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A Fully Homomorphic Encryption Scheme for Real-Time Safe Control

Pieter Stobbe1, Twan Keijzer1 and Riccardo M.G. Ferrari1

Abstract— Fully Homomorphic Encryption (FHE) has made
it possible to perform addition and multiplication operations on
encrypted data. Using FHE in control thus has the advantage
that control effort for a plant can be calculated remotely without
ever decrypting the exchanged information. FHE in its current
form is however not practically applicable for real-time control
as its computational load is very high compared to traditional
encryption methods. In this paper a reformulation of the Gentry
FHE scheme is proposed and applied on an FPGA to solve this
problem. It is shown that the resulting FHE scheme can be
implemented for real-time stabilization of an inverted double
pendulum using discrete time control.

I. INTRODUCTION

Cryptography has allowed for the development of control-
systems, such as hydroelectric dams or energy grids at a
regional level or higher, that must be securely monitored
and controlled over long distances. Such spatially distributed
systems require a remote connection between the plant actu-
ators, sensors and the controller which can only be feasibly
secured from intrusion via encryption.

Currently, industrial control systems are secured by end-
to-end encryption, utilising a mix of symmetric-key and
public-key encryption schemes [1], [2], [3]. These methods
are successful in securing low rate communication within
large scale control systems. However, they are unsuitable for
high sampling frequency feedback-control, as they require
multiple encryption and decryption steps. These operations
introduce time overhead, reducing the stability margin and
possibly de-stabilizing the plant. Furthermore the decryption
of data at the controller level means that these methods do
not provide security if the controller itself is compromised.

Homomorphic encryption (HME) schemes present a so-
lution to these problems. These schemes allow for multipli-
cation and/or addition of encrypted numbers, thus removing
the need for decryption and encryption at the controller level.
There are two main types of HME: Partially (PHE) and Fully
Homomorphic Encryption (FHE). PHE schemes support only
multiplication or addition, whereas FHE schemes support
both. The first HME scheme was RSA [2], followed by PHE
schemes such as EL Gamal [4] and Paillier [5].

More recently lattice-based FHE schemes have been in-
troduced in [6], [7], [8]. For encrypted control this means
these schemes allow for implementation of a broad range of
feedback control. However, the high computational complex-
ity of these lattice based schemes prevents them from being
used in real-time on conventional hardware.

1Delft Center for Systems and Control, Delft University of Technology,
The Netherlands. pj.stobbe@hotmail.com, {t.keijzer,
r.Ferrari}@tudelft.nl.

PHE schemes have also been proposed for control, such as
in [9] which proposes a combination of the El Gamal [4] and
RSA [2] schemes. This control scheme, however, requires
the controller state to be sent to the plant for decryption and
re-encryption at each time step, adding additional overhead.
More recently, [10] has demonstrated direct feedback control
with the PHE scheme from [5]. Due to the limited homo-
morphic properties of PHE, the controller used un-encrypted
controller gains, posing a security risk.

However, recently more attention has been directed to
FHE schemes for control, such as in [11], [12], [13], [14],
[15]. These schemes however still suffer from two problems.
First of all, the representation of encrypted signals requires
orders of magnitude more storage than the original plaintext.
This means that, due to limited computation and bandwidth
resources, real-time control with FHE is limited in complex-
ity and update rate. In [12], a two-state LTI controller is
implemented with an update rate of 2 Hz while in [16] a
direct feedback controller for high-level control of a drone
reaches an update rate of 10 Hz.

Secondly, PHE and FHE only allow for encryption of
unsigned integers, whereas control requires the use of real
numbers. For PHE and FHE the real numbers can be
represented as unsigned integers through the Q format. One
limitation that remains is that multiplications will shift the
location of the decimal point, eventually leading to overflow.
Under normal conditions, the decimal point can be shifted
back with right hand bit-shifts. However, no FHE schemes
currently support homomorphic right hand bit-shifts without
excessive penalties on multiplicative depth, which is defined
as the maximum allowed number of consecutive multipli-
cations. Lattice based encryption schemes support only a
relatively shallow multiplicative depth, after which ciphers
can no longer be correctly decrypted. Alternative solutions,
such as periodic reset [11] and scaling of the state space
matrices [13] have been proposed to solve this problem.
These methods however affect stability and performances,
limiting applicability.

