
NAFIE EL COUDI EL AMRANI

BLADENERF:
EXPLOITING CAMERA CONSTRAINTS FOR NERF IN
REPETITIVE TEXTURE-LESS 3D RECONSTRUCTION

BLADENERF:
EXPLOITING CAMERA CONSTRAINTS FOR NERF IN
REPETITIVE TEXTURE-LESS 3D RECONSTRUCTION

Master Thesis

to obtain the degree of Master of Science
at the Delft University of Technology,

to be defended publicly on Monday 26 th June, 2023 at 14:00 o’clock.

by

Nafie EL COUDI EL AMRANI

Project Duration: 11, 2022 - 06, 2023

Supervisors: Dr. J.C. van Gemert
Dr. Y. Lin

Thesis Committee: Dr. J.C. van Gemert (Associate Professor)
Dr. M. Weinmann (Assistant Professor)

An electronic copy of this dissertation is available at

https://repository.tudelft.nl/.

NAFIE EL COUDI EL AMRANI

BLADENERF:
EXPLOITING CAMERA CONSTRAINTS FOR NERF IN
REPETITIVE TEXTURE-LESS 3D RECONSTRUCTION

https://repository.tudelft.nl/

PREFACE

This report marks the culmination of my Master’s thesis project, titled "BladeNeRF: Ex-
ploiting camera constraints for NeRF in repetitive texture-less 3D reconstruction", con-
ducted at the Delft University of Technology to obtain the degree of Master of Science.
The project was conducted within the Computer Vision Lab at TU Delft in collaboration
with Aiir Innovations.

I would like to express my sincere gratitude to Dr. J. C. van Gemert for his outstanding
guidance and supervision throughout this project. I am also grateful to Dr. Y. Lin, my
daily supervisor, for his constant feedback and support. Both have significantly helped
shape the direction and focus of my research. I am also thankful to Miriam Huijser and
Steve Nowee from Aiir Innovations for their invaluable guidance and suggestions dur-
ing the course of my thesis. Furthermore, I want to thank my family and friends for
their unwavering support and encouragement. Their belief in me has been a constant
motivation throughout my journey. I am deeply grateful to my sister, Assmae, for her un-
wavering assistance and invaluable support. I also appreciate my friend Max’s thorough
review of my work and for providing me with invaluable feedback.

Completing this Master’s thesis has been a rewarding experience. Thanks to everyone
who has accompanied me throughout this journey.

Nafie El Coudi El Amrani
Delft, June 2023

V

CONTENTS

Preface v

1 Introduction 1

2 Scientific Paper 3

3 Background on Deep Learning 25
3.1 Deep Learning . 25
3.2 Activation Functions . 26
3.3 Training a Neural Network . 26

4 Background on Neural Radiance Fields 29
4.1 Neural Fields . 29

4.1.1 Advantages of Neural Fields . 30
4.1.2 Training Neural Fields . 30

4.2 NeRF . 30
4.2.1 Main Objective of NeRF . 30
4.2.2 Training a NeRF model . 31
4.2.3 Limitations of NeRF . 32

4.3 BaRF . 33
4.4 Mip-NeRF . 34

4.4.1 Integrated positional encoding (IPE) 34
4.4.2 Efficient Sampling . 35
4.4.3 Loss Function . 35

5 Rendering and 3D reconstruction Techniques 37
5.1 Volume Rendering . 37

5.1.1 Volumetric Data . 37
5.1.2 Optical Models . 38
5.1.3 The Volumetric Rendering Integral . 38
5.1.4 Ray Casting . 39
5.1.5 Alpha Blending . 40

5.2 Marching Cubes Algorithm . 41

Bibliography 45

VII

1
INTRODUCTION

The utilization of borescopes has become essential in streamlining the inspection pro-
cess for aircraft engines [1]. These borescopes consist of monocular cameras mounted
on semi-rigid bodies, enabling access to confined areas of the aircraft and capturing
valuable footage. One promising application of this footage is the generation of a 3D
model of the engine’s blades, which holds the potential for automating damage mea-
surement and detection. One notable approach to performing 3D reconstruction of air-
craft engine blades using inspection camera footage is Neural Radiance Fields (NeRF)
[2]. However, NeRF encounters two significant challenges when attempting to learn the
scene representation of engine blades.

The first challenge arises from the unavailability of accurate camera poses, which re-
fer to the location and orientation of the camera. Unfortunately, borescopes lack spa-
tial awareness and cannot provide camera poses, which are crucial for training NeRF
models. To overcome this challenge, camera poses can be estimated directly from the
borescope images. Traditional methods rely on robust visual features and similarities
to estimate camera poses, but they struggle to extract sufficient visual features from the
blade images due to their visual similarity. Recently, learning-based approaches pro-
posed to jointly estimate camera poses and scene representation during learning. How-
ever, these methods fail to differentiate between the engine blades due to the lack of
texture and the presence of significant visual similarities among the blades. The second
challenge arises from the limited field of view of the inspection cameras, which primar-
ily capture the frontal view of the blades and lack access to other sides of the blades due
to the restricted environment within the aircraft engine. Consequently, NeRF produces
artefacts in the mesh reconstruction once the scene representation is learned.

To overcome both challenges, we propose a two-stage method called BladeNeRF. It
learns the camera poses of borescope images by incorporating prior knowledge about
camera orientation and movement during inspections. Additionally, it guides the model
to focus on the regions where the blades are located during training, thus mitigating the
artefacts caused by the limited field of view of the input images in NeRF.

1

1

2 1. INTRODUCTION

This thesis consists of two parts. The first part, presented in Section 2, is a CVPR
2023 formatted scientific paper. It covers the motivation, related work, approach, ex-
periments, and results of the research project, targeting computer vision experts. The
second part, comprising Sections 3, 4, and 5, provides supplementary material to facili-
tate understanding of the scientific paper for a more general audience.

2
SCIENTIFIC PAPER

3

BladeNeRF: Exploiting camera constraints for NeRF in repetitive texture-less 3D
reconstruction

Nafie El Coudi El Amrani, Yancong Lin, Jan C. van Gemert
Delft University of Technology

Abstract

Neural Radiance Fields (NeRFs) have demonstrated re-
markable capabilities in photo-realistic 3D reconstruction.
NeRFs often take as input posed images where the camera
poses come from either off-the-shelf SfM or online optimiza-
tion together with NeRFs. However, we find that both strate-
gies yield suboptimal results in recovering camera poses
from images when encountering texture-less and repetitive
patterns, particularly in aircraft engine inspection. To re-
construct photo-realistic 3D engine blades from images, we
propose BladeNeRF, a new variant of NeRF model that in-
corporates camera constraints into learning and enables
accurate pose learning. In addition, we propose to separate
the blades in the foreground from the constant background,
eliminating background artefacts and enhancing depth es-
timation accuracy. Experimental evaluations on synthetic
data demonstrate the advantage of our model in precise
camera pose estimation and high-fidelity 3D scene recon-
struction compared to other NeRF variants.

1. Introduction
The use of borescopes has become crucial in streamlin-

ing the inspection process for aircraft engines [47]. These
borescopes are equipped with monocular cameras mounted
on semi-rigid bodies, allowing access to confined spaces
within the engine turbines to capture valuable footage [47].
One promising application of this footage is creating a 3D
model of the engine’s blades, which offers the potential
for automating damage measurement and detection. In the
constrained inspection setting, the borescope operates un-
der two limitations. It remains stationary at a specific dis-
tance and constantly points towards the blades, which ro-
tate at a constant speed in a single direction. This setting is
equivalent to a camera positioned at a fixed distance, cap-
turing RGB images while moving along a circular trajec-
tory at a constant velocity, as depicted in Fig. 1. This re-
stricted movement, coupled with the repetitive and texture-
less characteristics of the aircraft engine blades, poses sig-
nificant challenges in reconstructing an accurate 3D model.

Optimize BladeNeRF

Figure 1. BladeNeRF enables precise 3D reconstruction of aircraft en-
gines. By capturing RGB images from a borescope (depicted as a camera)
following a circular pattern, facing the blades, BladeNeRF’s two-stage
process learns camera poses and creates a scene representation, providing
valuable insight into engine blade analysis.

The central focus of our work is photo-realistic 3D re-
construction of the aircraft engine blades using the footage
obtained from the inspection camera. To this end, we em-
ploy Neural Radiance Fields (NeRF) [24], a promising tech-
nique for learning scene representations. NeRF utilizes a
multi-layer perceptron (MLP) to encode the scene and uses
ray tracing techniques to reconstruct pixel colours based
on photometric consistency. Within our context, NeRF en-
counters two notable challenges. The first arises from the
unavailability of accurate camera poses, which are crucial
for training NeRF models [24]. The second challenge is the
limited field of view, as the inspection cameras often face
toward the blades. The lack of camera poses and diverse
viewpoints poses great challenges for photo-realistic recon-
struction in the context of engine blade reconstruction.

A popular option for camera pose estimation is structure
from motion (Sf M) techniques [29, 33, 38], which rely on
robust visual features, e.g. SIFT features [21, 22]. How-
ever, engine blades are always textureless, making Sf M un-
suitable for our setting [7]. Alternatively, there is a line of
research [4, 6, 19, 42, 44], which jointly optimizes camera
poses and scene representation during learning. One exem-
plar model is Bundle-Adjustment Neural Radiance Fields
(BARF) [19], which employs Bundle-Adjustment [20, 39]
to estimate the six degrees of freedom of camera poses.
Although BARF [19] shows promising results on LLFF
and Synthetic NeRF datasets [19], it struggles in our spe-
cific context due to its inability to differentiate between the
blades (see Appendix A). To overcome these challenges, we

1

(a) Ground Truth. (b) NeRF.

(c) Mip-NeRF. (d) BladeNeRF (ours).

Figure 2. NeRF (b) and Mip-NeRF (c) struggle with depth estimation
in the empty regions between the blades. We present BladeNeRF (d), a
method for learning the camera poses and reconstructing the scene that
solves the ambiguities in the background.

propose an extension to BaRF that leverages prior knowl-
edge of the context, namely, the camera faces toward the
blades at a fixed position and follows a circular movement
pattern during the inspection. By incorporating these as-
sumptions, we reduce the degrees of freedom to translations
along x- and y-axes only.

For high-fidelity 3D reconstruction, we opt for Mip-
NeRF [3] as it offers notable improvements in depth estima-
tion compared to NeRF and other NeRF variants. However,
we have noticed that Mip-NeRF fails to accurately estimate
the depth of the regions in proximity to the blades due to
the lack of different perspectives, as shown in Fig. 2. We
propose integrating a foreground-background loss term to
address this limitation. This loss term selectively excludes
the background during training and mitigates the artefacts
in depth estimation.

In summary, this paper presents two contributions:

• We propose a method for estimating camera poses in
a repetitive, texture-less setting by leveraging the ex-
plicit constraints of camera movements during the in-
spection and the characteristics of engine blades.

• We introduce a fore-ground loss term to eliminate var-
ious artefacts in depth estimation, consequently allow-
ing precise 3D reconstruction.

2. Related Works
Neural Radiance Fields. There are several ways to re-

cover a 3D scene from multi-view images, including classi-
cal voxel-based representations [32], point clouds [23, 26],
polygonal meshes [15] and more recent approaches like lay-
ered depth [34, 40], mesh sheets [14], light fields [36], and
neural networks [37]. One particularly well-known tech-
nique is NeRF [24], which encodes the 3D scene as a con-
tinuous function and has achieved excellent performance in
multi-view scene reconstruction. However, NeRF models
and their derivatives fail to produce high-quality 3D recon-
structions when applied in our specific scenario. To this
end, our work presents a straightforward yet effective solu-
tion by introducing a background regularization technique
and leveraging our unique setting-specific knowledge.

NeRF and camera pose estimation. Camera pose esti-
mation is a long-standing task in 3D reconstruction. Struc-
ture from Motion (Sf M) [33, 38] and Simultaneous Local-
ization and Mapping (SLAM) [10,25] first estimate camera
poses based on feature matching [1] or photometric consis-
tency [2], then, they reconstruct the scene’s explicit geome-
try (e.g., triangular meshes or point clouds). However, these
methods struggle with texture-less and repetitive patterns
due to limitations in the expressiveness of extracted fea-
tures [31]. Recent approaches leverage neural networks to
learn scene representation and camera poses jointly from a
collection of unposed images. NeRF−− [42] is a pioneer in
this line of research but produces poor results in texture-less
scenes [44]. The subsequent work SiNeRF [44] employs
SIREN layers [35] and a new sampling strategy [44] to effi-
ciently select ray batches, resulting in better joint optimiza-
tion. GaRF [9] improves joint optimization with Gaussian
activation functions. BaRF [19] introduces a fine-to-coarse
positional encoding for online camera pose optimization.
L2G-NeRF [6] tackles camera misalignment with Local-
to-Global registration. NoPe-NeRF [4] integrates mono-
depth maps to handle challenging camera trajectories. How-
ever, there is limited focus on 3D scene reconstruction from
repetitive patterns and texture-less inputs. To fill this gap,
our approach, BladeNeRF, incorporates explicit constraints
on camera poses to enhance 3D reconstruction.

Neural rendering with sparse views. NeRF struggles
in learning scene representation from limited and sparse
viewing points [24]. To this end, researchers have ex-
plored various strategies. These include leveraging exter-
nal models for supervising the learning process through
perceptual regularization [48], cross-view semantic con-
sistency [16], or sparse depth estimation [11, 43]. Alter-
native approaches involve training transferable models on
well-curated datasets for few-shot learning [5, 8, 46]. Ge-
ometry regularization has also been proposed to enhance

2

few-shot neural rendering [17, 27, 45]. Our work incorpo-
rates prior knowledge of the scene in alignment with these
geometry-based approaches. In addition, we also introduce
a novel depth estimation supervision method using fore-
ground/background segmentation to mitigate background
ambiguities.

3. Preliminaries
Fundamentals on NeRF scene representation. NeRF

[24] learns the representation of a 3D scene as a volumetric
radiance field by optimizing the weights Θ of a multilayer
perceptron (MLP) FΘ. For a 3D point x ∈ R3 and a view-
ing direction vector d ∈ R3, FΘ returns an RGB colour c
and a volume density σ: FΘ : (x,d) 7→ (c, σ). For a novel
view, a camera ray r(t) = o + td can be cast through the
camera center o ∈ R3 along the direction d. The expected
colour Ĉ(r) of camera ray r, with near and far bounds tn
and tf respectively, is:

Ĉ(r) =

∫ tf

tn

T (t)σ(r(t))c(r(t))dt, (1)

where T (t) = exp
(
−
∫ t

tn
σ(r(s))ds

)
denotes the prob-

ability that the ray travels from tn to t without intersecting
with any part of the scene. In practice, the integral in Eq. (1)
along r within the predefined scene bounds [tn, tf] is ap-
proximated using numerical quadrature, achieved by sam-
pling points along each pixel ray. The estimated colour of
the pixel Ĉ(r) is compared to the ground truth pixel colour
C(r) for all camera rays from the novel view. This evalua-
tion determines the final rendering loss for NeRF:

L =
∑
r∈R

∣∣∣∣∣∣Ĉ(r)−C(r)
∣∣∣∣∣∣2
2
, (2)

where R is the set of camera rays from the novel view.

NeRF brought two crucial contributions. First, the con-
tinuous input coordinates x and d undergo a mapping γ
known as “positional encoding” before being fed into FΘ.
This mapping enables FΘ to approximate higher-frequency
functions efficiently. Second, NeRF introduces hierarchical
volume sampling, achieved through optimizing two MLPs,
to efficiently allocate samples around regions expected to
contain visible content [24].

BaRF camera registration. In the first stage of BladeN-
eRF, we extend BaRF [19] to learn the camera poses from
the input RGB images. BaRF learns camera poses by simul-
taneously optimizing a NeRF model and the camera poses.
It introduces a coarse-to-fine camera registration approach
by applying a smooth mask on positional encoding across

various frequency bands. The k-th frequency component of
the positional encodings is calculated as follows:

γk(x, δ) = wk(δ)
[
cos(2kπx), sin(2kπx)

]
, (3)

where the weight wk is:

wk(δ) =

0 if δ < 1

1− cos((δ − k)π)

2
if 0 ≤ δ − k ≤ 1

1 if 1 ≤ δ − k,

(4)

δ ∈ [0, L] is a controllable parameter proportional to the
optimization progress and L is the size of the higher dimen-
sion space. This progressive schedule allows BaRF to first
learn camera poses based on smoother signals and then tran-
sition to acquiring a high-fidelity scene representation. As
a result, the camera poses converge early during training to
their optimal positions in space.

