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Abstract: This paper presents a web map juxtaposition comparer. Using the comparer, we can place two maps side by
side for comparison. The maps of the comparer can contain multiple layers, and each of them can be a multi-scale layer
or a vario-scale layer. We enhance the comparer’s visual analytical ability by developing more functionalities, including
toggling on/off the layers, tuning the opacities, and swiping to change the maps’ widths. The aim of developing the web
map juxtaposition comparer is to carry out usability studies to see if a vario-scale map is better then a multi-scale map
in helping map users to keep their context during zooming. This paper presents two versions of the comparer. The first
one uses respectively a multi-scale and a vario-scale vector layer of area objects in the left map and in the right map.
Both maps use the same multi-scale raster layer as the background. The second comparer also uses the raster layer as the
background, and it uses three thematic layers as the foreground. The change between the thematic layers is realized by
switching on/off according to scales. In future, we will implement continuous changes between the three thematic layers
for the right map.

Keywords: Space-scale cube, continuous map generalization, database, WebGL, framebuffer

1. Introduction

A vario-scale map has the property that a change of scale
results in a change of the map (van Oosterom and Meijers,
2014), where the map change is, for example, a merge of
two area objects. This is different from a multi-scale map,
where there is no change until the scale moves into another
scale interval (in the same scale interval, the multi-scale
map will simply enlarges or shrinks on the screen). It is
believed that vario-scale maps allow users to keep their
context more easily during zooming (van Kreveld, 2001;
Nöllenburg et al., 2008). Much research has been devoted
into providing vario-scale maps (e.g., Chimani et al., 2014;
Li et al., 2017; Peng et al., 2020). Now, it is necessary
to develop a web map comparer so that a usability test is
possible to prove if vario-scale map is really better than a
multi-scale map.

The development of web maps started not long after the
World Wide Web was created, and the state-of-the-art web
maps are interactive and multi-sourced (Veenendaal et al.,
2017). Van Oosterom and Meijers (2014) developed the
concept of the space-scale cube (SSC). Based on the SSC,
Meijers et al. (2020) implemented a vario-scale web map
of area objects. They made chunks of the SSC data, where
each chunk stores a part of the SSC. On this basis, they
were able to send only the chunks relevant to users’ inter-
ested places, from the server side to the client side. They
showed how to efficiently slice the SSC to output a web
map at a given scale based on WebGL using the GPU at
the client side. In addition to slicing the SSC with a hori-
zontal plane, they also sliced the SSC with a curly surface

to have a locally more detailed map or with a tilted surface
to have a perspective view. Lobo et al. (2015) evaluated
several map comparison techniques, including juxtapose,
translucent overlay, swipe, blending lens, and offset lens.

This paper develops a juxtaposition comparer of web maps,
where the comparer is implemented in JavaScript with We-
bGL. The juxtaposition comparer places two maps side by
side, and each map has multiple layers. Using this com-
parer, we display a multi-scale layer in the left map and
a vario-scale layer in the right map (see Section 2). Sec-
tion 3 shows the progress of preparing for a usability test
on some thematic layers with attribute dryness values. Sec-
tion 4 concludes the paper and present some future work.

2. Juxtaposition comparer

Our juxtaposition comparer places two maps side by side.
The left map presents a multi-scale vector layer of area ob-
jects, and the right map shows a vario-scale vector layer
of area objects. To allow map users to access more geo-
graphic information, both maps use the same multi-scale
raster layer as the background. In order to make the back-
ground visible, the foreground vector layers are set to be
transparent. In the following, Section 2.1 introduces the
raster layer, which covers The Netherlands and the sur-
rounding areas. Then, Section 2.2 illustrates the vario-
scale vector layer that represents province Drenthe of The
Netherlands. In Section 2.3, we generate the multi-scale
vector layer from selecting some points in scale of the vario-
scale vector layer, where the multiple scales are aligned
with the multi-scale raster layer. Section 2.4 shows how to
avoid visual flaws using a framebuffer.
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(a) Level 2

(b) Level 3. The transparent polygon in the upper-right corner represents province Dren-
the, The Netherlands.

Figure 1. Two screenshots of the multi-scale raster layer.

