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A retrofit sensing strategy for soft fluidic
robots

ShiboZou1, Sergio Picella1,2, Jelle deVries1, VeraG.Kortman 3,4, AiméeSakes4&
Johannes T. B. Overvelde 1,2

Soft robots are intrinsically capable of adapting to different environments by
changing their shape in response to interaction forces. However, sensory
feedback is still required for higher level decisions. Most sensing technologies
integrate separate sensing elements in soft actuators, which presents a con-
siderable challenge for both the fabrication and robustness of soft robots.
Here we present a versatile sensing strategy that can be retrofitted to existing
soft fluidic devices without the need for design changes. We achieve this by
measuring the fluidic input that is required to activate a soft actuator during
interaction with the environment, and relating this input to its deformed state.
We demonstrate the versatility of our strategy by tactile sensing of the size,
shape, surface roughness and stiffness of objects. We furthermore retrofit
sensing to a range of existing pneumatic soft actuators and grippers. Finally,
we show the robustness of our fluidic sensing strategy in closed-loop control
of a soft gripper for sorting, fruit picking and ripeness detection. We conclude
that as long as the interaction of the actuator with the environment results in a
shape change of the interval volume, soft fluidic actuators require no
embedded sensors and design modifications to implement useful sensing.

The intrinsic compliance of soft robots provides adaptability to
unknown environments1–3. For example, a soft robotic gripper pas-
sively adapts its body shape, making it possible to grasp various
objects without the need for active sensing4,5. However, when it comes
to more advanced tasks such as identifying and sorting objects, sen-
sory feedback from the gripper becomes essential to achieve closed-
loop control in gripping and manipulation6. Benefiting from advances
in soft materials, soft robotic sensing has been enabled by embedding
flexible or stretchable sensors made from piezoresistive and piezo-
capacitive polymer composites7, liquid metals8, electrically and ioni-
cally conductive hydrogels9, and polymeric optical waveguides10. Both
proprioception (sensing of self-deformation) and exteroception (sen-
sing of external stimuli) of soft robots have been successfully
demonstrated with embedded sensors. Moreover, multimodal sen-
sing, i.e., the simultaneous perception ofmultiple physical parameters,

has been achieved by machine learning11,12 and embedding various
sensors into the soft actuator13–15. A common feature in all these sen-
sing strategies for soft robotic applications is the separation of
actuation and sensing elements16,17. This is a result of the complianceof
the soft systems, which complicates integration and reduces reliability
of the sensors that need tobeembedded in the soft actuator, therefore
placing considerable constraints on the design of both the sensors and
actuators.

As fluidic actuation represents a plurality in soft robotics18, sen-
sing strategies based on fluidic media, either gas or liquid, have been
investigated to reduce the integration difficulties of actuation and
sensing elements, such asfluidic resistance sensing19,20,fluidicpressure
sensing21–32 and electrical resistance sensing33. Most fluidic sensing
strategies incorporate an additional cavity in the soft
actuator21,24–26,28,29. Since the enclosed cavity contains a fixed amount of
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fluid, deformation of the actuator or contact with the environment
changes the volume of the cavity and thus increases or decreases the
internal pressure. Interestingly, this pressure response can be mea-
sured remotely by connecting the cavity and electronic pressure sen-
sor via a tube, such that no electronic components need to be
embedded in the soft actuator.

A particularly interesting yet simplemethod uses the cavity of the
soft actuator itself to sense external force by measuring and analyzing
the fluidic pressure of the soft actuator34,35. The benefit of such a self-
sensing approach has also been demonstrated in dielectric elastomer
actuators36–38 and electrohydraulic actuators39–41. In these systems the
electrical characteristics of the actuator can be measured to infer the
mechanical deformationwhile it is being actuated, henceno additional
sensors and associated electronics are needed37. While fluidic self-
sensing has originally been demonstrated in a potential medical
application34, a natural question to ask is how widely applicable, ver-
satile and robust suchanapproach is. To answer this question,weneed
to gain a better understanding of the underlying principles that allow
for fluidic self-sensing, and determine if we can infer the interaction of
a wide variety of soft actuators with their environment by measuring
and analyzing the fluidic response of the enclosed cavity. And if so, we
want todetermine howeasy it is to integrate and retrofit sucha sensing
approach, and if interactions with the environment can be robustly
measured.

To achieve this, in this work we will first experimentally show how
the response of a typical soft fluidic bending actuator changes when
interactingwith the environment.We next introduce several strategies
to sense these interactions without the need to embed additional
sensing elements in the soft actuator. We demonstrate how to apply
our fluidic sensing strategy to a soft gripper, and to enable a versatile
range of sensing applications such as size, shape, surface roughness

and stiffness sensing of objects. To demonstrate that the sensing
approach canbe retrofitted,we apply the sensing strategy to afilament
actuator, a McKibben actuator, a thermoplastic polyurethane (TPU)
actuator, a soft suction gripper specifically designed for medical
applications and two commercially available soft grippers. We fur-
thermore developed a basic model based on a linear extension
actuator to study the underlying factors that determine the sensing
resolution. Finally, we show that our fluidic sensing strategy is robust
enough to implement closed-loop control in gripping and sorting
applications.

