
System Call Sandboxing
Comparing static and dynamic analysis and filter generation

Petr Khartskhaev
Supervisor: Alexios Voulimeneas

EEMCS, Delft University of Technology, The Netherlands

A Thesis Submitted to EEMCS Faculty Delft University of Technology,
In Partial Fulfilment of the Requirements

For the Bachelor of Computer Science and Engineering
June 23, 2024

Name of the student: Petr Khartskhaev
Final project course: CSE3000 Research Project
Thesis committee: Alexios Voulimeneas, Przemysław Pawełczak

An electronic version of this thesis is available at http://repository.tudelft.nl/.



Abstract

All complex programs are bound to contain software bugs, of which some could
be exploited. These exploits rely on the application being able to start – or become
– a process that it should not normally. To exploit these applications in this way,
the attacker needs the operating system’s kernel to escalate the attacked program’s
permissions or to start another process. Sandboxing is a way of stopping the attacker
by limiting, which calls a program can make to the kernel – if a program never does start
new processes, the sandbox application intercepts all requests (system calls) to do so. In
this paper, I develop a script to collect a list of a program’s used system calls (shortened
to syscalls) obtained dynamically by an external tool, and compare its output to existing
– static – solutions, which extract a program’s system calls by examining its machine
code from the binary. Three out of four tested programs functioned correctly after
applying the filter, and the fourth one’s failure may be caused by the program I used
to perform the sandboxing – firejail. All four resulting lists were almost half the size of
the next best performing tested application. Further research should be done into why
one of the applications failed in the same scenario that was used to record the syscalls,
and how each syscall’s arguments can be filtered to further decrease the possible attack
surface.

1 Introduction
In common modern operating systems, all interaction between normal, user-mode programs
and the kernel – the core – is handled using system calls (syscalls) [1] (Section 2.3). Since
the kernel has maximum privileges, which could be exploited by malicious actors, it is es-
sential this communication is done safely with as little room for potential attacks as possible.

Sandboxing is a way to possibly prevent a program from invoking an unnecessary or
malicious call in case of the program being compromised, by means of running it in an
environment that limits what it can do [1] (Section 17.11.3) (e.g. a program that never calls
setuid [14] can be blocked from invoking it in order to prevent exploits). There are two
possible approaches to this problem: static and dynamic. In a static approach, a specific
program is first analysed without being executed, then a profile is generated for which sys-
tem calls to disallow [2], or optionally, the execution of the program is divided into different
stages, with a different profile being applied to each (e.g. initialisation and main cycle in
web servers) [5].

A dynamic solution is to run the program in multiple different scenarios, observe exactly
which system calls are executed, and create a filter from the result. The latter approach
obviously requires much more effort in the form of constructing the aforementioned scenari-
os, running them with a tracing tool such as strace [16], then performing the analysis. On
the other hand, it provides a much more detailed insight into the specific parameters and
stages of execution of the program, as opposed to the existing static solutions. This allows
for creating of tighter filters, further preventing the misuse of programs.

The objectives of this paper are to:

1. test the dynamic approach on programs such as ls [15] and Openbox [10];

2. compare this approach to existing static techniques from previous work [2, 4, 5, 3, 6].

1



The most important finding should be how many system calls are missed by the static
analysis tools and how many are included incorrectly. This can help in further studies
researching whether and under which circumstances it is preferrable to employ dynamic
analysis instead of static.

The paper has the following structure: Section 2 will provide background and related
literature, as well as the methodology. Section 3 will describe the way in which my dynamic
analysis tool for system calls works. The results of the comparison will be presented and
explained in Section 4, and Section 5 will report about the ethics and reproducibility of
this paper. Section 6 will compare the results to ones from previous papers and attempt
to explain possible inconsistencies. Finally, Section 7 will include a conclusion and discuss
possible future work.

2 Background and methodology

2.1 Static analysis
Static analysis can be done in two ways – scanning the source code, and scanning the binary
of a program [2]. The main idea is to locate all references to system calls in the program
and its own dynamically linked libraries, as well as all references in global library functions
that the program calls (e.g. the C library).