2.1 Multi-scale raster layer

The raster layer used in this paper is provided as a public
service by Kadaster, The Netherlands.1 The raster layer
contains a rich set of information, including streets, waters,
labels, etc.2 It consists of 15 levels, numbered from 0 to 14,
where level 0 is the most general and level 14 is the most
detailed (see Figure 1 for example).3 Each of the levels
covers the same extent of the earth, i.e., The Netherlands
and the surrounding areas. The levels are represented by a
set of images of 256×256 pixels. We term an image a tile.
Level i consists of 4i tiles according to the organization
of the raster layer. As the numbers of the tiles increase
exponentially with the increasing level, the data size of all
the levels is huge. To make our comparer feasible, we only

1The website of Public Services On the Map (PDOK) is https://ww
w.pdok.nl/. Accessed: October 30, 2020.

2The metadata of the raster layer is available at http://www.nation
aalgeoregister.nl/geonetwork/srv/dut/catalog.search#/

metadata/ee543323-0fe4-4353-9161-eda61ff26c07. Accessed:
October 30, 2020.

3More information about the levels is available at https://geodat
a.nationaalgeoregister.nl/tiles/service/tms/1.0.0/brta

chtergrondkaartgrijs/EPSG:28992. Accessed: October 30, 2020.

use levels 0–10 in our prototype. For these 11 levels, there
are 1,398,101 tiles with size 2.8GB. As level 10 is the most
detailed, it is used as the base level. Currently, we use
scale 1 : 12,000 as the scale for level 10. According to the
idea of Huang et al. (2016), we have

Si = Sb

√
Nb

Ni
, (1)

where Sb = 1 : 12,000 and Si are the scale denominators
of the base level and level i. Variables Nb = 1,048,576
and Ni are the tile numbers of the base level and level i.
As Nb = 410 and Ni = 4i, we have

Si = 12000 · 210−i.

According to scale denominator Si, we define the scale
range for each level so that a level is presented when the
scale is in the corresponding scale range. Table 1 presents
the details of the levels.

https://www.pdok.nl/
https://www.pdok.nl/
http://www.nationaalgeoregister.nl/geonetwork/srv/dut/catalog.search#/metadata/ee543323-0fe4-4353-9161-eda61ff26c07
http://www.nationaalgeoregister.nl/geonetwork/srv/dut/catalog.search#/metadata/ee543323-0fe4-4353-9161-eda61ff26c07
http://www.nationaalgeoregister.nl/geonetwork/srv/dut/catalog.search#/metadata/ee543323-0fe4-4353-9161-eda61ff26c07
https://geodata.nationaalgeoregister.nl/tiles/service/tms/1.0.0/brtachtergrondkaartgrijs/EPSG:28992
https://geodata.nationaalgeoregister.nl/tiles/service/tms/1.0.0/brtachtergrondkaartgrijs/EPSG:28992
https://geodata.nationaalgeoregister.nl/tiles/service/tms/1.0.0/brtachtergrondkaartgrijs/EPSG:28992
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Table 1. The levels of the raster layer. Column Srange

represents the range of scale denominators for each level.
Column ntiles represents the number of tiles for each level.

level Srange ntiles

0 [12288000,∞) 1
1 [6144000, 12288000) 4
2 [3072000, 6144000) 16
3 [1536000, 3072000) 64
4 [768000, 1536000) 256
5 [384000, 768000) 1024
6 [192000, 384000) 4096
7 [96000, 192000) 16384
8 [48000, 96000) 65536
9 [24000, 48000) 262144

10 (0, 24000) 1048576

2.2 Vario-scale vector layer

The vector layer covers province Drenthe of The Nether-
lands. The position of the province is shown in Figure 1b.
The area objects of this layer is extracted from the TOP10NL
data set.4 We set the base scale of the layer to be 1 :
10,000. At the base scale, the layer has 288,726 area ob-
jects. In order to make the layer variable in scale, for zoom-
ing out, we repeatedly find the smallest area and merge it
into its most compatible neighbor. The most compatible
neighbor is defined as the one having the longest common
boundary with the smallest area. For zooming in, we will
observe a sequence of splitting an area into two. Similar to
Equation 1, the relationship of the scale denominator and
the number of remaining area objects is established by for-
mula

Nt =

⌊
Nb

S2
b

S2
t

⌋
, (2)

where we have number Nb = 288,726 and Sb = 10,000.