Results
Fluidic sensing of the soft robot-environment interaction
We start by looking into the characteristic behavior of a typical soft
PneuNet bending actuator42 when interacting with the environment.
We inflate a soft actuator onto a rigid plate from different heights h,
and characterize the pressure-volume response for each height, i.e.,
the pressure P as a function of supplied air volume V, at different
heights (fitting curves in Fig. 1a, test results in Fig. S1, test procedure in
Methods sectionDistance Sensingwith PneuNet Bending Actuator and
Supplementary Video 1). Interestingly, the interaction with the plate
influences the pressure-volume response of the soft actuator. This
influence originates from the compliance of the soft actuator and the
effect that external forces have on the internal geometric volume of
the inflated actuator. According to the ideal gas law, the difference in
internal geometric volume gives a direct fluidic response in the formof
a variation in pressure, if the temperature is constant and the amount
of air at different heights is equal. Importantly, by definition any phy-
sical interaction with the environment leads to a change in the internal
geometric volume of a soft actuator because of the compliance of the
soft body.

a b
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d
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f
D

Fig. 1 | Fluidic sensing of the soft robot-environment interaction. aOverview of
the fluidic sensing methodology. Inflating a PneuNet actuator onto a rigid plate
from a height h changes the pressure-volume response of the soft actuator, which
can be characterized by three different fluidic sensing methods: pressurized air
tank and solenoid valve (orange dashed line), pressure control (blue dashed line),
and flow control (red dashed line). For clarity, the presented data is fitted based on
measured results shown in Fig. S1. The snapshots represent the equilibrium state of
the soft bending actuator with an input volume of 28.7 ml at h = 5, 15, 25, 35 and ∞

mm. Scale bar: 20 mm. b-d Calibrations between the height h and the equilibrium
pressure Peq or total input volume at equilibrium Veq based on sensing with the
three fluidic sensing methods (colors match sensing method). The dashed lines
represent the linear fits of all the test data. e A soft gripper with four PneuNet
actuators gripping a cylindrical object with a diameter D. f Calibration between the
cylinder diameter D and the equilibrium pressure Peq of the soft gripper. The
dashed line represents a linear fit of the test data with D = 40, 60, 80, 100 mm.
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In order to effectively sense these differences in the pressure-
volume response, and with that the interaction of the soft actuator
with the environment, we connect the soft actuator to a pressurized air
tank via a solenoid valve and measure the equilibrium pressure using
an external pressure sensor after opening of the valve (orange line in
Fig. 1a). Depending on the initial distance h of the actuator to the
surface, the equilibrium pressure Peq will be slightly different. Inter-
estingly, for this specific actuator design and interaction, the rela-
tionship between the equilibrium pressure Peq and height h can be
approximated by a linear relationship. Therefore, the initial distance
between the actuator and plate can be inferred from the fluidic signal
based on the calibration curve (Fig. 1b and Fig. S2a) with an accuracy
of ± 1.7 mm (Fig. S3a). The force applied by the actuator on the plate
can also be inferred from the equilibrium pressure Peq (Fig. S4). Note
that since the steel air tank has a linear pressure-volume relationship,
varying the tank size effectively changes the slope of the tank’s
pressure-volume curve. This changes the intersection points with the
actuator’s pressure-volume curves in Fig. 1a, making it possible to tune
the sensing resolution (Fig. S5).

While here we connect the actuator to a steel tank and solenoid
valve to implement sensing, depending on the available equipment
and precision requirement, the interaction of a soft actuator with the
environment can also be characterized by controlling the pressure and
measuring the volume flow input (blue line in Fig. 1a, c and Fig. S2b)
with a sensing accuracy of ± 4.7 mm (Fig. S3b), or controlling the
volume flow input and measuring pressure (red line in Fig. 1a, d and
Fig. S2c) with a sensing accuracy of ± 3.4 mm (Fig. S3c).

Our sensing strategy can also be directly applied to a soft gripper
to sense the size of objects. We demonstrate size sensing of cylindrical
objects using a soft gripper consisting of four PneuNet bending
actuators (Fig. 1e, Fig. S6 and Supplementary Video 1). To enable
sensing, the actuators are jointly connected to the external system that
contains an air tank, a solenoid valve and a pressure sensor. Figure 1f
shows thatwhen gripping larger objects, a higher equilibriumpressure
Peq is reached. Interestingly, the relationship between the equilibrium

pressure Peq and cylinder diameter D can also be fitted with a linear
function within the grasping range of the gripper (d⪸ 20 mm). Repe-
ated tests on a similar gripper showed the same results, where we
found that the pressuremeasurements varywithin ± 0.08 kPa over 100
cycles (Fig. S7).

