
CN(0,1I). In this case, the threshold defined in Eq. (3.2) is effective in providing an
upper bound for the largest eigenvalue, and the Tracy-Widom model fits perfectly with
the empirical curve, as shown in Fig. 3.2. Therefore, if the noise covariance matrix is
known apriori, the threshold g will be a precise upper bound of the largest eigenvalue
and can achieve a certain false alarm rate.

3.2.3 Threshold for F-type Matrices

In this small section, we will begin by reviewing the results of the distribution of the
largest eigenvalue of F-type matrices [17, 18, 19]. The F-type matrix is given by R5'R4,
where A and B are matrices with the same notation as before. In a more general case,
Johnstone [18] considered the distribution of the largest eigenvalue of (f{B +R A) 'Ry
The results for both matrices are almost the same, with small differences in some
constant scaling numbers. We focus on the largest eigenvalue of Rglf{A since its
eigenvalues are identical to those of the prewhitened covariance matrix.
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Figure 3.2: Empirical CDF of the largest eigenvalue of the SCM of prewhitened noise, com-
pared to the theoretical CDF when N, = oo.

Assume M, N,, N, satisfy the following equations when M — oo:

. min(M, N,) -0 (3.3)
1m ———7 .
M—00 Na + Nb ’
M
lim — < 1. (3.4)
M—o0 [V

The condition stated in Eq. (3.3) indicates that if M goes to infinity, N, and N,
should also go to infinity. In other words, for a finite number of sensors M, the number
of observations N, and NN, must also be finite. Additionally, as noted in Eq. (3.4), the
number of samples N, must exceed the number of sensors M to ensure that the SCM
of B is invertible.

Then, the logarithm of the largest eigenvalue A of the F type matrix f{;f{ A can
be approximated to order O(n=2/3) by the Tracy-Widom law with proper centering and
scaling [17, 18]:

In (%—ZM) — PM,No.Ny D

/UMvNava

To describe the centering and scaling constants, a parameter K is defined as K =
min(M, N,). The centering and scaling constants can then be obtained as follows:

ug 4 UKo

TK TK—1
PM,Na,Ny = ~1_ 1 (3-6)
TR TK-1
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UM,Na,Ny = T L1 (37)
TK TK—1
where
U = 21ntan7K—+¢k,
3 16 1
Ty = ,
K™ (2K + N, — M +|N, — M| +1)2 sin?(yx + ¢x) sin(yx) sin(¢x)
and
sin?( 25 = K +1/2
2 2K+ Ny — M+ |N, — M|+ 1
Sm2(¢_K>: K+ |N, — M| +1/2
2 2K+ Ny — M+ |N,— M| +1

For the case of real data, the centering and scaling constants need to be modified.
More details can be found in Appendix A. To determine the threshold for the largest
eigenvalue, we can set the probability P(A; > /) to a desired false alarm rate of 1 — p,
as we have done previously. We can then express the probability in the same way as
before:

~

In (§A\) = parna,, _ In (§28) — par,Na,

P\ >B)=1-p<e P( )=p
UM,Nq,Np UM,Ng,N,
In &6 —
(Nb ) = PM,Na,N, — F\(p).
UM, ,N,,N,
Then, the threshold is given by
_ M -1
B =~ exp (pm.N,. N, + Vn NN, Fy (D)) (3.8)

Na

The threshold defined in this case is more complex than that of the Gaussian white
noise scenario. It involves more parameters and functions, as well as the logarithm
transformation of the largest eigenvalue. The introduction of the logarithm transfor-
mation is crucial for ensuring the accuracy of the approximation, especially when the
number of observations is small [15].

For simulations, we select various values of (M, N,, N) and verify the reliability of
the threshold § by plotting the CDF of the Tracy-Widom model, as defined in Eq. (3.5),
and the empirical CDF of the largest eigenvalue of the SCM of prewhitened noise. To
ensure statistical significance, we conduct 10,000 Monte Carlo experiments and present
the results in Fig. 3.3.

As demonstrated in Fig. 3.3, the empirical curve of the largest eigenvalue of the
SCM of the prewhitened noise fits perfectly with the Tracy-Widom model in every
simulation scenario, even when the number of observations is reduced or the number
of sensors is increased. However, since the Tracy-Widom distribution is an approxi-
mation, deviations may occur when the number of observations is small, as shown in
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Figure 3.3: Theoretical and empirical CDF of the largest eigenvalue of the SCM of prewhitened
noise.

Fig. 5.2c. Additionally, the model can provide an accurate approximation of the em-
pirical eigenvalue distribution even when N, is smaller than M. This feature could be
valuable in applications where parameters need to be updated adaptively based on a
single data vector per time, but the number of data observations collected is smaller
than the number of sensors.

Consider a more general case where the noise is not white noise. Let N4 and N be
two independent Gaussian noise matrices, each of size M x N, and M x N,, respectively.
Both matrices are drawn from the distribution CA/ (0, X), where X is a positive-definite
Hermitian matrix. We can express N4 and Np as linear transformations of the Gaus-
sian white noise matrices A and B respectively as follows:

N, = TA,
Np = TB,
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where T is the lower-triangular Cholesky decomposition matrix of ¥, i.e., ¥ = TTH.

The threshold defined in Eq. (3.8) is even effective when the noise is not white, as
the eigenvalues of RNL Ry, and R;'Ry4 are identical.

Proof:

The sample covariance matrices of N4 and Npg are given by:

. 1 1
Ry, = —NuNi = —TAA"TY
Na Na A Na y

and
Ry, = LNBNH _ ! pgpar
BN, Ny '

Hence, we have

A 1 i 1
Ry Ry, = {T(MBBH)TH} 1T(EAAH)TH
= T "R;'T'TR,T" (3.9)

= T HR;'R,T.

The invertibility of the matrix T implies that f{;,lB Ry , 1s a similarity transformation

of R;'R4. As a result, the eigenvalues of f{]_\,]lg Ry, are identical to those of R5'R4.
Thus, the threshold defined in Eq. (3.8) remains effective even when the noise is not
white.

We perform the same simulations as before but generate the correlated noise matri-
ces N4 and Np from the Gaussian distribution with the following covariance matrix:

2 1 05 02
s_ |1 1 0405
0.5 04 16 0.3
02 05 0.3 0.5

As shown in Fig. 3.4, the Tracy-Widom model again provides an accurate approxima-
tion to the empirical eigenvalue distribution for the case of correlated noise. This result
confirms that the threshold defined in Eq. (3.8) is effective even when the noise is not
white. It also shows that the centering and scaling constants derived in [18, 19] are
applicable in the case of correlated noise.
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Figure 3.4: CDF of the largest eigenvalue of the SCM of prewhitened noise for the correlated
noise.

It is important to note that the threshold derived above assumes that both N, and
N, are finite. In practice, we may encounter situations where the noise covariance
matrix is known or, equivalently, N, is infinite. In this case, the threshold for the
prewhitened noise given by Eq. (3.8) is no longer valid, and we need to use the threshold
for the Gaussian white noise case defined in Eq. (3.2). In conclusion, the threshold for
the prewhitened noise is given by:

e exp (a1, Na,Ny + U Na N, Fs (D)) Ny # 00

Vb
M, Noy No) = 1 - 3.10
. 2 { = (par, + vrn, Fy (D)) N, = oo. (3.10)

3.3 Threshold in the Signal-plus-Noise Case

We now provide a more accurate threshold when the signal is corrupted by noise.
Specifically, we consider a signal model described in Eq. (2.3). Here we show again the
signal model, but for ease of the description, we denote the noise matrix incorporated
into the signal matrix as N 4. The signal model is given by

X = Xg+ Ny, (3.11)

where Xg € CM*Na is the zero mean random Gaussian source matrix with rank d, and
N, is the random Gaussian noise matrix with zero mean and any covariance matrix.
We prewhiten the noise in X using the noise data matrix Np of size M x NNy, collected
during the signal-free period. The prewhitened data matrix is denoted as X.

To detect the number of sources in X, we compare the eigenvalues of the SCM
of X to a threshold. While the threshold defined in Eq. (3.10) can be used directly
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for rank detection, it may result in low detection probability for small SNR. In [17],
a more accurate threshold for rank detection is presented. The authors claimed that
the distribution of the largest eigenvalue from the noise in a prewhitened covariance
matrix of a rank-d matrix X is equivalent to the largest eigenvalue distribution of the
noise-only case with parameters (M — d, N, — d, N;). That is

In (]J\\[[_Z;\d+1) — PM—d,Ny—d,Ny

2w, (3.12)

UM —d,N,—d,N,

However, they do not provide a theoretical proof for this statement. In the following,
we will offer our explanation for this claim.
The prewhitened data matrix is of size M x N, and can be written as:

(3.13)

X = Ry/*Xs + Ry’ Ny
XS + NA,

where N4 can be approximately regarded as the noise drawing from the Gaussian
white noise. The accuracy of this approximation depends on the number of the noise
samples N, used for prewhitening. In general, the prewhitened data matrix is the
addition of a low-rank source matrix and the Gaussian white noise matrix. Then, the
largest eigenvalue corresponding to the noise subspace of R; converges to the largest
eigenvalue distribution of the noise-only covariance matrix of size (M — d) x (N, — d).
A proof of this convergence can be found in [16]. As a result, the d + 1-st eigenvalue of
RX has the same distribution of the largest eigenvalue as the largest eigenvalue of the
noise-only situation, but with the parameters (M — d, N, —d, N;) used to calculate the
centering and scaling constants in Eq. (3.10). Then, the threshold is modified as

x—z exp (PM—dNa—d, N, + UM—d,Na—dN, F5 " (P)) Ny # 00

z 3.14
NLa(prd,Nafd + Unr—a,N,—aFh 1(29)) Ny = oo. ( )

/B(MaNaaNbad) = {

For simulations, we generate the source data matrix from the Gaussian distribution
CN(0,021;). Without loss of generality, the noise observations are collected from the
standard Gaussian distribution CA(0,I,). We then prewhiten the data matrix using
the noise matrix Npg of size M x N,.

To evaluate the accuracy of the eigenvalue approximation, we plot the empirical
CDF of the d 4 1-st eigenvalue of the SCM of prewhitened data matrix in Fig. 3.5. We
compare this distribution to the Tracy-Widom model with parameters (M — d, N, —
d, Np). As shown in the figure, the fit is relatively good for large values of N, and N,
However, for small values of N, and NN, deviations occur due to the prewhitened noise
violating the assumption of Gaussian white noise. Nevertheless, the fit is still highly
accurate in the high probability range, demonstrating the validity of the threshold for a
low false alarm rate. Additionally, it is important to note that the value of the threshold
[ increases when d decreases, as we can see in the figure where the CDF of smaller d
is on the right side of larger d.
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Figure 3.5: CDF of the d 4 1-st eigenvalue of the SCM of prewhitened data matrix with d
number of sources, and the Tracy-Widom model with parameters (M — d, N, — d, Np).

3.4 Chapter Conclusion

In this chapter, we have shown that the largest eigenvalue of the SCM of prewhitened
noise follows the Tracy-Widom distribution, similar to the largest eigenvalue of the
SCM of Gaussian white noise. However, the Tracy-Widom distribution for prewhitened
noise has distinct centering and scaling constants. By utilizing this distribution, the
threshold for achieving a desired false alarm rate is derived, which is a function of
matrix dimensions (M, N,, N,) and the false alarm rate. Furthermore, in the case of the
signal-plus-noise scenario with a rank-d source matrix, the threshold is modified to be
calculated with the parameters (M —d, N, —d, N,). Simulations conducted shown that
the empirical CDF fits well with the CDF of the Tracy-Widom distribution, validating
the findings.
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Threshold-based Rank
Detection Algorithm

In this chapter, we will develop a rank detection algorithm that utilizes the threshold
defined in the previous chapter. The main objective of this algorithm is to detect the
rank of the covariance matrix in a more efficient and accurate way. We will compare
the performance of our algorithm with two commonly used rank detection algorithms,

namely MDL and AIC.