The specific method of analysing a program’s source code is described in Canella et al.
and Ghavamnia et al. (Aug. 2020) [2, 5], while the methods of analysing the binary are
discussed in Ghavamnia et al. (Oct. 2020), DeMarinis et al. and Petrich [4, 3, 6].

Canella et al. [2] propose a tool called Chestnut, which includes static analysis tools
for both source code and binaries, as well as a dynamic component that refines the filter
during runtime. The source code tool, Sourcalyzer, uses the LLVM compiler framework
to find syscalls in source code. This approach is also used by Ghavamnia et al. (Aug. 2020)
[5] in their temporal syscall analysis tool, which generates separate profiles for a program’s
execution phases.

Chestnut’s binary analysis tool, Binalyzer, searches for syscall instructions and finds
the syscall numbers for each of them using symbolic backward execution. This is also the
method used by Ghavamnia et al. (Oct. 2020) [4] in their Confine tool and Petrich’s Callan-
der [6].

2.2 Dynamic analysis
Dynamic analysis involves running the program to retrieve its syscalls. DynBox [7] performs
“partial-order analysis” on a program, which enables it to disallow syscalls that are guaran-
teed to not be used again at runtime.

In my method, separate scenarios are constructed for each program, in which (ideally)
every possible function of the program is executed. All invoked syscalls are recorded using
a tracer, and those are then compiled into a filter alongside their parameters. This should

2



enable the construction of a more specific and tight set of possible parameters for each
syscall, as well being very easy to split into different stages of execution. A significant
downside of this approach is that it requires much more effort, pertaining to both the need
to construct a sufficient set of scenarios to run for each program, and to run the program
in those scenarios. If the scenarios are not comprehensive enough, there is a risk of the
resulting filter being too tight and not allowing the program to run as expected.

2.3 Applying the filter
The references can then be compiled into a list of allowed syscalls and their possible parame-
ters (as well as the stage of execution of the program), and applied as a filter to the program
in question. This can be done by modifying the source code or binary [2], or running the
program in a wrapper with the filter applied (e.g. firejail, Callander, or Docker’s seccomp
profile option [9, 6, 12]).

3 Automated dynamic analysis
After constructing the scenarios and recording a trace of all invoked system calls, it must
be analysed. The output should consist of a dictionary of syscalls as keys with the values
being allowed values for each of the six parameters (the maximum amount of arguments for
a syscall in x86-64 systems is 6 [17, 11]). This dictionary can then be converted into a filter
for available sandboxes or wrappers.

To achieve this output, the runtime of the analysis tool must be divided into several
steps:

1. parse the file produced by the tracing tool into separate syscalls with arguments;

2. combine the syscalls into a dictionary with a set of all used arguments;

3. parse the arguments into addresses, integers, strings and structures;

4. combine the arguments within each syscall to form a list of possible arguments.

It is assumed that the tracing tool produces an output where each line contains one
syscall in the format of:

<time> <call>(<comma-separated>, <arguments>) = <return value> <duration>

as this is the format produced by running strace -tT -o <output file> <command>.

This file can then be manually separated into execution phases (either using the time-
stamps or comparing with another file which the result of only running one of the phases)
and passed into the script, which extracts the syscall name, arguments and return value
from each line. The arguments for each are then parsed and separated into an array.

Afterwards, this data is unified into a map from syscall to an array of arguments (length
six), where each element is a set of recorded arguments. Then, different algorithms can be
used to consolidate different types of argument (e.g. addresses should not be unified since

3



they will be different on each run, differently sized structures can have some values that are
always the same, and some parts which are always different, etc.). I opted for a very simple
one.

The syscall-to-arguments map is iterated through. If a syscall’s argument’s trace only
consists of memory addresses (e.g. brk’s only, 0th argument is always a memory address,
be that NULL or any other), the set is generalised to “address” as a program’s memory space
changes every time it is run. Other sets of argument values, which are larger than 3, are
generalised to “any”, and all remaining sets are left in their original state (e.g. if write is
only used with two strings of lengths 1 and 13, the third set in write’s argument array will
be the set {1, 13} and strings of no other lengths will be able to be written).