Time-enabled sensing versatility
Having demonstrated the basic principles of our sensing approach, we
next show that versatile sensing applications can be achieved by
measuring the pressure response of the soft actuator over time. To
show how we can extract more information from the pressure-time
response, we first revisit height sensing where so far we only con-
sidered the equilibrium pressure at a specific moment in time (Fig. 1).
Instead, if we correlate the pressure-time response of the actuator to a
reference response, i.e., free actuation without interacting with the
environment, we can determine the moment of contact (Fig. 2a, b). In
Fig. 2b, we evaluate ΔP = P − Pref over time from the onset of actuation
and determine the time of first contact tc1 when ΔP > 0. We can then
use tc1 to infer the initial distance h between the actuator and plate
(Fig. 2c) based on the tip displacement-time curve of the actuator in
the reference response, with an accuracy of -2.9 to 3.8 mm (Fig. S3d).
Note that the sensing speed of this strategy is dominated by the
actuation speed, which is determined by the flow resistance between
the air tank and actuator (Fig. S8). Interestingly, a higher sensing
response speed can be achieved by measuring the time of contact tc1
(Fig. 2c) compared to the equilibrium Peq (Fig. 1b), because the mea-
surement of tc1 does not require the system to reach equilibrium.

Basedon this approach,we showhowwe can sense (i) the shapeof
objects, (ii) the stiffness of a soft substrate and (iii) the profile of a
surface. As a first demonstration of the sensing versatility, we use our
previously introduced gripper to sense the aspect ratio of rectangular
objects. Figure 2d, e and SupplementaryVideo 2 show that two contact
events occur in the pressure-time responsewhen the soft gripper grips
a rectangular object, indicating the length and width of the object,
respectively. While this could also be achieved by individually

20 mm

Contact occurs (   )

Equilibrium

a b c

h

W 1st contact 2nd contact

d

f g
x

y

20 mm

i

h

e
Distance sensing Shape sensing

Stiffness sensing Profile scanning

Fig. 2 | Time-enabled sensing versatility. The difference in fluidic pressure
response ΔP between the soft actuator with andwithout environmental interaction
is evaluated over time to implement sensing. a-c Inferring the initial distance h
between the actuator and plate from the time of first contact tc1. h = 20 mm in (a)
and (b).The dashed line in c represents the vertical displacement-time curve of the
tip of actuator in the case of free actuation. d, e Shape sensing of rectangular

objects by measuring both the time of first and second contact of the soft gripper.
f, g Stiffness sensing by measuring both the time of first contact and the equili-
brium pressure, which indicate the vertical displacement of the actuator at the first
contact (hc = h) and equilibrium (he ≥ h depending on the object stiffness),
respectively.h = 5mm in (g).h, i Surface scanning andprofile reconstruction of two
different surface profiles.
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addressing each actuator, which would likely make it easier to extract
shape information from the soft gripper, it would also require addi-
tional hardware that might not be needed or available in specific
applications.

As a second demonstration of the sensing versatility, we achieve
multimodal sensing of distance and stiffness when the actuator inter-
acts with a soft plate (Fig. 2f). Here, the time of first contact tc1
extracted from the pressure-time response (Fig. 2g, Supplementary
Video 2) indicates the initial distance between the actuator and plate,
while the equilibrium pressure Peq indicates the final vertical dis-
placement of the actuator. By comparing these two displacements, we
can extract the indentation depth of the soft actuator, which can be
correlated to the stiffness of theplatewhen considering the stiffness of
the soft actuator. Therefore, measuring tc1 and Peq together makes it
possible to compare the stiffness values of objects (Fig. 2g).

As a final demonstration of the sensing versatility, we use the
actuator as a profilometer by considering the variations in the equili-
brium pressure when moving the actuator along a surface (Fig. 2h, i
and Supplementary Video 2). To show this, we move the actuator
horizontally along a surface with a robotic arm and measure the
pressure response continuously. The profile of the object can be
reconstructed using a calibration curve (Fig. 1b) and a reference
pressure response, which rules out the influence of system leakage or
other variations over time. Note that in this sensing application the
sharpness of the tip of the soft actuator will determine the resolution
of the sensing signal.

Retrofitting the fluidic sensing approach
In all demonstrations so far, we used one or more identical soft
bending actuator. However, our sensing approach can also be retro-
fitted to a broad range of fluidic actuators without the need for any
design changes. To demonstrate the wide applicability, using our
approachwe sensorize a filament actuator, a McKibben actuator, a 3D-
printed bending actuator43, a suction cup, and two commercial soft
grippers (Figs. 3, 4 and Supplementary Video 3).

