736 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 30, NO. 4, JULY 1992

A Statistical Model for the Error Bounds of an
Active Phased Array Antenna for SAR Applications

Paul Snoeij and Arjen R. Vellekoop

Abstract—Radiometric calibration of a SAR-image is achieved
by monitoring all the relevant parameters of the radar equation.
The precision and accuracy of the instrument are limited by
the errors made in monitoring these parameters. Whereas most
parameters can quite readily and constantly be monitored, moni-
toring of the array pattern during the flight is a cumbersome and
time-consuming affair, and, therefore, mostly omitted. Random
variations in the antenna pattern can thus be expected to have
the greatest influence on the uncertainty of the scatter-coefficient
estimate. Obviously, the effect of a phased array antenna, of
which the antenna pattern is formed by the amplitude and phase
of several individual T/R-modules fed to radiating elements, will
be even worse. This paper reviews a model for the theoretical
error bounds for the radiometric calibration of SAR imagery.
The model is then applied utilizing the radar system parameters
as will be used in the project PHARUS (acronym for PHased
ARray Universal Sar) [1], a Dutch polarimetric airborne C-band
universal SAR, which is currently under construction. An error
model for the phased array antenna pattern will be presented.
This model was applied to a 16x8 phased array antenna to
determine the influence of errors in the T/R modules and angle
variations of the beam direction.

I. INTRODUCTION

HE advantages of the phased array antenna which are

generally not encountered in other antenna types has
lead to an increased interest in its application in remote
sensing radar systems. Both beam direction and gain pattern
can electronically be controlled. The possibility of shaping
the gain pattern has positive effect on sidelobe levels. The
flexibility offered by a phased array system, however, has
a few drawbacks: Besides the higher cost, the system needs
more complex circuitry, and often requires computer control,
especially when electronic beam control is implemented. Full
testing of a phased array is a cumbersome affair. Since the
phase and amplitude of the elements of the phased array
are controlled by several phase shifters and power amplifiers,
the synthesized gain pattern in particular will become a part
of the system. Environmental influences and aging of the
electronics will yield directly to a degradation of the antenna
gain pattern. Considering the random nature of variations of
electronic circuitry, the excitation coefficients of the antenna
array will show random perturbations as well, leading to a
random degraded gain pattern.
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In the case of a digital system, in which the phase and
amplitude of each of the T/R-modules of the radar antenna-
array have a discrete set of values, the desired aperture
illumination will show quantization errors. The minimization
of these errors obviously needs a large number of discrete
values. However, in an airborne radar such as SLAR or SAR
the beam direction can only be stabilized to a certain extent and
also will show a random (measurement) error. The number of
discrete values, or number of bits, required for the amplitude
and phase settings, can now be determined by taking the
maximum possible quantization error smaller than the beam
direction error.

In Section II of this paper we discuss the calibration aspects
in remote sensing radars. In Section III the error model
given in [2] was used the determine the system parameter
error which has the most important influence on the SAR
calibration. In Section IV the phased array antenna pattern
will be discussed while in Section V we present a model to
calculate the theoretical error bounds on the phased array gain
pattern based upon a statistical coefficient of variation model
[2], [3]- As an example, the model is then applied in Section
VI to a 16x8 phased array antenna to determine the influence
of random amplitude and phase fluctuations of the individual
T/R-modules feeding the radiating elements, as well as random
angle variations of the beam-direction. The relevance of the
model regarding the amplitude and phase variations is tested
by comparing the results with the exact solution as described
by Zaghloul [4]. Even for large variations the model is in
good agreement with the exact solution. The calculation effort
of the model, however, is very much smaller than the required
calculation effort of the exact solution.

II. CALIBRATION ASPECTS

Like the majority of measurements in physics, remote sens-
ing belongs to the class of so-called indirect measurements. An
important characteristic of such indirect measurements is that
always a graduated scale is needed to reduce the quantity to
be measured to the one that is actually measured and de facto
the creation of such a scale is the objective of calibration.