The problems of computational complexity and fixed
precision have hindered the acceptance of FHE for real-time
control. In this paper we propose an FHE scheme for real-
time secure control implemented on an Field Programmable
Gate Array (FPGA) which address this issue. The contribu-
tions of the paper are:

• The Gentry’s FHE scheme [6] has been reformulated
with analytical operations that allows for more intuitive
manipulation of the scheme.

• A so-called reduced cipher is introduced via a change
of representation of the original cipher to reduce the
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computational complexity of the FHE scheme.
• The FHE scheme is implemented on an FPGA for real-

time control of an unstable plant to demonstrate the
benefits of the novel reduced cipher.

The resulting FHE scheme can be used in combination with
existing control schemes based on additions and multipli-
cations and, while an FPGA was chosen here, can also be
implemented on any conventional hardware. Note that the
encryption properties of Gentry’s scheme [6] are unchanged
by using the novel reduced cipher.

In the following Section II introduces the considered
control setup and Gentry’s FHE scheme. In Section III the
reduced cipher is introduced and its equivalence is proven.
Section IV shows results of implementing FHE on an FPGA
for control of a inverted double pendulum.

A. Notation
For a positive scalar x, we denote individual digits of its
binary representation as x[i]. That is, x =

∑∞
i=0 2

ix[i]. For
any x ∈ N we define (x)ℓ =

∑ℓ−1
i=0 2

ix[i] which are the ℓ
least significant binary digits of x, such that if x ≤ q where
q = 2ℓ − 1, then (x)ℓ = x and if x > q, then (x)ℓ ̸= x.
We denote [x]ℓ = [x[0], . . . , x[ℓ]] as a vector whose elements
are the binary digits of (x)ℓ; g = [20, . . . , 2ℓ−1]⊤ and the
set Zq = {0, . . . , q − 1}, where q ∈ N. We denote bit-shifts
of a x by i bits as x ≪ i = 2ix and x ≫ i = 2−ix.
These concepts can be extended to matrices X ∈ Nn1×n2 ,
where (X)ℓ, [X]ℓ, and bitshifts are applied element-wise.
Gn = In ⊗ g, while the encrypted version of a variable x
is denoted as E(x). Finally, for a discrete time signal x(k),
where k is the current time step, the short-hand notation
x+ = x(k + 1) is used.

II. PROBLEM STATEMENT

This section will cover the control scenario in Section II-
A, followed by section II-B, which introduces Gentry’s FHE
scheme using the proposed novel, simplified notation.

A. Control Scenario
In this paper we consider a nonlinear plant of the form{

ẋ = f(x, u) + ξ,

y = h(x, u) + η,
(1)

and a discrete time, dynamical linear controller of the form{
x̂+ = g(x̂, u, y, L),

u+ = v(x̂+,K),
(2)

where x ∈ Rρ is the state, x̂ ∈ Rρ the state estimate, u ∈ Rγ

the input and y ∈ Rν the output. f(·) and h(·) are the known
state transition and output functions, and ξ and η represent
external disturbances or model uncertainty. The controller
consists of two parts: g(·) to obtain the next x̂; and v(·) to
obtain the new control input. In this paper we consider the
plant is controlled by an encrypted version of the controller,
which using notation from Section I-A is denoted by{

E(x̂+) = g̃(E(x̂),E(u),E(y),E(L)) ,
E(u+) = ṽ(E(x̂+),E(K)) .

(3)

The entire encrypted control loop is shown in Figure 1, which
will be discussed in more detail in Section 1. To limit the
scope of this paper to its focus of encryption, we make two
assumptions on the unencrypted control.

Assumption 1: The control law (2) can be constructed
with addition, subtraction and multiplication operations only.
This holds true for all linear control methods such as PID,
state-feedback and LQR control [17].

Assumption 2: The plant in Equation (1) is stabilised by
the unencrypted controller (2).