We start by retrofitting our sensing strategy to a filament
actuator44–46 and a McKibben actuator47,48 to sense the angular dis-
placement of a joint in the artificial muscle demonstration39,45. In both
cases (Fig. 3a-f), we can correlate measured equilibrium pressure to the
angular displacement of the joint. We do observe that for the filament
actuator less sensing resolution is achieved compared to the McKibben
actuator. This is likely due to the fact that the deformation of the fila-
ment gripper is less well-defined, especially when comparing it to the
McKibben actuator where the environment has a strong influence on
the internal volume. We hypothesize that this stronger influence is the
results of the wires that to some extent limit the degrees of freedom.

To determine if our sensing approach can also be used for higher
actuation pressures, we next retrofit our sensing strategy to a 3D-
printed TPU bending actuator that requires an actuation pressure
around 200 kPa43. In previous tests with the bending actuator, we only
consider a single contact between the soft actuator and the environ-
ment. Since the TPU bending actuator forms a circular shape at higher
pressures43, we tested our sensing strategy with conformal grasping49,
where the soft actuator interacts with the cylindrical object atmultiple
contact points (Fig. 3g). We find that the conformal grasping of
cylindrical objects with various diameters results in different pressure-
volume responses of the soft actuator (Fig. 3h) and that we can also
correlate the equilibrium pressure with the diameter of the grasping
object, even for these higher pressure ranges (Fig. 3i).

To test our retrofitting approach with soft grippers, we first
apply it to a suction cup (Fig. 4a) that was specifically designed for
tissue gripping in Minimal Invasive Surgery (MIS)50. The require-
ments for the foldability, adaptability and biocompatibilty of the
tissue gripper make it challenging to embed sensors in the gripper
itself to obtain sensory feedback during operation. With our fluidic

sensing strategy, the pressure sensor can be connected remotely
to the gripper outside of the human body and no additional design
change of the gripper is needed. Once vacuum is applied to the
soft gripper, the connected surface gets pulled into the gripper,
reducing its internal geometric volume (Fig. 4b). The surface
stiffness influences the pressure-volume response of the gripper
through the amount of reduced internal geometric volume of the
gripper (fitting curves in Fig. 4c, and test results in Fig. S9). The
final equilibrium pressure Peq can be used to infer the stiffness of
the surface that is attached to the gripper, where the sensing
resolution can be tuned by the initial pressure P0 in the air tank
(Fig. 4d and Fig. S10). Furthermore, we found that the equilibrium
pressure in the gripper changes almost linearly with the pulling
force applied on the gripper (Fig. 4e), making it possible to predict
when the gripper would detach from the surface which in our
experiments occured at ΔP ≈ 1.2 kPa with an average detaching
force of 4.53 N.

Similarly, we demonstrate that we can retrofit sensing to
commercial soft grippers (Fig. 4f–k), one powered by vacuum
pressure51 and the other by positive pressure52. Even though the
pressure-volume relation for both grippers is relatively different, in
both cases we find a linear correlation between the size of cylind-
rical objects and the measured equilibrium pressure. Note that
because the internal volumes of the actuators and grippers are
different in these examples, we had to replace some of the external
hardware. For example, the internal volume of the air tank, which
determines the slope of the tank’s pressure-volume response, is
chosen based on a compromise between initial tank pressure and
sensing resolution (Fig. S5).

Characterizing the sensing resolution
Figures 3 and 4 provide a general picture of how the variations in
pressure-volume curves between the soft actuators and grippers lead
to different sets of equilibrium points based on the conservation of air
mass. The absolute pressure change observed during robot-
environment interactions ranges from 1.3 kPa to 5.9 kPa among the
soft actuators and grippers we tested (Table 1). Even though the rela-
tive pressure difference (pressure difference due to interaction with
the environment in comparison to maximum pressure obtained in the
actuator) might be smaller for actuators that require higher inflation
pressure (e.g., TPU and filament actuators), the absolute pressure
change for all actuators we tested is in the same order of magnitude
(Table 1). Note that the average sensing resolution can be determined
by dividing the absolute pressure change by the tested range of sen-
sing target and is therefore not affected by a lower relative pressure
difference.

In order to uncover the underlying factors that determine the
sensing resolutions of the soft actuators and grippers, we consider
both the initial and final states of the system. At the initial state, the air
tankwith an internal geometric volume vtank is pressurized atptank = p0,
and the actuator with an internal geometric volume vact = v0 is at
atmosphere pressure pact = patm. At the final state, the air tank and the
actuator reach the same pressure ptank = pact = p1, and the internal
geometric volume of the actuator becomes vact = v1. Assuming con-
stant temperature, since the total amount of airmass inside the system
(air tank and the actuator) stays constant, according to the ideal gas
law, we have

p0vtank +patmv0 =p1vtank +p1v1: ð1Þ

Note that the absolute pressure here is indicated in lowercase letter to
distinguish it from the relative pressure (with respect to atmospheric
pressure) that is used elsewhere in the manuscript. When the total
amount of air inside the system remains constant, v1 only depends on
the interaction of the soft actuator with the environment, i.e., the
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sensing target ξ. Therefore, the sensing resolution dp1/dξ can be writ-
ten as

dp1

dξ
= � p0vtank +patmv0

ðvtank + v1Þ2
� dv1
dξ

, ð2Þ

where, for example for the gripping test of the cylinders ξ =D, i.e., the
diameter of the cylindrical objects in Fig. 4f and i. Moreover, dv1/dξ
represents the sensitivity of the internal geometric volume of the
gripper to gripping cylindrical objects with different diameters.