In order to systematize this discussion on calibration aspects
it is helpful to model the radar observation process by means
of a layered structure (Fig. 1.). At the lowest level we start
with the object layer. This layer may contain one of the well-
known object classes and it is assumed that one wants to study
the impact of the “physical world” on that particular class. The
layer next to the object layer is the electromagnetic interaction
layer, at this very level the radar-echo is formed which starts
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interpretation layer

image processing layer
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Fig. 1. The layered structure of the radar observation process.

the observation process. The sensor layer, which comes next,
represents the actual measurement of o as a power ratio.
In many cases, the radar signal still needs some processing,
which is performed in the fourth layer. In its simplest form
this processing will only take care of the quantization and
subsequent digitization of the power ratio, to make it ready
for presentation. In the case of an advanced system like a
SAR the processing will be part of the actual measurement
of the power ratio. Usually, the system output will be made
available as an image in digital format, to be further processed
by the user (layer 5). In most cases, the top layer is the
(human) interpretation layer where the observation process is
concluded.

Having introduced the layered observation structure the
calibration problem may be analyzed in more detail. In this
context it is interesting to note that the layered structure
approach strongly suggests that calibration may be performed
at different levels.

Obviously, the most comprehensive form of radar calibra-
tion in remote sensing will be obtained when a graduated
o-scale at the interpretation level is calibrated in terms of the
object parameter to be measured. This may be called a physical
calibration. Although physical calibration may seem to be the
optimum, since it includes all layers, it will not be feasible in
practice. One major reason is that it is impossible to repeat
such calibrations frequently enough and, consequently, the
instrument would have to be perfectly stable. Another reason
is that the required radar signal processing in general can only
be performed off-line, which is an unfavorable situation for
physical calibration.

A more practical approach to the calibration is usually
obtained by dividing the observation structure into a number of
substructures. Following this idea it makes sense to combine
the lower two layers to form the first substructure. At this level
calibration includes the determination of object signatures, i.e.,
the measurement of their radar “behavior” as a function of
as many parameters as possible. Measurements of this kind
are characterized as basic and they are performed by scat-
terometers, either groundbased or airborne. By means of such
measurements we have learned a lot about the nature of the
radar-echo’s as they are produced by remote sensing objects.

Assuming that the object signatures are known, the cali-
bration problem is reduced to a calibration of the sensor in
terms of power relations which seems a technical rather then a
physical problem. In this way, the radar becomes a measuring
instrument in the usual sense, whether this instrument will
combine the sensor (layer 3) and processing (layer 4) functions
or not, depends on the type of system.
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A good measuring instrument must be accurate, precise and
stable. “Accurate” implies “conforming to truth,” “precise”
means “well defined” whereas an instrument is said to be stable
if repetition of the same measurement yields the same reading.
Precision and stability are design objectives, while accuracy is
a matter of calibration. This statement is in no way trivial: Too
many people are thinking that the quality of an instrument may
be improved by frequent calibration. With an instrument that
fulfills the accuracy, precision and stability requirements the
image processing can be based on true o-values. Needless to
say, procedures like filtering, which potentially may interfere
with the “truth-principle,” have to be applied with great care.
Finally, at the interpretation level, the o-values will have to
be combined with the signature data to yield information on
the object.

The assumption that the calibration of the radar may be
based on power measurements alone is actually an oversim-
plification. This is caused by the fact that, in remote sensing,
the radar is collecting the power scattered by a certain area
or volume, the resolution cell. The usual assumption is then
that the radar return of each resolution cell can be replaced
by that of a distribution of N-point scatterers. Under certain
conditions, the radiation of these N scatterers can be added
on an incoherent or power basis. Since each point target is
seen from the radar location in a different direction, however,
the power contribution of each individual point scatterer has
to be weighted according to the magnitude of the antenna
pattern in the direction that applies. Therefore, it turns out
that the antenna gain and the antenna pattern are of equal
importance.

The ultimate consequence of this power-addition require-
ment would be a preference for, straight-on, system designs
based on the application of, e.g., passive antennas. For such
systems the calibration problem may be divided in two parts:
The external calibration takes care of the antenna pattern,
including the antenna gain, whereas the power relation in the
transmitter-receiver chain is calibrated by an internal loop.

In case of an advanced SAR-system based on the use of
a distributed phased array antenna both calibrations will mix
and the internal calibration, in particular, will become a fiction.
Active antennas like this can only be calibrated when they are
operational, i.e., when all transmitter and receiver modules are
active. In fact, also in this case one would prefer a system
that is as simple as possible since each operational mode
(like incidence angle, swath-width, or polarization) will ask
for an additional calibration. In general, two options can be
considered appropriate for the calibration of active antennas:
The use of a homogeneous distributed target, of which the
scatter coefficient is known, or the use of a point target
of known cross-section in combination with antenna pattern
measurements for all operational modes and a monitoring of
the amplitude and phase behavior of all transmitter-receiver
modules.