2.3 Multi-scale vector layer

The multi-scale vector layer is a selection from some points
in scale of the vario-scale vector layer. We align the scales
with that of the multi-scale raster layer. When a scale is se-
lected, the number of objects remained on the map is com-
puted by Equation 2. Table 2 presents the selected scales.
There are two exceptions despite that we try to align the
scales with that of the raster layer. First, scale 1 : 10,000 is
selected because this is the base scale of the vector layer.
Second, the smallest scale selected is 1 : 384,000 because
there is no change anymore for an even smaller scale; al-
though there are still 469 areas, they are separate and can-
not be merged.

Figure 2 shows our juxtaposition comparer, where the left
map and the right map respectively use the multi-scale and
the vario-scale vector layer.5 Both maps use the multi-
scale raster layer as the background. In order to make the

4More information of TOPNL dataset is available at https://www.
pdok.nl/introductie/-/article/basisregistratie-topogra

fie-brt-topnl. Accessed: October 30, 2020.
5The juxtaposition comparer is available at https://pengdlzn.g

ithub.io/webmaps/2020/10/merge/drenthe-comparer-juxtap

osition.html. Accessed: October 30, 2020.

Table 2. The levels of the multi-scale vector layer. Col-
umn St represents the selected scale from the vario-scale
vector layer for each level. Column Srange represents the
range of scale denominators for each level. Column nareas

represents the number of areas for each level.

St Srange nareas

384000 [384000,∞) 469
192000 [192000, 384000) 783

96000 [96000, 192000) 3132
48000 [48000, 96000) 12531
24000 [24000, 48000) 50126
12000 [12000, 24000) 200504
10000 (0, 12000) 288726

background layer visible, the foreground layers are set to
be semi-opaque, where the layer opacities can be tuned by
map users on the setting panel. Figure 3 shows the setting
panel, which can be invoked by clicking the three dots in
the upper right corner of the comparer.

Figure 2a shows the comparison at scale 1 : 192,000. At
this scale, the left map and the right map are the same be-
cause this level of multi-scale vector layer is selected from
the state of the vario-scale vector layer at scale 1 : 192,000.
After zooming out to scale 1 : 235,254 (see Figure 2b), the
area objects of the left map only shrink because the level
spans over range [192000, 384000] of scale denominators,
while the area objects of the right map merge continuously.

2.4 Dynamic transition using framebuffer

Section 2.3 made the foreground layers semi-opaque so
that the background layer is also visible. However, this
functionality is flawed during dynamic transition without
using a framebuffer. In the following, we explain the flaw
using the case of Figure 4 as an example. Then, we show
how to avoid the flaw by using a framebuffer.

According to Figure 4, the base level of the layer, an SSC
can be built and be sliced to generate a representation at
any scale (see Figure 5). This generated representation is
fine when the opacity is 1 (see Figure 5a). The generation
can be also understood as a ray shooting a problem, where
the faces stop the rays will be drawn to the screen Mei-
jers et al. (2020); see Figure 6a. However, when generat-
ing a semi-opaque representation, we will have Figure 7b,
while we expect the result of Figure 6b. The principle is as
following. In our implementation, we use a slicing plane
to intersect with the SSC and to find the intersected poly-
hedrons (see Figure 5b). Then, those polyhedron’s faces
that are below the slicing plane and are facing up will be
drawn to the screen. If the faces of the forest, the farmland,
and the water are drawn first, and the the face of the road
is drawn afterwards, then we get the expected result (see
Figure 6b). The reason is that, when a new face is being
drawn, the GPU does a depth test against the faces already
drawn to the screen. A pixel of the new face will be drawn
only when the pixel’s z-coordinate is larger than that of the
pixel on the screen. For the same reason, if the road’s face
is drawn beforehand, the enlarged neighboring faces will
be drawn on top of it (see Figure 7b). An intuitive solution