Equation (2) shows that the variation of internal geometric volume
when the soft actuator interactswith the environment in differentways
causes the pressure change, which can be used to infer the interaction.

However, it is not trivial to compare the sensing resolutions of the
soft actuators and grippers in Fig. 3 and Fig. 4, because these actuators
vary in actuationpressure, internal volumeand sensing targets. To give
an example, since the initial internal geometric volumes v0 of both
commercial grippers in Fig. 4f and i are known, we can determine v1 at
equilibrium from equation (1) based on experimental measurements
of p1 (Table S1 and Fig. S11), from which we can then obtain dp1/dD

PPressurized air pipe

Filament
actuator

ba

P
Pressurized air pipe

McKibben
actuator

ed

hg
P

Pressurized air tank TPU bending
actuator

D

c

f

i

Fig. 3 | Retrofitting the fluidic sensing approach to a filament actuator (a-c), a
McKibben actuator (d-f) and a 3D-printed bending actuator (g-i). The filament
(a) and McKibben (d) actuator are used as a muscle to rotate an arm towards a
stopper. TPU bending actuator (g) wrapping around a cylinder with a diameter D.

Corresponding pressure-volume relation for the soft actuator (solid) and tank
(dashed) (b, e, h) and equilibrium pressure Peq in the system (c, f, i) for different
positions of the stopperor cylinder diameterD. Experimental results from five tests
are shown for each θ (b, c, e, f) and each D (h, i). Scale bars, 30 mm.
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according to equation (2). We find that the sensitivity of the internal
geometric volume of the gripper to gripping different cylindrical
objects equals ∣dv1/dD∣ =0.16 ml/mm for the vacuum gripper and ∣dv1/
dD∣ =0.13 ml/mm for the PneuNet gripper, while the magnitude of the
sensing resolution ∣dp1/dD∣ = 0.08 kPa/mm of the vacuum gripper is
twice that of the PneuNet gripper (∣dp1/dD∣ =0.04 kPa/mm). According
to equation (2), the smaller term ðvtank + v1Þ2 that is related to internal
volumes in the case of the vacuum gripper contributes to the higher
magnitude of sensing resolution when compared to the PneuNet
gripper, even though the term p0vtank + patmv0 that is related to the
total amount of air in the system is lower in the case of the vacuum
gripper.

Equation (2) indicates that the sensing resolution is determinedby
the total amount of air p0vtank + patmv0 in the system, the internal
geometric volume of the tank vtank and soft actuator v1 at equilibrium,
and the sensitivity of the internal geometric volume of the actuator to
the sensing targetdv1/dξ. The effects of systemparameters, such as the
stiffness and initial geometric volume of the soft actuator, on the
sensing resolution depend on how these system parameters affect
p0vtank + patmv0, vtank, v1 and dv1/dξ in equation (2), which should be
analyzed case by case. To give an example, we develop a basic model
based on the interaction of an extension actuator (with a linear stiff-
ness k) with a rigid wall in the Methods section Modeling the Fluidic
Sensing Approach and show the effects of the linear actuator’s initial

Patm Pvacuum

a
P

Vacuumed air tank Suction
gripper

c

b

d

e

F

D

D

P
Vacuumed air tank

P
Pressurized air tank

gf h

ji k

Fig. 4 | Retrofitting the fluidic sensing approach to a suction cup (a-e) and two
commercial soft grippers (f-k). a Front and bottom views of the suction gripper.
Scale bar, 10 mm. b, Schematic of the suction gripper attaching to a soft object.
c Smoothened pressure-volume responses of the suction gripper (pink) and air tank
(blue) when attaching to silicone samples with different shoremoduli. d Experimental
sensing results obtained using two different initial pressures P0 in the air tank. e Force-

pressure responses from three pulling tests on the suction gripper when attached to a
silicone sample with a shore hardness of OO-30. Commercial vacuum (f) and pres-
surized (i) grippers gripping a cylindrical object with a diameter D. Scale bar, 50 mm.
Corresponding pressure-volume relation for the soft gripper (solid) and tank (dashed)
(g, j) and equilibriumpressurePeq in the system (h, k) for objects. Experimental results
from five tests are shown for each D (g, h, j, k).
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length, cross section, stiffness and initial tank pressure on the sensing
resolution in Fig. S12. For example, for the modeled linear extension
actuator, an increase in length (increase in initial volume) reduces the
sensing resolution, while an increase in area (also an increase in initial
volume) first increases and then decreases the sensing resolution.
Despite the simplifications made in the model, we believe that it pro-
vides a framework for choosing available parameters for improving the
sensing resolution.