4.1 Sequential Rank Detection Algorithm

Knowing the d + 1-st eigenvalue distribution allows us to establish a more accurate
threshold for distinguishing between the signal and noise subspaces. Based on this,
we can now present a rank detection algorithm for the prewhitened covariance matrix,
which takes as input the eigenvalues, the dimensions of the data matrices, and a desired
false alarm rate. The algorithm uses a sequential test approach to determine the rank of
the data matrix. Specifically, for k = 1,.., min(M, N,) — 1, we consider the hypotheses:

~

Hy, - rank(Ryg) =k,
H, : rank(Ryg) > k.

The null hypothesis Hy, is tested starting from k& = 0. If H{ is accepted, k will be
increased until Hy, is accepted. The complete algorithm is summarized in Algorithm 1.
It is worth noting that the eigenvalues of the SCM of prewhitened noise are identical
to the generalized eigenvalues of the matrix pencil (Rx, Ry, ), which can also be used
as input for the algorithm.

Algorithm 1 Sequential rank detection algorithm

Input: M, N,, Ny, false alarm rate Pr4, eigenvalues \; for i = 1,2,.... M
Initialization: d = 0,k=-1 > k could be any number except 0.
while k # d do
k=d
Compute the threshold 3 with Eq. (3.14)
d=#{\ > 5}
end while
Output: the estimated rank d

The detecting procedure is different from that of MDL and AIC. In MDL and AIC,
we need to calculate the criteria for every possible rank and choose the rank that
minimizes the criteria [3]. In other words, the rank is increased by a step size of 1 from
0 to the maximum value, and the criteria value is evaluated for each rank. However, in
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our approach, the rank can be increased in larger steps, and the step size is determined
by the number of eigenvalues surpassing the threshold. We stop the procedure once
the estimated rank remains unchanged. In general, we do not evaluate every possible
rank, making our algorithm more efficient than the MDL and AIC.

4.2 Performance Analysis

We will analyze the performance of the proposed detection algorithm and present the
theoretical probability of detection. A similar analysis for a signal corrupted by Gaus-
sian white noise (i.e., N, = c0) can be found in [7]. We will adopt the same approach to
analyze the detection algorithm for the prewhitened data. In our analysis, we assume
that both N4 and Npg are collected from Gaussian white noise with zero mean and
unit variance, and the signal is zero mean Gaussian distributed, with known covariance
matrix P = diag{p1, ..., pa}. The eigenvalues corresponding to the signal components
are then asymptotically equal to p; + 1, for 1 <7 <d.

Let us review the detection procedure in our algorithm. For ease of notation, we use
B to represent 5(M, N,, Ny, k). Initially, we set the estimated rank to 0 and compare all
the eigenvalues with the threshold 5y. Subsequently, we increase the estimated rank to
k (i.e., the number of eigenvalues that are greater than (5,) and compare the eigenvalues
with the new threshold fy, repeating this process until the estimated rank remains the
same. To ensure the feasibility of our analysis, we assume A4 has multiplicity one and
A < A 1, such that the primary error is the misidentification of the d-th eigenvalue.
In order to detect the true rank d, the eigenvalues should at least satisfy the following
condition:

5\d > Bg_1 > Ba > 5\d+17 (4.1)

where 5\d+1 corresponds to the largest eigenvalue of the noise components, and is
bounded by (; with a probability of 1 — Pr4. The value of ;1 is larger than the
value of §; with a probability of one. Thus, we can approximate the probability of
correct detection as:

P(d=d) = P(\g> Ba-1,Ba> Aar1) = (1 — Pra)P(Aa > Ba1), (4.2)

where we assume the independence, which might not hold strictly.
To compute this probability, we can rely on the theory presented in [20], which pro-
vides the distribution for the eigenvalues from the signal subspace of R ¢ Spemﬁcally,

for \; > 02+T , where 1 < ¢ < d, the asymptotic distribution of the eigenvalue \; can be
approxunated by a normal distribution:

~

th — 7(p)) 2 N(0, r262(py)), (4.3)

where ¢; = M- ¢y = NMb, t=+vM and

Ng—d’

(pi +c1)(pi + 1)
pi — ca(pi +1)

T(pi) =

)
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_ (L +p)* (0 — o1+ i) — 1)
(c2 — pi + copi)*

52(]%)

Y

r? = C1 + ¢y — C1Ca.

7(p;) denotes the asymptotic limit of the eigenvalue and converges to p;+1 as ¢; — 0
and co — 0. The behavior of the signal eigenvalues of the prewhitened covariance
matrix depends on the signal strength and the number of sensors and observations, as
explained in Eq. (4.3). However, this approximation can be more accurate for a finite
number of data samples with two modifications we consider here.

The first modification is similar to that in [7], in which the interactions between
signals are also taken into account. For finite observations, the eigenvalues of the
sample covariance matrix of the signal are not exactly equal to the signal strengths we
set. The eigenvalues might be slightly smaller than the presetting signal strengths. In
[21], the authors provided an expectation value of the i-th (i > 1) eigenvalue given the
signal strengths up to O(1/n?),

- S Di bj
pi = EN] =pi — — —_—. 4.4
RS O Ve (4.4)

We will use this expectation value p; instead of p; in our analysis.

In the second modification, we replace M with M —d in Eq. (4.3). This modification
is based on the fact that our main interest is the distribution of S\d. However, we have
found that the approximation of the distribution in Eq. (4.3) is less accurate for the
d-th eigenvalue, when there are a finite number of data samples, as shown in Fig. 4.1a.

To obtain a more accurate distribution of the d-th eigenvalue for finite M, N,
and N, we replace M with M — d for above parameters, and we denote the modified
parameters as t = VM —d, & = J]\\fiiili’ Cy = ]‘fv’bd. The results for the modification are
shown in the Fig. 4.1b, where we observe a better fit of the CDF when using the modified
parameters. Although this modification’s influence reduces for large data samples, it
is necessary for real-world applications that typically have a small and finite number
of data samples. However, the theoretical proof of this modification is unknown, and
empirical simulations are used to validate it.

Finally, with both the modifications, we can approximate the probability of detect-
ing the correct number of signals as

5N~ ~Ba—1 — 7(Da)
P(d=d) ~ (1= Pra)Ply > 1000 (4.5)

where n ~ N(0,1). 7(pa), 7, and §(pg) are computed with ¢; and é.

In Fig. 4.2 and Fig. 4.3, we present the results of simulations to support the theo-
retical analysis. To obtain the empirical results, we use a false alarm rate of 1% and
implement the proposed sequential detecting algorithm. As shown in the Fig. 4.2, the
empirical curve closely fits the theoretical curve as M increases, and the probability of
detection will gradually approach the desired false alarm rate. However, when there
are multiple sources and the signal strength of the d-th source is decreased, deviations
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Figure 4.1: Empirical and theoretical CDF of the d-th eigenvalue with d sources.
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Figure 4.2: Empirical and theoretical probability detection as a function of M, with N, =
Ny, =8M.

occur at lower values of M. It is similar when changing the signal strength as shown
in Fig. 4.3.

Eq. (4.5) allows us to answer the question of how strong the signal strength p, should
be to achieve at least a (1 — Ppy) detection probability. For P(d = d) = 3(1 — Ppa),
pq should satisfy the condition:

7(Pa) = Ba-1- (4.6)

For simplicity, we will ignore the effects of signal interactions. Plugging Eq. (3.10)
and the equation for 7(py) above, and p; can be obtained by solving the following
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quadratic equation:

pi+ (1 +1—=Ba1 +cafa1)pat e+ cafar =0, (4.7)

where for large false alarm rates, the roots of the quadratic equation might be complex
numbers. The same problem also occurs in [7]. In such case, we can take the absolute
value of the root, but the results might not fit the theoretical analysis perfectly.
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(a) Probability detection for a single source. (b) Probability detection for two sources, with
p1 = 4p2.

Figure 4.4: Probability detection as a function of signal strength for M = 8, N, = N, = 200.
In Fig. 4.4, we show the probability of detection for our algorithm at false alarm

rates of 1% and 5%. The dashed black line represents the signal strength threshold
required to achieve a %(1 — Pr4) probability of detection. We observe that the threshold
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closely corresponds to a $(1 — Ppa) = 0.495 probability of detection for the 1% false
alarm rate. However, for the larger false alarm rate, the detection rate of the signal
strength threshold is lower than %(1 — Ppy) = 0.475, possibly due to the occurrence of
complex roots in the quadratic equation and the ignorance of the signal interactions.

The analysis and simulations presented here demonstrate that the empirical detec-
tion rate of the rank detection algorithm converges to the theoretical rate. However,
slight discrepancies arise due to the approximations made for simplifying the analysis.
With this analysis, we can anticipate the detection rate when certain information, such
as SNR and signal strengths is known.

4.3 Rank Detection Simulations

Two simulations are conducted to validate the effectiveness of the proposed rank de-
tection algorithm. To measure the performance of the detection algorithm, we use the
probability of detection, which is defined as:

# of experiments that give the correct rank estimation

Pp =
b # of total experiments

The source and noise matrices are generated as before with various ranks. For both
simulations, 10,000 experiments in total are conducted.

4.3.1 Rank Detection for N, = oo

In the first simulation, we assume that the covariance matrix is known, i.e., we have an
infinite number of snapshots (N, = 00). We compare the performance of the proposed
method with other rank detectors such as MDL and AIC. The simulation results are
shown in Fig. 4.5. We observe that the proposed algorithm can accurately detect the
true rank of the signal at a relatively small Pr4 when the SNR is sufficiently high.
Although a larger false alarm rate (0.1) can provide a more accurate estimation at
low SNR, its probability of detection at high SNR is 10% lower than that of a higher
Pr4. The performance of the detection algorithm is affected by the increase in signal
rank and decrease in the number of snapshots, leading to a significant degradation in
estimation accuracy at low SNR.

MDL shows similar performance to the proposed algorithm for a small Prs when
the number of observations [V, is large, as seen in subfigures (a), (c), and (e) of Fig. 4.5.
At high SNR, the rank estimation accuracy using MDL is almost 100%, but the perfor-
mance is worse than the proposed algorithm at low SNR. However, when the signal has
a high rank but the number of snapshots is small, using MDL could lead to a higher
incorrect rank estimation rate, as observed in subfigure (f) of Fig. 4.5.

In contrast, AIC exhibits a similar pattern to the proposed algorithm when Pry =
0.1, achieving good estimation at low SNR but worse performance at high SNR. How-
ever, unlike the proposed algorithm, the performance of AIC is significantly degraded
by the decrease in the number of observations or the increase in the rank of the signal.
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4.3.2 Rank Detection for N, # oo

In the second simulation, we examine the effect of a finite number of N, as shown in
Fig. 4.6. The results indicate that the proposed detection algorithm performs similarly
to the case when N, = 0o, and it outperforms MDL in all cases, achieving the desired
estimation accuracy at high SNR compared to MDL’s approximately 93% accuracy.
However, the proposed algorithm is less accurate in the very low SNR range, where
MDL sometimes performs better than the proposed algorithm. On the other hand,
AIC is not able to estimate the rank of the data matrix due to using a limited number
of noise samples for prewhitening, resulting in incomplete prewhitening of the noise.
We can conclude that the not fully prewhitened noise has a greater impact on AIC
than MDL. Therefore, we will discard AIC in the following experiments.