B. Fully Homomorphic Encryption Scheme by Gentry et al.

In this paper, Gentry’s FHE scheme [7] is adapted to be-
come more computationally efficient. Gentry’s FHE scheme
consists of four procedures: Key generation, encryption,
homomorphic operations, and decryption. Gentry introduced
four functions to perform these procedures. These functions
are defined using notation from Section I-A as follows:

Definition 1: For any matrix a ∈ NN×(n+1), b ∈ NN×N ,
and c ∈ Zn+1×1

q

BitDecomp(a) = [a]ℓ (4)

BitDecomp−1(b) = b ·Gn+1 (5)

Flatten(b) = [b ·Gn+1]
ℓ (6)

PowersOf2(c) = c ·G⊤
n+1 (7)

We are now ready to define the procedures used in [7].
Key Generation: A public-private key pair is generated as

follows: Pick parameters m ∈ N, n ∈ N and q ∈ N based on
the required security and precision respectively. The private
key is s = [1,−t]

⊤ where t ∈ Z1×n
q is sampled uniformly

on the interval [0, q−1]. The public key is A = [b, B] where
b = B · t⊤ + e, each element of B ∈ Zm×n

q is sampled
uniformly on the interval [0, q − 1], and each element of
e ∈ Zm

q is sampled from the χq distribution [18].
Encryption: A message µ ∈ Zq can be encrypted as a

cipher C ∈ ZN×N
2 via the following relation

C =Enc(µ) = Flatten(µ · IN + BitDecomp(R ·A)) =

[(µ · IN + [R ·A]ℓ) ·Gn+1]
ℓ ,

(8)

where N = ℓ(n + 1) depends on the message size through
ℓ = ⌊log2(q)⌋+1 and each element of R ∈ ZN×m

2 is sampled
uniformly on the interval [0, 1].

Decryption: Ciphers are decrypted using the MPDec
algorithm as proposed in [19]:

µ = MPDec((CPowersOf2(s))ℓ) (9)

The MPDec algorithm [19] uses the first ℓ elements of its
input to retrieve µ. Proof that the correct message is retrieved
in this way can be found in [7].
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Homomorphic Operations: The homomorphic operations
for ciphers C1 = Enc(µ1) , C2 = Enc(µ2) and scalar α are

Sum: C3 =Flatten(C1 + C2) =

[(C1 + C2) ·Gn+1]
ℓ,

Product: C4 =Flatten(C1 · C2) =

[(C1 · C2) ·Gn+1]
ℓ,

Scalar product: C5 =Flatten(Flatten(αIN ) · C2) =

[([(αIN ) ·Gn+1]
ℓC2) ·Gn+1]

ℓ,

Scalar sum: C6 =Flatten(αIN + C2) =

[(αIN + C2) ·Gn+1]
ℓ.

(10)

For these homomorphic operations it is proven that

µ3 =µ1 + µ2 ⇐⇒ µ3 = MPDec(C3) ,

µ4 =µ1µ2 ⇐⇒ µ4 = MPDec(C4) ,

µ5 =αµ2 ⇐⇒ µ5 = MPDec(C5) ,

µ6 =α+ µ2 ⇐⇒ µ6 = MPDec(C6) .

(11)

C. FHE in Control
The Gentry FHE scheme [7] has excellent theoretical prop-
erties, but there are two obstacles which, until now, have
prevented implementation of the scheme in control. Firstly,
any message µ ∈ Zq containing ℓ bits of information,
when encrypted, becomes a cipher C ∈ ZN×N

2 containing
N2 = (n+ 1)2ℓ2 bits of information. Therefore storage and
transfer of ciphers requires more memory than unencrypted
equivalents. The problem of size becomes even more pro-
nounced when performing homomorphic operations. Direct
implementation of homomorphic operations requires multi-
ple steps in which intermediate ciphers can become as large
as ZN×N

N containing N2(⌊log2(N)⌋+1) bits of information.
Even more important than the strain on storage and com-

munication, is the strain on the computational resources. For
direct implementation of homomorphic addition, N2(n+2)−
N(n+ 1) addition operations and N2(n+ 1) multiplication
operations are needed, whereas its unencrypted equivalent
requires only a single addition. In this paper a so-called
reduced cipher is introduced to reduce the computational
load of FHE, allowing for faster update rates of control laws.