Mip-NeRF’s extensions to NeRF. The NeRF approach
employs a single ray per pixel, which can result in blurred or
aliased renderings when training images capture the scene
at different resolutions [24]. To this end, Mip-NeRF [3]
offers a solution by casting a cone per pixel instead. By
using conical frustums for querying, Mip-NeRF provides a
continuous and inherently multiscale representation of vol-
ume space regions, avoiding the drawbacks of discrete point
sampling [3]. We use Mip-NeRF as a backbone for the sec-
ond stage of BladeNeRF.

4. Approach
To approach the challenging task of estimating the cam-

era poses and learning the scene representation of aircraft
engines, BladeNeRF is structured into two stages, as shown
in Fig. 3. In the first stage, we estimate the camera poses
of the input images by incorporating prior knowledge about
the inspection setting into BaRF [19]. Then, we utilize the
learned camera poses in the second stage to learn the scene
representation by extending Mip-NeRF’s approach [3].

4.1. First Stage: Learning Camera Poses

In the first phase of BladeNeRF, our objective is to esti-
mate the set of camera poses P for the given input images
I . Due to the repetitive nature of the engine blades, every
few images along the circular pattern showcase high visual
similarities as shown in Fig. 4. Based on this observation,
we partition the input images I into N distinct repetitions,
where each repetition consists of consecutive images cap-
tured between two adjacent blades. This partitioning strat-
egy ensures that visually similar images are not grouped
within the same repetition while simultaneously grouping
consecutive images with highly overlapping fields of view.

3

F
Θ

Camera pose

Learned camera poses

optimization

Background Loss

Density
Mip-NeRF

RGB

Rendering Loss

x

y1st Stage

2nd stage

Figure 3. Pipeline of BladeNeRF. Our proposed method, BladeNeRF, learns the scene representation by utilizing RGB images and binary masks to
distinguish foreground and background regions. In the first stage, camera poses are learned from the RGB images. The RGB images, binary masks, and
learned camera poses are inputted into a Mip-NeRF backbone in the second stage. Our method enables precise depth estimation in the inter-blade regions
by incorporating a composite loss comprising a Rendering loss and a newly introduced Background loss.

P0

P0 P5 P10

P1
P2

P3 P4 P5 P6 P7 P8
P9

P10
P11

P12
P13

Figure 4. Visualisation of the relation between one repetition and camera
poses. We partition the set of all camera poses into multiple repetitions
such as P0 and P1 (depicted in red) that contain 5 consecutive camera
poses, which are visually different. Due to the repetitive nature of engine
blades, images taken from camera poses (shown with the same colours
such as P0, P5 and P10) are visually similar.

We denote the i-th image and its camera pose as Ii and Pi,
respectively. Similarly, we refer to the set of images and
camera poses for the n-th repetition as In and Pn.

4.1.1 Parametrization of One Camera Pose

In our work, we represent the camera pose P as a camera-
to-world matrix P = [R|t], where R ∈ SO(3) and t ∈
R3. We assume the blades align with the xy-plane in the
world coordinate, and their centre coincides with the origin

of the same system, as shown in Fig. 5. We make several
assumptions during the inspection:

• The camera maintains a predefined distance to the
blades along the z-axis;

• The camera faces the blades from its predefined dis-
tance in the negative z-direction;

• The camera orbits around the z-axis with a constant
speed;

• The camera follows a circular pattern with a fixed ra-
dius from the centre of the world coordinate system.

The first assumption makes the translation along z-axis con-
stant. The second assumption results in zero rotation around
the x- and y-axes. The third assumption allows us to manu-
ally extrapolate the rotation over the z-axis once the number
of blades is known. Specifically, we calculate the degree of
rotation between two adjacent frames as ∆ = 2π

M , where
M is the total number of frames after a full round inspec-
tion. Considering all assumptions, we reduce the number of
unconstrained variables from six to two, namely the trans-
lations tx and ty along the x- and y-axes.

4.1.2 Optimizing Camera Poses of One Repetition

To accurately recover the camera poses from one repetition,
we follow the parametrization introduced in Sec. 4.1.1. We
initialize the translations tx and ty by adding random noise
to the ground truth values. Next, we recover the camera
poses using BARF [19]. Training continues until conver-
gence, producing optimized camera poses for a particular
repetition. The following subsection explains how to re-
cover the camera poses for all repetitions.

4

1m

x

z

y

0.9m

Figure 5. Visualisation of the experiment setup. The camera is located at
a fixed height of 1 meter, it orbits around the z-axis in a circular pattern
with a radius of 0.9 meters (depicted in red), and it faces the blades in the
negative z-direction.

4.1.3 Combining Learned Camera Poses of N Repeti-
tions

To obtain the set of camera poses for all frames, we present
two strategies by taking advantage of the repetitive nature
of the blades.

• Solution 1 (S1) optimizes the camera poses for each
repetition independently, utilizing the process outlined
in Sec. 4.1.2. We then combine the estimated poses
from each repetition Pn into a single set P , where
P =

⋃n=N
n=0 Pn and N is the number of repetitions.

This solution is equivalent to training N BARF models
in parallel.

• Solution 2 (S2) follows the assumption that camera
poses within a repetition exhibit comparable relative
rotation and translation to camera poses across other
repetitions. In essence, the camera poses within each
repetition collectively form an arc of the circular tra-
jectory of the camera. As a result, this approach only
requires optimizing the camera poses Pk for a single
repetition k, where k can be any repetition. Conse-
quently, we reconstruct the remaining repetitions by
transforming Pk along the circular trajectory using:

P =

n=N⋃
n=0

T (Pk,
2π

N
n), (5)

where T (Pk, θ) is a function that transforms a set of
camera poses Pk around the z-axis by an angle θ along
the circular pattern in the counterclockwise direction.

4.2. Second stage: Scene representation

In the second stage of BladeNeRF, we learn the scene
representation by leveraging the optimized camera poses P
obtained from the first stage and by training a Mip-NeRF [3]
model. In addition, we introduce a background loss term,
Lbg , that separates the blades in the foreground from the
constant background during training, enabling BladeNeRF
to eliminate artefacts in the background effectively and thus
resulting in more accurate depth estimation of the scene, as
illustrated in Fig. 2.

Background loss. To supervise BladeNeRF, we use
Blender to extract a collection of binary segmentation
masks that accurately separate foreground and background
pixels within the input images. These masks are fed into
BladeNeRF during training. The background loss is com-
puted for each ray r cast through the scene as:

Lbg(r) =

{
| dr |, if r is in background
0, if r is in foreground,

(6)

where dr is the density of the scene along the ray r. The
total loss is a linear combination of the Mip-NeRF [3] losses
and our background loss:

L =
∑
r∈R

∣∣∣∣∣∣Cc(r)− Ĉ(r)
∣∣∣∣∣∣2
2

+ α
∣∣∣∣∣∣Cf (r)− Ĉ(r)

∣∣∣∣∣∣2
2

+ βLbg,

(7)

where Cc(r) and Cf (r) represent the estimated colours of
the pixel along r using both the “coarse” and “fine” sam-
pling strategies while Ĉ(r) is the ground truth colour along
the ray r from the observed input image. α and β are the
scaling factors.

5. Experiments
We assess the performance of BladeNeRF from four

key aspects: camera pose estimation, novel view synthesis,
depth estimation, and learning scene representation through
mesh reconstruction.

5.1. Dataset

We manually create a synthetic dataset using Blender,
which contains rendered images, depth maps, and associ-
ated camera poses. The images in our dataset are rendered
at a resolution of 400 × 400 pixels. The camera faces the
blade on the xy-plane from a distance of 1 meter along the
z-axis. During the inspection, the camera traces a circu-
lar trajectory around the z-axis, following the counterclock-
wise direction. The radius of the circular path is 0.9 meters.

5

The synthetic aircraft engine has 20 blades resulting in 20
repetitions. Images are taken at equidistant locations along
the circular path. Three sets are created with images cap-
tured at different degrees of rotation around the z-axis along
the circular pattern. The validation set encompasses 80 im-
ages, each obtained at intervals of 4.5 degrees. The first
image within this set is captured at an angle of 3 degrees.
The training set comprises 100 images, taken at intervals of
3.6 degrees, commencing from 0 degrees. Lastly, the test-
ing set consists of 200 images captured at intervals of 1.8
degrees, with the initial image obtained at an angle of 0.9
degrees. Each set encompasses images from different loca-
tions on the circular camera path, ensuring a diverse range
of viewpoints for comprehensive evaluation.

5.2. Exp 1: Camera Pose Estimation

We first investigate how well BladeNeRF can estimate
camera poses from RGB images of engine blades. We con-
duct this experiment on our synthetic dataset.

Experimental settings. This experiment aims to recover
camera poses for each image. Due to the unique setup, there
are only two unknowns - translation along x- and y-axes.
We synthetically perturb the ground truth pose with additive
noise sampled from N (0, 0.15), resulting in a translation
magnitude of 0.26 meters. Additionally, we assume known
camera intrinsics.

We compare BladeNeRF primarily with BaRF [19]. We
first report the performance of estimating all six degrees
of freedom (DoF). Then we conduct experiments in a con-
trolled setup where only translations along x- and y-axes
are considered unknown, and the remaining four DoF are
obtained from the ground truth camera poses. Furthermore,
we include COLMAP [29], a Structure-from-Motion (Sf M)
method, in our evaluation to estimate the camera poses of
our synthetic dataset.

Implementation details. During the optimisation pro-
cess, we randomly sample 1024 rays. To ensure accurate
numerical integration along each ray, we select 128 sam-
ples. Furthermore, we apply the softplus activation function
to enhance stability in the volume density output. We use
Adam optimiser [18] for 20K iterations. The initial learning
rate for the NeRF backbone is set to 5× 10−4, which expo-
nentially decays to 1 × 10−4. The initial learning rate for
pose estimation is set to 1×10−3, which decays to 1×10−5.
Regarding the scheduler [19], which controls positional en-
coding at different frequency bands, we linearly adjust the
parameter δ between the 5K and 20K iterations and set the
value L to be 10. Every run of the first stage of BladeNeRF
requires around 30 minutes of computation time on a single
NVIDIA 1080 GPU.

Default BaRF (6DOF)

BladeNeRF-S1BaRF-2DOF

BladeNeRF-S2

Initial Camera Poses

Figure 6. Top-down visual comparison of the initial and optimized camera
poses for our custom dataset. Both BaldeNeRF variants S1 & S2 success-
fully realign all the camera frames, while both variants of BaRF get stuck
at suboptimal solutions, with BaRF-2DOF showing a quasi-periodic pat-
tern. We plot cameras as points instead of frustums to focus solely on the
translations along the x- and y-axes as the rotation of the camera is al-
ready known in our setting.

Evaluation criteria. We evaluate camera pose estima-
tion by aligning the optimised poses with ground truth using
Procrustes analysis [19, 30], as the poses and the scene are
variable up to a 3D similarity transformation. The average
translation error resulting from this alignment process, com-
puted across all estimated camera poses, serves as a quan-
titative measure indicating the accuracy of the registration.
Additionally, we report the mean rotation error in degrees
when camera rotations are available.

Results. We present our quantitative results on camera
estimation in Tab. 1 and visualise the learned camera poses
alongside their ground truth values in Fig. 6. In our set-
ting, we find that COLMAP fails to produce any camera
poses due to its inability to extract and match robust fea-
tures across the input images. Moreover, the default BaRF

6

Method Translation error (m) ↓ Rotation error (°) ↓

Initial Camera poses 0.1623 N/A
BaRF (default) 0.5066 0.3818
BaRF-2DOF 0.0352 N/A
BaldeNeRF-S1 0.0027 N/A
BaldeNeRF-S2 0.0086 N/A

Table 1. Quantitative results of camera pose estimation. BladeNeRF
outperforms BaRF [19] in estimating x- and y-translations. BladeNeRF-
S1 demonstrates slightly better performance than BladeNeRF-S2. BaRF-
2DOF reduces the translation error compared to BaRF. Default BaRF esti-
mates camera poses with a higher translation error compared to the initial
camera poses. Values with N/A represent methods where no rotations of
the camera poses are estimated.

method yields a suboptimal solution, exhibiting high trans-
lation and rotation errors. Consequently, the estimated cam-
era poses deviate even further from the ground truth than
the initial ones. To address this limitation, we introduce
BaRF-2DOF, a variant that simplifies the camera optimisa-
tion problem by focusing solely on optimising the x- and
y-translations, similar to BladeNeRF. This variant signifi-
cantly improves over the default BaRF, reducing the error
by a factor of 15. However, BaRF-2DOF still struggles to
estimate accurate camera poses and shows a quasi-periodic
pattern where multiple subsets of learned camera poses de-
viate collectively from the ground truth.

In contrast, both variants of BladeNeRF successfully es-
timate precise camera poses. Notably, the BladeNeRF-
S1 variant of BladeNeRF outperforms BladeNeRF-S2 in
terms of the translation error. This performance dispar-
ity arises because BladeNeRF-S1 optimises camera poses
for each repetition independently, while BladeNeRF-S2 as-
sumes that the estimated camera poses from the selected
repetition produce a sufficiently low translation error. Oth-
erwise, the error propagates to subsequent repetitions after
rotation. However, it is essential to note that the computa-
tion cost for BladeNeRF-S1 is 20 times higher than that of
BladeNeRF-S2 as our dataset has 20 blades (repetitions).

5.3. Exp 2: Learning Scene Representation

We study 3D neural scene representation learning using
optimised camera poses from the first stage. We evaluate
two BladeNeRF variants using NeRF [24] and Mip-NeRF
[3] backbones on our synthetic dataset. We refer to Sec. 5.1
for details about the configuration of the synthetic dataset.

Experimental settings. We conduct a comparative anal-
ysis between two popular backbone choices, NeRF [24] and
Mip-NeRF [3]. In addition to the vanilla NeRF and Mip-
NeRF models, we test the impact of the proposed back-
ground loss by integrating this loss term into both models.
We compare not only photometric reconstruction but also
depth estimation, as well as reconstructed meshes.

Implementation details. For models using NeRF [24]
as a backbone, we employ a batch size of 2048 rays, with
64 coordinates sampled in the coarse MLP and an additional
128 coordinates in the fine MLP. The optimisation process
converges after approximately 200k iterations, equivalent
to around 20 hours of computation time. For models using
Mip-NeRF as a backbone, including BladeNeRF, we train
for 200k iterations with the scaling factors α and β, intro-
duced in Eq. (7), equal to 1 × 10−1 and 1 × 10−3, respec-
tively. The batch size is set to 2048. All experiments are
conducted on a single NVIDIA 1080 GPU and take approx-
imately 4 hours to train. We use the Adam optimiser [18]
for all models with an initial learning rate of 5× 10−4. The
learning rate decays exponentially to 5 × 10−5 during op-
timisation. The remaining hyperparameters of the Adam
optimiser are set to the default values. To reconstruct the
scene meshes, we use an off-the-shelf marching cubes im-
plementation [28] with a threshold of 5 and a resolution of
256× 256× 64 to generate the 3D meshes.

Evaluation criteria. To evaluate the quality of RGB
reconstructions, we report the three error metrics used by
NeRF [24]: PSNR, SSIM [41], and LPIPS [49]. For the
depth estimation quality, we report quantitative metrics,
including the mean absolute error (MAE), the root mean
squared error (RMSE), and the relative absolute difference
(AbsRel) between the predicted and the ground truth depth.