As the number of observations (N, and N;) decreases, the proposed method requires
a higher SNR to achieve comparable performance to that of larger snapshot numbers.
However, for MDL, the degradation in performance is severe as N, and N, decrease.
This maybe because MDL is designed for rank detection of a signal in a Gaussian white
noise environment [3]. In our case, the whiteness of the noise depends on the number
of observations. When the number of observations is small, the prewhitened noise has
a covariance matrix given by the inverse of Ry,. This covariance matrix may have
non-zero off-diagonal elements, resulting in correlated prewhitened noise.

When the rank of the data matrix increases, the proposed algorithm requires a higher
SNR to achieve a high probability of detection, similar to the effect of decreasing the
number of observations. On the other hand, the performance of MDL does not seem
to be affected by the increasing rank, and may even slightly improve the estimation
accuracy.

The false alarm rate has a similar influence on the detection algorithm’s performance
as in the previous case. At false alarm rates of 0.01 and 0.001, the algorithm achieves
almost 100% probability of detection at high SNR, while a false alarm rate of 0.1
results in a 10% probability of incorrect rank estimation. However, it is worth noting
that the algorithm with a false alarm rate of 0.1 is more robust to noise and has a higher
probability of detection than the algorithm with smaller false alarm rates. While setting
an extremely low false alarm rate is often desirable, it may not always result in the
best performance. In the presence of high noise levels, a slightly higher false alarm rate
may be more effective than an extremely small one.

4.4 Chapter Conclusion

Based on the distribution of the largest eigenvalue of the prewhitened SCM, we have
developed a rank detection algorithm via a sequential test approach. The performance
analysis and simulations of the rank detection algorithm are presented to demonstrate
the effectiveness of the proposed method and its superiority over the MDL and AIC.
Moreover, we can control the probability of detection by adjusting the false alarm rate,
which provides greater flexibility compared to conventional methods.
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Threshold-based Rank
Detection Method in the
STET Domain

The previous chapter presented the threshold method for detecting the rank of the data
matrix in the time domain. However, since many signal processing applications are
implemented in the frequency domain, and the Short-Time Fourier Transform (STFT)
is often used for non-stationary signals, it is important to consider how our method
performs under this condition. In this chapter, we will analyze the potential issues with
using STFT and how they may affect the performance of the threshold method. We
will address these issues and present simulations to illustrate our findings.

5.1 Short-Time Fourier Transform (STFT)

The STFT is a useful tool in signal analysis and processing, because it can not only cap-
ture some time-varying information, but also convert wide-band problems into narrow-
band problems. It is suitable to analyze the time-frequency characteristics of non-
stationary signals, such as speech and audio signals. Unlike the Fourier transform, the
STFT divides a long signal into a series of short time segments, and applies the Fourier
transform to each segment independently. This method not only provides frequency
resolution but also preserves time information. The STFT is widely used in many
speech and audio applications, where the short time segments of the signal are as-
sumed to be stationary. This assumption greatly reduces the complexity and simplifies
the processing of speech signals.

The mathematical expression of the STFT for a finite sequence x[n],n =0,..., N —1
with a real window function w[n] of length L is given by

Xnlk] = z_: wn]zn + mH]e‘j%ﬂk”, (5.1)

n=0

where m indicates the time frame index and 1 < m < 7T}, Ty = L%J is the total time
frames, H is the hop size implying the percentage of overlap, k is the frequency bin
index with 0 < k < K — 1, K is the number of total frequency bins and K > L, X,,[k]
is the STFT coefficient at time frame m and frequency bin k.

To better understand the computation of the STFT, Fig. 5.1 illustrates the process
of STFT on the data vector z[n|. For multiple channel inputs, the STFT is performed
independently on each channel. First, the data vector is divided into Ty segments, each
with a length of L. If the hop size H < L, adjacent segments will overlap, as shown
by the shaded areas in the figure. A window function is then applied to each segment,
and FFT is performed on the windowed segments to produce the STFT coefficients.
Therefore, the STFT coefficients at the same time frame are correlated across the
frequency bins.
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Figure 5.1: Diagram of STF'T on a data vector.

To reduce the effects of spectral leakage, triangular shaped windows, such as Ham-
ming and Hanning window functions, are commonly used. However, these window
functions have small values on the boundaries, which can result in data loss if no over-
lap is used [22]. To make full use of the data, the hop size H is typically set to L/2
or L/4, which corresponds to 50% or 75% overlap, respectively. As a result, adjacent
STFT coefficients in the same frequency bin are correlated with each other, meaning
that the STFT coefficients are correlated across time.

5.2 Problems of Threshold Methods in the STFT domain

In our proposed threshold method, we assume that the noise matrix is composed of
columns of i.i.d. variables from the zero-mean Gaussian distribution, while rows might
be correlated with each other. In other words, the noise is correlated spatially across
sensors but independent across time. The same assumption is also applied to the source.

However, as we transform the data into the frequency domain via STFT with a
hop size H < L, we will not only have correlated samples along the frequency bin,
but also across all the time frames. Even if we apply the STFT to Gaussian white
noise, the resulting STFT coefficients are complex Gaussian noise and not white noise
[23]. As a consequence, the largest eigenvalue of the covariance matrix of Gaussian
white noise in the STFT domain will not follow the Tracy-Widom distribution, and
the largest eigenvalue distribution of the prewhitened SCM after STFT will also be
affected. Therefore, the proposed threshold method will not be effective in achieving
the desired false alarm rate.

To demonstrate the correlation problem in STF'T, we present an example that fo-
cuses only on the time correlation aspect. Fig. 5.2 shows the comparison between the
empirical CDF of the largest eigenvalue of the prewhitened noise covariance matrix
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after STFT and the CDF of the Tracy-Widom distribution. The simulation is con-
ducted by generating two Gaussian white noise matrices, and performing STFT on
them with K = L = 256. The resulting STFT coefficients of the two noise matrices at
one frequency bin have sizes of M x N, and M x Ny, respectively. We conduct 10,000
experiments and compare different window functions.

Mg M=8
N, W,

Ny =38
MC =10000
Hamming window 50% overlap 03

N, =38
MC =10000
Rectwin 50% overlap{ 03

MC =10000
Hanning window 50% overlap

(a) Rectangular window 50%  (b) Hamming window 50% overlap. (c) Hanning window 50% overlap.
overlap.

Figure 5.2: Empirical CDF of the largest eigenvalue of the SCM of prewhitened noise after
STFT, compared to the CDF of the Tracy-Widom model for different window functions

As shown in Fig. 5.2, the empirical CDF of the largest eigenvalue of the SCM of
prewhitened noise after STFT does not fit the Tracy-Widom model. The gap between
the empirical and theoretical curves depends on the window function and overlap size.
For example, using the Hanning window with 50% overlap gives a closer fit to the TW
model, while the rectangular window fails to fit the model.

In many applications, people assume that the STFT of Gaussian white noise remains
the same properties and design the signal model based on that assumption. However,
after STFT, the noise is no longer Gaussian white noise, and the STF'T coefficients
have correlated columns at every frequency bin. If the algorithms in the applications
are not very sensitive to the noise distribution, the assumption of Gaussian white noise
after STFT can still be utilized in some cases, such as using the Hanning window with
50% overlap.

Furthermore, we observe that the CDF of the Tracy-Widom distribution is consis-
tently on the left side of the empirical curve. This indicates that applying the threshold-
based rank detection method directly on the STFT coefficients would result in a higher
false alarm rate than intended. As our method relies on the accurate knowledge of the
noise distribution, we cannot overlook the impact of correlations between the STFT
coefficients. Therefore, in the following section, we propose a method to remove these
correlations.

5.3 Correlation in STFT
As we mentioned earlier, the STFT introduces both frequency correlation and time

correlation in the resulting coefficients. The frequency correlation arises because the
STFT coefficients are computed from the same time frame. On the other hand, the

33



time correlation arises due to the overlapping nature of the STFT analysis. These
correlations have a significant impact on the distribution of the signals and can hinder
the effectiveness of threshold-based methods in signal analysis and processing. To
address this issue, it is necessary to remove these correlations. We will utilize the exact
expressions of these correlations in the context of the STFT to achieve this.

Without loss of generality, we investigate the correlation of the Gaussian white noise
in STFT domain. Now, assume we have a complex random vector v[n],n =0,..., N —1
of i.i.d. variables from the zero mean and o2 variance Gaussian distribution. The STFT
of this sequence is given by

Vinlk] =) wn]v[n + mH}e‘ijﬁk”. (5.2)

5.3.1 Time correlation

The correlations between the STFT coefficients at different time frames are computed
via E[V,,[k]V,:, . [k]] at the same frequency bin. Taking the distribution of the random
sequence into account, we derive the expression of the time correlation as follows:

First, plug in the STFT expression for V,,[k|V,:,  [k],

L-1 L—1
Vm[k]V;Hr‘r[k] = w[nl]v[nl + mH]e J Kknl( w[nz]y[nQ + (m + T)H]e J Kknz)*

n1=0 n2=0

L-1 L-1

(5.3)
with (-)* representing the complex conjugate. Since v[n] are i.i.d., and E[v[n]v*[n]] = o2,
dropping those terms where ny + mH # ny + (m + 7)H, we have

[K]] =E wlniwng]vng +mH]v" [ng + (m + T)H]ejzfﬂk(nrm)]

27

TH]w[O]ej%Tk(O_TH) + o?w[rH + Nw[1]d TFA-CH=D) o
L—1|w[lL—-1- TH]ejQ%k(L_l_TH_(L_l))

L-1
=g I RhTH Z w[njwin — TH].

n=1H

(5.4)
Note that the STEFT coefficients only correlate within the maximum D time lag,
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with D = [Z=1|. Hence, we have

K] = P HN S wlnluln - 7H] 7 < D,
n=1tH
0 otherwise.

B[V, [K]V,

m+T1

(5.5)

The equation above reveals that the correlation of STFT coefficients across time is
a function of the window function and an exponential of the frequency k [24]. This
expression is similar to the overlap correlation presented in [22, 25], but with the addi-
tional exponential frequency dependence. In Fig. 5.3, we show the correlation at a single
frequency bin as a function of time lag 7, normalized by the variance E[V,,[k]V.*[k]].
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(a) Rectangular window. (b) Hamming window. (c) Hanning window.

Figure 5.3: Time correlation for the same frequency bin (k = 2) as a function of time lag T,
considering different window functions, for L = 256, K = 256, H = 128.

Now we can understand why the Hanning window with 50% overlap fits the TW
model closer than other window functions. This is because in this setting, the corre-
lation is relatively small, typically below 0.2. In contrast, for other window functions,
such as the rectangular window, the correlation is larger, leading to a larger deviation
from the TW distribution. This is consistent with the findings in [22], where the au-
thors suggested that 50% overlap is optimal for the Hanning window, as the overlap
correlation is relatively small and the flatness of the spectrum is highest.

5.3.2 Frequency Correlation

For frequency correlation, we calculate E[V,,[k]V):[k + d]] at the same time frame but

different frequency bins. ¢ denotes the frequency difference. Now the expression for
Vinlk]V: [k + 0] is given by

L-1 I—
Vin[K]Vnlk + 0] = wlnilv[ny + mH]e 7wk ( Z [ulng + mH]e I E+onays
n1=0 5=0
L-1 L-1
- 27
= 'lU n1 =+ mH] [n2 + mH]ejf(knTHS”Z_knl)‘
n1=0n2=0

(5.6)
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Similarly, with v[n] i.i.d., dropping those terms where ny + mH # ny + mH, we can
derive

E[V,u K]V [k + 0] =E[ S S~ wimwnalolng + mH]o* [ny + m H]ed ¥ raona—kn)

=0 “w[0Jw[0 RO 4 a%u[l}w[l]ej%ﬁé + ...+

o*w[L — 1Jw[L — 1]@3'2%@*1)‘S

(5.7)
It can be noticed that the frequency correlation, unlike the time correlation, is
not generally zero for any frequency difference . The expression in Equation 5.7 can
be viewed as the inverse discrete Fourier transform (DFT) of the window function
w?[n] [24]. For a rectangular window function w?*[n] = 1, the frequency correlation
E[V,[k]Vi[k + 6] = 02 for 6 = 0, and it is zero for any other frequency difference 4.
This is because the inverse DFT of the rectangular window is a unit impulse, which
indicates that the frequency components are uncorrelated. This aligns with the fact
that the DFT of Gaussian white noise remains Gaussian white noise. For other window
functions, the frequency correlation approaches zero quickly. In Figure 5.4, we display
examples of the frequency correlation for different window functions, and the results
are normalized by the correlation for § = 0.