The second obstacle is the representation of real numbers
with unsigned integers. To this end we employ the commonly
used fixed precision representation called Q format [10]1.
Alternatives using floating point numbers are currently being
researched [20] but are not yet sufficiently mature. Q format
allows for representing a fixed accuracy number β with an
integer message µ ∈ Zp where ⌊log2(p)⌋+ 1 = mq + nq as

β = −2mq−1µ[mq+nq−1] +

mq+nq−2∑
i=0

2i−nqµ[i]

µ =
{

2nqβ if β ≥ 0
−2mq+nq + |β|2nq if β < 0

(12)

such that β can be any value in [−2mq−1, 2mq−1) rounded
to the nearest 2−nq . When performing multiplication of two

1We will be using the Q-notation as introduced by Texas-Instruments,
which is used in code libraries such as the TMS320C64x+ IQmath.

messages µ3 = µ1 · µ2, where µ1 and µ2 are obtained
from Equation (12), the result has to fit a mq + 2nq sized
register to yield an exact result. The available storage for
each message is limited and so after a certain number of
consecutive multiplications overflow would occur.

Therefore, conventionally, a right-bitshift by nq bits is per-
formed after each multiplication such that the mq +nq least
significant bits of µ3 can be used to retrieve β1β2

2. However,
no HME scheme supports such operation on ciphers without
penalty on multiplicative depth. Thus, consecutive multipli-
cations have formed a great obstacle in HME. This problem
is important for controllers, which often have internal states
that are updated at each timestep without being decrypted.
Until now this obstacle has been dealt with using a periodic
reset [10] or by transforming the state space variables [13].
These methods, however, affect the stability and performance
of the controller such that direct implementation of FHE with
existing control schemes is not possible.

III. REDUCED CIPHERS FOR FAST FHE
IMPLEMENTATION

In this section the so-called reduced cipher will be presented
for computationally efficient implementation of FHE for dis-
crete control. It will be shown that, with the reduced cipher,
encryption, homomorphic operations, and decryption can be
made orders of magnitude more computationally efficient,
enabling real-time implementation of FHE for control.

Given a cipher C ∈ ZN×N
2 , the so-called reduced cipher

will be denoted as C̃ ∈ ZN×(n+1)
q and is defined as

C̃ = BitDecomp−1(C) = CGn+1 .

Here Definition 1 is used to rewrite the relation between
cipher and reduced cipher. Note that the reduced cipher
contains exactly the same information as the original cipher.
In Theorem 1 it will be shown that using the reduced cipher
reduces the total number of computer operations needed, and
completely eliminates the need for doing hardware multipli-
cations when performing homomorphic multiplication.

Lemma 1: For any matrix Λ ∈ Nn1×n2 , we have
[Λ]

ℓ
Gn2

= (Λ)
ℓ.

Proof: First consider α ∈ N. for any α it holds

(α)ℓ =

ℓ−1∑
i=0

2iα[i] =
[
α[0], . . . , α[ℓ−1]

]
· g = [α]

ℓ · g .

Then apply this relation on each element of Λ, giving
(Λ)ℓ = [Λ]

ℓ · In2 ⊗ g = [Λ]
ℓ ·Gn2

Theorem 1: Given ciphers C1, C2 ∈ ZN×N
2 and scalar

α ∈ Zq the existing homomorphic operations can equiva-

2rounded down to the nearest 2−nq , due to truncation during the right
hand bitshift.
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lently be written using the reduced cipher as

C3 = [(C1 + C2)Gn+1]
ℓ ↔ C̃3 =

(
C̃1 + C̃2

)ℓ

(13)

C4 = [(C1 · C2)Gn+1]
ℓ ↔ C̃4 =

(
C1 · C̃2

)ℓ

(14)

C5 = [[αGn+1]
ℓ · C1Gn+1]

ℓ ↔ C̃5 = ([αGn+1]
ℓ
C̃1)

ℓ (15)

C6 = [(αIN + C1)Gn+1]
ℓ ↔ C̃6 = (αGn+1 + C̃1)

ℓ (16)
Proof: Each equivalence is proven separately below.