https://www.pdok.nl/introductie/-/article/basisregistratie-topografie-brt-topnl
https://www.pdok.nl/introductie/-/article/basisregistratie-topografie-brt-topnl
https://www.pdok.nl/introductie/-/article/basisregistratie-topografie-brt-topnl
https://pengdlzn.github.io/webmaps/2020/10/merge/drenthe-comparer-juxtaposition.html
https://pengdlzn.github.io/webmaps/2020/10/merge/drenthe-comparer-juxtaposition.html
https://pengdlzn.github.io/webmaps/2020/10/merge/drenthe-comparer-juxtaposition.html
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(a) The maps at scales 1 : 192,000

(b) The maps at scale 1 : 235,254.

Figure 2. The juxtaposition comparer with a multi-scale layer (left) and a vario-scale layer (right) as the foregrounds.

to avoid the case of Figure 7b is to sort all the polyhedrons
according to their maximum z-coordinates. Then, we draw
the faces of each of the polyhedrons according to the order.
However, this solution requires fetching and sorting all the
relevant polyhedrons before drawing, which is inefficient.

In order to guarantee the visualization of Figure 6b and
draw efficiently, we use a framebuffer so that we can fetch
the polyhedrons and draw the faces at the same time. As
explained in Section 1, the data of the polyhedrons are
stored in chunks on the server. We fetch the chunks of
the intersected polyhedrons from the server (see Meijers
et al., 2020), we opaquely draw the relevant faces into the
framebuffer once a chunk is ready on the client side. After
all the relevant faces are drawn into the framebuffer, the
framebuffer actually stores the image of Figure 5a. Then,
we draw the image of the framebuffer to the screen semi-
opaquely (see Matsuda and Lea, 2013, pp. 392–403). In
this way, our web map gives the feeling of smooth transi-
tion during zooming without the flaw mentioned before.

3. Using swipe juxtaposition comparer to show the
dryness of area objects

Based on the juxtaposition comparer proposed in Section 2,
this section develops a swipe juxtaposition comparer to
compare two maps of area objects with dryness attribute
(see Figure 8). Using the swiper, users can tune the widths
of the two maps. A legend is also added to relate the colors
to the dryness values. The goal of using swipe juxtapo-
sition comparer is to compare a map with discrete zoom-
ing (thematic layers are simply switched on/off) and a map
with smooth zooming (continuous changes are applied to
change between the thematic layers). The thematic layers
are farmlands (Figure 9), water supply areas (Figure 10),
and water authorities (Figure 11). Again, the multi-scale
raster layer, presented in Section 2.1 is used as the back-
ground to provide more geographic information. The ream-
ing of this section shows our progress so far.
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Figure 3. The setting panel of our web map tool. Zooming
factor specifies how much should be zoomed when a user
scrolls the mouse wheel. Zooming duration specifies the
amount of time for a scrolling. Panning duration specifies
the amount of time for the panning after the user releases
the mouse button. Furthermore, users are allowed to set
the boundary width of the area objects, to toggle on/off the
layers, and to tune the opacities.

The thematic layers with dryness values are stored in some
shapefiles, while the SSC should be stored as text in the
format of the Wavefront .obj file.6 Therefore, we need to
convert the shapefile data to the SSC data. We did the con-
version by software Feature Manipulation Engine (FME)
Desktop7. FME provides many functionalities and allows
us to make a workflow to convert data. For example, Fig-
ure 12 shows our workflow of converting the shapefile data
to the data stored in PostgreSQL database. Shapefile Aan-
voergebieden2 drenthe contains 36 water supply areas of
Drenthe. Based on these water supply areas, the Topolo-
gyBuilder builds 1,632 nodes, 2,767 edges, and 95 faces,
where the edges are extracted from the boundaries of the

6An illustration of Wavefront .obj file is available at https://en.w
ikipedia.org/wiki/Wavefront .obj file. Accessed: October 30,
2020.

7Software FME Desktop can be found at https://www.safe.com
/fme/trial/. Accessed: October 30, 2020.

water

farm-
land

forest

ro
a
d

Figure 4. The base level of a vector layer.