) 1 2 3 4 5 0 1 2 3 4 5 6 o 1 2 3 4 5 6
5 s 5

(a) Rectangular window. (b) Hamming window. (c) Hanning window.

Figure 5.4: Frequency correlation for the same time frame (m = 3) as a function of frequency
difference 9, considering different window functions, for L = 256, K = 256, H = 128.

5.3.3 Time-Frequency Correlation

The time-frequency correlation is then calculate via E[V,,[k]V: [k + 0]] between dif-

ferent time frames and frequency bins. Following the same procedure as before, we
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have

L—1 I
Vin [k]V£+T[k + 6] = w[nl] [nl + mH e = Kknl Z n2 + (m + T)H]e J K(k+5)n2)
n1=0 2=0
L—1 L—
- 27
- Z Z v[ny + mH]v*ng + (m + 1) H]e? & (natona=hn)
o (5.8)
Then, the correlation can be derived as
L—1 L—1
27
BV K]V [k + 0] Z Z wlnJwnglv[ng +mHv* [ny + (m + 1) H]el & (knatonz—kn)]
n1=0n9=0

:JQw[TH]w[O]ej%W(O_kTH) + oc*w[rH + 1]w[1]e] % O—hrH) L 4

o?w[L — L — 1 — 7 He % (m1=rH)s=krH)

L—-1
_0_26_]27f]<;7—H Z w[n]w[n _ TH]ej%”(n—TH)é

=gl Ik HOITH Z wln — TH]@J%T”(S.
n=1H ( )
5.9
Considering the limited value of 7, we have
. o2e I T (k)T H n—THejQ?ﬂmS T < D;
[V ]V, + 0]) = ZH |
0 otherwise.
(5.10)

The time-frequency correlation can be viewed as the combination of the expressions
of the time correlation and the frequency correlation. But it cannot be divided as the
superposition of the two correlations.

5.4 Removing the Correlations

In this section, we will discuss methods for removing correlations in the STFT coeffi-
cients. Let V, with dimensions K x T}, represent the STFT coefficients of the input
signals from one channel. The general approach involves constructing a correlation
matrix C, with dimensions KTy x KT}, using Equation 5.10. This correlation matrix
is then used to prewhiten the STFT coefficients V. To be more specific, we define
the whitened STFT coefficients V' as a matrix of the same size as the original STFT
coefficients. The whitened coefficients are obtained using the following expression:

vec(V') = C™12pec(V), (5.11)

where vec(-) represents the vectorization of the matrix by stacking the columns verti-
cally. The matrix C is positive-definite and Hermitian, which allows us to decompose
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it using the Cholesky decomposition, yielding the square root as C = LL, where L is
a lower triangular matrix. Based on this decomposition, we can express the whitened
STFT coefficients V' as follows:

vec(V') = L™ vec(V) (5.12)

For multiple channel inputs, we can apply the inverse of L to each channel indepen-
dently, effectively whitening the data for each channel.

It is worth noting that constructing the full correlation matrix C for all frequency
bins and time frames, and calculating the inverse of L., can be computationally complex
and memory-intensive. The Cholesky decomposition and inverse calculation are both
computationally demanding operations with a complexity of O(n?). Therefore, we need
more efficient ways to eliminate correlations. The approach for removing correlations
depends on practical considerations and the characteristics of the signals involved.
Different scenarios may require different strategies for efficient correlation removal.
In this section, we will present three methods to remove time, frequency, and time-
frequency correlations, respectively.

5.4.1 Temporal Prewhitening (TP)

For signals such as speech and audio that are not evenly distributed across frequency
bins, it is more appropriate to process the frequency bins separately. When we are
processing the data at every frequency bin, our main objective is to remove the time
correlation, which is referred to as temporal prewhitening (TP).

In this case, the correlation matrix is constructed using Eq. (5.5), and is of size
Ty x Ty. Using the standard prewhitening method is still computational complex if T
is very large. It is important to note that the correlation is non-zero only within the D
time lags, resulting in a banded Toeplitz matrix structure for the correlation matrix.
Exploiting this special structure, we develop a algorithm called Cholesky-Forward-
Substitution algorithm. This algorithm efficiently computes the inverse of the Cholesky
decomposition, enabling us to effectively remove the correlation in an adaptive manner.
For D =1 (i.e., using less than or equal to 50% overlap), the computational cost for
a single update in this process, considering a single channel, is only O(1). For higher
overlaps, the complexity increases to O(D?) per single update, which is significantly
smaller compared to the cubic complexity O(n?®) of standard methods. For a detailed
summary of the Cholesky-Forward-Substitution algorithm, please refer to Appendix B.

5.4.2 Frequential Prewhitening (FP)

When processing data at each time frame across the frequency bins, the primary objec-
tive is to eliminate frequency correlation, which we will refer to as frequential prewhiten-
ing (FP). This process is particularly relevant for signals that are evenly distributed
across frequency bins, such as Gaussian signals. By processing the data at each time
frame, we can achieve optimal time resolution.

The correlation matrix is then generated based on Eq. (5.7). It is important to note
that unlike time correlation, frequency correlation is generally not zero. However, the
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correlation diminishes rapidly, allowing us to approximate the correlation matrix C as
a banded Toeplitz matrix. Consequently, the algorithm used for TP can also be applied
to remove the frequency correlation.

5.4.3 Time-Frequency Prewhitening (TFP)

Unfortunately, it is not possible to remove the time-frequency correlation by consider-
ing TP and FP individually. The reason is that the time and frequency correlations
are interlinked within the time-frequency correlation itself. As a result, they cannot
be isolated into separate components that exclusively represent time or frequency cor-
relations. Furthermore, the correlation matrix of the time-frequency correlation does
not possess the specific structure seen in a banded Toeplitz matrix. Consequently, the
algorithm we initially developed for TP is not applicable in this scenario. Investigat-
ing methods for efficiently calculating the inverse of the Cholesky decomposition of the
time-frequency correlation matrix could be a potential future research. Here, we simply
employ the standard method to address the time-frequency correlation.

The process of eliminating the time-frequency correlation is referred to as Time-
Frequency Prewhitening (TFP). To achieve this, a sliding window approach is employed
instead of prewhitening the entire STFT coefficients. More specifically, this method
involves selecting a submatrix of V that is of interest for processing and subsequently
sliding the window across different submatrices, as depicted in Fig. 5.5. The window is
slid with a hop size denoted by R, where 1 < R < N;. We define V as the submatrix of
V with dimensions Ny x Ny, where Ny represents the number of frequency bins selected
in the submatrix, and N; denotes the number of time frames. Therefore, the whitening
matrix L' is of size Ny N, x NyN;, and the condition N;N; < KT} holds, leading to
a significant reduction in computational complexity and memory requirements.

window sliding

Vs Vs,2
I 1
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N Y
'd
Ny

Time frame

Figure 5.5: Sliding window processing diagram.

Additionally, it is important to note that the time-frequency correlation, as de-
scribed in Eq. (5.10), is independent of the specific data being processed. Instead, it
relies only on factors such as the window function, maximum time lag D, and frequency
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difference o, which are determined prior to removing the correlation. Consequently, it
becomes possible to construct the correlation matrix in advance and compute the in-
verse of its Cholesky decomposition matrix. This calculation only needs to be performed
once, after which we can store the resulting matrix to whiten every submatrix of STFT
coefficients.

The prewhitening procedure described can be integrated into applications that also
utilize a sliding window approach, such as tracking the rank over time. The size of
V., determines the trade-off between the frequency resolution and temporal resolution,
and the choice of Ny and N; depends on the rank tracking requirements and signal
types. For signals that are not evenly distributed across frequency bins, it is more
suitable to set Ny = 1 and track the rank for each individual frequency bin. Then,
only the time correlation needs to be removed. However, setting Ny = 1 and having
N; > 1 results in perfect frequency resolution but relatively lower time resolution.
Consequently, this can lead to suboptimal performance in rank tracking. In order to
achieve high time resolution, we can reduce the value of N, but this also reduces the
number of observations available. If we have an insufficient number of observations,
accurate rank detection becomes challenging using threshold-based methods.

On the other hand, for certain types of signals are evenly distributed across all
frequency bins (e.g., in the case of Gaussian sources) or exhibit energy concentration in
specific frequency bins, we can sacrifice frequency resolution by increasing the number
of frequency bins Ny to obtain more number of observations. However, it is not feasible
to Ny to a very large number, due to the limitations from the signals characteristics
and computational complexity.

5.5 Simulations

In the simulation section, we will first examine the largest eigenvalue dsitribution of
the SCM of prewhitened noise after removing the correlation. Subsequently, we will
utilize the threshold method to detect the rank in the STFT domain and assess the
impact of correlation removal.

5.5.1 Eigenvalue Distribution Recheck

To assess the effectiveness of removing time-frequency correlation, we examine the
CDF of the largest eigenvalue of the SCM of prewhitened noise. In this evaluation, we
generate two independent random Gaussian white noise matrices, each with a size of
8 x 5000, with 8 sensors and 5000 observations. These matrices are then transformed
into the frequency domain using the STFT with parameters K = L = 256 and a hop
size of H = L/2.

Next, we apply the time-frequency correlation removal method described in the
previous section to the STFT coefficients of the two random matrices. Specifically,
we set Ny = 3 and NV; = 10, and focus on the STFT coefficients corresponding to
frequency bins 2, 3, 4, and the first 10 time frames. This results in a reshaped matrix
of size 8 x 30 for each noise STFT coefficients. Let’s denote the sizes of the reshaped
matrices as M x N, and M x N,, respectively.
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We plot the empirical CDF of the largest eigenvalue of the SCM of the prewhitened
noise, along with the theoretical Tracy-Widom distribution, in Fig. 5.6. As depicted
in the figure, the empirical curve now exhibits a perfect fit with the theoretical curve,
indicating that the time-frequency correlation has been effectively removed.
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(a) Rectangular window. (b) Hanning window.

Figure 5.6: Empirical CDF of the largest eigenvalue of the SCM of prewhitened noise after
TFP and CDF of the Tracy-Widom model for different window functions.

When selecting frequency bins for evaluating the empirical CDF of the largest eigen-
value, we should avoid including the first or last frequency bin. Including these bins
would result in a mismatch between the empirical and theoretical curves. This discrep-
ancy arises because the STF'T coefficients at the first and last frequency bins are real

numbers, and the Tracy-Widom distribution of complex numbers does not align with
the data.
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Figure 5.7: Empirical CDF of the largest eigenvalue of the SCM of prewhitened noise after
TFP and CDF of the Tracy-Widom model when including the first frequency bin (k = 0).
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To further emphasize this, let’s examine Fig. 5.7, where we select frequency bins 1,
2, and 3. As observed in the figure, the two curves do not match, indicating a lack of fit
between the empirical and theoretical distributions. Therefore, when utilizing multiple
frequency bins, it is crucial to avoid including the first and last frequency bins to ensure
the accuracy of the empirical CDF evaluation.

To evaluate the effectiveness of the efficient prewhitening algorithm for temporal
prewhitening, we set Ny = 1 and N; = 30. We focus on the frequency bin k = 2 and
apply TP to the STFT coefficients of the two random matrices, both of size 8 x 30.