Needless to say, the system stability must be good enough
to bridge the time period between two calibrations. In the
meantime, in fact, only the appropriate functioning of the
array components can be supervised. The outcome of this
bookkeeping could be incorporated in the signal processing.
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PHARUS SYSTEM PARAMETERS AND ERROR MODEL VALUES
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TABLE 1
NOMENCLATURE OF VARIABLES AFTER (2]
A radar wavelength
i subscript: scene to be calibrated
r subscript: reference target scene
A received amplitude
An amplitude of the additive SAR system noise
0 radar incidence angle
M multiplicative noise ratio
am or am multiplicative calibration offset factor
Pav average transmitted power
ra azimuth resolution
rs slant range resolution
R slant range
G antenna gain function
H square of the total SAR system gain term
u platform velocity

HII. ERROR BOUNDS IN THE
RADIOMETRIC CALIBRATION OF PHARUS

The error model used is based upon the Coefficient of
Variation Error Model [2]. The (fractional) coefficient of
variation is defined after [2] as
— Sz
T <X >

with s, the sample standard deviation and <X> the average
value of a random distributed variable X. The coefficient of
variation € is assumed to include both natural as well as
measurement error variability.

In this paper we use the same nomenclature for the variables
as in [2] (Table I) and using (24), (26), and (27) from [2]
the coefficients of variation in the case of absolute calibration
€0q, Telative absolute comparison ¢,,,, relative interscene
calibration €,,4, and relative intrascene calibration €., can
be determined. The conversion to dB values used in this paper
is based on (27) [2].

1

€r

A. PHARUS System Parameter Errors

To apply the error model to the PHARUS-system the
different coefficients of variation has to be defined. In Table II
the values of the errors are summarized. For a number of these
coefficients values had to be assumed because the system was
still in its definition phase; after the construction of the system,
the real values can be used. During the definition phase of the
PHARUS project a number of design goals were specified.
For example, the phased array antenna would consist of 128
individual T/R modules, each using a separate patch antenna,
resulting in a transmitted power of 128%*20 = 2560 W. The
operational altitude of the system was assumed to be 6 km,
and the incidence angle would range from 20-85°. At the
end of the calibration study, however, the design goals were
adjusted due to financial restrictions. The calculations given
in this paper are still based on the initial design.

The error in the incidence angle €g,¢ can be determined
from the errors in the altitude 4 and slant range R, and is
dependent on those errors. The coefficient of variation for the

Parameter Range of Values Nominal Value
Frequency . 53 GHz
Wavelength . 5.66 cm
Transmitter Power . 2560 W
(peak)

Pulsewidth . 10 ps
PRF 1000—4000 2500 Hz
Receiver Noise . 3dB
Figure

System losses . 6 dB
€ai ° .05

€Ani . 05

€Ar ° .05

€Anr . 05
sindi .0259-1.92-10°° .00209
Esinr .0259-1.92-10°* 00209
EMi * .10

€Mr ¢ 10

€am .05-.50 20
€Payi . 05
€Pavr . 05

€ra * .05

Ers ¢ .05

€Ri .00235-2.18-10° .0016
€Rr .00235-2.18-10 .0016
€Gi 0-.20 10

€Gr 0-.20 10

€Hi * .05

€Hr . .05

€ui . .004

€ur . .004

incidence angle is given by

Osinf Jsiné 2
Coind = ( an S R AR) snf

1 /

The measurement error in altitude and slant range has been
estimated on 15 m. In the worst case (incidence angle §=20°)
the error in the incidence angle is, with # = 6 km and R =
6385 m, £4inp = 0.0259.