C̃3 = [(C1 + C2)Gn+1]
ℓ
Gn+1

=(C1Gn+1 + C2Gn+1)
ℓ
=

(
C̃1 + C̃2

)ℓ

C̃4 = [(C1 · C2)Gn+1]
ℓ
Gn+1 =

(
C1 · C̃2

)ℓ

C̃5 =
[
[αINGn+1]

ℓ · C1Gn+1

]ℓ
Gn+1

=
(
[αGn+1]

ℓ · C̃1

)ℓ

C̃6 = [(αIN + C1)Gn+1]
ℓ
Gn+1 =

(αGn+1 + C1Gn+1)
ℓ
=

(
αGn+1 + C̃1

)ℓ

Here Definition 1 and Lemma 1 were used.
Theorem 1 has shown equivalences between homomorphic
operations on ciphers and on reduced ciphers. In the follow-
ing corollaries it will be shown how these equivalences are
used in encryption and decryption for the FHE scheme.

Corollary 1: The term αGn+1 from Theorem 1 can be
generated using only bitshifts. Due to the structure of αGn+1

the number of operations needed to obtain C̃5 and C̃6 can
be reduced to respectively O(n2ℓ2) and O(nℓ).

Proof: Denote αGn+1 = In+1⊗αg. Note that αGn+1

contains (n+1) instances of αg, such that only N = (n+1)ℓ
entries are non-zero. Therefore, by skipping the structural
zeros, we require only O(N2), O(N) operations respectively
to obtain C̃5 and C̃6. Furthermore, αg can be generated using
O(ℓ) bitshifts as αg = [α, α ≪ 1, . . . , α ≪ ℓ− 1].

Corollary 2: Encryption and decryption can be rewritten
in terms of reduced ciphers using theorem 1.

Proof: Encryption is performed using Equation (8),
where BitDecomp(RA) = [RA]ℓ ∈ ZN×N

2 is of the same
form as a cipher. Encryption is thus a special case of
the homomorphic scalar sum as defined in equation (11).
Applying Equation (16) and Lemma 1 to encryption yields

C̃ = (µGn+1 + [R ·A]ℓGn+1)
ℓ = (µGn+1 +R ·A)ℓ (17)

Decryption can be rewritten using the novel notation as µ =
MPDec((CGn+1s)

ℓ) = MPDec((C̃s)ℓ)
The actual reduction of computational complexity ob-

tained by using the reduced ciphers for the homomorphic
operations is summarized in Table I. The table shows the
computational complexity and memory utilisation of the
operations that are involved in evaluating the homomorphic
operations from equation (10), both with an without the use
of reduced ciphers. The number of operations is reduced
and homomorphic multiplication no longer requires multi-
plication of cipher elements. Furthermore, Table I shows the

TABLE I
NUMBER OF OPERATIONS REQUIRED FOR HOMOMORPHIC OPERATIONS.

sum product
Cipher Red.

Cipher Cipher Red.
Cipher

Bit Operation 0 0 O(n3ℓ3) O(n3ℓ2)
Addition O(n3ℓ2) O(n2ℓ) O(n3ℓ3) O(n3ℓ2)
Multiplication O(n3ℓ2) 0 O(n3ℓ2) 0
Memory O(n2ℓ2) O(n2ℓ2) O(n2ℓ2 log(nℓ)) O(n2ℓ2)

scalar sum scalar product
Bit Operation O(n3ℓ2) O(ℓ) O(n2ℓ3) O(n2ℓ2)
Addition O(n3ℓ2) O(nℓ) O(n3ℓ3) O(n2ℓ2)
Multiplication O(n2ℓ) 0 O(n3ℓ2) 0
Memory O(n2ℓ2) O(n2ℓ2) O(n2ℓ2 log(ℓ)) O(n2ℓ2)

reduction in required memory for performing the operations
without requiring intermediate reading and writing of mem-
ory. Note however, that the reduced cipher only increases
computational efficiency, but does not affect the encryption
properties of Gentry’s scheme. Furthermore, Reduced ciphers
contain the same amount of data as regular ciphers and so the
communicational bandwidth required to transfer the ciphers
is unchanged.

IV. RESULTS ON A SIMULATED PLANT

Fig. 1. The experimental setup where FPGA 1 performs encryption and
decryption at the plant and FPGA 2 contains the remote controller. The
key exchange, as indicated with the dashed blue arrow, is only required at
initialization.

In this section we will apply the novel FHE scheme to the
control of an inverted double pendulum. To achieve a realistic
setup, the encrypted control is implemented on two FPGAs,
as shown in Figure 1. It will be shown that it is possible to
perform stabilising control of the unstable plant in real-time
with the encrypted controller. Below, first the properties of
an FPGA and the used setup will be discussed. Next the
double pendulum model and control law will be introduced.
Lastly, the obtained results will be shown.