Results. We report quantitative results in Tab. 2 and vi-
sualise qualitative results in Fig. 7. We first compare the
performance of all models on novel view synthesis. Fig. 7
shows that all models can synthesise high-fidelity novel
views, as the visual reconstructions resemble the ground
truth images. Tab. 2 shows that models with a Mip-NeRF
backbone perform marginally better than the NeRF-based
models when using the optimised camera poses from the
first stage. Comparing BladeNeRF-S1 and BladeNeRF-S2,
we find that BladeNeRF-S1 yields substantially better re-
sults in terms of PSNR and LPIPS. This coincides with our
findings in Sec. 5.2 where BladeNeRF-S1 produces lower
translation errors than BladeNeRF-S2. Additionally, we re-
port the performance using the ground truth camera poses.
Notably, the Mip-NeRF backbones output high-quality re-
sults when the ground truth poses are available, implying
that precise camera poses are a key to neural scene repre-
sentation. However, it is yet unclear why NeRF backbones
benefit less from accurate camera poses. Regarding the pro-
posed background loss, we find minor benefits in terms of
photometric reconstructions.

Second, we compare the performance of all models on
depth estimation and mesh reconstruction. Tab. 2 demon-
strates that models utilising a Mip-NeRF backbone outper-

7

N
eR

F
M
ip
-N
eR

F

w/o

GT S1 S2

w/

GT S1 S2

Figure 7. Qualitative results of BladeNeRF with S1 and S2 camera poses with NeRF and Mip-NeRF as backbones on our synthetic dataset. We use ground
truth camera poses for comparison. We visualise the RGB reconstructions (left) and estimated depths (right). The RGB reconstructions for all variants
visually look good. Variants with NeRF as backbone struggle heavily with depth estimation in the regions between the blades, while Mip-NeRF gets rid of
most of the artefacts. With the background loss Lbg , the artefacts in depth estimation between the blades disappear. BladeNeRF S1 and S2 variants are
highlighted with black borders.

Method
RGB quality metrics Depth quality metrics

PSNR↑ SSIM↑ LPIPS↓ MAE↓ RMSE↓ AbsRel↓

GT S1 S2 GT S1 S2 GT S1 S2 GT S1 S2 GT S1 S2 GT S1 S2

NeRF w/o Lbg 39.99 38.76 34.09 99.62 99.58 99.36 0.163 0.173 0.540 0.687 0.693 0.906 0.961 0.976 1.232 0.812 0.825 0.879
NeRF w/ Lbg 40.03 38.80 34.25 99.99 99.66 99.62 0.150 0.152 0.510 0.475 0.675 0.691 0.834 0.912 0.979 0.615 0.764 0.829
Mip-NeRF w/o Lbg 46.03 39.85 34.72 99.99 99.99 99.99 0.037 0.134 0.486 0.465 0.549 0.552 0.738 0.899 0.912 0.545 0.625 0.628

Mip-NeRF w/ Lbg (BladeNeRF) 47.08 39.96 35.03 99.99 99.99 99.99 0.032 0.129 0.430 0.371 0.373 0.481 0.722 0.725 0.727 0.447 0.447 0.449

Table 2. Quantitative results of scene representation. BladeNeRF achieves high-quality RGB and depth estimation with GT, S1, and S2 camera poses.
SSIM and LPIPS values are scaled by 100. Mae, RMSE and AbsRel values are scaled by 10.

NeRF w/NeRF w/o

Mip-NeRF w/o Mip-NeRF w/ (BladeNeRF)

Figure 8. Qualitative results of mesh reconstruction. Both BladeNeRF
(bold borders) and NeRF with the background loss Lbg reconstruct a
sharp mesh reconstruction of the scene. S1 camera poses are used to re-
construct these meshes. To colourise the meshes, we use the Hausdorff
distance [12] between reconstructed and ground truth meshes.

Figure 9. Mesh reconstruction of the scene using BladeNeRF-S1 viewed
from the side. In the black rectangle, an empty region behind the blades
is observed, and the blades are reconstructed with an angle even though
BladeNeRF does not use any RGB input images of the regions behind the
blades. To colourise the mesh, we use the Hausdorff distance [12] between
reconstructed and ground truth meshes.

form NeRF-based models. This difference in performance
is also evident in Fig. 7, where Mip-NeRF models exhibit
significantly fewer artefacts than NeRF models. The arte-
facts displayed by Mip-NeRF are primarily confined to the
regions surrounding the blades, whereas NeRF models ex-
hibit artefacts spanning most of the background. We hy-
pothesise that this disparity stems from Mip-NeRF’s ability
to encode information from a larger volume into the colour
of a single pixel. In contrast, NeRF encodes the colour

8

of one pixel based on an infinitely small ray traversing the
scene. However, further investigation is needed to confirm
this hypothesis.

Moreover, we compare the depth estimation result using
optimised camera poses from the first stage. Tab. 2 indi-
cates that BladeNeRF-S1 yields slightly better results than
BladeNeRF-S2 camera poses in terms of MAE, RMSE, and
AbsRel. However, both produce slightly higher errors than
models with ground truth camera poses.

Furthermore, we explore the impact of incorporating
background loss in the models. Regardless of their back-
bones, models with background loss demonstrate signifi-
cantly improved depth estimation results. Visually, as de-
picted in Fig. 7 for depth estimation and Fig. 8 for mesh re-
construction, the inclusion of background loss enables the
models to eliminate all artefacts in the background for Mip-
NeRF models. Nevertheless, some minimal artefacts re-
main visible for NeRF models. We attribute the elimination
of these artefacts to the direct influence of the background
loss, which effectively guides the backbone models to learn
that the background region has zero density, indicating the
absence of any scene components between the blades.

Lastly, our findings highlight BladeNeRF’s ability to in-
fer the presence of empty space behind the blades, as de-
picted in Fig. 9. This is particularly noteworthy because our
synthetic dataset solely consists of input images captured
from the front of the blades without providing explicit in-
formation about the scene behind them. However, BladeN-
eRF’s inferred shape of the blades differs from the actual
shape of the blades in the ground truth mesh. This differ-
ence is visible in Fig. 9 where parts of the reconstructed
mesh close to the actual mesh are coloured in red. We
believe that the angle of inclination of the reconstructed
blades by BladeNeRF is similar to the angle of the cones
cast through the pixels at the edges of the observed images,
which can represent parts of the space behind the blades.

5.4. Exp 3: Comparison to Methods For Sparse
Views

In our setting, only front-view images are available. In
this experiment, we study whether sparse-view NeRF mod-
els can produce better results than our model, which is not
specifically designed for sparse-view reconstruction. We
compare BladeNeRF with other NeRF derivatives designed
for sparse views.

Experimental setup and evaluation criteria. We con-
duct a comparative analysis between our approach and Diet-
NeRF [16], RegNeRF [27], and FreeNeRF [45]. We com-
pare their performance in terms of photometric reconstruc-
tion and depth estimation metrics. We use the same metrics

(a) DietNeRF. (b) RegNeRF.

(c) FreeNeRF. (d) BladeNeRF-S1.

Figure 10. DietNeRF exhibits suboptimal results with blurry blades (in
the red square). The other methods produce high-quality RGB reconstruc-
tions. For depth estimation, FreeNeRF, RegNeRF, and DietNeRF produce a
background between the blades and cloudy artefacts near the blades, while
BladeNeRF produces a clean background and a better depth estimation.

Method
RGB Quality Metrics Depth Quality Metrics

PSNR↑ SSIM↑ LPIPS↓ MAE↓ RMSE↓ AbsRel↓

DietNeRF [16] 27.59 86.53 0.989 0.734 1.858 0.993
FreeNeRF [45] 31.01 98.83 0.433 0.616 1.680 0.953
RegNeRF [27] 34.04 99.69 0.331 0.452 1.511 0.918

BladeNeRF-S1 39.96 99.99 0.129 0.373 0.725 0.447

Table 3. Quantitative results of the comparison between DietNeRF, FreeN-
eRF, RegNeRF and BladeNeRF-S1. FreeNeRF, RegNeRF and BladeNeRF-
S1 are able to reconstruct high-fidelity RGB reconstructions while only
DietNeRF struggles heavily with RGB reconstruction in our setting. For
depth estimation, DietNeRF, FreeNeRF and RegNeRF produce substan-
tially higher errors compared to BladeNeRF-S1. SSIM and LPIPS values
are scaled by 100. Mae, RMSE and AbsRel values are scaled by 10.

for Exp. 2 in Sec. 5.3. All three methods are implemented
using their publicly available code bases. We keep all the
default parameter settings and train them for 200K itera-
tions on a single NVIDIA 1080 GPU.

Results. We visualise the results of novel view syn-
thesis and depth estimation in Fig. 10. In addition, we
show the mesh reconstruction in Fig. 11. RegNeRF, FreeN-
eRF, and BladeNeRF can reconstruct high-fidelity RGB im-
ages. However, DietNeRF exhibits noticeable blurriness in
RGB reconstruction. This blurriness is particularly evident
in the red square region depicted in Fig. 10. In terms of
depth estimation and mesh reconstruction, RegNeRF, Diet-
NeRF, and FreeNeRF exhibit noticeable artefacts, leading
to high quantitative evaluation errors as reported in Tab. 3.
An interesting observation is that RegNeRF hallucinates a

9

(a) DietNeRF. (b) RegNeRF.

(c) FreeNeRF. (d) BladeNeRF-S1.

0 2 4 6 8

0

2

4

6

8

Max: 5cm4321Min: 0cm

Figure 11. Comparison of mesh reconstruction quality. All methods,
except BladeNeRF, hallucinate a plane-like structure in the background,
making the blades blend into the background. However, the background
generated by RegNeRF is smoother than the background generated by
DietNeRF and FreeNeRF. To colourise the meshes, we use the Hausdorff
distance [12] between reconstructed and ground truth meshes.

smooth plane-like structure in the background while ac-
curately capturing the blade shapes. In contrast, FreeN-
eRF and DietNeRF struggle to reconstruct the shapes of
the blades in our specific scenario reliably. RegNeRF, Diet-
NeRF, and FreeNeRF are primarily designed to learn high-
quality scene representations from multiple-angle images,
which makes them less effective when working with single-
sided scene images like the ones in our case.

5.5. Exp 4: BladeNeRF on Damaged Blades

We test BladeNeRF’s ability to reconstruct damaged en-
gine blades. We run our experiment on a synthetic dataset
with damaged blades. We use the same experimental se-
tups and evaluation criteria used in Exp. 1 and Exp. 2 (see
Secs. 5.2 and 5.3 for details).

Synthetic damaged dataset. We generate a dataset sim-
ilar to the synthetic dataset introduced in Sec. 5.1. The only
difference is the addition of damages to the blades. To gen-
erate the damages on the blades, we use BladeSynth [13], a
Blender tool that generates synthetic datasets with different
types of damages on engine blades. We introduce two types
of damages. First, we add 50 dents and deformations on the
leading edges of the blades. Second, we chop off parts of
two separate blades as shown in Fig. 12.

Camera pose estimation. We report the transla-
tion errors between the estimated and ground truth cam-
era poses in Tab. 4. Both variants of BladeNeRF es-
timate accurate camera poses of the damaged dataset,
with BladeNeRF-S1 slightly outperforming BladeNeRF-
S2. However, BladeNeRF-S1 exhibits a slight increase in

Figure 12. 3D model of the custom damaged dataset. We introduce two
types of damages. We add dents of different sizes on the leading edges of
the blades, and two blades are missing parts of different sizes.

Dataset Method Translation error (m) ↓

Damaged BladeNeRF-S1 0.0053
BladeNeRF-S2 0.0084

Synthetic BladeNeRF-S1 0.0027
BladeNeRF-S2 0.0086

Table 4. Quantitative results of camera pose estimation of BladeNeRF on
the damaged and synthetic datasets. BladeNeRF-S1 demonstrates slightly
better performance than BladeNeRF-S2 on both datasets. BladeNeRF-S1
produced a marginally higher translation error on the damaged dataset
than the synthetic dataset, while BladeNeRF-S2 exhibits comparable per-
formance on both datasets.

translation error on the damaged dataset compared to the
synthetic dataset. This disparity comes from the repetitions
where a part of the blades is chopped off, such as repeti-
tion #7. For instance, in the synthetic dataset, repetition #7
displayed a translation error of 0.0023m, whereas, in the
damaged dataset, the error increased to 0.0105m.

In contrast, BladeNeRF-S2 demonstrates reduced sensi-
tivity to the damages compared to BladeNeRF-S1 by using
a repetition with minimal translation error to estimate cam-
era poses of other repetitions. It is important to note that the
repetition selected by BladeNeRF-S2 to estimate the other
repetitions has only dents a few dents and no instances of
chopped-off blades. The results of BladeNeRF-S2 would
have been worse if the selected repetition had a chopped-
off blade. In conclusion, dents have a negligible impact
on camera pose estimation, while the presence of chopped-
off blades significantly affects the accuracy of BladeNeRF,
particularly for BladeNeRF-S1. BladeNeRF-S2’s strategy
allows us to avoid the impact of the chopped-off blades.

Scene representation and 3D reconstruction. We con-
duct experiments using ground truth camera poses and

10

RGB Reconstruction Depth Estimation

Figure 13. RGB reconstruction and Depth Estimation from BladeNeRF-
S1 on the damaged dataset. The dents (depicted in green) are visible on
the RGB reconstruction but are less sharp in the depth estimation. The
chopped-off blade (depicted in red) is clearly visible in both RGB and
depth estimation.

Method
RGB Quality Metrics Depth Quality Metrics

PSNR↑ SSIM↑ LPIPS↓ MAE↓ RMSE↓ AbsRel↓

BladeNeRF-GT 46.87 99.99 0.046 0.370 0.724 0.446
BladeNeRF-S1 37.42 99.99 0.348 0.412 0.727 0.449
BladeNeRF-S2 34.88 99.99 0.450 0.438 0.730 0.455

Table 5. Quantitative results of BladeNeRF on the damaged dataset.
BladeNeRF-GT, utilizing ground truth camera poses in our second stage,
achieves the highest performance, while BladeNeRF-S1 and BladeNeRF-
S2 yield inferior results. Both BladeNeRF-S1 and BladeNeRF-S2 perform
at a comparable level. LPIPS values are scaled by 100. Mae, RMSE and
AbsRel values are scaled by 10.

learned camera poses from both variants. The quanti-
tative results are presented in Tab. 5. Our findings in-
dicate that both variants of BladeNeRF yield compara-
ble results in terms of RGB and depth estimation metrics.
However, BladeNeRF-S1 exhibits a slight advantage over
BladeNeRF-S2, consistent with the outcomes reported in
Exp. 2 in Sec. 5.3. BladeNeRF achieves high-fidelity
reconstructions of dents and chopped-off blades in RGB
and depth estimations, as shown in Fig. 13. Nevertheless,
BladeNeRF only successfully reconstructs big-size defects
such as chopped-off blades when reconstructing the 3D
mesh, as shown in Fig. 14. Meanwhile, the smaller dents
on the leading edges remain imperceptible in the resulting
mesh. Given that the damages are clearly visible in RGB
and depth estimations, we attribute BladeNeRF’s inability
to reconstruct dents on the 3D mesh to the low resolution
used on the marching cube algorithm. We believe that us-
ing a higher resolution could potentially enable the recovery
of dents and more minor defects on the blades.

6. Conclusion

We present BladeNeRF, a new NeRF variant specifically
designed for the photo-realistic reconstruction of aircraft
engines from unposed RGB images. Our model benefits
from two designs: (1) we incorporate prior knowledge of

Figure 14. Mesh reconstruction of BladeNeRF-S1 on the damaged
dataset. The dents on the leading edges of the blades are not discernible
due to the limitations of the low-resolution marching cube algorithm. How-
ever, BladeNeRF-S1 demonstrates accurate reconstruction of the chopped-
off blades. To colourise the mesh, we use the Hausdorff distance [12] be-
tween reconstructed and ground truth meshes.

camera constraints into the BaRF method to enhance cam-
era pose estimation; (2) we extend Mip-NeRF by integrat-
ing binary masks that separate the foreground and back-
ground regions to guide the model to learn high-fidelity
scene representation in both foreground and background.

One limitation of our method is its dependence on the
specific settings employed in our study. The assumptions
made during the first stage restrict BladeNeRF’s general-
izability to diverse inspection scenarios. For example, the
method is not adaptable to images captured from varying
distances or trajectories beyond a circular path. Relaxing
these assumptions in future research would be valuable, en-
abling 3D mesh reconstruction beyond the scenario consid-
ered in our study.