The total additive noise figure for the PHARUS system is
estimated on 10 dB or HA2 = 10. The maximum possible
multiplicative noise ratio is estimated on 13 dB, or M = 0.05.
We assume that the error in M is ey = 0.1

B. PHARUS System Error Analysis

With the nominal values given in Table II the different
nominal errors of the SAR-instrument can be calculated. The
worst case situation exists with the smallest incidence angle
6 = 20° and eg = 0.2 (Table III). The contributions of the
errors as a percentage of the values given in Table III for
the relative interscene calibration are given in Fig. 2 while in
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TABLE 111
NOMINAL AND WORST CASE ERROR BOUNDS
Nominal Worst case
Absolute error bound Sa 1.617 dB 2.610 dB
Relative absolute error bound Sra 2.520 dB 4314 dB
Relative interscene error bound s, 1.786 dB 3.661 dB
Relative intrascene error bound sy 1.698 dB 3.587 dB

. Nominal interscene error D ‘Worst case interscene error

Log(Contibrution)
100 % h

10.0 % 7
1.00 %

.
100 %

010 % -1

001 % - —

“u Py PR “one “anTPav UH TA TG

Fig. 2. Contribution of the different errors in the relative interscene calibra-
tion (logarithmic scale in percentages).
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Fig. 3. Contribution of the different errors in the relative absolute calibration

(logarithmic scale in percentages).

Fig. 3 the contributions to the relative absolute calibration are
shown.

From applying the error model using the PHARUS design

parameters the following conclusions can be made:

1. The error in the gain e has the largest influence on the
overall error. Minimizing this variable has the highest
priority in the system design.

2. The single error terms (e.g., €,, €ro) Show a small
influence on the accuracy. Errors of less then 20% can
still be accepted.

3. The quadratic terms and third power term eg needs to
be looked after. The error in the received amplitude ¢ 4
has the largest influence.

In the next sections the phased array antenna will be introduced
and an error model will be presented which predicts the levels
of uncertainty in the antenna gain due to random variations in
amplitude and phase of the T/R modules as well as random
angle variations.
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Fig. 4. Coordinate system for the planar phased array antenna with z,,, ; = 0.

IV. PHASED ARRAY ANTENNA PATTERN

The far field F(6,¢) of an array of radiating elements fed
by N T/R-modules each feeding M antenna elements can be
expressed as

N

E@9,¢) =Y A’ - F,. ?3)
i=1

In which A; and 3; are the amplitude and phase of the ith T/R-

module, respectively, and F; is the array function described

as:

M;
Fi=" cpie/tomatvvmitvind (o i(0,¢)  (4)
m=1
with

M; number of elements fed by the ith
T/R-module

Crm i complex excitation coefficient of the
mth element fed by the ith T/R
module

TonisYmois Sm,i coordinates of the mth element fed
by the ith T/R-module

u ksinfcoso

v ksin#sino

w kcost

k the wavenumber k = 27/A

E,, i(6.¢) gain pattern of the individual element

The gain pattern is proportional to the power density S(6, ¢)
which itself is proportional to the square magnitude of E(6, ¢).
The power density then follows as:

N N
S0.6)= e 33 AdIEIIEE ()

2407 4
i=1n=1
in which * denotes the complex conjugate.
Fig. 4 shows the coordinate system for a planar phased array
antenna with z,,, ; = 0.
To come to an expression of the exact influence of random
amplitude, phase and angle perturbations, the integration of
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the product of the probability distributions and the square of
the power density function has to be calculated. Although the
problem is in principle analytically solvable [4], the expression
becomes a mathematical monster containing products of four
series each with dimension NxM.

A more elegant approach to the probabilistic analysis can be
found in an approximating solution. The approximating anal-
ysis will give more insight, and requires a far less computer
effort than the exact solution. This approach will be discussed
in the following section.

V. GAIN PATTERN ERROR MODEL

Let a population Y with mean 4, have a sample estimate of
<Y> and a sample standard deviation o, , including population
variability as well as measurement errors. The coefficient of
variation then follows as:

Ty
<Y > ( )

If the population can be described as a function of N ran-
dom variables Y = f(X;,Xs,....,X,) with mean X; =
{p1, 42, ..., in }, the population can be represented by its first-

€y

order Taylor series expansion about the point fi1, (42, ..., tin:
N
Y’:ao+zai(Xi = i) @)
i=1
with
Ao = f(ﬂla“?v““vll’n) (8)
and
0
5= (s iz i) 9)

If the X;’s are independent (neglecting mutual coupling be-
tween the radiators) the mean and variance of the population
then follow as:

iy = ag (10)
N

05 ~ Za?o?. 1
i=1

The power density function consists of four variables showing
random fluctuations: The amplitude and phase of the T/R-
modules fed to the antenna elements, and the beam-direction
angles 6 and ¢. Utilizing (7)-(11) to approximate the mean
and variance of this power density function yields:

ts = S(Hostos Ay s oo AL 118y ig,)  (12)

{1, oy Ay s HAs s s By s 8y s s s 48, }-

(13)

-1
es/0g (deg)
Tz.o 7
I
1.54 . !
1.0

0.73
0.5

Fig. 5. The normalized variation-coefficient ¢s/oy as a function of 8, with o

as parameter.