In Fig. 5.8, we observe the effects of TP on the CDF of the largest eigenvalue.
Comparing it with Fig. 5.2, we can see that after applying TP, the empirical curve now
exhibits a perfect fit with the Tracy-Widom model for different window functions. This
demonstrates the effectiveness of the algorithm in removing time correlations.

Additionally, we compare the computational efficiency of the standard prewhitening
method ,i.e., using MATLAB built-in functions 'chol’ and ’inv’, with the modified
prewhitening algorithm. The elapsed time in MATLAB for the standard method is
measured to be 32.209 seconds, while the modified prewhitening algorithm takes 28.092
seconds. This indicates that the modified algorithm offers a slight improvement in
computational efficiency.

When the number of time frames increases, the computational difference between
the two methods also becomes more prominent. The modified algorithm may provide
even more significant computational advantages in scenarios where a larger number
of time frames are involved. This efficiency improvement can be beneficial, especially
when dealing with larger data samples or real-time processing requirements.

N, =30
Ny =30
MC =10000

Rectangular window 50% overlap

(a) Rectangular window.
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Figure 5.8: Empirical CDF of the largest eigenvalue of the SCM of prewhitened noise after
TP and CDF of the Tracy-Widom model for different window functions at the same frequency
bin (k = 2).

5.5.2 Rank Detection for Stationary Source

Next, we will analyze the impact of removing the correlations on the rank detection

performance. We will begin by examining the case where the source remains stationary
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over time. Consequently, it is enough to select STFT coefficients from a single frequency
bin to detect the rank, and we only need to remove the time correlation.

To simulate the scenario, we begin by generating a zero-mean Gaussian source
matrix of rank d with 5000 observations, along with a Gaussian white noise matrix
of size 8 x 5000 in the time domain. These matrices are then transformed using the
STFT with parameters k = L = 256 and H = L/2. Next, we construct the noisy
data matrix to the signal model defined in Eq. (2.1), where a random steering matrix
H is involved. The sizes of the resulting noisy STFT coefficients and noise STFT
coefficients are denoted as M x N, and M x N, respectively. The noise matrix then is
used to prewhiten the noisy data matrix, and subsequently the sequential rank detector
is applied to the prewhitened SCM.
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Figure 5.9: The probability of detection as a function of SNR for d = 1 in STFT domain at
one frequency bin (k = 2).

Fig. 5.9 illustrates the probability of detection as a function of SNR when employing
different window functions with and without TP. With the implementation of TP, the
detection performance can reach the desired false alarm rate for various window func-

43



tions. Additionally, the MDL method also yields relatively reliable detection results.
However, the absence of TP leads to degraded rank detection performance, particularly
when using window functions with high time correlation, such as the rectangular win-
dow. The high time correlation results in a situation where the probability of detection
cannot be controlled by Prs we set for the rank detection algorithm.

5.5.3 Rank Tracking for Time-varying Source

Now, we will demonstrate the usage of the threshold method for rank tracking. In this
simulation, the setup is similar to the previous experiments, but with the introduction
of a time-varying Gaussian source that changes its rank every 5000 samples. This
time-varying behavior is illustrated in Fig. 5.10.

True rank

0 0.5 1 15 2 2.5
Sample x10%

Figure 5.10: True rank of the generated signals in the time domain.

The STFT parameters remain the same as before, but here we use the Hanning
window function. To track the rank, we employ a sliding window strategy on the
STFT coefficients, as depicted in Figure 5.5. The false alarm rate Pr4 for the rank
detection algorithm is set to 1%. We consider two different settings:

e Single-Frequency (SF) Setting: In this setting, we detect the rank for each in-
dividual frequency bin. Since the Gaussian source is equally distributed across
frequency bins, we simplify the analysis by selecting a single frequency bin, specif-
ically k = 2. We set Ny =1 and N; = 15 to capture the rank information in the
selected frequency bin. The hop size R is set equal to ;. The resulting noisy
data matrix is of size M x Ny, which is 8 x 15. The noise matrix has the same
dimensions.

e Multiple-Frequency (MF) Setting: In this setting, we aim to improve time res-
olution by using multiple frequency bins. We choose Ny = 3 frequency bins,
specifically bins 2, 3, and 4, and set N; = 5 time frames for each rank detection.
The hop size R is also set to V;. The STFT coefficients at the selected time-
frequency bins are then vectorized for every channel, resulting in the reshaped
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noisy data matrix of size M x NNy, which is 8 x 15. The noise matrix has
the same dimensions. Additionally, we consider increasing Ny to 6, selecting fre-
quency bins from k& = 2 to k = 7. This expansion of the frequency range leads
to a doubling of the number of observations. The resulting matrix has a size of
8 x 30.

For the SF setting, TP is applied to remove time correlation, while for the MF set-
ting, TFP is implemented to eliminate time-frequency correlation. The rank detection
probability is presented in Fig. 5.11 as a function of the SNR, based on the results of
2000 Monte Carlo experiments. Notably, employing multiple frequency bins allows us
to achieve higher detection accuracy compared to using a single frequency bin. When
the number of frequency bins is doubled, the number of observations is also doubled,
resulting in improved rank detection accuracy at low SNR values.
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Figure 5.11: The probability of detection when the rank is changing over time.

However, it is observed that the detection performance does not reach the desired
false alarm rate of 1%. This can be attributed to the presence of data samples from
multiple sources within the detection window, near the points where the rank is shift-
ing. As a result, the rank is overestimated near rank-shifting points, as illustrated in
Fig. 5.12.

5.6 Chapter Conclusion

In this chapter, we investigated the correlation problems in STF'T. The presence of time
and frequency correlations within the STF'T has a direct impact on the effectiveness of
the threshold method. To address this, we derived expressions for time, frequency, and
time-frequency correlations, which are then utilized to construct a correlation matrix for
correlation removal. The removal of the correlation depends on the specific application.
In scenarios where data is processed for each frequency bin across the entire time frame,
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Figure 5.12: Rank tracking results of SF and MF settings at 30 dB SNR.

only time correlation needs to be considered. Further more, we have developed an
efficient algorithm to eliminate time correlation.

Simulations conducted show that after removing the correlations, the empirical CDF
of the largest eigenvalue of the prewhitened SCM aligns well with the Tracy-Widom
model, and the detection rate can also achieve the desired false alarm rate. Additionally,
we studied the threshold-based rank detection method for rank tracking problem. Our
findings indicate that employing multiple frequency bins compensates for the limited
observations when using shorter time frames. This approach provides higher time
resolution, resulting in a better rank tracking performance compared to utilizing a
single frequency bin alone.
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Threshold-based Rank
Detection Method for Speech
Enhancement

In this chapter, we will explore the application of the threshold-based rank detection
method in speech enhancement. To begin, we will introduce the multi-microphone
signal model and the beamforming algorithm used in our study. Subsequently, we will
discuss the implementation details of the threshold method and provide the simulations
results of speech enhancement.

6.1 Multi-microphone Signal Model

Suppose we have M microphones placed in a closed room with sound absorbing walls, d
speech targets, and some interference. The sound absorbing walls reduce the reflection
coefficients, resulting in that the Room Impulse Response (RIR) only contains the
direct path and reverberations can be ignored. In the time domain, the received signal
at the j-th microphone is given by

z;[t] = th[t] wsift] +n5t], j=1,2,...,.M (6.1)

where h; ; is the acoustic RIR from the i-th source to the j-th microphone, s; is the
i-th target source, n; is the noise signal received at the j-th microphone.

In order to satisfy the narrowband condition and exploit wide-sense stationary prop-
erties, we generally perform STF'T to transform the data to frequency domain.By em-
ploying the STFT, we can simplify the computation by converting convolutions into
multiplications. Let m and k denote as the time frame index and the frequency bin
index. The STFT coefficients of the acoustic signal at the j-th microphone are then
given by

= Y;[m, k] + N;[m, k|.
Since we are going to process the signal for each time frame and frequency bin, the

time and frequency indices therefore are dropped for ease of notation. Stacking the

received signals from the microphones in a vector, we have the following signal model:
x=Hs+n

(6.3)
=Yy +n,

where x = [X1,..., Xy]T € CM is the vector of the noisy speech STFT coefficients,
y = [Y1, ..., Yy ]T € CM is the vector of received clean speech STFT coefficients, and

47



n =[Ny, ..., Ny]T € CM is the vector of the noise STFT coefficients. s =[S, ..., Sq]” €
C? is the vector of target speech STFT coefficients. H = [hy,....,h;] € CM*? is the
steering matrix, with h; = [H; 1, ..., HLM]T € CM the steering vector for the i-th source.
The elements in the steering vector are also called acoustic transfer functions (ATFs).

The ATF is commonly assumed to be time-invariant and frequency-dependent, and
contains crucial information of the directions of the speech sources [206]. In multi-
microphone speech enhancement applications, a reference microphone is generally re-
quired to output the estimated target speech signal, and the choice of the reference
microphone could affect the performance of speech enhancement algorithms [27]. The
ATFs can be modified into the relative transfer function (RTF) by normalizing all the
ATFs with respect to the ATF at the reference position. Without loss of generality,
the first microphone is considered as the reference microphone here. The RTF vector
then is given by

1

h’i - H. [Hi,17 Hi,27 ) Hi,M]T
" (6.4)
’ Hi,l’”.’ Hi,l ’

and the RTF matrix is given by stacking the RTF vectors together. We also use H to
denote the RTF matrix.

In general, the target source s and the noise n are assumed to be realizations of zero-
mean wide-sense stationary processes. Furthermore, they are assumed to be mutually
uncorrelated for each time-frequency bin, meaning that their cross-covariance matrix

is zero, i.e., E[snf| = 0. Based on this assumption, the covariance matrix of x is given
by

&=

[rex]
[(Hs + n)(Hs + n)"]

Ry =
=E
= E[Hss”"H"] + E[nn"] (6.5)

which is also the sum of the covariance matrix of the received target signals and the
noise covariance matrix. All covariance matrices are complex matrices of size M x M.

The covariance matrix of the received target sources is usually impossible to be
known, while the noise covariance matrix or the noisy speech covariance could be esti-
mated somehow. We can use the SCM to estimate it. More specifically, the covariance
matrix is estimated by averaging over a certain number of the most recent time frames.
For the noisy speech covariance matrix, the estimation is processed during the speech-
plus-noise periods, and given by

A 1 q Hr-
Ry = A ZX[Z]X 4], (6.6)

@ ieT,

where 7, of size N, is the set containing the time frame indices of noisy speech signals.
Let X denote a size M x N, matrix that contains the observed signals x[i],i € 7,. The
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SCM of the noisy speech can be expressed as

5 1
Ry = EXXH (6.7)

Similarly, the noise covariance matrix is estimated during the noise-only periods:

- 1 e
Ry = . > " nfijn"[i], (6.8)

i€Tn

where 7T, of size N, is the set containing the time frame indices of the pure noise. With
N of size M x N, containing the N, observations of the noise, the SCM of noise can

also be written as ]
Ry = — NN, 6.9
vy (6.9)
To distinguish between speech-plus-noise periods and noise-only periods, the voice
activity detector (VAD) plays a crucial role in the system. In our simulations, we

assume a perfect VAD, which is obtained using the Audio Labeling tool in MATLAB.

6.2 Beamforming

Speech enhancement can be achieved by applying a beamformer to the STFT coeffi-
cients of the noisy speech in each time-frequency bin. This process, commonly known
as beamforming, aims to improve the quality of the speech signal. The output of the
beamformer is obtained by combining the individual microphone signals using specific
beamforming weights, which is given by

v, = wilx, (6.10)

where w is the beamforming vector of length M, Y; is the estimated clean speech signal
received at the reference microphone.