All this results in a valid whitelist of syscalls along with possible arguments, which can
be imported into seccomp, or passed into a sandbox program such as firejail [9].

Because of firejail’s implementation, only the syscall whitelist is used (without argument
limitations). For an explanation see Subsubsection 6.1.2. Since the first syscall in any strace
output file is always execve [8], the script ignores the first line of every file passed to it.
This approach works with firejail, but with other popular seccomp sandbox applications it
might not.

4 Experimental Setup and Results

4.1 Experimental Setup
The programs to be tested are as following:

1. A simple “Hello World!” program written in x86 Assembly without the use of the C
library

2. A simple “Hello World!” program written in C

3. The ls[15] utility from the GNU Coreutils

4. Openbox[10], a window manager for Linux systems

The reasoning behind the “Hello World!” programs was to observe how the C library
alters the run of a program. The ls utility was selected because it has many possible scena-
rios, i.e. the large amount of flags and possible directory structures to display. Openbox was
chosen due to its versatility such as launching and closing applications; moving, resizing,
minimising and maximising windows; picking options from the menu etc.

Constructing scenarios for the first two programs is trivial, as there is only one. For
ls, which has 60 different flags, each one must be tested as well as running the program in
different environments (i.e. an empty directory, a directory with files and subdirectories, a
linked directory, a directory with no read permissions). For ls, I ran it in the aforementioned
environments for different flags – no flags, all items (-a), almost all items (-A), long listing
(-l), author (--author), human readable (-h), inode (-i), reverse order (-r), recursive
(-R), unsorted (-U), and allowed combinations thereof.

4



Openbox has a variety of features, therefore a scenario whereas many of them are used
must be constructed, along with a scenario where the program is exited immediately after
launch in order to isolate the initialisation phase. For the long scenario, I opted for the
following steps:

• Edit the configuration to launch the terminal with the Alt+Q keyboard shortcut

• Launch Openbox in a Xephyr [18] window

• Launch the terminal via the shortcut

• Re-size the terminal

• Switch to another desktop via a middle click

• Open the menu

• Select Firefox

• Minimise Firefox via the title bar button

• Switch to the original desktop

• Close the terminal via the title bar button

• Launch the terminal

• Close the terminal using the exit command

• Open the menu

• Select System -> Reconfigure Openbox

• Open the menu

• Log out

After running each scenario with strace (the command being
strace -Tt -o <output file> <program>, where the -Tt flags indicate that a global
timestamp and duration information will be added to each syscall), the parsing and analysis
script is run to extract the list of syscalls and their arguments. That list is then:

• used in a firejail [9] environment running the program in question (also with every
scenario, to test if the filter is not too tight);

• compared to the list of allowed syscalls for the same program produced by Callander
and a modified version of Chestnut’s Binalyzer

4.2 Results
Running with firejail

Having recieved a list of allowed syscalls from my script, I used firejail with the following
command:
firejail --noprofile --seccomp.keep=<list of syscalls separated with commas> <binary>

The first three applications worked flawlessly (i.e. every scenario ran the same and with
the same outputs), but it was only possible to interact with already opened applications
and not launch new ones. Launching a new application would result in a window with the
error: “Failed to duplicate file descriptor for child process (Operation not permitted)”.

5



Comparing to existing tools

I summarised the comparison of the number of allowed syscalls from each tested solution in
Table 1. One can see that the dynamic solution, where syscalls are extracted from a trace,
always allows fewer syscalls than programs employing the static analysis approach.

I also examined how the output of the static tools differed from mine – how many syscalls
did the tool output that mine did not (labelled Extra), and how many syscalls did my tool
include that the other did not (labelled Missing). I then ran each program with Callander
and with the same firejail command using filters recieved from Binalyzer and noted in the
table (rows labelled Works) whether they produced the same, expected output. In one case
the program failed to launch and in two cases it did not function properly. The possible
reasons behind this are discussed in Subsubsection 6.1.3.

For the Assembly “Hello World!”, where both its system calls are written explicitly
in the source code, Callander locates three more – gettimeofday, clock_gettime and
clock_getres. Chestnut finds circa 3.5 times more syscalls in ls than Callander, and 6.8
times more than are really used.