Furthermore, our evaluation has only been conducted
on synthetic data, as we encountered challenges in test-
ing the approach on real data due to the lack of suitable
datasets that conform to the specific assumptions imposed
in camera pose estimation. To overcome this limitation,
we propose two potential avenues for future work. One
approach involves collecting real-world data that adheres
to the assumptions made by our method, thereby enabling
the validation of BladeNeRF in a realistic context. Alter-
natively, relaxing the assumptions would allow the utiliza-
tion of available real data, broadening the applicability of
BladeNeRF and facilitating evaluation in practical scenar-
ios. It is important to note that extracting binary masks
from real images is a non-trivial task and poses an additional
challenge when applying BladeNeRF to real datasets.

11

Moreover, BladeNeRF exhibits a notable limitation in
terms of its long training time. In time-sensitive aircraft
inspection scenarios, efficiency is of utmost importance. To
address this limitation, integrating faster NeRF models into
the BladeNeRF framework represents a promising avenue
for future research. Leveraging these models, known for
their shorter training times, would reduce the computational
burden and enhance the practicality of BladeNeRF in the
domain of aircraft inspection, particularly in near-real-time
analysis requirements.

Additionally, BladeNeRF could benefit from an end-to-
end approach to simultaneously estimate the camera poses
and learn the scene representation. Using an end-to-end
pipeline, BladeNeRF can correct the camera poses if it pro-
duces high reconstruction errors. This approach can poten-
tially reduce the second stage’s sensitivity to the accuracy
of the camera poses produced by the first stage.

Overall, our method demonstrates the successful utiliza-
tion of neural radiance fields (NeRF) for accurate 3D re-
construction in the domain of aircraft engine inspections.
Through empirical experiments, BladeNeRF showcases its
capabilities, encompassing accurate camera pose estimation
and learning high-fidelity scene representations.

References
[1] Sameer Agarwal, Noah Snavely, Ian Simon, Steven M. Seitz,

and Richard Szeliski. Building rome in a day. In 2009 IEEE
12th International Conference on Computer Vision, pages
72–79, 2009. 2

[2] Hatem Alismail, Brett Browning, and Simon Lucey. Photo-
metric bundle adjustment for vision-based slam. In Shang-
Hong Lai, Vincent Lepetit, Ko Nishino, and Yoichi Sato, ed-
itors, Computer Vision – ACCV 2016, pages 324–341, Cham,
2017. Springer International Publishing. 2

[3] Jonathan T. Barron, Ben Mildenhall, Matthew Tancik, Peter
Hedman, Ricardo Martin-Brualla, and Pratul P. Srinivasan.
Mip-nerf: A multiscale representation for anti-aliasing neu-
ral radiance fields. In Proceedings of the IEEE/CVF Interna-
tional Conference on Computer Vision (ICCV), pages 5855–
5864, October 2021. 2, 3, 5, 7

[4] Wenjing Bian, Zirui Wang, Kejie Li, Jiawang Bian, and Vic-
tor Adrian Prisacariu. Nope-nerf: Optimising neural radi-
ance field with no pose prior. CVPR, 2023. 1, 2

[5] Anpei Chen, Zexiang Xu, Fuqiang Zhao, Xiaoshuai Zhang,
Fanbo Xiang, Jingyi Yu, and Hao Su. Mvsnerf: Fast general-
izable radiance field reconstruction from multi-view stereo.
In Proceedings of the IEEE/CVF International Conference
on Computer Vision, pages 14124–14133, 2021. 2

[6] Yue Chen, Xingyu Chen, Xuan Wang, Qi Zhang, Yu Guo,
Ying Shan, and Fei Wang. Local-to-global registration for
bundle-adjusting neural radiance fields. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 8264–8273, 2023. 1, 2

[7] Ziang Cheng, Hongdong Li, Yuta Asano, Yinqiang Zheng,
and Imari Sato. Multi-view 3d reconstruction of a texture-
less smooth surface of unknown generic reflectance. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 16226–16235, 2021. 1

[8] Julian Chibane, Aayush Bansal, Verica Lazova, and Gerard
Pons-Moll. Stereo radiance fields (srf): Learning view syn-
thesis from sparse views of novel scenes. In IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR).
IEEE, jun 2021. 2

[9] Shin-Fang Chng, Sameera Ramasinghe, Jamie Sherrah, and
Simon Lucey. Garf: Gaussian activated radiance fields for
high fidelity reconstruction and pose estimation, 2022. 2

[10] Andrew J. Davison, Ian D. Reid, Nicholas D. Molton, and
Olivier Stasse. Monoslam: Real-time single camera slam.
IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 29(6):1052–1067, 2007. 2

[11] Kangle Deng, Andrew Liu, Jun-Yan Zhu, and Deva Ra-
manan. Depth-supervised NeRF: Fewer views and faster
training for free. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition (CVPR),
June 2022. 2

[12] David A. Edwards. The structure of superspace. In Nick M.
Stavrakas and Keith R. Allen, editors, Studies in Topology,
pages 121–133. Academic Press, 1975. 8, 10, 11, 16, 18, 19,
20

[13] Chengming Feng. Bladesynth: Damage detection and as-
sessment in aircraft engines with synthetic data. Master’s
thesis, Delft University of Technology, The Netherlands,
Aug 2022. 10

[14] Ronghang Hu, Nikhila Ravi, Alexander C. Berg, and Deepak
Pathak. Worldsheet: Wrapping the world in a 3d sheet for
view synthesis from a single image. In Proceedings of the
IEEE International Conference on Computer Vision (ICCV),
2021. 2

[15] Tao Hu, Liwei Wang, Xiaogang Xu, Shu Liu, and Jiaya Jia.
Self-supervised 3d mesh reconstruction from single images.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), pages 6002–6011,
June 2021. 2

[16] Ajay Jain, Matthew Tancik, and Pieter Abbeel. Putting nerf
on a diet: Semantically consistent few-shot view synthe-
sis. In Proceedings of the IEEE/CVF International Confer-
ence on Computer Vision (ICCV), pages 5885–5894, October
2021. 2, 9

[17] M. M. Johari, Y. Lepoittevin, and F. Fleuret. Geonerf: Gen-
eralizing nerf with geometry priors. Proceedings of the IEEE
international conference on Computer Vision and Pattern
Recognition (CVPR), 2022. 3

[18] Diederik P. Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. ICLR, 2015. 6, 7

[19] Chen-Hsuan Lin, Wei-Chiu Ma, Antonio Torralba, and Si-
mon Lucey. Barf: Bundle-adjusting neural radiance fields. In
IEEE International Conference on Computer Vision (ICCV),
2021. 1, 2, 3, 4, 6, 7, 14

[20] Manolis I. A. Lourakis and Antonis A. Argyros. Sba: A
software package for generic sparse bundle adjustment. ACM
Trans. Math. Softw., 36(1), mar 2009. 1

12

[21] David G Lowe. Object recognition from local scale-invariant
features. In Proceedings of the seventh IEEE international
conference on computer vision, volume 2, pages 1150–1157.
Ieee, 1999. 1

[22] David G. Lowe. Distinctive image features from scale-
invariant keypoints. International Journal of Computer Vi-
sion, 60:91–110, 2004. 1

[23] Priyanka Mandikal and R. Venkatesh Babu. Dense 3d point
cloud reconstruction using a deep pyramid network. 2019
IEEE Winter Conference on Applications of Computer Vision
(WACV), pages 1052–1060, 2019. 2

[24] Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik,
Jonathan T. Barron, Ravi Ramamoorthi, and Ren Ng. Nerf:
Representing scenes as neural radiance fields for view syn-
thesis. In ECCV, 2020. 1, 2, 3, 7

[25] Raúl Mur-Artal, J. M. M. Montiel, and Juan D. Tardós. Orb-
slam: A versatile and accurate monocular slam system. IEEE
Transactions on Robotics, 31(5):1147–1163, 2015. 2

[26] K. L. Navaneet, A. Mathew, S. Kashyap, W. Hung, V. Jam-
pani, and R. Venkatesh Babu. From image collections to
point clouds with self-supervised shape and pose networks.
In 2020 IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition (CVPR), pages 1129–1137, Los Alamitos,
CA, USA, jun 2020. IEEE Computer Society. 2

[27] Michael Niemeyer, Jonathan T. Barron, Ben Mildenhall,
Mehdi S. M. Sajjadi, Andreas Geiger, and Noha Radwan.
Regnerf: Regularizing neural radiance fields for view syn-
thesis from sparse inputs. In Proc. IEEE Conf. on Computer
Vision and Pattern Recognition (CVPR), 2022. 3, 9

[28] Pablo Márquez Neila. PyMCubes:
marching cubes for Python, 2023.
https://github.com/pmneila/PyMCubes,
version 0.1.4. 7

[29] Johannes L. Schonberger and Jan-Michael Frahm. Structure-
from-motion revisited. In Proceedings of the IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR),
June 2016. 1, 6

[30] Peter H Schönemann. A generalized solution of the orthog-
onal procrustes problem. Psychometrika, 31(1):1–10, 1966.
6

[31] Johannes L. Schönberger and Jan-Michael Frahm. Structure-
from-motion revisited. In 2016 IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), pages 4104–
4113, 2016. 2

[32] S.M. Seitz and C.R. Dyer. Photorealistic scene reconstruc-
tion by voxel coloring. In Proceedings of IEEE Computer
Society Conference on Computer Vision and Pattern Recog-
nition, pages 1067–1073, 1997. 2

[33] Rajvi Shah, Aditya Deshpande, and P. J. Narayanan. Multi-
stage SFM: A coarse-to-fine approach for 3d reconstruction.
CoRR, abs/1512.06235, 2015. 1, 2

[34] Meng-Li Shih, Shih-Yang Su, Johannes Kopf, and Jia-Bin
Huang. 3d photography using context-aware layered depth
inpainting. In IEEE Conference on Computer Vision and Pat-
tern Recognition (CVPR), 2020. 2

[35] Vincent Sitzmann, Julien N.P. Martel, Alexander W.
Bergman, David B. Lindell, and Gordon Wetzstein. Implicit

neural representations with periodic activation functions. In
Proc. NeurIPS, 2020. 2

[36] Vincent Sitzmann, Semon Rezchikov, William T. Freeman,
Joshua B. Tenenbaum, and Fredo Durand. Light field net-
works: Neural scene representations with single-evaluation
rendering. In Proc. NeurIPS, 2021. 2

[37] Vincent Sitzmann, Michael Zollhöfer, and Gordon Wet-
zstein. Scene representation networks: Continuous 3d-
structure-aware neural scene representations. In Advances
in Neural Information Processing Systems, 2019. 2

[38] Noah Snavely, Steven M. Seitz, and Richard Szeliski. Photo
tourism: Exploring photo collections in 3d. ACM Trans.
Graph., 25(3):835–846, jul 2006. 1, 2

[39] Bill Triggs, Philip F. McLauchlan, Richard I. Hartley, and
Andrew William Fitzgibbon. Bundle adjustment - a modern
synthesis. In Workshop on Vision Algorithms, 1999. 1

[40] Shubham Tulsiani, Richard Tucker, and Noah Snavely.
Layer-structured 3d scene inference via view synthesis. In
ECCV, 2018. 2

[41] Zhou Wang, A.C. Bovik, H.R. Sheikh, and E.P. Simoncelli.
Image quality assessment: from error visibility to struc-
tural similarity. IEEE Transactions on Image Processing,
13(4):600–612, 2004. 7

[42] Zirui Wang, Shangzhe Wu, Weidi Xie, Min Chen, and
Victor Adrian Prisacariu. NeRF−−: Neural radiance
fields without known camera parameters. arXiv preprint
arXiv:2102.07064, 2021. 1, 2

[43] Yi Wei, Shaohui Liu, Yongming Rao, Wang Zhao, Jiwen Lu,
and Jie Zhou. Nerfingmvs: Guided optimization of neural
radiance fields for indoor multi-view stereo. In ICCV, 2021.
2

[44] Yitong Xia, Hao Tang, Radu Timofte, and Luc Van Gool.
Sinerf: Sinusoidal neural radiance fields for joint pose
estimation and scene reconstruction. arXiv preprint
arXiv:2210.04553, 2022. 1, 2

[45] Jiawei Yang, Marco Pavone, and Yue Wang. Freenerf: Im-
proving few-shot neural rendering with free frequency reg-
ularization. In Proc. IEEE Conf. on Computer Vision and
Pattern Recognition (CVPR), 2023. 3, 9

[46] Alex Yu, Vickie Ye, Matthew Tancik, and Angjoo Kanazawa.
pixelNeRF: Neural radiance fields from one or few images.
In CVPR, 2021. 2

[47] Zhongda Yuan and Mingguang Liu. Specification for engine
borescope inspection report. IOP Conference Series: Earth
and Environmental Science, 186(5):012001, sep 2018. 1

[48] Jason Y. Zhang, Gengshan Yang, Shubham Tulsiani, and
Deva Ramanan. NeRS: Neural reflectance surfaces for
sparse-view 3d reconstruction in the wild. In Conference on
Neural Information Processing Systems, 2021. 2

[49] Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman,
and Oliver Wang. The unreasonable effectiveness of deep
features as a perceptual metric. In CVPR, 2018. 7

13

(a) 360 Untextured Dataset.. (b) 360 Textured Dataset.

Figure 15. Top down view of the blades used to create 360 Textured and
360 Untextured Dataset.

Dataset Translation error (m) ↓ Rotation error (°) ↓

360 Untextured 0.42210 13.236
360 Textured 0.05995 1.978

Table 6. Quantitative results of camera pose estimation. BaRF is able to
correctly estimate the camera poses of the textured dataset compared to
the untextured dataset.

A. BaRF on texture-less and repetitive blades
We explore BaRF’s ability [19] to estimate camera poses

from images that display repetitive visual patterns and lack
textures when captured from various angles.

Datasets. To perform this exploratory experiment, we
create two variants of our datasets (360 Textured Dataset
and 360 Untextured Dataset). Both datasets employ the
same 3D object of the blades. The creation process of these
datasets mirrors that of the synthetic dataset introduced in
Sec. 5.1. The only distinction is that the camera is situated
on a hemisphere with a radius of 3 meters and oriented to-
wards the centre of the blades. We refer to Fig. 15 for a
visual representation.

Experimental setup. We use the same experimental
setup as BaRF [19] and run the experiment for 200k iter-
ations to estimate the camera poses.

Evaluation criteria. We report the same quantitative
metrics to evaluate the quality of the estimated camera poses
as reported in BaRF: the translation error in meters and the
rotation errors in degrees.

Results. We present the camera pose estimation results
of BaRF for both the textured and untextured datasets in
Fig. 16. Tab. 6 compares the estimated camera poses to the
ground truth camera poses by measuring translation and ro-
tation errors. BaRF struggles to accurately estimate camera
poses on the untextured dataset but performs well on the

(a) Initial Camera poses.

(b) 360 Textured Dataset. (c) 360 Untextured Dataset.

Figure 16. Visual comparison of the initial and optimized camera poses
for the 360 Textured and 360 Untextured datasets. BaRF is able to cor-
rectly estimate most of the camera poses on the textured dataset but finds
a suboptimal solution for the untextured dataset.

textured one. However, it faces difficulties with the side-
view images of the blades on the textured dataset due to
their visual similarity from all sides.

B. Relaxing the assumptions for pose estima-
tion

This experiment studies the performance of BladeNeRF
in two more challenging settings. Firstly, we aim to remove
the restriction on the rotation around the z-axis. By doing
so, we eliminate the assumption of a constant speed of ro-
tation for the camera, and the requirement for equidistant
image captures along the circular pattern in the first stage
of BladeNeRF. Secondly, we aim to recover all six degrees
of freedom (DoF) in BladeNeRF, thereby removing all as-
sumptions regarding camera poses.