Finally, it should be noted that the overall sensing accuracy is
determined by both the sensing resolution of the actuator or gripper
and the sensing accuracy of the pressure sensor used, and luckily,
there are ample (relatively cheap) pressure sensors on the market that
span various pressure ranges with sufficient accuracy for our purpose
(Table S2). For example, in the tests with the PneuNet actuator in
Fig. 1b,weuseda ± 34.5kPapressure sensorwith an accuracyof ± 0.25%
(of Full Scale Span). By dividing the pressure sensor error
( ± 0.1725kPa) by the average sensing resolution (0.04kPa/mm), we can
obtain an overall sensing accuracy of ± 4.31mm for the PneuNet
actuator. This sensing accuracy is valid for one-timemeasurementwith
the pressure sensor. In this work, however, we always do the pressure
measurement over a period of time (which we were able to reduce to
0.05 seconds in Fig. S20) and calculate the average value, whichgives a
higher overall sensing accuracy, e.g., ± 1.7mm with a 95% confidence
interval (Fig. S3a) for the PneuNet actuator.

Closed-loop control with fluidic sensing
With the insights gained on sensing performance, we finally demon-
strate that the fluidic sensing strategy is robust for closed-loop control
in three applications: size sorting, tomato picking and ripeness
detection. In the first closed-loop control experiment (Fig. 5a, b and
Supplementary Video 4), we used a modified insertion sort algorithm
which inserts cylinders of different diameters one by one at the correct
position in a sorted array based on the fluidic sensing feedback. Every
time a new object is gripped, its size is measured via the feedback
pressure in the gripper that is averaged over a fixed time window (red
band in Fig. 5b) after actuation. When the feedback pressure is smaller
than the pressures in the sorted array, the robotic arm directly moves
the new object to the end of the queue, e.g., the first and last actuation
cycles in Fig. 5b. Otherwise, the robotic arm moves objects in the
sorted array to make the correct position available for the new object,
e.g., the third and sixth actuation cycles in Fig. 5b. The closed-loop
control makes it possible to successfully sort the four cylindrical
objects with random input order (Fig. S13, Fig. S14, Fig. S15 and Sup-
plementary Video4). Thefluidic sensing strategy alsoworks for sorting
random objects with irregular shape (Fig. S16, Fig. S17 and Supple-
mentary Video 4). Note that no calibration curve is needed here since
the comparison between the equilibrium pressure values is sufficient
for sorting.

In the second closed-loop control experiment (Fig. 5c, d and
Supplementary Video 5), weperform a tomato picking experiment.We
artificially increase the pressure in every step to demonstrate that the
proposed sensing approach can provide feedback for picking auto-
mation.Note that in amore realistic setting, onewouldhave likelyused
the highest pressure immediately. During each picking cycle, the
algorithm compares the equilibrium pressure Peq in the gripper to a
corresponding reference measurement Pref in free space, and evalu-
ates ΔP = Peq− Pref to determine a successful or unsuccessful picking.
When ΔP is smaller than a threshold, the algorithm regards it as an
unsuccessful picking as the actuators are not deformed by the tomato.
It then starts the next picking cycle with a higher actuation pressure.
OnceΔP is larger than a threshold (0.2 kPa), the algorithm regards it as
a successful picking. The gripper places the tomato on the table and
moves to thenext tomato in line. Note that the slip of the tomatoout of
the gripper in an unsuccessful picking can also be detected from the
abrupt decrease in the pressure-time curve, which could potentiallyTa
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provide additional sensing feedback. We tested a total of nine toma-
toes in three runs, out of which six tomatoes were successfully picked
and placed, one tomato was not picked by the gripper, the other two
were successfully picked but not recognized because the tomato
slipped into the palm of the gripper after being picked from the stem,
resulting in a ΔP smaller than the threshold (Fig. S18 and Supplemen-
tary Video 5). As our soft gripper was not specifically designed for
picking tomatoes, the design of the gripper should be optimized for
this task. Importantly, this would not affect the retrofit implementa-
tion of our sensing approach.

In the third closed-loop control experiment (Fig. 6 and Sup-
plementary Video 6), we detect the ripeness of tomatoes by
applying the method mentioned in Fig. 2f and g to estimate the
indentation depth. We demonstrate that the proposed sensing
approach can provide feedback for automated sorting of an

overripe tomato from ripe tomatoes. For versatility, we select the
commercial vacuum gripper for this demonstration, also as it has
the largest sensing resolution (Table 1). The demonstration includes
one cycle of calibration and five separate cycles of sensing to
determine repeatability. The positions of the four tomatoes
(including one overripe tomato) and one dummy are shuffled ran-
domly between sensing cycles. All size predictions are based on one
calibration process with 3D-printed rigid dummies, where the
gripper pressure Pgripper is compared to a reference response Pref to
determine ΔP = Pgripper − Pref over time for different diameters of the
object that is being gripped (Fig. 6b and c). As explained by the
stiffness sensingmethod in Fig. 2f and g, the size of the tomato upon
gripping can be inferred by the time of first contact tc (Fig. 6d), and
the size at equilibrium can be inferred by the ΔP at equili-
brium (Fig. 6e).