Various types of beamformers are utilized in speech enhancement applications. For
example, the Minimum Variance Distortionless Response (MVDR) beamformer [25]
reduces noise power while maintaining the spectral characteristics of the desired sig-
nal. Another beamforming technique is the Linear Constraints Minimum Variance
(LCMV) beamformer [29], which not only minimizes noise variance but also incorpo-
rates additional constraints to enhance interference suppression. These beamformers
are relatively straightforward to implement, but they require information such as ATF's
or DoAs, which need to be determined prior to applying the beamforming algorithms.

Signal subspace-based beamformers offer an alternative approach to speech enhance-
ment without requiring prior information such as DoAs, ATFs, or array structure
[30, 31, 32, 33]. These beamforming algorithms exploit the principle that the signal
subspace can be decomposed into two subspaces occupied by the clean signal and the
noise respectively. This decomposition can be done through EVD and its generalized
version. When the noise sources are spatially uncorrelated and limited to microphone
self-noise, EVD can be used to denoise the speech signals. However, in the presence
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of correlated background noise across the microphones, GEVD is employed, combin-
ing the prewhitening technique and EVD to reduce the correlated noise. A general
beamformer based on GEVD is called the signal-distortion weighted (SDW) Wiener
filter, which balances the trade-off between the signal distortion and noise reduction
performance [30]. A low-rank approximation of the SDW Wiener filter was developed
and proved to have better performance of noise reduction without increasing the signal
distortion [31].

Here, we consider using the GEVD-based beamformers for speech enhancement,
since in the threshold method, the GEVD is also used to obtain the generalized eigen-
values for the rank detection. We will show the connections between the GEVD-based
beamformers and the threshold method, and see how to combine them together.

6.2.1 GEVD-based Beamformers

First, we will review the GEVD-based beamformers and show the derivation of the
optimal beamforming weights w. The first step is to perform GEVD on the matrix
pencil (Ry, Ry), with Ry > 0:

FARyF=A, FIRNF =1, (6.11)

where Ry, Ry € CM*M ' F ¢ CM*M gare the right generalized eigenvectors, and
A = diag{\1, ..., A\ } € RMXM are generalized eigenvalues. Let K = F~%. We have

Ry = KAK? Ry = KI, K" (6.12)

The pair (A, F) are also the eigenvalues and eigenvectors of the matrix Ry'Ry. Ac-
cording to Eq. (6.5), the covariance matrix Rx can be expressed as

Rx = Ry + Ry
= KAK" + KI,K” (6.13)
=K(A +I,)K".

This implies that if (A, F) is the eigenpair of the matrix pencil (Ry, Ry), (A + 1, F)
is then the eigenpair of the matrix pencil (Ry, Ry). Since accessing the covariance
matrix Ry is often challenging, we typically work with the matrix pencil (Rx, Ry)
instead. By subtracting one from the generalized eigenvalues of the matrix pencil (Ry,
Ry ), we obtain the generalized eigenvalues A.

The next step is to find the optimal beamforming weitghts w, which is achieved by
minimizing the mean squared error (MSE) between the beamformer output and the
received target signal at the reference microphone (the first microphone). With the
assumption E[ynf’] = 0, we have

E |wa—y1’2 =E }WHy+an—y1|2

) (6.14)

Y

:E}WHy—y1|2—HE|WHn

where the first term represents the signal distortion and the second term is the residual
noise variance. We can make compromise between signal distortion and noise reduction
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by minimizing the first term and constraining the noise variance. This leads us to the
following optimization problem [30, 31]:
min IE’,|WHy—y1|2

6.15
st. E ‘WHIl’2 <cg, ( )

where c is the user chosen parameter, with 0 < ¢ < o2 . o2 , 1s the noise power at the

reference microphone before applying the beamforming technique.
The optimal weights can be found by using the Lagrangian function and taking its
derivative to zero, which is given by

w = (Ry + uRy) 'Rye, (6.16)

where e; = [1,0,...,0]7 € RM indicates the position of the reference microphone, and
1 is the trade-off parameter for the signal distortion and noise reduction. Hence, these
filters are commonly referred to as SDW Wiener filters. By utilizing GEVD expressions
of the covariance matrices, we can express the optimal filters as follows:

w = F(A + ply) "AKY. (6.17)

It is often assumed that the covariance matrix Ry exhibits low rank, meaning that
the number of sources d is smaller than the number of microphones M. By considering
this property, we can choose the first d eigenvectors and eigenvalues. Consequently, the
beamformer can be expressed as follows:

W = Fd(Ad + ,uId)_lAng, (618)

where F; contains the first d right generalized eigenvectors, K, contains the first d left
generalized eigenvectors. Ay is the diagonal matrix containing the first eigenvalues.
The filters are called the low-rank multi-channel Wiener filter (LR-MWF) [35]. Note
that many beamforming can be expressed as Eq. (6.18). With u = 0,d = 1, the
beamformer is considered as the MVDR beamformer. When p = 1,d = M, it is the
classical multichannel Wiener filter.

6.2.2 Beamforming After Temporal Prewhitening

To implement the GEVD-based beamformer for speech enhancement, it is crucial to
determine the number of sources or the rank of each time-frequency bin. While the
maximum rank d,,,, may be known or assumed, the rank of individual time-frequency
bins is not always equal to d,,., since sources are not always simultaneously active at
all time-frequency bins [36]. To estimate the rank of each bin, the threshold method
can be employed. However, before applying the threshold method, it is necessary to
preprocess the collected data matrix X by removing time correlation introduced by
the STFT. This can be achieved through temporal prewhitening, as discussed in the
previous chapter.

In the threshold method, the GEVD is employed to obtain generalized eigenvalues
for rank detection. It is also utilized in constructing the beamformer. Typically, two
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separate GEVDs need to be performed. However, we have discovered that performing
only one GEVD on the preprocessed data matrix is sufficient. Let X’ denote the
preprocessed noisy speech matrix, and N’ the preprocessed noisy matrix. The temporal

prewhitening is done by
X' = XL 7 N =NL7, (6.19)

where L is the Cholesky decomposition of the time correlation matrix.

By performing the GEVD on the preprocessed matrix pencil (Rx/, Ry/), we can
determine the estimated rank as well as obtain the optimal beamformer w’. The out-
put of the beamformer will be the corresponding estimated target signals with removed
time correlation at the reference microphone. To recover the original STFT coefficients,
the estimated signal matrix should be multiplied by L. This operation is equivalent
to applying the beamformer to the original data matrix (i.e., the data matrix before
TP). TP only eliminates time correlation, ensuring that the observations become i.i.d.
The spatial information in the data matrix is preserved, allowing the beamformer con-
structed from the GEVD on the preprocessed matrix pencil to effectively reduce noise.

As a result, performing only one GEVD on the data matrix preprocessed by TP is
sufficient to obtain the beamformer and estimate the rank.

6.3 Implementation Detail

Fig. 6.1 illustrates the process of speech enhancement using our threshold-based rank
detection method for each time-frequency bin. Initially, the multichannel noisy speech
signals in the time domain are transformed into the frequency domain using the STFT.
For each frequency bin, the data matrix X undergoes TP to eliminate the time corre-
lation. The VAD is then applied to classify the speech-plus-noise and noise-only time
frames, which are utilized to estimate the covariance matrices. The number of sam-
ples used for estimating the noisy speech and noise covariance matrices are N, and N,
respectively. . R

Next, the GEVD is performed on the matrix pencil (Rx/, Ry/) to obtain the gener-
alized eigenvectors F and eigenvalues \;, for i = 1,..., M. The rank d is estimated using
the threshold method based on the matrix dimensions (M, N,, V;) and the generalized
eigenvalues. The beamformer takes the original noisy STFT coefficients X, eigenvec-
tors, and the estimated rank as inputs, producing the estimated clean speech STFT
coefficients Y] at the reference microphone. The estimated clean speech signal in the
time domain can then be obtained by applying the inverse STF'T.

A~ ~ ~ A~

X X' R/ i d %
TP VAD GEVD ™ Beamforming ——

ﬁN/

Figure 6.1: Implementation diagram of threshold method in speech enhancement.
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In this implementation, two important remarks are worth considering. Firstly, the
assumption of a prefect VAD is essential. One might question the necessity of
using VAD when we can utilize the threshold method to directly detect noise-only time-
frequency bins. Why do we need VAD in this context? It is important to note that
the threshold method relies on accurate estimation of the pure noise covariance matrix
and the data covariance matrix. The noise covariance matrix plays a critical role and
requires precise estimation.

If the threshold method misclassifies a data time-frequency bin as a noise sample
and includes it in the estimation of the noise covariance matrix, the effectiveness of
the prewhitening process in the threshold method may be compromised, and the noise
eigenvalues may not follow the Tracy-Widom distribution. Ultimately, this can result
in the breakdown of the threshold method. Therefore, we employ VAD to ensure the
accurate estimation of the noise covariance matrix. Investigating the problem of rank
estimation without relying on VAD in the threshold method could be an interesting
topic for future research.

Secondly, the ghost sources need to be considered. For the speech signal
model, the spectral leakage in STFT would introduce spatially spread and uncalibrated
ghost sources. This leads to the situation where the number of eigenvalues greater
than the noise threshold is higher than the actual rank [37]. As a consequence, the
threshold method may provide incorrect estimations and overestimate the rank. This
phenomenon becomes more prominent at high SNR, as the power of ghost sources
increases proportionally with the source power [38]. Window functions with lower side
lobes in the frequency response are more resistant to spectral leakage and can mitigate
the impact of ghost sources [22].
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Figure 6.2: Probability of detection as a function of SNR of microphone self-noise for different
window functions.

To demonstrate the influence of ghost sources on the threshold method’s perfor-
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mance, we conducted a simple simulation. We consider a scenario where a Gaussian
source with rank 1 is corrupted by Gaussian white noise. By simulating RIRs [39] using
the image method [10] and convolving the source signals with the RIRs, we obtain the
received signals at the microphone array. Subsequently, the STFT is applied to the
received signals and TP is implemented to eliminate the time correlation. Finally, we
employ the threshold method on the processed STFT coefficients to estimate the rank.
In Fig. 6.2, we present the probability of detection for different window functions. It
is evident that at extremely high SNR (>30 dB), the threshold method may encounter
difficulties in accurately detecting the rank. The performance of the square-root Ham-
ming window is particularly sensitive to the SNR due to its relatively high side lobe
and limited effectiveness in reducing spectral leakage.

To avoid the effect of the ghost sources, we set a relatively low SNR (20 dB) for
the microphone self noise in the following simulations. To fully address the issue of
ghost sources is beyond the scope of this thesis. Some related methods can be found
in [37, 33].

6.4 Simulations

6.4.1 Simulation Setup

The room geometry we consider for the speech enhancement simulations is depicted in
Fig. 6.3. The room has dimensions of 5m x 4m x 4m and all microphones and sources
are placed at a height of z = 2m. We employ a linear microphone array consisting of 6
microphones evenly spaced 2 cm apart. The leftmost microphone serves as the reference
microphone.Our experiments involve the presence of one or two target sources, along
with two noise interferences.

The parameters used in the simulations are summarized in Table 6.1. To gener-
ate the received speech signals, the target and noise sources are convolved in the time
domain using RIRs generated with the image method [10], implemented using the MAT-
LAB toolbox [39]. The microphones are omnidirectional with a 0-degree orientation,
and their sensor self-noise is set to 20 dB. In order to ensure a low-rank approximation
of the covariance matrix, a reverberation time Tgy of 10 ms is employed. The sampling
rate is set to f; = 16 kHz. For processing the received signals in the frequency domain,
the STFT is performed using a square-root Hanning window of length L = 512, with
a hop size of H = L/2, and an FFT point of K = 512. For the rank detection based
on the threshold method, the false alarm rate Ppy4 is set to 1%. When it comes to the
beamformers, we set the trade-off parameter p to 1.5.