Experimental setup. We compare BaRF and BladeN-
eRF models to evaluate the impact of relaxing camera as-
sumptions. To ensure a comprehensive evaluation, we test
three versions of each model that estimate different DoF.
The first variant estimates 2 DoF, allowing for translation
along the x- and y-axes. The second version estimates 3
DoF, which includes rotation around the z-axis, in addition
to x- and y-translations. The third version estimates all 6
DoF, accounting for rotation and translation across the x-,
y-, and z-axes. This comparison analysis helps us under-
stand how relaxing camera assumptions impact the perfor-
mance and capabilities of BladeNeRF.

Evaluation and implementation details. We use a sim-
ilar setup to Exp. 1 in Sec. 5.2 and report the rotation

14

Method DOF Translation Error (m) ↓ Rotation Error (°) ↓

BaRF
2 0.0352 -
3 0.0578 0.2055
6 0.5066 0.3818

BladeNeRF-S1
2 0.0027 -
3 0.5855 0.7122
6 1.996 2.1748

BladeNeRF-S2
2 0.0086 -
3 0.8442 1.3478
6 2.9788 1.7921

Table 7. Quantitative results of comparison between BladeNeRF and
BaRF. We compare three variants of each model, namely estimating two,
three and six degrees of freedom (DoF). BladeNeRF outperforms BaRF in
the case of two DoF. However, both BladeNeRF’s variants produce sub-
stantially higher translation and rotation errors in the case of three and
six DoF. BladeNeRF-S1 outperforms BladeNeRF-S2 across all DoF.

and translation errors between the optimized and the ground
truth camera poses.

Results. In Tab. 7, we present the quantitative results
obtained from our evaluation. As outlined in Sec. 5.2, both
variants of BladeNeRF substantially outperform the default
BaRF method in the case of 2 DoF. However, for the case of
3 DoF, the default BaRF method outperforms both BladeN-
eRF variants. This discrepancy arises from BladeNeRF’s
inability to effectively learn the rotation around the z-axis
from the input images in each repetition.

Moreover, in the case of 6 DoF, the default BaRF method
consistently outperforms both BladeNeRF variants. Merely
relaxing the assumptions imposed on BladeNeRF yields
suboptimal results, necessitating further exploration of al-
ternative approaches for precise camera pose estimation.

Additionally, it is interesting to note that BladeNeRF-S1
consistently outperforms BladeNeRF-S2 across all degrees
of freedom, which aligns with the outcomes of Exp. 1 in
Sec. 5.2. This suggests that independent learning of camera
poses for each repetition, as implemented in BladeNeRF-
S1, yields better performance than assuming uniformity
across all repetitions, as employed in BladeNeRF-S2.

C. Different Camera Trajectories
We test BladeNeRF’s ability to learn the camera poses

and scene representation of datasets with camera trajecto-
ries other than the circular trajectory. To this end, we syn-
thesize two custom datasets. The camera follows a sinu-
soidal trajectory in the first dataset, referred to as the sinu-
soidal dataset. It oscillates from a distance of 0.75 meters
from the centre of the blades to a distance of 1.1 meters ev-
ery ten images. Half a period of the camera trajectory rep-
resents one repetition in this dataset. In the second dataset,

BladeNeRF-S1 on the Sinusoidal Dataset BladeNeRF-S2* on the Sinusoidal Dataset

BladeNeRF-S1 on the Random Dataset BladeNeRF-S2 on the Random Dataset

Figure 17. Top-down visual comparison of the optimized and ground truth
camera poses of the sinusoidal and random datasets using BladeNeRF’s
first stage. Both variants of BladeNeRF accurately estimated camera poses
on the sinusoidal dataset. However, we use BladeNeRF-S2*, a variant
of BladeNeRF-S2, that reasons about the camera pose in terms of peri-
ods on the camera trajectory instead of repetitions. On the other hand,
BladeNeRF-S1 found suboptimal camera poses for a few repetitions on the
random dataset, while BladeNeRF-S2 estimated suboptimal camera poses
for all repetitions except the one (in the black rectangle) used to generalize
to the rest of the repetitions.

referred to as the random dataset, the camera is randomly
put at a distance between 0.75 meters and 1.1 meters from
the centre of the blades. The camera rotates in the counter-
clockwise direction around the z-axis in both datasets at a
constant speed.

Camera pose estimation. We present the quantitative
results of camera estimation using BladeNeRF on the ran-
dom, sinusoidal, and synthetic datasets in Tab. 8. We also
visualise all three datasets’ estimated and ground truth cam-
era poses in Fig. 17.

In the sinusoidal dataset, each repetition covers only half
a period of the sinusoidal camera trajectory. Therefore,
generalizing the estimated camera poses from one repeti-
tion to the rest leads to incorrect camera pose estimations
for half of the repetitions. To address this, we introduce
BladeNeRF-S2*, a modified camera optimization strategy
of BladeNeRF-S2 that estimates camera poses for two con-
secutive repetitions, covering one complete period of the
sinusoidal trajectory. The learned camera poses from one

15

Dataset BladeNeRF Variant Translation Error (m) ↓

Sinusoidal S1 0.0121
S2* 0.0149

Random S1 0.3134
S2 0.4270

Synthetic S1 0.0027
S2 0.0086

Table 8. Quantitative results of camera pose estimation on the sinusoidal,
random and synthetic datasets. The translation errors of both variants of
BladeNeRF on the random dataset are higher by approximately a factor
of 50 compared to the synthetic dataset. BladeNeRF-S1 and BladeNeRF-
S2* are able to estimate the camera poses but produce higher transla-
tion errors on the sinusoidal dataset compared to the synthetic dataset.
BladeNeRF-S2* is a variant of BladeNeRF-S2 that reasons about camera
poses in terms of periods on the camera trajectory instead of repetitions.

period are then generalized to the remaining periods, simi-
lar to BladeNeRF-S2’s approach with repetitions.

Both BladeNeRF-S1 and BladeNeRF-S2* successfully
estimate camera poses on the sinusoidal dataset, although
they have slightly higher translation errors compared to the
synthetic dataset. We believe that BladeNeRF can learn
camera poses on datasets with periodic camera trajectories,
but adjustments may be required to accommodate the spe-
cific setting of the dataset.

On the random dataset, BladeNeRF-S1 accurately esti-
mates camera poses for most repetitions but has found sub-
optimal solutions for a few consecutive repetitions. These
repetitions are in a region with slightly brighter lighting
conditions. We hypothesize that the bright lighting in-
fluenced BladeNeRF-S1’s ability to learn accurate camera
poses. In the case of BladeNeRF-S2, it predictably pro-
duces higher translation errors as it assumes uniform pat-
terns across all repetitions, which does not hold in the ran-
dom dataset.

Scene representation and 3D reconstruction. The
quantitative results of RGB reconstructions and depth esti-
mations on the sinusoidal and random datasets are presented
in Tab. 9. Visualisations of the RGB reconstructions and
depth estimations for both datasets are depicted in Fig. 18.
Additionally, mesh reconstructions of both datasets using
BladeNeRF-S1 are shown in Fig. 19.

BladeNeRF-S1 can learn the scene representation on the
sinusoidal dataset. However, it produces noticeable blurri-
ness in the RGB and depth estimations, leading to signifi-
cant artefacts in the mesh reconstructions, particularly in the
regions in front of the mesh, as seen in Fig. 19. This subop-
timal scene representation on the sinusoidal dataset can be

(a) Sinusoidal (repetition #0). (b) Random (repetition #0).

(c) Random (repetition #12)
RGB Reconstruction.

(d) Random (repetition #12)
Depth Estimation.

Figure 18. RGB and Depth estimation of the random and sinusoidal
datasets using BladeNeRF-S1. At repetition #0, BladeNeRF-S1 produces
blurry RGB and depth estimation on random and sinusoidal dataset. At
repetition #12, BladeNeRF-S1 fails to learn the scene representation.

Dataset
RGB Quality Metrics Depth Quality Metrics

PSNR↑ SSIM↑ LPIPS↓ MAE↓ RMSE↓ AbsRel↓

Sinusoidal 24.93 92.61 3.4429 3.768 7.336 0.453
Random 19.84 82.15 13.253 3.949 7.644 0.474

Table 9. Qualitative results of BladeNeRF-S1 on the sinusoidal and ran-
dom datasets. BladeNeRF-S1 achieves low-quality RGB and depth estima-
tion on both datasets with notably poorer results observed on the random
dataset. LPIPS and SSIM values are scaled by 100. Mae, RMSE and Ab-
sRel values are scaled by 10

(a) Sinusoidal dataset. (b) Random dataset.

0 2 4 6 8

0

2

4

6

8

Max: 5cm4321Min: 0cm

Figure 19. Mesh reconstruction of the sinusoidal and random datasets
using BladeNeRF-S1. On the random dataset, BladeNeRF-S1 fails to re-
construct accurately the mesh in the regions where the camera poses have
high translation errors. On the sinusoidal dataset, BladeNeRF-S1 recon-
structs a complete mesh, albeit with significant artefacts on the top side
of the blades. To colourise the mesh, we use the Hausdorff distance [12]
between reconstructed and ground truth meshes.

attributed to the marginally inaccurate camera poses learned
during the first stage of BladeNeRF.

16

Dataset BladeNeRF Variant Translation Error (m) ↓

40 Views S1 0.0069
S2 0.0119

60 Views S1 0.0034
S2 0.0094

100 Views S1 0.0027
S2 0.0086

200 Views S1 0.0025
S2 0.0087

Table 10. Quantitative results of comparison of camera pose estimation
between the datasets with 40, 60, 100 and 200 views. Both variants of
BladeNeRF perform similarly on the 100 and 200 views datasets, with
BladeNeRF-S1 achieving the lowest translation error on the 200 views
dataset. In contrast, both variants of BladeNeRF produce high errors with
the 60 and 40 views datasets. The translation error in estimating camera
poses increases as the number of views fed to BladeNeRF decreases.

Regarding the random dataset, BladeNeRF-S1 success-
fully recovers RGB and depth estimation for repetition #0,
where the camera poses are accurately estimated by the first
stage of BladeNeRF. However, for repetition #12, where the
first stage produces inaccurate camera poses, BladeNeRF-
S1 fails to learn the scene representation. This leads to the
mesh reconstruction exhibiting significant artefacts in the
regions surrounding repetitions with the inaccurately esti-
mated camera poses. These observations highlight the sen-
sitivity of the second stage of BladeNeRF to the inaccura-
cies introduced by the first stage of BladeNeRF.

D. Effect of Number of Views
We investigate the effect of the number of input images

on the performance of BladeNeRF. To this end, we synthe-
size three custom datasets using the same configuration as
the synthetic dataset introduced in Sec. 5.1. We run BladeN-
eRF on the three custom datasets and compare their per-
formance to the synthetic dataset. The camera on all four
datasets follows a circular trajectory with a radius of 0.9
meters from a distance of 1 meter along the z-axis in the
counterclockwise direction as depicted in Fig. 5. The only
difference between the four datasets is the number of im-
ages taken along the circular trajectory of the camera. For
simplicity, we refer to the synthetic dataset as the 100 views
dataset since it has 100 views as input. The input images are
captured every 9, 6, 3.6 and 1.8 degrees of rotation around
the z-axis for the 40, 60, 100 and 200 views datasets.

Camera pose estimation. We present the quantitative
results of camera pose estimation using both variants of
BladeNeRF on the 40, 60, 100 and 200 views datasets in
Tab. 10. For the 100 and 200 views dataset, both variants
of BladeNeRF produce comparable translation errors. This

(a) 40 Views. (b) 60 Views.

(c) 100 Views. (d) 200 Views.

Figure 20. Visual comparison of BladeNeRF on the synthetic dataset with
different numbers of input images. BladeNeRF can estimate high-quality
RGB reconstructions (right) and depth estimations (left).

Dataset
RGB Quality Metrics Depth Quality Metrics

PSNR↑ SSIM↑ LPIPS↓ MAE↓ RMSE↓ AbsRel↓

40 Views 24.05 82.99 1.135 0.981 1.754 1.284
60 Views 25.66 85.23 1.067 0.917 1.719 1.153
100 Views 39.96 99.99 0.129 0.373 0.725 0.447
200 Views 37.89 99.99 0.091 0.379 0.714 0.449

Table 11. Quantitative results of scene representation on the 40, 60, 100
and 200 views datasets. BladeNeRF demonstrates high-quality RGB and
depth estimation results on the 100 and 200 views datasets. However, its
performance is comparatively poorer on the 40 and 60 views datasets on
RGB and depth estimation. LPIPS and SSIM values are scaled by 100.
Mae, RMSE and AbsRel values are scaled by 10.

is likely due to the presence of sufficient visual information
in both datasets, where each repetition contains five or ten
input views, enabling the underlying BaRF model to learn
accurate camera poses. Doubling the input views results in
a high overlap of the field of view of the input images and
does not produce better results in terms of translation errors.
In contrast, when applied to the 40 and 60 views datasets,
both variants of BladeNeRF exhibit higher translation er-
rors, with the lowest performance observed on the 40 views
dataset. The increase in translation error arises from the
limited overlap in the field of view among the input images
in these datasets, hindering BaRF’s ability to learn accurate
camera poses.

Scene representation and 3D reconstruction. The
RGB and depth estimation results of BladeNeRF-S1 on the
40, 60, 100, and 200 views datasets are presented in Fig. 20.
Additionally, mesh reconstructions for all four datasets are

17

(a) 40 Views. (b) 60 Views.

(c) 100 Views. (d) 200 Views.

0 2 4 6 8

0

2

4

6

8

Max: 5cm4321Min: 0cm

Figure 21. Mesh reconstruction of the 40, 60, 100 and 200 Datasets using
BladeNeRF-S1. BladeNeRF-S1 can estimate accurate camera poses on
different numbers of views. To colourise the mesh, we use the Hausdorff
distance [12] between reconstructed and ground truth meshes.

displayed in Fig. 21. Detailed quantitative results can be
found in Tab. 11. BladeNeRF-S1 can effectively learn scene
representations on all four datasets since no significant dis-
crepancies are observed upon qualitative examination of the
RGB reconstructions, depth estimations, and mesh recon-
structions across all four datasets. However, in terms of
quantitative evaluation, the 40 and 60 views datasets ex-
hibit slightly worse results than the 100 and 200 views
datasets. The 40 views dataset produces the least optimal
results among the four datasets. It is worth noting that the
quantitative results of the 200 views dataset closely resem-
ble those of the 100 views dataset. This experiment sug-
gests that adding more views does not necessarily improve
the scene representation while reducing the number of input
views results in reduced performance for BladeNeRF.

E. Multiple viewing angles during inspection
In this section, we present two alternative experimen-

tal setups to evaluate whether the setup in BladeNeRF pro-
duces the best results in learning the scene representation.
We create unique custom datasets for both setups, distinct
from the synthetic dataset introduced in Sec. 5.1.

E.1. Additional custom datasets

Multi-view dataset. In this experimental setup, we sim-
ulate an inspection scenario where the camera follows a cir-
cular pattern in the counterclockwise direction with a ra-
dius of 0.9 meters and a height of 1 meter. RGB images
are captured at different angles around the x- and y-axes at
each sampling point along this circular pattern, with a maxi-
mum rotation of 30 degrees. Fig. 22 visualises eight camera
poses sampled at the same location on the circular pattern.

(a) Double-ring - Side View. (b) Double-ring - Top View.

(c) Multi-view - Side View. (d) Multi-view - Top View.

Figure 22. The visualisation presents the camera’s spatial positioning and
orientation in the multi-view and double-ring datasets. In the multi-view
dataset, a circular pattern is employed, encompassing multiple sampling
points (blue). At each sampling point, 8 RGB images are generated by
rendering the scene from distinct camera orientations (pink). The double-
ring dataset involves the utilization of two circular patterns. In the up-
per pattern, an individual RGB image is rendered at each sampling point
(blue), with the camera facing the blades directly (similar to the synthetic
dataset). Conversely, the lower circular pattern entails the rendering of
one RGB image per sampling point (pink), while the camera is rotated by
25 degrees around the x-axis and -35 degrees around the y-axis.

Dataset
of sampled

points on the circle
of viewing

directions
of input

RGB images

Multi-view #1 200 4 800
Multi-view #2 100 8 800
Multi-view #3 50 16 800
Multi-view #4 25 32 800

Synthetic 200 1 200

Table 12. The characteristics of all variants of the multi-view dataset and
the synthetic dataset introduced in Sec. 5.1.