Figure 5. A representation generated by slicing an SSC. (a)
The generated representation and the slicing plane, where
the slicing plane is represented by the grid. (b) The posi-
tion of the slicing plane in the SSC. (c) A side view of the
slicing. This figure is taken from Meijers et al. (2020).

faces. The AttributeManagers manage the attributes from
the shapefile. In our case, we need to maintain the dryness
values. Then, the Generalizer edge simplifies the edges,
and the Generalizer face simplifies the boundaries of the
faces. Indeed, it is problematic to simplify the edges and
the faces independently because the simplified edges and
the simplified boundaries of the faces are not consistent
anymore. The simplification should be improved by im-
plementing our own prototype. Finally, the edges and the
faces are stored in the PostgreSQL tables ab2 edge and
ab2 face.

Then, we wrote a Python script to read the edges and the
faces from the PostgreSQL database. The script triangu-
lates the faces and output the triangles with attribute dry-
ness into an obj file. The faces are triangulated because
GPU takes triangles as input to draw images to the screens.
Although the triangles of the faces will be drawn by GPU,
the boundaries of the faces are invisible because their widths
are 0. Therefore, we also save the edges into the obj file.
At the client side, some rectangles with a small width will
be generated based on the edges. Then, the rectangles will
be triangulated so that the GPU can display the edges.

We have prepared the SSC data for the three thematic lay-
ers.8 However, we have not got the dryness values for all
the layers, so we currently used some fake values. Further-
more, we use GitHub as a server to host our SSC data so
that users can access the web map at anytime.9

8The swipe juxtaposition comparer with the three thematic layers is
available at https://pengdlzn.github.io/webmaps/2020/10/mer
ge/drenthe-comparer-juxtaposition-swipe.html. Accessed:
October 30, 2020.

9A guidance of using GitHub as a server is available at https://pa
ges.github.com/. Accessed: October 30, 2020.

https://en.wikipedia.org/wiki/Wavefront_.obj_file
https://en.wikipedia.org/wiki/Wavefront_.obj_file
https://www.safe.com/fme/trial/
https://www.safe.com/fme/trial/
https://pengdlzn.github.io/webmaps/2020/10/merge/drenthe-comparer-juxtaposition-swipe.html
https://pengdlzn.github.io/webmaps/2020/10/merge/drenthe-comparer-juxtaposition-swipe.html
https://pages.github.com/
https://pages.github.com/
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opacity:
0.5

(a) (b)

Figure 6. The expected representation when drawing
semi-opaquely. (a) is taken from Meijers et al. (2020).

(a) (b)

opacity:
0.5

Figure 7. The real representation when drawing semi-
opaquely without using a framebuffer.

Figure 8. The swipe juxtaposition comparer. The thematic layer presented is for water supply areas.

4. Conclusion and future work

The paper presents our web map juxtaposition comparer,
which will be used for a usability study to see if a multi-
layer web map with vario-scale layers are better than a
multi-layer web map with multi-scale layers in helping users
to keep their context during zooming. There are many top-
ics to be explored.

First, we want to simply the faces and the edges with a
larger tolerance so that there is less data to load when the
scale is small. Our current simplification is attained by
FME, and we have to use a small tolerance to avoid topo-
logical problems. As we cannot change the simplification
implementation of FME, we must do the simplification by
implementing our own prototype. Second, we currently
simplify the faces and the edges independently, which brings
inconsistency of the data. For this reason, we also need to
develop our own method to simplify the data. Third, we
wish to smoothly change between two thematic layers in-
stead of simply switching between them. This work is dif-
ficult when the two layers are quite different, which is our
case. For example, for one layer, there are gaps between
area objects, and, for another layer, the area objects are ag-
gregates of the former. To solve this problem, we could
use a buffer-based method (Peng and Touya, 2017) or a
Voronoi-diagram-based method (Ai and van Oosterom, 2002)
to generate a region for each area object to grow so that
continuous changes between thematic layers can be achieved.

For the growing, the morphing can applied, where the cor-
responding points between the boundaries of the area ob-
ject and the region can be built by a dynamic algorithm
(Peng et al., 2016; Nöllenburg et al., 2008).
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