A. Hardware Resources of an FPGA

An FPGA contains generic logic cells and memory com-
ponents of differing sizes and configurability. The most
common type of logic cell is called Adaptive Logic Modules
(ALM), these can be configured to perform any operation.
Though ALM’s can be configured to perform multiplication,
this would be very inefficient and so FPGA’s are generally
equipped with Digital Signal Processing (DSP) slices which
are specifically made to perform multiplication. Unfortu-
nately, due to the die space requirements, there are fewer
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available. To illustrate, on any particular FPGA, ALM’s are
usually available in the order of tens of thousands, whereas
there are usually only DSP’s available in the order of tens. If
a design’s speed relies on multiplication, the limited number
of DSP-slices could bottle-neck the computational speed.

The reduced cipher implementation as presented in Sec-
tion III reduces the computational load of the scheme on
any platform, however one aspect is particularly beneficial
to FPGA design. As shown in Table I, the total number of
operations is reduced by an order of magnitude when using
the reduced cipher. More importantly however, is that all
multiplication operations are replaced by bit-operations and
additions. Replacing all multiplications with bit-operations
ensures the FPGA design will not be bottle-necked by the
availability of DSP-slices.

B. Experimental Setup

The encrypted control scheme has been implemented in
VHDL for use on two Nexys 4 FPGA’s in the configuration
as shown in Figure 1. The results are obtained from a hard-
ware simulation of the FPGA coupled with a high resolution
simulation of the double pendulum. In the following first the
choice for FPGA’s as hardware platform is argued. Then, the
simulated plant and the corresponding controller is described.

FPGA’s can be programmed to operate without the need
for a software layer and so is the platform chosen for
implementation. Furthermore, it can be seen from table I
that multiplication operations, which are the most computa-
tionally expensive on an FPGA, are completely eliminated
by using the reduced cipher. With this implementation on an
FPGA a new control input can be generated every 0.8 ms,
which would not have been possible using the original
ciphers or on conventional hardware.

The chosen plant is the inverted double pendulum depicted
in Figure 2. The dynamics of the double pendulum’s state
θ = [θ1 θ2]

⊤ is modeled as{
M(θ)θ̈ + C(θ, θ̇)θ̇ +G(θ) = T ,

T + τeṪ = kmu

M(θ) =
[
P1 + P2 + 2P3 cos θ2 P2 + P3 cos θ2

P2 + P3 cos θ2 P2

]
C(θ, θ̇) =

[
b1 − P3θ̇2 sin θ2 −P3(θ̇1 + θ̇2) sin θ2

P3θ̇1 sin θ2 b2

]
G(θ) =

[
−g1 sin θ1 − g2 sin (θ1 + θ2)

−g2 sin (θ1 + θ2)

]
P1 =m1c

2
1 +m2l

2
1 + I1, P2 = m2c

2
2 + I2

P3 =m2l1c2, g1 = (m1c1 +m2l1)g, g2 = m2c2g

(18)

where θ1 and θ2 denote the angles of the pendulum links as
shown in Figure 2. The system has the same form as (1).
Furthermore, m1,m2 are the masses of the links; l1, l2 are
their lengths; c1, c2 are the centers of mass; I1, I2 are the
mass moments of inertia; b1,b2 are the damping coefficients
of the joints; km,τe are the electrical motor gain and time
constant, and g is the gravitational acceleration.

Fig. 2. Double pendulum as modeled by Equation (18).

The double pendulum is initialized at an initial state θ =

θ⊤0 = [0.0289, 0.1156]⊤, θ̇ = θ̇0
⊤

= [0.0669, 0.0049]⊤ and
T = T0 = 0, and is controlled such that both pendulums
point upwards, i.e. θ = [0 0]⊤. A discrete time linearization
of Model (18) can be made around θ = θ̇ = [0 0]⊤ as{

x(k + 1) = Adx(k) +Bdu(k) ,

y(k) = Cdx(k) ,
(19)

where x(k) = [θ1(k) θ̇1(k) θ2(k) θ̇2(k) T ]⊤, y(k) =
[θ1(k) θ2(k)]