The coefficient of variation then follows as £, = 0/ jis.

VI. EXAMPLE OF A PHASED ARRAY ANTENNA

To explore the utility of the model a probabilistic analysis
of a simple phased array antenna will be performed. The
antenna consists of an array of 16x 8 ideally radiating elements
(En,i(0,¢) = 1), each fed by a single T/R-module (M=1,
N=128). The element distance in x-direction is Ax = 44 mm,
in y direction Ay = 37 mm, leading to a physical dimension of
16*44 mm x 8*37 mm ~0.7x0.3 m?. The antenna is operating
in C-band with a wavelength of A = 5.66 cm. Each T/R-module
feeds an element with a Gaussian distributed amplitude and
phase with mean p4; =1 and pg;= 0 and variance 042, and
a2, respectively. The measurement errors being made in the
determination of the angles # and ¢ under which the gain
pattern is considered, are expected to be Gaussian distributed
with variances o2 and 0¢2, respectively.

To find the coefficient of variation €, of the power density
function S(#, ) the variance 0% has to be determined by
solving the partial derivatives in (13). The partial derivative
of the power density function to # follows as:

95 9 [ .
59 =26 >N AAEF; ‘ {ue,ug;,ua =1pg= 0}

i
N N
= jkCOS He Z Z:{(/'La:I - urn)cosutﬁ"}—

(fy, — fhy, ) sin ,u(;)} -E;FY. (14)

Fig. 5 shows the coefficient of variation normalized to o4 as
a function of 6, with ¢ as parameter.

As could be expected, the largest error is being encountered
in the ¢ = 0 direction or x-axis direction, where the antenna
pattern has the largest gradient. Of special interest is the error
made at the half power beamwidth 6_3;5 = 0.443-A/L=2° (L=
antenna length), which has a worst-case value of eg/op =
0.73 deg!.

The expression for S/9¢ is simply encountered by inter-
changing the sine and cosine terms in (14), and negating the
first term under the summation.



SNOEI) AND VELLEKOOP: STATISTICAL MODEL FOR ERROR BOUNDS
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Fig. 6. The normalized variation-coefficient £ 5 /o as a function of o,
with € equal to the half power beamwidth.

N N
5 l5 S aeian
i i

ejk sinf cos ¢ (z;—z;)+jksinbsin¢ (y.—y;)

N N
= jksinGZ Z AA; {—sin(ﬁ(xi —z;)+cosg(y; — yJ)}
i i
e IR Py (15)
Fig. 6 shows the influence of ¢ on the variation-coefficient
es. The angle § has been chosen equal to the half power
beamwidth.
The next step is to determine the derivative of the power
density function to the amplitude and phase per radiating
element k:

- N
08 o .
— § . —3(Bi—8x) . 1*
0Ar 6Ak{i_1 Aidge™ FF+

N
ZAkAie_’(Bk_a’)FkFi*} ‘ {.U'G:H'abvﬂa =1, pg= 0}
=1

N
= QZcos (k sin ;Lg{(u“ - uL) COS g+

i=1
(/Lyk _Nyl) sinu¢}>. 16)

It is easily being verified that for § = ¢ = 0 the outcome
of (16) is S/0A = 2N, so that the total contribution of
N-elements to o2 will be 3 {2N}? - 0% = 4N30%. With
a mean power density of us = N2 at § = ¢ = 0, the
contribution to the normalized coefficient of variation becomes
esfoa = 2/\/N = (0.177 as can be seen in Fig 7.