To evaluate the effectiveness of this experimental setup, we
create four distinct variants of the multi-view dataset for the
training set, as described in Tab. 12. The testing and vali-
dation sets remain consistent with the synthetic dataset, en-
suring a standardized evaluation process.

Double-ring dataset. In this dataset, the camera moves
along two circular patterns in the counterclockwise direc-
tion. The first circle has a radius of 0.9 meters, and the
camera is positioned 1 meter high along the z-axis, facing
the blades, similar to the synthetic dataset. The second cir-
cle is bigger, with a radius of 1.2 meters, and the camera
is positioned at a height of 0.3 meters. The camera is also

18

Sy
nt

he
tic

 d
at

as
et

Top View Bottom View Side View

M
ul

ti-
Vi

ew
 D

at
as

et
 (#

1)
D

ou
bl

e-
rin

g
D

at
as

et

Figure 23. Coverage of the multi-view and double-ring datasets. Both
the multi-view (Variant #2) and synthetic datasets have full coverage of the
top side of the blades. However, neither has any visual data of the regions
located behind the blades or the backside of the blades. In contrast, the
double-ring dataset captures RGB images of both the regions behind the
blades and the backside of the blades.

tilted 25 degrees around the x-axis and -35 degrees around
the y-axis. This setup allows BladeNeRF to capture views
of the blades from above and at an angle, which provides
important information about the space behind the blades.

Coverage of the datasets. The primary distinction be-
tween the newly created custom datasets and the synthetic
dataset is the visible regions to the cameras within the train-
ing set. We develop a Blender tool that projects 400 × 400
rays from the camera’s origin through the input RGB im-
ages to show this difference. When a ray intersects any
part of the blades, we mark the point of intersection with
a black dot. For convenience, we refer to the collection of
all intersection points as the coverage of a training set. This
coverage represents the visible portions of the blades in at
least one RGB image from the training set. Fig. 23 shows
the coverage of the synthetic dataset, the multi-view dataset
(variant #2), and the double-ring dataset.

E.2. Results

We evaluate the effectiveness of BladeNeRF on both
the multi-view and double-ring datasets in improving scene
representation. We use ground truth cameras and only ex-
ecute the second stage of BladeNeRF. The qualitative re-
sults in Fig. 25 show that both setups produce high-quality
RGB reconstructions. However, depth estimation and mesh
reconstruction exhibit noisy artefacts without background
loss. BladeNeRF on the multi-view and the double-ring
datasets outperforms BladeNeRF on the synthetic dataset,
particularly in mesh reconstruction. They accurately cap-
ture the shape and reduce ambiguities behind them, as
shown in Fig. 24. BladeNeRF on the multi-view dataset

Figure 24. Side view of mesh reconstruction of the multi-view dataset
(Variant #1). In the black rectangle, the convex shape of the mesh is visible
due to the multiple viewing angles available during training. This is the
primary advantage of the multi-view and double-ring over the synthetic
dataset used in the main paper. To colourise the mesh, we use the Haus-
dorff distance [12] between reconstructed and ground truth meshes.

achieves better results than the double-ring dataset in depth
estimation and mesh reconstruction due to its use of mul-
tiple random views compared to the double-ring dataset’s
limited viewing directions. No significant performance dif-
ferences are observed among the four variants of the multi-
view dataset. While both custom datasets provide better
scene representations, adapting the first stage of BladeNeRF
to these setups is not feasible. Further research is to explore
alternative methods for learning camera poses in these new
experimental setups.

19

M
ul

ti-
vi

ew
 (#

2)
 D

at
as

et
M

ul
ti-

vi
ew

 (#
1)

 D
at

as
et

M
ul

ti-
vi

ew
 (#

3)
 D

at
as

et
M

ul
ti-

vi
ew

 (#
4)

 D
at

as
et

D
ou

bl
e-

rin
g

D
at

as
et

Sy
nt

he
tic

 D
at

as
et

w/o w/

Figure 25. BladeNeRF’s second stage reconstructed RGB, depth, and mesh using ground truth camera poses from the multi-view, double-ring and synthetic
datasets. BladeNeRF successfully estimates the RGB values for all datasets but faces challenges in depth estimation when Lbg is not utilized. It is worth
noting that using Lbg results in sharper blade details for both the Multi-view and Double-ring datasets compared to the Synthetic dataset used in the main
paper. To colourise the meshes, we use the Hausdorff distance [12] between reconstructed and ground truth meshes.

20

3
BACKGROUND ON DEEP LEARNING

3.1. DEEP LEARNING
Deep learning is a sub-field of machine learning. It imitates the way humans think us-

ing neural networks. The latter extracts information from data by forming a relationship
between input and output. A neural network is a connected directed graph structure
where each node, also called a neuron, performs some simple computation [3]. Each
neuron gets an input x and performs an affine transformation as depicted in Equation
3.1. Then, it applies an activation function f shown in Equation 3.2 to produce the out-
put y . A mathematical model of such a neuron is shown in Fig. 3.1.

u =
n∑

i=1
wi xi +b (3.1)

y = f (u) (3.2)

Figure 3.1: Mathematical model of a single neuron in an artificial neural network [4].

A deep neural network is composed of multiple neural networks stacked on each other,
also known as an artificial neural network. Each layer is composed of multiple neurons.

25

3

26 3. BACKGROUND ON DEEP LEARNING

In general, deep neural networks have an input layer, one or multiple hidden layers and
an output layer as shown in Fig. 3.2. Neurons in one layer are connected to neurons
in the previous and next layers. Within the same layer, neurons are generally not con-
nected. This general architecture is known as a Multi-Layer Perceptron (MLP). Each con-
nection between neurons shares information using the weights and biases as parame-
ters. These parameters are trained and updated using back-propagation, also known as
training the network.

Figure 3.2: A 3-layer neural network with one input layer of 3 neurons, one hidden layer of 4 neurons and one

output layer with 2 neurons [4].

3.2. ACTIVATION FUNCTIONS
The goal of deep neural networks is to learn relations between input and output that

can be non-linear. As shown in Section 3.1, a linear transformation is the first operation
a neuron applies on the input. Therefore, the neural network needs to have a source of
non-linearity. Activations functions (also known as non-linearities) are applied to the
neurons’ output to introduce a non-linear element to the neural network. The most
common activation functions are Sigmoid, ReLU and Tanh functions [5] shown in Fig.
3.3. Since activation functions directly affect a neural network’s performance, they must
be carefully chosen. For example, the Sigmoid function suffers from slow convergence
and vanishing gradients [6]. Therefore, the activation function needs to be picked ac-
cording to the architecture of the network and the task at hand.

3.3. TRAINING A NEURAL NETWORK
An objective, also known as a loss function, is set to train a deep neural network. The

neural network updates its trainable parameters, i.e., the weights and biases (generally
initialized randomly), to minimize the loss function. This function is computed by calcu-

3.3. TRAINING A NEURAL NETWORK

3

27

Figure 3.3: Most commonly used activation functions [5].

lating the difference between the predicted value by the network and the ground truth.
The mean squared loss is a commonly used loss function [7]. To optimize the neural
network’s parameters, gradient descent can be used. However, the training data used
in deep learning is huge, which makes naively using gradient descent computationally
inefficient. Fortunately, we can use back-propagation on Stochastic Gradient Descent
[8]. An important aspect of using gradient descent methods is deciding the size of the
steps to take while optimizing the objective function. Several techniques are used in
deep learning, such as Adam optimizer [9], RmsProp [10], and Momentum [11].

4
BACKGROUND ON NEURAL

RADIANCE FIELDS

Neural Radiance Fields (NeRFs) [2] have gained significant attention in computer vi-
sion, sparking a surge in research publications since the release of the original paper
in 2020. This chapter explains how Neural Radiance Fields and two notable follow-up
publications work.

4.1. NEURAL FIELDS

The concept of a neural field was popularized by Xie et al. [12], referring to a neural
network that serves as a parameterization for a signal. This signal can be a single 3D
scene or object but can also represent other discrete or continuous signals, such as au-
dio or images. Neural fields are commonly used in computer graphics and computer
vision, specifically in image synthesis and 3D reconstruction, which is the main topic of
this thesis.

Most neural field variants use fully connected neural networks to encode the features
of objects or scenes. It is important to note that training involves a single network that
captures a specific single scene. Unlike traditional machine learning methods, the goal
is intentionally overfitting the neural network to the scene. This means that neural fields
capture the unique characteristics of the scene within the network weights, resulting in
a representation tailored specifically to that scene.

Interestingly, "neural fields" derives from the "field" concept in physics, which de-
scribes a quantity defined across spatial and/or temporal coordinates. In this context,
a field is commonly represented as a mapping from a coordinate, denoted as x, to a cor-
responding quantity, denoted as y , which can be a scalar, vector, or tensor. Examples of
fields encompass gravitational fields and electromagnetic fields, among others.

29

4

30 4. BACKGROUND ON NEURAL RADIANCE FIELDS

4.1.1. ADVANTAGES OF NEURAL FIELDS

Traditional approaches for storing 3D scenes often rely on voxel grids or polygon meshes.
However, both methods have inherent limitations. Voxel grids tend to be resource-intensive,
resulting in significant storage costs. On the other hand, polygon meshes are restricted
to representing rigid surfaces. In contrast, neural fields provide efficient and compact 3D
representations of objects due to their differentiable and continuous nature. Addition-
ally, neural fields offer the advantage of arbitrary dimensions and resolutions, accom-
modating diverse requirements. Moreover, they exhibit domain-agnostic characteristics
and do not rely on specific input, further enhancing their versatility.

4.1.2. TRAINING NEURAL FIELDS

A general framework is commonly followed to obtain a representation of a scene in
neural fields. This involves sampling the coordinates of the scene and inputting them
into a neural network, which generates corresponding field quantities. Next, the pro-
duced field quantities, such as 2D RGB images, are mapped to the sensor’s domain. Fi-
nally, a reconstruction error is calculated, and the neural network is optimized accord-
ingly. This iterative process allows neural fields to learn and refine their scene represen-
tations effectively.

4.2. NERF
4.2.1. MAIN OBJECTIVE OF NERF

Neural Radiance Fields (NeRF), proposed by Mildenhall et al. [2], is a continuous rep-
resentation of scenes with complex geometry and materials from a set of RGB input im-
ages and their camera poses 1 taken from multiple angles. The main idea is to encode
inside one multi-layer perceptron (MLP) an instance-specific implicit representation of
a scene. Using this representation, novel views can be synthesized consistently with the
training set of views, as shown in Fig. 4.1.

Figure 4.1: The main idea behind NeRF. From a set of RGB images taken from multiple viewing points, NeRF
trains a neural network to learn the scene representation, which allows to synthesize novel views.
Source: [2]

1A camera pose is a representation of the camera’s location and its orientation.

4.2. NERF

4

31

4.2.2. TRAINING A NERF MODEL

NeRF learns the representation of a 3D scene by optimizing the weights Θ of a multi-
layer perceptron FΘ. It renders the colour of each pixel of a camera by projecting a ray
r (t) = o + td from the camera’s centre of projection o ∈ R3 along the direction d ∈ R3 to
pass through the centre of the pixel. N samples are sampled between the near and far
planes of the camera tn and t f , respectively, to form a vector of sorted distances t , as
shown in Fig. 4.2.

Figure 4.2: An overview of our NeRF’s scene representation and differentiable rendering procedure. NeRF syn-
thesizes images by sampling 5D coordinates (location and viewing direction) along camera rays
(left diagram), feeding those locations into an MLP to produce a colour and volume density (right
diagram). Source: [2]

For each distance tk ∈ t , its position in the scene x = r (tk) is computed then trans-
formed to a positional encoding (PE) where the i-th frequency encoding γi (x) is:

γi (x) = [
sin(2i x),cos(2i x)

]
(4.1)

where L is a hyperparameter.

The positional encoding allows the MLP to behave as an interpolation function, which
critically influences the performance of NeRF [2]. The positional encodings of each ray
are fed as input to the MLP FΘ to output a colour c ∈R3 and a density τ ∈R:

∀tk ∈ t , FΘ : γ(r (tk)) → (ck ,τk). (4.2)

The viewing direction is also an input of FΘ, omitted for simplicity. Using numerical
quadrature [13] and the output values of FΘ, the final predicted color of the pixel C (r , t)
is approximated using the following equation:

C (r , t) =
N∑

k=1
Tk (1−exp(−τiδk))ck , (4.3)

where:

Tk = exp(−
j−1∑
j=1

τ jδ j) (4.4)

4

32 4. BACKGROUND ON NEURAL RADIANCE FIELDS

represents the probability that the ray travels from tn to t f without hitting any other part
of the scene, and δk = tk+1 − tk is the distance between consecutive samples. More de-
tails on how to render the pixels’ colours are discussed in Chapter 5.

To optimize the parameters of NeRF, the mean squared error differences between the
predicted pixels and the pixels of a set of observed images and their camera poses are
minimized using gradient descent. To efficiently sample distances t , NeRF trains a “coarse”
and a “fine” MLP simultaneously. First, 64 evenly spaced distances t with stratified sam-
pling form the vector t c used for the “coarse” MLP. Next, the weights

wk =
N∑

k=1
Tk (1−exp(−τiδk) (4.5)

produced by the “coarse” model are taken as a piecewise constant PDF describing the
distribution of the visible scene content, and 128 new t values are drawn from that PDF
using inverse transform sampling to produce t f . The union of both t values are sorted
and used for the “fine” MLP. The loss of NeRF then becomes:

L = ∑
r∈R

(
∥C (r , t c)−C∗(r)∥2

+∥C (r , sor t (t f ∪ t c)−C∗(r)∥2
) (4.6)

where R is the set of all rays across all ground truth images and C∗(r) is the ground truth
pixel colour.

4.2.3. LIMITATIONS OF NERF
NeRF achieves high-fidelity results as presented in the original paper [2]. However, it

also has multiple limitations. We present some of NeRF’s limitations and a few proposed
solutions to each limitation.

• Reliance on accurate camera poses: Accurate camera poses for all input RGB im-
ages are a prerequisite for NeRF. Unfortunately, obtaining these camera poses is
not feasible in many scenarios where NeRF could be highly beneficial. There-
fore, multiple papers proposed methods to jointly optimize the camera poses and
a NeRF model, such as Bundle-Adjusting Neural Radiance Fields [14].

• Inability to learn scene representation on few images: NeRF relies heavily on
a substantial quantity of posed images as input data. However, specific scenar-
ios may only offer a sparse collection of images. When training a NeRF model
with limited input, the presence of artefacts becomes more pronounced. These
artefacts stem from errors in estimating scene geometry and the occurrence of di-
vergent behaviour during the initial training phases. Multiple methods were pro-
posed to solve this issue, such as RegNeRF [15], DietNeRF [16] and FreeNeRF [17].
These methods use external signals to improve the learning process of NeRF, mak-
ing it more robust and improving the accuracy of scene representation even with
sparse input data.

4.3. BARF

4

33

• NeRF cannot handle multi-resolution input images: Training NeRF on input im-
ages with varying resolutions often leads to pronounced artefacts [18]. The straight-
forward approach of supersampling NeRF by employing multiple rays per pixel
proves impractical due to the considerable computational overhead. Each ray re-
quires querying a multilayer perceptron multiple times, rendering this solution in-
efficient. Mip-NeRF [18] introduced an alternative approach to address this chal-
lenge. It proposes using a cone, rather than a single ray, to render the colour of
each pixel. This approach enables the integration of multiple resolutions within
a single representation, mitigating the artefacts associated with training NeRF on
images with different resolutions.

• NeRF works only on static scenes: NeRF, in its original form, encounters limita-
tions when attempting to learn the scene representation of dynamic scenes. How-
ever, subsequent research efforts have addressed this challenge. One of these ef-
forts is D-NeRF [19], which incorporates temporal and motion factors into the
scene representation. D-NeRF uses a deformable volumetric function to model
and represent dynamic scenes, overcoming the limitations of the original NeRF
framework.