The two target speech signals consist of recordings from a male and a female speaker,
obtained from the TIMIT dataset [11]. Both signals have a sampling rate of 16 kHz.
Two types of background noise are considered: Gaussian noise and babble noise. To
evaluate the performance of the threshold method in detecting the rank, the true rank
dp i in each time-frequency bin must be known. For this purpose, we assume a perfect
VAD for each target speech signal separately. The perfect VAD is obtained using the
Audio Labeling tool in MATLAB. The speech signals, along with the corresponding
VAD labels, are depicted in Fig. 6.4.
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Figure 6.3: The room geometry for simulations with M = 6 microphones and d = 2 sources.

Table 6.1: Simulation parameters

Parameter Value
The number of microphones M 6
Simulation realiztions 10
Sampling rate f; 16KHz
Microphone self noise 20 dB
FFT point K 512
Time frame length L 512
Window function Square-root Hanning window
Hop size H 256
The reverberation time Tgg 10 ms
False alarm rate of threshold method Pry 1%
Beamforming trade-off parameter p 1.5
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Figure 6.4: Plots of speech signals and their VAD labels used in the simulations.



In Fig. 6.5, the spectrograms of the clean speech signals are depicted. It is notable
that the speech signals align well with the VAD across all time frames. However, the
distribution of the speech signals is not uniform across all frequency bins. Specifically,
certain frequency bins, such as k& < 10 and k > 200, exhibit relatively low signal
power. This non-uniform distribution poses challenges in accurately determining the
true rank for each time-frequency bin. Given this uncertainty in rank determination,
evaluating the accuracy of rank detection using our proposed method may not yield
meaningful results. For simplicity, we focus on assessing the rank detection accuracy
for a frequency bin that exhibits higher signal power, such as the bin at &£ = 20. In this
specific frequency bin, we can determine the true rank for each target speech signal in
every time-frequency bin based on the VAD results. In the case of multiple sources,
the true rank is obtained by summing the ranks of each individual source.

Power (dB)

200 400 600 800 1000 1200 200 400 600 800 1000 1200 200 400 600 800 1000 1200
Time frame Time frame Time frame

(a) Spectrum plot of s;. (b) Spectrum plot of ss. (c) Spectrum plot of s; and s

Figure 6.5: Spectrum plots of target speech signals at the reference microphone, when the
noise is not presented.

The speech enhancement process is implemented based on the diagram shown in
Fig. 6.1. To estimate the covariance matrices, the noisy speech covariance matrix and
the noise covariance matrix, we employ the SCM approach, as described in Eq. (6.7)
and Eq. (6.9). When applying the threshold method for speech enhancement, it is
essential to take into account that the STFT coefficients at the first and last frequency
bins are real numbers. Therefore, it is advisable to use the Tracy-Widom model specif-
ically designed for the real case in such situations. The corresponding expressions and
mathematical details can be found in Appendix A.

6.4.2 Evaluation Method

To assess the effectiveness of the threshold method in speech enhancement, we consider
three evaluation metrics: the probability of rank detection, the output SNR, and the
Short-Time Objective Intelligibility (STOI). These metrics are computed over the input
SNR, which is defined as the ratio of the power of the target source to the power of the
noise in the time domain at the reference microphone:

N 27+
Input SNR = 101log Zl;;y;[z] (6.20)
2 i 1]
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To measure the rank detection accuracy of the threshold method for each time-
frequency bin, we focus on computing the probability of detection within the speech-
present time-frequency bins. Let D = {d;x : dmx # 0} represent the set containing
the true ranks for speech-present time-frequency bins. The set D = {chk ; cfmk =
i N\ dm i 7 0} contains the correctly estimated ranks. The probability of detection
is then computed as the ratio of the sizes of these two sets:

Probabili ion = @
robability of detection = ok (6.21)

The output SNR and STOI are selected as performance metrics to evaluate the
effectiveness of speech enhancement. The output SNR is calculated as the ratio of the

power of the target source to the remaining noise power after enhancement, which is
given by

N 27
Output SNR = 10log — Zzzl % [ZA] —. (6.22)
> iz (i) = 1))
The STOI takes inputs of clean and enhanced speech signals and measures the speech
intelligibility [12]. It produces a value between -1 and 1, where a value closer to 1
indicates higher intelligibility. However, it is important to note that the STOI value
can approach 1 even in scenarios where the noise level is relatively high.

In order to evaluate the performance of the speech enhancement, we compare the
results obtained using the rank estimated by the threshold method with those obtained
using the maximum rank d,,,,. The maximum rank corresponds to the known number
of sources.

6.4.3 Rank Detection Accuracy of Threshold Method

To assess the rank detection accuracy of the threshold method, we examine the detec-
tion results for one target source and two target sources at frequency bin k£ = 20, as
shown in Fig. 6.6. The figures depict the averaged detection results over 100 exper-
iments. In Fig. 6.7, the rank estimation results are compared with the true rank at
frequency bin 20, with an input SNR of 25 dB.

Fig. 6.6a demonstrates that when there is a single target source, the detection
performance can almost achieve the desired false alarm rate after applying TP. However,
some incorrect estimations may occur for the first time-frequency bins at the beginning
of the detection process, as seen in Fig. 6.7a. This could be attributed to insufficient
data samples, resulting in relatively less accurate results.

The application of TP improves the detection accuracy, albeit to a small extent, as
the time correlation introduced by the square-root Hanning window with 50% overlap is
relatively low. Moreover, the MDL, when combined with TP, achieves a high accuracy
of approximately 87% at high SNR. However, it is important to note that the MDL
method only functions properly when the number of data samples exceeds M = 6.

However, the rank detection accuracy declines rapidly when dealing with multiple
sources, as depicted in Fig. 6.6b. The threshold method tends to make mistakes at
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Figure 6.6: Rank detection probability using threshold method for (a) one target source and
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Figure 6.7: Rank estimation results for one or two target sources at frequency bin 20, input
SNR 25 dB.

the boundaries when the rank is shifting. For instance, when the rank transitions
from 2 to 1, the threshold method may still estimate the rank as 2 for the consecutive
time-frequency bins. This discrepancy might occur because the collected data samples
exhibit a higher number of time-frequency bins with rank 2 compared to rank 1.
Furthermore, the threshold method tends to overestimate the rank when the tran-
sition occurs from 0 to 1, as observed at time frames around 550 and 950. This phe-
nomenon can be attributed to the presence of two sources in the collected data samples.
To improve the accuracy of rank detection, one approach is to use a smaller number
of data samples, which corresponds to a smaller detection window size. This allows for
better time resolution. For instance, we can use N, = 20 signal data samples. The
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results of rank detection accuracy are shown in Fig. 6.8, and the corresponding rank
estimation results are displayed in Fig. 6.9.

Using a smaller number of data samples can indeed lead to higher detection accuracy
at high SNR levels but lower accuracy at low SNR levels. However, this approach may
also result in noisier estimations and an increased number of underestimations due
to the limitations of estimating the covariance matrix with small data samples. In
the context of speech enhancement, underestimation of the rank is more problematic
than overestimation [30]. Therefore, while using smaller data samples can improve rank
detection accuracy at high SNR, it may not be favorable for overall speech enhancement
performance.

—=—Threshold Method

091 —4—Threshold Method + TP||
. ——MDL + TP

o
3

o
I
T

Probability of detection
o o o o
n w » o

o

0 . . . . . . . . .
25 20 -15  -10 -5 0 5 10 15 20 25
Input SNR (dB)

Figure 6.8: Detection probability for two target sources at frequency bin 20, input SNR 25
dB, N, = 20, N, = 100.
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Figure 6.9: Rank estimation results for two target sources at frequency bin 20, input SNR 25
dB, N, = 20, Ny, = 100.
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6.4.4 Speech Enhancement Performance

First, we will examine the speech enhancement performance using the threshold method
for a single target source. Fig. 6.10 illustrates the changes in output SNR and STOI as a
function of input SNR. It is observed that employing the estimated rank obtained from
the threshold method results in a slight improvement in both output SNR and STOI.
This improvement is particularly noticeable at low SNR levels. Although the threshold
method may initially make some mistakes in rank estimation, these errors have minimal
impact on the overall speech enhancement performance. Furthermore, in certain time-
frequency bins with low signal power, the threshold method may estimate a rank of 0,
thereby excluding these bins from the enhancement process. Surprisingly, disregarding
these low-power bins does not significantly affect the speech enhancement performance.
On the other hand, when using the maximum rank, more noise components may be
included, resulting in lower output SNR and STOI.
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Figure 6.10: Speech enhancement performance using the maximum rank and the estimated
rank of the threshold method, for one target source.

Similar results can be observed for the case of two target sources, as shown in
Fig. 6.11. However, it is worth noting that the discrepancy between the curves of the
true maximum rank and the estimated rank becomes more pronounced at low input
SNR levels. This phenomenon may be attributed to the fact that employing the max-
imum rank includes more noise components for time-frequency bins with actual lower
ranks. Conversely, despite the potential errors made by the threshold method in cer-
tain time-frequency bins, it still manages to give relatively better speech enhancement
performance.
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Figure 6.11: Speech enhancement performance using the maximum rank and the estimated
rank of the threshold method, for two target sources.

6.5 Chapter Conclusion

In this chapter, we implemented the threshold-based rank detection method in speech
enhancement to estimate the rank of each time-frequency bin. The threshold method
shows promising results in speech enhancement, both for single and multiple target

sources.

Despite potential errors in rank detection at the beginning and in certain

time-frequency bins, the threshold method still leads to improved output SNR and

STOI compared to using the true maximum rank.
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Conclusion and Future Work

7.1 Conclusion

Recalling the main research question posed in Chapter 1, our objective was to achieve
precise rank detection based on the threshold method in the presence of colored or
correlated noise while considering the finite number of data samples and noise samples.
Through our research, we have taken several steps to address this question and provide
solutions.

Firstly, we investigated the distribution of the largest eigenvalue of the prewhitened
noise and discovered that it follows the Tracy-Widom distribution. This finding allowed
us to determine the threshold necessary to achieve a specific false alarm rate. Further-
more, we presented a more accurate threshold when considering the signal-plus-noise
case. We made modifications to account for the matrix dimensions when calculating
the scaling and centering constants.

Building upon the threshold determination, we developed a rank detecting algo-
rithm using a sequential test approach. Through theoretical analysis and simulations,
we demonstrated that our algorithm achieves the desired false alarm rate and more
accurate rank detection performance and compared to MDL and AIC methods. Im-
portantly, our proposed method is more robust when dealing with limited data samples
and noise samples.

Considering that many real-world signals are non-stationary and often analyzed in
the STFT domain, we extended our rank detection method to this domain. However,
the correlations among the time-frequency bins introduced by STFT impact the dis-
tribution of prewhitened noise. To address this, we investigated methods to remove
the correlations and derived expressions for the correlations in STFT. To handle sig-
nals that are not evenly distributed across frequency bins, such as speech and audio
signals, we proposed a temporal prewhitening technique. Additionally, we developed a
more efficient algorithm that considers the special structure of the correlation matrix
for achieving temporal prewhitening. Through simulations, we demonstrated that by
removing the correlation, the threshold-based rank detection method can achieve the
desired false alarm rate.

Finally, we applied the rank detection method to speech enhancement, specifically
detecting the rank in every time-frequency bin. Our results showed that the rank
detection method integrates well with GEVD-based beamformers, as both rely on the
GEVD. By employing our method, we observed improvements in output SNR and STOI
compared to using the known number of signals as the rank. Even in cases where the
rank detection method made mistakes on some time-frequency bins, it still excluded
more noise components than using the number of signals as the rank.
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7.2 Future Work

Based on the work presented in this thesis, future studies can benefit from the follow-
ing ideas, aimed at further improving the current work, overcoming limitations, and
extending the proposed method to other applications. These ideas can be categorized
into two aspects: theoretical advancements and practical applications.