Taking the derivative to the phase yields:

95 &
5 = 2;sin<k sinug{(uxk - Mzt) COS [+
(ke = Hiy,) sin%})‘ (17)

The coefficient of variation normalized to both the amplitude
and the phase is shown as a function of 6 in Fig. 7 for ¢=0.
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£./o £./0q (deg™)
s/5a __ cmplitude --- phase S P
1.00 .020
0.75 - .015
0.50 -.010
half power
beamwidth
0.25 ' - .005
PEET R
000 hawezzo” : 000
0 1 2

Fig. 7. Normalized coefficient of variation as a function of 6.

—  amplitude --- phase
g5/0p eglop 103 /deg)

1.0 18
- 16

0.8 14
06 Beamwidth 12
’ y=115° 10
0.4 ‘ [ ¢
- 6

02 . = -
[ ] - 2

0.0 e [

60 05 10 15 20 25 30 35 4 4.5

Fig. 8. The influence of the amplitude and phase variations on the normalized
coefficient of variation as a function of the azimuth apgle 6 (¢ = 0). The

antenna has a linear phase distribution in azimuth with 3; = i-5.625°,
resulting in an offset angle ¥=1.15°.
€5/
] 0.30
025 | 9=3°
S L 6=2%°
~6=0-2°
0.15 . T -
0.00 0.25 0.50 0.75 1.00

—" %A

Fig. 9. The exact normalized coefficient of variation as a function of 0 4
for ¢ = 0. There is hardly any change as o 4 increases.

The worst case situation is when the angle ¢=0 en §=2° (-3
dB points of the antenna pattern).

If the beam is switched (0, 3; # 0), the whole graph is
shifting as can be seen in Fig. 8.

In Fig. 8 it is assumed that the phase is increasing linear with
A[=5.625°, which can be realized with a 6-b phase shifter
(360°/2%).

The model is valid for a wide range of o4’s and op’s as
can be seen in Figs. 9 and 10, which show the effect of in-
creasing variances 04 and og. Those figures were encountered
utilizing the exact solution as described in [4]. Whereas an
increasing o4 scarcely has any effect, an increasing oz will
somewhat increase €s. For o3< 30° the model underestimates
the coefficient of variation by 10% or less.
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0 5 30 45 6 75 90
— GB (deg)

Fig. 10. The exact normalized coefficient of variation for #=0, 1/2,..., 3°
0=0 as a function of o ;. For a 10% accuracy in = at #_3 gqg = 2°, the phase
variance must be smaller than o 3<30°.

100%

80%

60% —

40% 38%

20% 18%

0% 0%
[} ° A i

Fig. 11. Influence of the gain variables on the total error in the gain as a

percentage.

The overall error bounds of the power density function can
now be determined by substituting the worst-case values in

(13):

2~ ek =0.732 02 4 0.025%02 + 0.187%03 + 0.00288%073.
(18)

In case of a digital system, the angle-error o can be utilized as
a design parameter for the number of discrete amplitude- and
phase values in the T/R-module, by requiring the contributions
of the amplitude and phase errors to be smaller than the
contribution of the angle error, 04 < 0.73/0.187-04 and oy
< 0.73/0.00288-0y.

The contributions of the amplitude and phase errors simply
follow from the quantization error for which the variance in
case of a linear binary system is given by:

2

= 3 am)
3\ 2¢

in which U, is the maximum value and ¢ is the number

of bits.

If the antenna in the example is utilized in a motion
compensated airborne radar (e.g., SAR) with a remaining
stabilization error with o4= 0.01°, the design requirements are
met if the phase is tuned with g3 > 6 b, and the amplitude
is tuned with ¢4 >4 b, ie., o4= 0.036 and o3 =1.62°.

Substitution of those values in (18) sets the total error bound
at £5=1.11%.

(19)

Fig. 11 shows the individual influence of the four variables
on the total error in the gain. Since the double summation in
(15) is multiplied with sin pp < 1, and the variances of both
angles can be expected to have the same magnitude oy = 04,
the contribution of random ¢-errors to g is negligible as can
be seen in Fig. 11.

VIL. CONCLUSION

The calibration aspect of remote sensing radars has been
discussed. A model which predicts the error bounds in a phased
array antenna subject to random perturbations is described
in this paper. As an example, the model is applied to a
simple phased array antenna to explore the utility of the
model. For a wide range of variances the model is in good
agreement with the exact solution, but with a far less computer
effort. Other, more complicated, antennas can be analyzed in a
straightforward way. The model can be used as a design tool
for digital phased array radar.
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