• NeRF’s training takes a long time: The original NeRF implementation requires an
extensive computation time of over 15 hours to learn the representation of a sin-
gle scene. Recognizing this limitation, subsequent research efforts have been ded-
icated to addressing this issue. Notably, derivative works of NeRF have emerged,
offering significantly accelerated learning times, allowing the representation of a
scene to be acquired within seconds, such as Instant NGP [20].

4.3. BARF
BaRF [14] extends NeRF to solve NeRF’s reliance on accurate camera poses. It allows

the recovery of the camera poses of the input images by simultaneously optimizing for
registration and reconstruction, shown in Fig. 4.3.

BaRF can recover all six degrees of freedom 2 of the camera pose. It proposes a sim-
ple strategy for coarse-to-fine registration by applying a smooth mask on the positional
encoding from low to high-frequency bands. The changed positional encodings are cal-
culated as follows:

γ(x ,α) = wi .
[
sin(2i x),cos(2i x)

]
(4.7)

where the weight wi is:

wi (α) =

0 if α< 1
1−cos((α− i)π)

2
if 0 ≤α− i ≤ 1

1 if 1 ≤α− i

(4.8)

2BaRF learns three translations and three rotations around the x, y and z-axes

4

34 4. BACKGROUND ON NEURAL RADIANCE FIELDS

Figure 4.3: Training NeRF requires accurate camera poses for all images. While BARF can learn 3D scene rep-
resentations from imperfect (or even unknown) camera poses by jointly optimizing for registration
and reconstruction Source: [14]

and α ∈ [0,L] is a parameter proportional to the optimization progress. This schedule
allows BaRF first to learn the camera poses on smooth signals (when α = 0) and then
move to learn a high-fidelity scene representation (when α= L). The schedule in Equa-
tion 4.8 allows the camera poses to converge early during training to their optimal places
in space.

4.4. MIP-NERF
Mip-NeRF [18] proposes an approach to train a NeRF model on multi-resolution im-

ages. Unlike NeRF, Mip-NeRF uses volumetric frustums along a cone or cylinder to over-
come NeRF’s aliasing and sampling problems, as shown in Fig. 4.4. Mip-NeRF proposes
three main changes to NeRF: Integrated positional encodings, the usage of only one MLP
with a slightly changed sampling strategy, and a tweaked loss function.

4.4.1. INTEGRATED POSITIONAL ENCODING (IPE)
A sorted vector of distances t is defined to split the ray into a set of intervals Ti =

[ti , ti+1). For each interval, the mean and covariance of a Gaussian approximation (µ,Σ) ===
r (Ti) of the conical frustum corresponding to the interval are calculated. Their radii are
based on the pixel size on the image plane and the ray’s focal length. The mean and
covariance values are used to create a feature vector using an integrated positional en-

4.4. MIP-NERF

4

35

Figure 4.4: NeRF (a) samples points along rays cast from the camera centre of projection through each pixel,
then encodes those points with a positional encoding (PE) γ. Mip-NeRF (b) reasons about the 3D
conical frustum defined by a camera pixel. These conical frustums are featurized with the inte-
grated positional encoding (IPE), which works by approximating the frustum with a multivariate
Gaussian and then computing the (closed form) integral E [γ(x)] over the positional encodings of
the coordinates within the Gaussian. Source: [18]

coding:

γ(µ,Σ) =
{[

sin(2lµ)exp(−22l−1di ag (Σ))
cos(2lµ)exp(−22l−1di ag (Σ))

]}L−1

l=0
(4.9)

where L is a hyperparameter. Similarly to NeRF, the integrated positional encodings are
fed into the MLP to render the pixels’ colours of all rays.

4.4.2. EFFICIENT SAMPLING

Mip-NeRF uses only one MLP FΘ but does query it twice in a hierarchical sampling
strategy. First, the ray is rendered using sorted evenly-spaced “coarse” distances t c that
are sampled from a uniform distribution spanning the distance between the camera’s
near and far planes tn and t f :

t c ∼U [tn , t f], t c = sort({t c }) (4.10)

Once the “coarse” weights w c are calculated, “fine” distances t f are sampled using in-
verse transform sampling from the histogram defined by t c and w c :

t f ∼ hist(t c , w c), t f = sort({t f }) (4.11)

This slightly changed strategy improves the sampling efficiency and allows the MLP to
concentrate on scene contents.

4.4.3. LOSS FUNCTION

Mip-NeRF’s loss function is a weighted combination between the “fine” and “coarse”
reconstruction losses:

L = ∑
r∈R

(
∥C (r , t c)−C∗(r)∥2 + 1

10
∥C (r , t f −C∗(r)∥2

)
(4.12)

where R is the set of all rays across all ground truth images and C∗(r) is the ground truth
pixel colour.

5
RENDERING AND 3D

RECONSTRUCTION TECHNIQUES

This chapter provides an introduction to volume rendering techniques. It is important
to have this background information to understand how Neural Radiance Fields (NeRFs)
can generate new views by casting rays through the scene and recovering RGB colours
and densities from different perspectives. Additionally, we discuss the marching cubes
algorithm, which allows us to create a polygonal mesh of the scene once we have learned
its representation using NeRF models.

5.1. VOLUME RENDERING
Direct volume rendering techniques enable the generation of visual representations of

three-dimensional volumetric data sets without the need for explicit extraction of geo-
metric surfaces in the data [21]. These methods rely on applying an optical model, which
facilitates the translation of data values into corresponding optical properties, encom-
passing attributes such as colour and opacity [22].

5.1.1. VOLUMETRIC DATA

Volumetric data represents information in a three-dimensional format, capturing spa-
tially varying attributes, complex structures, and continuous functions within a volume.
It finds applications in diverse domains such as medical imaging, scientific simulations,
computer graphics, and computational fluid dynamics.

While volumetric data has the capability to represent continuous functions, practical
implementations often involve the use of a uniform 3D array of samples. This data is
organized into individual volume elements known as "voxels," analogous to pixels in a
2D image, each containing location coordinates and associated data values. It can be
represented as a signal f as follows:

f (x) ∈R , with: x ∈R3 (5.1)

37

5

38 5. RENDERING AND 3D RECONSTRUCTION TECHNIQUES

Given the discrete nature of volumetric data, interpolation methods such as tri-linear,
Spline and Radial Basis Function (RBF) Interpolation are employed to estimate values at
intermediate locations from neighbouring voxels. This process is called reconstruction.

5.1.2. OPTICAL MODELS

Most direct volume rendering algorithms conceptualize the volumetric data as a distri-
bution of light-emitting particles characterized by a specific density. This density infor-
mation is subsequently mapped to RGBA 1 quadruplets for the purpose of compositing
them along viewing rays. We present only three models used in the subsequent subsec-
tions:

• Absorption only: The volume is characterized by cold, perfectly black particles
that absorb all incident light. These particles neither emit nor scatter light.

• Emission only: The volume is characterized by light-emitting particles with negli-
gible absorption capabilities. Thus, they do not absorb any incident light.

• Absorption + Emission: This is the most commonly used optical model in direct
volume rendering. It involves particles emitting light and occluding (absorbing)
incoming light. However, it does not account for scattering or indirect illumina-
tion.

In the following subsections, we assume the simple emission-absorption optical model.

5.1.3. THE VOLUMETRIC RENDERING INTEGRAL

Let x(t) represent a ray cast into the volume, parametrized by the distance t from the
eye. The scalar value corresponding to a position along the ray is denoted as s(x(t)).
The volume rendering integral equation integrates the absorption coefficients K (s) and
emissive colours c(s) along the ray, considering the emission-absorption optical model.
To simplify the equations, we express the emission c and absorption coefficients K as
functions of the eye distance t instead of the scalar value s:

K (t) := K (s(x(t))) (5.2)

c(t) := c(s(x(t))) (5.3)

In Fig. 5.1, radiant energy emitted at a distance t = d along the viewing ray undergoes
continuous absorption along the distance d until it reaches the eye. Therefore, only a
fraction c ′ of the original radiant energy c emitted at t = d will ultimately reach the eye
at t = 0.

The computation of the amount of radiant energy c ′ reaching the eye involves inte-
grating the absorption coefficient along the distance d :

c ′ = ce−
∫ d

0 K (t)d t (5.4)

1"A" represents the opacity.

5.1. VOLUME RENDERING

5

39

Figure 5.1: Radiant energy emitted at time t = d undergoes partial absorption as it propagates along the ray

to reach the eye at t = 0.

The integral in the exponent is called the optical depth 2 and can be expressed as fol-
lows:

τ(d1,d2) =
∫ d2

d1

K (t)d t (5.5)

Equation 5.4 calculates the amount of radiant energy c ′, assuming that the light was
emitted only at a single point along the ray, namely at t = d . To calculate the total amount
of radiant energy C reaching the eye from the direction of the ray, radiant energy emit-
ted at all positions t along the ray should be considered. This is achieved by the The
Volumetric Integral:

C =
∫ ∞

0
c(t)e−τ(0,t)d t (5.6)

Since volumetric data is usually discrete, the volumetric integral 5.6 is approximated
by alpha compositing the samples along the ray. We discuss this in Subsection 5.1.4.

5.1.4. RAY CASTING

One approach to render a 2D image from volumetric data is to use Ray Casting. It
involves simulating the path of rays cast from a virtual camera into a scene. These rays
are traced from each pixel on the image plane into the scene. At equispaced intersection
points, the volumetric data is mapped to optical properties via a lookup table 3, yielding
an RGBA quadrupled for this location. The solution of the volume rendering integral
equation 5.6 is, then, approximated via alpha blending to create the colour of all pixels
to form the 2D projection onto the screen as shown in Fig. 5.2.

NUMERICAL APPROXIMATION OF THE VOLUME RENDERING INTEGRAL

The optical depth τ in Equation 5.5, which quantifies the accumulated absorption
along the ray up to a specific position x(t), can be estimated using a Riemann sum ap-
proximation:

τ(0, t) ≈ τ̃(0, t) =
⌊t/∆t⌋∑

i=0
K (i∆t)∆t (5.7)

with ∆t denoting the distance between successive resampling locations.

2Optical depth allows Neural Radiance fields to estimate depth.
3The lookup table maps volumetric data values to optical properties, i.e, RGBA values. Transfer Functions are

usually used as a lookup table in ray casting.

5

40 5. RENDERING AND 3D RECONSTRUCTION TECHNIQUES

Figure 5.2: From the camera position in space, a ray r is cast through the centre of a pixel on the screen. As
it progresses through the volume, it accumulates contributions from coloured samples, which are
shaded based on the illumination model employed. The resulting information is then stored in a
pixel, and this iterative process is repeated for all pixels in the image. Source of image [23]

Replacing τ(0, t) by τ̃(0, t) in Equation 5.6, results in a summation in the exponent
term. It can be replaced directly by multiplying the exponential terms:

e−τ̃(0,t) =
⌊t/∆t⌋∏

i=0
e−K (i∆t)∆t (5.8)

By defining the opacity A as:
Ai = 1−e−K (i∆t)∆t (5.9)

Equation 5.8 can be re-written into:

e−τ̃(0,t) =
⌊t/∆t⌋∏

i=0
(1− Ai) (5.10)

This way, the absorption of the i -th ray segment can be approximated using the opacityAi

instead of the absorption at a single point. Following the same logic, the emitted colour
of the i -th ray segment can be approximated by:

Ci = c(i∆t)∆t (5.11)

This allows the approximation of the volume rendering integral 5.6 numerically as fol-
lows:

C̃ =
n∑

i=0
Ci

i−1∏
j=0

(1− A j) (5.12)

where j represents the intervals from the eye to the interval emitting radiant energy rep-
resented by i .

5.1.5. ALPHA BLENDING

The volume rendering integral’s numerical approximation 5.12 can be evaluated using
alpha blending in either front-to-back or back-to-front order. In all equations in this

5.2. MARCHING CUBES ALGORITHM

5

41

subsection, associated colours are used. They represent colours pre-multiplied by their
associated opacity [24].

FRONT-TO-BACK ORDER

Equation 5.12 can be evaluated iteratively in fron-to-back by stepping i from 1 to n:

C ′
i =Ci−1 + (1− A′

i−1)Ci (5.13)

A′
i = Ai−1 + (1− A′

i−1)Ai (5.14)

The values C ′
i and A′

i are computed based on the color Ci and opacity Ai at the cur-
rent position i , along with the composited color C ′

i−1and opacity A′
i−1 from the previous

position i −1. The initial conditions are C ′
0 = 0 and A′

0 = 0.

BACK-TO-FRONT ORDER

Equation 5.12 can be evaluated iteratively in front-to-back by stepping i from 1 to n:

C ′
i =Ci + (1− A′

i)C ′
i+1 (5.15)

The value C ′
i is computed based on the color Ci and opacity Ai at the current position

i , along with the composited color C ′
i+1 from the previous position i + 1. The initial

condition are C ′
n = 0.

COMPARISON OF BOTH ORDERS

Front-to-back compositing involves tracking alpha values, while back-to-front com-
positing does not require it. Previously, this posed a challenge for hardware implemen-
tations, but with modern GPU, it is no longer an issue. The primary advantage of front-
to-back compositing is the early ray termination. This optimization trick allows the ter-
mination of ray progression as soon as the cumulative alpha value reaches 1.0 or a suffi-
ciently close value.

5.2. MARCHING CUBES ALGORITHM
Marching Cubes Algorithm is a computer graphics algorithm for extracting a polygonal

mesh representation of a 3D discrete scalar field. It is commonly employed for visualiz-
ing isosurfaces, which are surfaces that represent a particular value or threshold within
the scalar field in volumetric data.

Marching Cubes employs a divide-and-conquer strategy to identify the surface within
a logical cube created from eight voxels. This cube is formed by selecting four voxels from
each of two adjacent slices, as depicted in Fig. 5.3.

The algorithm determines how the surface intersects with this cube and then "marches"
to the next one. To find the surface intersection within a cube, a value of one is assigned
to a vertex if the data value at that vertex is greater than or equal to the value of the sur-
face (also known as the isovalue) being constructed. These vertices are considered to be

5

42 5. RENDERING AND 3D RECONSTRUCTION TECHNIQUES

Figure 5.3: Marching cubes divides the volumetric dataset into logical cubes, created from 8 voxels from two

adjacent slices of the 3D dataset.

inside or on the surface. Vertices of the cube with values below the surface’s value are
assigned a zero and are considered outside the surface. The surface intersects with the
cube’s edges where one vertex is outside the surface (given one), and the other is inside
the surface (given zero). This criterion helps determine the surface’s topology within the
cube.

A cube can intersect with a surface in 28 = 256 ways, considering its eight vertices and
two states (inside and outside). To make this process easier, a lookup table is created
to provide information about which edges are intersected for each case based on the la-
belling of the cube’s vertices.

It is possible to triangulate all 256 cases, but it can be time-consuming and error-
prone. The problem is simplified by two symmetries of the cube, reducing the number
of cases to 14 patterns. The first symmetry arises from the fact that the topology of the
triangulated surface remains unchanged if the relationship between the surface values
and the cube is reversed. Complementary cases, where vertices greater than the surface
value are swapped with those less than the value, are considered equivalent. Therefore,
only cases with zero to four vertices greater than the surface value need to be consid-
ered, reducing the number of cases to 128. The second symmetry, known as rotational
symmetry, further reduces the problem to 14 patterns through visual inspection. The al-
gorithm can handle the triangulation process more efficiently by leveraging these sym-
metries. Fig. 5.4 shows the resulting triangulation for each of the 14 patterns.

To determine where surfaces intersect, an index is created for each case showing each
vertex’s state. This index has eight bits, with each bit corresponding to a vertex. Using
the vertex numbering shown in Figure 5.5, we can refer to an edge table that provides

5.2. MARCHING CUBES ALGORITHM

5

43Marching Cubes - Step 3
Get edge list
For a given index, access a list of cubes
edges that contain a triangle vertex

Using symmetry of the cube, all 256
cases can be generated from 15 cases
(14 intersected, 1 not intersected)

34Figure 5.4: All possible 14 cases of triangulated cubes. The simplest pattern labelled 0, occurs when all vertex
values are consistently above or below the chosen threshold, resulting in no triangles. Pattern 1
emerges when the surface divides one vertex from the remaining seven, forming a single triangle
defined by the three edge intersections. The remaining patterns generate multiple triangles. By
applying complementary and rotational symmetry to these 14 basic patterns, the full set of 256
cases can be obtained.

information about all edge intersections for a given cube configuration.