7.2.1 Theoretical Advancements

The proof for the distribution of the largest eigenvalue arising from the noise in
the signal-plus-noise scenario needs improvement. In our case, we simplified the
prewhitened noise as Gaussian white noise and relied on an existing proof for that
assumption. While the empirical results support the correctness of the distribution, it
is crucial to provide a more explicit proof to strengthen the argument.

Similarly, in the performance analysis of the rank detection algorithm, we intro-
duced modifications to the distribution of the eigenvalue originating from the signal.
Although simulations were conducted to assess the effectiveness of these modifications,
it is essential to provide theoretical proof to establish the validity of the modifications.

The determination of the threshold in the rank detection algorithm can be further
improved by using adaptive thresholding techniques. Based on dynamic variations in
noise statistics, the threshold can be automatically adjusted to adapt to changing noise
conditions and improve the overall performance of the rank detection method.

7.2.2 Practical Applications

In the STFT domain, for applications that involve processing multiple frequency bins
and time frames simultaneously, it is necessary to perform time-frequency prewhitening
to remove time-frequency correlation. Currently, we employ a sliding window approach
to mitigate computation and memory issues. However, more efficient algorithms should
be investigated to effectively remove time-frequency correlation.

For applications that exhibit signal models similar to the speech signal model, the
presence of ghost sources introduced by spectral leakage in STFT can affect the rank
decision of the rank detection method. To mitigate the effects, we currently use a
relatively small SNR for spatially uncorrelated noise. To fully resolve this issue, we can
refer to works such as [37, 38] for inspiration.

Additionally, in speech enhancement applications, we assume the VAD to help us
select speech-present and noise-only time frames. An advanced approach would involve
using our threshold method to detect voice activity, eliminating the need for a separate
VAD and allowing us to estimate the rank for every time-frequency bin more efficiently.

The threshold method developed for rank detection has potential applications be-
yond speech enhancement. By exploring its effectiveness and adaptability in other
domains, such as DoA estimation in radar systems, imaging denoising, and other ap-
plications that require rank estimation, we can discover new way to use it and further
expand its potential impact.
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Tracy-Widom Distribution in
the Real Case

The largest eigenvalue of the Gaussian white noise in the real case can be approximated
by the order 1 Tracy-Widom [11]:

NgAi — PM,N,
UM,N,

2 Tw, (A.1)

with centering and scaling constants as

1 1
=(/N, — = M — =)
prNe = (4 5T/ 2)
1 1

UM,N, = /PMN, =+ 1)-
\/Na—§ \/M—§

For the prewhitening case, the logarithm of the largest eigenvalue A of the real F
type matrix R5'R4 can be approximated to order O(n~?/%) by the Tracy-Widom law
with proper centering and scaling [15]:

W=

In (%—‘;5\1) — PM,Na,N, D

2 Twh. (A.2)

UM, Na,Np

The centering and scaling constants are given as follows:

pPM.N, N, = 2Intan 7 —; ¢7 (A-3)
16 1
s _ A4
YM,Na,Ny (N, + Ny — 1)2sin?(y + ¢) sin(y) sin(¢)’ (A.4)
where
9 1 - min(NaaM) - 1/2
sm(Q)_ N,+N,—1
NaaM —1/2
siDQ(?) _ maxl )
2 Ng+ Ny —1
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Temporal Prewhitening
Algorithm

B.1 General Temporal Prewhitening

Let ¢, denote E[V,,[k]V,%, .[k]]. The time correlation matrix, denoted as C, is a banded
Toeplitz matrix with dimensions T x T’s. This matrix captures the correlations between

Viulk] values for 1 < m < T}. The structure of C is as follows:

-CO cp 07
C=|P (B.1)

Cp

L0 ¢y o col

The time correlation matrix C can also be interpreted as the autocorrelation matrix
of the sequence V,,[k]. Let v, € CTr*! denote the STFT coefficients at frequency bin
k. To remove the time correlation, we use C~'/? to whiten the vector v, along the time
axis. That is

v, = C /2y, (B.2)

where v} represents the prewhitened STFT coefficients at frequency bin k, with its
elements being uncorrelated across time. C%/2 can be obtained by the Cholesky decom-
position of C, i.e., C = LL¥, where L is a lower triangular matrix. For simplicity, we
can omit the notation of the frequency bin. Hence, we have

v =Llv (B.3)

In general, obtaining the prewhitened vector v’ involves calculating the Cholesky
decomposition of matrix C, which has a time complexity of O(n?). Additionally, com-
puting the inverse of the lower triangular matrix L also has a time complexity of O(n?).
However, using MATLAB’s 'chol’ and ’inv’ functions would require recomputation from
scratch for each update of the data vector, making it the least time-efficient approach.
To address this, we will now present a more efficient algorithm for computing the
Cholesky decomposition and its inverse.
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B.2 Cholesky-Forward-Substitution Algorithm

First, we consider how to improve the efficiency of the Cholesky decomposition of the
matrix C. The general Cholesky decomposition algorithm is given by [13]

i—1
Li,i = Ci,i - Z Li,nL:n
n=1 (B.4)

i—1

1 * . .

Lji :F(Oﬂ'ai - Z LinLi,),j=1i+1,.. Ty
bt n=1

Since the C matrix is a banded Toeplitz matrix, the resulting Cholesky matrix L is
a banded lower triangular matrix and has the following structure:

Lll

)

0 Lryry—p -+ L1y ]

where each row contains a maximum of D + 1 non-zero entries. By considering this
characteristic, we can effectively reduce complexity. Additionally, we can utilize a
vector representation for the matrix C. Let ¢ = [, ..., cp]? be the correlation vector.
The correlation matrix C can then be expressed as C = Toeplitz(c, Oz, - D—1)><1)7 where
O(7,—p-1)x1 Tepresents a zero-vector of length Ty — D — 1. Rather than constructing the
entire matrix, we can store only the correlation vector, resulting in significant memory
savings. The modified Cholesky decomposition algorithm is as follows:

i—1
Li,i =+1C — Z Li,nL;‘k,n
n=max(1,5—D)
1 1—1
Lij=+(c— Y LjuL;,).j=i+1,.,min(i+ D Ty)

n=max(1,j—D)

Then, we can effectively reduce the time complexity to approximately O(D?*n), with
D < n.

Once we have obtained the Cholesky matrix L, the next step is to calculate its
inverse. Rather than directly computing the inverse, we can instead solve the linear
equation:

Lvi=v (B.7)

The forward substitution algorithm is employed in this case, which typically has a
complexity of O(n?). However, due to the special structure of L, the complexity can
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be reduced to O(Dn). The modified algorithm is derived from the original forward

substitution algorithm [11], and is presented as follows:
v
L
1 i—1 (BS)

Vi=—o~(i— > L), i>1

n=max(1,i—D)

where v; represents the i-th element in the vector v, v} is the i-th element in the vector
v,

Since, we combine the Cholesky decomposition and the forward substitution steps,
the algorithm is called the Cholesky-Forward-Substitution algorithm. However, in its
current form, the algorithm is not adaptive. For each new data sample, it requires
recalculating the Cholesky matrix L and solving the linear equation from scratch. In
order to address this limitation, we will explore making the algorithm adaptive. We

will start by considering a special case when D = 1.

B.2.1 Algorithm for D =1

In the case when D =1 (i.e., using less than or equal to 50% overlap), the correlation
vector can be represented as ¢ = [cg, ¢;]T. Explicit expressions can be derived for the
elements of the Cholesky matrix L, and the time complexity for computing L will be

O(n).

e If ¢y = 2|cy], it indicates the usage of rectangular window function. The derivation
in this case is straightforward by using mathematical induction. The expressions
of the entries in L are given by

Ll,l = \/C_O7

Co 1+
Lii =/ %, (B.9)
[ :

o If ¢y > 2|cy], it indicates the usage of other window functions. The entries in L
can be computed as [15]

i+1 i+1
L Qq Qg
1,0 ot Oéi )
17 Gy

c1 (B.10)

Lii1= 7 for i=2,..,T%
co+ /2 —4c co— /2 —4c3

where a; = 5 Oy = 5



In both cases, the entries of the Cholesky matrix L. depend on the position index,
enabling efficient adaptive updates. For instance, when incorporating a new data sam-
ple and updating the matrix L, it is unnecessary to recalculate all entries from the
beginning. Instead, only the entries Lz, 17,41 and Ly, 17, need to be computed, re-
sulting in a time complexity of just O(1). This significantly reduces the computational
complexity and improves efficiency.

The forward substitution algorihtm can be futher reduces to

o =L
YL,
1 (B.11)
v; =7 (v; — Lijqvi_q), i>1

and the time complexity is also O(1) for a single update.

For multiple channels of inputs, the algorithm is required to be performed indepen-
dently for each channel.

B.2.2 Algorithm for D > 1

For general cases where D > 1, the Cholesky decomposition algorithm in Eq. (B.6) can
also be written in a recursive way, resulting in a complexity of O(D?) for updating a
new incoming sample.

Consider the scenario where we have knowledge of the previous t rows of the L
matrix, where ¢t > D + 1. Our objective is to determine the t + 1-st row of the L
matrix. Specifically, there will be D + 1 elements in the ¢ 4+ 1-st row denoted by
Lit1t-p+41s -y Liv1441. Based on Eq. (B.6), we now show the calculation of every
element in the ¢t + 1-st row.

First, Ly114—p+1 is calculated based on Li_pi14—pyi:

X Lipyig-py1 O
(B.12)

0 Lipie-py1 o Lip1gqn
Li+1 ¢~ pyo is determined by the elements L;_pios—pi1, Li—piot—pre and Liyq - por:

X Lipy1i-pt1 0

X Li_pyot—p+1 Li—pt2i-py2 0
(B.13)

0  Liii—pt1 Livit-py2 Ly
Continuing the process, L1, then is determined by:
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X Li_pt14-ps1 0
X Li_pyai—p+1 Li—pi2i—pi2 0
X Lt,t—D+1 co Lt,t—l Lt,t 0
i 0  Liii—pt1 e Liv14-1" L1t Leyrpsr |

For the last element, we have

[ 0 Lengpa -+ iy Lm,tm (B.15)

Now, it becomes evident that in order to determine the t + 1-st row, we require the
previous lower triangular matrix of size D x D, denoted as L[t —D+1:¢,t—D+1 : t].
Thus, for a single update, the time complexity is approximately O(D?).

X Ly py1¢-Di1 0
X Li_pyat—py1 Li—pi2i—D42 0
(B.16)
X Lit—pi1 K Lit1w Ly 0
0  Liit—pt1 oo Livip—1 Lit1s Liv141

After obtaining the elements in the ¢ + 1-st row of L, we can utilize these elements
and the previous prewhitened data samples to calculate the prewhitened data sample at
time index t+1, denoted as vy, ;, based on Eq. (B.8). Let L, = L[{t—D+1:¢,t—D+1 : t].
Given Ly, vy 1, and the previous prewhitened data vector g, = [v,_p 4, ..., v]", our goal
is to determine v; ;. The algorithm is summarized as follows:

Algorithm 2 Adaptive Cholesky-Forward-Substitution Algorithm

Input: Correlation vector ¢, L¢, v¢11, and previous g,
Initialization: ;41 = O(p41)x1 to store the non-zero elements in ¢ + 1-st row of L
for j=1:D do

% —1 *[
lj = ﬁ(%—jﬂ — > Li 5 m])
end for

Ipy1 = \/Co — S Il

Vg1 = ﬁ(vwl - 25:1 Ingt[n])
Update the new submatrix L;iq
Update the prewhitened vector g,
Output: vj_,
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