ba

After sorting D = 60 mm
D = 100 mm

D = 80 mm
D = 40 mm

Before sorting

y x

z
x

y
Measure
& move

Measure

Move Move

Measure

Move Move

Measure
& move

Pref_1

Pref_2

Pref_3

Δ P1 =
− 0.03 kPa

Δ P2 = 
− 0.04 kPa

Δ P3 = 0.74 kPa

Δ P1 = 
− 0.02 kPa

Δ P2 = 
0.55 kPa Δ P1 = 

− 0.02 kPa

Δ P2 = 
0.58 kPa

c

d
Pressure reference measurement Picking the first tomato Picking the second tomato Picking the third tomato

Tomato
slips

Tomato
slips

Tomato
slips

Tomato
slips

Tomato
picked
& placed

Tomato
picked
& placed

Tomato
picked
& placed

Fig. 5 | Closed-loop controlwith fluidic sensing. a Superimposed pictures taken at
the start and end of the size sorting experiment. The input order of the cylindrical
objects was randomly selected. b gripper actuation pressure and coordinates of the
Tool Center Point (TCP) over time during the sorting. The manipulations during each
actuation cycle are explained in the corresponding schematics. The red band in the
plot represents the pressure feedback measurement, and the yellow band represents
the object movement. The four pressure feedbackmeasurements (average± standard

deviation) are 34.80±0.07 kPa, 35.36±0.07 kPa, 35.05 ±0.08 kPa, 34.13 ±0.07 kPa,
respectively. c Snapshots of the tomato picking experiment representing the mea-
surement of pressure reference Pref and picking of the three tomatoes, respectively.
d Gripper actuation pressure and TCP coordinates over time during the tomato
picking. The red band represents the measurement of equilibrium pressure Peq, and
the yellow band represents the tomato placement on the table. A pressure difference
ΔP=Peq−Pref larger than 0.2 kPa is considered as a successful picking event.
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It is important to note that themethod that uses the time of first
contact is strongly affected by the alignment of the tomato inside the
gripper, leading to an early rise of ΔP-time curve and inaccurate size
predictions of the tomato upon gripping and sensing success rates of
40% and 45% (Fig. 6f and g) for the rigid dummy and tomatoes,
respectively. To increase the sensing success rate, we can perform
the gripping event twice, the first to center the object inside the
gripper, and the second gripping event to extract sensing feedback
(Fig. 6h and i). Alternatively, we can choose tc at higher ΔP values for
both calibration and sensing (Fig. 6j and k), so that the object has
been effectively centered during sensing. With tc at ΔP = 2kPa, sen-
sing during either the first or second gripping event gives 100%
success rates for both rigid dummy and tomatoes (Fig. 6j-m). We can
also infer the initial size of the tomato by ΔPmax (Fig. S19 and Sup-
plementary Video 6) instead of tc to avoid the influence of mis-
alignment, which gives 100% and 90% success rate for rigid dummy
and tomatoes, respectively. While we were able to pick out the rotten
tomato consistently, since the gripper squeezes tomatoes for ripe-
ness detection in this method, post-harvest studies should be per-
formed in the future to avoid extra damage to the produce when
applying the method in practical applications.

It should be noted that all the closed-loop control demon-
strations above were performed under quasistatic conditions. We
tested the sensing strategy at different actuation speeds (Fig. S20)
andfind that the effectiveness of the sensing strategy is not affected
by the actuation speed, as long as the sensing feedback is collected
after the actuator comes into contact with the environment. To
speed up the sensing process for real-world applications, it is
important to ensure an actuation speed that is high enough for the
interaction with the environment to happen before the collection
of fluidic sensing feedback. To prove the feasibility, we successfully

implemented fast sensing in the size sorting demonstration, where
pressure values are collected 0.5 s (instead of 5 s) after the opening
of the valve between the air tank and gripper (Fig. S21 and Supple-
mentary Video 4).

Discussion
In conclusion, we present a versatile fluidic sensing strategy that
relies onmeasuring the fluidic input response instead of embedded
sensing elements into the soft actuators. The soft robot-
environment interaction can be accurately interpreted with one
pressure sensor that is connected remotely. We show that the
proposed strategy can be retrofitted to awide range of soft devices,
and implemented in closed-loop control of gripping applications.
We believe that this relatively straightforward integration of sen-
sing capabilities makes it readily available for other soft robotic
devices and applications, includingwearable assistive devices53 and
soft locomotive robots48,54, without the need to alter the design of
the soft device itself.