Table 1: Allowed syscalls for each program found by each tested solution
Tool “Hello World!” (Assembly) “Hello World!” (C) ls Openbox

My Solution Total 2 18 39 59
Works Yes Yes Yes No2

Callander

Total 5 42 77 149
Extra 3 30 46 94
Missing 0 6 8 4
Works Yes Yes Yes No3

Chestnut1
Total 2 154 266 287
Extra 0 138 234 233
Missing 0 2 7 5
Works Yes Yes No4 No

5 Responsible Research
All tools to reproduce this research have been provided on GitHub: https://github.
com/felacek/dynamic-syscall-filtering. That includes the output of all three tested
tools – Callander in Docker with Ubuntu 22-04 (the image can be found on the Callander
GitHub page https://github.com/rpetrich/callander), Chestnut on the local system,
Arch Linux with kernel 6.9.5-zen1-1-zen and glibc version 2.39+r52+gf8e4623421-1 us-
ing Python 3.8, and my script on the same system using Python 3.12.

1The code was modified, see Subsubsection 6.1.1
2Generally works, but cannot launch applications
3Launches, but works cannot interact with applications without errors
4Lists all files and directories but no properties

6



As with all cybersecurity tools, this research could come in useful to malware developers
and other bad actors, but seeing as this category of tools already exists and this paper is
concerned with the preferred method of compiling syscall whitelists, this should not give
bad actors any advantage.

6 Discussion
Overall, the sets of syscalls obtained were generally much smaller than the ones produced
by static analysis tools. I did not compare the argument filters produced by my solution
and Callander, mainly because I could not test whether mine were or were not too tight, but
also because Callander returns argument filters based on its analysis of dynamic libraries
like glibc, ignoring what the program itself provides.

6.1 Difficulties
A difficulty that I encountered during testing was using the static analysis programs since I
was not able to install any of them without making alterations to the code. Out of the six
previously existing tools, I was able to run two, those being Chestnut (Binalyzer only) and
Callander.

6.1.1 Modification of Binalyzer

As mentioned previously, I had to modify Binalyzer’s code for it to work and likely introduced
a bug, because the results presented for ls by Canella et al. [2] show that Binalyzer detected
39 syscalls, not 266. I was unable to fix this bug while keeping the rest of the code working.

6.1.2 Other methods of enabling seccomp profiles

Another difficulty surfaced when attempting to run Docker containers with seccomp profiles,
since Docker required a list of specific enabled syscalls that were not always necessary to cre-
ate the container itself, with no option to enable the hardened profile after container creation.

I also attempted to use a seccomp-filtered-run [13] to run programs with custom
seccomp profiles without modifying the binary, but found that it enabled the profile too
early, before forking and executing the program itself, which resulted in an error. Firejail
was therefore the only available application I used to run programs with custom profiles
easily, with the drawbacks of:

• not allowing one to specify filters for arguments;

• not working with the way Openbox interacts with the X server to launch applications.
More research should be done to find out why it behaves this way, when the (rootless)
X server is running with no restrictions.

6.1.3 Running with static analysis tool outputs

Another problem surfaced when attempting to run Chestnut’s output list with firejail, as ls
had no permission to read any properties of the files it listed and Openbox failed to launch.

7



As both the analysis and the sandbox were run on the same machine with the same system,
possible incompatibilities should be ruled out. Further research must be done to understand
why this happened.

7 Conclusions and Future Work
In this paper, I demonstrated a way to extract a program’s used system calls after running
and tracing it, and compile them into a filter to be passed into a sandboxing application. I
also compared it to two pre-existing solutions with a different approach, namely one which
analyses a given program’s binary statically. I tested my approach on 3 simple programs
(two “Hello World” binaries and ls) and 1 complex one (Openbox), ran them and compared
the resulting filters to ones output from Chestnut, a binary static analysis application.

I used firejail as the agent imposing syscall filters onto the programs, and all tested
programs aside from Openbox worked perfectly with the list of allowed syscalls provided to
them. The script to extract syscalls is fast and outputs the list of used syscalls along with
generalised possible arguments for each one, as well as the amount of allowed syscalls and a
firejail command which can be copied and run with the desired binary.