⊤, and Ad, Bd, and Cd are matrices of ap-
propriate size. This linearized model is used to implement
an observer and state feedback controller as{
x̂(k + 1) = Adx̂(k) +Bdu(k) + L(y(k)− Cdx̂(k)) ,

u(k + 1) = Kx̂(k + 1) ,
(20)

where L is the observer gain and K is the state feedback
gain. The controller takes the same form as (2). The con-
troller is updated at a rate of f = 100 Hz. L has been ob-
tained by placing the observer poles at [0.7 0.5 0.8 0.6 0.85]
and K = [−12.6 − 1.8 − 9.8 − 0.95 0.015]. The input
and the state estimate are initialized at u(1) = 0 and
x̂(0) = 0. The controller (20) is encrypted to obtain the
equivalent controller g̃(·), ṽ(·) of the form (3). The model
and encryption parameters used can be found in Table II.

TABLE II
MODEL AND ENCRYPTION PARAMETERS

Parameter Value Parameter Value
m1 0.125 kg m2 0.05 kg
l1 0.1 m l2 0.1 m
c1 −0.04 m c2 0.06 m
I1 0.074 kgm2 I2 0.00012 kgm2

b1 4.8 kgs−1 b2 0.0002 kgs−1

km 50 Nm τe 0.03 s
g 9.81ms−2 n 7
ℓ 64 m 7

mq 10 nq 22
f 100 Hz

The final control loop as shown in Figure 1 works as
follows: At boot-up FPGA 1, the adapter, generates an
encryption key pair. FPGA 1 then encrypts the state space
matrices and sends them to FPGA 2, the controller. Next the
control loop starts. First, the adapter encrypts measurement
vector y and sends it to the controller (3) which computes
E(u+) and E(x̂+). To extend multiplicative depth and to
prevent overflow, these signals are then sent to the adapter
for decryption. This is a solution similar to that of [9]. The
control effort is applied to the plant, after which u+ and
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x̂+ are bit-shifted, encrypted and sent back to the controller
along with the new measurements E(y).

C. Performance

Figure 3 shows the results of system (18) being controlled
according to g̃(·), ṽ(·). The encrypted observer estimates the
states correctly and the plant is stabilized by the encrypted
controller. Controlling the plant without encryption, i.e.
according to (20), yields identical results. This illustrates
that the encrypted controller and unencrypted controller are
indeed equivalent.

-0.2

0

0.2

-0.2

0

0.2

0 0.5 1
-0.5

0

0.5

Fig. 3. Simulation results, θ1, θ2 and control effort u

The experimental setup serves to highlight the contribu-
tions made to FHE. One can see that the plant is controlled
towards an unstable equilibrium which requires a fast update
rate of the encrypted controller. Due to the use of the reduced
cipher, this has become possible on the chosen hardware
(Nexys 4 FPGA).

V. CONCLUSION

The use of large scale systems such as hydroelectric dams or
energy grids, has led to the need for secure monitoring and
control over large distances. Securing such control systems
from cyber-attacks is important to the safe operation. One of
the ways to achieve this is through encryption.

Using traditional encryption schemes, only the communi-
cation links can be secured, but signals have to be decrypted
at the controller to calculate the control action. Fully Ho-
momoprhic Encryption (FHE) has been developed such that
operations can be performed on encrypted signals. Therefore,
it has the potential to close the loop of encryption for secure
control. The main obstacle to widespread implementation
of FHE in control is the high computational complexity. In
this paper, the so-called reduced cipher has been introduced,
which allows for reducing the the computational complexity
significantly. Specifically, the total number of operations
performed is reduced by an order of magnitude. The reduced
cipher and analytical description of the encryption scheme
are meant to enable more intuitive implementation and
manipulation of the Gentry scheme for control purposes and
extension of the capabilities of the scheme.

The presented FHE scheme is the first, to the best of the
authors knowledge, that has been implemented for real-time

control of an unstable plant. In future work we would like
to extend the principle to more complex plants to show the
full capability of the scheme. Furthermore, we will explore
how to perform right hand bit shifts and other operations
on encrypted data. This would be an elegant solution to
the problem of shifting decimal points when multiplying
fixed precision numbers and could enable to implement more
complex control techniques.
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