While we were able to retrofit our sensing approach to a range
of soft actuators and grippers, it should be noted that the air tank
method in Fig. 1b is not directly applicable to soft actuators driven
by incompressible liquid, as the method depends on the compres-
sibility of air and the final pressure balance between the tank and
actuator. This could be solved by using a flexible tank (e.g., a bal-
loon), such that the compressibility of the air is replaced by the
elasticity of the tank. A simpler approach could instead be to use the
pressure control (Fig. 1c) or flow control (Fig. 1d) method to obtain
sensory feedback from the liquid-driven actuator’s interaction with
the environment.

According to equation (2), the sensing resolution is influenced by
thefinal internal volume v1 of the actuator after the interactionwith the

Ripe tomato (     )
Overripe tomato (     )

Ripe tomato (     )
Ripe tomato (     )

Dummy (   )

Calibra�on dummies
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Vacuumed air tank

D

cb

c
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c at kPa
1st gripping event

2/5
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c at kPa
2nd gripping event 19/20

c at kPa
1st gripping event

c at kPa
2nd gripping event

mlkjhgf
5/5 5/5 20/20 5/5 20/20

i

Fig. 6 | Picking out an overripe tomato with fluidic sensing. a Snapshots of the
closed-loop control demonstration. Five 3D-printed rigid dummies (D = 45, 50, 55,
60, 65 mm) are used for calibration. The other five objects are tested for sensing,
including three ripe tomatoes, one overripe tomato and one dummy with a dia-
meter D = 50 mm. The whole demonstration includes one cycle of calibration and
five cycles of sensing. In each sensing cycle, two gripping events are carried out for
each object. The positions of the objects are shuffled randomly between cycles. b-e
Calibration results. The pressure response Pgripper of the gripper when gripping a
calibration dummy is compared to the pressure response Pref of the gripper when
gripping nothing, to obtain the pressure difference ΔP = Pgripper − Pref. The time of

first contact tc and the pressure difference at equilibrium ΔPeq can be used to infer
the object diameter upon gripping (d) and at equilibrium (e), respectively.
Experimental results from three measurements are plotted for each D (b–e). f–m
Sensing results. The solid line in f,h, j, l represents that the object diameter inferred
by tc equals that inferred by ΔPeq, the dashed line represents the object diameter
inferred by ΔPeq is 3 mm smaller than that inferred by tc. For the ripe tomatoes and
rigid dummy, a measurement above the dashed line is considered as a successful
sensing event. Conversely, for the overripe tomato, a measurement below the
dashed line indicates sensing success.
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environment and its derivative over the sensing target dv1/dξ. Yet,
there is no trivial relationship between the initial volume of the
actuator and the sensing resolution. Even thoughwe demonstrate that
we can retrofit sensing to pneumatic actuators, optimizing the sensing
resolution by for example changing the tank size and the initial tank
pressure should be done on a case by case basis, and can best be done
by experimentally obtaining the relationbetweenpressure and volume
for specific interactions with the environment. For example, if wewant
to apply our strategy to pneumatic actuators that can generate com-
plex motions with multiple degrees of freedom55, the sensing resolu-
tion depends on how the interaction of the actuator with the
environment affects v1 and dv1/dξ in equation (2), which is
not straightforward to predict beforehand and depends on the
application.

Moreover, we did find relatively small variations over time during
cyclic gripping. These variationsmay be due to the performance of the
soft actuator, pressure regulator and pressure sensor, or environment
variations like the temperature. Comparing the sensing response to a
reference helps reduce the influence of long-term system and envir-
onment variations, as also demonstrated in the closed-loop control
examples. Still, any non-unique pressure-volume response of a soft
actuator would cause inaccurate sensing. Moreover, since the pro-
posed sensing principle uses the soft actuator itself as a sensor, any
fragility or unreliability of the soft actuator would have a direct influ-
ence on the sensing performance. Additionally, the soft actuation of
more complex devices should be designed such that it achieves sen-
sitivity to the sensing task.

Moving forward, machine learning can potentially be applied to
read the higher-order difference in the pressure-time curves of the soft
robot for various interactions with the environment to achieve more
complex sensing applications12,56. Although our sensing strategy
removes the need of embedding or attaching sensors to the soft
actuator, the hardware of the system is still bulky and may not be
suitable (yet) for small-scale untethered soft robotic system57. To fur-
ther reduce the bulkiness of the system, the fluidic sensory feedback
from the soft robot-environment interaction can be potentially read
out by soft pneumatic valves58–60 to build electronic-free soft
robots59,61,62 that can sense and respond to their environment. The
basic yet powerful principles studied in this work make it possible to
bring (some) sensing capabilities to most soft fluidic devices without
the need for design changes, and paves the way towards new func-
tionalities in soft interactive devices and systems for real world
applications.

Methods
Details on the methods are provided in Supplementary Information.

Data availability
The experimental and numerical data that support the findings of this
work and computer algorithms necessary for running the analysis have
been deposited at Zenodo (https://doi.org/10.5281/zenodo.10276372).
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