In comparison to static methods, the dynamic method described in this paper is more
arduous to set up since one must make a scenario which uses every possible syscall in the
program’s code, but produces much tighter restrictions with (in most cases) all functional-
ity in-tact. For the tested programs which ended up working with this approach, it allowed
circa 44.5% fewer syscalls than the next best tested tool (Callander).

This shows that dynamic syscall analysis performs well for simple and more complex
programs, although this conclusion is hindered by the fact that it was difficult to run the
existing static tools and they might perform better under specific conditions. Very large and
complex programs have not been tested and the fact that comprehensive scenarios could be
much harder to construct for that type of application means that dynamic syscall analysis
is probably not the best method for applications.

For future work, it is imperative that a new sandboxing application be found or devel-
oped, which can provide more user control and fewer quirks. It should be understood why
firejail prevented Openbox from working properly. Argument filters per syscall should also
be tested and compared to other analysis applications’ results.

References
[1] Avi Silbershatz, Peter Baer Galvin, and Greg Gagne. Operating System Concepts.

Tenth Edition. John Wiley & Sons, Inc., 2018.

[2] Claudio Canella et al. Automating Seccomp Filter Generation for Linux Applications.
2020. arXiv: 2012.02554 [cs.CR].

8



[3] Nicholas DeMarinis et al. “sysfilter: Automated System Call Filtering for Commodity
Software”. In: 23rd International Symposium on Research in Attacks, Intrusions and
Defenses (RAID 2020). San Sebastian: USENIX Association, Oct. 2020, pp. 459–474.
isbn: 978-1-939133-18-2. url: https://www.usenix.org/conference/raid2020/
presentation/demarinis.

[4] Seyedhamed Ghavamnia et al. “Confine: Automated System Call Policy Generation for
Container Attack Surface Reduction”. In: 23rd International Symposium on Research
in Attacks, Intrusions and Defenses (RAID 2020). San Sebastian: USENIX Associa-
tion, Oct. 2020, pp. 443–458. isbn: 978-1-939133-18-2. url: https://www.usenix.
org/conference/raid2020/presentation/ghavanmnia.

[5] Seyedhamed Ghavamnia et al. “Temporal System Call Specialization for Attack Sur-
face Reduction”. In: 29th USENIX Security Symposium (USENIX Security 20). USENIX
Association, Aug. 2020, pp. 1749–1766. isbn: 978-1-939133-17-5. url: https://www.
usenix.org/conference/usenixsecurity20/presentation/ghavamnia.

[6] Ryan Petrich. “Linux Sandbending: Binding Program Behaviors without Binding Our-
selves”. In: Presented at All Day DevOps 2023, 2023. url: https://github.com/
rpetrich/callander.

[7] Quan Zhang et al. “Building Dynamic System Call Sandbox with Partial Order Analy-
sis”. In: Proc. ACM Program. Lang. 7.OOPSLA2 (Oct. 2023). doi: 10.1145/3622842.
url: https://doi.org/10.1145/3622842.

[8] execve. url: https://man7.org/linux/man-pages/man2/execve.2.html.

[9] Firejail. url: https://firejail.wordpress.com/.

[10] Openbox. url: http://openbox.org/wiki/Main_Page.

[11] seccomp. url: https://man7.org/linux/man-pages/man2/seccomp.2.html.

[12] Seccomp security profiles for Docker. url: https://docs.docker.com/engine/
security/seccomp/.

[13] seccomp-filtered-run. url: https://gitlab.com/patlefort/seccomp-filtered-
run.

[14] setuid. url: https://man7.org/linux/man-pages/man2/setuid.2.html.

[15] Richard M. Stallman and David MacKenzie. ls. url: https://man7.org/linux/man-
pages/man1/ls.1.html.

[16] strace. url: https://man7.org/linux/man-pages/man1/strace.1.html.

[17] syscall. url: https://man7.org/linux/man-pages/man2/syscall.2.html.

[18] Xephyr. url: https://freedesktop.org/wiki/Software/Xephyr/.

9