(~) ~ Computer Graphics, Volume 21, Number 4, July 1987

Since there are eight vert ices in each cube and two slates,
inside and outs ide , there are only 28 = 256 ways a surface
can intersect the cube. By e n u m e r a t i n g these 256 cases, we
create a table to look up surface-edge in tersec t ions , g iven the
labeling of a cubes vertices. The table conta ins the edges in-
tersected for each case.

Tr iangula t ing the 256 cases is possible bu t tedious and
er ror -prone . Two dif ferent symmet r i e s of the cube reduce
the p rob lem f rom 256 cases to 14 pat terns . First, the topolo-
gy of the t r iangula ted surface is u n c h a n g e d if the re la t ionship
of the surface values to the cubes is reversed. C o m p l e m e n -
tary cases, where ver t ices greater than the surface value are
in te rchanged with those less than the value, are equivalent .
Thus , only cases with zero to four vert ices grea ter than the
surface value need be cons idered , reducing the n u m b e r of
cases to 128. Using the second s y m m e t r y proper ty , ro ta t ion-
al symmet ry , we reduced the p rob lem to 14 pa t te rns by in-
spection. Figure 3 shows the t r iangulat ion for the 14 pat-
terns.

T he s imples t pa t te rn , 0, occurs if all ver tex values are
above (or below) the selected value and produces no trian-
gles. The next pat tern , 1, occurs if the surface separates on
ver tex f rom the o the r seven , resul t ing in one t r iangle def ined
by the th ree edge intersect ions . O the r pa t te rns produce mul-
tiple triangles. P e r m u t a t i o n of these 14 basic pa t te rns us ing
complemen ta ry and rota t ional s y m m e t r y produces the 256
cases.

We create an index for each case, based on the state of
the ver tex. Using the ver tex n u m b e r i n g in Figure 4, the
eight bit index con ta ins one bit for each ver tex.

This index serves as a pointer into an edge table tha t
gives all edge in te rsec t ions for a given cube configurat ion.

Using the index to tell which edge the surface intersects ,
we can interpola te the surface in tersec t ion along the edge.
We use l inear in terpola t ion, bu t have e x p e r i m e n t e d with
h igher degree in terpola t ions . Since the a lgor i thm produces at
least one and as many as four triangles per cube, the h igher
degree surfaces show little i m p r o v e m e n t ove r l inear in terpo-
lation.

T h e final s tep in marching cubes calculates a uni t no rmal
for each tr iangle vertex. The render ing a lgor i thms use this
normal to produce G o u r a u d - s h a d e d images. A surface of
cons tan t densi ty has a zero gradient c o m p o n e n t along the
surface tangent ia l d i rect ion; consequent ly , the d i rec t ion of
the grad ien t vector , 7, is no rmal to the surface. We can use
this fact to d e t e r m i n e surface no rma l vector , -~, if the magni-
tude of the gradient ,]gl, is nonzero . For tuna te ly , at the sur-
face of in teres t be tween two t issue types of d i f ferent densi-
ties, the gradient vector is nonzero . The gradient vector , ~,
is the der iva t ive o f the densi ty func t ion

~(x ,y ,z) = x77"(x,y,z). (1)

To es t imate the gradient vector at the surface of in teres t , we
first es t imate the grad ien t vectors at the cube ver t ices and
linearly in terpola te the gradient at the point of in tersect ion.
The gradient at cube ver tex (i,.L k), is es t imated us ing central
dif ferences along the three coordina te axes by:

Gv(i,J k) = D (i + l , . j ,k) - D (i - 1,.j,k) (2)
A x

G>.(i,L h) = D(i,j-t- l, k) - D(i,] - 1, k) (3)
Ay

G:(i, Lk) = D (i , j , k + l) - D (i , j , k -]) (4)
Az

v

w -

_ A

v v

Figure 3. Triangulated Cubes.

e3
0

04

oe7 ~(~v7

Y

v5

v 8 S

e8 e6

~2

i vsi v, I v8 v5 v, v31v21 v, I index =

Figure 4. Cube Numbering.

where D(L./, k) is the densi ty at pixel (i,j) in slice k and
Ax, Ay, Az are the lengths of the cube edges. Divid ing the gra-
d ien t by its length produces the uni t no rma l at the ver tex re-
qui red for render ing . W e linearly in terpola te this n o r m a l to
the point of in tersect ion. No te tha t to calculate the gradient
at all vert ices of the cube , we keep four slices in m e m o r y at
o n c e .

165

Figure 5.5: Each cube is indexed by an 8 bits digit. Each bit corresponds to a vertex and represents whether the

vertex is inside or outside the surface.

With the help of the index, the edges that intersect the surface are identified, and the
exact intersection location along that edge can be determined using linear interpola-
tion. Although higher-degree interpolations can be used, they provide minimal improve-
ments over linear interpolation as the algorithm generally generates only one to four tri-
angles per cube [25].

Once all cubes have been processed, the marching cubes algorithm combines the gen-

5

44 5. RENDERING AND 3D RECONSTRUCTION TECHNIQUES

erated triangles from all the voxels to form a polygonal mesh approximating the scalar
field’s isosurface. This mesh can then be rendered and visualized in 3D graphics appli-
cations. Finally, the Marching Cubbes Algorithm comes down to the following steps:

Algorithm 1 Marching Cubes Algorithm

Input: N , the volumetric data
Output: P , polygonal mesh

1: for each cube ∈ N do
2: Classify each vertex v
3: Build an index
4: Get intersected edge list
5: Find exact intersection by interpolation
6: Connect intersections to polygon
7: Triangulate polygon to iso-surface
8: end for

BIBLIOGRAPHY

[1] Z. Yuan and M. Liu. “Specification for engine borescope inspection report”. In: IOP
Conference Series: Earth and Environmental Science 186.5 (2018), p. 012001. DOI:
10.1088/1755-1315/186/5/012001. URL: https://dx.doi.org/10.1088/
1755-1315/186/5/012001.

[2] B. Mildenhall, P. P. Srinivasan, M. Tancik, J. T. Barron, R. Ramamoorthi, and R.
Ng. “NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis”.
In: ECCV. 2020.

[3] A. Rosebrock. Introduction to neural networks. May 2021. URL: https://pyimagesearch.
com/2021/05/06/introduction-to-neural-networks/.

[4] A. Karpathy. CS231N convolutional neural networks for visual recognition. URL:
https://cs231n.github.io/neural-networks-1/.

[5] V. Nair and G. E. Hinton. “Rectified Linear Units Improve Restricted Boltzmann
Machines”. In: Proceedings of the 27th International Conference on International
Conference on Machine Learning. ICML’10. Haifa, Israel: Omnipress, 2010, pp. 807–
814. ISBN: 9781605589077.

[6] S. R. Dubey, S. K. Singh, and B. B. Chaudhuri. “Activation functions in deep learn-
ing: A comprehensive survey and benchmark”. In: Neurocomputing 503 (2022),
pp. 92–108. ISSN: 0925-2312. DOI: https://doi.org/10.1016/j.neucom.
2022.06.111. URL: https://www.sciencedirect.com/science/article/
pii/S0925231222008426.

[7] Q. Wang, Y. Ma, K. Zhao, and Y. Tian. “A Comprehensive Survey of Loss Functions
in Machine Learning”. In: Annals of Data Science 9.2 (Apr. 2022), pp. 187–212. DOI:
10.1007/s40745-020-00253-. URL: https://ideas.repec.org/a/spr/
aodasc/v9y2022i2d10.1007_s40745-020-00253-5.html.

[8] L. Bottou, F. E. Curtis, and J. Nocedal. “Optimization Methods for Large-Scale Ma-
chine Learning”. In: SIAM Review 60.2 (2018), pp. 223–311. DOI: 10.1137/16M1080173.
eprint: https://doi.org/10.1137/16M1080173. URL: https://doi.org/10.
1137/16M1080173.

[9] D. Kingma and J. Ba. “Adam: A Method for Stochastic Optimization”. In: Interna-
tional Conference on Learning Representations (Dec. 2014).

[10] H. Geoffrey. “Lecture 6.5 - rmsprop: Divide the gradient by a running average of
its recent magnitude”. University Lecture. 2012.

[11] S. Ruder. “An overview of gradient descent optimization algorithms”. In: CoRR
abs/1609.04747 (2016). arXiv: 1609.04747. URL: http://arxiv.org/abs/1609.
04747.

45

https://doi.org/10.1088/1755-1315/186/5/012001
https://dx.doi.org/10.1088/1755-1315/186/5/012001
https://dx.doi.org/10.1088/1755-1315/186/5/012001
https://pyimagesearch.com/2021/05/06/introduction-to-neural-networks/
https://pyimagesearch.com/2021/05/06/introduction-to-neural-networks/
https://cs231n.github.io/neural-networks-1/
https://doi.org/https://doi.org/10.1016/j.neucom.2022.06.111
https://doi.org/https://doi.org/10.1016/j.neucom.2022.06.111
https://www.sciencedirect.com/science/article/pii/S0925231222008426
https://www.sciencedirect.com/science/article/pii/S0925231222008426
https://doi.org/10.1007/s40745-020-00253-
https://ideas.repec.org/a/spr/aodasc/v9y2022i2d10.1007_s40745-020-00253-5.html
https://ideas.repec.org/a/spr/aodasc/v9y2022i2d10.1007_s40745-020-00253-5.html
https://doi.org/10.1137/16M1080173
https://doi.org/10.1137/16M1080173
https://doi.org/10.1137/16M1080173
https://doi.org/10.1137/16M1080173
https://arxiv.org/abs/1609.04747
http://arxiv.org/abs/1609.04747
http://arxiv.org/abs/1609.04747

5

46 BIBLIOGRAPHY

[12] Y. Xie, T. Takikawa, S. Saito, O. Litany, S. Yan, N. Khan, F. Tombari, J. Tompkin, V.
Sitzmann, and S. Sridhar. “Neural Fields in Visual Computing and Beyond”. In:
Computer Graphics Forum (2022). ISSN: 1467-8659. DOI: 10.1111/cgf.14505.

[13] J. T. Kajiya and B. P. Von Herzen. “Ray Tracing Volume Densities”. In: Proceedings
of the 11th Annual Conference on Computer Graphics and Interactive Techniques.
SIGGRAPH ’84. New York, NY, USA: Association for Computing Machinery, 1984,
pp. 165–174. ISBN: 0897911385. DOI: 10.1145/800031.808594. URL: https://
doi.org/10.1145/800031.808594.

[14] C.-H. Lin, W.-C. Ma, A. Torralba, and S. Lucey. “BARF: Bundle-Adjusting Neural
Radiance Fields”. In: IEEE International Conference on Computer Vision (ICCV).
2021.

[15] M. Niemeyer, J. T. Barron, B. Mildenhall, M. S. M. Sajjadi, A. Geiger, and N. Rad-
wan. “RegNeRF: Regularizing Neural Radiance Fields for View Synthesis from Sparse
Inputs”. In: Proc. IEEE Conf. on Computer Vision and Pattern Recognition (CVPR).
2022.

[16] A. Jain, M. Tancik, and P. Abbeel. “Putting NeRF on a Diet: Semantically Consistent
Few-Shot View Synthesis”. In: Proceedings of the IEEE/CVF International Confer-
ence on Computer Vision (ICCV). Oct. 2021, pp. 5885–5894.

[17] J. Yang, M. Pavone, and Y. Wang. “FreeNeRF: Improving Few-shot Neural Render-
ing with Free Frequency Regularization”. In: Proc. IEEE Conf. on Computer Vision
and Pattern Recognition (CVPR). 2023.

[18] J. T. Barron, B. Mildenhall, M. Tancik, P. Hedman, R. Martin-Brualla, and P. P. Srini-
vasan. “Mip-NeRF: A Multiscale Representation for Anti-Aliasing Neural Radiance
Fields”. In: ICCV (2021).

[19] A. Pumarola, E. Corona, G. Pons-Moll, and F. Moreno-Noguer. “D-NeRF: Neural
Radiance Fields for Dynamic Scenes”. In: Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition. 2021.

[20] T. Müller, A. Evans, C. Schied, and A. Keller. “Instant Neural Graphics Primitives
with a Multiresolution Hash Encoding”. In: ACM Trans. Graph. 41.4 (July 2022),
102:1–102:15. DOI: 10.1145/3528223.3530127. URL: https://doi.org/10.
1145/3528223.3530127.

[21] M. Levoy. “Display of surfaces from volume data”. In: IEEE Computer Graphics and
Applications 8.3 (1988), pp. 29–37. DOI: 10.1109/38.511.

[22] N. Max. “Optical models for direct volume rendering”. In: IEEE Transactions on
Visualization and Computer Graphics 1.2 (1995), pp. 99–108. DOI: 10.1109/2945.
468400.

[23] P. Ljung. “Efficient Methods for Direct Volume Rendering of Large Data Sets”. PhD
dissertation. Institutionen för teknik och naturvetenskap, 2006.

[24] J. Blinn. “Compositing. 1. Theory”. In: IEEE Computer Graphics and Applications
14.5 (1994), pp. 83–87. DOI: 10.1109/38.310740.

https://doi.org/10.1111/cgf.14505
https://doi.org/10.1145/800031.808594
https://doi.org/10.1145/800031.808594
https://doi.org/10.1145/800031.808594
https://doi.org/10.1145/3528223.3530127
https://doi.org/10.1145/3528223.3530127
https://doi.org/10.1145/3528223.3530127
https://doi.org/10.1109/38.511
https://doi.org/10.1109/2945.468400
https://doi.org/10.1109/2945.468400
https://doi.org/10.1109/38.310740

BIBLIOGRAPHY

5

47

[25] W. E. Lorensen and H. E. Cline. “Marching Cubes: A High Resolution 3D Surface
Construction Algorithm”. In: SIGGRAPH ’87. New York, NY, USA: Association for
Computing Machinery, 1987, pp. 163–169. ISBN: 0897912276. DOI: 10.1145/37401.
37422. URL: https://doi.org/10.1145/37401.37422.

https://doi.org/10.1145/37401.37422
https://doi.org/10.1145/37401.37422
https://doi.org/10.1145/37401.37422

	Title Page
	Preface
	Contents
	1. Introduction
	2. Scientific Paper
	1. Introduction
	2. Related Works
	3. Preliminaries
	4. Approach
	4.1. First Stage: Learning Camera Poses
	4.1.1. Parametrization of One Camera Pose
	4.1.2. Optimizing Camera Poses of One Repetition
	4.1.3. Combining Learned Camera Poses of N Repetitions

	4.2. Second stage: Scene representation

	5. Experiments
	5.1. Dataset
	5.2. Exp 1: Camera Pose Estimation
	5.3. Exp 2: Learning Scene Representation
	5.4. Exp 3: Comparison to Methods For Sparse Views
	5.5. Exp 4: BladeNeRF on Damaged Blades

	6. Conclusion
	A. BaRF on texture-less and repetitive blades
	B. Relaxing the assumptions for pose estimation
	C. Different Camera Trajectories
	D. Effect of Number of Views
	E. Multiple viewing angles during inspection
	E.1. Additional custom datasets
	E.2. Results

	3. Background on Deep Learning
	3.1. Deep Learning
	3.2. Activation Functions
	3.3. Training a Neural Network

	4.Background on Neural Radiance Fields
	4.1. Neural Fields
	4.1.1. Advantages of Neural Fields
	4.1.2. Training Neural Fields

	4.2. NeRF
	4.2.1. Main Objective of NeRF
	4.2.2. Training a NeRF model
	4.2.3. Limitations of NeRF

	4.3. BaRF
	4.4. Mip-NeRF
	4.4.1. Integrated positional encoding (IPE)
	4.4.2. Efficient Sampling
	4.4.3. Loss Function

	5.Rendering and 3D reconstruction Techniques
	5.1. Volume Rendering
	5.1.1. Volumetric Data
	5.1.2. Optical Models
	5.1.3. The Volumetric Rendering Integral
	5.1.4. Ray Casting
	5.1.5. Alpha Blending

	5.2. Marching Cubes Algorithm

	Bibliography

